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Abstract

Surprisingly, recent work has shown that gradient descent can be accelerated without using momentum—
just by judiciously choosing stepsizes. An open question raised by several papers is whether this phe-
nomenon of stepsize-based acceleration holds more generally for constrained and/or composite convex
optimization via projected and/or proximal versions of gradient descent. We answer this in the affirma-
tive by proving that the silver stepsize schedule yields analogously accelerated rates in these settings.
These rates are conjectured to be asymptotically optimal among all stepsize schedules, and match the
silver convergence rate of vanilla gradient descent [3, 5], namely O(ε− logρ 2) for smooth convex optimiza-
tion and O(κlogρ 2 log 1

ε
) under strong convexity, where ε is the precision, κ is the condition number, and

ρ = 1 +
√
2 is the silver ratio. The key technical insight is the combination of recursive gluing—the

technique underlying all analyses of gradient descent accelerated with time-varying stepsizes—with a
certain Laplacian-structured sum-of-squares certificate for the analysis of proximal point updates.

1 Introduction

First, consider the fundamental setting of unconstrained smooth convex optimization minx f(x), where
without loss of generality f is 1-smooth (i.e., ∇f is 1-Lipschitz). Until recently, folklore wisdom argued that
the gradient descent algorithm (GD)

xt+1 = xt − αt∇f(xt) (1.1)

requires O(ε−1) iterations to converge to an ε-optimal solution, and moreover that any asymptotically faster
convergence rate (i.e., “accelerated” rate) requires changing GD by adding momentum, internal dynamics,
or other additional building blocks beyond just modifying the stepsizes. See, for example, the textbooks [9,
12, 23, 38] for a further discussion of mainstream approaches for accelerating GD.

Surprisingly, a recent line of work has shown that GD can be accelerated simply by using a judicious
choice of stepsizes [2, 3, 5, 16, 24, 25, 26, 27, 28, 29, 52, 56, 57]. In particular, [5] showed that GD can
converge at the silver convergence rate O(ε− logρ 2) ≈ O(ε−0.7864)—conjectured to be asymptotically optimal
among all possible stepsize schedules—by using the silver stepsize schedule

αt = 1 + ρν(t+1)−1 , (1.2)

where ρ := 1+
√
2 denotes the silver ratio, and ν(i) denotes the 2-adic valuation of i, i.e., the largest integer j

such that 2j divides i. The silver stepsize schedule deviates qualitatively from mainstream stepsize schedules:
it is time-varying, nonmonotone, fractal-like, and uses arbitrarily large stepsizes that are in particular larger
than 2 (the threshold at which constant stepsize schedules make GD divergent). These results extend
in a conceptually identical way if f is additionally strongly convex: the silver stepsize schedule similarly
accelerates the convergence of GD from the classical rate O(κ log 1

ε ) for constant stepsize schedules, to

O(κlogρ 2 log 1
ε ), where κ denotes the condition number [3].

In just the past year, there has been an exciting flurry of work that further investigates this phenomenon of
stepsize-based acceleration. In particular, [27, 28, 52, 56] improved the hidden constant in the aforementioned
rate O(ε− logρ 2) and provided extensions to different performance metrics, and [57] extended final-iterate
convergence to anytime convergence. See the related work in §1.3 for a detailed discussion of these results.
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Generality of stepsize-based acceleration? However, these results focus primarily on the setting of un-
constrained, smooth, (strongly) convex optimization. How general is this phenomenon? In particular, recent
papers [3, 25] asked whether stepsize-based acceleration holds in the following two fundamental settings:

• Constrained optimization via projected GD? For constrained optimization minx∈K f(x), the
standard analog of GD is projected GD

xt+1 = ΠK (xt − αt∇f(xt)) , (1.3)

where ΠK denotes the projection operator onto the constraint set K, which is typically assumed to be
convex and closed. Can projected GD be similarly accelerated by judiciously choosing stepsizes?

• Composite optimization via proximal GD? For composite convex optimization

min
x

F (x) := f(x) + h(x)

where f is convex and smooth, and h is convex (but potentially non-smooth) and accessible through
its proximal operator proxαh(x) = argminz h(z) +

1
2α∥z − x∥2, the standard analog of GD is proximal

GD (also known as composite GD or backward-forward splitting)

xt+1 = proxαth (xt − αt∇f(xt)) . (1.4)

The point of proximal GD is that it enables better convergence than directly applying (sub)gradient
descent on F . Indeed, since F is non-smooth, GD on F might not converge and even when it does,
the convergence rate is slow; for example, under standard additional assumptions such as bounded
gradients, it converges at the rate O(ε−2), whereas proximal GD enjoys a faster convergence rate
O(ε−1) using constant stepsizes (see e.g., [9, 22, 55]). Can this be accelerated further to the silver
convergence rate using time-varying stepsizes?

Both of these settings are more general than the setting of previous results for stepsize-based acceleration.
Indeed, projected GD recovers vanilla GD by taking K = Rd, and proximal GD recovers vanilla GD by taking
h ≡ 0. (Note also that proximal GD recovers projected GD by taking h to be the indicator function of the
constraint set.) Thus, we cannot hope to accelerate projected GD or proximal GD beyond what is possible
for vanilla GD—but can we at least match it? Several recent works [35, 43, 45] have empirically observed
that the silver stepsizes (or other time-varying schedules with large steps) can be effective for both settings;
however, theoretical guarantees are unknown beyond vanilla GD.

Challenges. At first glance, these extensions might seem straightforward since classical analyses for vanilla,
projected, and proximal GD parallel each other closely and lead to nearly identical O(ε−1) convergence rates
for constant stepsize schedules. For example, at least intuitively, the classical analysis of projected GD
reduces to the analysis of vanilla GD by arguing that since the projection operator is 1-Lipschitz, it cannot
worsen the progress towards the minimizer; see e.g., [7, §3.1.2]. However, for stepsize-based acceleration it is
unclear how to apply any such arguments. This is because existing analyses for stepsize-based acceleration
use more complex dependencies between the iterates, in contrast to the modular argument of combining “GD
makes progress” and “interleaving projections does not worsen progress” at each step; see the techniques
section §1.2 for a more detailed discussion.

This is not just a failure of current analyses. Interleaving projection and/or proximal operators can
change the behavior of GD in fundamental ways when using time-varying stepsizes. For example, [25, §4]
numerically investigated stepsize-based acceleration for n = 2, 3 steps and observed that projected GD has
strictly worse rates than vanilla GD, and moreover proximal GD has strictly worse rates than projected GD.
This suggests that as the level of generality increases, the algorithms may have to take strictly less aggressive
stepsizes. As another example, even for the seemingly simple setting of quadratic objectives f—a setting
for which stepsize-based acceleration has been known for 70+ years [54]—convergence results do not extend
in a straightforward way from vanilla GD to projected GD. This is due to fundamental issues beyond just a
failure of existing analyses: for example, it can be shown that the optimal n = 2 stepsizes for unconstrained
quadratic optimization (based on Chebyshev polynomials) provably provide a divergent rate if a projection
or proximal operation is interleaved, as will be elaborated upon in future work [44].

Hence, it remained unclear whether stepsize-based acceleration extends to more general settings of con-
strained and/or composite convex optimization via projected and/or proximal versions of GD.
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Convex opt Constrained convex opt Composite convex opt

Problem minx f(x) minx∈K f(x) minx f(x) + h(x)

Algorithm GD Projected GD Proximal GD

Update rule xt+1 = xt − αt∇f(xt) xt+1 = ΠK(xt − αt∇f(xt)) xt+1 = proxαth

(
xt − αt∇f(xt))

Rate for constant stepsizes ε−1 (folklore) ε−1 (folklore) ε−1 (folklore)

Rate for silver stepsizes ε− logρ 2 [5] ε− logρ 2 (Theorem 1.1) ε− logρ 2 (Theorem 1.1)

Table 1: The mainstream convergence rate for GD and its variants is O(ε−1), achieved by constant stepsize schedules. [5]

recently showed that GD can be accelerated to O(ε− logρ 2) ≈ O(ε−0.7864) for unconstrained smooth convex optimization (left)
by using the silver stepsize schedule, conjectured to be asymptotically optimal among all stepsize schedules. It remained open if
this phenomenon of stepsize-based acceleration holds in the more general settings of constrained (middle) and composite (right)
convex optimization. We show that the answer is yes. In this table, ε is the precision, ρ = 1+

√
2 is the silver ratio, f and h are

convex, and f is 1-smooth (wlog by rescaling). If f is also strongly convex, then the rates improve similarly from O(κ log 1/ε)

for constant stepsizes, to O(κlogρ 2 log 1/ε) for the silver stepsize schedule, where κ is the condition number; see Corollary 1.2.

1.1 Contribution

In this paper, we answer these questions in the affirmative. In particular, we show that by using the silver
stepsize schedule, projected and proximal GD converge at the silver convergence rate. This was previously
only known for vanilla GD. See Table 1 for a summary.

We state our main result for proximal GD (since that generalizes projected GD) and for general M -
smoothness (since that is equivalent after normalizing the silver stepsizes by 1/M). For context, note that
the tight rate for proximal GD using constant stepsize schedule αt ≡ 1 is F (xn)− F (x∗) ⩽ 1

4nM∥x0 − x∗∥2
where x∗ denotes any minimizer of F [50, Theorem 7].

Theorem 1.1 (Main result). For any horizon n = 2k − 1, any M -smooth convex function f , any convex
function h, and any initialization x0,

F (xn)− F (x∗) ⩽
ρ

4
√
2nlog2 ρ

M∥x0 − x∗∥2 , (1.5)

where x∗ denotes any minimizer of F = f + h, and xn denotes the n-th iterate of proximal GD using the
silver stepsize schedule. In particular, in order to achieve error F (xn)−F (x∗) ⩽ ε, it suffices to run proximal
GD for some number of iterations n, where

n ≲

(
M∥x0 − x∗∥2

ε

)logρ 2

≈
(
M∥x0 − x∗∥2

ε

)0.7864

.

We make four remarks. First, by standard black-box reductions (see, e.g., [5, Footnote 2]), this ac-
celeration immediately extends to the strongly convex setting. This improves the tight iteration complex-
ity O(κ log 1/ε) for proximal GD when using constant stepsizes [49], to match the silver convergence rate
O(κlogρ 2 log 1/ε) that was previously only known for vanilla GD.

Corollary 1.2. Assume further that f is m-strongly convex. There exists a stepsize schedule such that
∥xn − x∗∥ ⩽ ε after

n ≲ κlogρ 2 log

(
∥x0 − x∗∥

ε

)
≈ κ0.7864 log

(
∥x0 − x∗∥

ε

)
iterations, where κ := M/m denotes the condition number.

Second, these acceleration results readily apply to all special cases of proximal GD, e.g.:

• Setting h ≡ 0 recovers the silver convergence rate for vanilla GD [3, 5].

• Setting h to be the indicator of a convex set proves the silver convergence rate for projected GD.

• Setting h to be the ℓ1 norm proves the silver convergence rate for ISTA [17].
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For the latter two settings, these are the first results showing stepsize-based acceleration.
Third, we remark that for simplicity, these results are stated for horizons of the form n = 2k−1. However,

the asymptotic rates extend to arbitrary n by standard tricks, e.g., output the best iterate rather than the
final iterate, or run for the largest n′ = 2k

′ − 1 less than n. Finally, we remark about the tightness of our
bounds.

Remark 1.3 (Optimality of the bounds). In our rates O(ε− logρ 2) and O(κlogρ 2 log 1/ε), the exponent
logρ 2 is tight for the silver stepsize schedule (proven in Appendix A.1), and is conjecturally optimal among
all possible stepsize schedules (since that is conjectured even for the special case of GD [3, 5, 27, 28]).

These rates for stepsize-based acceleration are weaker than traditional momentum-based acceleration,
which changes (vanilla, projected, proximal) GD beyond just modifying stepsizes and achieves rates O(ε−1/2)
and O(κ1/2 log 1/ε) for the convex and strongly convex settings, respectively, both of which are information-
theoretically optimal among first-order methods [23].

1.2 Overview of techniques

The overarching rationale for stepsize-based acceleration is that although short steps and long steps are
individually suboptimal—since short steps can undershoot on flat objectives, and long steps can overshoot
on steep objectives—judiciously combining them can lead to overall faster convergence because these worst-
cases cannot align. See [2, 3] for an interpretation of this phenomenon in terms of hedging. Notably, proving
stepsize-based acceleration precludes using classical analyses (such as those for constant stepsize schedules,
see e.g., [7]) which bound the progress of each iteration separately and then sum these bounds. Indeed, any
such analysis is unable to prove any benefit of deviating from constant stepsize schedules.

Instead, in order to prove stepsize-based acceleration, it is necessary to argue holistically about the
cumulative progress—i.e., the multi-step descent—of the algorithm. Let us briefly describe how prior work
accomplishes this for GD, before moving to the present setting of proximal GD.

Stepsize acceleration for GD. Suppose one seeks to prove that n steps of GD converges at a rate τn,
i.e., an inequality f(xn)−f(x∗) ⩽ τn∥x0−x∗∥2. All existing analyses of stepsize-based acceleration establish
this by proving an identity of the form

f(x∗)− f(xn) + τn∥x0 − x∗∥2 =
∑
i,j

λijQij + (SOS) , (1.6)

where SOS is a sum-of-squares polynomial, λij ⩾ 0, and Qij ⩾ 0 are co-coercivities (i.e., certain polynomials
in the iterates xi and xj , gradients ∇f(xi) and ∇f(xj), and function values f(xi) and f(xj); see Defini-
tion 2.1). The identity (1.6) constitutes a certificate of the desired multi-step descent since the right hand
side is obviously nonnegative.

In words, the co-coercivity inequality Qij ⩾ 0 is a long-range consistency condition regarding information
about the objective function f at different iterates along the GD trajectory. Crucially, these inequalities
are valid not only for consecutive iterates but for all xi and xj , enabling a holistic argument that captures
how different iterations affect each other. In the right hand side of (1.6), λij ⩾ 0 should be interpreted
as multipliers that combine the inequalities Qij ⩾ 0, and the SOS term should be interpreted as a way to
add any other possible valid inequalities. Indeed, although we will not use the following fact in this paper,
it turns out that identities of the form (1.6) provide a complete proof system in the sense that any valid
convergence rate τn admits a proof via such an identity [48].

There are two challenges for proving an identity of the form (1.6): 1) providing explicit expressions for
the multipliers {λij} and the SOS term, and 2) verifying the identity, which amounts to checking that the
coefficients match on both sides of this polynomial identity. In particular, the issue is that the complexity
of both tasks ostensibly increases in the number of iterations n.

The key technique that makes both steps tractable is recursive gluing. This technique was introduced
in [3, 5] and is at the heart of all analyses in subsequent works on accelerating GD [27, 28, 52, 56]. The
underlying idea is that for increasing n, the complexity of proving identities such as (1.6) can be controlled
by using the recursive structures of the {λij} and SOS terms that are inherited from the recursive pattern of
the stepsizes. In particular, this allows analyzing the performance of a longer stepsize schedule that is created
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by concatenating two shorter stepsize schedules—possibly with additional modifications such as changing [3]
or adding [5, 27, 28, 52, 56] a few stepsizes—by essentially composing the progress of the shorter stepsize
schedules. More precisely, this provides a new identity certifying multi-step descent for the longer stepsize
schedule by essentially combining the identities for the shorter schedules. The multipliers {λij} for the new
identity are comprised of three components in a formulaic manner: a recursive component (that combines
the identities for the shorter subsequences), a sparse correction (that affects only O(1) entries of {λij}),
and a low-rank correction (that affects only O(1) rows of {λij})—see §3 for details. The upshot is that the
majority of the analysis for the longer sequence is inherited from analyses for the shorter sequences, letting
one analyze large number of iterations in an inductive or recursive manner. Concretely, this reduces proving
an n-step identity of the form (1.6) to verifying only O(1) coefficients.

Stepsize acceleration for proximal GD. We analyze proximal GD by proving a multi-step descent
identity analogous to (1.6), but now with a composite objective F = f + h, with co-cocoercivity inequalities

Qf
ij ⩾ 0 and Qh

ij ⩾ 0 which respectively encode consistency conditions for f and h, and with two sets of
corresponding multipliers {λij} and {µij}. The identity is now of the form

F (x∗)− F (xn) + τn∥x0 − x∗∥2 =
∑
i,j

λijQ
f
ij +

∑
i,j

µijQ
h
ij + (SOS) . (1.7)

Our starting point is the observation that we can reuse the same multipliers {λij} from the analysis of GD.
However, we still need explicit expressions for {µij} and the SOS term. While the multipliers {µij} are
new and different from {λij}, we show that these can also be constructed using the technique of recursive
gluing. Combined with {λij}, this reduces the complexity of proving the n-step identity into verifying O(1)
coefficients as described above.

Conceptually, the SOS term poses a core new difficulty that arises for proximal GD but not GD. Given
{λij} and {µij}, this term can be computed as the residual in the identity (1.7); the challenge is proving
that the resulting quadratic form is actually a sum of squares. For GD, this is easy as the term is just a
single square [5].1 In contrast, for proximal GD this term is of high rank, implying that any decomposition
as a sum of squares (if one exists) requires Ω(n) terms. Certifying that this term is SOS by finding such
a decomposition therefore appears to bring us back to the original challenge of proving multi-step descent
identities: the complexity increases in n.

We approach this by combining certain aspects of the analysis of both components of proximal GD:
vanilla GD and the proximal point method. This is most easily stated in terms of the coefficient matrix
corresponding to this quadratic form; establishing that the term is SOS is then equivalent to showing that this
matrix is positive semidefinite. In the case of GD, this matrix has rank 1; in the case of the proximal point
method [47], while the matrix has rank Ω(n), it has an elegant Laplacian structure which implies positive
semidefiniteness. It turns out that modulo a Schur complement, the matrix in our analysis of proximal GD is
precisely a sum of a rank-1 matrix and a Laplacian matrix that can be constructed recursively. This provides
a simple certificate of positive semidefiniteness and thus provides the final missing piece—verifying that the
term is indeed SOS—for the recursive gluing argument to prove the desired identity (1.7). We remark that
such a combination of structures is novel to analyses of stepsize acceleration, and we are hopeful that such
ideas might lead to new possibilities in this line of work.

1.3 Related work

In addition to the literature described above, here we provide further context about related work.

Stepsize-based acceleration. For the special case of quadratic objectives, Young showed in 1953 that
GD can be accelerated using non-constant stepsizes, given explicitly as the inverses of the roots of Chebyshev
polynomials [54]. However, until recently it was believed that this phenomenon of stepsize-based acceleration
was limited to quadratic objectives. Indeed, despite the investigation of many stepsize schedules—including
even adaptive strategies such as exact line search [11, 19, 39], Armijo-Goldstein schedules [38], Polyak-type

1In fact, in the strongly convex case, the SOS term can be made to be zero for GD [3].
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schedules [42], and Barzilai-Borwein-type schedules [8]—there had been no analysis showing that any stepsize
schedule improves over constant stepsizes in any setting beyond quadratics.

Beginning with [2] in 2018, a line of work showed that such results are in fact possible. [2] showed
that time-varying stepsizes can improve over constant stepsize schedules in several settings. Most relevant
to the setting of this paper, [2, Chapter 8] provides optimal stepsizes for n = 2, 3 iterations for smooth,
strongly convex optimization. Cycling through these schedules provides a constant factor improvement over
the textbook unaccelerated rate for constant stepsizes. These results were proved via multi-step descent
identities of the form (1.6) by leveraging the performance estimation problem (PEP) framework of [21, 48],
which uses semidefinite programming to numerically compute the optimal convergence rate of a given stepsize
schedule. A key difficulty for PEP is that the search for optimal stepsizes is nonconvex and computationally
difficult as n increases. [16] in 2019 and [24] in 2022 used similar techniques to compute optimal stepsizes for
n = 2, 3 iterations for the non-strongly convex setting and for different performance metrics. In 2022, [29]
developed a branch-and-bound framework for PEP in order to numerically perform this nonconvex search for
optimal stepsizes, and used this to compute schedules up to n = 50 for the non-strongly convex setting. In
July 2023, [25] obtained a constant-factor improvement over constant stepsizes for the non-strongly convex
setting by cycling through approximate schedules of length n = 127.

In September 2023, two concurrent lines of work showed asymptotic acceleration results for GD: [3, 5]
and [26]. The papers [3, 5] proved that GD can accelerate at the silver convergence rate O(ε− logρ 2) ≈
O(ε−0.7864), by introducing the silver stepsize schedule and developing the recursive gluing technique to ana-
lyze it. The results are entirely analogous for the strongly convex setting, yielding the rate O(κlogρ 2 log 1

ε ) ≈
O(κ0.7864 log 1

ε ). These rates are conjectured to be asymptotically optimal among all possible stepsize sched-
ules. The other paper [26] proposed a nonperiodic stepsize schedule similar to but slightly different than
the silver stepsize schedule, and showed that it accelerates GD at the rate O(ε−0.9467) for smooth convex
optimization, and O(κ0.9467 log 1/ε) for the strongly convex setting.

In the year since, a flurry of work has built upon these results in order to further investigate this
phenomenon of stepsize acceleration. One thrust has refined the hidden constant in the asymptotic rate
O(ε− logρ 2) of [5], by a factor of 2 for the silver stepsize schedule [52], by a factor of roughly 2.32 using a
similar stepsize schedule [27], and most recently by a conjecturally optimal factor of roughly 2.37 using highly
optimized schedules [28, 56]. A second thrust of these papers [27, 28, 52, 56] extended convergence results
from function suboptimality to performance metrics related to the gradient norm. For these results, [28, 56]
identified certain families of stepsize schedules that allow structured formulae for concatenating them (and
adding a stepsize in the middle), in this way refining and simplifying the technique of recursive gluing.
Leveraging these ideas, [57] answered an open question of [34] by concatenating silver stepsize schedules of
different lengths in a careful way, in order to establish “anytime convergence” results which ensure accelerated
convergence for GD at every iteration rather than just at the final iteration (albeit at a rate O(ε−0.9672)
rather than the silver convergence rate). It seems plausible that similar results extend to proximal GD.

All these papers2 focus on unconstrained minimization of smooth and (strongly) convex objectives; the
purpose of the present paper is to go beyond this setting.

First-order methods for composite convex optimization. Minimizing composite objectives is a fun-
damental problem with many applications, and using the proximal operator of the nonsmooth function h
is a central component in the design and analysis of first-order methods; for an overview, see the survey
[41]. A prominent example is where h is the ℓ1 norm, in which case proximal GD is known as ISTA [17].
The seminal work [10] proposed the FISTA algorithm and showed an O(ε−1/2) accelerated convergence rate.
Since then, many algorithms have been proposed; see for example the textbook [9, Chapter 10]. A recent
line of work has used PEP not only to obtain tight analyses of existing algorithms [23, 36, 47, 49], but also to
develop an optimal algorithm with rate O(ε−1/2) that has the best possible constant factor and an exactly
matching lower bound [31]. As is the case for GD, acceleration results in the composite setting are obtained

2The one exception is the recent paper [52] which shows that the relaxed proximal point algorithm (RPPA) can achieve the
silver convergence rate for unconstrained convex (but possibly nonsmooth) f . However, this does not imply our results as it
requires access to a stronger oracle: the proximal operator for the entire objective. Indeed, as detailed in [52, §1.1], RPPA on
f is equivalent to GD on the (smooth and convex) Moreau envelope of f , which means that its setting is in a formal sense
equivalent to unconstrained smooth convex optimization—the setting of previous stepsize-based acceleration results for GD.
See also the discussion around [52, Theorem 5.3].
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by changing proximal GD beyond just changing modifying, e.g., via momentum.

Time-varying and/or large stepsizes in other contexts. Time-varying and/or large stepsizes have
also been investigated in other contexts, such as accelerating GD when the objective has Hessians with
bimodal [40] or multiscale [32] spectral structure, when the objective is separable [2, 4], when the objective
has fourth order growth [18], as well as for logistic regression with separable data [6, 53], parametric convex
optimization [43, 45], and perhaps most famously, training of deep neural networks [30, 46]. It is well-
documented that large steps for (stochastic) GD can lead to phenomena such as the Edge of Stability [15],
implicitly biased convergence towards flat minima [33], and chaos or catapults along the trajectory [13, 37, 51].

Interestingly, recent empirical results have documented that the silver stepsize schedule performs well
in constrained settings [43]; also, across several benchmarks, hyperparameter tuning algorithms empirically
learn time-varying stepsizes schedules for projected and proximal GD that qualitatively resemble the silver
stepsize schedule in certain aspects such as the use of large but rare stepsizes, and fractal-like or near-periodic
structure [35, 43]. This paper provides theoretical justification for these empirical phenomena.

2 Preliminaries and notations

2.1 Notation

For shorthand, we denote the sum of a finite sequence a = {ai} by
∑

a. For vectors a, b of the same length,
the notation a ⩾ b means ai ⩾ bi for all i. Vectors are assumed to be vertical. We use e1, e2, . . . to denote
the standard basis vectors; the ambient dimension will always be clear from context.

For simplicity, throughout we assumeM = 1; this is without loss of generality after rescaling the functions
f and h by 1/M . Henceforth, with a slight abuse of notation, {αi} denotes the (normalized) silver stepsizes.

2.2 Co-coercivities

For shorthand, we denote fi := f(xi), gi := ∇f(xi), hi := h(xi), and si to be a subgradient of h at xi, for
all i ∈ {0, 1, . . . , n, ∗}. In this notation, proximal GD (1.4) has the update

xt+1 = xt − αt(gt + st+1) ,

and the optimality condition is g∗ + s∗ = 0.
As mentioned in §1.2, our analysis uses certain inequalities—called co-coercivities—between pairs of

iterates. These inequalities play a central role in the performance estimation framework of [20], and are
necessary and sufficient conditions for the interpolability of a (smooth) convex function based only on function
and gradient evaluations on a finite set of points [48].

Definition 2.1 (Co-coercivities). Define

Qf
ij := fi − fj − ⟨gj , xi − xj⟩ −

1

2
∥gi − gj∥2 ,

Qh
ij := hi − hj − ⟨sj , xi − xj⟩ .

Lemma 2.2 ([48, Theorem 4]). Let f be convex and 1-smooth, and let h be convex. Then Qf
ij ⩾ 0 and

Qh
ij ⩾ 0 for all i, j.

2.3 Helper lemmas

For each k ∈ N and n = 2k − 1, we denote by π(k) := [α0, . . . , αn−1] the first n entries of the silver stepsize
schedule. We make use of its following basic properties from [5].

Lemma 2.3 (Properties of the silver stepsize schedule π(k)). For all k ∈ N:

(a) Sum.
∑

π(k) = ρk − 1.
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(b) Recursive construction. π(k+1) = [π(k), ρk−1 + 1, π(k)].

In order to analyze the silver stepsize schedule for proximal GD, it is helpful to introduce the following
auxiliary sequence c(k). Roughly speaking, its first half is identical to the silver stepsize schedule, whereas
the second half resembles a more irregular fractal and attains a large maximum at the end.

Definition 2.4. For each k ∈ N and n = 2k − 1, the sequence c(k) ∈ Rn is recursively defined as

c(1) := 2(ρ− 1) ,

c(k+1) := [π(k), (1 +
1

ρk
)(ρk−1 + 1), ρc(k) − (ρ− 1− 1

ρk
)π(k)] .

In our analysis, we make repeated use of the following simple properties of c(k).

Lemma 2.5 (Properties of c(k)). Let c(k) be as in Definition 2.4.

(a) Sum.
∑

c(k) = 2(ρk − 1).

(b) Domination. c(k) ⩾ π(k).

Proof. For (a), by induction,
∑

c(k+1) = (ρk − 1) + (1+ 1
ρk )(ρ

k−1 +1)+ 2ρ(ρk − 1)− (ρ− 1− 1
ρk )(ρ

k − 1) =

2(ρk+1−1) from
∑

π(k) = ρk−1 (Lemma 2.3). For (b), this is straightforward by induction and the recursive
construction of π(k) (Lemma 2.3).

3 Proof of the main result

In this section, we prove the main result (Theorem 1.1) by constructing nonnegative multipliers and sum-of-
squares terms such that the following multi-step descent identity holds. These terms capture how different
iterations affect other iteration’s progress, and in particular capture effects beyond consecutive iterations.
See §1.2 for a further discussion and a high-level overview of our analysis techniques.

Theorem 3.1 (Certificate of multi-step descent). Let k ∈ N and n = 2k − 1. There exist λ = λ(k)

(Definition 3.2), µ = µ(k) (Definition 3.3), and S = S(k) (Definition 3.5) such that the following hold:

(i) Nonnegativity of multipliers. λi,j , µi,j ⩾ 0 for all i ̸= j.

(ii) Positive semidefiniteness of slack. S ⪰ 0.

(iii) Multi-step descent identity.∑
i,j

λi,jQ
f
ij +

∑
i,j

µi,jQ
h
ij = (2ρk − 1)(F∗ − Fn) +

ρ

2
√
2
∥x0 − x∗∥2 −

1

2
(∥u∥2 +Tr(V SV T )) , (3.1)

where for shorthand u := x0 − x∗ −
∑n−1

i=0 αigi − ρkgn −
∑n

j=1 cjsj − s∗ with c := c(k) (Definition 2.4), and

V :=
[
x0 − x∗ | s1 | . . . | sn | s∗

]
denotes the matrix obtained by concatenating these column vectors.

Theorem 3.1 immediately implies the main result (Theorem 1.1).

Proof of Theorem 1.1. The left hand side of the multi-step descent identity (3.1) is nonnegative since for

all i ̸= j, the co-coercivities Qf
ij , Q

h
ij are nonnegative (Lemma 2.2) and so are the multipliers λi,j , µi,j (by

item (i)). The term ∥u∥2 +Tr(V SV T ) on the right hand side is also nonnegative as a sum of squares, since
S = S(k) is positive semidefinite (by item (ii)). Therefore, by rearranging, (3.1) implies the desired bound

Fn − F∗ ⩽
ρ√

2(4ρk − 2)
∥x0 − x∗∥2 ⩽

ρ

4
√
2nlog2 ρ

∥x0 − x∗∥2 .

The rest of the section is devoted to establishing Theorem 3.1. In §3.1 we define the multipliers λ, µ
and prove their nonnegativity (item (i)). In §3.2 we define the coefficient matrix S for the sum-of-squares
term and prove that S is positive semidefinite (item (ii)). In §3.3 we turn to proving the multi-step descent
identity (item (iii)). The definitions are recursive in k and the proofs follow by induction on k; the base case
k = 1 for Theorem 3.1 amounts to an elementary identity and is deferred to Appendix B.1.
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Figure 1: Illustration of the structure of λ(k+1) (left) and µ(k+1) (right). Both are constructed via the recursive gluing
technique, which combines three components. The recursion component glues two copies from λ(k) or µ(k), respectively. The
sparse component consists of O(1) nonzero entries. The low-rank component consists of linear combinations of π(k) and c(k).
Intuitively, the latter two components enable “gluing” the two recursive components by controlling the long-range effect of the
large step in the middle. Altogether, this allows inductively establishing the desired convergence rate for 2n + 1 = 2k+1 − 1
given n = 2k − 1.

3.1 Construction of multipliers via recursive gluing

First, we define the multipliers for the co-coercivities Qf
ij associated with f . Although we are considering

the more general setting of proximal GD for composite optimization, it turns out that we can use the same
multipliers from previous works on GD for single-objective convex optimization. Common to all such anal-
yses, λ(k+1) is constructed via recursive gluing as a sum of three components: a recursion component which
glues two copies from λ(k), a sparse correction which has O(1) nonzero entries, and a low-rank correction
which affects only O(1) rows. The original recursive gluing construction of [5] was refined recently in [27, 52],
and we use this version here; in particular, the sparse correction has exactly two nonzero entries, and the
low-rank correction contains two rows that are multiples of π(k). For bookkeeping purposes, it is convenient
to isolate the bottom row {λ∗,j} of λ into a separate vector λ. See Figure 1, left, for an illustration.

Definition 3.2 (Multipliers for f). For k ∈ N and n = 2k−1, define λ
(k)
i,j , i ∈ {0, 1, . . . , n, ∗}, j ∈ {0, 1, . . . , n}

as
λ
(k)
i,j := λ̄

(k)
i,j 1{i̸=∗} + λ

(k)
j 1{i=∗} ,

where λ(k) := [π(k), ρk] and

λ̄(1) :=

[0 1
0 0 ρ
1 1 0

]
,

λ̄(k+1) := λ̄(k+1),rec︸ ︷︷ ︸
recursion

+ λ̄(k+1),sp︸ ︷︷ ︸
sparse correction

+ λ̄(k+1),lr︸ ︷︷ ︸
low-rank correction

.
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The multipliers λ̄(k+1),rec, λ̄(k+1),sp, λ̄(k+1),lr are defined as

λ̄
(k+1),rec
i,j := λ̄

(k)
i,j 1{0⩽i,j⩽n} + ρ2λ̄

(k)
i−n−1,j−n−11{n+1⩽i,j⩽2n+1} ,

λ̄
(k+1),sp
i,j := ρ1{(i,j)=(n,2n+1)} + ρk1{(i,j)=(2n+1,n)} ,

λ̄
(k+1),lr
i,j := ρπ

(k)
j−n1{i=n,n+1⩽j⩽2n} + ρπ

(k)
j−n1{i=2n+1,n+1⩽j⩽2n} .

Next, we recursively define the multipliers for the co-coercivities Qh
ij associated with h, which are new to

our analysis for proximal GD. Similarly to λ(k+1), this construction of µ(k+1) is based on recursive gluing: we
use a recursion component that glues two copies from µ(k), a sparse correction component which has three
nonzero entries, and a low-rank correction component which is comprised of linear combinations of π(k) and
c(k). As for λ, it is helpful for bookkeeping purposes to isolate the bottom row {µ∗,j} of µ into a separate
vector µ. See Figure 1, right, for an illustration.

Definition 3.3 (Multipliers for h). For k ∈ N and n = 2k − 1, define µ
(k)
i,j , i ∈ {1, . . . , n, ∗}, j ∈ {1, . . . , n}

as
µ
(k)
i,j := µ̄

(k)
i,j 1{i ̸=∗} + µ(k)

j
1{i=∗} ,

where µ(k) := c(k) + e1 and

µ̄(1) :=
[1

1 0
]
,

µ̄(k+1) := µ̄(k+1),rec︸ ︷︷ ︸
recursion

+ µ̄(k+1),sp︸ ︷︷ ︸
sparse correction

+ µ̄(k+1),lr︸ ︷︷ ︸
low-rank correction

.

The multipliers µ̄(k+1),rec, µ̄(k+1),sp, µ̄(k+1),lr are defined as

µ̄
(k+1),rec
i,j := µ̄

(k)
i,j 1{1⩽i,j⩽n} + ρ2µ̄

(k)
i−n−1,j−n−11{n+2⩽i,j⩽2n+1} ,

µ̄
(k+1),sp
i,j := ρk1{(i,j)=(n,n+1)} + ρ21{(i,j)=(n+1,n+2)} + (ρ− 1

ρk
)(ρk−1 + 1)1{(i,j)=(2n+1,n+1)} ,

µ̄
(k+1),lr
i,j := (1− ρk

ρk−1 + 1
)(c

(k)
j − π

(k)
j )1{i=n,1⩽j⩽n} +

ρk

ρk−1 + 1
(c

(k)
j − π

(k)
j )1{i=n+1,1⩽j⩽n}

+
ρk

ρk−1 + 1
π
(k)
j−n−11{i=n,n+2⩽j⩽2n+1} +

ρ

ρk−1 + 1
π
(k)
j−n−11{i=n+1,n+2⩽j⩽2n+1}

+ ((ρ+ 1)c
(k)
j−n−1 − (1 +

1

ρk
)π

(k)
j−n−1)1{i=2n+1,n+2⩽j⩽2n+1} .

The recursive construction of these multipliers ensures nonnegativity, proving item (i) of Theorem 3.1.

Lemma 3.4 (Nonnegativity of multipliers). For all k ∈ N and i ̸= j, it holds that λ
(k)
i,j ⩾ 0 and µ

(k)
i,j ⩾ 0.

Proof. This follows by induction on k. The base case k = 1 is trivial. For the inductive step, assuming λ
(k)
i,j

is nonnegative, λ
(k+1)
i,j is clearly nonnegative as the entries are constructed by adding nonnegative numbers.

This is similarly true for nearly all entries of µ(k+1) from the inequality c(k) ⩾ π(k) (Lemma 2.5). It only

remains to check the n − 1 entries {µ(k+1)
n,j }1⩽j<n where a nonpositive vector is added due to µ̄(k+1),lr. A

quick calculation shows that these entries are nonnegative after summation; details in Appendix A.2.

3.2 Laplacian sum-of-squares

Here we provide details on the slack matrix S(k) in the multi-step descent identity (3.1). In particular we
show that it is positive semidefinite, proving item (ii) of Theorem 3.1. Key to this result is the identification
of a Laplacian matrix from its recursive structure.3

3Recall that a Laplacian matrix is a symmetric matrix such that all nondiagonal entries are nonpositive, and all row sums
(equivalently, all column sums) are 0. It is a classical fact that Laplacian matrices are positive semidefinite; this follows, e.g.,
from the Gershgorin circle theorem or from the observation xTLx =

∑
i<j(−Lij)(xi−xj)

2 ⩾ 0. We refer to standard textbooks

such as [14] for further background about Laplacian matrices.
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We begin by defining S(k). Similarly to the construction of the multipliers in §3.1, this construction is
recursive and involves π(k) and c(k).

Definition 3.5 (Construction of L(k) and S(k)). For k ∈ N and n = 2k − 1, define

L(k) :=

[
L̄(k) −(c(k))T

−c(k) 2(ρk − 1)

]
∈ R(n+1)×(n+1) ,

where

L̄(1) :=
[
2(ρ− 1)

]
,

L̄(k+1) :=

L̄(k) + (c(k) − π(k))(c(k) − π(k))T 0n×1 0n×n

01×n 0 01×n

0n×n 0n×1 ρ2(L̄(k) + (c(k) − π(k))(c(k) − π(k))T )


+

 0n×n −ρk(c(k) − π(k)) 0n×n

−ρk(c(k) − π(k))T (ρk−1 + 1)(ρk+1 + 1) −ρ(π(k))T

0n×n −ρπ(k) 0n×n

− (c(k+1) − π(k+1))(c(k+1) − π(k+1))T .

Also, define

S(k) :=

[ 1√
2

(−e1 + en+1)
T

−e1 + en+1 L(k)

]
∈ R(n+2)×(n+2) .

The following lemma proves several properties of these matrices, culminating in the fact that S(k) is
positive semidefinite. The main idea is to observe that L(k) is Laplacian (by the recursive construction), and
then use that to analyze S(k) by taking a Schur complement.

Lemma 3.6 (Properties of L(k) and S(k)). The following hold for all k ∈ N.

(a) All nondiagonal entries of L̄(k)+(c(k)−π(k))(c(k)−π(k))T are nonpositive (and thus similarly for L̄(k)

and L(k)).

(b) L(k) is Laplacian.

(c) S(k) is positive semidefinite.

Proof. We prove the items in order.

(a) This follows by induction. The base case k = 1 is clear by inspection. The induction step follows from
the recursive definition of L̄(k) and the fact that c(k) ⩾ π(k) by Lemma 2.5.

(b) By item (a), it suffices to show that each row sum of L(k) is 0. Note that for any k, the sum of the final
row is −

∑
c(k) +2(ρk − 1) = 0 by Lemma 2.5. The other rows also sum to zero, as can be checked via

a straightforward calculation from the recursive construction; details in Appendix A.3.

(c) Since the top-left entry of S(k) is positive, it suffices to check that the corresponding Schur complement

L(k) −
√
2(−e1 + en+1)(−e1 + en+1)

T

is positive semidefinite. In particular, we show that this matrix is Laplacian. Since both L(k) and√
2(−e1 + en+1)(−e1 + en+1)

T are Laplacian by item (b), each row sum of the Schur complement is 0.
For the nondiagonal entries, it suffices to check that the (1, n + 1) entry of the Schur complement is

nonpositive; this is straightforward since c
(k)
1 ⩾

√
2 for all k.
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3.3 Verification of the multi-step descent identity

Here we provide a proof sketch of item (iii) of Theorem 3.1; full details are deferred to Appendix B. Item (iii)
requires verifying the multi-step descent identity (3.1), which amounts to checking that the coefficients match
on both sides of the identity. This identity has two components: a linear form (in the function evaluations
{fi} and {hi}), plus a quadratic form (in the gradient evaluations {gi}, subgradient evaluations {si}, and
initial distance x0 − x∗). Thus, it suffices to separately check that the coefficients match for the linear and
quadratic forms.

For the linear form, this is simple. The coefficients in {fi} match because they are linear combinations
of only the multipliers {λi,j} (but not {µi,j}). As they are identical to those for the analysis of vanilla GD,
we can appeal to existing results. The coefficients in {hi} can be seen to match by simply expanding and
collecting terms from the definition of co-coercivities; see Appendix B.3 for details.

For the quadratic form, verifying the identity is more involved since it requires checking that Θ(n2)
coefficients match, for n = 2k − 1. A key observation that makes this verification tractable is that if we
combine terms in a certain order, then both sides of the identity become “succinct” quadratic polynomials
in O(1) variables; in particular, it suffices to check that the corresponding O(1) coefficients match. This
conciseness is crucially due to the construction of the multipliers based on the recursive gluing technique.
The proof therefore amounts to (1) computing the constant number of coefficients of these variables on both
sides of the identity, and (2) checking that they match. Both steps are conceptually simple (albeit tedious);
details are deferred to Appendices B.4 and B.5, respectively.
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A Deferred details

A.1 Tightness of the silver convergence rate

Theorem 1.1 is asymptotically tight in that the exponent log2 ρ in the rate O(n− log2 ρ) is optimal for proximal
GD with the silver stepsize schedule. Moreover, the hidden constant in the asymptotic rate is tight up to a
modest constant. Indeed, there exists a problem instance such that

F (xn)− F (x∗) =
M

4ρk − 4
∥x0 − x∗∥2 , (A.1)

which matches the aforementioned exponent since ρk = ρlog2(n+1) ≍ ρlog2 n = nlog2 ρ. This bound (A.1) is
achieved by the following 1-dimensional problem (normalized with M = 1 and ∥x0 − x∗∥2 = 1 without loss
of generality) from [20, Theorem 2.9] which is often used for lower bounds on proximal GD. Consider

min
x∈R

F (x) = f(x) + h(x)

where f(x) = ax is a linear function with slope a = 1
2(ρk−1)

, and h(x) = ι{x ⩾ 0} is the indicator function

for x ⩾ 0. Observe that x∗ = 0, and that from initialization x0 = 1, the final iterate of proximal GD is
xn = 1− a(ρk − 1), implying F (xn)− F (x∗) = a(1− a(ρk − 1)). Maximizing this rate over the slope a ⩾ 0
gives the aforementioned value of a and the rate (A.1).

We make three remarks about this “hard” problem instance. First, since h is the indicator of a convex set,
this construction can also be viewed as a hard problem minx⩾0 f(x) for projected GD. Second, by running
semidefinite programs [21, 48] to numerically estimate the worst-case convergence rate of proximal GD with
the silver stepsizes, it appears that (A.1) is the exactly optimal bound. Third, we compare the constants in
this rate (A.1) for proximal GD with the silver stepsizes, to the exact rate f(xn)− f(x∗) ⩽ M

4ρk−2
∥x0 − x∗∥2

of vanilla GD with the silver stepsizes [52]. The former is achieved by a linear function (equivalently, the ℓ1
norm) constrained to the set {x ⩾ 0}, whereas the latter is achieved by a certain Huber loss function (i.e.,
the Moreau envelope of the ℓ1 norm) over R. This minor difference in problem instances results in the minor
difference between the denominators in the rates: 4ρk − 4 versus 4ρk − 2. This discrepancy commonly arises
between an algorithm and its proximal counterpart; see, for example, the discussion after [31, Theorem 1].

A.2 Nonnegativity of the multipliers

Here we complete the proof of Lemma 3.4 by verifying the nonnegativity of the n− 1 entries {µ(k+1)
n,j }1⩽j<n.

To make the induction step clear, we isolate the claim into its own lemma.

Lemma A.1. Let µ(k) be as in Definition 3.3 and n = 2k − 1. Then for all k ∈ N and 1 ⩽ j < n,

µ̄
(k)
n,j = (ρk − 1)(c

(k)
j − π

(k)
j ) .

As a corollary, for all 1 ⩽ j < n,

µ
(k+1)
n,j = µ̄

(k+1),rec
n,j + µ̄

(k+1),lr
n,j = µ̄

(k)
n,j + (1− ρk

ρk−1 + 1
)(c

(k)
j − π

(k)
j ) =

ρ2k−1

ρk−1 + 1
(c

(k)
j − π

(k)
j ) ⩾ 0 .

Proof. We prove by induction. For the base case, note that for k = 1 no such entry exists; and for k = 2, we

have µ̄
(2)
3,1 = 0 and µ̄

(2)
3,2 = (ρ− 1

ρ )(ρ
0 + 1) = (ρ2 − 1)ρ

0+1
ρ = (ρ2 − 1)(c

(2)
2 − π

(2)
2 ).

Assuming that the result holds for k ⩾ 2, by the recursive definition we have µ̄
(k+1)
2n+1,j = 0 for all 1 ⩽ j ⩽ n

and µ̄
(k+1)
2n+1,n+1 = (ρ− 1

ρk )(ρ
k−1+1) = (ρk+1−1)ρ

k−1+1
ρk = (ρk+1−1)(c

(k+1)
n+1 −π

(k+1)
n+1 ). For n+2 ⩽ j < 2n+1,

µ̄
(k+1)
2n+1,j = ρ2µ̄

(k+1)
n,j−n−1 + (ρ+ 1)c

(k)
j−n−1 − (1 +

1

ρk
)π

(k)
j−n−1

= ρ2(ρk − 1)(c
(k)
j−n−1 − π

(k)
j−n−1) + (ρ+ 1)c

(k)
j−n−1 − (1 +

1

ρk
)π

(k)
j−n−1

= (ρk+1 − 1)(ρc
(k)
j−n−1 − (ρ− 1

ρk
)π

(k)
j−n−1)

= (ρk+1 − 1)(c
(k+1)
j − π

(k+1)
j ) .
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A.3 Laplacian structure

Here we complete the proof of Lemma 3.6 by showing that each row sum of L(k) is 0, for all k ∈ N. We use
induction. The base case k = 1 is trivial. Now assume that each row sum of L(k) is 0 (which implies that

the jth row sum of L̄(k) is c
(k)
j ), and consider the row sums of L(k+1). For this, we make repeated use of the

definitions of π(k) and c(k) and their respective helper lemmas (Lemmas 2.3 and 2.5) from §2.3.
For 1 ⩽ j ⩽ n, the jth row sum of L(k+1) is given by

c
(k)
j + (

∑
(c(k) − π(k)))(c

(k)
j − π

(k)
j )− ρk(c

(k)
j − π

(k)
j )− c

(k+1)
j = 0 ,

from
∑

(c(k) − π(k)) = ρk − 1 and c
(k+1)
j = π

(k+1)
j = π

(k)
j .

The (n+ 1)th row sum of L(k+1) is given by

−ρk(ρk − 1) + (ρk−1 + 1)(ρk+1 + 1)− ρ(ρk − 1)− (
∑

(c(k+1) − π(k+1)))(c
(k+1)
n+1 − π

(k+1)
n+1 )− c

(k+1)
n+1 = 0 ,

from
∑

(c(k+1) − π(k+1)) = ρk+1 − 1, c
(k+1)
n+1 = (1 + 1

ρk )(ρ
k−1 + 1) and π

(k+1)
n+1 = ρk−1 + 1.

Finally, for n+ 2 ⩽ j ⩽ 2n+ 1, the jth row sum of L(k+1) is given by

ρ2(c
(k)
j−n−1 + (ρk − 1)(c

(k)
j−n−1 − π

(k)
j−n−1))− ρπ

(k)
j−n−1 − (

∑
(c(k+1) − π(k+1)))(c

(k+1)
j − π

(k+1)
j )− c

(k+1)
j = 0 ,

from c
(k+1)
j = ρc

(k)
j−n−1 − (ρ− 1− 1

ρk )π
(k)
j−n−1.

B Verification of the multi-step descent identity

Here we prove item (iii) of Theorem 3.1. The base case k = 1 is in Appendix B.1; we then prove the
identity for larger k by induction. As described in the overview in §3.3, the desired identity has both a
linear and a quadratic component, and it suffices to check these separately. We begin by introducing helpful
bookkeeping notation in Appendix B.2, and then we check the linear component in Appendix B.3 and the
quadratic components in Appendices B.4 and B.5. All proofs begin with a straightforward inspection over
the coefficients of the relevant terms after expanding the definition of the co-coercivities; for the convenience
of the reader, we explicitly write these expanded forms in Proposition C.1. The proofs then check that the
constant number of coefficients match in a conceptually straightforward (albeit tedious) manner.

Throughout this section, for notational shorthand we denote c = c(k) and S = S(k). In the few cases
when needed, we explicitly write c(k+1) and S(k+1) to distinguish them respectively from c and S.

B.1 Base case

Here we prove the base case k = 1 for the multi-step descent identity (3.1). For k = 1,

λ =


0 1

0 0 ρ
1 1 0
∗ ρ− 1 ρ

, µ =

[ 1
1 0
∗ 2ρ− 1

]
, S =

 1√
2

1 −1

−1 2(ρ− 1) −2(ρ− 1)
1 −2(ρ− 1) 2(ρ− 1)

 ,

u = x0−x∗−(ρ−1)g0−ρg1−2(ρ−1)s1−s∗, and V =
[
x0 − x∗ | s1 | s∗

]
. Note that x1 = x0−(ρ−1)(g0+s1)

and g∗ = −s∗ by the definition of proximal GD. By plugging in these values and expanding the definition of
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the co-coercivities (Definition 2.1), the multi-step descent identity (3.1) for k = 1 amounts to the identity

ρ(f0 − f1 − ⟨g1, x0 − x1⟩ −
1

2
∥g0 − g1∥2) + (f1 − f0 − ⟨g0, x1 − x0⟩ −

1

2
∥g1 − g0∥2)

+ (ρ− 1)(f∗ − f0 − ⟨g0, x∗ − x0⟩ −
1

2
∥g∗ − g0∥2) + ρ(f∗ − f1 − ⟨g1, x∗ − x1⟩ −

1

2
∥g∗ − g1∥2)

+ (2ρ− 1)(h∗ − h1 − ⟨s1, x∗ − x1⟩)

= −(2ρ− 1)(f1 + h1 − f∗ − h∗) +
ρ

2
√
2
∥x0 − x∗∥2

− 1

2
∥x0 − x∗ − (ρ− 1)g0 − ρg1 − 2(ρ− 1)s1 − s∗∥2 −

1

4
√
2
∥x0 − x∗∥2 −

1

4
√
2
∥x0 − x∗ − 2(ρ− 1)(s1 − s∗)∥2 .

It is straightforward to check this identity by matching coefficients. For example, on the left hand side, the
coefficient of f1 is −ρ+1−ρ = −(2ρ−1) and the coefficient of ⟨g0, s1⟩ is (ρ−1)−(ρ−1)(2ρ−1) = −2(ρ−1)2,
respectively matching the corresponding coefficients on the right hand side.

B.2 Bookkeeping

We decompose terms in the multi-step descent identity based on the recursive definition of the multipliers.
For the convenience of the reader, expanded expressions for these terms are provided in Proposition C.1.

Definition B.1 (Bookkeeping decomposition). For λ(k+1) as in Definition 3.2 and µ(k+1) as in Definition
3.3, let

R :=
∑
i,j

λ̄
(k+1),rec
i,j Qf

ij +
∑
i,j

µ̄
(k+1),rec
i,j Qh

ij ,

T f :=
∑
i,j

λ
(k+1)
i,j Qf

ij ,

Th :=
∑
i,j

µ(k+1)
i,j

Qh
ij ,

Cf :=
∑
i,j

(λ̄
(k+1),sp
i,j + λ̄

(k+1),lr
i,j )Qf

ij ,

Ch :=
∑
i,j

(µ̄
(k+1),sp
i,j + µ̄

(k+1),lr
i,j )Qh

ij .

(B.1)

The induction step from k to k+1 that we prove can be formally stated as follows. The rest of the section
is devoted to proving this identity, by certifying that the coefficients on both sides are identical. Combined
with the base case (Appendix B.1), this directly proves the multi-step identity (item (iii) of Theorem 3.1).

Theorem B.2. Let R, T f , Th, Cf , Ch be as in (B.1), and assume that (3.1) holds for k. Then

R+ T f + Th + Cf + Ch = (2ρk+1 − 1)(F∗ − F2n+1) +
ρ

2
√
2
∥x0 − x∗∥2 −

1

2
(∥û∥2 +Tr(V̂ S(k+1)V̂ T )) (B.2)

where û := x0−x∗−
∑2n

i=0 αigi−ρk+1g2n+1−
∑2n+1

j=1 c
(k+1)
j sj−s∗ and V̂ :=

[
x0 − x∗ | s1 | . . . | s2n+1 | s∗

]
.

It is convenient to adopt the notation of [27] to write J·Kf to denote terms corresponding to {fi} in a

given expression. For example, JQf
01Kf = f0 − f1; J·Kh is similarly defined.

These definitions readily extend to the quadratic form. Due to the composite nature of our problem,
there are multiple types of vectors we need to consider. We categorize them into four types: {g, s, i, o},
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where each denotes4

g : g0, g1, . . . , g2n+1 (gradients gi corresponding to f) ,

s : s1, s2, . . . , s2n+1 (gradients sj corresponding to h) ,

i : x0 − x∗ (initial distance) ,

o : s∗ = −g∗ (gradient at optimality) .

For y, z ∈ {g, s, i, o} we use J·Ky,z = J·Kz,y to denote terms corresponding to the inner products between

vectors in type y and z. For example, JQf
01Kg,s = −

√
2 ⟨g1, s1⟩. It is clear that J·K (with any subscript) is

linear with respect to its input.
For each coefficient of interest, it is easy to see that only certain summands contribute. This observation

is formalized as follows and is used throughout the rest of the proof when evaluating coefficients.

Observation B.3. The following values are 0:

q
Th + Ch

y
f
,
q
T f + Cf

y
h
,
q
Th + Ch

y
g,g

,
q
T f + Cf

y
s,s

,
q
Th

y
i,g

,
q
T f

y
i,s

,
q
Cf + Ch

y
i,y

,
q
Th + Cf + Ch

y
o,y

,

where y ∈ {g, s, i, o}.

B.3 Linear form

Here we verify the linear form in the multi-step descent identity (B.2).

Proposition B.4 (Linear form). Consider the setting of Theorem B.2. Then

q
R+ T f + Cf

y
f
= (2ρk+1 − 1)(f∗ − f2n+1) ,

q
R+ Th + Ch

y
h
= (2ρk+1 − 1)(h∗ − h2n+1) .

Proof. The first equality was proved in [52, Theorem 5.2]. For the second equality, expanding each term
following the definition yields (see Proposition C.1 for corresponding expressions)

q
R+ Th + Ch

y
h

= h1 − hn +

n∑
j=1

cj(hj − hn) + ρ2(hn+2 − h2n+1) +

2n+1∑
j=n+2

ρ2cj−n−1(hj − h2n+1) + h∗ − h1 +

n∑
j=1

αj−1(h∗ − hj)

+ (1 +
1

ρk
)(ρk−1 + 1)(h∗ − hn+1) +

2n+1∑
j=n+2

(ρ(cj−n−1 − αj−1) + (1 +
1

ρk
)αj−1)(h∗ − hj)

+ ρk(hn − hn+1) + ρ2(hn+1 − hn+2) + (ρ− 1

ρk
)(ρk−1 + 1)(h2n+1 − hn+1) +

n∑
j=1

(cj − αj−1)(hn − hj)

+
((((((((((((((((n∑
j=1

ρk

ρk−1 + 1
(cj − αj−1)(hn+1 − hn) +

2n+1∑
j=n+2

ραj−1(hn+1 − h2n+1) +

���������������
2n+1∑
j=n+2

ρk

ρk−1 + 1
αj−1(hn − hn+1)

+

2n+1∑
j=n+2

((ρ+ 1)cj−n−1 + (ρ− 1− 1

ρk
)αj−1)(h2n+1 − hj) .

The cancellation in the middle is due to
∑n

j=1 cj = 2(ρk − 1) = 2
∑n

j=1 αj−1 (Lemmas 2.3 and 2.5). By

4While x0 − x∗ (type i) or s∗ (type o) are only single vectors and thus can be subsumed into other types, we treat them
separately because the patterns they exhibit in the equations are different from (and simpler than) those for other types.
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collecting the coefficients for each hj , this is equal to

n∑
j=1

(cj − αj−1 − (cj − αj−1))hj

+

2n+1∑
j=n+2

(ρ2cj−n−1 − ρ(cj−n−1 − αj−1)− (1 +
1

ρk
)αj−1 − (ρ+ 1)cj−n−1 − (ρ− 1− 1

ρk
)αj−1)hj

+ h1 − h1 + (−1− 2(ρk − 1) + ρk + (ρk − 1))hn

+ (−(1 +
1

ρk
)(ρk−1 + 1)− ρk + ρ2 − (ρ− 1

ρk
)(ρk−1 + 1) + ρ(ρk − 1))hn+1 + (ρ2 − ρ2)hn+2

+ (−ρ2 − 2ρ2(ρk − 1) + (ρ− 1

ρk
)(ρk−1 + 1)− ρ(ρk − 1) + 2(ρ+ 1)(ρk − 1) + (ρ− 1− 1

ρk
)(ρk − 1))h2n+1

+ (1 + 2(ρk+1 − 1))h∗

= (2ρk+1 − 1)(h∗ − h2n+1) ,

where the coefficient of h∗ is calculated using
∑n

j=1 αj−1 +
∑2n+1

j=n+2(ρ(cj−n−1 − αj−1) + (1 + 1
ρk )αj−1) =∑

c(k+1) = 2(ρk+1 − 1).

B.4 Quadratic form: setup

As briefly mentioned in the overview in §3.3, instead of checking the Θ(n2) coefficients corresponding to all
inner products between the Θ(n) variables {gi}, {si}, and x0−x∗, we simplify the analysis by first observing
that the quadratic form expressions in (B.1) can be expressed succinctly in a constant number of modified
variables (obtained by taking linear combinations of the original variables). The upshot is that then we need
to only compute and verify a constant number of coefficients. These modified variables are as follows.

Definition B.5 (Simple vectors for the quadratic form). Define

γ =
[
γ1 | γ2 | γ3 | γ4

]
:=
[∑n−1

i=0 αigi | gn |
∑2n

i=n+1 αigi | g2n+1

]
,

σ =
[
σ1 | σ2 | σ3 | σ4 | σ5

]
:=
[∑n

j=1 αj−1sj |
∑n

j=1 cjsj | sn+1 |
∑2n+1

j=n+2 αj−1sj |
∑2n+1

j=n+2 cj−n−1sj

]
.

From the recursive properties of π(k) and c(k) (Lemma 2.3 and Definition 2.4), one can observe that for

wg := [1, ρk−1 + 1, 1, ρk+1] ,

ws := [1, 0, (1 +
1

ρk
)(ρk−1 + 1),−(ρ− 1− 1

ρk
), ρ] ,

we have

γwg =

2n∑
i=0

αigi + ρk+1g2n+1 ,

σws =

2n+1∑
j=1

c
(k+1)
j sj .

These vectors naturally arise from the quadratic forms in (3.1) and (B.2), which can be concisely repre-
sented by them; in particular,

1

2
∥u∥2 =

1

2
∥x0 − x∗ − γ1 − ρkγ2 − σ2 − s∗∥2 ,

1

2
∥û∥2 =

1

2
∥x0 − x∗ − γwg − σws − s∗∥2 ,
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and the terms 1
2 Tr(V SV T ) and 1

2 Tr(V̂ S(k+1)V̂ T ) together can be expressed similarly by σ modulo simple
operations from recursion.

While some expressions in (B.1) can be represented with γ or σ in a straightforward way, in some cases
the terms should be properly combined with others, for which we provide the details. First, we identify
particular terms that are sums of inner products. These are categorized as A1, A2, A3 in Proposition C.1,
and with a slight abuse of notation we use Ai for the sum of the respective entries as well. The following
equalities can be verified by inspection.

Observation B.6. For A1, A2, A3 in Proposition C.1 and γ, σ as in Definition B.5,

JA1Kg,s = ⟨γ1, σ2 − σ1⟩ ,

JA2Kg,s = ρ
〈
γ3, 2σ1 + (ρk−1 + 1)σ3 + σ4

〉
,

JA3Kg,s =
〈
γ1 + (ρk−1 + 1)γ2 + γ3, (ρ− 1− 1

ρk
)σ4 + (ρ+ 1)σ5

〉
,

and

JA1Ks,s = ⟨σ1, σ2 − σ1⟩ ,
JA2Ks,s = 0 ,

JA3Ks,s =
〈
σ1 + (ρk−1 + 1)σ3 + σ4, (ρ− 1− 1

ρk
)σ4 + (ρ+ 1)σ5

〉
.

Next, we identify other terms (B1, B2, B3 in Proposition C.1, with similar abuse of notation) which are
related to specific gradient vectors; namely, gn = γ2, g2n+1 = γ4, and sn+2. These can also be verified by
inspection and by using the Pell recurrence ρ2 = 2ρ+ 1 for the silver ratio ρ.

Observation B.7. For B1, B2, B3 in Proposition C.1 and γ, σ as in Definition B.5,

JB1Kg,s = ρk
〈
γ2, σ1 + (ρk−1 + 1)σ3 + σ4

〉
,

JB2Kg,s = ρ2
〈
γ1 + (ρk−1 + 1)γ2, sn+2

〉
,

JB3Kg,s = ρk(ρ+ 1)
〈
γ4, σ1 + (ρk−1 + 1)σ3 + σ4

〉
,

and

JB1Ks,s = 0 ,

JB2Ks,s = ρ2
〈
σ1 + (ρk−1 + 1)σ3, sn+2

〉
,

JB3Ks,s = 0 .

B.5 Quadratic form: verification

After the preprocessing steps in Appendix B.4, we are ready to prove that the coefficients of the quadratic
form match in (B.2). The proof is divided into multiple parts based on the combination of y, z ∈ {g, s, i, o}.

First, we verify the terms involving ⟨gi, gj⟩ in the multi-step descent identity. This is identical to (and
thus follows from) the corresponding analysis of vanilla GD.

Proposition B.8 (Quadratic form in (g, g); [52, Theorem 5.2]). Consider the setting of Theorem B.2 and
let γ,wg be as in Definition B.5. Then

q
R+ T f + Cf

y
g,g

= −1

2
∥γws∥2 .

The next two propositions respectively verify the terms involving ⟨gi, sj⟩ and ⟨si, sj⟩.

Proposition B.9 (Quadratic form in (g, s)). Consider the setting of Theorem B.2 and let γ,wg, σ, ws be as
in Definition B.5. Then

q
R+ T f + Th + Cf + Ch

y
g,s

= −⟨γwg, σws⟩ .
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Proof. Using the representation with respect to γ and σ given from Observation B.6 and Observation B.7,

q
R+ T f + Th + Cf + Ch

y
g,s

= JA1 +A2 +A3 +B1 +B2 +B3Kg,s + J(remaining terms in (B.1))Kg,s
= ⟨γ1, σ2 − σ1⟩+ ρ

〈
γ3, 2σ1 + (ρk−1 + 1)σ3 + σ4

〉
+

〈
γ1 + (ρk−1 + 1)γ2 + γ3, (ρ− 1− 1

ρk
)σ4 + (ρ+ 1)σ5

〉
+ ρk

〈
γ2, σ1 + (ρk−1 + 1)σ3 + σ4

〉
+
(((((((((((((
ρ2
〈
γ1 + (ρk−1 + 1)γ2, sn+2

〉
+ ρk(ρ+ 1)

〈
γ4, σ1 + (ρk−1 + 1)σ3 + σ4

〉
−
〈
γ1 + ρkγ2, σ2

〉
− ρ2

〈
γ1 + (ρk−1 + 1)γ2, σ5

〉
− ρ2

〈
γ3 + ρkγ4, σ1 + (ρk−1 + 1)σ3

〉
− ρ2

〈
γ3 + ρkγ4, γ5

〉
−
(((((((((((((
ρ2
〈
γ1 + (ρk−1 + 1)γ2, sn+2

〉
− (ρk−1 + 1) ⟨γ2, σ1⟩

− (1 +
1

ρk
)(ρk−1 + 1)

〈
γ1 + (ρk−1 + 1)γ2, σ3

〉
− ρ

〈
γ4, (ρ

k−1 + 1)σ3 + σ4

〉
− ρk(ρk−1 + 1) ⟨γ2, σ3⟩+ (ρ− 1

ρk
)(ρk−1 + 1) ⟨γ3, σ3⟩+ ρk ⟨γ2, σ2 − σ1⟩

− ρ ⟨γ3, σ4⟩ − ρk ⟨γ2, σ4⟩ .

This is equal to −⟨γwg, σws⟩. This can be checked by hand; for brevity, we provide a simple Mathematica
script that rigorously verifies these identities at the URL [1].

Proposition B.10 (Quadratic form in (s, s)). Consider the setting of Theorem B.2 and let σ,ws be as in
Definition B.5. Then

q
R+ Th + Ch

y
s,s

= −1

2
∥σws∥2 −

s
1

2
Tr(V̂ S(k+1)V̂ T )

{

s,s

,

where S(k+1) is as in Definition 3.5 and V̂ =
[
x0 − x∗ | s1 | . . . | s2n+1 | s∗

]
.

Proof of Proposition B.10. With the expressions from Observations B.6 and B.7,

s
R+ Th + Ch +

1

2
Tr(V̂ S(k+1)V̂ T )

{

s,s

= JA1 +A2 +A3 +B1 +B2 +B3Ks,s

+ J(remaining terms in (B.1))Ks,s +
s
1

2
Tr(V̂ S(k+1)V̂ T )

{

s,s

= ⟨σ1, σ2 − σ1⟩+
〈
σ1 + (ρk−1 + 1)σ3 + σ4, (ρ− 1− 1

ρk
)σ4 + (ρ+ 1)σ5

〉
+ ρ2

〈
σ1 + (ρk−1 + 1)σ3, sn+2

〉
− 1

2
∥σ2∥2 −

s
1

2
Tr(V SV T )

{

s,s

− ρ2
〈
σ1 + (ρk−1 + 1)σ3, σ5

〉
− ρ2

2
∥σ5∥2 −

s
ρ2

2
Tr(Ṽ SṼ T )

{

s,s

− (1 +
1

ρk
)(ρk−1 + 1)

〈
σ3, σ1 + (1 + ρk−1)σ3

〉
− ρk(ρk−1 + 1)∥σ3∥2

+ (ρ− 1

ρk
)(ρk−1 + 1) ⟨σ3, σ4⟩+ ρk ⟨σ3, σ2 − σ1⟩ − ρ∥σ4∥2 − ρk ⟨σ3, σ4⟩

+

s
1

2
Tr(V̂ S(k+1)V̂ T )

{

s,s

,

where V =
[
x0 − x∗ | s1 | . . . | sn | s∗

]
and Ṽ =

[
xn+1 − x∗ | sn+2 | . . . | s2n+1 | s∗

]
. Collecting the terms
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that involve vectors other than those from σ, by the recursive construction of S(k+1) (Definition 3.5) we have

ρ2
〈
σ1 + (ρk−1 + 1)σ3, sn+2

〉
−

s
1

2
Tr(V SV T )

{

s,s

−
s
ρ2

2
Tr(Ṽ SṼ T )

{

s,s

+

s
1

2
Tr(V̂ S(k+1)V̂ T )

{

s,s

=
(((((((((((((
ρ2
〈
σ1 + (ρk−1 + 1)σ3, sn+2

〉
+

1

2
∥σ2 − σ1∥2 +

ρ2

2
∥σ5 − σ4∥2 −

(((((((((((((
ρ2
〈
σ1 + (ρk−1 + 1)σ3, sn+2

〉
+

1

2
(ρk−1 + 1)(ρk+1 + 1)∥σ3∥2 − ρk ⟨σ3, σ2 − σ1⟩ − ρ ⟨σ3, σ4⟩ −

1

2
∥ρ

k−1 + 1

ρk
σ3 − (ρ− 1

ρk
)σ4 + ρσ5∥2 ,

where the last term is from c(k+1)−π(k+1) = [0, . . . , 0︸ ︷︷ ︸
n

, ρk−1+1
ρk , ρc(k)− (ρ− 1

ρk )π
(k)]. Thus, it suffices to show

that

⟨σ1, σ2 − σ1⟩+
〈
σ1 + (ρk−1 + 1)σ3 + σ4, (ρ− 1− 1

ρk
)σ4 + (ρ+ 1)σ5

〉
− 1

2
∥σ2∥2

− ρ2
〈
σ1 + (ρk−1 + 1)σ3, σ5

〉
− ρ2

2
∥σ5∥2 − (1 +

1

ρk
)(ρk−1 + 1)

〈
σ3, σ1 + (ρk−1 + 1)σ3

〉
− ρk(ρk−1 + 1)∥σ3∥2

+ (ρ− 1

ρk
)(ρk−1 + 1) ⟨σ3, σ4⟩+ ρk ⟨σ3, σ2 − σ1⟩ − ρ∥σ4∥2 − ρk ⟨σ3, σ4⟩

+
1

2
∥σ2 − σ1∥2 +

ρ2

2
∥σ5 − σ4∥2 +

1

2
(ρk−1 + 1)(ρk+1 + 1)∥σ3∥2

− ρk ⟨σ3, σ2 − σ1⟩ − ρ ⟨σ3, σ4⟩ −
1

2
∥ρ

k−1 + 1

ρk
σ3 − (ρ− 1

ρk
)σ4 + ρσ5∥2

is equal to − 1
2∥σws∥2. This can be checked by hand; for brevity, we provide a simple Mathematica script

that rigorously verifies these identities at the URL [1].

Finally, we verify the terms involving x0 − x∗ and s∗.

Proposition B.11 (Quadratic form involving x0 − x∗). Consider the setting of Theorem B.2 and let
γ,wg, σ, ws be as in Definition B.5. Then

q
R+ T f

y
i,g

= ⟨x0 − x∗, γwg⟩ ,
q
R+ Th

y
i,s

= ⟨x0 − x∗, s1⟩+ ⟨x0 − x∗, σws⟩ ,
q
R+ T f + Th

y
i,i

= 0 .

Proof. The last equality
q
R+ T f + Th

y
i,i

= 0 is clear from inspection. For other cases,

q
R+ T f

y
i,g

=

n−1∑
i=0

(−αi + αi + αi) ⟨x0 − x∗, gi⟩+
n−1∑
i=0

(−ρk + ρk + (ρk−1 + 1)) ⟨x0 − x∗, gn⟩

+

2n∑
i=n+1

(−ρ2αi + ρ2αi + αi) ⟨x0 − x∗, gi⟩+ (−ρk+2 + ρk+2 + ρk+1) ⟨x0 − x∗, g2n+1⟩

= ⟨x0 − x∗, γwg⟩ ,
q
R+ Th

y
i,s

= ⟨x0 − x∗, s1⟩+
n∑

j=1

(−cj + cj + αj−1) ⟨x0 − x∗, sj⟩+ (1 +
1

ρk
)(ρk−1 + 1) ⟨x0 − x∗, sn+1⟩

− ρ2 ⟨x0 − x∗, sn+2⟩+ ρ2 ⟨x0 − x∗, sn+2⟩

+

2n+1∑
j=n+2

(−ρ2cj−n−1 + ρ2cj−n−1 + ρ(cj−n−1 − αj−1) + (1 +
1

ρk
)αj−1) ⟨x0 − x∗, sj⟩

= ⟨x0 − x∗, s1⟩+ ⟨x0 − x∗, σws⟩ .
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Proposition B.12 (Quadratic form involving s∗). Consider the setting of Theorem B.2 and let γ,wg, be as
in Definition B.5. Then

q
R+ T f

y
o,g

= −⟨s∗, γwg⟩ ,
q
R+ T f

y
o,s

= 0 ,
q
R+ T f

y
o,i

= 0 ,

q
R+ T f

y
o,o

= −1

2
(2ρk+1 − 1)∥s∗∥2 .

Proof. The second and third equalities
q
R+ T f

y
o,s

=
q
R+ T f

y
o,i

= 0 are clear from inspection. For other
cases,

q
R+ T f

y
o,g

=

n−1∑
i=0

(αi − αi − αi) ⟨s∗, gi⟩+ (ρk − ρk − (ρk−1 + 1)) ⟨s∗, gn⟩

+

2n∑
i=n+1

(ρ2αi − ρ2αi − αi) ⟨s∗, gi⟩+ (ρk+2 − ρk+2 − ρk+1) ⟨s∗, g2n+1⟩

= −⟨γwg, s∗⟩ ,

q
R+ T f

y
o,o

=

(
n−1∑
i=0

αi

2
+

ρk

2
− 1

2
+

2n∑
i=n+1

ρ2αi

2
+

ρk+2

2
− ρ2

2
−

n−1∑
i=0

αi

2
− ρk−1 + 1

2
−

n−1∑
i=0

αi

2
− ρk+1

2

)
∥s∗∥2

= −1

2
(2ρk+1 − 1)∥s∗∥2 .

Combining these results proves Theorem B.2.

Proof of Theorem B.2. The propositions in Appendices B.3 and B.5 show that the left and right hand side
of (B.2) match.

C Expanded expression for the decomposition

For the reader’s convenience, here we provide a fully expanded expression for the terms in (B.1). This follows
by expanding the definition of co-coercivities (Definition 2.1) and using the induction hypothesis (3.1).

Proposition C.1 (Expanded expressions for (B.1)). Let R, T f , Th, Cf , Ch be as in (B.1), and u, V, S be as
in Theorem 3.1. Also, assume that (3.1) is true for k. Then with

ũ := xn+1 − x∗ −
2n∑

i=n+1

αigi − ρkg2n+1 −
2n+1∑
j=n+2

cj−n−1sj − s∗ ,

Ṽ :=
[
xn+1 − x∗ | sn+2 | . . . | s2n+1 | s∗

]
,

the explicit expressions for the terms in the decomposition are given as follows:
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R =

n−1∑
i=0

αi(fi − fn + ⟨gi, x∗ − xi⟩︸ ︷︷ ︸
A1

+
1

2
∥g∗ − gi∥2) + ρk ⟨gn, x∗ − xn⟩︸ ︷︷ ︸

B1

+
ρk

2
∥g∗ − gn∥2

+ h1 − hn + ⟨s1, x∗ − x1⟩︸ ︷︷ ︸
B2

+

n∑
j=1

cj(hj − hn + ⟨sj , x∗ − xj⟩)︸ ︷︷ ︸
A1

+
1

2
(1 +

1√
2
)∥x0 − x∗∥2 −

1

2
(∥u∥2 +Tr(V SV T ))

+

2n∑
i=n+1

ρ2αi(fi − f2n+1 + ⟨gi, x∗ − xi⟩+
1

2
∥g∗ − gi∥2)︸ ︷︷ ︸

A2

+ ρk+2 ⟨g2n+1, x∗ − x2n+1⟩︸ ︷︷ ︸
B3

+
ρk+2

2
∥g∗ − g2n+1∥2

+ ρ2(hn+2 − h2n+1 + ⟨sn+2, x∗ − xn+2⟩)︸ ︷︷ ︸
B2

+

2n+1∑
j=n+2

ρ2cj−n−1(hj − h2n+1 + ⟨sj , x∗ − xj⟩)︸ ︷︷ ︸
A3

+
ρ2

2
(1 +

1√
2
)∥xn+1 − x∗∥2 −

ρ2

2
(∥ũ∥2 +Tr(Ṽ SṼ T )) ,

T f =

n−1∑
i=0

αi(f∗ − fi − ⟨gi, x∗ − xi⟩ −
1

2
∥g∗ − gi∥2)︸ ︷︷ ︸

A1

+(ρk−1 + 1)(f∗ − fn − ⟨gn, x∗ − xn⟩ −
1

2
∥g∗ − gn∥2)

+

2n∑
i=n+1

αi(f∗ − fi − ⟨gi, x∗ − xi⟩ −
1

2
∥g∗ − gi∥2)︸ ︷︷ ︸

A2

+ ρk+1(f∗ − f2n+1 − ⟨g2n+1, x∗ − x2n+1⟩ −
1

2
∥g∗ − g2n+1∥2)︸ ︷︷ ︸

B3

,

Th = h∗ − h1 − ⟨s1, x∗ − x1⟩︸ ︷︷ ︸
B1

+

n∑
j=1

αj−1(h∗ − hj − ⟨sj , x∗ − xj⟩) + (1 +
1

ρk
)(ρk−1 + 1)(h∗ − hn+1 − ⟨sn+1, x∗ − xn+1⟩)

+

2n+1∑
j=n+2

(ρ(cj−n−1 − αj−1) + (1 +
1

ρk
)αj−1)(h∗ − hj − ⟨sj , x∗ − xj⟩)︸ ︷︷ ︸

A3

,

Cf =

2n∑
i=n+1

ραi(fn − fi − ⟨gi, xn − xi⟩ −
1

2
∥gn − gi∥2)︸ ︷︷ ︸

A2

+ρ(fn − f2n+1 − ⟨g2n+1, xn − x2n+1⟩ −
1

2
∥gn − g2n+1∥2)

+

2n∑
i=n+1

ραi(f2n+1 − fi − ⟨gi, x2n+1 − xi⟩ −
1

2
∥g2n+1 − gi∥2) + ρk(f2n+1 − fn − ⟨gn, x2n+1 − xn⟩ −

1

2
∥gn − g2n+1∥2)︸ ︷︷ ︸

B1

,
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and

Ch = ρk(hn − hn+1 − ⟨sn+1, xn − xn+1⟩) + ρ2(hn+1 − hn+2 − ⟨sn+2, xn+1 − xn+2⟩)︸ ︷︷ ︸
B2

+ (ρ− 1

ρk
)(ρk−1 + 1)(h2n+1 − hn+1 − ⟨sn+1, x2n+1 − xn+1⟩)

+

n∑
j=1

(cj − αj−1)(hn − hj − ⟨sj , xn − xj⟩)︸ ︷︷ ︸
A1

+

n∑
j=1

ρk

ρk−1 + 1
(cj − αj−1)(hn+1 − hn − ⟨sj , xn+1 − xn⟩)

+

2n+1∑
j=n+2

ραj−1(hn+1 − h2n+1 − ⟨sj , xn+1 − x2n+1⟩) +
2n+1∑
j=n+2

ρk

ρk−1 + 1
αj−1(hn − hn+1 − ⟨sj , xn − xn+1⟩)

2n+1∑
j=n+2

((ρ+ 1)cj−n−1 + (ρ− 1− 1

ρk
)αj−1)(h2n+1 − hj − ⟨sj , x2n+1 − xj⟩)︸ ︷︷ ︸
A3

.

Proof. The equalities for T f , Th, Cf are obtained directly from expanding the co-coercivities. The expression
for Ch can be obtained after combining terms sequentially; in particular,

n∑
j=1

µ̄
(k+1),lr
n,j Qh

nj +

n∑
j=1

µ̄
(k+1),lr
n+1,j Qh

(n+1)j

=

n∑
j=1

(1− ρk

ρk−1 + 1
)(cj − αj−1)(hn − hj − ⟨sj , xn − xj⟩) +

n∑
j=1

ρk

ρk−1 + 1
(cj − αj−1)(hn+1 − hj − ⟨sj , xn+1 − xj⟩)

=

n∑
j=1

(cj − αj−1)(hn − hj − ⟨sj , xn − xj⟩) +
n∑

j=1

ρk

ρk−1 + 1
(cj − αj−1)(hn+1 − hn − ⟨sj , xn+1 − xn⟩) ,

2n+1∑
j=n+2

µ̄
(k+1),lr
n,j Qh

nj +

2n+1∑
j=n+2

µ̄
(k+1),lr
n+1,j Qh

(n+1)j

=

2n+1∑
j=n+2

ρk

ρk−1 + 1
αj−1(hn − hj − ⟨sj , xn − xj⟩) +

2n+1∑
j=n+2

ρ

ρk−1 + 1
αj−1(hn+1 − hj − ⟨sj , xn+1 − xj⟩)

=

2n+1∑
j=n+2

ραj−1(hn+1 − hj − ⟨sj , xn+1 − xj⟩)︸ ︷︷ ︸
=:∆

+

2n+1∑
j=n+2

ρk

ρk−1 + 1
αj−1(hn − hn+1 − ⟨sj , xn − xn+1⟩) ,

and

∆ +

2n+1∑
j=n+2

µ̄
(k+1),lr
2n+1,j Qh

(2n+1)j = ∆+

2n+1∑
j=n+2

((ρ+ 1)cj−n−1 − (1 +
1

ρk
)αj−1)(h2n+1 − hj − ⟨sj , x2n+1 − xj⟩)

=

2n+1∑
j=n+2

ραj−1(hn+1 − h2n+1 − ⟨sj , xn+1 − x2n+1⟩)

+

2n+1∑
j=n+2

((ρ+ 1)cj−n−1 + (ρ− 1− 1

ρk
)αj−1)(h2n+1 − hj − ⟨sj , x2n+1 − xj⟩) .

The expression for R can be obtained directly from the definition of λ(k) and (3.1), which is valid for
the iterates x0, x1, . . . , xn, x∗ of proximal GD with the silver stepsize schedule π(k) and for the iterates
xn+1, xn+2, . . . , x2n+1, x∗ of the same algorithm with initial point xn+1, by the recursive construction of the
silver stepsize schedule π(k+1) = [π(k), ρk−1 + 1, π(k)] (Lemma 2.3).
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