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ABSTRACT

In this article, we present several examples of special nonlinear conjugate gradient directions for
nonlinear (non-convex) multi-objective optimization. These directions provide a descent direction
for the objectives, independent of the line-search. This way, we can provide an algorithm with
simple, Armijo-like backtracking and prove convergence to first-order critical points. In contrast
to other popular conjugate gradient methods, no Wolfe conditions for the step-sizes have to be
satisfied. Besides investigating the theoretical properties of the algorithm, we also provide numerical
examples to illustrate its efficacy.
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1 Introduction

Optimization problems with two or more competing objective functions may arise in different areas of mathematics,
engineering, in the natural sciences or in economics. We call such a problem multi-objective optimization problem
(MOP), and multi-objective optimization (MOO) is concerned with finding acceptable trade-offs between the objectives
of an MOP. In more precise terms, optimality of our vector-valued objective function f : RN → RK , with dimensions
N,K ∈ N, is determined by the partial ordering ⪯K induced by a closed, convex, pointed cone K ⊆ RK with
int(K) ̸= ∅. We have y1 ⪯K y2 iff y2 − y1 ∈ K and y1 ≺K y2 iff y2 − y1 ∈ int(K).
Definition 1. The solutions to the unconstrained problem

⪯K
min
x∈RN

 f1(x)...
fK(x)

 =
⪯K
min
x∈RN

f(x) (MOP)

are minimal with respect to ≺K and are called Pareto-optimal. That is, a point x∗ ∈ RN is optimal, if there is no
RN \ {x∗} with f(x) ≺K f(x∗).

In practical applications, one often encounters K = RK
≥0. Today, there is a multitude of methods to solve MOPs, and

it would be out of the scope of this article to provide a complete overview. To see how (MOP) can be transformed
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into a single-objective problem via scalarization, there are entire books on the subjects, e.g. [10]. To obtain multiple
solutions, oftentimes so-called evolutionary algorithms are used, NSGA-II [7] being a prominent example. If
derivatives are available, local descent-based optimization allows for finding individual critical solutions [40, 18, 21],
or continuing along the manifold of solutions towards more favorable points [27, 35]. Preferences can also be encoded
in scalarizations, see [11, 36]. For more complete overview, consider the surveys [42] and [12].

Conjugate Gradient Methods

The main motivation for our work stems from recent improvements of the convergence rate of some first-order methods
in MOO. Multi-objective steepest descent suffers from the same sublinear convergence rates of its single-objective
counterpart [17]. For convex objectives, it can be shown that faster first-order methods exist [51, 49]. In the non-convex
case, nonlinear conjugate gradient (CG) algorithms have empirically proven themselves good alternatives.

Originally, the CG method is an iterative method used for the numerical solution of particular systems of linear
equations, specifically those whose matrix is symmetric and positive-definite. The method is best suited to large-scale
problems where direct methods are not feasible [41]. The desirable convergence properties of the linear conjugate
gradient method has motivated the use of similar directions in iterative schemes for large-scale nonlinear optimization
problems. Similarly to the linear case, the descent direction is a linear combination of the negative gradient and
the previous direction, but the multipliers are different. Today, there is a multitude of different nonlinear conjugate
methods which tend to be faster than the steepest descent method [41].

Recently, Lucambio Pérez and Prudente [33] have adapted many of the popular nonlinear CG methods to the multi-
objective setting. Their directions [22, 33] rely on strong Wolfe conditions being fulfilled. To this end, a suitable
step-size algorithm is provided [34]. These multi-objective nonlinear CG methods work well in experiments, but the
line-search algorithm might require step-sizes that are undesirably large, and its implementation is more involved
than using simple Armijo-like backtracking, and requires repeated gradient evaluations. Likewise, the method in [25]
needs Wolfe conditions too.

In contrast, the directions in this work satisfy a sufficient decrease condition by construction – independent of the
line-search. The directions are adapted (or “translated”) from certain single-objective methods with the same property.
We show convergence of a subsequence of iterates to a critical point if a backtracking step-size rule is used, which
is similar to the standard Armijo rule except for the fact that the acceptance threshold shrinks quadratically. There
already are similar schemes for bi-objective optimization [14, 13]. The bi-objective algorithms also use the modified
Armijo step-size. The directions in [3] are suited for more than two objectives and have the sufficient decrease property
too, but the provided backtracking method is merely theoretical as it requires knowledge of the Lipschitz constant of
the Jacobian. There are three algorithms in [23] based on coefficients similar to what we have in equation (12). One
of the algorithms works with a backtracking procedure employing iterative estimates of the Lipschitz constant of the
Jacobian. Sufficient decrease is ensured by having the decrease property as an additional (fulfillable) step-size criterion
besides the Armijo condition. In [4], the authors present several directions with the sufficient decrease property. Their
algorithm performs no backtracking, but performs quasi-Newton approximations of the objective Hessians to solve a
convex program for the stepsize. Although in theory knowledge of Lipschitz constants is required, their experimental
results are quite promising. The directions in [1] provide sufficient decrease, but appears to be no convergence proof
for the backtracking algorithm.

2 Criticality, Steepest Descent and Sufficient Decrease

Given smooth objective functions, there is a necessary condition for Pareto-optimality in (MOP) similar to Fermat’s
theorem in single objective optimization. Let ∇f(x) ∈ RK×N denote the Jacobian of f at x. If x∗ is Pareto-optimal,
then it is also critical, according to the following definition:
Definition 2. The point x∗ is Pareto-critical iff

− int(K) ∩ img(∇f(x∗)) = ∅.

Vice versa, if x is not critical, then there is a descent direction v ∈ RN , with the defining property
∇f(x)v ∈ − int(K).

For such a direction, there is some step-size bound σ̄ > 0 with
f(x+ σv) ⪯K f(x) ∀σ ∈ (0, σ̄) (see [24]).

We will proceed to introduce the maps φ(•) and D(•, •) to facilitate working with the definitions of Pareto-optimality
and -criticality. Adopting the notation from [24, 33], let ⟨•, •⟩ be the usual inner product on RK and

K∗ = {w ∈ RK : ⟨w,y⟩ ≥ 0 ∀y ∈ K},

2
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the dual cone of K. Further, let C ⊂ K∗ \ {0} be a compact set generating K∗ as its conical hull:

K∗ = coni(C) =

{
P∑
i=1

λiyi : λi ≥ 0,yi ∈ C,P ∈ N0

}
.

Then, the map
φ : RK → R,y 7→ sup

w∈C
⟨y,w⟩ = max

w∈C
⟨y,w⟩ (1)

allows for a characterization of −K and − int(K) in terms of sublevel sets:

y ∈ −K ⇔ φ(y) ≤ 0 and y ∈ − int(K)⇔ φ(y) < 0. (2)

This map, the support function of the dual cone, has the following properties:
Lemma 3 (Lemma 3.1 in [24]). Let y,y′ ∈ RK . Then

1. φ(y + y′) ≤ φ(y) + φ(y′) and φ(y)− φ(y′) ≤ φ(y − y′).

2. If y ⪯K y′, then φ(y) ≤ φ(y′). If y ≺K y′, then φ(y) < φ(y′).

3. φ is Lipschitz-continuous.

Furthermore, if we define D : RN × RN → R by

D(x,d) = D[x](d) = φ (∇f(x)·d) = max
w∈C

⟨∇f(x)·d,w⟩ ,

then we can infer criticality from the function D as follows:
Lemma 4 ([24, Lemma 3.3], [50, Thm. 3.1]). Suppose f is continuously differentiable on an open set Ω ⊆ RN . For
x ∈ Ω, consider the following optimization problem:

min
d∈RN

D[x](d) +
1

2
∥d∥22 . (P)

Denote the minimizer by δ = δ(x) ∈ RN and the optimal value by α = α(x) ∈ R.

1. If x is critical, then δ = 0 and α = 0.

2. If x is not critical, then δ ̸= 0, α < 0 and D[x](δ) < − 1
2 ∥δ∥

2
< 0, and δ is a descent direction.

3. The mappings x 7→ δ(x),x 7→ α(x) are continuous.

Moreover, if W ⊆ Ω is compact and f has Lipschitz-continuous gradients on W , then

1. the steepest descent direction x 7→ δ(x) is Hölder-continuous on W with exponent 1/2,

2. and its norm x 7→ ∥δ(x)∥ is Lipschitz on W .

Besides, in [24] it is shown that

α(x) = −1

2
∥δ(x)∥2 , and thus D[x](δ) = −∥δ(x)∥2 .

As polynomials are Lipschitz-continuous on compact sets, and the composition of Lipschitz-continuous functions is
Lipschitz, the optimal value x 7→ α(x) is Lipschitz if f has Lipschitz-continuous gradients on a compact set.
In the single-objective case, with K = R≥0, the solution is δ = −∇f(x). In the multi-objective case, dualization
shows the solution to be the element of smallest norm in the convex hull of negative gradients:

δ(x) = −∇f(x)T ·vδ, vδ = vδ(x) = arg min
v∈convC

∥∥∇f(x)T ·v
∥∥2
2
. (D)

The problem in (P) (or (D)) generalizes the concept of the steepest descent direction, and we obtain a recipe for
“translating” nonlinear CG directions for multiple objectives. Obviously, the choice of C influences the solution set
of (P), which is why we assume ∥y∥ = 1 for all y ∈ C for the remainder of this work.

Just as in single-objective optimization a sequence of directions d(k) ∈ RN is said to fulfill the sufficient decrease con-
dition if there is a constant κsd > 0 such that

〈
−∇f(x(k)),d(k)

〉
≥ κsd

∥∥∇f(x(k))
∥∥2 , we qualify them accordingly

in the multi-objective case:

3
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Definition 5. The directions
{
d(k)

}
are said to have the sufficient decrease property iff for all k ∈ N0 the following

inequality holds:

−Dk

(
d(k)

)
= −φ

(
∇f(x(k))·d(k)

)
≥ −κsdφ

(
∇f(x(k))·δ(k)

)
= −κsdDk

(
δ(k)

)
= κsd

∥∥∥δ(k)∥∥∥2 . (dec)

Instead of the dot product of a single gradient with the direction, we have used the following shorthand notation:

Dk (d) = D
[
x(k)

]
(d) = φ(∇f(x(k))·d).

Should this property hold independent of the line-search used to determine a step-size in an algorithm, we say that the
directions

{
d(k)

}
provide guaranteed descent.

Remark 6. If a direction d(k) has the sufficient decrease property −Dk(d
(k)) ≥ κsd

∥∥δ(k)∥∥2 (and if δ(k) ̸= 0),
then it is in the half-space containing δ(k), defined by the hyperplane orthogonal to δ(k). We see this by writing
δ(k) = −

(
∇f (k)

)T
vδ , with vδ =

∑
i λiwi ∈ conv (C) according to (D). Then〈
d(k), δ(k)

〉
=
∑
i

−λi
〈
d(k),∇f (k)wi

〉
,

and each term is non-negative because of λi ≥ 0 and

−
〈
d(k),∇f (k)wi

〉
≥ −max

w

〈
d(k),∇f (k)w

〉
= −Dk(d

(k)) ≥ κsd
∥∥∥δ(k)∥∥∥2 .

3 Algorithm and Step-Size

The algorithm will be stated in a very generic manner. That is, we do not (yet) give specific formulas to compute
the directions

{
d(k)

}
, but only assume them to have the sufficient decrease property (dec). Additionally, we have to

determine step-sizes. In the following subsection, we justify a simple backtracking procedure.

3.1 Modified Armijo Step-Size

Let d ∈ RN be a descent direction for f at x and let e ∈ K be a vector such that

0 < ce ≤ ⟨w, e⟩ ≤ 1 ∀w ∈ C (3)

for some constant ce > 0. We can find a suitable vector e because K is pointed and C spans its dual cone. In case
that K is RK

≥0 and C contains the canonical basis of RK , simply choose e = [1, . . . , 1]T.

Our step-size should satisfy an Armijo-like condition, where the right-hand side (RHS) is modified to shrink
quadratically. Modifying the condition found in [33], we get the strict modified Armijo condition:
Definition 7. Suppose that f is differentiable in an open set containing x ∈ RN and that d is a descent-direction. Let
a ∈ (0, 1) be constant. The step-size σ > 0 satisfies the strict modified Armijo condition if

f(x+ σd)− f(x) ⪯K −aσ2 ∥d∥2 e. (4)

The next proposition shows that a suitable step-size actually exists.
Proposition 8. Suppose the conditions of Definition 7 hold. Then there is a suitable step-size σ > 0 satisfying (4).

Proof. Suppose there was not:

f(x+ σd)− f(x) + aσ2 ∥d∥2 e /∈ −K ∀σ > 0.

Then, with (2), there is some w ∈ C such that for all σ > 0:〈
w,f(x+ σd)− f(x) + aσ2 ∥d∥2 e

〉
> 0.

A first order Taylor expansion leads to〈
w, σ∇f(x)d+R(σ) + aσ2 ∥d∥2 e

〉
> 0.

4
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Rearranging and dividing by σ > 0 gives

⟨w,∇f(x)d⟩ > −aσ ∥d∥2 ⟨w, e⟩ −
〈
w,

R(σ)

σ

〉
≥ −aσ ∥d∥2 −

〈
w,

R(σ)

σ

〉
, (5)

where, by definition of the total differential,
R(σ)

σ
→ 0, as σ ↘ 0. Because d is a descent direction, the value on the

left-hand side (LHS) in (5) is constant and strictly negative, while the RHS goes to zero. A contradiction!

There is also a less strict variant of the modified Armijo condition:
Definition 9. Under the same conditions as in Definition 7, the step-size σ > 0 satisfies the weak modified Armijo
condition if

φ (f(x+ σd))− φ (f(x)) ≤ −aσ2 ∥d∥2 ce. (6)

For K = RK
≥0, the weak condition only guarantees descent in one objective, so the algorithm will produce value

vectors that are not monotonic with respect to ⪯K. But the sequence
{
φ
(
f(x(k))

)}
k

will be monotonic. Likely,
larger steps are taken with the weak condition.
Proposition 10. The strict modified Armijo condition (4) implies the weak condition (6).

Proof. Suppose the strict Armijo condition (4) is fulfilled. With Lemma 3 it follows that

φ (f(x+ σd))− φ (f(x)) ≤ φ (f(x+ σd)− f(x)) ≤ φ
(
−aσ2 ∥d∥2 e

)
.

For the RHS we get from definition (1) that

φ
(
−aσ2 ∥d∥2 e

)
= max

w∈C

((
−aσ2 ∥d∥2

)
⟨w, e⟩

)
= −aσ2 ∥d∥2 min

w∈C
⟨w, e⟩ = −aσ2 ∥d∥2 ce.

A step-size satisfying (4) or (6) can be found by backtracking: Let k ∈ N,x(k) ∈ RN and let d(k) ∈ RN be a descent
direction of f at x(k). Further, let b ∈ (0, 1) and a ∈ (0, 1) be constants and σk,0 an initial step-size bounded below
by the constant M > 0. The step-size σk can be found as

σk = max
j∈N0

bjσk,0 such that (4) (or (6)) holds. (7)

3.2 Generic Algorithm and Zoutendijk Property

We are now in a position to state the complete procedure as Algorithm 1. In the following, we continue to establish

Algorithm 1: Algorithm with Generic Descent Direction and Backtracking

Data: N ∈ N,K ∈ N,f : RN → RK ,x(0) ∈ RN , a ∈ (0, 1), b ∈ (0, 1), κsd > 0, σk,0 ≥ M > 0. A step-size
condition (∗): either (4) or (6).

Result: A critical point x(k) or a critical sequence {x(k)}k∈N0
.

for k ∈ N0 do
if x(k) is critical then STOP;
Compute a direction d(k) satisfying (dec);
Compute a step-size σk satisfying (∗) by backtracking like in (7);
Set x(k+1) ← x(k) + σkd

(k);
end

results to prove convergence for specific directions
{
d(k)

}
in subsequent sections. Of course, there is nothing to show

if we stop at a critical point with finite termination. We hence implicitly assume infinite sequences from now on.
That is, in iteration k we know that x(ℓ) was not critical, i.e.

∥∥δ(ℓ)∥∥ > 0 for all ℓ ≤ k. To state our main results, we
introduce a set of additional assumptions:

5
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Assumption 1. For a given initial point x(0), the function f : RN → RK is defined on the set

F =

{{
x ∈ RN : f(x) ⪯K f(x(0))

}
, if (4) is used,{

x ∈ RN : φ(f(x)) ≤ φ(f(x(0)))
}
, if (6) is used.

Furthermore, f is continuously differentiable in an open set containing F .
Assumption 2. Assumption 1 holds and the Jacobian of f is Lipschitz-continuous with constant Lf > 0.

Assumption 3. If {x(k)} ⊆ F is such that the value sequence
{
φ(f(x(k)))

}
is non-increasing, then this value

sequence is uniformly bounded below by some ylb ∈ R.

Our assumptions are rather granular to indicate what is strictly necessary for the results to work. Instead of Assump-
tions 2 and 3 we could also demand the sublevel set F to be bounded. Lipschitz-continuity of the Jacobian and
boundedness of every sequence of continuous function values automatically follows. Thus, the following assumption
can replace Assumptions 2 and 3:
Assumption 4. The sublevel set F as defined in Assumption 1 is closed and bounded, i.e., compact.

Our first results concerns the step-length. It goes to zero because of the modified Armijo condition:

Lemma 11. Consider a sequence
{
(x(k),d(k), σk)

}
k

produced by Algorithm 1. Suppose Assumptions 1 and 3 hold.
Then

lim
k→∞

σ2
k ∥dk∥2 = lim

k→∞
σk ∥dk∥ = 0.

Proof. By design, the weak Armijo condition (6) holds:

aceσ
2
k

∥∥∥d(k)
∥∥∥2 ≤ φ(f(x(k))

)
− φ

(
f(x(k) + σkd

(k))
)
.

Combining the constants into c > 0 and summing up to κ ∈ N0 gives

c

κ∑
k=0

σ2
k

∥∥∥d(k)
∥∥∥2 ≤ φ(f(x(0))

)
− φ

(
f(x(κ+1) + σ(κ+1)d(κ+1))

)
Due to Assumption 3, the RHS simplifies:

c

κ∑
k=0

σ2
k

∥∥∥d(k)
∥∥∥2 ≤ φ(f(x(0))

)
− ylb = const.

We see that the LHS is a monotonically increasing sequence and bounded above. Due to the Monotone Convergence
Theorem, it must be convergent, i.e.,

∞∑
k=0

σ2
k

∥∥∥d(k)
∥∥∥2 <∞.

Next, we derive a bound resembling the Zoutendijk condition often encountered in single-objective optimization. Note
that – from now on – we will refrain from explicitly stating that the iterates are generated by Algorithm 1 most of the
time.
Lemma 12. Suppose Assumptions 1 to 3 hold, that the directions have the sufficient decrease property (dec) with
constant κsd > 0, and that the step-sizes σk in Algorithm 1 satisfy Eq. (4). Then the following Zoutendijk-like
condition follows: ∑

k∈N0

∥∥δ(k)∥∥4∥∥d(k)
∥∥2 =

∑
k∈N0

(
Dk(δ

(k))
)2∥∥d(k)

∥∥2 <∞. (ZD)

Proof. Let k ∈ N0 and consider two cases.

First, suppose σk ̸= σk,0. Due to the backtracking procedure, the strict Armijo condition (4) must be violated for
σkb

−1 > σk. (If the weak condition is used, and it is violated for some step-size, then the strict condition cannot hold
neither for that step-size.) With (2) there thus is w ∈ C such that〈

w,f
(
x+

σk
b
d(k)

)
− f(x) + a

σ2
k

b2

∥∥∥d(k)
∥∥∥2 e〉 > 0.

6
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It follows, that

−aσ
2
k

b2

∥∥∥d(k)
∥∥∥2 ≤ 〈w,−aσ2

k

b2

∥∥∥d(k)
∥∥∥2 e〉 <

〈
w,f

(
x+

σk
b
d(k)

)〉
− ⟨w,f(x)⟩ .

Applying the mean-value-theorem on the RHS gives some h ∈ (0, 1) with

−aσ
2
k

b2

∥∥∥d(k)
∥∥∥2 ≤ σk

b

〈
w,∇f

(
x(k) + h

σk
b
d(k)

)
d(k)

〉
=
σk
b

〈
w,
(
∇f

(
x(k) + h

σk
b
d(k)

)
−∇f(x(k))

)
d(k) +∇f(x(k))d(k)

〉
≤ σk

b

〈
w,
(
∇f

(
x(k) + h

σk
b
d(k)

)
−∇f(x(k))

)
d(k)

〉
+
σk
b

〈
w,∇f(x(k))d(k)

〉
≤ σ2

k

b2
Lf ∥w∥

∥∥∥d(k)
∥∥∥2 + σk

b
Dk

(
d(k)

)
,

where the first term in the last line is derived using the Cauchy-Schwarz inequality and the Lipschitz continuity of ∇f
(Assumption 2). We rearrange to get

−
Dk

(
d(k)

)∥∥d(k)
∥∥2 ≤ σk Lf ∥w∥+ 1

b
.

Because C is compact, ∥w∥ is bounded above. Rearranging our bound, we can thus find a constant c > 0 such that

c
−Dk

(
d(k)

)∥∥d(k)
∥∥2 ≤ σk.

The LHS is positive, because d(k) is a descent direction. Furthermore, the algorithm ensures that the sufficient
decrease conditions holds. Plugging the last inequality into the weak Armijo condition (6), which must hold for σk,
results in

φ(f(x(k)))− φ
(
f
(
x(k) + σkd

(k)
))
≥ acce

(
Dk

(
d(k)

))2∥∥d(k)
∥∥2 (dec)

≥ acceκsd

∥∥δ(k)∥∥4∥∥d(k)
∥∥2 . (8)

We now also want to find a bound like (8) for the case σk = σk,0. By definition of δ(k) as the minimizer of (P), we
have

Dk

(
δ(k)

)
+

∥∥δ(k)∥∥2
2

≤ Dk

(
κ−1
sd d(k)

)
+

∥∥d(k)
∥∥2

2κ2sd
The sufficient decrease condition (dec) gives

κ−1
sd Dk

(
d(k)

)
= Dk

(
κ−1
sd d(k)

)
≤ Dk(δ

(k)),

so it must hold that ∥∥∥δ(k)∥∥∥2 ≤ ∥∥d(k)
∥∥2

κ2sd
.

Thus, ∥∥δ(k)∥∥4∥∥d(k)
∥∥2 ≤ 1

κ4sd

∥∥∥d(k)
∥∥∥2 ≤ 1

κ4sda (σk,0)
2

(
φ(f(x(k)))− φ

(
f
(
x(k) + σkd

(k)
)))

As σk,0 ≥ M > 0 for all k, we can again find a constant c̄ > 0 and a bound similar to (8):

c̄

∥∥δ(k)∥∥4∥∥d(k)
∥∥2 ≤ φ(f(x(k)))− φ

(
x(k) + σkd

(k)
)
. (9)

Like in the proof of Lemma 11, we can deduce convergence of the series in (ZD) from (8) and (9) with Assumption 3,
by realizing that the sequence of partial sums is again increasing and bounded.

The Zoutendijk property is common to many descent algorithms in single-objective and multi-objective optimization.
It allows for a convenient way to prove that certain direction schemes converge to critical points by means of
contradiction.

7



Nonlinear CG in MOO A PREPRINT

4 Directions with Guaranteed Descent

All that is left to do, is to actually provide directions
{
d(k)

}
that can be used with Algorithm 1. The directions

presented in this section are adapted from single-objective schemes, of which there are too many to list in this article.
Hence, our list is by no means complete, and there are many more approaches to explore. Namely, we draw inspiration
from [5, 55, 56]. We provide various translations of the referenced algorithms to the multi-objective case, that are
meant to convergence to critical points, while avoiding excessive computational overhead.
Because the various schemes differ in their requirements, we explicitly state their convergence properties in the
respective subsections. The main results are Theorems 16, 19, 25, 32, 35 and 38.

4.1 Projection Polak-Ribière-Polyak Scheme

To ensure sufficient decrease, Cheng [5] simply projects the residual term in a standard two-term Polak-Ribière-Polyak
(PRP) scheme onto the orthogonal complement of the gradient, i.e., the null space of ∇f(x(k))T. With multiple
gradients, there usually is no non-trivial subspace orthogonal to all of them. However, the (convex) cone of non-ascent
directions

D(x) = −∇f (k) K =
{
d ∈ RN : ∇f(x)·d ∈ −K

}
is polar to the gradient cone

∇f(x)T K∗ =
{
∇f(x)Tv : v ∈ K∗}

and provides a suitable generalization. Note, that per (2) the properties of φ allow for a characterization of D via

d ∈ D(x) ⇔ D[x](d) = φ(∇f(x)·d) ≤ 0. (10)

To further motivate the approach, let us revisit the single-objective definition of d(k). Let g(k) = ∇f(x(k)) be the
single gradient in iteration k and denote for any vector v ∈ RN its orthogonal complement by ker(v) ⊆ RN . From [5]
we take

d(k) =

{
−g(k) if k = 0,

−g(k) + d̄(k) if k ≥ 1,

with

d̄(k) = Pker(g(k))

(
β(k)d

(k−1)
)
, β(k) =

〈
g(k), g(k) − g(k−1)

〉∥∥g(k−1)
∥∥2 ,

where d̄ is the metric projection of β(k)d(k−1) onto ker(g(k)), For a single vector g(k), the projection onto its null
space is given by the simple formula

Pker(g(k))

(
β(k)d

(k−1)
)
=

(
IN×N −

g(k)
(
g(k)

)T∥∥g(k)
∥∥2

)
β(k)d

(k−1). (11)

Moreover, as illustrated in Fig. 1, the sufficient decrease property follows suit:〈
g(k),d(k)

〉
=
〈
g(k),−g(k)

〉
+
〈
g(k), d̄(k)

〉
︸ ︷︷ ︸

=0

.

g(k)

−g(k)

β(k)d
(k−1)

ker(g(k))

d̄(k)

d(k)

Figure 1: Projection Scheme in the single-objective setting. The standard residual term is projected onto the
hyperplane orthogonal to the gradient, so that the final CG direction (blue) has sufficient decrease by construction.

To go to the multi-objective setting, we can use the PRP coefficient from [33]. Moreover, we would like to be able to
use the cheap projection formula (11). This can be achieved by not projecting onto D(x(k)), but some non-empty
convex subset S(k) of D(x(k)) that contains the origin.

8



Nonlinear CG in MOO A PREPRINT

Definition 13. For all k ∈ N0, let S(k) be a non-empty convex subset of the cone D(x(k)). We define the direction
scheme (PRPP) by

d(k) =

{
δ(k) if k = 0,
δ(k) + d̄(k) if k ≥ 1,

d̄(k) = PS(k)

(
β(k)d

(k−1)
)
, (PRPP)

with coefficients

β(k) =
D
[
x(k−1)

](
δ(k)

)
− D

[
x(k)

](
δ(k)

)
−D
[
x(k−1)

](
δ(k−1)

) =
Dk−1

(
δ(k)

)
− Dk

(
δ(k)

)∥∥δ(k−1)
∥∥2 , k ≥ 1. (12)

As shown in the Appendix, the sufficient decrease property follows from (10):

Lemma 14. Suppose Assumption 1 holds. The directions in Definition 13 have the sufficient decrease property (dec)
with κsd = 1.

Remark 15. We can always use S(k) = D(x(k)), but then the projection might be too expensive. To exploit the
single-vector projection formula (11) from above, we can use a MiniMax approach, at least if C is discrete. For
w ∈ C, let

d̄(w) := Pker(∇f(x(k))Tw)

(
β(k)d

(k−1)
)

and choose w∗ as the minimizer in

min
w∈C

max
v∈C

〈
v,∇f(x(k))d̄(w)

〉
= min

w∈C
Dk

(
d̄(w)

)
.

If the optimal value at w∗ is less than or equal to 0, then, by the properties of φ, the vector d̄(w∗), a projection onto
the hyperplane ker(∇f(x(k))Tw∗), is contained inD(x(k)), and we can use d̄(k) = d̄(w∗) and (a posteriori) choose
S(k) to be the ray through d̄(k). If the optimal value is positive, then β(k)d(k−1) belongs to the polar cone of D(x(k)).
In this case, d̄(k) = 0 is the projection onto S(k) = D(x(k)). The procedure is shown in Fig. 2.

D

g1

g2

ker(g1)

ker(g2)

−g1

−g2δ(k)

β(k)d
(k−1)

d̄(e1)

d̄(e2)

d(k) D

g1

g2

ker(g1)

ker(g2)

−g1

−g2δ(k)

d(k)

β(k)d
(k−1)

d̄(e1)

d̄(e2)

Figure 2: Illustration of the procedure in Remark 15. The gradients of the bi-objective problem in iteration k are
denoted by g1 and g2. On the left, the projection d̄(e1) belongs to the cone D of non-ascent directions, and d(k) is
the sum of steepest descent direction δ(k) and projection d̄(e1). On the right, the vector β(k)d(k−1) is polar to the
cone D and thus d(k) = δ(k).

We finally find that the directions (PRPP) lead to convergence. The proof is in the Appendix again.

Theorem 16. Suppose Assumptions 1 to 3 hold and that the criticality
∥∥δ(k)∥∥ is bounded below like in (⊥). Then

Algorithm 1 with directions defined by (PRPP) generates a critical subsequence.

4.2 Three-Term Polak-Ribière-Polyak Scheme

Zhang et al. [55] define the following three-term PRP directions for single-objective optimization:

d(k) =

{
−g(k) if k = 0,
−g(k) + β(k)d

(k−1) − θ(k)
(
g(k) − g(k−1)

)
if k ≥ 1.

9
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Here, g(k) = ∇f(x(k)) and the coefficients are defined by

β(k) =

〈
g(k), g(k) − g(k−1)

〉∥∥g(k−1)
∥∥2 and θ(k) =

〈
g(k),d(k−1)

〉∥∥g(k−1)
∥∥2 .

These directions provide guaranteed descent as per
〈
−g(k),d(k)

〉
=
∥∥δ(k)∥∥2.

Unfortunately, it is not sufficient to simply replace −g(k) with δ(k), the minimizer in (P), to obtain a multi-objective
scheme. In the following definition, we instead propose parameterized, multi-objective variants:
Definition 17. We define the direction scheme (PRP3) by

d(k) =

{
δ(k) if k = 0

δ(k) + αββ(k)(wβ)d
(k−1) − αθθ(k)(wθ)y

(k), if k ≥ 1,
(PRP3)

with parameter-dependent coefficients

β(k)(w) =

〈
w,∇f(x(k))y(k)

〉∥∥δ(k−1)
∥∥2 =

〈
w,a(k)

〉∥∥δ(k−1)
∥∥2 and θ(k)(w) =

〈
w,∇f(x(k))d(k−1)

〉∥∥δ(k−1)
∥∥2 =

〈
w, b(k)

〉∥∥δ(k−1)
∥∥ , (13)

where
y(k) = δ(k−1) − δ(k), a(k) = ∇f (k)y(k) and b(k) = ∇f (k)d(k−1). (14)

The parameter vectors wβ ∈ C and wθ ∈ C, and the scalars αβ ∈ [0, 1] and αβ ∈ [0, 1], can be chosen as described
below:

1. If C is not discrete, by setting αβ = αθ = 1, and solving the optimization problem

w∗ = arg min
w∈C

max
v∈C

〈
w,a(k)

〉〈
v, b(k)

〉
−
〈
w, b(k)

〉〈
v,a(k)

〉
(15)

to obtain wβ = wθ = w∗.

2. If C is discrete, by first solving two discrete problems,

ψ(vθ,wθ) = max
w∈C

min
v∈C

ψ(v,w) ≤ min
w∈C

max
v∈C

ψ(w,v) = ψ(wβ ,vβ), (16)

where ψ is the bilinear form induced by the dyadic product M (k) = a(k) · b(k)T ∈ RK×K ,

ψ(w,v) = wTM (k)v =
〈
w,M (k)v

〉
. (17)

The scalars αβ ∈ [0, 1], αθ ∈ [0, 1] are then chosen according to this decision tree:

• If ψ(vθ,wθ) = ψ(wβ ,vβ), then use αβ = αθ = 1.
• If equality requires a sign switch, i.e., either ψ(vθ,wθ) < 0 and ψ(wβ ,vβ) ≥ 0 or ψ(vθ,wθ) ≤ 0 and
ψ(wβ ,vβ) > 0, then set αβ = αθ = 0.

• If both values are different and positive, let αθ = 1 and shrink the larger value ψ(wβ ,vβ) to obtain

αβ =
ψ(vθ,wθ)

ψ(wβ ,vβ)
∈ (0, 1).

• If both values are different and negative, let αβ = 1 and grow the smaller value ψ(vθ,wθ) to obtain

αθ =
ψ(wβ ,vβ)

ψ(vθ,wθ)
∈ (0, 1).

These directions have the sufficient decrease property, which is again shown in the Appendix.
Lemma 18. Suppose Assumption 1 holds. The directions in Definition 17 have the sufficient decrease property (dec)
with κsd = 1.

As seen in the Appendix, and stated in the assumptions of the following result, proving convergence for these specific
directions requires a bounded domain.
Theorem 19. Suppose that Assumptions 1 and 4 hold. The Algorithm with directions as in Definition 17 produces a
critical sequence.

10
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4.3 Fletcher-Reeves Schemes

We next present several multi-objective direction schemes derived from the single-objective method in [56]. There,
the single-objective directions d(k) are inspired by the classical Fletcher-Reeves (FR) recipe and given by

d(k) =

{
−g(k) if k = 0,

−θ(k)g(k) + β(k)d
(k−1) if k ≥ 1,

β(k) :=

∥∥g(k)
∥∥2∥∥g(k−1)
∥∥2 , θ(k) :=

〈
d(k−1), g(k) − g(k−1)

〉∥∥g(k)
∥∥2 , (FR SO)

where g(k) = ∇f(x(k)). In contrast to the standard FR method, there is a new factor θ(k) to ensure the sufficient
decrease condition. In fact, the single-objective directions are designed to satisfy〈

d(k),−g(k)
〉
=
∥∥∥∇f(x(k))

∥∥∥2 ∀k ∈ N0. (18)

Unfortunately, simply replacing −g(k) with the multi-objective steepest descent direction δ(k) from (P) and naively
“translating” the coefficients θ(k) and β(k) does not work.

In the next subsections, however, we present multi-objective alternatives derived from (FR SO). These variants are
related in that they have the same form

d(k) =

{
η0δ

(k) if k ∈ N ,
θ(k)δ

(k) + β(k)d
(k−1) if k ∈ P, (FR MO1)

where η0 ∈ R is constant, and N ,P are disjoint index sets. The directions are designed to have sufficient decrease
with constant κsd > 0 and converge to critical points according to the next proposition.
Lemma 20. Suppose Assumptions 1 to 3 hold, and suppose we apply Algorithm 1 with the directions

{
d(k)

}
defined by (FR MO1) for disjoint index sets N and P with N0 = N ∪ P , and coefficients

{
β(k)

}
k∈P ⊆ R and{

θ(k)
}
k∈P ⊆ R. Assume further, that the directions

{
d(k)

}
have the sufficient decrease property with constant

κsd > 0, and that the criticality is bounded below like in (⊥). If there are constants Cdp > 0 and Co ≥ 0, and an
index k̄ ∈ N0 with

β2
(k) ≤

∥∥δ(k)∥∥4∥∥δ(k−1)
∥∥4 ∀k ∈ P, k ≥ k̄, (19)

and 〈
δ(k),d(k)

〉
≤ Cdp

∥∥∥δ(k)∥∥∥2 + Co ∀k ∈ P, k ≥ k̄, (20)

then the iteration sequence
{
x(k)

}
is critical.

The proof is given in the Appendix.

4.3.1 Restarts with Modified Wolfe Condition

Show sufficient decrease becomes straightforward if θ(k) is not negative. As we will see, a negative coefficient θ(k)
can be avoided with Wolfe-like conditions. Supposing d(k−1) is a descent-direction at x(k−1) (for k ≥ 1), and
σsw ∈ (0, 1) is a constant, then d(k−1) satisfies the weak Wolfe condition iff

Dk

(
d(k−1)

)
≥ σswDk−1

(
d(k−1)

)
. (WWC)

The condition (WWC) is already sufficient to have non-negative coefficients and to provide the sufficient decrease
property. Note, that we do not enforce this condition when determining a step-size in iteration k − 1. Rather, we use it
as a restart criterion in iteration k with the unscaled direction d(k−1).

Unfortunately, we must further modify the coefficients to obtain convergence to a critical point. That is, we employ a
stricter test. The direction d(k−1) satisfies the strong Wolfe condition iff∣∣∣Dk(d

(k−1))
∣∣∣ ≤ σsw

∣∣∣Dk−1

(
d(k−1)

)∣∣∣ , (SWC)

and the modified strong Wolfe condition iff

max
{∣∣∣Dk

(
d(k−1)

)∣∣∣ , ∣∣∣〈δ(k),d(k−1)
〉∣∣∣} ≤ σsw

∣∣∣Dk−1

(
d(k−1)

)∣∣∣ . (MWC)

As d(k−1) is a descent direction, we have
∣∣Dk−1

(
d(k−1)

)∣∣ = −Dk−1

(
d(k−1)

)
, and

(MWC)⇒ (SWC)⇒ (WWC).
The condition is used in the direction definition:

11
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Definition 21. We define the direction scheme (FRR) by specifying the following coefficients and index sets
for (FR MO1):

η0 = 1,

β(k) =

∥∥δ(k)∥∥2
−Dk−1

(
d(k−1)

) =
−
∥∥δ(k)∥∥2

Dk−1

(
d(k−1)

) =
Dk

(
δ(k)

)
Dk−1

(
d(k−1)

) ,
θ(k) =

Dk

(
d(k−1)

)
− Dk−1

(
d(k−1)

)
−Dk−1

(
d(k−1)

) =
Dk−1

(
d(k−1)

)
− Dk

(
d(k−1)

)
Dk−1

(
d(k−1)

) ,

N =
{
k ∈ N0 : k = 0 or d(k−1) does not satisfy (MWC)

}
,

P =
{
k ∈ N0 : k ≥ 1 and d(k−1) satisfies (MWC)

}
.

(21)

Remark. These directions also generalize a property of their single-objective ancestors: If d(k−1) were to be scaled
according to an exact line-search, then θ(k) = 1, and the resulting directions would be similar to the classical FR
directions.

The directions have sufficient decrease as per the next lemma, which is proven in the Appendix.
Lemma 22. Assume that Assumption 2 holds. The directions in Definition 21 have the sufficient decrease property (dec)
with κsd = 1.

We now show that the directions also fit Lemma 20. The proofs for both auxiliary results are in the Appendix.

Lemma 23. Suppose Assumptions 1 to 3 hold and that the criticality
∥∥δ(k)∥∥ is bounded below like in (⊥). Assume{

d(k)
}
k∈N0

are like in Definition 21. Then〈
δ(k),d(k)

〉
≤ 3

∥∥∥δ(k)∥∥∥2 ∀k ∈ P. (22)

Lemma 24. Suppose Assumptions 1 to 3 hold and that the criticality
∥∥δ(k)∥∥ is bounded below like in (⊥). Assume{

d(k)
}
k∈N0

are like in Definition 21. Then

β2
(k) ≤

∥∥δ(k)∥∥4∥∥δ(k−1)
∥∥4 ∀k ∈ P. (23)

The convergence result is derived from Lemma 20 as a corollary by leveraging Lemmas 22 to 24.
Theorem 25. Suppose Assumptions 1 to 3 hold and that we apply Algorithm 1 with directions as specified in Defini-
tion 21. Then the sequence

{
x(k)

}
of iterates is critical.

4.3.2 Denominator with Balancing Offset

When drawing inspiration from the single-objective case, it can be useful to rewrite the coefficient θ(k). By equa-
tion (18), the single-objective coefficients are

θ(k) = 1 +

〈
g(k),d(k−1)

〉∥∥δ(k−1)
∥∥2 .

What is more, (18) is used twice in the convergence analysis: It shows sufficient decrease,
〈
g(k),d(k)

〉
≤ −

∥∥g(k)
∥∥2,

and later the other inequality, −
∥∥g(k)

∥∥2 ≤ 〈g(k),d(k)
〉
, helps in proving criticality. But with multiple objectives, the

symmetries break. Incorporating a balancing term in the denominators provides a possible remedy.
Definition 26. Fix constants κ > 0 and Cγ ≥ 0. We define the direction scheme (FRBO) by specifying the coefficients
and index sets in (FR MO1). We set η0 = κ,N = {0}, P = N, and, for k ≥ 1,

β(k) = −γ(k)
〈
wβ ,∇f (k)δ(k)

〉
, θ(k) = κ+ γ(k)Dk

(
d(k−1)

)
, (24)

where the factor γ(k) is defined by

γ(k) =
Cγ

−⟨wβ ,∇f(k)δ(k)⟩
∥δ(k)∥2

∥∥δ(k−1)
∥∥2 + Dk

(
d(k−1)

) ∥∥δ(k)∥∥2 − 〈wβ ,∇f (k)δ(k)
〉 〈

δ(k),d(k−1)
〉 , (25)

12
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and wβ ∈ C depends on the sign of Dk

(
d(k−1)

)
:

wβ =

{
arg maxw∈C

〈
w,∇f (k)δ(k)

〉
if Dk

(
d(k−1)

)
≥ 0,

arg minw∈C

〈
w,∇f (k)δ(k)

〉
if Dk

(
d(k−1)

)
< 0.

(26)

Before looking in detail at the properties of these coefficients, a few remarks:

• If Cγ = 0, then the method reduces to a scaled steepest descent method, i.e., d(k) = κδ(k) for all k ∈ N0.

• If we were to determine the step-size in iteration k − 1 by exact line-search and scale d(k−1) accordingly,
then Dk(d

(k−1)) = 0, giving d(k) = κδ(k) + β(k)d
(k−1), and the method would look similar to the standard

FR method.

• The scheme generalizes the single-objective method, which is a special case with singleton set C = {1}.
• In the defining equations (24, 25, 26), we can replace Dk

(
d(k−1)

)
with

∣∣Dk

(
d(k−1)

)∣∣ to obtain an alternative
scheme. It has similar properties, and the convergence analysis is nearly identical. In the alternative scheme,
β(k) = γ(k)

∥∥δ(k)∥∥2, making implementation a bit simpler. In exchange, it does not generalize the single-
objective case as well, because of the absolute value.

We can show that γ(k) in (25) is non-negative:

Lemma 27. Suppose that Assumption 1 holds. If k ≥ 1, w ∈ C is arbitrary, and wβ is as in (26), then

∆(k)(w) := Dk

(
d(k−1)

)〈
w,∇f (k)δ(k)

〉
−
〈
wβ ,∇f (k)δ(k)

〉〈
w,∇f (k)d(k−1)

〉
≤ 0. (27)

Corollary 28. Suppose that Assumption 1 holds. Then the factor γ(k) in (25) is bounded below:

0 ≤ γ(k) ∀k ∈ N. (28)

Both results are proven in the Appendix and can be used to show sufficient decrease:

Lemma 29. Suppose that Assumption 1 holds. The directions in Definition 26 have the sufficient decrease prop-
erty (dec) with κsd = κ > 0.

The proof can also be found in the Appendix. The coefficients are constructed in such a way that – if the criticality is
bounded below – the product of δ(k) and d(k) is bounded above by a multiple of

∥∥δ(k)∥∥2 and a constant offset:

Lemma 30. Suppose that Assumptions 1 and 4 hold and that the criticality is bounded as in (⊥). The directions
in Definition 26 fulfill 〈

d(k), δ(k)
〉
≤ κ

∥∥∥δ(k)∥∥∥2 + Cγ ∀k ∈ N0. (29)

The proof is in the Appendix. This final lemma will allow us to derive the convergence result easily:

Lemma 31. Suppose that Assumption 1 holds. The directions in Definition 26 fulfill

β(k) ≤ Cγ

∥∥δ(k)∥∥2∥∥δ(k−1)
∥∥2 ∀k ∈ N0. (30)

Combining Lemmas 29 to 31 with Lemma 20 finalizes the convergence analysis for these coefficients:

Theorem 32. Suppose that Assumptions 1 and 4 hold and that we apply Algorithm 1 with the directions in Definition 26.
Then the sequence

{
x(k)

}
of iterates is critical.

4.3.3 FR Fractional Programming Variants

In this subsection, we introduce two more multi-objective direction schemes inspired by the single-objective directions
in (FR SO). They are structurally different from (FR MO1). In both cases, we now use parameterized coefficients to
build d(k), and we choose the optimal parameters by minimizing a certain fractional objective. To be precise, both
variants look like this:

d(k) =

{
η0δ

(k) if k = 0,

θ(k)(w
∗)δ(k) + β(k)(w

∗)d(k−1) if k ≥ 1,
(FR MO2)

13
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with real coefficients η0, θ(k) and β(k), and, w∗ solving

min
w∈C

〈
w,∇f

(
x(k)

)
d(k−1)

〉〈
w,∇f

(
x(k)

)
δ(k)

〉 . (31)

If C is discrete, then (31) can be solved with a simple for-loop. If C is a polyhedron, then we have a fractional-linear
program, and it can be transformed to an linear program (LP). By noting that

〈
v,∇f (k)δ(k)

〉
< 0 for all v ∈ C

(including w∗), we see from the minimizing property〈
w∗,∇f (k)d(k−1)

〉〈
w∗,∇f (k)δ(k)

〉 ≤ 〈v,∇f (k)d(k−1)
〉〈

v,∇f (k)δ(k)
〉

that 〈
w∗,∇f (k)d(k−1)

〉〈
w∗,∇f (k)δ(k)

〉 〈
v,∇f (k)δ(k)

〉
≥
〈
v,∇f (k)d(k−1)

〉
and 〈

w∗,∇f (k)d(k−1)
〉〈

v,∇f (k)δ(k)
〉
≤
〈
v,∇f (k)d(k−1)

〉〈
w∗,∇f (k)δ(k)

〉
for all v ∈ C. (32)

This inequality is used to show sufficient decrease for suitable coefficients β(w∗) and θ(w∗).

Fractional-Linear Programming Variant I

Definition 33. We derive the scheme (FRF1) from (FR MO2) by fixing a constant cFR > 1, and defining the
coefficients

η0 = cFR,

θ(w) =
cFR

〈
w,∇f (k−1)d(k−1)

〉
−
〈
w,∇f (k)d(k−1)

〉〈
w,∇f (k−1)d(k−1)

〉 and

β(w) =

〈
w,∇f (k)δ(k)

〉〈
w,∇f (k−1)d(k−1)

〉 .
(33)

The parameters w∗ are obtained from (31).

The following sufficient decrease property is derived using (32), as shown in the Appendix.
Lemma 34. Assume Assumption 1 holds. The directions in Definition 33 have the sufficient decrease property (dec)
with κsd = cFR > 1.

Not only do these directions provide descent, they also lead to convergence:
Theorem 35. Suppose that Assumptions 1 and 4 hold. The Algorithm with directions (FRF1) as in Definition 33
produces a critical sequence.

The proof has been moved to the Appendix.

Fractional-Linear Programming Variant II

The coefficients presented next look a bit more complicated than those in (33).
Definition 36. The direction scheme (FRF2) is based on (FR MO2) with coefficients

η0 = 1,

θ(w) :=

〈
w,∇f (k)d(k−1)

〉
−
〈
w,∇f (k−1)d(k−1)

〉
− (cFR − 1)

〈
w,∇f (k−1)δ(k−1)

〉
−cFR

〈
w,∇f (k−1)δ(k−1)

〉 and

β(w) :=
−
〈
w,∇f (k)δ(k)

〉
−cFR

〈
w,∇f (k−1)δ(k−1)

〉 ,
(34)

where, again, w∗ is the optimizer in (31) and cFR > 1 is a constant.

The core difference between both variants (FRF1) and (FRF2) lies in the way that d(k) is bounded. In (33), the terms
in θ(k) have different scaling factors, whilst in (34) an offset term is added.

We have the following results that are both proven in the Appendix.

14
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Lemma 37. Assume that Assumption 1 holds. The directions in Definition 36 have the sufficient decrease property (dec)
with κsd = 1.

Theorem 38. Suppose that Assumptions 1 and 4 hold. The Algorithm with directions (FRF2) as in Definition 36
produces a critical sequence.

5 Experiments

5.1 Bi-Objective Rosenbrock Problem

Figure 3: Optimization trajectories using steepest descent directions, and the directions in Definition 13 and Defini-
tion 26. The critical set is depicted by a blue line. Circles show starting points and diamonds show end points after at
most 30 iterations. In the background, the criticality values of (RB2D) are plotted.

To illustrate the behavior of Algorithm 1 when used with different direction schemes, we start with a bi-objective
example. The Rosenbrock function

fa,b(x1, x2) = b(x2 − x21)2 + (a− x1)2

has its global minimum at (a, a2) with f(a, a2) = 0. We can construct a bi-objective minimization problem. Fix real
numbers a1 ≤ a2 and b1 > 0, b2 > 0, define f1 = fa1,b1 and f2 = fa2,b2 , and consider

min
x∈R2

[
f1(x)
f2(x)

]
. (RB2D)

The Pareto-set is the parabolic segment {[x, x2] : x ∈ [a1, a2]}. Like the single-objective problem, the bi-objective
problem has a flat valley surrounding the globally optimal set. The valley is easily found, but progress towards the
optimal points can be difficult.

For our tests, we use a1 = 1, a2 = 2 and b1 = b2 = 100. In Fig. 3 we compare the steepest descent algorithm with
strict standard Armijo backtracking against the nonlinear CG directions defined in Definition 13 and Definition 26
with strict modified Armijo backtracking. For each configuration and each of the 8 starting points, at most 30 iterations
are performed. The plots show optimization trajectories and a log-scale criticality surface for (RB2D). All algorithms
can find the valley, but the nonlinear CG algorithms have more final solutions clustered near the optimal set. They
appear to make better progress along the valley.

15
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Name N K lower bounds upper bounds Ref.

BK1 2 2 [−5, . . . ,−5] [10, . . . , 10] [2, 28, 4]
DD1a 5 2 [−1, . . . ,−1] [1, . . . , 1] [6, 16, 4]
DD1b 5 2 [−10, . . . ,−10] [10, . . . , 10] [6, 16, 4]
DD1c 5 2 [−20, . . . ,−20] [20, . . . , 20] [6, 16, 4]
DGO1 1 2 [−10, . . . ,−10] [13, . . . , 13] [9, 28, 4]
Far1 2 2 [−1, . . . ,−1] [1, . . . , 1] [15, 28, 4]
FDSa 10 3 [−2, . . . ,−2] [2, . . . , 2] [16, 4]
FDSb 200 3 [−2, . . . ,−2] [2, . . . , 2] [16, 4]
FDSc 500 3 [−2, . . . ,−2] [2, . . . , 2] [16, 4]
FDSd 1000 3 [−2, . . . ,−2] [2, . . . , 2] [16, 4]
FF1 2 2 [−1, . . . ,−1] [1, . . . , 1] [19, 28, 4]
Hil1 2 2 [0, . . . , 0] [1, . . . , 1] [26, 4]
IKK1 2 3 [−50, . . . ,−50] [50, . . . , 50] [29, 28, 4]
JOS1a 50 2 [−100, . . . ,−100] [100, . . . , 100] [30, 28, 4]
JOS1b 500 2 [−100, . . . ,−100] [100, . . . , 100] [30, 28, 4]
JOS1c 1000 2 [−100, . . . ,−100] [100, . . . , 100] [30, 28, 4]
KW2 2 2 [−3, . . . ,−3] [3, . . . , 3] [31, 4]
Lov1 2 2 [−10, . . . ,−10] [10, . . . , 10] [32, 4]
Lov3 2 2 [−100, . . . ,−100] [100, . . . , 100] [32, 4]
Lov4 2 2 [−20, . . . ,−20] [20, . . . , 20] [32, 4]
Lov5 3 2 [−2, . . . ,−2] [2, . . . , 2] [32, 4]
MGH16 4 5 [−25,−5,−5,−1] [25, 5, 5, 1] [39, 38, 4]
MGH26 4 4 [−1, . . . ,−1] [1, . . . , 1] [39, 38, 4]
MMR5a 50 2 [−5, . . . ,−5] [5, . . . , 5] [37, 4]
MMR5b 200 2 [−5, . . . ,−5] [5, . . . , 5] [37, 4]
MMR5c 500 2 [−5, . . . ,−5] [5, . . . , 5] [37, 4]
MOP2 2 2 [−2, . . . ,−2] [2, . . . , 2] [20, 28, 54, 4]
MOP3 2 2 [−π, . . . ,−π] [π, . . . , π] [43, 28, 54, 4]
MOP5 2 3 [−30, . . . ,−30] [30, . . . , 30] [43, 28, 54, 4]
PNR 2 2 [−2, . . . ,−2] [2, . . . , 2] [44, 4]
SLCDT2 10 2 [−1, . . . ,−1] [1, . . . , 1] [46, 4]
SP1 2 2 [−100, . . . ,−100] [100, . . . , 100] [47, 28, 4]
SSFYY2 1 2 [−100, . . . ,−100] [100, . . . , 100] [48, 28, 4]
TOI9 4 4 [−1, . . . ,−1] [1, . . . , 1] [52, 38, 4]
TOI10 4 3 [−2, . . . ,−2] [2, . . . , 2] [52, 38, 4]
VU1 2 2 [−3, . . . ,−3] [3, . . . , 3] [45, 28, 4]
RB2D 2 2 [−5, . . . ,−5] [5, . . . , 5]

Table 1: Test problems, their properties and references. We compiled the suite similar to [4]. Many of the problems
are described in the review [28].

5.2 Test Suite

Next, we compare several CG schemes on a multitude of test problems. Most problems are taken from [4] and
listed in Table 1. For each test problem, we sample 100 random starting points from within the box described by
the lower and upper bound vectors. Then, for each algorithm configuration and each starting point, we perform at
most max{1000, 10 ∗ N} iterations. We stop early, if the criticality falls below 10−6, that is, if

∥∥δ(k)∥∥2 < 10−6.
Additionally, we stop if a relative step size criterion is met, i.e., if

∥∥x(k) − x(k−1)
∥∥
∞ ≤ 10−10

∥∥x(k−1)
∥∥
∞. For all

runs, we record the number of iterations and the number of function calls. From these records we have computed
median values in Table 2 and Table 3. Moreover, Table 4 shows the actual percentage of problems solved with respect
to the test

∥∥δ(k)∥∥2 < 10−6.
The column “SD” refers to steepest descent with strict Armijo backtracking. All other algorithms use the strict
modified backtracking. The Armijo constants are a = 10−4 and b = 0.5.

• “PRPP” is defined in Definition 13.

• “PRP3” is defined in Definition 17. We used the discrete variant with C = {e1, . . . , eK}.
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• “FRR” is defined in Definition 21. We used σsw = 0.9.
• “FRF1a” is defined in Definition 33. We used cFR = 1.1.
• “FRF1b” is defined in Definition 33. We used cFR = 10.
• “FRF2a” is defined in Definition 36. We used cFR = 1.1.
• “FRF2b” is defined in Definition 36. We used cFR = 10.
• “FRBOa” is defined in Definition 26. We used κ = 1, Cγ = 1.
• “FRBOb” is defined in Definition 26. We used κ = 1, Cγ = 0.1.

What can be seen from Table 2 is that steepest descent almost always is worst when it comes to the number of
iterations. Surprisingly, this is not necessarily true for the number of function calls, as becomes apparent in Table 3.
Here, “FRF1a”, “FRF2a” and “FRBOa” seem to do particularly bad. This could be due to boundedness assumptions
failing in practice. In any case, the direction norm remains large, prohibiting successful backtracking. From looking at
“FRF1b”, however, we see that hyperparameter tuning might be necessary. This scheme does very well with respect to
the number of iterations and function calls. And Table 4 shows that it is still able to solve most problems. Nearly all
schemes fail on the high dimensional test problems. Besides “FRF1b”, only “PRPP” manages to solve those. “PRPP”
also seems like a good all-rounder, and it does not require tuning hyperparameters.

The Julia code for all experiments can be found at https://github.com/manuelbb-upb/NonlinearCGCode.

6 Conclusion

With Algorithm 1 we have provided a very generic algorithm framework to approximate critical points of unconstrained
problems like (MOP). Further, in Section 4 we listed several possible CG direction schemes with guaranteed descent.
For all of those schemes convergence proofs are given. Our experiments have shown, that many of the CG schemes
perform better than simple steepest descent. However, some variants appear to require further hyperparameter
tweaking.

Besides improving the directions introduced in this work, one could try to translate other single-objective algorithms
to the multi-objective settings. Moreover, the backtracking could be improved with initial step-size guesses leveraging
second order approximations (similar to the techniques in [4]). It would also be worthwhile to compare the “simple”
backtracking algorithms against methods such as those in [33], which use a more involved step-size technique.

17
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Number of Iterations, mode=all, tol=1e-06

Problem max SD PRP3 PRPP FRR FRF1a FRF1b FRF2a FRF2b FRBOa FRBOb

BK1 1000 27 16.5 15 25 19 4 20.5 27 16 25.5
DD1a 1000 8 8 6 10 30.5 6 29.5 7 109.5 7
DD1b 1000 96 91 34.5 96 54 7.5 59 95.5 181.5 95.5
DD1c 1000 182 179.5 60 182 124 15 139 182 112.5 182
DGO1 1000 2 2 2 2 1 1 2 2 2 2
Far1 1000 24.5 19 16 25.5 187 18 192.5 21 1000 21
FDSa 1000 29 24 19 27 101 11 102 28 303 28
FDSb 2000 66 57 43 68.5 310 27 310 64 348.5 63
FDSc 5000 72.5 63 46 74 339 30 338 69 263.5 68
FDSd 10000 79 67.5 49 79 359 33 355.5 74 203 73
FF1 1000 22.5 19 12 20 19.5 5 21.5 22 31.5 22
Hil1 1000 7 6 6 7 34.5 7 19 7 36 7
IKK1 1000 83.5 34.5 35.5 83.5 78 6 86.5 83.5 38 78
JOS1a 1000 819 811 762 819 744 79 819 819 771.5 802.5
JOS1b 5000 2134 2131 1990 2134 1939.5 210 2134 2134 1902 2112.5
JOS1c 10000 4098 4096 3805.5 4098 3725 407 4098 4098 3799.5 4067
KW2 1000 22 10 16 26 133 9.5 140.5 22 150.5 22
Lov1 1000 39 25.5 28.5 39 31.5 4 35.5 39 23 36.5
Lov3 1000 459 459 95 459 414.5 43 456.5 459 439 459
Lov4 1000 81.5 59 63.5 82.5 74 6 82 81.5 50 78
Lov5 1000 656.5 656.5 146 656.5 596.5 64 656.5 656.5 657 656.5
MGH16 1000 58 40 54.5 59 56.5 12 61 58 35 55
MGH26 1000 8 6 6 8 7.5 4 8 8 6 8
MMR5a 1000 1000 1000 621 1000 1000 267.5 1000 1000 1000 1000
MMR5b 2000 2000 2000 1812.5 2000 2000 762 2000 2000 2000 2000
MMR5c 5000 5000 5000 3643.5 5000 5000 1566 5000 5000 5000 5000
MOP2 1000 17 11 15 16.5 29 9.5 38 17 28.5 17
MOP3 1000 17 14 11 15 16 7 15 17 18 17
MOP5 1000 0 0 0 0 0 0 0 0 0 0
PNR 1000 6.5 6 5 6 6 4 6 6 6 6
SLCDT2 1000 18 15 10 14 20.5 8 22 17 28.5 17
SP1 1000 1000 1000 749.5 1000 987 107 1000 1000 365.5 1000
SSFYY2 1000 135 109 135 135 122.5 11 135 135 89 129.5
TOI9 1000 7 7 7 7.5 10 5 10 8 9 7
TOI10 1000 70 20.5 20 28 22 17 25 46 19 51
VU1 1000 116.5 108.5 29.5 116.5 761.5 59 763 106 1000 106
RB2D 1000 89.5 68.5 69 75 71.5 9.5 69.5 89.5 48 89.5

Table 2: Number of iterations of different descent algorithms on test problem suite. Fewer iterations are better, and
in each row the cells are shaded proportional to the performance on the respective test problem. The column “max”
gives the maximum number of iterations allowed, and its shading is constant.
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Number of Func. Calls, mode=all, tol=1e-06

Problem SD PRP3 PRPP FRR FRF1a FRF1b FRF2a FRF2b FRBOa FRBOb

BK1 29 21.5 17 27 24 11 26 29 22.5 27.5
DD1a 10 10 10 20 176 29 161.5 10 1137.5 10
DD1b 98 93 38 98 111.5 10 112 97.5 1346.5 97.5
DD1c 184 181.5 63.5 184 130 17 144.5 184 298 184
DGO1 4 9.5 4 4 2 5 4 4 4 4
Far1 58.5 57.5 60 83 1803 120 1792 68 14584 68
FDSa 33.5 28.5 31 30.5 644.5 37.5 630.5 30 3127.5 31
FDSb 71 66 76 72 2098.5 87.5 2077.5 67.5 2961 67
FDSc 79.5 76 84 80 2305 99 2267.5 74 1972.5 74
FDSd 89.5 84.5 93 89 2444.5 110 2396 84.5 1386.5 83
FF1 24.5 21 17.5 22 53 16.5 51 24 155 24
Hil1 18.5 19.5 19 25.5 255 49 146 21 310 21.5
IKK1 85.5 38 37.5 85.5 80 8.5 88.5 85.5 40 80
JOS1a 821 813 764 821 746 81 821 821 773.5 804.5
JOS1b 2136 2133 1992 2136 1941.5 212 2136 2136 1904 2114.5
JOS1c 4100 4098 3807.5 4100 3727 409 4100 4100 3801.5 4069
KW2 31 28 50.5 53 322 37 365.5 42 1748 42.5
Lov1 41 29.5 30.5 41 34 7.5 38 41 26 38.5
Lov3 461 461 97.5 461 416.5 45 458.5 461 443.5 461
Lov4 87 71 69.5 85.5 77 11 85.5 85.5 56 81.5
Lov5 658.5 658.5 148.5 658.5 598.5 66 658.5 658.5 659 658.5
MGH16 60 48.5 59 61 58.5 15 64.5 60 37.5 57
MGH26 10.5 11 8 10.5 9.5 10.5 10 10 8 10
MMR5a 1001 1001 862.5 1001 2800.5 355 2472.5 1001 7846 1001
MMR5b 2001 2001 1883.5 2001 2001 764 2001 2001 6739 2001
MMR5c 5001 5001 3669.5 5001 5001 1568 5001 5001 5001 5001
MOP2 19 19 26 24 98.5 33 126 20 89 19.5
MOP3 21.5 20 15 21 34.5 25 31.5 20 44 20
MOP5 1 1 1 1 1 1 1 1 1 1
PNR 10 11 9 11 10.5 24 11 10 12 10
SLCDT2 20 17 13 19 40 32.5 43 19 67 19
SP1 1001 1001 751.5 1001 989 109 1001 1001 370 1001
SSFYY2 137 112 137 137 124.5 12 137 137 91 131.5
TOI9 20 21.5 20.5 22.5 32 30.5 40 19.5 34 19
TOI10 118.5 53 37 56 36 64.5 60 84 37.5 73
VU1 118.5 126 69 122 5556.5 220.5 5485.5 108 11421.5 108
RB2D 91.5 76.5 80 82 73.5 23.5 72 91.5 70 91.5

Table 3: Number of objective function calls of different descent algorithms on test problem suite. Fewer calls are
better, and in each row the cells are shaded proportional to the performance on the respective test problem.
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Solved Percentage, mode=all, tol=1e-06

Problem SD PRP3 PRPP FRR FRF1a FRF1b FRF2a FRF2b FRBOa FRBOb

BK1 100 100 100 100 100 100 100 100 100 100
DD1a 100 100 100 100 100 100 100 100 100 100
DD1b 100 100 100 100 100 100 100 100 92 100
DD1c 100 100 100 100 100 100 100 100 81 100
DGO1 100 100 100 100 100 100 100 100 100 100
Far1 100 100 100 100 87 100 86 100 30 100
FDSa 100 100 100 100 100 100 100 100 94 100
FDSb 100 100 100 100 100 100 100 100 100 100
FDSc 100 100 100 100 100 100 100 100 100 100
FDSd 100 100 100 100 100 100 100 100 99 100
FF1 100 100 100 100 99 100 99 100 63 100
Hil1 100 100 100 100 100 100 100 100 75 100
IKK1 80 80 80 80 79 77 80 80 80 80
JOS1a 100 100 100 100 100 100 100 100 100 100
JOS1b 100 100 100 100 100 100 100 100 100 100
JOS1c 100 100 100 100 100 100 100 100 100 100
KW2 100 100 100 100 99 100 100 100 65 100
Lov1 100 100 100 100 100 100 100 100 100 100
Lov3 100 100 100 100 100 100 100 100 100 100
Lov4 97 94 94 97 96 73 96 97 94 97
Lov5 100 100 100 100 100 100 100 100 100 100
MGH16 100 100 100 99 100 100 100 100 100 100
MGH26 100 100 100 100 100 100 100 100 94 100
MMR5a 0 0 100 0 5 100 2 0 1 0
MMR5b 0 0 94 0 0 100 0 0 4 0
MMR5c 0 0 100 0 0 100 0 0 9 0
MOP2 100 100 100 100 100 100 100 100 82 100
MOP3 100 100 100 100 100 100 100 100 97 100
MOP5 100 100 100 100 100 100 100 100 100 100
PNR 100 100 100 100 100 100 100 100 100 100
SLCDT2 100 100 100 100 100 100 100 100 84 100
SP1 43 46 67 43 52 100 43 43 100 47
SSFYY2 100 100 100 100 100 100 100 100 100 100
TOI9 93 90 91 98 96 93 99 91 93 92
TOI10 97 98 100 100 95 99 97 98 81 98
VU1 100 100 100 100 65 100 64 100 3 100
RB2D 96 97 100 100 96 100 97 96 100 96

Table 4: Percentage of solved problems by different descent algorithms on test problem suite. Higher values are better,
and in each row the cells are shaded proportional to the performance on the respective test problem.
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A Convergence Analysis

A.1 Sufficient Convergence Criteria

As stated before, we show the criticality of an iteration sequence
{
x(k)

}
k∈N0

by means of contradiction: According
to Lemma 12, the Zoutendijk condition must hold. If the hypothesis∥∥∥δ(k)∥∥∥ ≥ εcrit > 0 ∀k ∈ N0 (⊥)

breaks the Zoutendijk property, then it cannot be true, and it must hold that

lim inf
k→∞

∥∥∥δ(k)∥∥∥ = 0. (⋆)

We want to derive criteria to show (⋆). The Zoutendijk property implies that

lim
k→∞

∥∥δ(k)∥∥4∥∥d(k)
∥∥2 = 0.

It hence breaks, if
∥∥δ(k)∥∥ (or an infinite subsequence) is uniformly bounded below and

∥∥d(k)
∥∥ is uniformly bounded

above:

Corollary 39. Assume that Algorithm 1 is applied under the same conditions as in Lemma 12. Suppose further
that (⊥) holds. If there is an index k♯ ∈ N0 and a constant Cd > 0 with∥∥∥d(k)

∥∥∥ ≤ Cd ∀k ≥ k♯,

then the algorithm has a critical sequence, that is, (⋆) holds.

It might not be obvious that a set of directions
{
d(k)

}
is uniformly bounded. We might be able to show that the norm

increases no more than a fraction from “iteration to iteration”. To this end, we could apply the following Lemma to
the sequence

{∥∥d(k)
∥∥}:

Lemma 40. Suppose
{
n(k)

}
k∈N0

is a sequence of non-negative real numbers. If there is an index k♯ ∈ N, a constant
C ≥ 0 and a constant r ∈ (0, 1) with

n(k) ≤ C+ rn(k−1) ∀k ≥ k♯, (35)

then there is a constant C′ ≥ 0 such that
n(k) ≤ C′ ∀k ∈ N0.

Proof. Let k ≥ k♯. Repeated application of (35) gives a geometric sum:

n(k) ≤ C+ rn(k−1)

≤ C+ r
(
C+ r

∥∥∥n(k−2)
∥∥∥) ≤ . . .

≤ C
(
1 + r+ · · ·+ rk−k♯+1

)
+ rk−k♯n(k♯)

r<1
≤ C

1− r
+ n(k♯) =: C♯.

We obtain an overall upper bound (for all k ∈ N0) via

C′ = max

{
C♯,max

k<k♯

{
n(k)

}}
≥ 0.

Of course, Corollary 39 is rather trivial. It is not necessary to have a fixed uniform upper bound for
∥∥d(k)

∥∥. If instead∥∥d(k)
∥∥2 were no larger than a positive multiple of k, then the sum in (ZD) would be bounded below by a divergent

harmonic series:
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Corollary 41. Assume that Algorithm 1 is applied under the same conditions as in Lemma 12. Suppose further
that (⊥) holds. If there is an index k ∈ N0 and constants C′ ≥ 0, C◦ ≥ 0 such that∥∥d(k)

∥∥2∥∥δ(k)∥∥4 ≤ C′ + C◦k, 0 < C′ + C◦k, ∀k ≥ k♯, (36)

then the algorithm has a critical sequence, that is, (⋆) holds.

Proof. As indicated, the Zoutendijk condition breaks because the reciprocals are bounded below and∑
k∈N0

∥∥δ(k)∥∥4∥∥d(k)
∥∥2 ≥ ∑

k≥k♯

∥∥δ(k)∥∥4∥∥d(k)
∥∥2 (36)
≥
∑
k≥k♯

1

C′ + C◦k
=∞,

where the RHS diverges because it is an infinite sum of a harmonic progression with only finitely many terms
removed.

We can again derive a bound like (36) if the fraction on the LHS does not increase, except for a constant offset:

Lemma 42. Suppose
{
n(k)

}
k∈N0

is a sequence of non-negative real numbers. If there is an index k♯ ∈ N, a constant
C ≥ 0 and a constant r ∈ (0, 1] such that

n(k) ≤ C+ rn(k−1) ∀k ≥ k♯,
then there are constants C◦ ≥ 0, C′ ≥ 0 such that

n(k) ≤ C′ + C◦k, C′ + C◦k > 0, ∀k ≥ k♯.

Proof. If r < 1, then by Lemma 40 there is a positive upper bound C′ > 0 for
{
n(k)

}
k≥k♯

, and we get the desired
result with any C◦ ≥ 0.

Now let k ≥ k♯ and assume r = 1. We then apply “n(k) ≤ C+ n(k−1)” recursively to obtain

n(k) ≤ n(k♯) +

k∑
ℓ=k♯

C = n(k♯) + C(k − k♯ + 1) = n(k♯) + (1− k♯)C+ Ck.

We can find a positive constant C′ satisfying

C′ ≥ n(k♯) + (1− k♯)C,
and take C◦ = C ≥ 0 to get the desired bound.

In what follows we will use these results to show convergence for explicit direction schemes.

A.2 Various Proofs

A.2.1 Projection Polak-Ribière-Polyak Scheme

Proof of Lemma 14. For k = 0 the property is trivially satisfied. Let k ≥ 1. We use Lemma 3 and the fact that d̄(k) is
a projection onto S(k) ⊆ D(x(k)) to get

D
[
x(k)

](
d(k)

)
= φ

(
∇f(x(k))·

(
δ(k) + d̄(k)

))
≤ φ(∇f(x(k))δ(k)) + φ(∇f(x(k))d̄(k))︸ ︷︷ ︸

≤0

≤ D
[
x(k)

](
δ(k)

)
.

Proof of Theorem 16. First, note that the projection onto a convex set is non-expansive. It follows that if the origin is
contained in the convex set S(k), then

∥PS(k) (v)∥ ≤ ∥v∥ ∀v ∈ RN .

Let k ≥ 1. Using the triangle-inequality and the non-expansiveness, we find that∥∥∥d(k)
∥∥∥ =

∥∥∥δ(k) + d̄(k)
∥∥∥ ≤ ∥∥∥δ(k)∥∥∥+ ∥∥∥d̄(k)

∥∥∥ ≤ ∥∥∥δ(k)∥∥∥+ |β(k)|∥∥∥d(k−1)
∥∥∥ . (37)
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We turn to
∣∣β(k)∣∣. Suppose first that D

[
x(k−1)

](
δ(k)

)
≥ D

[
x(k)

](
δ(k)

)
. Due to Assumption 2 we know the Jacobian

to be Lipschitz with constant Lf > 0. The set C is compact, so there is a constant C′ with ∥w∥ ≤ C′ for all w ∈ C.
Thus, ∣∣∣D[x(k−1)

](
δ(k)

)
− D

[
x(k)

](
δ(k)

)∣∣∣ = D
[
x(k−1)

](
δ(k)

)
− D

[
x(k)

](
δ(k)

)
Lemma 3
≤ φ

((
∇f(x(k−1))−∇f(x(k))

)
·δ(k)

)
≤
〈
wϕ,

(
∇f(x(k−1))−∇f(x(k))

)
·δ(k)

〉
≤ C′Lf

∥∥∥x(k−1) − x(k)
∥∥∥∥∥∥δ(k)∥∥∥

= C′Lf

∥∥∥σk−1d
(k−1)

∥∥∥∥∥∥δ(k)∥∥∥ ,
where we have used the Cauchy-Schwartz inequality to obtain an upper bound for the inner product. We find the same
bound for the case D

[
x(k−1)

](
δ(k)

)
< D

[
x(k)

](
δ(k)

)
. Looking at the definition (12), we see that there must be a

constant C♯ > 0 with ∣∣β(k)∣∣ ≤ C♯
∥∥σk−1d

(k−1)
∥∥∥∥δ(k)∥∥∥∥δ(k−1)
∥∥2 .

Combining this with (37) results in∥∥d(k)
∥∥∥∥δ(k)∥∥2 ≤ 1∥∥δ(k)∥∥ +

C♯
∥∥σk−1d

(k−1)
∥∥∥∥δ(k)∥∥
∥∥d(k−1)

∥∥∥∥δ(k−1)
∥∥2

(⊥)
≤ 1

εcrit
+

C♯
∥∥σk−1d

(k−1)
∥∥

εcrit

∥∥d(k−1)
∥∥∥∥δ(k−1)
∥∥2 . (38)

Due to Lemma 11, the steps goes to zero and there is a k0 ∈ N and r ∈ (0, 1) such that

C♯
∥∥σk−1d

(k−1)
∥∥

εcrit
≤ r ∀k ≥ k0.

We can thus weaken (38) for k ≥ k0 to ∥∥d(k)
∥∥∥∥δ(k)∥∥2 ≤ 1

εcrit
+ r

∥∥d(k−1)
∥∥∥∥δ(k−1)
∥∥2 ,

allowing for Lemma 40, and deduce that

∥∥d(k)
∥∥∥∥δ(k)∥∥2 is uniformly bounded above, say by

√
C′ > 0. Thus,

∥∥d(k)
∥∥2∥∥δ(k)∥∥4 ≤ C′ ∀k ∈ N0

and the existence of a critical sequence follows with Corollary 41.

A.2.2 Three-Term Polak-Ribière-Polyak Scheme

Proof of Lemma 18. The case k = 0 is trivial. Hence, let k ≥ 1, and take v ∈ C. The definition (PRP3), together
with (17), gives 〈

v,∇f (k)d(k)
〉
=
〈
v,∇f (k)δ(k)

〉
+

1∥∥δ(k−1)
∥∥2 (αβψ(wβ ,v)− αθψ(v,wθ)) .

We are done if we can show
αβψ(wβ ,v)− αθψ(v,wθ) ≤ 0. (39)

Consider the first variant. That is, αβ = αθ = 1. Denote the objective of (15) by

Γ(w,v) :=
〈
w,a(k)

〉〈
v, b(k)

〉
−
〈
w, b(k)

〉〈
v,a(k)

〉
= ψ(w,v)− ψ(v,w). (40)
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As we take wβ = wθ = w∗, the condition (39) becomes

Γ(w∗,v) = ψ(w∗,v)− ψ(v,w∗) ≤ 0. (41)

Now Γ is a skew-symmetric bilinear form,

Γ(w,v) = −Γ(v,w) ∀(v,w),

and the MiniMax solution w∗ thus satisfies (41) if a MiniMax theorem holds, i.e., if

min
w∈C

max
v∈C

Γ(w,v) = max
v∈C

min
w∈C

Γ(w,v) = 0. (42)

The set C is compact and convex. Thus, von Neumann’s MiniMax theorem [53] applies, and (42) holds. The problem
can be transformed to a LP if C is a polyhedron.

Now consider the discrete case. If there was strong MiniMax theorem for (15) with discrete argument set C, we could
just use the same approach as before. A strong, discrete MiniMax theorem would be equivalent to the existence of
a pure Nash equilibrium in the symmetric zero-sum two-player game with strategy set C and payoff function Γ, or
equivalent to the payoff matrix [Γ(w,v)]w∈C,v∈C having a saddle point. Unfortunately, it does not generally hold
true for |C| > 2, because then there are Rock-Paper-Scissors games [8].

Generally, only the following max-min inequality holds:

max
v∈C

min
w∈C

ψ(w,v) ≤ min
w∈C

max
v∈C

ψ(w,v).

By renaming variables, this becomes (16). It is easily verified that the non-negative factors αβ and αθ enforce equality:

αβψ(vβ ,wβ) = αθψ(wθ,vθ). (43)

Because αβ is non-negative, and vβ is a maximizer of ψ(wβ , •), we find

αβψ(wβ ,v) ≤ αβ max
v

ψ(wβ ,v) = αβψ(wβ ,vβ).

Furthermore, because αθ is non-negative and vθ is a minimizer for ψ(•,wθ):

αθψ(vθ,wθ) ≤ αθψ(v,wθ).

With (43) we can combine both inequalities:

αβψ(wβ ,v) ≤ αθψ(v,wθ).

This implies (39). As v was arbitrary we indeed find

Dk(d
(k)) = max

v

〈
v,∇f (k)d(k)

〉
≤ max

v

〈
v,∇f (k)δ(k)

〉
= Dk(δ

(k)).

Proof of Theorem 19. For a proof by contradiction, assume that the criticality
∥∥δ(k)∥∥ is bounded below like in (⊥).

Because of Assumptions 1 and 4, the norm of the steepest descent is also uniformly bounded above by a constant
Cδ > 0, i.e., ∥∥∥δ(k)∥∥∥ ≤ Cδ ∀k ∈ N0. (44)

If we can show the same for d(k), that concludes the proof because of Corollary 39.

Assume k ≥ 1. Apply the triangle inequality to the definition of d(k):∥∥∥d(k)
∥∥∥ ≤ ∥∥∥δ(k)∥∥∥+ ∣∣αβ

〈
wβ ,∇f(x(k))y(k)

〉∣∣∥∥δ(k−1)
∥∥2 ∥∥∥d(k−1)

∥∥∥+ ∣∣αθ

〈
wθ,∇f(x(k))d(k−1)

〉∣∣∥∥δ(k−1)
∥∥2 ∥∥∥y(k)

∥∥∥ (45)

As C is compact, there is some constant C′ > 0 with ∥w∥ ≤ C′ for all w ∈ C. The Jacobian is continuous and
x(k) is from a bounded set, so there is C◦ > 0 with

∥∥∇f(x(k))
∥∥ ≤ C◦ for all k. Hence, using Cauchy-Schwartz and

|αβ | ≤ 1:∣∣∣αβ

〈
wβ ,∇f(x(k))y(k)

〉∣∣∣ ≤ |αβ | ∥wβ∥
∥∥∥∇f(x(k))y(k)

∥∥∥ ≤ C′
∥∥∥∇f (k)

∥∥∥∥∥∥y(k)
∥∥∥ (14)
≤ C′C◦

∥∥∥δ(k−1) − δ(k)
∥∥∥ . (46)
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Likewise, ∣∣∣αθ

〈
wθ,∇f(x(k))d(k−1)

〉∣∣∣ ≤ C′C◦
∥∥∥d(k−1)

∥∥∥ . (47)

Combining (46), (47), as well as (44) and (⊥) with (45) results in∥∥∥d(k)
∥∥∥ ≤ Cδ +

C′C◦
∥∥δ(k−1) − δ(k)

∥∥
ε2crit

∥∥∥d(k−1)
∥∥∥ . (48)

Because of our assumptions, the steepest descent direction is H-Hölder-continuous according to Lemma 4. Thus, (48)
leads to ∥∥∥d(k)

∥∥∥ ≤ Cδ +
2C′C◦H

√∥∥σ(k−1)d(k−1)
∥∥

ε2crit

∥∥∥d(k−1)
∥∥∥ .

Due to the Armijo condition, Lemma 11 is applicable and
√∥∥σ(k−1)d(k−1)

∥∥ vanishes. So there must be r ∈ (0, 1)

and k0 ∈ N0 with ∥∥∥d(k)
∥∥∥ ≤ Cδ + r

∥∥∥d(k−1)
∥∥∥ ∀k ≥ k0. (49)

We can invoke Lemma 40 (showing
∥∥d(k)

∥∥ to be uniformly bounded) and Corollary 39 to finish the proof.

A.2.3 Fletcher-Reeves Schemes

Proof of Lemma 20. Whenever k ∈ N we have d(k) = η0δ
(k) with

∥∥δ(k)∥∥2 ≥ ε2crit > 0. Thus, if |N | =∞ then

∑
k∈N∪P

∥∥δ(k)∥∥4∥∥d(k)
∥∥2 =

∑
k∈N

η−2
0

∥∥∥δ(k)∥∥∥2︸ ︷︷ ︸
=∞

+
∑
k∈P

∥∥δ(k)∥∥4∥∥d(k)
∥∥2︸ ︷︷ ︸

≥0

=∞.

Next assume |N | < ∞. Also assume Co > 0. Because of ε2crit ≤
∥∥δ(k)∥∥2, it follows that Co

ε2crit
Co
≤
∥∥δ(k)∥∥2, or

equivalently,

Co ≤
Co

ε2crit

∥∥∥δ(k)∥∥∥2 .
Thus, we deduce from (20) the existence of a constant C′ > 0 such that〈

δ(k),d(k)
〉
≤ C′

∥∥∥δ(k)∥∥∥2 ∀k ∈ P, k ≥ k̄. (50)

Of course, this bound holds with C′ = Cdp if Co = 0.

Let k0 be the maximal element in N . For all k > k0 it holds that k ∈ P and d(k) = θ(k)δ
(k) + β(k)d

(k−1). Squaring
this expression gives ∥∥∥d(k)

∥∥∥2 = θ2(k)

∥∥∥δ(k)∥∥∥2 + β2
(k)

∥∥∥d(k−1)
∥∥∥2 + 2θ(k)β(k)

〈
δ(k),d(k−1)

〉
,

whilst multiplication with δ(k) results in〈
δ(k),d(k)

〉
= θ(k)

∥∥∥δ(k)∥∥∥2 + β(k)

〈
δ(k),d(k−1)

〉
.

Combining both leads to∥∥∥d(k)
∥∥∥2 = β2

(k)

∥∥∥d(k−1)
∥∥∥2 − θ2(k) ∥∥∥δ(k)∥∥∥2 + 2θ(k)

〈
δ(k),d(k)

〉
. (51)

We propose that there is an index k1 ≥ k0 and a constant C† ≥ 0 such that∥∥d(k)
∥∥2∥∥δ(k)∥∥4 ≤ β2

(k)

∥∥d(k−1)
∥∥2∥∥δ(k)∥∥4 +

C†∥∥δ(k)∥∥2 ∀k > k1. (52)

To prove this bound, first consider the case that θ(k) ≤ 0 for some k > k0. Then (51) can be weakened to∥∥∥d(k)
∥∥∥2 ≤ β2

(k)

∥∥∥d(k−1)
∥∥∥2 ,
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because −θ2(k)
∥∥δ(k)∥∥2 ≤ 0 as well as 2θ(k)

〈
δ(k),d(k)

〉
≤ 0 (see Remark 6). Hence, for non-positive θ(k), the

bound (52) holds for any index k1 ≥ k0 and any real number C† ≥ 0.

Let k1 = max
{
k0, k̄

}
and k > k1. Now consider the case θ(k) ≥ 0. Substituting our earlier bound for the

product (50), into (51) gives∥∥∥d(k)
∥∥∥2 ≤ β2

(k)

∥∥∥d(k−1)
∥∥∥2 − θ2(k) ∥∥∥δ(k)∥∥∥2 + 2θ(k)C

′
∥∥∥δ(k)∥∥∥2

= β2
(k)

∥∥∥d(k−1)
∥∥∥2 + ∥∥∥δ(k)∥∥∥2 (2θ(k)C′ − θ2(k))

= β2
(k)

∥∥∥d(k−1)
∥∥∥2 + ∥∥∥δ(k)∥∥∥2 (C′2 − (C′ − θ(k))2) .

We can divide by
∥∥δ(k)∥∥4 and dismiss the non-positive term:∥∥d(k)

∥∥2∥∥δ(k)∥∥4 ≤ β2
(k)

∥∥d(k−1)
∥∥2∥∥δ(k)∥∥4 +

C′
2∥∥δ(k)∥∥2 −

(
C′ − θ(k)

)2∥∥δ(k)∥∥2
≤ β2

(k)

∥∥d(k−1)
∥∥2∥∥δ(k)∥∥4 +

C′
2∥∥δ(k)∥∥2 , (53)

All in all, equation (52) is valid with C† = C′
2 ≥ 0 and k1 = max

{
k0, k̄

}
.

For all k > k1 the bound (19) holds, too. Plug it into (53) to obtain∥∥d(k)
∥∥2∥∥δ(k)∥∥4 ≤

∥∥d(k−1)
∥∥2∥∥δ(k−1)
∥∥4 +

C†∥∥δ(k)∥∥2 (⊥)
≤
∥∥d(k−1)

∥∥2∥∥δ(k−1)
∥∥4 +

C†

ε2crit
∀k > k1.

By Lemma 42 the fraction does not grow too quick so that Corollary 41 can be used to conclude the proof.

Proof of Lemma 22. For k = 0 or d(k−1) violating (MWC) there is nothing to show. We do a proof by induction to
show the general case.

Let k ≥ 1 and suppose d(k−1) satisfies (MWC). As always we can assume
∥∥δ(k−1)

∥∥ < 0 and, by induction, we have
Dk−1

(
d(k−1)

)
< 0. The strong Wolfe conditions thus imply the standard Wolfe conditions (WWC). We obtain

θ(k)

(
−Dk−1

(
d(k−1)

))
︸ ︷︷ ︸

>0

= Dk

(
d(k−1)

)
− Dk−1

(
d(k−1)

)
≥ (σsw − 1)︸ ︷︷ ︸

<0

Dk−1

(
d(k−1)

)
︸ ︷︷ ︸

≤0

≥ 0.

In conclusion, we see that θ(k) is non-negative.

Now take any w ∈ C and use the fact that θ(k) and β(k) are non-negative, which allows us to pull them out of the
sublinear max operator in Dk:〈

w,∇f(x(k))d(k)
〉
=
〈
w,∇f(x(k))

(
θ(k)δ

(k) + β(k)d
(k−1)

)〉
= θ(k)

〈
w,∇f(x(k))δ(k)

〉
+ β(k)

〈
w,∇f(x(k))d(k−1)

〉
≤ θ(k)Dk

(
δ(k)

)
+ β(k)Dk

(
d(k−1)

)
(21)
=

Dk

(
δ(k)

) (
Dk−1

(
d(k−1)

)
− Dk

(
d(k−1)

)
+ Dk

(
d(k−1)

))
Dk−1

(
d(k−1)

)
= Dk

(
δ(k)

)
.

26



Nonlinear CG in MOO A PREPRINT

A.3 Restarts with Modified Wolfe Condition

Proof of Lemma 23. Let k ∈ P . Like before, we plug in the definitions (21):〈
δ(k),d(k)

〉
= θ(k)

∥∥∥δ(k)∥∥∥2 + β(k)

〈
δ(k),d(k−1)

〉
=

∥∥δ(k)∥∥2
−Dk−1d(k−1)

(
Dk

(
d(k−1)

)
− Dk−1

(
d(k−1)

)
+
〈
δ(k),d(k−1)

〉)
≤

∥∥δ(k)∥∥2
−Dk−1

(
d(k−1)

) (2max
{∣∣∣Dk

(
d(k−1)

)∣∣∣ , ∣∣∣〈δ(k),d(k−1)
〉∣∣∣}− Dk−1

(
d(k−1)

))
(MWC)
≤ (1 + 2σsw)

∥∥δ(k)∥∥2
Dk−1

(
d(k−1)

)Dk−1

(
d(k−1)

)
.

Because of σsw ∈ (0, 1), we obtain (22).

Proof of Lemma 24. For these directions, the sufficient decrease property is 0 ≤ −Dk−1

(
δ(k−1)

)
≤

−Dk−1

(
d(k−1)

)
. Taking squares gives

0 ≤
(
Dk−1

(
δ(k−1)

))2
≤
(
Dk−1

(
d(k−1)

))2
.

For the reciprocals, the relation switches:

(
β(k)

)2
=

∥∥δ(k)∥∥4(
Dk−1(d(k−1))

)2 ≤
∥∥δ(k)∥∥4(

Dk−1(δ(k−1))
)2 =

∥∥δ(k)∥∥4∥∥δ(k−1)
∥∥4 .

A.4 Denominator with Balancing Offset

Proof of Lemma 27. Let k ≥ 1 and w ∈ C be arbitrary. If Dk

(
d(k−1)

)
≥ 0, then

Dk

(
d(k−1)

)〈
w,∇f (k)δ(k)

〉
≤ Dk

(
d(k−1)

)
arg max

w∈C

〈
w,∇f (k)δ(k)

〉
= Dk

(
d(k−1)

)〈
wβ ,∇f (k)δ(k)

〉
.

If otherwise Dk

(
d(k−1)

)
< 0, then

Dk

(
d(k−1)

)〈
w,∇f (k)δ(k)

〉
≤ Dk

(
d(k−1)

)
arg min

w∈C

〈
w,∇f (k)δ(k)

〉
= Dk

(
d(k−1)

)〈
wβ ,∇f (k)δ(k)

〉
.

Moreover, δ(k) is a descent direction with −
〈
wβ ,∇f (k)δ(k)

〉
≥ 0, and thus

−
〈
wβ ,∇f (k)δ(k)

〉〈
w,∇f (k)d(k−1)

〉
≤ −

〈
wβ ,∇f (k)δ(k)

〉
arg max

w∈C

〈
w,∇f (k)d(k−1)

〉
= −

〈
wβ ,∇f (k)δ(k)

〉
Dk

(
d(k−1)

)
.

Combining both inequalities results in

∆(k)(w)
(27)
= Dk

(
d(k−1)

)〈
w,∇f (k)δ(k)

〉
−
〈
wβ ,∇f (k)δ(k)

〉〈
w,∇f (k)d(k−1)

〉
≤ Dk

(
d(k−1)

)〈
wβ ,∇f (k)δ(k)

〉
−
〈
wβ ,∇f (k)δ(k)

〉
Dk

(
d(k−1)

)
= 0.

Proof of Corollary 28. Let k ≥ 1. Write

γ(k) =
Cγ

−⟨wβ ,∇f(k)δ(k)⟩
∥δ(k)∥2

∥∥δ(k−1)
∥∥2 + Γ(k)

,
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with
Γ(k) := Dk

(
d(k−1)

)∥∥∥δ(k)∥∥∥2 − 〈wβ ,Dkδ
(k)
〉〈

δ(k),d(k−1)
〉
. (54)

If Γ(k) is not negative, then γ(k) ≥ 0, because the enumerator Cγ is not negative, and the other summand in the
denominator is not negative neither. According to (D) we can write δ(k) = −(∇f (k))Tvδ with vδ ∈ conv (C).
Hence,

Γ(k) = −Dk

(
d(k−1)

)〈
vδ,∇f (k)δ(k)

〉
+
〈
wβ ,Dkδ

(k)
〉〈

vδ,∇f (k)d(k−1)
〉
. (55)

The expression ∆(k)(w) in (27) is linear in its argument. Write vδ =
∑

i λiwi with wi ∈ C and convex coefficients
λi ≥ 0. Then

Γ(k) = −∆(k)(vδ) = −∆(k)

(∑
i

λiwi

)
=
∑
i

−λi ·∆(k)(wi) ≥ 0,

as each term is non-negative according to Lemma 27.

Proof of Lemma 29. The case k = 0 is trivial. Let k ≥ 1 and w ∈ C be arbitrary. Use Lemma 27 and Corollary 28 to
derive the sufficient decrease property from (24):〈

w,∇f (k)d(k)
〉
= θ(k)

〈
w,∇f (k)δ(k)

〉
+ β(k)

〈
w,∇f (k)d(k−1)

〉
= κ

〈
w,∇f (k)δ(k)

〉
+ γ(k) ·∆(k)(w)︸ ︷︷ ︸

≤0

≤ κ
〈
w,∇f (k)δ(k)

〉
κ>0
≤ κmax

w∈C

〈
w,∇f (k)δ(k)

〉
= κDk(δ

(k)).

As w ∈ C was arbitrary, we have

Dk(d
(k)) = max

w∈C

〈
w,∇f (k)d(k)

〉
≤ κDk(δ

(k)) = −κ
∥∥∥δ(k)∥∥∥2 .

Proof of Lemma 30. The case k = 0 is trivial because of d0 = κδ0 and Cγ ≥ 0.
Let k ≥ 1. The definitions (FR MO1) and (24) give〈

d(k), δ(k)
〉
=
(
κ+ γ(k)Dk

(
d(k−1)

))∥∥∥δ(k)∥∥∥2 − γ(k) 〈wβ ,∇f (k)δ(k)
〉〈

d(k−1), δ(k)
〉

= κ
∥∥∥δ(k)∥∥∥2 + γ(k)

(
Dk

(
d(k−1)

)∥∥∥δ(k)∥∥∥2 − 〈wβ ,∇f (k)δ(k)
〉〈

d(k−1), δ(k)
〉)

(54)
= κ

∥∥∥δ(k)∥∥∥2 + γ(k)Γ(k).

Recall that Γ(k) ≥ 0, and

γ(k) =
Cγ

−⟨wβ ,∇f(k)δ(k)⟩
∥δ(k)∥2

∥∥δ(k−1)
∥∥2 + Γ(k)

≥ 0.

As

Γ̄(k) =
−
〈
wβ ,∇f (k)δ(k)

〉∥∥δ(k)∥∥2
∥∥∥δ(k−1)

∥∥∥2 ≥ 0,

the inequality follows immediately if Γ(k) > 0. For Γ(k) = 0, we use the assumptions to find positive constants
bounding Γ̄(k) from above and below. So even if Γ(k) = 0 the value of γ(k) is well-defined and finite. In this case,
γ(k)Γ(k) = 0 ≤ Cγ .

Proof of Lemma 31. Similar to before we find the bound

γ(k) =
Cγ

−⟨wβ ,∇f(k)δ(k)⟩
∥δ(k)∥2

∥∥δ(k−1)
∥∥2 + Γ(k)

≤ Cγ
−⟨wβ ,∇f(k)δ(k)⟩
∥δ(k)∥2

∥∥δ(k−1)
∥∥2 ∀k ∈ N.

Using this in the definition (24) directly gives the desired bound (30).
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A.5 Fractional-Linear Programming Variant I

Proof of Lemma 34. We show the even stronger property〈
v,∇f (k)d(k)

〉
≤ cFR

〈
v,∇f (k)δ(k)

〉 cFR>1
≤

〈
v,∇f (k)δ(k)

〉
≤ 0 ∀v ∈ C, ∀k ≥ 0, (56)

which implies sufficient decrease.

The case k = 0 is trivial. Let k ≥ 1 and take v ∈ C. Equation (32) shows that

ψ(w∗,v) :=
〈
w∗,∇f (k)d(k−1)

〉〈
v,∇f (k)δ(k)

〉
−
〈
v,∇f (k)d(k−1)

〉〈
w∗,∇f (k)δ(k)

〉
≤ 0. (57)

The expression actually occurs if we plug the definitions (FR MO2) and (33) into
〈
v,∇f (k)d(k)

〉
:〈

v,∇f (k)d(k)
〉
=
〈
v,∇f (k)

(
θ (w∗) δ(k) + β (w∗)d(k−1)

)〉
= θ (w∗)

〈
v,∇f (k)δ(k)

〉
+ β (w∗)

〈
v,∇f (k)d(k−1)

〉
=

cFR
〈
w∗,∇f (k−1)d(k−1)

〉 〈
v,∇f (k)δ(k)

〉〈
w∗,∇f (k−1)d(k−1)

〉 − ψ(w∗,v)〈
w∗,∇f (k−1)d(k−1)

〉 (58)

With δ(k−1) a descent direction at x(k−1), the denominator is negative, and (57) provides

− ψ(w∗,v)〈
w∗,∇f (k−1)d(k−1)

〉 ≤ 0.

We can thus dismiss this term in (58) to get〈
v,∇f (k)d(k)

〉
≤ cFR

〈
v,∇f (k)δ(k)

〉
.

This concludes the proof, as v ∈ C was arbitrary.
(If the denominator were

〈
w∗,∇f (k−1)δ(k−1)

〉
instead, we could have made an inductive argument.)

Proof of Appendix A.5. For a proof by contradiction, assume that the criticality is bounded like in (⊥). Let k ≥ 1.
We use the triangle inequality and Cauchy-Schwarz on (FR MO2) to obtain∥∥∥d(k)

∥∥∥ ≤ ∣∣θ(k)∣∣ ∥∥∥δ(k)∥∥∥+ ∣∣β(k)∣∣ ∥∥∥d(k−1)
∥∥∥ . (59)

We first investigate
∣∣θ(k)∣∣ ∥∥δ(k)∥∥. Use cFR = 1 + (cFR − 1) in (33):

θ(k) =

〈
w∗,∇f (k−1)d(k−1)

〉
−
〈
w∗,∇f (k)d(k−1)

〉〈
w∗,∇f (k−1)d(k−1)

〉 + (cFR − 1)

〈
w∗,∇f (k−1)d(k−1)

〉〈
w∗,∇f (k−1)d(k−1)

〉 .
As (cFR − 1) > 0, the triangle inequality gives∣∣θ(k)∣∣ ≤

∣∣∣∣∣
〈
w∗,∇f (k−1)d(k−1)

〉
−
〈
w∗,∇f (k)d(k−1)

〉〈
w∗,∇f (k−1)d(k−1)

〉 ∣∣∣∣∣+ (cFR − 1) . (60)

Assuming compatible norms, we can use the Cauchy-Schwartz inequality for the enumerator and then invoke the
Lf -Lipschitz-property of the Jacobian. Additionally, we note that C is compact, so there is a positive constant with

∥w∥ ≤ C′ ∀w ∈ C. (61)

Thus, ∣∣∣〈w∗,∇f (k−1)d(k−1)
〉
−
〈
w∗,∇f (k)d(k−1)

〉∣∣∣ = ∣∣∣〈w∗,
(
∇f (k−1) −∇f (k)

)
d(k−1)

〉∣∣∣
≤ ∥w∗∥

∥∥∥(∇f (k−1) −∇f (k)
)
d(k−1)

∥∥∥
≤ C′

∥∥∥∇f (k−1) −∇f (k)
∥∥∥∥∥∥d(k−1)

∥∥∥
≤ C′Lf

∥∥∥σk−1d
(k−1)

∥∥∥∥∥∥d(k−1)
∥∥∥ . (62)
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The sufficient decrease property (56), together with (⊥) provides a constant bound for the denominator:

1∣∣〈w,∇f (k−1)d(k−1)
〉∣∣ ≤ 1

cFR
∣∣〈w,∇f (k−1)δ(k−1)

〉∣∣ = 1

cFR
∥∥δ(k−1)

∥∥2 ≤ 1

cFRε2crit
. (63)

By Assumption 4, there must be a positive upper bound for the (continuous) steepest descent directions:∥∥∥δ(k)∥∥∥ ≤ C♯ ∀k ∈ N0. (64)

Altogether, (60, 62, 64) give ∣∣θ(k)∣∣ ∥∥∥δ(k)∥∥∥ ≤ C′LfC
♯
∥∥σk−1d

(k−1)
∥∥

cFRε2crit
+

(cFR − 1) C♯

cFRε2crit
. (65)

Next, we want to establish a similar upper bound for |β(k)|
∥∥d(k−1)

∥∥. The assumptions make d(k) H-Hölder continuous
by Lemma 4, i.e., there is H > 0 such that∥∥∥δ(k) − δ(k−1)

∥∥∥ =
∥∥∥δ(k−1) − δ(k)

∥∥∥ ≤ H

√∥∥x(k−1) − x(k)
∥∥ = H

√∥∥σ(k−1)d(k−1)
∥∥.

Using the reverse triangle inequality we get∣∣∣〈w∗,∇f (k)δ(k)
〉∣∣∣− ∣∣∣〈w∗,∇f (k−1)δ(k−1)

〉∣∣∣ ≤ ∣∣∣〈w∗,∇f (k)δ(k)
〉
−
〈
w∗,∇f (k−1)δ(k−1)

〉∣∣∣
≤
∣∣∣〈w∗,∇f (k)δ(k)

〉
−
〈
w∗,∇f (k−1)δ(k)

〉
+
〈
w∗,∇f (k−1)δ(k)

〉
−
〈
w∗,∇f (k−1)δ(k−1)

〉∣∣∣
≤
∣∣∣〈w∗,

(
∇f (k) −∇f (k−1)

)
δ(k)

〉∣∣∣+ ∣∣∣〈w∗,∇f (k−1)
(
δ(k) − δ(k−1)

)〉∣∣∣
≤ C♡

∥∥∥σk−1d
(k−1)

∥∥∥+ C♢
√∥∥σk−1d(k−1)

∥∥.
The constants C♡ > 0 and C♢ > 0 stem from the Lipschitz-continuity of the Jacobian, the Hölder-continuity of the
steepest descent direction, and the boundedness of C and F .
It follows that∣∣∣〈w∗,∇f (k)δ(k)

〉∣∣∣ ≤ C♡
∥∥∥σk−1d

(k−1)
∥∥∥+ C♢

√∥∥σk−1d(k−1)
∥∥+ ∣∣∣〈w∗,∇f (k−1)δ(k−1)

〉∣∣∣
and eventually ∣∣〈w∗,∇f (k)δ(k)

〉∣∣
cFR

∣∣〈w∗,∇f (k−1)δ(k−1)
〉∣∣ ≤ C♡

ε2critcFR

∥∥∥σk−1d
(k−1)

∥∥∥+ C♢

ε2critcFR

∥∥∥σk−1d
(k−1)

∥∥∥ 1
2

+
1

cFR
.

Because of (63), this is an upper bound for β(k):

β(k) ≤
C♡

ε2critcFR

∥∥∥σk−1d
(k−1)

∥∥∥+ C♢

ε2critcFR

∥∥∥σk−1d
(k−1)

∥∥∥ 1
2

+
1

cFR
(66)

With (65) and (66) equation (59) becomes∥∥∥d(k)
∥∥∥ ≤ (C† ∥∥∥σk−1d

(k−1)
∥∥∥+ C‡

√∥∥σk−1d(k−1)
∥∥+ 1

cFR

)∥∥∥d(k−1)
∥∥∥+ C≀, (67)

with some positive constants C†, C‡, C≀ > 0. According to Lemma 11, the steps vanish, i.e.,∥∥∥σk−1d
(k−1)

∥∥∥ k→∞−−−−→ 0,

and because of c−1
FR ∈ (0, 1), there must be some k0 ∈ N0 and a constant r ∈ (0, 1) such that finally∥∥∥d(k)

∥∥∥ ≤ r
∥∥∥d(k−1)

∥∥∥+ C≀.

According to Lemma 40,
∥∥d(k)

∥∥ is uniformly bounded. The proof is concluded by invoking Corollary 39.
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A.6 Fractional-Linear Programming Variant II

Proof of Lemma 37. Like before, the proof is by induction, and we show the stronger inequality〈
v,∇f (k)d(k)

〉
≤
〈
v,∇f (k)δ(k)

〉
≤ 0 ∀v ∈ C, ∀k ≥ 0.

The case k = 0 is trivial. Let k ≥ 1 and v ∈ C. Using the definition (FR MO2) and (34) we get〈
v,∇f (k)d(k)

〉
=

(
−
〈
w∗,∇f (k−1)d(k−1)

〉
− (cFR − 1)

〈
w∗,∇f (k−1)δ(k−1)

〉) 〈
v,∇f (k)δ(k)

〉
+ ψ(w∗,v)

−cFR
〈
w∗,∇f (k−1)δ(k−1)

〉
(57)
≤
〈
w∗,∇f (k−1)d(k−1)

〉 〈
v,∇f (k)δ(k)

〉
cFR

〈
w∗,∇f (k−1)δ(k−1)

〉 +
cFR − 1

cFR

〈
w∗,∇f (k−1)δ(k−1)

〉 〈
v,∇f (k)δ(k)

〉〈
w∗,∇f (k−1)δ(k−1)

〉
=

〈
w∗,∇f (k−1)d(k−1)

〉 〈
v,∇f (k)δ(k)

〉
cFR

〈
w∗,∇f (k−1)δ(k−1)

〉 +

(
1− 1

cFR

)〈
v,∇f (k)δ(k)

〉
.

Now the induction hypothesis gives〈
v,∇f (k)δ(k)

〉
cFR

〈
w∗,∇f (k−1)δ(k−1)

〉︸ ︷︷ ︸
≥0

〈
w∗,∇f (k−1)d(k−1)

〉
≤

〈
v,∇f (k)δ(k)

〉
cFR

〈
w∗,∇f (k−1)δ(k−1)

〉 〈w∗,∇f (k−1)δ(k−1)
〉
,

leading to 〈
v,∇f (k)d(k)

〉
≤
(

1

cFR
+ 1− 1

cFR

)〈
v,∇f (k)δ(k)

〉
=
〈
v,∇f (k)δ(k)

〉
≤ 0.

Proof of Theorem 38. Like before, we want to use (59) to bound
∥∥d(k)

∥∥. It is easy to see that (66) is still valid, and
we can bound

∣∣β(k)∣∣ ∥∥d(k−1)
∥∥. Further, we have

∣∣θ(k)∣∣ ∥∥∥δ(k)∥∥∥ ≤
∣∣∣∣∣
〈
w∗,∇f (k)d(k−1)

〉
−
〈
w∗,∇f (k−1)d(k−1)

〉
− (cFR − 1)

〈
w∗,∇f (k−1)δ(k−1)

〉
−cFR

〈
w∗,∇f (k−1)δ(k−1)

〉 ∣∣∣∣∣ ∥∥∥δ(k)∥∥∥
≤

(∣∣∣∣∣
〈
w∗,∇f (k)d(k−1)

〉
−
〈
w∗,∇f (k−1)d(k−1)

〉
−cFR

〈
w∗,∇f (k−1)δ(k−1)

〉 ∣∣∣∣∣+ (cFR − 1)
〈
w∗,∇f (k−1)δ(k−1)

〉
cFR

〈
w∗,∇f (k−1)δ(k−1)

〉 )∥∥∥δ(k)∥∥∥ .
Thus, there is a bound like (65). The rest of the proof is identical to that of Theorem 35.
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