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Abstract. Distributional reinforcement learning (DRL) extends tradi-
tional reinforcement learning by modeling the distribution of returns
rather than focusing solely on their expectation, enabling more nuanced
decision making. However, existing DRL approaches may not be appro-
priate for settings where equitable outcomes are essential, such as medi-
cal decision making. To address this limitation, we propose fair distribu-
tional reinforcement learning (FDRL). This algorithm finds policies that
approach near-optimal returns and promote fairness by ensuring similar
performance among individuals from different contextual subgroups.

The proposed algorithm strikes a balance between maximizing ex-
pected returns and minimizing inequalities across population subgroups
by augmenting the DRL loss function to address group-level disparities
in return distributions. To this end, we construct a loss function with two
components: the first quantifies the discrepancy between the predicted
and target return distributions, representing the loss for precision; the
second component measures the difference between the target return
distributions of vulnerable and resilient subgroups, serving as a fairness
penalty. If subgroups in a population cannot be identified from a problem
context, our approach stratifies individuals based on their probability of
experiencing outcomes of interest. The effectiveness of the FDRL frame-
work is evaluated in the context of hypertension management. Exper-
imental results demonstrate that FDRL significantly improves fairness
while maintaining near-optimal policy performance. Notably, individuals
across diverse demographic groups achieve comparable long-term health
outcomes, underscoring the algorithm’s ability to ensure equitable treat-
ment without sacrificing overall efficiency.
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1 Introduction

Discrete-time Markov decision process (MDP) models with finite states, actions,
and horizons have been used to inform decisions in a variety of applications,
including medicine, transportation, and energy. In the standard MDP setting, a
decision maker aims to find a sequence of actions that maximizes the expected re-
turn over the planning horizon. Expected return alone may not provide sufficient
information to capture uncertainty, and decision-makers in practical applications
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may instead prioritize optimizing other return properties, such as utilities, con-
ditional value at risk, or entire distributions [3,19]. Recognizing that returns
cannot be characterized by their expectation alone, distributional reinforcement
learning (DRL) has emerged as a promising approach to consider different return
properties by operating on probability distributions [?]. However, as DRL ex-
pands to real-world contexts—ranging from healthcare to finance—the potential
for biased decision-making becomes a pressing concern.

Although the ideas of DRL can be traced back to Howard and Matheson or
Sobel [14,28], it has gained more attention recently after the introduction of the
C51 algorithm [3]. Unlike traditional Q-learning, which focuses on estimating
the expected return, the C51 algorithm employs a Deep Q-Network (DQN) to
approximate the full distribution of returns, offering a richer representation of
uncertainty [20]. Researchers have explored various aspects of DRL, including its
robustness and error reduction capabilities [18,8]. Other studies delve into non-
parametric methods for approximating return distributions, providing alterna-
tive approaches to capture the variability in returns [21]. Nonetheless, no method
has addressed the potential consequences of inequitable return distributions. Ad-
dressing this gap is essential to ensure DRL promotes fair decision-making and
does not inadvertently exacerbate outcome inequalities.

The need for fairness in the distribution of returns is inspired by the medical
decision making setting, where a healthcare provider must determine an opti-
mal therapy for patients with different perceptions and risk tolerances. Within
medicine, we focus on the management of high blood pressure (BP), a key con-
trollable risk factor of atherosclerotic cardiovascular disease (ASCVD) [36]. Our
approach may be beneficial in this setting as patient belief has been associated
with appropriate disease management and there have been concerns of racial
and gender outcome disparities [15,1,37,23,33].

This research initiates the study of fairness in DRL by exploring cases where
the environment can be represented with finite MDP models. We present a new
algorithm that promotes fairness across contextual groups, which we will refer to
as fair distributional reinforcement learning (FDRL). Our approach incorporates
a fairness regularizer to the C51 algorithm that penalizes it if distinct groups
achieve different return distributions [3,4]. In addition, we apply our FDRL to
personalized hypertension treatment planning using a large population in the
United States. Through this case study, we compare our approach to the C51
algoritm [3], Q-learning [34], and the most recent clinical guidelines [36].

The remainder of this paper is organized as follows. In Section 2, we specify
the setting of our work. Section 3 presents our FDRL algorithm. In Section 4,
we exhibit the hypertension management case study. Finally, conclusions and
potential research directions are discussed in Section 5.

2 Setting

In this paper, we represent the interactions between a decision maker and a fully
observable system through an MDP model. We consider a system with a finite
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state space S, finite action space A, and horizon T := {0, 1, . . . , T}. At every
decision epoch T \{T}, the decision maker observes the state of the system st ∈ S
and chooses action at ∈ A according to policy πt : S 7→ A. After action at is
selected, the decision maker receives a reward rt(st, at) ∈ R≥0, and a new state
st+1 ∈ S is realized with probability pt(st+1|st, at). Upon reaching sT ∈ S at
time T , the decision maker receives a terminal reward of rT (sT ) ∈ R≥0. Future
rewards are discounted at a rate of γ ∈ (0, 1].

An MDP is defined by the tupleM := (T ,S,A, P, r, γ). Given an initial state
s, we aim to find a policy π := (πt(st) : t ∈ T \ {T}, st ∈ S) that maximizes
function f of the return Zπ(s, a) :=

∑T−1
t=0 γtrt(st, πt(st)) + γT rT (st) [?]:

Jf (π) := sup
π

f (Zπ(s, a)) ,

where a = π0(s). The function f must be Bellman Optimizable [19], such as the
expected value f(Z) = E[Z] or mean-variance f = E[Z]− αVar(Z) for α > 0.

3 Fair Distributional Reinforcement Learning

We now present our FDRL algorithm to learn policies that generate fair returns
based on a finite MDP model. Our goal is to learn a near-optimal policy π̂ based
on a function of returns f(Z π̂(s, a)) updated by exploring actions according to
an ϵ-greedy behavior policy b. Our method is outlined in Algorithm 1.

3.1 Contextual Groups

We assume there are N agents (e.g., patients) in the system of interest which can
be categorized into groups g1, . . . , gK . If agent groups can be identified from the
problem context (e.g., sex or race groups), our algorithm can use them directly.
Otherwise, we rank the agents 1, ..., N based on their probability of experiencing
outcomes of interest (e.g., no ASCVD events). We calculate an aggregate ranking
for each agent as the average of their rankings across all actions a ∈ A. Based on
the aggregate ranking, we cluster the N agents into K groups using K-means and
order the groups from resilient to vulnerable [12]. The clusters can be interpreted
such that for any k < k′, any agent j ∈ gk is more privileged than agent j′ ∈ gk′ .

3.2 Algorithm

In DRL, the goal is to model the entire distribution of returns, rather than just
the expected return as in traditional reinforcement learning. The return dis-
tribution is modeled through a DQN parameterized by θ [20], which outputs
a set of probabilities or values representing the distribution over discrete sup-
port points or quantiles [3,11]. We initialize the DQN hθ(·) with no agents. As
long as the DQN has used less than N agents, we sample agents from groups
G := {g1, . . . , gK} with equal probability. Once agent j is sampled, we generate
transitions (st, at, rt, st+1) in each decision epoch t ∈ T \ {T} based on their
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MDPMj . For computational reasons, we then sample the MDP of m agents in
the bottom q and top q̄ quantiles of the outcome probabilities in groups g1 and
gK to compute the average MDP of the 2m agents in each group. These average
MDP models reflect the centrality and tail characteristics of the rewards and
transition probabilities in each group [25,27]. We regard these averages as repre-
sentatives of groups g1 and gK and denote them by ĎM1 and ĎMK , respectively.
Note that in each time step, agent j as well as the representative agents from g1
and gk have the same starting state st and action at.

Algorithm 1: Fair distributional reinforcement learning (FDRL).
Input : Let M1:N denote the MDP models of N agents categorized

into K groups g1, . . . , gK . Set episode i← 0 and initialize, b,
q, q̄, hθ(·), λ, and Dj = 0 for j = 1, ..., N .

1 while i < N do
2 Sample group gk ∈ G and agent j ∈ gk randomly and set i← i+ 1;
3 Initialize s0;
4 for t = 0 to T do
5 Choose at ∼ bt(st) and generate (rjt , s

j
t+1) fromMj ;

6 Calculate ĎM1 and ĎMK based on quantiles q and q̄;
7 Generate (r1t , s

1
t+1) from ĎM1 and (rKt , sKt+1) from ĎMK ;

8 for n in {g1, j, gK} do
9 Use DQN hθ(·) to estimate Dn(snt+1, a) for all a;

10 Compute a∗n = argmax
a

f(Dn(snt+1, a));

11 for d = 0 to D − 1 do
12 Update projection T̂zd ← [rnt + γzd]

Vmax

Vmin
;

13 Update position bd ← (T̂zd − Vmin)/∆z;
14 Update Dn

⌊bd⌋ ← D
n
⌊bd⌋ + Pn

d (st+1, a
∗)(⌈bd⌉ − bd);

15 Update Dn
⌈bd⌉ ← D

n
⌈bd⌉ + Pn

d (st+1, a
∗)(bd − ⌊bd⌋);

16 end for
17 end for
18 Calculate L1 = −

∑
dD

j
d log(P

j
d (st, at));

19 Compute L2 = −
∑

dD
g1
d (st, at) logDgK

d (st, at);
20 Calculate L = L1 + λL2;
21 Update hθ(·) using total loss L and set st ← sjt+1;
22 end for
23 end while

Output: hθ(·) and π̂t(st) := argmax
a

f(Dj(st, a)) for all j, st, and t.

Once we generate transitions from Mj , ĎM1 and ĎMK , we use the trained
network hθ(·) to compute the return distributions Dj(sjt+1, a), Dg1(s1t+1, a), and
Dgk(sKt+1, a) for all a ∈ A, where snt+1 denotes the next state according to MDP
n. Subsequently, we choose the action at state snt+1 for all three MDP models
based on a Bellman optimizable function f .
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The algorithm then proceeds to estimate the return distribution Dj for agent
j by iterating over each support point d from 0 to D − 1 as in the C51 algo-
rithm [3]. We first project the sample Bellman update T̂ zd for each atom zd
between bounds Vmin and Vmax. The position bd of T̂ zd relative to the prede-
fined support points is then computed based on ∆z spacing between consecutive
support points. To determine the two closest support points, the lower and up-
per bounds are identified as ⌊bd⌋ and ⌈bd⌉, respectively. The probability mass
of T̂ zd is distributed proportionally to support points ⌊bd⌋ and ⌈bd⌉, based on
atom probability P j

d (st+1, a
∗) given by hθ(·) at support point d, action a∗, and

state st+1. By the end of the iteration, the target distribution Dj is constructed,
reflecting the desired probability distribution over the return values for agent j.

Subsequently, we calculate the cross-entropy loss between Dj and P j , L1,
representing the precision of the network prediction. We implement the same
procedures to compute the target return distribution for ĎM1 and ĎMK , and
calculate the cross-entropy loss over these two distributions. This cross-entropy
loss, L2, serves as a fairness penalty term because it measures the return dis-
tribution difference between the resilient and vulnerable subgroups. The total
loss is then L := L1 + λL2, λ ∈ [0, 1], which measures prediction precision and
fairness. Finally, we use the total loss to update the parameters of hθ(·). The
loop continues until the agent reaches the terminal stage T .

4 Case Study

This section evaluates the implications of the FDRL algorithm on the fairness
and optimality of hypertension treatment plans. As an initial study of fairness in
DRL, we focus on risk-neutral optimization (i.e., f = E) and leave the assessment
of other functions as future work. We adopt the MDP presented by Garcia
and coauthors [13]. In summary, their MDP considers a planning horizon T
of 10 years with decisions made once a year. The state space S consists of
patients’ demographic information, clinical observations, and a health condition
that accounts for patient’s history of ASCVD. The action space A contains from
0 to 5 antihypertensive medications at a half and standard dosage. Transition
probabilities pt(st+1|st, at) are derived from the medical literature, including
patients’ risk for ASCVD events [37,5,6], the benefit from treatment [31,30,32],
and mortality [22,2]. The model rewards rt(st, at) are defined as the quality
of life weight associated with patients’ health condition minus the treatment-
related disutility from each medication [16,32]. In contrast to this study, we
do not incorporate a terminal reward rT (sT ) to avoid capturing disparities in
patients’ life expectancy after the planning horizon. Additionally, we use γ = 1
to highlight the differences among patients’ return [24].

4.1 Analysis

Although we recognize subgroups within the context of ASCVD can be identified
based on race or sex [37,23], we identified K = 3 groups using the K-means
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clustering described in Section 3.1. The first group is characterized by the best
overall health status, predominately younger White females, with normal BP,
and it is referred to as the resilient group. The second, neutral, group captures
patients with moderate risk factors such as elevated BP, middle age, and a mix
of Black females and White males. Lastly, the third and vulnerable group is
composed of patients with older age, hypertension, and a high prevalence of
Black males. We identify representative MDP models ĎM1, ĎM2, and ĎM3 using
patients ranked in the bottom q = 10 and top q̄ = 90 quantiles of each group.

We simulate a total 10,000 episodes. Given that each patient is equally likely
to originate from any of the K = 3 subgroups, we expect approximately 3,330
episodes per group. We enter the simulated data into a DQN [20], which receives
the state as input and outputs the return distributions for all possible actions.

Fairness Evaluation To assess disparities in our population, we evaluate the
convergence of the returns achieved by different groups. We then examine the
average return difference among subgroups achieved by policy π endowed with
fairness penalty λ ∈ (0, 1], which we refer to as the fairness violation:

FVλ(π) :=
1(
K
2

) ∑
gk∈G

∑
gk′ ̸=gk

|Z̄π
gk
− Z̄π

gk′ |,

where Z̄π
gk

:= N−1
gk

∑
j Z

π
j (s, a) and Ngk is the number of patients in group k.

This definition allows us to calculate the fairness improvement of λ ∈ (0, 1] over
λ = 0 as the percentage decrease in fairness violation.

4.2 Numerical Results

Figure 1 illustrates the return over a 10-year horizon for patients categorized
into three patient subgroups. These categories reflect varying levels of health
and serve as representative groups for analyzing the impact of FDRL.

When the fairness penalty parameter is λ = 0, our algorithm is equivalent
to C51 [3]. The derived policy prioritizes optimality without regard of fairness
across subgroups. In this scenario, patients in the resilient group achieve the
highest return, with the final value fluctuating around 9.7, closely approaching
the theoretical maximum return of 10. However, the disparity in returns between
subgroups is pronounced. These gaps underscore the need for incorporating fair-
ness considerations into the policy optimization process.

We evaluate the overall optimality through the average return of the three
groups denoted as V̄0(s0) in Table 1. As the fairness penalty λ is increased,
the results show notable changes in the distribution of returns across the sub-
groups. For patients in the resilient subgroup, the return decreases as fairness
is prioritized. Conversely, the returns for patients in the neutral and vulnerable
subgroups exhibit marked improvements, effectively reducing the return dispar-
ity between subgroups. This observation demonstrates the ability of the FDRL
algorithm to balance the trade-off between fairness and optimality by redis-
tributing returns to promote equity. However, when λ is set to excessively large
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(a) DRL (λ = 0) (b) FDRL (λ = 0.1) (c) FDRL (λ = 0.25)

(d) FDRL (λ = 0.5) (e) FDRL (λ = 0.75) (f) Q-learning

Fig. 1: Average return by group across learning episodes.

values, the average returns of all three subgroups decline drastically. Under such
conditions, the emphasis on fairness undermines the overall effectiveness of the
policy, reducing its capacity to achieve high cumulative returns for any subgroup.
For λ = 0.1, 0.25, the average return of the FDRL algorithm exceeds that of Q-
learning and demonstrates improved performance in terms of both fairness and
optimality. In addition, we find that our policies outperform the clinical guide-
lines, which achieved average return of 5.41, 4.51, and 3.83 quality-adjusted life
years (QALYs) across the resilient, neutral, and vulnerable groups, respectively.

We use ĎM1, ĎM2, ĎM3 to denote the average return for the resilient, neu-
tral, and vulnerable groups in Table 1, respectively. As λ increases to 0.1, 0.25,
0.5, and 0.75, the fairness violation is decreased and the fairness improvement
results in 16.18%, 25.57%, 44.46%, and 60.84%, respectively. The results reveal
that when λ is chosen judiciously, the average return under a fair policy remains
near-optimal. In such cases, the policy achieves a balance between fairness and
performance, addressing the disparities between subgroups without significantly
compromising overall returns. In contrast, excessively large values of λ result
in a fair but far-from-optimal policy, as the algorithm prioritizes fairness to the
detriment of satisfactory returns.

These empirical observations align with the theoretical intuition regarding
the influence of fairness penalties on policy optimization. They highlight the
importance of selecting an appropriate value for λ to achieve a desirable trade-
off between fairness and optimality. Practitioners are advised to carefully choose
the fairness weight based on the specific objectives of their application, ensuring
that the policy achieves both equity across subgroups and robust performance.
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Policy FV V̄0(s0) M̄1 M̄2 M̄3

DRL (λ = 0) 3.09 7.59 9.74 7.93 5.11
FDRL (λ = 0.10) 2.59 7.49 9.18 8.01 5.29
FDRL (λ = 0.25) 2.30 7.41 9.01 7.66 5.56
FDRL (λ = 0.5) 1.71 7.26 8.40 7.54 5.84
FDRL (λ = 0.75) 1.21 7.18 8.01 7.34 6.19

Q-learning 2.61 7.35 9.24 7.50 5.32
Clinical guidelines 1.05 4.58 5.41 4.51 3.83

Table 1: Summary of fairness violation (FV) and average return in overall V̄0(s0)
and across resilient ĎM1, neutral ĎM2, and vulnerable ĎM3 groups.

5 Conclusions

In this paper, we initiated the study of fairness within DRL. Building upon
the initial C51 algorithm and fairness regularization [3,4], we presented a DRL
method that penalizes a DQN agent if it treats distinct groups differently. By ad-
dressing the potential for biased outcome distributions, the algorithm presented
in this paper improves the usability and acceptance of DRL in practice.

Two primary conclusions can be made from our hypertension treatment case
study. First, our FDRL achieves better performance than the clinical guide-
lines and Q-learning with only minor negative consequences compared to the
C51 algorithm [3], while achieving more equitable outcomes. Second, the de-
gree of the fairness penalty may greatly influence the optimality and equity
of outcomes. This parameter must be chosen carefully, depending on the goals
of health providers. Our results make headway in reducing outcome disparities
without considerably affecting the health outcomes of resilient populations.

There are opportunities for future work that build upon our initial study
of algorithmic fairness in DRL. Our regularization technique may be extended
to other DRL algorithms, such as quantile-regression DQN [11,10,26], implicit
quantile networks [9], Sinkhorn DRL [29], and distributional policy-gradient [17].
Another extension may be to consider a richer class of policies beyond the ex-
pected value. Ideas from risk-sensitive DRL along with expected utilities and
distorted means could be used to achieve fairness in general policies [18,19]. In
addition, other approaches to promote fairness can be examined, like adversarial
learning, reweighting, and constrained optimization [7,35].

We hope the FDRL algorithm paves the way for a line of work that enhances
the usability of return distributions in high-stake situations. Our work is a step
toward policies that promote equitable outcomes across diverse populations. Fair
policies have great potential to enable the implementation of DRL-guided rec-
ommendations into practice within and beyond healthcare applications.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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