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Abstract

We introduce two-stage stochastic min-max and min-min integer programs with bi-param-

eterized recourse (BTSPs), where the first-stage decisions affect both the objective function

and the feasible region of the second-stage problem. To solve these programs efficiently, we

introduce Lagrangian-integrated L-shaped (L2) methods, which guarantee exact solutions when

the first-stage decisions are pure binary. For mixed-binary first-stage programs, we present

a regularization-augmented variant of this method. We also introduce distributionally robust

bi-parameterized two-stage stochastic integer programs and present an extension of the L2

method and a reformulation-based method for programs with finite and continuous supports,

respectively. Our computational results show that the L2 method surpasses the benchmark

method for bi-parameterized stochastic network interdiction problems, solving all instances in

23 seconds on average, whereas the benchmark method failed to solve any instance within

3600 seconds. Additionally, it achieves optimal solutions up to 18.4 and 1.7 times faster for

instances of risk-neutral and distributionally robust bi-parameterized stochastic facility location

problems, respectively. Furthermore, BTSPs have applications in solving stochastic problems

with decision-dependent probability distributions or sets of distributions (ambiguity set). The

L2 method outperforms existing approaches, achieving optimal solutions 5.3 times faster for

distributionally robust facility location problem with a decision-dependent and non-relatively

complete ambiguity set.

Key words: Stochastic integer programs, Bi-parameterized recourse, Interdiction problems,

Decision-dependent uncertainty, Distributionally robust optimization

1 Introduction

Two-stage stochastic programming is a well-known framework for modeling decision-making under

uncertainty, where decisions are made sequentially over two stages: an initial set of (first-stage)

decisions before the uncertainty is revealed, followed by a set of recourse (second-stage) decisions
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that adapt to revealed outcomes. This framework has been used for a wide variety of applications

such as network interdiction (Smith and Song 2020), healthcare (Yoon et al. 2021), power systems

(Zheng et al. 2013, Zhang et al. 2020), airline crew scheduling (Yen and Birge 2006), wildfire

planning (Ntaimo et al. 2012), and many more (Luo et al. 2023, Sherali and Zhu 2008, Üster and

Memişoğlu 2018). In this framework, it is typically assumed that the first-stage decisions affect

only either the right-hand side (rhs) of the constraints or the objective function in the second-

stage problem where the recourse decisions are made (Birge and Louveaux 2011). In this paper,

we investigate bi-parameterized two-stage stochastic programming, an extension of the conventional

two-stage stochastic programming framework where the first-stage decisions affect the constraints

and also the objective function of the second-stage problem. The formulation of bi-parameterized

two-stage stochastic programs (BTSPs) is given by

min
x∈X

{
f(x) + E

[
Q(x, ω̃)

]}
, (1)

where vector x denotes the set of first-stage decision variables, ω̃ is a random variable with support

Ω, and for each realization ω ∈ Ω of ω̃, the recourse function Q(x, ω) is defined as follows:

Q(x, ω) := min/max
{
q(ω)>y + x>G(ω)y : W (ω)y = r(ω)− T (ω)x, y ∈ Y

}
. (2)

The notation “min/max” in (2) indicates that the recourse problem can either be a minimization

problem or a maximization problem. Throughout the paper, we refer to BTSP (1) as min-min

problem when the recourse problem (2) is a minimization, and min-max problem when the recourse

problem is a maximization problem. It can be easily seen that this formulation reduces to the

conventional “single-parameterized” two-stage stochastic program when min/max replaced with

min and G(ω) = 0 for all ω ∈ Ω.

The first-stage feasible set is defined as X := {x ∈ X : Ax = b}, where X ⊆ Rn1
+ represents

integrality restrictions on x, A ∈ Qm1×n1 , and b ∈ Qm1 . The function f : X → R is the first-stage

objective function. Let Y (x, ω) := {y ∈ Y : W (ω)y = r(ω) − T (ω)x} for ω ∈ Ω where Y ⊆ Rn2
+

represents integrality restrictions on y. Here, q(ω) ∈ Qn2 , G(ω) ∈ Qn1×n2 , T (ω) ∈ Qm2×n1 ,

W (ω) ∈ Qm2×n2 , and r(ω) ∈ Qm2 . Note that moving the parameterized term x>G(ω)y into

the constraints using a proxy variable may result in a single-parameterized structure, where only

constraints are parameterized by x. However, since the resulting constraints still depend on the

parameterized coefficient, i.e., x>G(ω) for y, the problem structure differs from the conventional

structure where coefficients associated with y variables are independent on x.

The BTSPs pose computational challenges in solving due to the nonconvexity of their recourse

functions, even without integrality restrictions on the second-stage variables y. To illustrate this,

consider the following example:

Example 1. Let Ω = {1
3 ,

2
3 , 1} and p(ω) = 1/3 for ω ∈ Ω. Consider the following recourse function:

Q(x, ω) = min{(1 + x)y1 + (1 + 3x)y2 : y1 ≥ x− ω, y2 ≥ ω − x, y ∈ R2
+}, for ω ∈ Ω. The expected
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recourse function, i.e., E[Q(x, ω̃)] = 1
3Q(x, 1

3) + 1
3Q(x, 2

3) + 1
3Q(x, 1), on [0, 1] is nonconvex and

nonsmooth, as illustrated in Figure 1. �

Figure 1: An example of a nonconvex expected recourse function.

This complicates the application of Benders-type decomposition (or L-shaped method) to BTSPs,

which relies on approximating the recourse function Q(x, ω) using valid (optimality) cuts. This

method requires solving the second-stage subproblems that yields the subgradient to derive the

valid cuts; however, obtaining the subgradient is not straightforward for BTSPs, due to the non-

convexity of the recourse function. The dual decomposition method (Carøe and Schultz 1999)

is another well-known approach for solving two-stage stochastic programs, particularly when the

recourse problem involves integrality constraints. In this approach, copies of x, denoted by x(ω),

are introduced and the nonanticipativity constraints, i.e., x = x(ω), for ω ∈ Ω are relaxed. This

allows for the scenario-wise decomposition of the problem. However, when applied to BTSPs, the

dual decomposition method results in a mixed-integer nonconvex subproblem for each scenario,

which could be computationally demanding to solve. In addition to nonconvexity, BTSPs present

an additional challenge when the recourse problem includes integrality restrictions, thereby making

the recourse function discontinuous as well.

Recently, smoothing-based approaches have been presented for the continuous case of the min-

min problem (1) where X = Rn1
+ and Y = Rn2

+ . Liu et al. (2020) propose an algorithm that

converges almost surely to a generalized critical point. Their approach involves regularizing the

recourse function, deriving a difference-of-convex decomposition of this regularized function, and

then obtaining a convex upper-approximation. This allows them to update a solution x by solving

approximate problems using the convex approximation. For the convergence analysis, they identify

an implicit convex-concave property of the recourse function Q. Li and Cui (2024) also present a

decomposition algorithm for two-stage stochastic programs with implicit convex-concave recourse

functions where convex approximations of the recourse function are iteratively generated and solved,

and the solutions converge to a critical point. Bomze et al. (2022) propose a bounding method for

a class of bi-parameterized two-stage stochastic nonconvex programs where the objective function
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involves nonconvex quadratic terms and the feasible region is defined by a simplex. Note that none

of the above approaches is directly applicable to BTSPs with integrality restrictions.

1.1 Applications of Bi-Parameterized Stochastic Programs

Many important classes of problems can be transformed into the BTSP formulation:

• Bi-parameterized network interdiction models. Network interdiction problems involve

a sequential game between two players: an interdictor and a network user, with conflicting ob-

jectives. These problems have diverse applications in practice, such as disrupting illicit supply

networks (Morton et al. 2007, Malaviya et al. 2012), planning military operation (Salmerón

2012), and analyzing vulnerabilities in critical infrastructure (Brown et al. 2006). The formu-

lation of stochastic network interdiction problems is given by the following min-max form:

min
x∈X

E
[

max
y∈Y (x,ω̃)

f(x, y, ω̃)
]
,

where x denotes interdictor’s decision variables and y represents network user’s decision vari-

ables. The function f(x, y, ω) and set Y (x, ω) for ω ∈ Ω are the network user’s objective

function and feasible set, respectively, and both of them depend on x. The formulation of

bi-parameterized interdiction models has been considered a general form of interdiction prob-

lems in the literature (Smith and Song 2020); however, to the best of our knowledge, no

standard decomposition approaches have been established to address this general setup. We

discuss further details of this application in Section 6.

• Stochastic optimization with decision-dependent uncertainty. Stochastic optimiza-

tion often involves decision-dependent uncertainty, where a decision affects the distribution

(for example, see (Dupacová 2006, Hellemo et al. 2018)). Decision-dependent two-stage (risk-

neutral) stochastic programs can be formulated as:

min
x∈X

{
f(x) + Ep(x)

[
R(x, ω̃)

]}
,

where single-parameterized recourse function R(x, ω) = min{q(ω)>y : W (ω)y = r(ω) −
T (ω)x, y ∈ Y} for ω ∈ Ω. Note that the expectation is taken with respect to the decision-

dependent distribution p(x) = (p(x, ω))>ω∈Ω. By incorporating p(x, ω) into the objective func-

tion of each recourse problem R(x, ω), resulting in (p(x, ω)q(ω)>y), the above formulation

can be easily reformulated into the min-min problem (1).

Furthermore, we can also consider a risk measure to model risk-averse behaviors of the

decision-maker with the decision-dependent probabilities. For instance, decision-dependent

two-stage risk-averse stochastic programs with conditional value-at-risk (CVaR) can be for-
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mulated as:

min
x∈X

{
f(x) + CVaRα

(
R(x, ω̃), p(x)

)}
,

where the CVaR is given by (Rockafellar and Uryasev (2000)):

CVaRα(R(x, ω̃), p(x)) =

min
η∈R

η +
1

1− α
Ep(x)

[
(R(x, ω̃)− η)+

]
,

(3)

which is a special case of the min-min problem (1). (Refer to Section 6 for details.)

• Distributionally robust optimization with decision-dependent ambiguity. Distribu-

tionally robust optimization (DRO) is an optimization framework that addresses uncertainty

with distributional ambiguity, where the true distribution is unknown. In this framework,

we consider a set of potential distributions, referred to as ambiguity set, that depends on the

initial decision x; for example, see (Basciftci et al. 2021, Luo and Mehrotra 2020, Yu and Shen

2022, Kang and Bansal 2024). Accordingly, a DRO model in this context can be formulated

as:

min
x∈X

{
f(x) + max

p∈P(x)
Ep
[
R(x, ω̃)

]}
,

where P(x) is a decision-dependent ambiguity set and R(x, ω) is defined as above for ω ∈
Ω. The notation Ep represents the expectation with respect to distribution p. When the

support Ω is finite, the ambiguity set P(x) is often defined by a polyhedron (e.g., Wasserstein

ambiguity set, moment-matching ambiguity set, and φ-divergence ambiguity set). In this

case, by taking dual of the continuous relaxations of recourse (minimization) problems, we

can derive a min-max (BTSP) reformulation of the DRO problem, which is a special case of

the min-max problem (1). Refer to Section 6 for details.

Non-Relatively Complete Ambiguity Set. A well-known method for this decision-dependent

DRO problem is to dualize the inner maximization and reformulate the entire problem as a

single minimization problem. This dual-based method, however, requires the ambiguity set

P(x) to be nonempty for all x ∈ X, i.e., “relatively complete ambiguity set”. This assumption

can be impractical, particularly when the ambiguity set is constructed to match the moment

information of the new distribution with the empirical distribution of sample data; e.g., refer

to Basciftci et al. (2021) and Yu and Shen (2022). In Section 7.3, we demonstrate through

numerical results that the dual-based approach fails to solve instances where P(x) is empty

for some x ∈ X. We also show the method presented in this paper for BTSPs effectively

addresses this issue, providing an exact solution to DRO problems without assuming the

nonemptiness of P(x) for any x ∈ X.
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1.2 Contributions and Organization of this Paper

In this paper, we introduce BTSPs, where integrality restrictions are involved in both the first

and second stages. To efficiently solve these problems, we propose Lagrangian-integrated L-shaped

(L2) methods. Specifically, we present two exact algorithms for the min-max and min-min cases

where the initial decision x is pure binary, along with a regularization-augmented algorithm for

the mixed-binary case. We also introduce extensions of the L2 method to address DRO variants

of BTSPs (DR-BTSPs) with finite or continuous support of random parameters. The numerical

results demonstrate the efficiency of the L2 methods. It solves all tested instances of network

interdiction problems in 23 seconds on average, while the benchmark method fails to solve any

instances within the time limit of 1 hour. Additionally, the L2 method for min-min programs

outperforms existing methods, achieving optimal solutions, on average, 18.4 and 1.7 times faster

for risk-neutral and DR bi-parameterized stochastic facility location problems, respectively.

Furthermore, we show that many important problem classes can be efficiently solved by re-

formulating them as BTSP, including DRO with decision-dependent ambiguity and (risk-averse)

stochastic optimization with decision-dependent uncertainty. Our approach can also effectively

address DRO problems with decision-dependent ambiguity sets, even when these sets are not guar-

anteed to be nonempty for all initial decisions x ∈ X, which is a limitation of existing duality-based

methods. For DRO problems with decision-dependent ambiguity sets, the L2 method achieves the

optimal solution, on average, 5.3 times faster than existing approaches.

Organization of the paper. In section 2, we introduce an exact decomposition method for

the min-max problem, and in section 3, we present its extension to solve the min-min problem.

In section 4, we propose a regularization-augmented variant of our decomposition method. We

introduce DR-BTSPs and algorithms to solve them in section 5, explore the applications of BTSPs

in detail in section 6, and present computational results in section 7. In section 8, we make

concluding remarks.

We make the following assumption on the feasible sets throughout the paper:

Assumption 1. The set X is nonempty and compact. Also, for all x ∈ X, the sets Y (x, ω) for

ω ∈ Ω are nonempty and compact.

Notation: Let [n] := {1, 2, . . . , n} for a positive integer n.

2 An exact algorithm for the min-max problem (1)

In this section, we introduce a decomposition method referred to as the Lagrangian-integrated L-

shaped (L2) method to exactly solve the min-max BTSP (1) with integer variables in both stages.
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Lagrangian Relaxation. By introducing proxy variables z for x, we rewrite the recourse prob-

lem (2) as follows:

Q(x, ω) = max q(ω)>y + x>G(ω)y (4a)

s.t. T (ω)z +W (ω)y = r(ω), (4b)

z = x, (4c)

z ∈ X, y ∈ Y. (4d)

We relax constraints (4c) with Lagrangian multipliers λ(ω) ∈ Rn1 . Then, the Lagrangian relaxation

is given by (L(x, λ(ω), ω)− λ(ω)>x) where

L(x, λ(ω), ω) = max q(ω)>y + x>G(ω)y + λ(ω)>z (5a)

s.t. T (ω)z +W (ω)y = r(ω), z ∈ X, y ∈ Y. (5b)

For any λ(ω) ∈ Rn1 , the Lagrangian relaxation (L(x, λ(ω), ω)− λ(ω)>x) provides an upper bound

on Q(x, ω). Therefore, the tightest upper bound is obtained by solving the following Lagrangian

dual:

D(x, ω) := min
λ(ω)∈Rn1

{
L(x, λ(ω), ω)− λ(ω)>x

}
. (6)

Assumption 2. In the min-max problem (1), variables x are mixed-integer and the components

of x that affect the recourse function Q(x, ω) are binary.

Theorem 1. Under Assumption 2, Q(x, ω) = D(x, ω) for any ω ∈ Ω and x ∈ X, i.e., strong

duality holds for the Lagrangian dual (6).

Proof. Clearly, Q(x, ω) ≤ D(x, ω) for any ω ∈ Ω and x ∈ X. Therefore, to prove the statement,

it suffices to show that Q(x, ω) ≥ D(x, ω), for all ω ∈ Ω and x ∈ X. Let Z(ω) for ω ∈ Ω denote

the feasible set of the Lagrangian relaxation (5). Also, we let T̃ (ω) ∈ Qm̃×n1 , W̃ (ω) ∈ Qm̃×n2 , and

r̃(ω) ∈ Qm̃ such that conv(Z(ω)) = {(y, z) ∈ Rn2
+ × Rn1

+ : T̃ (ω)z + W̃ (ω)y ≤ r̃(ω)}. Then, we have

L(x, λ(ω), ω) = max
y∈Rn2

+ ,z∈Rn1
+

{
q(ω)>y + x>G(ω)y + λ(ω)>z : T̃ (ω)z + W̃ (ω)y ≤ r̃(ω)

}
= min

π∈Rm̃
+

{
r̃(ω)>π : T̃ (ω)>π ≥ λ(ω), W̃ (ω)>π ≥ q(ω) +G(ω)>x

}
,

where π are dual variables. By incorporating the above into the Lagrangian dual (6), we have

D(x, ω) = min
λ(ω)∈Rn1 ,π∈Rm̃

+

{
r̃(ω)>π − λ(ω)>x :

T̃ (ω)>π − λ(ω) ≥ 0, W̃ (ω)>π ≥ q(ω) +G(ω)>x
}
.

(7)
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By taking dual of the above with multipliers z ∈ Rn1
+ and y ∈ Rn2

+ for the constraints, we have

max
y∈Rn2

+ ,z∈Rn1
+

{
q(ω)>y + x>G(ω)y : T̃ (ω)z + W̃ (ω)y ≤ r̃(ω), z = x

}
. (8)

The feasible set of (8) is conv(Z(ω)) ∩ {(y, z) : z = x}, which is a face of conv(Z(ω)) since x is

binary. By the facial property, any extreme point of this set has the y components in Y and is

feasible to the recourse problem (4), resulting in D(x, ω) ≤ Q(x, ω).

Consequently, the min-max problem (1) can be exactly reformulated as

min

{
f(x) +

∑
ω∈Ω

p(ω)
(
L(x, λ(ω), ω)− λ(ω)>x

)
: x ∈ X, λ(ω) ∈ Rn1 , ∀ω ∈ Ω

}
. (9)

An advantage of addressing the reformulated problem instead of the original problem is that the

Lagrangian function L(·, ·, ω) for each ω ∈ Ω is jointly convex on conv(X) × Rn1 . This allows for

the application of a decomposition method. Although the problem has the nonconvex terms with

regard to λ(ω)>x, we can employ convex approximations for these terms. However, the problem

remains challenging due to the unboundedness of the Lagrangian multipliers λ(ω) which can lead

to instability in updates when using cutting-plane or subgradient algorithms.

To address this challenge, we use an analytical form for the optimal Lagrangian multipliers.

Lemma 2. There exist σi ∈ R+ for i ∈ [n1] such that, for any x̂ ∈ X, solution λ̂(ω) =

(λ̂1(ω), . . . , λ̂n1(ω)) where

λ̂i(ω) =

−σi if x̂i = 0

σi if x̂i = 1
, for i ∈ [n1], ω ∈ Ω, (10)

is an optimal solution to the Lagrangian dual (6).

Proof. Given (x̂, λ̂(ω)), let (ŷ(ω), ẑ(ω)) be an optimal solution to the Lagrangian relaxation (5) for

each ω ∈ Ω. There can be two cases: ẑ(ω) = x̂ and ẑ(ω) 6= x̂. Clearly, if ẑ(ω) = x̂, then ŷ(ω) is

an optimal solution to the recourse problem, which implies that λ̂(ω) is an optimal solution to the

Lagrangian dual.

Now, consider the case where ẑ(ω) 6= x̂. Pick ȳ(ω) ∈ Y (x̂, ω). Then, since solution (y, z) =

(ȳ(ω), x̂) is non-optimal and feasible to the Lagrangian relaxation (5), we have

q(ω)>ŷ(ω) + x̂>G(ω)ŷ(ω) + λ̂(ω)>ẑ(ω)

> q(ω)>ȳ(ω) + x̂>G(ω)ȳ(ω) + λ̂(ω)>x̂.
(11)
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By rearranging the terms, we obtain

(q(ω) +G(ω)>x̂)>(ŷ(ω)− ȳ(ω)) > λ̂(ω)>(x̂− ẑ(ω)) =
∑
i∈I

σi (12)

where I := {i ∈ [n1] : ẑi(ω) 6= x̂i}. By Assumption 1, maxy∈Y (x̂,ω)(q(ω)+G(ω)>x̂)>(ŷ(ω)−y) <∞.

This implies that there exist σi ∈ R+ for i ∈ [n1] such that the above inequality is violated for all

ȳ(ω) ∈ Y (x̂, ω). In other words, we can derive a sufficient condition under which it is enforced that

ẑ(ω) = x̂ as follows:

max
y∈Y (x̂,ω)

{
(q(ω) +G(ω)>x̂)>(ŷ(ω)− y)

}
≤
∑
i∈I

σi. (13)

Hence, if σi for i ∈ [n1] satisfy the condition (13) for all x̂ ∈ X, then, for any x̂ ∈ X, solutions λ̂(ω)

for ω ∈ Ω are optimal to the Lagrangian duals.

Remark 1. To find a vector σ ∈ Rn1
+ that satisfies condition (13) for all x̂ ∈ X, we can use

known upper and lower bounds on the objective value (1). Since their difference is always greater

than or equal to the left-hand side (lhs) of (13), setting σi(ω) to the difference for i ∈ [n1] and

ω ∈ Ω ensures that σ(ω) satisfies condition (13). An alternate method is to solve an optimization

problem to get σ. For example, let ∆y(x, ω) = {y1 − y2 : y1, y2 ∈ Y (x, ω)} and consider σi(ω) =

max
{( q(ω)

n1
+ Gi(ω)xi

)>
δy : x ∈ X, δy ∈ ∆y(x, ω)

}
for i ∈ [n1] and ω ∈ Ω. Here, Gi(ω) is

the ith column of G(ω). These problems can be reformulated as mixed-integer linear programs by

adding McCormick inequalities to linearize the bilinear terms xiδy. The σi(ω) values satisfy the

condition (13) as
∑

i∈[n1] σi(ω) =
∑

i∈[n1] max
{( q(ω)

n1
+ Gi(ω)xi

)>
δy : x ∈ X, δy ∈ ∆y(x, ω)

}
≥

max{(q(ω)+G(ω)>x)>δy : x ∈ X, δy ∈ ∆y(x, ω)} for ω ∈ Ω. The inequality holds since an optimal

solution to the rhs problem is feasible to the problem on the lhs for each i ∈ [n1].

Theorem 3. There exists vector σ = (σ1, . . . , σn1) ∈ Rn1
+ such that the following problem is an

exact reformulation of the min-max problem (1):

min
x∈X

{
f(x)− σ>x+

∑
ω∈Ω

p(ω)Q̂(x, ω)
}

(14)

where, for each ω ∈ Ω,

Q̂(x, ω) = max q(ω)>y + x>G(ω)y +
∑
i∈[n1]

σi(2xi − 1)zi

s.t. T (ω)z +W (ω)y = r(ω), z ∈ X, y ∈ Y.
(15)

Proof. Let vector σ = (σ1, . . . , σn1) ∈ Rn1
+ satisfies the condition (13) for all ω ∈ Ω and x̂ ∈ X.

Then according to lemma 2, in the reformulation (9), we can fix λ(ω) to its optimal value using the

analytical form: λi(ω) = σi(2xi−1), i ∈ [n1], for ω ∈ Ω. Consequently, we can substitute the bilinear

terms λ(ω)>x and λ(ω)>z in the objective functions as follows: λ(ω)>x =
∑n1

i=1 σi(2xi−1)xi = σ>x,
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Algorithm 1: The L2 method for the min-max problem

1 Initialization: l← 1, LB ← −∞, UB ←∞, x1 ∈ X;

2 while (UB − LB)/UB > εtol do

3 Solve the subproblems, obtain {(yl(ω), zl(ω))}ω∈Ω, and compute Q̂(xl, ω);

4 Compute φl = f(xl)− σ>xl +
∑

ω∈Ω p(ω)Q̂(xl, ω);

5 if φl < UB then
6 UB ← φl; x∗ ← xl;

7 Add an optimality cut to master problem;

8 Solve the master problem and obtain optimal solution (xl+1, θ̂);

9 LB ← f(xl+1)− σ>xl+1 + θ̂;
10 l← l + 1;

11 return x∗;

and λ(ω)>z =
∑n1

i=1 σi(2xi − 1)zi for ω ∈ Ω. This results in the formulation (14).

Lagrangian-Integrated L-Shaped Method. We now present the L2 method for solving the min-

max problem (1) through its reformulation (14). At each iteration, the L2 method adds a valid

cut, referred to as optimality cut, that approximates the function
∑

ω∈Ω p(ω)Q̂(x, ω) in (14). The

pseudo-code of the L2 method is outlined in Algorithm 1. It starts by initializing iteration counter

l to 1, lower bound LB to −∞, and upper bound UB to ∞. Let x1 ∈ X be any feasible solution.

For each iteration l, we first solve the subproblems for ω ∈ Ω, which is given by the formulation (15)

with x = xl. Subsequently, we compute the objective value at the current solution xl, denoted by

φl. If this value φl is less than the current upper bound UB, then it replaces UB, and the current

solution is saved as the best-known solution. Next, using the optimal solutions to the subproblems,

an optimality cut is obtained and then added to the master problem. In iteration l, master problem

is given as follows:

min

{
f(x)− σ>x+ θ : x ∈ X,

θ ≥
∑
ω∈Ω

p(ω)
(
q(ω)>yk(ω) + x>G(ω)yk(ω) +

∑
i∈[n1]

σi(2xi − 1)zki (ω)
)
, ∀k ∈ [l]

}
,

(16)

where (yk(ω), zk(ω))k∈[l] are the optimal solutions of the subproblems at the corresponding iter-

ations. In the following step, we solve the master problem, obtain a first-stage solution xl+1 to

be explored in the next iteration, and replace the lower bound LB with the objective value of

the master problem. We repeat this procedure until the optimality gap is less than or equal to a

predetermined tolerance level εtol.

Proposition 4. Let vector σ ∈ Rn1
+ satisfies the condition (13) for all ω ∈ Ω and x ∈ X, and

let εtol = 0. Under Assumption 2, Algorithm 1 terminates in a finite number of iterations with x∗

optimal to the min-max BTSP (1).
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Proof. Let φ(x) be the objective function of the reformulation (14). To prove the statement, it

suffices to show that Algorithm 1 terminates with UB = LB in a finite number of iterations, as

this implies that φ(x∗) = UB = LB ≤ minx∈X φ(x) = minx∈X{f(x) +
∑

ω∈Ω p(ω)Q(x, ω)}. The

last equality holds by Theorem 3.

For a solution (yl(ω), zl(ω)) and ω ∈ Ω, we have Q̂(x, ω) ≥ q(ω)>yl(ω) + x>G(ω)yl(ω) +∑
i∈[n1] σi(2xi − 1)zli(ω) since the solution is feasible to the problem (15). Furthermore, the in-

equality is tight at xl, i.e., Q̂(xl, ω) = q(ω)>yl(ω) + (xl)>G(ω)yl(ω) +
∑

i∈[n1] σi(2x
l
i − 1)zli(ω).

Thus, the optimality cut generated using solutions (yl(ω), zl(ω)), ω ∈ Ω, for iteration l is a valid

cut that supports the epigraph of
∑

ω∈Ω p(ω)Q̂(x, ω) at xl, thus ensuring that the master problem

exactly evaluates the objective value in the incumbent solution xl. Since |X| < ∞, there exists

l < ∞ such that θ̂ =
∑

ω∈Ω p(ω)Q̂(xl+1, ω) at Line 9. This implies that UB = LB, as xl+1 is

feasible to the original reformulation (14).

Remark 2. To accelerate Algorithm 1, we can fix z to xl when solving the subproblem in Line 3.

Solving this restricted subproblem with z = xl yields a feasible solution to the original problem (15),

allowing us to derive an optimality cut valid for Q̂(x, ω). This approach reduces computational

effort while still providing a valid cut.

3 An exact algorithm for the min-min problem (1)

The L2 method for the min-min problem (1) begins by deriving its min-max reformulation. To this

end, we convexify the recourse feasible region Y (x, ω), which is achieved sequentially by adding

parametric inequalities. We make the following assumption for the exactness of our algorithm.

Assumption 3. In the min-min problem, all first-stage variables x are binary, i.e., X = {0, 1}n1 .

Let S(ω) := {(x, y) ∈ X×Y : T (ω)x+W (ω)y = r(ω)} be a lifted feasible set in the (x, y)-space

for ω ∈ Ω. Assume that T̃ (ω) ∈ Qm(ω)×n1 , W̃ (ω) ∈ Qm(ω)×n2 , and r̃(ω) ∈ Qm(ω) appropriately

sized matrices and vectors such that conv(S(ω)) = {(x, y) ∈ Rn1
+ × Rn2

+ : T̃ (ω)x+ W̃ (ω)y ≥ r̃(ω)}.
The intersection of conv(S(ω)) and the hyperplane {(x, y) : x = x̂} for any x̂ ∈ X is a face of S(ω),

as x is binary, thereby all extreme points in the intersection have the y components in Y. By this

observation, for any x̂ ∈ X, we have

Q(x̂, ω) = min

{
q(ω)>y + x̂>G(ω)y : (x, y) ∈ conv(S(ω)) ∩

{
(x, y) : x = x̂

}}
(17)

= min

{
q(ω)>y + x̂>G(ω)y : W̃ (ω)y ≥ r̃(ω)− T̃ (ω)x̂, y ∈ Rn2

+

}
. (18)

Without loss of generality, we can assume m(ω) is finite since Y (x, ω) is bounded. That is, the

convex hull conv(S(ω)) can be represented with finitely many parametric inequalities in the form

of (α1)>x + (α2)>y ≥ β; e.g., lift-and-project cuts (Balas et al. 1993) and Gomory cuts (Gomory
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1963). Thus, the linear programming dual of (18) is given by

Q(x, ω) = max

{
π>(r̃(ω)− T̃ (ω)x) : W̃ (ω)>π ≤ q(ω) +G(ω)>x, π ∈ Rm(ω)

+

}
. (19)

Then, we can rewrite the min-min problem as the following min-max problem:

min
x∈X

{
f(x) +

∑
ω∈Ω

p(ω) max
{
π>(r̃(ω)− T̃ (ω)x) :

W̃ (ω)>π ≤ q(ω) +G(ω)>x, π ∈ Rm(ω)
+

}}
.

(20)

By applying the result in Theorem 3 to the above min-max reformulation, we obtain the following

another reformulation of the min-min problem: minx∈X f(x)− σ>x+
∑

ω∈Ω p(ω)Q̂(x, ω) where

Q̂(x, ω) = max π>(r̃(ω)− T̃ (ω)x) +
∑
i∈[n1]

σi(2xi − 1)zi (21a)

s.t. W̃ (ω)>π −G(ω)>z ≤ q(ω) (21b)

z ∈ X, π ∈ Rm(ω)
+ . (21c)

Now we present the L2 method for the min-min problem. Its pseudo-code is outlined in Al-

gorithm 2. The algorithm sequentially convexifies the set S(ω), i.e., it constructs the information

{T̃ (ω), W̃ (ω), r̃(ω)}ω∈Ω by adding parametric inequalities to subproblems. To this end, we con-

sider an oracle that provides a violated parametric inequality if there exists any, which is the

cut-generating linear program presented in Balas et al. (1993). We refer to such an oracle as the

cut-generating oracle.

Algorithm 2 starts by initializing iteration counter l to 1, lower bound LB to −∞, and upper

bound UB to ∞. Let x1 ∈ X be any feasible solution. At each iteration l, we first solve the

following problems, called primal subproblems:

min
{
q(ω)>y + (xl)>G(ω)y : W l−1(ω)y ≥ rl−1(ω)− T l−1(ω)xl, y ∈ Rn2

+

}
, (22)

where (T 0(ω),W 0(ω), r0(ω)) = (T (ω),W (ω), r(ω)), for ω ∈ Ω. The matrices and vector are updated

to (T l(ω),W l(ω), rl(ω)) through the following procedure. Let yl(ω) be the optimal solution to the

primal subproblems for ω ∈ Ω. If yl(ω) /∈ Y, then the cut-generating oracle is used, and a violated

parametric inequality is added to the primal subproblem. Otherwise, we keep the current matrices

and vector. Notice that the primal subproblem is a relaxation of the recourse problem (18), thereby

through this approach the L2 method refines the relaxation iteratively. In the next step, we solve

12



Algorithm 2: The L2 method for the min-min problem

1 Initialization: l← 1, LB ← −∞, UB ←∞, x1 ∈ X;

2 while (UB − LB)/UB > εtol do
3 for ω ∈ Ω do
4 Solve the primal subproblem and obtain optimal solution yl(ω);

5 if yl(ω) /∈ Y then
6 Find a violated parametric inequality using the cut-generating oracle;

7 (T l(ω),W l(ω), rl(ω))← (T l−1(ω),W l−1(ω), rl−1(ω)) appended with the
information of the parametric inequality;

8 else
9 (T l(ω),W l(ω), rl(ω))← (T l−1(ω),W l−1(ω), rl−1(ω));

10 Solve the dual subproblems, obtain {(πl(ω), zl(ω))}ω∈Ω, and compute Q̂l(xl, ω);

11 Compute ψl = f(xl)− σ>xl +
∑

ω∈Ω p(ω)Q̂l(xl, ω);

12 if yl(ω) ∈ Y,∀ω ∈ Ω and ψl < UB then
13 UB ← ψl; x∗ ← xl;

14 Add an optimality cut to master problem;

15 Solve the master problem and obtain optimal solution (xl+1, θ̂);

16 LB ← f(xl+1)− σ>xl+1 + θ̂;
17 l← l + 1;

18 return x∗;

the following problems for ω ∈ Ω, referred to as dual subproblems:

Q̂l(xl, ω) = max
{
π>(rl(ω)− T l(ω)xl) +

∑
i∈[n1]

σi(2x
l
i − 1)zi :

W l(ω)>π −G(ω)>z ≤ q(ω), z ∈ X, π ∈ Rm
l

+

}
.

(23)

where σ is a given vector that satisfies the condition (13) for all ω ∈ Ω and x ∈ X. Note that

the dimension ml of variables π varies over iterations corresponding to the updates in the informa-

tion (T l(ω),W l(ω), rl(ω)). After solving the dual subproblems, an under-approximation ψl of the

objective value at the current solution xl is computed; this objective value is exact if yl(ω) ∈ Y
for all ω ∈ Ω. If ψl is exact and ψl < UB, then we update the upper bound, and the current

solution is marked as the best solution so far. Subsequently, using the optimal solutions of the dual

subproblems, an optimality cut is computed and added to master problem that is given by

min

{
f(x)− σ>x+ θ : x ∈ X, (24a)

θ ≥
∑
ω∈Ω

p(ω)
(
πk(ω)>(rk(ω)− T k(ω)x) +

∑
i∈[n1]

σiz
k
i (ω)(2xi − 1)

)
, ∀k ∈ [l]

}
. (24b)

Constraints (24b) are optimality cuts added for iteration k ∈ [l] where (πk(ω), zk(ω))k∈[l] are optimal
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solutions of the dual subproblems at the corresponding iterations.

Proposition 5. The optimality cut obtained at iteration l is valid for
∑

ω∈Ω p(ω)Q̂(x, ω), i.e.,∑
ω∈Ω p(ω)Q̂(x, ω) ≥

∑
ω∈Ω p(ω)

(
πl(ω)>(rl(ω)− T l(ω)x) +

∑
i∈[n1] σiz

l
i(ω)(2xi − 1)

)
.

Proof. For scenario ω and iteration l, the dual subproblem can be viewed as a restriction of the

reformulated recourse problem (21) where variables πk for k = ml + 1, . . . ,m(ω) are restricted

to be zero. Let (π̂(ω), zl(ω)) be a lifted solution of (πl(ω), zl(ω)), where π̂k(ω) = πlk(ω) for k =

1, . . . ,m(ω) and π̂k(ω) = 0 for k = ml + 1, . . . ,m(ω). This solution is feasible to problem (21), and

thus the following inequality holds:

Q̂(x, ω) ≥ π̂(ω)>(r̃(ω)− T̃ (ω)x) +
∑
i∈[n1]

σiz
l
i(ω)(2xi − 1)

= πl(ω)>(rl(ω)− T l(ω)x) +
∑
i∈[n1]

σiz
l
i(ω)(2xi − 1).

Multiplying the inequality by p(ω) and summing over all ω ∈ Ω yields the optimality cut.

Next, we solve the master problem and obtain a new lower bound on the optimal objective value.

It also identifies a solution xl+1 to be explored in the next iteration. This process is repeated until

the optimality gap, (UB−LB)/UB, equals or falls below a predetermined tolerance level εtol ≥ 0.

4 A regularization-augmented algorithm for BTSPs

Algorithms 1 and 2 rely on a specific σ that satisfies the condition in (13), which is required for their

exactness, under the binary assumption on the first-stage decisions x. In this section, we propose

an alternative approach that does not require a predetermined σ and can handle mixed-binary x in

BTSPs. Specifically, this approach directly addresses the Lagrangian reformulation of BTSPs (9).

For simplicity, we focus on the min-max problem, yet the approach in this section can be applied

to the min-min problem similarly. Therefore, the functions L(x, λ(ω), ω) for ω ∈ Ω are given by

(5).

We first address the instability of the Lagrangian multipliers. Specifically, we investigate the in-

stability that arises when updating the Lagrangian multipliers within a cutting-plane algorithm for

the above problem. Subsequently, we show how this issue can be resolved through a reformulation.

Recall that the multipliers λ(ω) represent the penalties associated with the difference between

z and x in scenario ω. As shown in Lemma 2, when x ∈ {0, 1}n1 , an optimal penalty can be

expressed as λ̂i(ω) = σi(2xi − 1), i ∈ [n1] for sufficiently large σ ∈ Rn1
+ . This implies that a change

in x can result in a significant change in the corresponding values of the multipliers. For example,

if xi changes from 0 to 1, then the optimal value for λi(ω) changes from −σi to σi. Consequently,

when x is updated at each iteration of the cutting-plane algorithm, significant adjustments to the

Lagrangian multipliers may be required, causing unstable convergence.
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To mitigate this instability, we derive an alternative formulation where the updates focus on

the absolute values of the Lagrangian multipliers. Consider arbitrary upper bounds ū ∈ Rn1
+ on the

absolute values of the optimal multipliers. We can rewrite the problem (9) as follows:

min
x∈X

f(x) +
∑
ω∈Ω

p(ω)
(
L(x, λ(ω), ω)− λ(ω)>x

)
(25a)

s.t. − ū ≤ λ(ω) ≤ ū, ∀ω ∈ Ω. (25b)

We introduce variables µ(ω) ∈ Rn1 for ω ∈ Ω to represent the absolute values of the multipliers

λ(ω). Under Assumptions 2 and 3, there exists an optimal λi(ω) that is nonnegative when xi = 1

and nonpositive when xi = 0. Based on this observation, we express λi(ω) as µi(ω)(2xi − 1) for

each i ∈ [n1]. Consequently, the problem can be reformulated as follows:

min
x∈X

f(x) +
∑
ω∈Ω

p(ω)
(
L(x, λ(ω), ω)− µ(ω)>x

)
(26a)

s.t. λi(ω) = µi(ω)(2xi − 1), ∀ω ∈ Ω, i ∈ [n1] (26b)

0 ≤ µ(ω) ≤ ū, ∀ω ∈ Ω. (26c)

Note that we replace λ(ω)>x in the objective function with µ(ω)>x for ω ∈ Ω since λi(ω)xi =

µi(ω)(2xi − 1)xi = µi(ω)xi for each i ∈ [n1]. By augmenting a regularization term R(µ), where

µ = {µ(ω)}ω∈Ω, and adding McCormick inequalities, we have the following reformulation:

min
x∈X

f(x) + γR(µ) +
∑
ω∈Ω

p(ω)
(
L(x, λ(ω), ω)−

∑
i∈[n1]

ηi(ω)
)

(27a)

s.t. λ(ω) = 2η(ω)− µ(ω), 0 ≤ µ(ω) ≤ ū, ∀ω ∈ Ω (27b)

ηi(ω) ≥ µi(ω)− ūi(1− xi), ∀ω ∈ Ω, i ∈ [n1] (27c)

ηi(ω) ≤ µi(ω) + ūi(1− xi), ∀ω ∈ Ω, i ∈ [n1]. (27d)

where γ ∈ R+ is a parameter that determines the impact of the regularization term. As a smoothing

technique, this regularization term improves the stability of optimal values of µ.

Remark 3. The regularized L2 method described in this section readily extends to the mixed-binary

case, where x has both binary and continuous components. For the continuous components of x,

we retain the corresponding components of λ(ω), without the need of introducing µ(ω).

Now, we present a cutting-plane algorithm for the above reformulation. The pseudo-code of

the algorithm is outlined in Algorithm 3. This algorithm follows similar steps of Algorithm 1, but

we describe its details below for the completeness of the paper. It starts by initializing iteration

counter l to 1, bounds LB to −∞, and UB to ∞. Initial feasible solutions are denoted by x1 and
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Algorithm 3: The regularized L2 method for the min-max problem

1 Initialization: l← 1, LB ← −∞, UB ←∞, x1 ∈ X,µ1(ω) ∈ Rn1
+ for ω ∈ Ω;

2 while (UB − LB)/UB > εtol do

3 Solve the subproblems (28), obtain {(yl(ω), zl(ω))}ω∈Ω, and compute Q̂l(xl, µl(ω), ω);

4 Compute φl = f(xl)−
∑

ω∈Ω p(ω)µl(ω)>xl +
∑

ω∈Ω p(ω)Q̂l(xl, µl(ω), ω);

5 if φl < UB then
6 UB ← φl; x∗ ← xl;

7 Add an optimality cut to master problem (29);

8 Solve master problem (29) and obtain xl+1, {µl+1(ω)}ω∈Ω, {ηl+1(ω)}ω∈Ω, and θ̂;

9 LB ← f(xl+1) + θ̂ −
∑

ω∈Ω p(ω)
∑

i∈[n1] η
l+1
i (ω) + γR(µl+1);

10 l← l + 1;

11 return x∗;

µ1(ω) for ω ∈ Ω. Next, the following subproblems are solved given xl and µl(ω) for ω ∈ Ω:

Q̂l(xl, µl(ω), ω) = max
{
q(ω)>y + (xl)>G(ω)y +

∑
i∈[n1]

µli(ω)(2xli − 1)zi :

T (ω)z +W (ω)y = r(ω), z ∈ X, y ∈ Y
}
.

(28)

Let (yl(ω), zl(ω)) be the optimal solution of the subproblem for ω ∈ Ω. Using the optimal objective

values of the subproblems, we can obtain an under-approximation φl of the optimal objective value

of the min-max problem. This under-approximation can then be used to update the upper bound

UB. In the following step, we add an optimality cut to the master problem given as follows:

min
x∈X

f(x) + θ −
∑
ω∈Ω

p(ω)
∑
i∈[n1]

ηi(ω) + γR(µ) (29a)

s.t. (27b)–(27d) (29b)

θ ≥
∑
ω∈Ω

p(ω)
(
q(ω)>yk(ω) + x>G(ω)yk(ω) + (2η(ω)− µ(ω))>zk(ω)

)
, ∀k ∈ [l], (29c)

Let xl+1, µl+1 = {µl+1(ω)}ω∈Ω, and {ηl+1(ω)}ω∈Ω be the optimal solution of the master problem.

In Line 9, the lower bound LB is updated using the optimal objective value of the master problem.

Remark 4. To reduce computational effort in Algorithm 3, we can fix z to xl when solving the

subproblem (28). Solving this restricted subproblem with z = xl yields an optimality cut valid for

L(x, λ(ω), ω). Specifically, denote an optimal solution to the restricted subproblem by (ŷ, ẑ). Since

this solution (ŷ, ẑ) is feasible to the Lagrangian relaxation (5), we have

L(x, λ(ω), ω) ≥ q(ω)>ŷ + x>G(ω)ŷ + λ(ω)>ẑ

= q(ω)>ŷ + x>G(ω)ŷ + (2η(ω)− µ(ω))>ẑ
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for any x and λ(ω) = (2η(ω)− µ(ω)).

5 Distributionally Robust BTSPs with Finite and Continuous Sup-

port

In this section, we extend the L2 method for solving distributionally robust BTSP (DR-BTSP),

which is formulated as follows:

min
x∈X

{
f(x) + max

p∈P
EP [Q(x, ω̃)]

}
(30)

where Q(x, ω) = min/max{q(ω)>y + x>G(ω)y : W (ω)y = r(ω)− T (ω)y, y ∈ Y} for ω ∈ Ω, and P
is an ambiguity set. We present the extended approaches for both finite-support and continuous-

support cases of DR-BTSP. For the ease of exposition, we only present results for maximization

recourse problem which can then be utilized to derive solution approaches for minimization problem

as well.

For finite support Ω, we address the following reformulation of DR-BTSPs, derived as in The-

orem 3, using the Lagrangian dual and the analytical form of the Lagrangian multipliers.

Proposition 6. Let vector σ = (σ1, . . . , σn1) ∈ Rn1
+ satisfies the condition (13) for all ω ∈ Ω and

x̂ ∈ X. The following problem is an exact reformulation of DR-BTSP (30):

min
x∈X

{
f(x)− σ>x+ max

p∈P

∑
ω∈Ω

p(ω)Q̂(x, ω)

}
(31)

where, for each ω ∈ Ω, Q̂(x, ω) is given by (15).

Proof. Applying the Lagrangian decomposition to (30), we obtain the following dual

min
x∈X

{
f(x) + max

p∈P

∑
ω∈Ω

p(ω)
(

min
λ(ω)∈Rn1

−λ(ω)>x+ L(x, λ(ω), ω)
)}

where L(x, λ(ω), ω) := max{q(ω)>y + x>G(ω)y : W (ω)y + T (ω)z = r(ω), z ∈ X, y ∈ Y}. Fixing

λi(ω) = σi(2xi − 1) for i ∈ [n1], we obtain the formulation stated in (31).

For any feasible p̂ ∈ P, we have maxp∈P
∑

ω∈Ω p(ω)Q̂(x, ω) ≥
∑

ω∈Ω p̂(ω)Q̂(x, ω). Therefore,

we can derive an optimality cut for maxp∈P
∑

ω∈Ω p(ω)Q̂(x, ω) by aggregating optimality cuts for

Q̂(x, ω), for ω ∈ Ω, with respect to p̂ ∈ P. The strongest cut can be obtained by determining

the worst-case distribution p through an optimal solution of the following distribution separation

problem:

max
p∈P

∑
ω∈Ω

p(ω)Q̂(x, ω). (32)
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Note that the distribution separation problem becomes a linear program in many cases, including

those with ambiguity sets defined by moment information, φ-divergence, or Wasserstein metric.

Building on this observation, an extended L2 method for DR-BTSPs is given by Algorithm 1 with

the following modifications:

(1) After solving the subproblems, add an additional step to solve the distribution separation

problem for a fixed x = xl. Let pl denotes an optimal solution to the distribution separation

problem.

(2) Compute φl = f(xl)− σ>xl +
∑

ω∈Ω p
l(ω)Q̂l(xl, ω).

(3) Generate an optimality cut of the form:

θ ≥
∑
ω∈Ω

pl(ω)
(
q(ω)>yl(ω) + x>G(ω)yl(ω) +

∑
i∈[n1]

σi(2xi − 1)zli(ω)
)
,

where (yl(ω), zl(ω)) is an optimal solution to subproblem (15) with x = xl for ω ∈ Ω at

iteration l.

For continuous support Ω, we present our results for Wasserstein ambiguity set, defined using

Wasserstein metric as follows:

P :=

{
p ∈M(Ω) :W(p, p̄) ≤ εw

}
. (33)

Here,M(Ω) is a set of all probability distributions supported on Ω, p̄ is a reference distribution, e.g.,

empirical distribution in a data-driven setting, and W(p, p′) is the Wasserstein distance between

distributions p and p′, which is defined as follows:

W(p, p′) := inf
π∈M(Ω×Ω)

{
Eπ
[
‖ω − ω′‖

]
: πω = p, πω

′
= p′

}
, (34)

whereM(Ωt×Ωt) is the set of all joint probability distributions supported on Ωt×Ωt, π
ω denote the

marginal distribution of ω, and ‖·‖ represents an arbitrary norm. The ambiguity set is interpreted

as a ball which contains all probability distributions within a predetermined radius εw from the

reference distribution p̄.

Consider a data-driven setting where we have a finite sample Ω̄ = {ω1, · · · , ωS} of ω. Let

p̄ be the empirical distribution on this sample, i.e., p̄(ωs) = 1
S δωs where δω is the Dirac delta

function centered at ω ∈ Ω. Using the strong duality result (Gao and Kleywegt 2023) for the inner
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maximization, we can reformulate DR-BTSP (30) as the following problem:

min f(x) + εwα+
1

S

∑
s∈S

βs (35a)

s.t. x ∈ X, α ≥ 0 (35b)

βs ≥ Q(x, ω)− α‖ω − ωs‖, ∀ω ∈ Ω, s ∈ [S]. (35c)

Solving the above problem involves addressing the infinitely many constraints (35c). However, this

can be achieved through a cut-generating approach, where violated constraints are identified and

added, while solving the problem, using the following separation problem: maxω∈Ω{Q(x, ω)−α‖ω−
ωs‖} for s ∈ [S] given (x, α). Although this separation problem is nonconvex, it can be reformulated

into a mixed-integer program with some additional conditions on the uncertainty (e.g., see Duque

and Morton (2020)).

Additionally, solving the dual form (35) requires deriving cuts that approximate the rhs of

constraints (35c), which can be achieved using our approaches. By Theorem 1, constraint (35c)

for each ω ∈ Ω is equivalent to minλ L(x, λ, ω)− λ>x− α‖ω − ωs‖ where the Lagrangian function

L(x, λ, ω) is given by (5). We assume that the uncertainty only affects the objective coefficients

q(ω) of the recourse problem; therefore, G(ω) = G,T (ω) = T,W (ω) = W, and r(ω) = r with

appropriately sized data G,T,W, and r. For fixed ω, applying the analytical form of the multipliers,

with σ satisfying the condition (13), we have valid cutting planes of the form:

βs ≥ −σ>x+ q(ω)>ȳ + x>Gȳ +
∑
i∈[n1]

σi(2xi − 1)z̄i − α‖ω − ωs‖, (36)

where (ȳ, z̄) is a solution in {(y, z) ∈ Y ×X : Tz +Wy = r}. By using these cutting planes within

the cut-generating approach, we can derive a decomposition algorithm that utilizes the separation

problem, the subproblem (15), and the following master problem:

min f(x) + εwα+
1

S

∑
s∈S

βs (37a)

s.t. x ∈ X, α ≥ 0 (37b)

(36), ∀ω ∈ Ωl, s ∈ [S], (37c)

where Ωl is a subset of Ω that is iteratively expanded with ωl, obtained by solving the separation

problem.
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6 BTSP-Based Reformulations for Decision-Dependent Uncertainty

and Network Interdiction Problems

In this section, we provide details of BTSP-based reformulations for decision-dependent (risk-averse)

stochastic optimization and generalized interdiction problems, presented in Section 1.

6.1 Risk-averse stochastic optimization with CVaR-based decision-dependent

uncertainty

We consider the following formulation of two-stage stochastic programs with decision-dependent

probabilities and CVaR measure:

min
x∈X

{
f(x) + CVaRα

(
R(x, ω̃), p(x)

)}
. (38)

Using the linear programming formulation of CVaR (3), we rewrite this problem as follows:

min f(x) + η +
1

1− α
∑
ω∈Ω

p(x, ω)ν(ω) (39a)

s.t. ν(ω) ≥ R(x, ω)− η, ∀ω ∈ Ω (39b)

x ∈ X, η ∈ R, ν(ω) ∈ R+, ∀ω ∈ Ω. (39c)

Suppose that p(·, ω) for each scenario ω ∈ Ω is an affine function. The above formulation can

be addressed using a dual decomposition-based approach, as described in Schultz and Tiedemann

(2006). However, this approach only yields a lower bound on the optimal objective value, thereby

leading to a duality gap potentially. Additionally, as discussed in Section 1, applying the dual

decomposition method to this formulation results in mixed-integer nonconvex subproblems, which

can impose a significant computational burden.

Now, we present a reformulation of (38) into the form of the min-max BTSP (1). By taking

the dual of (3), we can obtain the dual representation of CVaRα(R(x, ω̃), p(x)):

max

{
1

1− α
∑
ω∈Ω

γ(ω)R(x, ω) :
∑
ω∈Ω

γ(ω) = 1− α, 0 ≤ γ(ω) ≤ p(x, ω), ∀ω ∈ Ω

}
. (40)

Let R(x, ω) = max{π(ω)>(r(ω)− T (ω)x) : W (ω)>π(ω) ≤ q(ω), π(ω) ∈ Rm2
+ } be the dual formula-

tion of the recourse problem with a convexified feasible region for each scenario ω. By incorporating
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this into the dual representation of CVaR, we have

CVaRα(R(x, ω̃), p(x)) = max
1

1− α
∑
ω∈Ω

γ(ω)π(ω)>(r(ω)− T (ω)x) (41a)

s.t.
∑
ω∈Ω

γ(ω) = 1− α (41b)

γ(ω) ≤ p(x, ω), ∀ω ∈ Ω (41c)

W (ω)>π(ω) ≤ q(ω), ∀ω ∈ Ω (41d)

π(ω) ∈ Rm2
+ , γ(ω) ∈ R+, ∀ω ∈ Ω. (41e)

For any γ(ω) ≥ 0, the inequality (W (ω)>π(ω) ≤ q(ω)) holds if and only if (W (ω)>γ(ω)π(ω) ≤
q(ω)γ(ω)). Therefore, we can replace (41d) with (W (ω)>γ(ω)π(ω) ≤ q(ω)γ(ω)) for each ω ∈ Ω.

Next, we introduce a decision vector τ(ω) ∈ Rm2
+ to substitute for γ(ω)π(ω), as for any τ(ω) ≥ 0,

there exist γ(ω) ≥ 0 and π(ω) such that τ(ω) = γ(ω)π(ω), and vice versa. Thus, we can reformulate

(41) as follows:

CVaRα(R(x, ω̃), p(x)) = max
1

1− α
∑
ω∈Ω

τ(ω)>(r(ω)− T (ω)x) (42a)

s.t.
∑
ω∈Ω

γ(ω) = 1− α (42b)

γ(ω) ≤ p(x, ω), ∀ω ∈ Ω (42c)

W (ω)>τ(ω)− q(ω)γ(ω) ≤ 0, ∀ω ∈ Ω (42d)

τ(ω) ∈ Rm2
+ , γ(ω) ∈ R+, ∀ω ∈ Ω, (42e)

which is in the form of the min-max problem (1).

6.2 Two-stage DRO with decision-dependent ambiguity set

A two-stage decision-dependent DRO problem is defined as follows:

min
x∈X

{
f(x) + max

p∈P(x)
Ep
[
R(x, ω̃)

]}
, (43)

where P(x) is an ambiguity set that depends on x, and R(x, ω) = min{q(ω)>y : W (ω)y = r(ω) −
T (ω)x, y ∈ Y} for ω ∈ Ω. An example of an ambiguity set is moment-matching ambiguity set,

where the distribution’s moments match the known moment information. Specifically, let ζ(ω) :=

(ζ1(ω), ζ2(ω), . . . , ζt(ω))> ∈ Rt be moment functions on Ω. Then, a decision-dependent moment-
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matching ambiguity set is defined as:

P(x) :=

{
p ∈ R|Ω|+ : l(x) ≤

∑
ω∈Ω

p(ω)ζ(ω) ≤ u(x),

p(x) ≤ p ≤ p̄(x),
∑
ω∈Ω

p(ω) = 1

}
.

(44)

Here, p(x) : Rn1 → R|Ω|, p̄(x) : Rn1 → R|Ω|, l(x) : Rn1 → Rt, and u(x) : Rn1 → Rt are predeter-

mined functions that specify lower and upper bounds for a given x. The DRO problem (43) can be

seen as a min-max formulation, where the recourse is associated with the decision p. We call the

problem (43) has relatively complete ambiguity set, if P(x) 6= ∅ for all x ∈ X. It is important to

note that the L2 methods can address the DRO problem (43) even in the absence of the relatively

complete ambiguity set. Specifically, in the L2 methods, by utilizing certain types of cuts, we can

cut off infeasible solutions x where P(x) = ∅ while running the algorithm. For instance, if the

ambiguity set is empty for a solution x̂, then we can cut it off from the feasible region X by adding

the following cut: ∑
i∈I|x̂i=0

xi +
∑

i∈I|x̂i=1

(1− xi) ≥ 1. (45)

This presents a distinct advantage of our approach when compared to an existing approach in the

literature that is based on duality results.

In the dual-based approach for (43), we dualize the inner maximization problem, using strong

duality of some special types of ambiguity sets, to derive a single-level reformulation, so-called a

dual reformulation (e.g., see (Basciftci et al. 2021, Luo and Mehrotra 2020, Yu and Shen 2022)).

For the moment ambiguity set (44), the dual reformulation of the DRO model (43) is given by

min f(x)− α>l(x) + ᾱ>u(x)− β>p(x) + β̄>p̄(x) (46a)

s.t. x ∈ X (46b)

(−α+ ᾱ)>ζ(ω)− β(ω) + β̄(ω) ≥ Q(x, ω), ∀ω ∈ Ω (46c)

(α, ᾱ, β, β̄) ∈ Rt+ × Rt+ × R|Ω|+ × R|Ω|+ , (46d)

where α, ᾱ, β = (β(ω))>ω∈Ω, and β̄ = (β̄(ω))>ω∈Ω are dual multipliers for the constraints in (44).

However, this dual approach presents computational challenges in practice. First, the dual refor-

mulations rely on relatively complete ambiguity sets, which may be impractical, as demonstrated

by our computational results in Section 7.3. One might consider using the penalty method—

introducing penalties to address violated solutions—but it fails in the DRO problem (43) due to

its min-max structure. In the inner maximization problem, penalties must be applied negatively;

however, these negative penalties can promote violations in the outer minimization problem, rather

than prevent them. Another challenge is the scalability of the problem. Specifically, Q(x, ω) in (46c)

is typically approximated using valid cuts. As the number of scenarios increase, the decomposed
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problems become increasingly difficult to solve due to the growing number of cuts. The nonconvex

terms in the objective function also present further challenges in solving the decomposed problems.

We note that the scalability issue is not limited to this specific type of ambiguity sets. When

considering an ambiguity set defined using Wasserstein metric, so-called Wasserstein ambiguity

set, it is required to add |Ω| × |Ω| cuts in each iteration, readily resulting in a substantially large

subproblem; e.g., see the algorithm presented in Duque and Morton (2020).

6.3 Bi-parameterized stochastic network interdiction problem

Recall that the generic formulation of stochastic interdiction problems is given by

min
x∈X

E
[

max
y∈Y (x,ω̃)

f(x, y, ω̃)
]
.

Most studies investigating these problems typically assume that the interdiction x affects either

the objective function f(x, y, ω̃) or the network user’s feasible set Y (x, ω̃), but not both, to derive

efficient solution approaches (Cormican et al. 1998, Kang and Bansal 2023, Morton et al. 2007,

Nguyen and Smith 2022).

The min-max form of BTSP (1) generalizes stochastic network interdiction problems by relaxing

this assumption, thereby allowing for the modeling of more realistic situations. For instance,

consider a network user seeking the shortest path on a directed graph G = (N ,A), where feasible

paths are subject to resource constraints. These resources can represent any values that may change

during travel along an arc, such as travel time, fuel consumption, or load weight. These constraints

ensure that the total resource usage along a path either meets or falls within specified thresholds.

In this context, the interdictor may disrupt the network user’s overall resource system, making it

more challenging to satisfy the resource constraints. The resource constraint can be expressed by

the following form, where the rhs depends on the interdiction decision x′′k for each resource k ∈ K:∑
a∈A

rωkayωa ≤ hωk + sωkx
′′
k, (47)

where, for scenario ω, rωka ∈ R represents the resource change on arc a, hωk ∈ R expresses the

nominal resource threshold, and sωk ∈ R denotes the impact of interdiction on the threshold.

Note that the interpretation of these constraints is not limited to resource contexts; for instance,

in a surveillance coverage scenario (for the network user), the interdictor could force the network

user to pass through specific nodes or arcs, causing a detour to the surveillance destination. In-

corporating these constraints into the network user’s problem introduces integral restrictions on

variables. While it is well-known that the feasible region of the conventional shortest path problem

is integral—allowing the problem to be solved using its continuous relaxation without compro-

mising optimality (Conforti et al. 2014)—introducing resource constraints eliminates this integral

property. As a result, the network user’s problem is required to have the integral restrictions on
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decision variables, i.e., yωa ∈ {0, 1} for all a ∈ A and ω ∈ Ω. Refer to Section section 7.2 for results

of our computational experiments for bi-parameterized stochastic network interdiction problem.

7 Computational Results

We conduct numerical experiments to evaluate the computational efficiency of the proposed ap-

proaches. We consider three problem sets: (a) bi-parameterized min-min stochastic and distribu-

tionally robust facility location problem, (b) bi-parameterized min-max stochastic network inter-

diction problem, and (c) distributionally robust facility location problem with decision-dependent

ambiguity set. In our implementation of the L2 methods, σ is set to a certain large value cho-

sen after performing preliminary tests. For the regularized L2 methods, we simplify the model

by dropping the dependency of variables µ(ω) on ω, thereby reducing the dimension of solution

space and the computational burden. Detailed parameter settings are provided for each specific

problem in the ensuing sections. All algorithms were coded in Julia 1.9 and implemented through

the branch-and-cut framework of Gurobi 9.5. The optimality tolerance is set to 10−4, and the time

limit is set to one hour. We conducted all tests on a machine with an Intel Core i7 processor (3.8

GHz) and 32 GB of RAM, using a single thread.

7.1 Bi-parameterized (Min-Min) Facility Location Problem

We introduce a bi-parameterized facility location problem (BiFLP), where the first-stage decision

involves both establishing facilities and contracting outsourcing suppliers. Unlike the traditional

facility location problem, customer demand can also be met by outsourcing suppliers, with contracts

established in advance to reduce procurement costs. The decision-maker must balance the trade-off

between building their own facilities (which incur higher fixed costs but lower variable costs) and

outsourcing (which involves lower fixed costs but higher variable costs). In this section, we address

both risk-neutral and DRO variants of this problem as BTSP and DR-BTSP, respectively.

Let I = {1, . . . , n1} be the set of potential facility locations, J = {1, . . . , n2} the set of demand

locations, and K = {1, . . . , n3} the set of potential outsourcing suppliers. Binary variables x′i for

i ∈ I and x′′k for k ∈ K represent the decision to build a facility at location i and the decision

to establish an outsourcing contract with supplier k, respectively, subject to budget b > 0. Let

x = (x′, x′′) denote a vector of all first-stage decision variables. The random demand at location

j ∈ J is represented by random variable d̃j , and its realizations are denoted by dj(ω) for ω ∈ Ω.

Demand can be fulfilled by both facility at i ∈ I and supplier k ∈ K. The flow from facility i to

demand location j is denoted by variable yij , and from supplier k to j by variable ukj . The unit

transportation costs to j are cij for facility i and (qkj − skjx′′k) for supplier k. Here, qkj represents

the unit transportation cost from supplier k to demand location j without an outsourcing contract,

i.e., x′′k = 0. This cost is reduced by skj ≥ 0 if a contract is established, i.e., x′′k = 1. Let hi be

the capacity of each facility i ∈ I. The first-stage feasible region is defined as X = {(x′, x′′) ∈
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{0, 1}n1 × {0, 1}n3 : κ>1 x
′ + κ>2 x

′′ ≤ b}, where κ1 ∈ Rn1
+ and κ2 ∈ Rn3

+ are cost vectors associated

with establishing facilities and outsourcing contracts, respectively.

7.1.1 Risk-neutral BiFLP

The formulation of risk-neutral BiFLP is given by minx∈X
∑

ω∈Ω p(ω)Q(x, ω) where

Q(x, ω) = min
∑

i∈I,j∈J
cijyij +

∑
k∈K,j∈J

(qkj − skjx′′k)ukj (48a)

s.t.
∑
i∈I

yij +
∑
k∈K

ukj ≥ dj(ω), ∀j ∈ J, (48b)

∑
j∈J

yij ≤ hix′i, ∀i ∈ I, (48c)

y ∈ Rn1×n2
+ , u ∈ Rn3×n2

+ , (48d)

for ω ∈ Ω. The objective (48a) is to minimize the total cost of fulfilling demand, considering

both transportation costs from facilities and outsourcing suppliers. Constraints (48b) ensure that

demand at all locations j ∈ J are satisfied. Constraint (48c) for each i ∈ I limits the total flow

from facility i by its capacity hi.

To generate test instances, we randomly place (n1 + n2 + n3) points on a 100 × 100 grid,

representing potential facility locations, demand locations, and supplier locations. We consider

four network sizes, with (n1, n2, n3) set to (12, 40, 5), (12, 40, 10), (20, 60, 5), and (20, 60, 10). The

costs of building a facility κ1i = 5 and contracting an outsourcing supplier κ2k = 4 for all i ∈ I and

k ∈ K, and the budget b = (5n1 + 4n3)/4. The cost of fulfilling demand at location j ∈ J from

supplier k ∈ K consists of a fixed component and a distance-dependent component: specifically,

qkj = c̄+ 2v(k, j) and skj = c̄+ 0.8v(k, j), where c̄ is a predetermined fixed cost, and v(k, j) is the

Euclidean distance between k and j. Each facility at i ∈ I has a capacity of hi = 100. Demand

data are generated using normal distributions. For instances with n3 = 5, the mean demand µ̄j for

each j ∈ J is uniformly drawn from {40, 41, . . . , 80}, and for instances with n3 = 10, it is drawn

from {50, 51, . . . , 90}. In both cases, the standard deviation for each j ∈ J is set to µ̄j/4.

For benchmark comparisons, we consider two approaches: an approach akin to the integer L-

shaped method (IL) and a deterministic expanded formulation (DE). In IL, the recourse function is

approximated using integer optimality cuts, as described in Proposition 2 in Laporte and Louveaux

(1993). Unlike the standard integer L-shaped method, IL does not generate continuous optimality

cuts since the continuous relaxation of the recourse problem (2) does not provide dual information

for generating such cuts. For the min-min problem, DE is formulated as a large-scale mixed-integer

bilinear program:

min

{∑
ω∈Ω

p(ω)

( ∑
i∈I,j∈J

cijyij +
∑

k∈K,j∈J
(qkj − skjx′′k)ukj

)
: x ∈ X, (48b)–(48d), ∀ω ∈ Ω

}
.
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Table 1: Results for BiFLP instances.

Instance L2 L2-R DE IL

(n1, n2, n3) |Ω| Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

(12, 40, 5) 10 0.0 2 0.0 2 0.0 2 0.0 20
50 0.0 6 0.0 7 0.0 27 0.0 78
100 0.0 12 0.0 12 0.0 95 0.0 142
200 0.0 23 0.0 25 0.0 344 0.0 296
500 0.0 49 0.0 54 0.0 1732 0.0 652
1000 0.0 131 0.0 131 NA 3600+ 0.0 1300

(12, 40, 10) 10 0.0 18 0.0 33 0.0 20 0.0 469
50 0.0 60 0.0 67 0.0 320 0.0 1320
100 0.0 137 0.0 148 0.0 1168 0.0 2373
200 0.0 196 0.0 243 NA 3600+ 100.0 3600+

(20, 60, 5) 10 0.0 40 0.0 69 0.0 8 100.0 3600+
50 0.0 110 0.0 126 0.0 171 100.0 3600+
100 0.0 113 0.0 112 0.0 457 100.0 3600+
200 0.0 263 0.0 290 0.0 1399 100.0 3600+

(20, 60, 10) 10 0.0 285 0.0 394 0.0 92 100.0 3600+
50 0.0 854 0.0 867 0.0 1697 100.0 3600+
100 0.0 1240 0.0 1422 NA 3600+ 100.0 3600+
200 5.0* 2423* 6.8** 2612** NA 3600+ 100.0 3600+

* Average over three instances: (1) 0% gap, 1909 s, (2) 0% gap, 1756 s, and (3) 14.9% gap, 3600+ s.
** Average over three instances: (1) 0% gap, 2057 s, (2) 0% gap, 2175 s, and (3) 20.5% gap, 3600+ s.

In our tests, this formulation is solved directly using Gurobi 9.5, with NonConvex parameter set

to 2. In the standard L2 method (denoted by L2), we set σi = 105 for all i ∈ I. In the regularized

L2 method (denoted by L2-R), we scale the objective by a factor of 10−2 to balance its magnitude

with the regularization term. Additionally, we set γ = 10−4 and ūi = 103 for all i ∈ I and define

the regularization function as R(µ) =
∑

i∈I µi.

Table 1 summarizes the test results for the BiFLP instances. Each row presents the average

results of three instances with the same network structure, (n1, n2, n3), and the same number of

scenarios, |Ω|. The columns labeled “Gap (%)” and “Time (s)” report the optimality gap (in %)

and solution time (in seconds), respectively. The optimality gap results are marked as “NA” for

instances where an algorithm failed to find both primal and dual bounds within the time limit. The

results show that L2 outperforms the other approaches in terms of the computational efficiency.

On average, L2 is 17.6 times faster than IL and is 7.4 times faster than DE for the instances solved

to optimality by all approaches. These factors increase to 21.9 and 8.8 times, respectively, when

considering all instances. The IL showed poor scalability due to its limited capability in improving

dual bounds; specifically, for the instances with (n1, n2, n3) = (20, 60, 5) and (20, 60, 10), IL could

not reduce optimality gaps within the time limit for all instances. We find that DE’s performance

is less sensitive to the network size than the others, but it is significantly affected by the number

of scenarios. For the first instance category, with (12, 40, 5) network and 10 scenarios, DE and

26



L2 solved instances in similar solution times. However, as the number of scenarios increases to

500, DE’s solution time increases by around 900 times, while L2’s solution time increases only by

around 26 times. When comparing the results from L2 and L2-R, the performance differences are

minor in terms of solution time. The standard L2 method is, on average, 1.1 times faster than the

regularized L2 method for instances where both methods solved to optimality.

7.1.2 Distributionally Robust BiFLP

We now consider the DRO variant of BiFLP, denoted by DR-BiFLP, which is formulated as the

following DR-BTSP: minx∈X maxp∈P
∑

ω∈Ω p(ω)Q(x, ω) where, for ω ∈ Ω, Q(x, ω) is given by (48).

Here, the ambiguity set P is defined as the moment-matching ambiguity set (44), which is inde-

pendent of the decision x, i.e., the parameters p(x), p̄(x), l(x), and u(x) are vectors that do not

vary with x. We generate the test instances using the same configurations of (n1, n2, n3) and Ω,

as the risk-neutral instances, but with different random seeds. For the comparison, we consider a

dual-based approach, denoted by DA-DE. In this approach, we take the dual of the inner maximiza-

tion (as a special case of (46)), reformulate the problem into a single-level deterministic extended

form, by integrating the recourse problem into the constraints (46c), and solve it directly. In our

preliminary tests, we observed minor differences in the results from the standard and regularized

L2 methods. Therefore, we report here only the results from the standard L2 method. Each row of

Table 2 presents the average result of three instances within the corresponding instance category.

The results indicate that, on average, the L2 method achieves optimal solutions 1.7 times faster

compared to the dual-based approach.

7.2 Bi-parameterized (Min-Max) Network Interdiction Problem

Next, we consider a bi-parameterized (min-max) network interdiction problem (BiNIP). Consider

a directed graph G = (N ,A), where N = {1, . . . , n1} is the set of nodes and A = {1, . . . , n2}
is the set of arcs in the graph. Resources that restrict each path in this network is indexed by

K = {1, . . . , n3}. Variable x′a ∈ {0, 1} for each a ∈ A indicates whether arc a ∈ A is interdicted.

For resources, x′′k ∈ {0, 1} for k ∈ K represents whether interdiction occurs for resource k or not. Let

x = (x′, x′′) represents a vector of all interdiction decision variables. The interdiction decisions are

associated with costs κa ∈ R+ for arcs and gk ∈ R+ for resources, and the total cost is constrained

by budget b ∈ R+. The first-stage feasible region is defined as X = {(x′, x′′) ∈ {0, 1}n2 × {0, 1}n3 :

κ>x′+g>x′′ ≤ b}. Variable ya ∈ {0, 1} for each a ∈ A represents whether the network user traverses

arc a (ya = 1) or not (ya = 0). Using random variable d̃a, we represent the increase in arc length

due to interdiction for each a ∈ A. Its realizations are denoted by da(ω) for ω ∈ Ω. The length

of arc a for scenario ω becomes (ca + da(ω)x′a), where ca is the nominal length of arc a when not

interdicted. The change in resource k ∈ K after traversing arc a ∈ A is denoted by rka, and the

threshold is denoted by hk. When interdiction occurs, i.e., x′′k = 1, this threshold is adjusted by sk.
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Table 2: Results for DR-BiFLP instances.

Instance L2 DA-DE

(n1, n2, n3) |Ω| Gap (%) Time (s) Gap (%) Time (s)

(12, 40, 5) 10 0.0 2 0.0 4
50 0.0 5 0.0 25
100 0.0 10 0.0 69
200 0.0 19 0.0 222
500 0.0 36 0.0 304
1000 0.0 83 0.0 1508

(12, 40, 10) 10 0.0 15 0.0 4
50 0.0 76 0.0 85
100 0.0 95 0.0 233
200 0.0 189 0.0 650

(20, 60, 5) 10 0.0 33 0.0 12
50 0.0 59 0.0 198
100 0.0 121 0.0 306
200 0.0 199 0.0 1177

(20, 60, 10) 10 0.0 351 0.0 28
50 0.0 694 0.0 180
100 0.0 1413 0.0 1357
200 0.0 1620 1.5* 2484*

* Average over three instances: (1) 0% gap, 2597 s, (2) 0% gap,
1254 s, and (3) 4.4% gap, 3600+ s.

The formulation of BiNIP is given by maxx∈X
∑

ω∈Ω p(ω)Q(x, ω) where, for ω ∈ Ω,

Q(x, ω) = min
∑
a∈A

(ca + da(ω)x′a)ya (49a)

s.t. Ty = q, (49b)∑
a∈A

rkaya ≥ hk + skx
′′
k, ∀k ∈ K, (49c)

y ∈ {0, 1}n2 . (49d)

The first-stage problem aims to maximize the expected path length, with interdiction solutions

restricted by the cardinality constraint in X. In the network user’s problem, the objective func-

tion (49a) represents the length of the path. Constraints (49b) enforce the balance of incoming and

outgoing flows for each node; T ∈ {−1, 0, 1}n1×n2 is the node-arc incidence matrix, where Tia = 1

if arc a ∈ A leaves node i ∈ N , Tia = −1 if arc a enters node i, and Tia = 0 otherwise. Also,

q ∈ {−1, 0, 1}n2 is a vector where qi = 1 if i ∈ N is the source node, qi = −1 if i is the sink

node, and qi = 0 otherwise. Constraints (49c) are the resource constraints. Notably, the integral

restrictions (49d) on y are necessary—unlike in the conventional shortest path problem—since the

resource constraints may eliminate the integral property of the feasible region.

In our experiments, we use randomly generated instances based on instances from Nguyen and
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Table 3: Results for BiNIP instances.

Instance L2 IL

n1 n2 n3 |Ω| Gap (%) Time (s) Gap (%) RelGap (%) Time (s)

20 [59, 78] 3 10 0.0 0.6 100.0 3.6 3600+
20 0.0 1.4 100.0 4.0 3600+
50 0.0 3.6 100.0 6.8 3600+
100 0.0 7.2 100.0 6.4 3600+
500 0.0 41.7 100.0 11.2 3600+
1000 0.0 60.9 100.0 9.5 3600+

40 [277, 306] 4 10 0.0 5.8 100.0 3.6 3600+
20 0.0 10.8 100.0 4.0 3600+
50 0.0 31.6 100.0 4.3 3600+
100 0.0 63.6 100.0 5.3 3600+

Smith (2022). We utilize their data on network topology, arc lengths, and deterministic penalty

lengths. We consider two categories of their instances: 20-node and 40-node instances, with 10

instances in each category. The number of arcs varies in [59, 78] for the 20-node instances, and

[277, 306] for the 40-node instances. We extend these instances by introducing random penalty

lengths, which are sampled from a uniform distribution over the interval [d̄a − oa, d̄a + oa] for each

arc a ∈ A, where d̄a is the deterministic penalty length from Nguyen and Smith (2022). The offset

oa = 3 for the 20-node instances and oa = 4 for the 40-node instances. For the 20-node instances, we

set budget b = 4, arc interdiction costs κa = 1 for all a ∈ A, and resource interdiction costs gk = 2

for all k ∈ K. We consider three resources (K = {1, 2, 3}). The resource consumption parameter

rka is randomly drawn from {1, 2} for each k ∈ K and a ∈ A. The threshold vector h = (5, 4, 3)>,

and the penalty vector s = (1, 2, 3)>. Similarly, for the 40-node instances, budget b is set to 5

with the same arc and resource interdiction costs. We consider four resources (K = {1, 2, 3, 4}),
where rka is randomly drawn from {1, 2, 3} for each k ∈ K and a ∈ A. We set the threshold vector

h = (10, 8, 6, 4)> and the penalty vector s = (1, 3, 5, 7)>.

To benchmark the proposed approach, we consider IL for BiNIP. Note that DE is not applicable

to BiNIP due to its min-max form. In preliminary tests, we found minor differences between the

outcomes of L2 and L2-R. Therefore, we report only the results obtained by L2 for BiNIP in Table 3.

For all tests, the parameters σk are set to 103 for k ∈ K. The test results are summarized in

Table 3 where each row presents the average results for 10 instances. For each column labeled “L2”

or “IL”, we report the optimality gap (in %) under “Gap (%)”, and the solution time (in seconds)

under “Time (s)”. The results under the “RelGap (%)” column represent the relative gaps between

the primal bounds obtained by IL to the optimal objective values. The results show that the L2

method outperforms IL across all instances. The IL was unable to reduce the dual bounds for all

100 instances within the time limit of 3600 seconds, resulting in 100% optimality gaps, while L2

found optimal solutions for all instances within 23 seconds on average. When comparing primal

bounds, IL produced primal bounds that were, on average, 5.7% worse than those obtained by the
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L2 method, even if the former spent 158 times more computational time.

7.3 Distributionally robust facility location with decision-dependent ambiguity

set

Lastly, to showcase the applications of BTSPs for tackling decision-dependent uncertainty, we

consider a distributionally robust two-stage facility location problem under decision-dependent

demand uncertainty (DRFLP), which is a modified version of the problem presented in Yu and

Shen (2022). In this problem, locations of facilities impact service accessibility, thereby affecting

the realizations of random demand. While the exact distribution of demand is unknown, we model

its moments as functions of chosen locations to express how demand depends on these decisions.

Specifically, these functions in our model capture the relationship where locating a facility closer

to a demand point increases its mean demand more than placing it farther away. To determine

location decisions that are robust under this demand uncertainty and distributional ambiguity, we

employ a DRO model, where the ambiguity set is defined using these functions that represent the

moment information.

Let I := {1, . . . , n1} denote the set of potential facility locations, and J := {1, . . . , n2} denote

the set of demand locations. The decision to establish a facility at location i ∈ I is represented by

binary variable xi, where xi = 1 indicates building a facility at location i, and xi = 0 otherwise.

The total number of facilities is constrained by a budget b > 0. The random demand at each

demand location j ∈ J is denoted by d̃j , and its realization is denoted by dj(ω) for ω ∈ Ω. The flow

decision from facility i ∈ I to demand location j ∈ J is represented by yij . The unit transportation

cost for flow between facility i and demand location j is cij . If demand at location j ∈ J is not

fully satisfied, a penalty cost qj is caused for each unit of the unsatisfied demand. Additionally, the

capacity of each facility i ∈ I is denoted by hi, which limits the total flow emanating from facility

i. The formulation of DRFLP is given by

min
x∈X

max
p∈P(x)

∑
ω∈Ω

p(ω)Q(x, ω)

where X = {x ∈ {0, 1}n1 :
∑

i∈I xi ≤ b} and for ω ∈ Ω,

Q(x, ω) = min
∑

i∈I,j∈J
cijyij +

∑
j∈J

qjuj (50a)

s.t.
∑
i∈I

yij + uj ≥ dj(ω), ∀j ∈ J (50b)∑
j∈J

yij ≤ hixi, ∀i ∈ I (50c)

y ∈ Rn1×n2
+ , u ∈ Rn2

+ . (50d)

The objective of the recourse problem is to minimize the sum of transportation and penalty costs
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as described in (50a). Constraints (50b) ensure that the total flow into demand location j ∈ J ,

along with the amount uj , satisfies the demand dj(ω). Constraints (50c) limits the total flow from

each facility i ∈ I by its capacity hi if the facility is established (i.e., xi = 1), or to zero otherwise.

The dual formulation of the recourse problem is given as follows:

Q(x, ω) = max
∑
j∈J

dj(ω)πj −
∑
i∈I

hixiνi (51a)

s.t. πj − νi ≤ cij , ∀i ∈ I, j ∈ J (51b)

πj ≤ qj , ∀j ∈ J (51c)

π ∈ Rn2
+ , ν ∈ Rn1

+ . (51d)

We utilize this dual formulation in all tests. The ambiguity set P(x) is defined as a moment-

matching ambiguity set, i.e.,

P(x) =

{
p ∈ R|Ω|+ :

∑
ω∈Ω

p(ω) = 1,∑
ω∈Ω

p(ω)dj(ω) ≥Mj(x)− εMj , ∀j ∈ J,∑
ω∈Ω

p(ω)dj(ω) ≤Mj(x) + εMj , ∀j ∈ J,∑
ω∈Ω

p(ω)(dj(ω))2 ≥ Sj(x)εSj , ∀j ∈ J

∑
ω∈Ω

p(ω)(dj(ω))2 ≤ Sj(x)ε̄Sj , ∀j ∈ J
}
.

(52)

This ambiguity set consists of bounding constraints on the first and second moments of d̃j for j ∈ J
under the probability distribution p. The parameters are defined as follows:

Mj(x) = µ̄j

(
1 +

∑
i∈I

ρMij xi

)
, ∀j ∈ J

Sj(x) =
(
µ̄2
j + σ̄2

j

)(
1 +

∑
i∈I

ρSijxi

)
, ∀j ∈ J.

Here, µ̄j and σ̄j are the baseline first and second moments for j ∈ J . Parameters ρMij = e−v(i,j)/25

and ρSij = e−v(i,j)/50 represent the impact of building facility at i on the moments of d̃j , where

v(i, j) is the Euclidean distance between locations i ∈ I and j ∈ J . We set εMj = 25, εSj = 0.1, and

ε̄Sj = 1.9 for all j ∈ J .

To generate test instances, we place (n1+n2) random locations on a 100×100 grid for facility and

demand locations. The transportation cost cij is set to the Euclidean distance v(i, j) from location

i ∈ I to location j ∈ J . We set the capacity hi = h = 500 for i ∈ I. The mean values µ̄j for j ∈ J
are uniformly sampled from {dj , dj + 1, . . . , d̄j}, where dj is the nearest integer to (0.7× b× h/n2)
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and d̄j is the nearest integer to round(b × h/n2). Then, we sample the demand realizations dj(ω)

for ω ∈ Ω from N(µ̄j , 0.8µ̄j), truncated within [1, 300], where 0.8µ̄j is the standard deviation.

In the L2 methods for DRFLP, we include an additional step that determines the worst-case

distribution within the ambiguity set after solving subproblems. In particular, this step involves

solving the distribution separation problem, defined as follows:

max
p∈P(z),z∈X

∑
ω∈Ω

p(ω)Q̂l(xl, ω) +
∑
i∈I

λlizi (53)

where λli = σi(2x
l
i − 1) in Algorithm 1 or λli = µli(2x

l
i − 1) in Algorithm 3, respectively. We denote

the worst-case distribution identified by solving the distribution separation problem in iteration l

by pl = (pl(ω))>ω∈Ω. Using pl, we evaluate the objective φl = f(xl) − σ>xl +
∑

ω∈Ω p
l(ω)Q̂l(xl, ω)

and obtain an optimality cut in the following form:

θ ≥
∑
ω∈Ω

pl(ω)
(∑
j∈J

dj(ω)πlj(ω)−
∑
i∈I

hixiν
l
i(ω)

)
+
∑
i∈I

σi(2xi − 1)zli,

where (πl(ω), νl(ω)) is an optimal solution for the subproblem for scenario ω at iteration l. To

reduce the computational burden, we fix z to xl in the distribution separation problem. Note that

the cut generated by its solution with z = xl is valid for maxp∈P(x) E[Q(x, ω̃)], as discussed in

Remarks 2 and 4. If the ambiguity set is empty for a given current solution, i.e., P(xl) = ∅, then

we add the following feasibility cut:∑
i∈I|xli=0

xi +
∑

i∈I|xli=1

(1− xi) ≥ 1.

Table 4 presents the test results comparing the performance of the L2 method and the dual-

based approach (DA). Here, we focus on the regularized L2 method (L2-R, Algorithm 3), as it

showed a better performance in our preliminary tests for DRFLP. For L2-R, we set γ = 10−1 and

ūi = 104 for all i ∈ I and define the regularization function as R(µ) = ‖µ‖22. The DA solves

the dual reformulation (46) of DRFLP using the decomposition algorithm presented in Yu and

Shen (2022). We consider different instance settings by varying the number of facility locations

n1 in {15, 20, 30, 40}, and the number of scenarios |Ω| in {500, 1000, 2000, 5000, 10000}. We fix the

number of demand locations n2 = 20 and the budget b = 4.

Each row in Table 4 reports the optimality gap “Gap (%)”, solution time in seconds “Time (s)”,

and the number of optimality cuts “#OptCut” for each instance. Out of the total 20 instances,

L2-R solves 19 instances to optimality within the time limit, while DA solves only nine instances.

DA reports “unbounded” for instances where the ambiguity sets are not relative complete, whereas

L2-R successfully handles these instances. When comparing solution time, L2-R is on average 5.3

times faster than DA for instances that are solved to optimality by both methods. As the number

of scenarios increases, the difference in the number of optimality cuts increases, as DA requires
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Table 4: Results from L2-R and DA for the DRFLP instances.

Instance L2-R DA

(n1, n2, b) |Ω| Gap (%) Time (s) #OptCut Gap (%) Time (s) #OptCut

(15, 20, 4) 500 0.0 34 101 0.0 39 47013
1000 0.0 37 86 Unbounded
2000 0.0 48 61 0.0 76 94087
5000 0.0 225 118 0.0 621 583829
10000 0.0 578 140 0.0 3589 1552667

(20, 20, 4) 500 0.0 27 104 0.0 38 48476
1000 0.0 65 143 0.0 212 131379
2000 0.0 144 177 0.0 565 322976
5000 0.0 515 222 0.0 2178 849847
10000 0.0 844 156 22.6 3600+ 1298870

(30, 20, 4) 500 0.0 379 937 Unbounded
1000 0.0 536 885 21.4 3600+ 644380
2000 0.0 320 276 0.0 3273 514143
5000 0.0 1228 457 Unbounded
10000 0.0 1683 286 100.0 3600+ 932400

(40, 20, 4) 500 0.0 492 989 Unbounded
1000 0.0 860 1132 Unbounded
2000 0.0 677 459 Unbounded
5000 7.9 3600+ 1125 72.8 3600+ 805440
10000 0.0 1926 259 Unbounded

significantly more cuts. On average, the L2 method achieves optimality by adding only 0.04% of

the number of cuts generated/used by DA.

Next, we compare the performance of the standard L2 method (L2, Algorithm 1) with the

regularized L2 method (L2-R, Algorithm 3) in Table 5. Parameters σi for i ∈ I are set to 103.

Test instances have (n1, n2, b) = (20, 20, 4) and the number of scenarios |Ω| ∈ {100, 300, 500, 1000,

2000, 5000, 10000}. The results show that L2-R is computationally efficient than L2 for solving

the DRFLP instances. The L2-R solves all instances, while L2 is unable to solve the instances

with 5000 and 10000 scenarios. For instances where both methods solve to optimality, L2-R is, on

average, 16.2 times faster than L2 method.

8 Conclusion

In this paper, we introduced Lagrangian-integrated L-shaped (L2) methods for solving bi-param-

eterized two-stage stochastic (min-max and min-min) integer programs (BTSPs), which are applica-

ble to interdiction models and a wide range of optimization problems with decision-dependent uncer-

tainty. For cases where the first-stage decisions are pure binary, we developed two exact algorithms

applied to the min-min and min-max BTSPs. Additionally, we proposed a regularization-augmented

method to address BTSPs with mixed-integer first-stage decisions. We further extended the L2
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Table 5: Results from L2 and L2-R for DRFLP instances.

Instance L2 L2-R

(n1, n2, b) |Ω| Gap (%) Time (s) Gap (%) Time (s)

(20, 20, 4) 100 0.0 162 0.0 14
300 0.0 324 0.0 36
500 0.0 620 0.0 27
1000 0.0 1125 0.0 65
2000 0.0 2405 0.0 144
5000 51.7 3600+ 0.0 515
10000 63.1 3600+ 0.0 844

method to tackle distributionally robust optimization (DRO) variants of BTSPs (DR-BTSPs) with

finite or continuous support. To evaluate the L2 method’s efficiency, extensive numerical tests

were conducted under various settings: (1) a risk-neutral setting for bi-parameterized network in-

terdiction and facility location problems; (2) a distributionally robust setting for bi-parameterized

facility location with decision-independent ambiguity set; (3) distributionally robust facility loca-

tion problem with decision-dependent ambiguity set that might not be relatively complete. The

results demonstrated the superior efficiency of the L2 method compared to benchmark approaches.

Specifically, the results showed that our approach converged to optimal solutions of all tested in-

stances of bi-parameterized network interdiction problem within 23 seconds on average, whereas

the benchmark method failed to converge for any instance within 3600 seconds. The L2 method

achieved optimal solutions, on average, 18.4 times faster for the risk-neutral setting and 1.7 times

faster for the decision-independent DRO setting. For the decision-dependent DRO setting, the L2

method effectively solved instances with the non-relatively complete ambiguity sets and achieved

solutions 5.3 faster than the existing dual-based approach.
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