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Abstract. Building on the blueprint from Goemans and Williamson
(1995) for the Max-Cut problem, we construct a polynomial-time ap-
proximation algorithm for orthogonally constrained quadratic optimiza-
tion problems. First, we derive a semidefinite relaxation and propose a
randomized rounding algorithm to generate feasible solutions from the
relaxation. Second, we derive purely multiplicative approximation guar-
antees for our algorithm. When optimizing for m orthogonal vectors in
dimension n, we show that our algorithm achieves a performance ratio
of at least max

{
2

πm
, 1
π(log(2m)+1)

}
. Our analysis is tight in the sense

that we exhibit instances where our algorithm’s performance is at most
O(1/ logm). We also show how to compute a tighter constant for finite
(n,m) by solving a univariate optimization problem, and this analysis is
exact for any n when m = 1.

Keywords: Orthogonality constraints · semidefinite relaxation · ran-
domized rounding · approximation algorithm

1 Introduction

Many important optimization problems, such as quadratic assignment [14], quan-
tum nonlocality [9], and control theory [4] problems feature semi-orthogonal ma-
trices, i.e., matrices U ∈ Rn×m where U⊤U = Im. Orthogonality constraints
are also related to the rank of a matrix, which models a matrix’s complexity in
imputation [3], factor analysis [5], and multi-task regression [22] settings.

In combinatorial optimization, a major advance in the design of approxi-
mation algorithms occurred with [15], who proposed a 0.87856-approximation
algorithm for Max-Cut. Their algorithm also provides a 2/π-approximation for
general binary quadratic optimization (BQO) problems [24], and can be ex-
tended to linearly-constrained BQO problems [7]. Conceptually, [15] established
⋆ Presenting author.
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semidefinite optimization and correlated rounding at the core of approximation
algorithms [see 30, 29].

In this work, we extend the core ideas underpinning the Goemans–Williamson
algorithm to quadratic semi-orthogonal optimization problems and provide anal-
ogous constant-factor guarantees on the quality of semidefinite relaxations in the
semi-orthogonal setting.

1.1 The Original Goemans–Williamson Algorithm

BQO is a canonical optimization problem [see 20, for a review of applications]. It
is also an important building block for logically constrained optimization prob-
lems with quadratic objectives [see, e.g., 12]. Formally, given a matrix Q ⪰ 0,
BQO selects a vector z in {−1, 1}m that solves

max
z∈{−1,1}m

∑
i,j

Qi,jzizj = max
z∈{−1,1}m

⟨Q, zz⊤⟩, (1)

where ⟨·, ·⟩ denotes the Frobenius inner product between matrices. Problem (1)
is NP-hard and often challenging to solve to optimality when m ≥ 100 [26].
Accordingly, a popular approach for obtaining near-optimal solutions is to sam-
ple from a distribution parameterized by the solution of (1)’s convex relaxation.
Specifically, we can reformulate (1) in terms of the rank-one matrix Z = zz⊤.
Then, a valid relaxation of Problem (1) is given by

max
Z∈Sm

+

⟨Q,Z⟩ s.t. diag(Z) = e, (2)

which would be an exact reformulation with the additional (non-convex) con-
straint rank(Z) = 1. Probabilistically speaking, (2) is a device for constructing a
pseudodistribution over z ∈ {−1, 1}m [13]. This suggests sampling vectors from
a distribution with second moment Z⋆ and rounding to restore feasibility, as
proposed by [15] for Max-Cut and described in Algorithm 1. The overall idea of
Algorithm 1 is that the projection step (i.e., taking the coordinate-wise sign of
y) partially preserves the second moment of the distribution of y, E[yy⊤] = Z⋆.
Precisely, we have E

[
ẑẑ⊤] ⪰ 2

πZ
⋆ [see 24, 7].

Algorithm 1 The Goemans–Williamson rounding algorithm for Problem (1)

Compute Z⋆ a solution of (2)
Sample y ∼ N (0,Z⋆)
Construct ẑ ∈ {−1, 1}m : ẑi := sign(yi)
return ẑ a solution to Problem (1)
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1.2 Orthogonally Constrained Quadratic Optimization

In this paper, we consider a family of orthogonally constrained quadratic prob-
lems that subsumes binary quadratic optimization. Formally, we search for m
orthogonal vectors ui ∈ Rn which solve

max
ui∈Rn, i∈[m]

m∑
i,j=1

u⊤
i A

(i,j)uj s.t. u⊤
i uj = δi,j , ∀i, j ∈ [m], (3)

where A is an nm× nm positive semidefinite matrix (in short, A ∈ Snm+ ) with
block matrices A(i,j) ∈ Rn×n, and δi,j = 1 if i = j and 0 otherwise. We require
n ≥ m. By introducing the semi-orthogonal matrix U ∈ Rn×m whose columns
are the vectors ui ∈ Rn, we can write our problem as

max
U∈Rn×m

⟨A, vec(U)vec(U)⊤⟩ s.t. U⊤U = Im, (4)

where the vec(·) operator stacks the columns of U together into a single vector.
The similarities between Problems (4) and (1) are striking: For example,

we can formulate any BQO instance (1) as a special case of Problem (4). Our
reduction (presented in Appendix A) not only shows that Problem (4) is NP-
hard [as also proved in 19, Theorem 3.1] but is also approximation-preserving.
Therefore, inheriting from the inapproximability results of Max-Cut, Problem (4)
cannot be approximated in polynomial time within a factor of 16/17 + ε [17]
unless P=NP, and within a factor of 0.87856 under the Unique Games Conjecture
[i.e., when Goemans–Williamson is optimal for Max-Cut, 18].

In addition to its applications in clustering, quantum nonlocality, or general-
ized trust-region problems [see 11, and references therein], Problem (4) appears
as a relevant substructure for mixed-projection formulations of rank-constrained
quadratic optimization problems [6].

In this paper, inspired by the Goemans–Williamson algorithm for BQO, we
develop a relax-then-round strategy with a Θ(1/ logm) multiplicative-factor per-
formance guarantee for Problem (4).

1.3 Related Work

Our work is most closely related to [11], who develop a hierarchy of semidefinite
relaxations for Problem (4). To numerically evaluate the tightness of their re-
laxations, they apply several ‘feasible rounding procedures’ but do not provide
any theoretical performance guarantees. In contrast, we develop a randomized
rounding procedure and show that it achieves a multiplicative factor guarantee,
which is independent of the ambient dimension n and only decreases as 1/ logm.
As a non-convex quadratic optimization problem, Problem (4) can also be solved
to optimality via global solvers such as Gurobi or BARON. However, the scalability
of these global solvers is currently limited.
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Special Cases: A larger body of work considers a special case of Problem (4),
where the matrix A is block-diagonal, namely A(i,j) = 0 if i ̸= j. In this case,
Problem (4) reduces to

max
U∈Rn×m

∑
i∈[m]

u⊤
i A

(i,i)ui s.t. U⊤U = Im, (5)

which is referred to as the sum of heterogeneous quadratic forms or the hetero-
geneous PCA problem. Indeed, when all the matrices A(i,i) are equal, we recover
the Principal Component Analysis (PCA) problem. [8, section 5] solve Problem
(5) in polynomial time via linear algebra techniques when the matrices A(i,i)

are diagonal or commute with each other. For general matrices, [14] further tai-
lor the semidefinite relaxations of [11]. Although tighter, their relaxations are
not always tight. For some instances, they even obtain optimality gaps exceed-
ing 100%. We are not aware of any approximation algorithms with guarantees
specifically for general (non-diagonal) instances of Problem (5).

Approximation Algorithms: To our knowledge, many of the existing approxi-
mation algorithms apply to optimization problems with different orthogonality
structures. [10] propose an approximation algorithm for problems of the form

max
U∈Rn×m

∑
i,j∈[m]

Ai,ju
⊤
i uj s.t. u⊤

i ui = 1 ∀i ∈ [m], (6)

which also subsumes BQO (for n = 1), but does not enforce orthogonality be-
tween the columns of U . They devise a relax-and-round strategy analogous to
Goemans–Williamson that achieves an approximation ratio of 2/π +Θ(1/n).

A second line of work [23, 28] proposes Ω(1/ log(n + m))-approximation
algorithms for quadratic optimization problems over matrices U that satisfy
U⊤U ⪯ Im, i.e., whose largest singular value is at most one. This constraint
does not ensure that the columns of U are orthogonal. Nonetheless, [23] shows
that, in several special cases such as the orthogonal Procrustes or quadratic
assignment problems (but not in the case of Problem (4)), orthogonality con-
straints can be relaxed into U⊤U ⪯ Im without loss of optimality. Our algorithm
differs in that it generates matrices U with orthogonal columns, while they only
guarantee σmax(U) ≤ 1. In our algorithm, however, starting from a matrix with
σmax(U) ≤ 1, we show how to restore orthogonality without loss in average
objective value by using a randomization trick. In addition, their performance
guarantee vanishes both with n and m, while ours depends only on m.

Finally, [1] study approximation algorithms for problems of the form

max
Ui∈Rn×m,i=1,...,k

∑
i,j∈[k]

⟨A(i,j),U⊤
i Uj⟩ s.t. U⊤

i Ui = Im ∀i ∈ [k]. (7)

Unfortunately, Problem (7) is not equivalent to (4) and [1]’s proof techniques do
not extend to our case. In particular, heterogeneous PCA is a special case of our
Problem (4) but cannot be cast in the form (7). There are two key differences
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in the objective function of (7): it involves the inner products between columns
of different semi-orthogonal matrices Ui, Ui′ for i ̸= i′. On the other hand,
the objective in (4) depends on outer products between columns of the same
matrix U . In particular, [1] can restore feasibility for each Ui, i = 1, . . . , k in (7)
separately, while the columns of U in (4) need to be orthogonalized together.

Remark 1. Using a bilinearization trick analogous to that of [21, Section 5.3],
we can reformulate (4) as a special case of the non-commutative Grothendieck
problem, for which [21] propose a 1/(2

√
2)-factor approximation algorithm. Com-

pared with their approach, our algorithm relies on a more compact semidefinite
relaxation (involving one nm× nm semidefinite matrix vs. 2n2 × 2n2), hence is
more tractable, especially when n ≫ m. It also applies directly to real-valued
variables (vs. their complex-valued rounding step) and is closer to the original
Goemans–Williamson algorithm. Finally, although our performance guarantee is
weaker asymptotically, it is stronger for small values of m (see Table 1).

1.4 Contributions and Structure

Our main contribution is the development of a Goemans–Williamson sampling
algorithm for the class of semi-orthogonal problems (4).

In Section 2, we derive a semidefinite relaxation and propose a sampling
procedure. We show that our algorithm achieves a purely multiplicative ap-
proximation guarantee (Theorems 1–2) for Problem (4), with a constant that
scales as 1/ logm. We also identify a class of problem instances (Proposition 2)
for which our algorithm cannot achieve a performance guarantee better than
O(1/ logm). Notably, our approximation ratio does not depend on the ambient
dimension n and depends only mildly on m. To better judge the quality of our
approximations, we develop two simpler algorithms in Section 3: uniform sam-
pling and a stronger benchmark inspired by PCA. We show that they achieve
1/nm and 1/m2 approximation ratios, respectively, which are dominated by our
semidefinite relax-and-round procedure. Thus, we evaluate the performance of
our approach numerically in Section 4.

1.5 Notations

We let lowercase boldfaced characters such as x denote vectors and uppercase
boldfaced characters such as X denote matrices. We denote by e the vector
of all ones. We let [n] denote the set of running indices {1, ..., n}. The cone of
n × n symmetric (resp. positive semidefinite) matrices is denoted by Sn (resp.
Sn+). For a matrix X ∈ Rn×m, we let xi denote its ith column. We let vec(X) :
Rn×m → Rnm denote the vectorization operator which maps matrices to vectors
by stacking columns. For a matrix W , we may describe it as a block matrix
composed of equally sized blocks and denote the (i, i′) block by W (i,i′). The
dimension of each block will be clear from the context. We let N (0,Σ) denote
a centered multivariate normal distribution with covariance matrix Σ. Finally,
we denote f(x) = O(g(x)) or g(x) = Ω(f(x)) when there exists a constant
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C > 0 such that |f(x)| ≤ C|g(x)|. The notation f(x) = Θ(g(x)) means that
both f(x) = O(g(x)) and f(x) = Ω(g(x)) hold.

2 A Goemans–Williamson Approach

In this section, we propose a new Goemans–Williamson-type approach for semi-
orthogonal quadratic optimization problems. We review a semidefinite relaxation
for semi-orthogonal quadratic optimization in Section 2.1. In Section 2.2, we
propose a randomized rounding scheme to generate feasible solutions. We de-
rive multiplicative performance guarantees for our algorithm in Section 2.3, and
discuss potential variants to our rounding mechanism in Section 2.4.

2.1 A Shor Relaxation

As reviewed in Section 1.3, [11, Section 2.2] derive the following semidefinite
relaxation for Problem (4):

max
W∈Smn

+

⟨A,W ⟩ s.t.
∑
i∈[m]

W (i,i) ⪯ In, tr
(
W (j,j′)

)
= δj,j′ ,∀j, j′ ∈ [m], (8)

where the matrix W encodes the outer-product of vec(U) with itself, and the
trace constraints on the blocks of W stem from the columns of U having unit
norm and being pairwise orthogonal.

Similarly to the semidefinite relaxation of (1), imposing the constraint that
W is rank-one in (8) would result in an exact reformulation of (4). Accordingly,
the relaxation (8) is tight whenever some optimal solution is rank-one. However,
the optimal solutions to (8) are often high-rank (the case m = 1 is one of the
special cases where this semidefinite relaxation is tight). Actually, it follows from
manipulating the Barvinok–Pataki bound [2, 25] that there exists3 some optimal
solution to Problem (8) with rank at most n + m. However, not all optimal
solutions obey this bound; thus, we do not use this observation in our analysis.
An interesting question is how to generate a high-quality feasible solution to (4),
with a provable performance guarantee, by leveraging a solution of (8), which is
the focus of the rest of the section.

Note that Problem (8), which is essentially a Shor relaxation [27], corresponds
to the ‘DiagSum’ relaxation of [11]. They also derive an even stronger relaxation,
which they call a ‘Kronecker’ relaxation. We do not explicitly analyze their
Kronecker relaxation here because it is significantly less tractable [as reported
in 11, Table 1], and it would not lead to a tighter approximation guarantee for

3 After introducing a slack matrix S to write the semidefinite inequality constraint
S = In−

∑
i∈[m] W

(i,i),S ⪰ 0, we have m(m+1)/2+n(n+1)/2 scalar inequalities.
Thus, [25, theorem 2.2] states that there exists some optimal solution (W ,S) with
rank(W )(rank(W ) + 1)/2 + rank(S)(rank(S) + 1)/2 ≤ m(m + 1)/2 + n(n + 1)/2.
Since rank(S) ≥ 0, it implies rank(W ) ≤ n+m.
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our algorithm in the next section4, although it could improve the semidefinite
relaxation for some specific instances.

2.2 A Sample-Then-Stochastically-Project Procedure

We propose a randomized rounding scheme to generate high-quality feasible
solutions to (4) from an optimal solution to (8).

Our algorithm involves three main steps: First, we solve (8) and obtain a
semidefinite matrix W ⋆. Second, using W ⋆, we sample an n×m matrix G such
that vec(G) follows a normal distribution with mean 0nm and covariance matrix
W ⋆. Third, from the matrix G, we generate a feasible solution to (4). Specifically,
we compute a singular value decomposition of G, G = UΣV ⊤ and define Q :=
UDV ⊤ where D is a diagonal matrix with ±1 diagonal entries. Diagonal entries
of D are sampled independently such that P(Di,i = 1) = (1 + σi/σmax)/2,
where σi is the ith singular value of G and σmax is the largest singular value
of G. We have Q⊤Q = Im because D2 = Im. We summarize our procedure in
Algorithm 2.

In Algorithm 2, we can sample vec(G) ∼ N (0nm,W
⋆) even when W ⋆ is

rank-deficient via the following construction—which will also be relevant for our
theoretical analysis. Denoting r = rank(W ⋆), we first construct a Cholesky de-
composition of W ⋆: W ⋆ =

∑
k∈[r] vec(Bk) vec(Bk)

⊤ with Bk ∈ Rn×m. Then,
we sample vec(G) =

∑
k∈[r] vec(Bk)zk with z ∼ N (0r, Ir). This procedure

ensures that vec(G) ∈ span(W ⋆) almost surely, and that if the semidefinite re-
laxation is tight then G is optimal almost surely. In particular, if our semidefinite
relaxation is tight (e.g., when m = 1), then our rounding is exact.

Algorithm 2 A Relax-then-project algorithm for Problem (4)
Compute W ⋆ a solution of (8)
Sample G according to vec(G) ∼ N (0nm,W ⋆)
Compute the SVD of G, G = UΣV ⊤

Sample Di,i = ±1 independently such that P(Di,i = 1) = (1 + σi/σmax)/2
Construct Q = UDV ⊤

return the semi-orthogonal matrix Q

Second, we should comment on our procedure to obtain a feasible semi-
orthogonal matrix Q from G. Conditioned on G, we have E [D|G] = Σ/σmax,
so that E [Q|G] = G/σmax. This observation will be crucial in our theoretical
analysis (in fact, this observation is precisely the motivation for the sampling

4 Specifically, in Proposition 2, we identify matrices W where each block matrix W (i,j)

is rank-one and for which we prove our algorithm cannot achieve a better approx-
imation factor than O(1/ logm). The Kronecker constraints of [11] would not rule
out any of these matrices. Thus, they cannot improve the order of our approximation
guarantee.
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step), enabling us to relate the second moment of the distribution of Q to that
of G, as formally stated below.

Proposition 1. Consider matrices G ∈ Rn×m and Q ∈ Rn×m generated ac-
cording to Algorithm 2. The following holds:

E
[
vec(Q)vec(Q)⊤

]
⪰ E

[
vec(G)vec(G)⊤

σmax(G)2

]
. (9)

Proof. Observe that, conditioned on G, we have

Cov(vec(Q)|G) = E
[
vec(Q)vec(Q)⊤ |G

]
− E [vec(Q) |G ]E [vec(Q) |G ]

⊤ ⪰ 0.

Since E [vec(Q) |G ] = vec(G)/σmax(G), it leads to

E
[
vec(Q)vec(Q)⊤ |G

]
⪰ 1

σmax(G)2
vec(G)vec(G)⊤.

Taking expectation with respect to G yields (9). ⊓⊔

Remark 2. For a fixed matrix A, Lemma 3.5 in [21] shows how to construct
in polynomial-time, for any realization of G, a semi-orthogonal matrix Q̃ such
that ⟨A, vec(Q̃) vec(Q̃)⊤⟩ ≥ ⟨A, vec(G) vec(G)⊤⟩/σmax(G)2. In comparison, our
orthogonalization satisfies the same inequality on average (instead of almost
surely) while being agnostic to the objective matrix A.

Similar to the original algorithm of [15], the intuition behind Algorithm 2
is that the sampled matrix G achieves an average performance equal to the
relaxation value (E[⟨A, vec(G)vec(G)⊤⟩] = ⟨A,W ⋆⟩) and is feasible on average
(E[G⊤G] = Im). Therefore, the objective value of the feasible solution Q should
not be too different from that of G, as we now theoretically study.

2.3 Theoretical Analysis: Multiplicative Performance Guarantees

We analyze the performance of Algorithm 2 in the case where the objective
matrix A in (4) is positive semidefinite.

Solutions Q generated by Algorithm 2 achieve an average performance of
E
[
vec(Q)⊤A vec(Q)

]
= ⟨A,E

[
vec(Q) vec(Q)⊤

]
⟩. By Proposition 1 and the fact

that A ⪰ 0, we have E
[
vec(Q)⊤A vec(Q)

]
≥ ⟨A,E

[
vec(G) vec(G)⊤/σmax(G)2

]
⟩.

Hence, to obtain a β-multiplicative guarantee for our algorithm, it suffices to
show that E

[
vec(G) vec(G)⊤/σmax(G)2

]
⪰ βW ⋆.

Our first result is an analytical multiplicative performance guarantee, which
asymptotically scales as 1/ logm. It arises as a consequence of a Cauchy-Schwarz
inequality and bounds on the largest singular value of G. Indeed, σmax(G) sat-
isfies the following technical lemma (proof deferred to Appendix B.1):

Lemma 1. Consider a random matrix G ∈ Rn×m sampled according to vec(G) ∼
N (0,W ), where the matrix W is a feasible solution to (8), and thus n ≥ m for
feasibility. Then, the following inequality holds

E[σmax(G)2] ≤ min(m, 2 log(2m) + 2). (10)
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From this technical lemma, we derive the following semidefinite relationship:

Theorem 1. The matrix G ∈ Rn×m generated by Algorithm 2 satisfies the
inequality

E
[
vec(G)vec(G)⊤

σmax(G)2

]
⪰ max

(
2

πm
,

1

π(log(2m) + 1)

)
W ⋆. (11)

Proof. Consider an arbitrary unit vector v ∈ Rnm. From Cauchy-Schwarz, we
have that for any random variables A ≥ 0, B > 0 a.s., E[A/B] ≥ E[

√
A]2/E[B].

Thus, applying this inequality to A = (v⊤vec(G))2 and B = σmax(G)2 yields

E[(v⊤vec(G))2/σ2
max(G)] ≥ E[|v⊤vec(G)|]2

E[σmax(G)2]
.

Since v⊤vec(G) ∼ N (0,v⊤W ⋆v), the numerator is equal to
√

2
π

√
v⊤W ⋆v

[e.g., 16]. For the denominator, we refer to Lemma 1, where we show that
E[σmax(G)2] ≤ min(m, 2 log(2m) + 2). Combining these two observations, we
have the desired inequality. ⊓⊔

Theorem 1 leads to a purely multiplicative performance guarantee for Algo-
rithm 2, E

[
⟨A, vec(Q)vec(Q)⊤⟩

]
≥ β ⟨A,W ⋆⟩, with β = max

(
2

πm ,
1

π(log(2m)+1)

)
.

Interestingly, the multiplicative constant is independent of the ambient dimen-
sion n, but only depends on the number of vectors m. For small values of m,
the 2/(πm) term dominates and drives the value of β (e.g., it equals 0.636 for
m = 1). Asymptotically, however, our bound scales as 1/ logm and exhibits a
very mild dependence on m.

This multiplicative guarantee stems from combining two inequalities, (9) and
(11), neither of which is necessarily tight. Nonetheless, we can show that the
1/ logm scaling for the performance guarantee of Algorithm 2 is essentially tight,
as formally stated below (full proof deferred to Appendix B.2)

Proposition 2. There exists a family of matrices W ⋆ ∈ Snm+ for Algorithm 2,
and a constant C > 0 for which, for any β > 0 such that E[vec(Q) vec(Q)⊤] ⪰
βW ⋆, we must have β ≤ C/ logm.

Proof (sketch). Consider m (fixed) orthonormal vectors u1, . . . ,um and ap-
ply Algorithm 2 with a covariance matrix W defined as W (i,i) := uiu

⊤
i and

W (i,j) := αuiu
⊤
j , for some α ∈ (0, 1). The columns of the matrix G generated

by Algorithm 2 are of the form gi = ziui, with z ∼ N
(
0, (1− α)Im + αee⊤

)
.

With this structure, the columns of the matrix Q are of the form qi = diui,
with P(di = 1) = 1− P(di = −1) = (1 + |zi|/σmax)/2.

Assume that there exists β > 0 such that E[vec(Q) vec(Q)⊤] ⪰ βW . Applied
to the vector vec(U), this inequality yields

β ≤ 1 + bm(α)(m− 1)

1 + α(m− 1)
, with bm(α) := E

[
|zi||zj |

maxk |zk|2

]
.
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In particular, one can show that there exists a constant Cα > 0 such that
bm(α) ≤ Cα/logm, which implies β = O (1/ logm). ⊓⊔

Despite its strong asymptotic behavior, for a fixed value of m, the constant
in Theorem 1 can be weak (largely because of the use of the Cauchy-Schwarz
inequality). To get a more accurate estimate of the performance of Algorithm 2,
we now derive tighter bounds that can be computed numerically.

Theorem 2. Let G ∈ Rn×m be a Gaussian matrix generated by Algorithm 2.
Then, the matrix G satisfies the inequality:

E
[
vec(G)vec(G)⊤

σmax(G)2

]
⪰ βn,mW ⋆, (12)

with

βn,m := min
λ∈[0,1]

∫ ∞

0

(
1 + 2tm

1− λ
nm− 1

)−(nm−1)/2

(1 + 2tmλ)−3/2dt.

In particular, the constant βn,m satisfies the following properties:
(a) For any integer m, βn,m is non-increasing in n. For any integer n, βn,m is

non-increasing in m.
(b) For any integer m, we have βn,m → β∞,m as n→∞ with

β∞,m := min
λ∈[0,1]

∫ ∞

0

e−tm(1−λ) (1 + 2tmλ)−3/2dt

(c) For m = 1, βn,1 is optimal, i.e., there exists a covariance matrix W ⋆ satisfying
(12) at equality.

Proof. We use the operator bound σmax(G)2 ≤ ∥G∥2F to obtain

E
[
vec(G)vec(G)⊤

σmax(G)2

]
⪰
∫ ∞

0

E[vec(G)vec(G)⊤e−t∥G∥2
F ]dt.

Denote r = rank(W ⋆) ≤ nm and consider an eigenvalue decomposition of W ⋆,
W ⋆ = HΛH⊤. We have vec(G) = HΛ1/2z, with z ∼ N (0r, Ir) and thus

E[vec(G)vec(G)⊤ exp(−t∥G∥2F )] = HΛ1/2E[zz⊤ exp(−tz⊤Λz)]Λ1/2H⊤.

Furthermore, we can show that

E[zz⊤ exp(−tz⊤Λz)] =
1√

det(Ir + 2tΛ)
(Ir + 2tΛ)−1.

So, the integral is lower bounded by

HΛ1/2BΛ1/2H⊤ with B :=

∫ ∞

0

1√
det(Ir + 2tΛ)

(Ir + 2tΛ)−1dt.
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To conclude, we show that there exists a scalar β > 0 such that B ⪰ βIr.
To find such β, observe that B is a diagonal matrix. Hence, it is sufficient

to find a lower bound on its diagonal entries. Given the constraints on W ⋆,
the eigenvalues Λ must satisfy: Λi ≥ 0 (from W ⋆ ⪰ 0),

∑r
i=1 Λi = m (from

tr(W ⋆) =
∑m

i=1 tr(W
⋆(i,i)) = m). Hence, we can take

β = min
Λ∈[0,m]r :

∑r
i=1 Λi=m

∫ ∞

0

r∏
i=1

(1 + 2tΛi′)
−1/2

(1 + 2tΛ1)
−1dt.

The function Λ 7→
∫∞
0

∏r
i=1 (1 + 2tΛi′)

−1/2
(1 + 2tΛ1)

−1dt is convex, and in-
variant under any permutation of the Λi, i > 1. So, by Jensen’s inequality, we

can restrict our attention to minimizers of the form Λ1 = λ, Λi =
m− λ
r − 1

, i > 1:

β = min
λ∈[0,m]

∫ ∞

0

(
1 + 2t

m− λ
r − 1

)−(r−1)/2

(1 + 2tλ)−3/2dt.

For a fixed value of (t, λ), the integrand is decreasing in r ≤ nm, so

β ≥ βn,m := min
λ∈[0,m]

∫ ∞

0

(
1 + 2t

m− λ
nm− 1

)−(nm−1)/2

(1 + 2tλ)−3/2dt.

The change of variable λ← λ/m concludes the proof. ⊓⊔

Compared with Theorem 1, the value of Theorem 2 is primarily computa-
tional. By solving numerically the one-dimensional minimization problem in λ,
it provides tighter estimates of the performance of our algorithm, especially for
small values of m, as reported in Table 1. While the guarantee from Theorem 1
is independent of n, the constant βn,m in Theorem 2 is monotonically decreasing
with n, obtaining stronger performance guarantees for finite values of n.

However, we should acknowledge that β∞,m does not scale as Θ(1/ logm) for
large values of m, and thus is asymptotically weaker than Theorem 1 (actually,
Remark B.1 identifies a class of matrices W ⋆ for which βn,m ≤ 1/m). We can
further strengthen Theorem 2 and view βn,m as a special case of an even tighter
bound (Theorem B.1), which recovers the asymptotic scaling of Theorem 1. For
the sake of exposition, we only present Theorem 2 in the main paper. We present
and prove the more general result (Theorem B.1) in the appendix.

2.4 Discussion: Algorithm Variants

Algorithm 2 can be interpreted as a two-step generalization of [15], where we
sample a large multivariate normal vector vec(G) ∼ N (0,W ⋆) and generate a
feasible semi-orthogonal matrix Q from G. Interestingly, our algorithm intro-
duces an additional source of randomness in the generation of Q (hence, the
qualification ‘two-step’), which is key for guaranteeing the relationship (9) be-
tween the second moments of vec(Q) and vec(G).
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Table 1: Values of the approximation factor from Theorems 1 and 2 for some
values of n and m, with m ≤ n.

Theorem 1 βn,m (Theorem 2)

m n = 5 n = 10 n = 15 n = ∞

1 0.636620 0.735264 0.706972 0.697920 0.680415
2 0.318310 0.353486 0.346734 0.344533 0.340208
3 0.212207 0.232640 0.229689 0.228720 0.226805
4 0.159155 0.173367 0.171721 0.171179 0.170104
5 0.127324 0.138164 0.137116 0.136770 0.136083

10 0.079662 — 0.068299 0.068213 0.068042
15 0.072323 — — 0.045437 0.045361

Alternatively, we could have taken D = Im in Algorithm 2, i.e., define Q as
the projection (with respect to the Frobenius norm) of G onto the space of semi-
orthogonal matrices. However, with this deterministic construction, Equation (9)
may not hold (we report examples of the matrix W ⋆ where it does not hold in
Appendix B.3), and a different proof strategy would be needed.

Our rounding procedures sample Di,i ∈ {±1} at random, in particular, with-
out taking into account the downstream objective vec(Q)⊤A vec(Q). Instead,
we could also optimize the diagonal entries of D to explicitly maximize the ob-
jective, by solving a binary quadratic optimization problem. Doing so would give
a solution at least as good as the one obtained via a random sampling, at the
expense of solving a BQO problem with m variables, which might be practically
feasible for moderate values of m.

3 Benchmark: Uniform Sampling and Deflation

To appreciate the strength of our performance guarantees for Algorithm 2, we
analyze the performance of two baselines.

First, a naive baseline where we draw Q uniformly from the set of semi-
orthogonal matrices. Note that this is analogous to generating i.i.d. Bernoulli
vectors in BQO, which achieves a 1/2 approximation ratio in the Max-Cut case.
In Appendix C.1, we show that it provides a 1/nm-approximation guarantee for
Problem (4), and that this approximation ratio is tight (i.e., we can construct
instances of arbitrary size where uniform sampling is exactly 1/nm-suboptimal).

Second, we propose a second baseline inspired by the deflation approach
for PCA. Namely, we consider a diagonal block of A, A(i,i), and compute its
leading eigenvector. This defines the column ui. We then update (or deflate) the
other diagonal blocks A(j,j) ← (In −uiu

⊤
i )A

(j,j)(In −uiu
⊤
i ) and proceed with

another block. We describe the procedure more formally in Appendix C.2. We
show (Proposition C.2) that it provides a 1/m2-factor approximation.
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In short, as summarized in Table 2, we show that both benchmarks achieve
a significantly worse multiplicative performance guarantee than Theorem 1 for
Algorithm 2.

Table 2: Summary of our guarantees for Algorithm 2 and two benchmarks.

Name Algorithm 2 Uniform Deflation

Ratio max

(
2

πm
,

1

π(log(2m) + 1)

)
1

nm

1

m2

Source Theorem 1 Proposition C.1 Proposition C.2

4 Numerical Results

We numerically evaluate the performance of Algorithm 2 for semi-orthogonal
quadratic optimization problems (4). For fixed (n,m), we generate a random
semidefinite matrix A = BB⊤ ∈ Snm+ where the entries of B ∈ Rnm×10 are
i.i.d. standard normal random variables. We solve the Shor relaxation (8) and
sample N = 100 feasible solutions from Algorithm 2. For comparison, we also
implement the following benchmarks:
– We sample N solutions uniformly at random (Uniform).
– We sample N solutions using Algorithm 2 but generate Q by projecting the

rectangular matrix G onto the set of semi-orthogonal matrices directly (Al-
gorithm 2 with projection).

– We sample N solutions by applying the earlier deflation heuristic (Deflation).
– We follow the heuristic in [11], namely, we project the reshaped leading eigen-

vector of W ⋆ (Burer and Park).
We consider n = 100 and m ∈ {1, 2, 5, 10, 15, 20, 25, 30, 40, 60, 80, 100}. We gen-
erate five instances for each (n,m).

The left panel of Figure 1 compares the average performance ratio for these
five algorithms. Confirming our theoretical analysis, we observe that the average
performance ratio degrades as m increases. We also observe that our Algorithm 2
strongly outperforms Deflation and Uniform—theoretically, Uniform and Defla-
tion achieve a 1/nm- and 1/m2-performance guarantee respectively (Proposition
C.1 and C.2). A crucial step in the theoretical analysis of Algorithm 2 is the fact
that we generate a feasible matrix Q from a randomly generated matrix G, by
randomly switching the singular values of G to ±1. Instead, we find that us-
ing a deterministic projection (Alg. 2 with projection) leads to much stronger
performance, comparable to that of the heuristic in [11]. However, as observed
in Section 2.4, our analysis cannot be easily generalized to such deterministic
projection schemes and, to the best of our knowledge, no theoretical guarantees
have been derived in the literature for those schemes.
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A more relevant performance metric in practice is the performance of the best
solution found (out of N), rather than the average performance. Regarding the
best solution found, the right panel of Figure 1 shows that the relative ordering
of the methods remains unchanged, although the gap between methods shrinks.

Fig. 1: Average performance ratio ⟨A, vec(Q) vec(Q)⊤⟩/⟨A,W ⋆⟩ (left panel)
and performance ratio ⟨A, vec(Q) vec(Q)⊤⟩/⟨A,W ⋆⟩ of the best solution (right
panel) over N = 100 samples, for different feasibility heuristics. Note that the
method of [11] only returns one solution. For each value of m, results are aver-
aged over 5 instances.

5 Conclusion

This paper proposes a new technique for relaxing and rounding quadratic opti-
mization problems over semi-orthogonal matrices, which mirrors the blueprint of
the Goemans–Williamson algorithm for BQO. Our algorithm provides a purely
multiplicative performance guarantee for the orthogonally constrained quadratic
optimization problem (4), which subsumes the heterogeneous PCA problem (5)
among others. Future work could investigate the theoretical analysis of other
sampling schemes, such as those with a deterministic projection step, or extend
the approach (namely, solving a Shor relaxation followed by a sampling algo-
rithm) to a broader class of problems, such as low-rank optimization problems.
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Improved Approximation Algorithms for Orthogonally Constrained
Problems Using Semidefinite Optimization (Appendix)

A Connection with Binary Quadratic Optimization and the Original
Goemans-Williamson Algorithm

We connect our quadratic semi-orthogonal optimization problem (4), its semidefinite relaxation (8), and our
rounding algorithm (Algorithm 2) to the canonical binary quadratic optimization problem.

First, we show the following reduction result between Problems (1) and (4):

Proposition A.1. Consider an instance of the binary quadratic optimization problem (1) with Q ⪰ 0. We
can construct an optimization problem of the form (4) with n ≥ m and such that:
– any feasible solution to (1) can be converted (in polynomial time) into a feasible solution to (4) with the

same objective value;
– any feasible solution to (4) can be converted (in polynomial time) into a feasible solution to (1) with

objective value at least as good.

Proof. Consider a binary quadratic optimization problem (1):

max
z∈{−1,1}m

z⊤Qz.

Fix an integer n ≥ m and denote {ei}i=1,...,n the canonical basis of Rn. Define the (i, j) block of the matrix
A as A(i,j) := Qi,jeie

⊤
j . In particular, we have that Q ⪰ 0 ⇐⇒ A ⪰ 0. Consider the corresponding

instance of Problem (4).
For any feasible solution to (1), we can construct a feasible solution to (4) with equal cost. Indeed, for

each i = 1, . . . ,m, we can define ui := ziei. By construction, we have u⊤
i uj = 0 if i ̸= j and u⊤

i ui = z2i = 1.
With this construction,

z⊤Qz =
∑
i,j

Qi,jzizj =
∑
i,j

(u⊤
i ei)Qi,j(e

⊤
j uj) =

∑
i,j

u⊤
i A

(i,j)uj .

Alternatively, consider a feasible solution to this instance of (4), with objective value∑
i,j

u⊤
i A

(i,j)uj =
∑
i,j

(u⊤
i ei)Qi,j(e

⊤
j uj) =

∑
i,j

ui,iQi,juj,j .

We show how to construct a feasible solution z ∈ {−1, 1}m to (1) with objective greater than or equal to∑
i,j ui,iQi,juj,j . Start from zi := ui,i ∈ [−1, 1]. Fix zi for all i > 1. The function z1 ∈ [−1, 1] 7→

∑
i,j Qi,jzizj

is convex because Q ⪰ 0. Thus we can shift z1 to one of the endpoints, -1 or 1, without decreasing the value.
Proceeding in this way with the other coordinates z2, . . . , zm, we construct a solution z ∈ {−1, 1}m such
that z⊤Qz ≥

∑
i,j ui,iQi,juj,j . ⊓⊔

First of all, Proposition A.1 reduces any BQO problem with a positive semidefinite objective matrix
Q ⪰ 0 to a problem of the form (4) with equal objective value. We note that our procedure to construct a
feasible solution to BQO from a solution to (4) is analogous to that of [R11] and leverages the convexity of the
objective. In particular, the standard (nonnegative weight) Max-Cut can be formulated as a BQO problem
of this class, with Q being the (weighted) Laplacian of the graph. So Proposition A.1 shows that Problem
(4) is NP-hard. [R8, theorem 3.1] provide an alternative proof of this result. They also use a reduction from
Max-Cut. However, their BQO formulation of Max-Cut is different, and the corresponding matrix Q is not
PSD so they need to use a different decoding scheme.

Second, the reduction in Proposition A.1 is approximation-preserving: Any polynomial-time α-approximation
(in objective value) for Problem (4) would immediately yield an α-approximation for Max-Cut. Therefore, the
classical inapproximability threshold 16/17+ε for Max-Cut [R6] —and, under the Unique Games Conjecture,
the optimality of the Goemans–Williamson ratio of 0.87856 [R7]— transfer to Problem (4).
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In the rest of this section, we show how our semidefinite relaxation and our sample-then-project algorithm
would work in the special case where Problem (4) encodes an instance of (1).

First, in this case, let us observe that optimal solutions to (4) can be found among solutions of the form
ui = ziei with zi ∈ {−1, 1}. In other words, although we do not impose the constraint that each vector ui

should be colinear to ei, optimality naturally enforces this constraint.

Proof. For any feasible solution to (4), its objective value is
∑

i,j u
⊤
i A

(i,j)uj =
∑

i,j ui,iQi,juj,j . Denoting
zi := ui,i ∈ [−1, 1], we have that

(4) ≤ max
z∈[−1,1]m

z⊤Qz = max
z∈{−1,1}m

z⊤Qz,

where the last equality follows from the fact that Q ⪰ 0. Conversely, for each z ∈ {−1, 1}m the matrix
defined as ui = ziei is feasible for (4) and achieves an objective value of z⊤Qz. ⊓⊔

We now generalize this observation to the semidefinite relaxation of (4) and show that, without loss of
optimality, the semidefinite variable W is of the form W (i,j) = Zi,jeie

⊤
j for some matrix Z ∈ Sm+ .

Proof. For any feasible solution to the semidefinite relaxation (8), its objective value is

⟨W ,A⟩ =
∑
i,j

⟨W (i,j),A(i,j)⟩ =
∑
i,j

Qi,je
⊤
i W

(i,j)ej ,= ⟨Z,Q⟩,

with Zi,j := e⊤i W
(i,j)ej . The constraint W ⪰ 0 implies Z ⪰ 0 and the constraints tr(W (j,j)) = 1, j ∈ [m]

imply Zj,j ≤ 1, j ∈ [m]. For any j ∈ [m], the function Zj,j ∈ [0, 1] 7→ ⟨Z,Q⟩ is linear with slope Qj,j ≥ 0
so, for any feasible Z, setting Zj,j to 1 cannot decrease the objective value (and does not break feasibility).
Consequently, at optimality, we can assume that Zj,j =W

(j,j)
j,j = 1. However, tr(W (j,j)) = 1. Thus, all other

diagonal coefficients of the block W (j,j) are equal to 0. Recall that, for a positive semidefinite matrix, if a
diagonal coefficient is equal to 0, then its entire column/row has to be equal to 0. Because W (j,j) ⪰ 0, it
means that the column/row j′ of W (j,j) is equal to 0, for all j′ ̸= j, i.e., W (j,j) = Zj,jeje

⊤
j . Because W ⪰ 0,

it means that the column j′ of W (i,j) is equal to 0, for all j′ ̸= j, i.e., only the jth column of W (i,j) can be
nonzero. Similarly, all the column j′ with j′ ̸= j of W (j,i) are equal to 0. All in all, we have that the blocks
of W are of the form W (j,j) = Zj,jeje

⊤
j . ⊓⊔

Considering a solution to the semidefinite relaxation of the form W (i,j) = Zi,jeie
⊤
j . The objective of (8)

can thus be written as

⟨A,W ⟩ =
∑
i,j

⟨A(i,j),W (i,j)⟩ =
∑
i,j

Qi,jZi,j ,

and the constraints on the matrix W are equivalent to:

W ⪰ 0 : Z ⪰ 0,

tr(W (j,j′)) = δj,j′ : Zj,j = 1,∑
i∈[m]

W (i,i) ⪯ In : Zi,i ≤ 1, ∀i ∈ [m].

So, we recover the semidefinite relaxation of BQO, (2), exactly.
Consider a solution to the semidefinite relaxation (8), W ⋆, and Z⋆ such that W ⋆(i,j) = Z⋆

i,jeie
⊤
j . By

sampling vec(G) ∼ N (0,W ⋆), the sparsity pattern of W ⋆ implies that each column of G, gi, is of the form
gi = yiei, with y ∼ N (0,Z⋆). In this case, the matrix G is diagonal and its SVD can be written

G = UΣV ⊤ :=

(
Im

0(n−m)×m

) |y1| . . .
|ym|


sign(y1)

. . .
sign(ym)

 .
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We then generate Q = UDV ⊤ for some random diagonal matrix D. Each column of Q, qi, can be expressed
as qi = Di,i sign(yi)ei and we can identify the feasible solution to the BQO problem as ẑi = Di,i sign(yi). If
we had taken D = In in Algorithm 2, then we would get qi = sign(yi)ei, i.e., ẑi = sign(yi), which is precisely
the original Goemans-Williamson algorithm (Algorithm 1). Instead, Di,i ∈ {±1} is sampled at random with

P(Di,i = 1) =
1

2

(
1 +

σi
σmax

)
=

1

2

(
1 +

|yi|
maxj |yj |

)
.

We can interpret our algorithm as a regularization of the Goemans-Williamson procedure. If |yi| is very large,
then we would get Di,i = 1 with high probability, and we would follow the Goemans-Williamson rounding
rule ẑi = sign(yi) closely. On the other hand, if |yi| is close to 0, we disregard the sign of yi and instead
sample ẑi = ±1 with probability 0.5

B Technical Appendix to Section 2

B.1 Bounding the Largest Singular Values of the Random Matrix G

In this section, we prove concentration results on σmax(G) (Lemma 1).
As described in Section 2.2, in our implementation of Algorithm 2, we sample vec(G) ∼ N (0nm,W

⋆) as
vec(G) =

∑
k∈[r] vec(Bk)zk with z ∼ N (0r, Ir) and W ⋆ =

∑
k∈[r] vec(Bk) vec(Bk)

⊤ a Cholesky decomposi-
tion of W ⋆. This construction interprets G as a matrix series, G =

∑
k∈[r] Bkzk, as studied in the statistics

literature [see, e.g., R12].
To analyze the behavior of σmax(G), it is important to understand the spectral behavior of

∑
k B

⊤
k Bk

and
∑

k BkB
⊤
k .

Lemma B.1. Let W be a feasible solution of (8) and consider a Cholesky decomposition of W , W =∑
k∈[r] vec(Bk) vec(Bk)

⊤ with r = rank(W ) and Bk ∈ Rn×m. Then, we have∑
k

B⊤
k Bk = Im, and

∑
k∈[r]

BkB
⊤
k ⪯ Im.

Proof. Noting that W (i,j) =
∑

k∈[r] Bkeie
⊤
j B

⊤
k , we have(∑

k

B⊤
k Bk

)
i,j

=
∑
k∈[r]

e⊤i B
⊤
k Bkej = tr(W (i,j)),

and
∑
k∈[r]

BkB
⊤
k =

∑
k∈[r]

∑
i∈[m]

Bkeie
⊤
i B

⊤
k =

∑
i∈[m]

W (i,i).

The fact that W satisfies the constraints in (8) concludes the proof. ⊓⊔

We can now prove Lemma 1.

Proof (Lemma 1). For the first inequality, we use the simple bound σmax(G)2 ≤ ∥G∥2F . Then, we have
E
[
∥G∥2F

]
= tr(E

[
G⊤G

]
) = tr

(∑
k B

⊤
k Bk

)
= m. Hence, E

[
σmax(G)2

]
≤ m.

For the second bound, this is a consequence of tail bounds for Gaussian matrix series. While typical
results provide a logarithmic dependency in (n+m) [see equation (4.1.7) in R12], we can obtain bounds that
only depend on m by leveraging the fact that the matrix

∑
k BkB

⊤
k , although n× n, has trace m ≤ n. We

follow the steps outlined in [R12, chapter 7]. We first define the following Hermitian Gaussian series

Y :=
∑
k

zkAk with Ak :=

(
0 Bk

B⊤
k 0

)
.

By construction, σmax(G) = λmax(Y ) and∑
k

A2
k =

(∑
k BkB

⊤
k 0

0
∑

k B
⊤
k Bk.

)
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From Lemma B.1, we have
∑

k A
2
k ⪯ In+m and λmax(

∑
k A

2
k)=1. Furthermore, tr(

∑
k A

2
k) = 2 tr(

∑
k B

⊤
k Bk) =

2m. Fix a number θ > 0. Applying [R12, proposition 7.4.1] to the convex function ψ(t) = max{0, eθt − 1},
we get

P (σmax(G) ≥ t) = P (λmax(Y ) ≥ t) ≤ 1

ψ(t)
E[tr(ψ(Y ))] =

1

eθt − 1
E[tr(eθY − In+m)].

Furthermore,

E[tr exp(θY )] ≤ tr exp

(∑
k

logEeθzkAk

)
[R12, lemma 3.5.1]

= tr exp

(∑
k

θ2

2
A2

k

)
[R12, lemma 4.6.2],

where the last equality follows from the moment generating function of the standard Gaussian distribution.

So, denoting M :=
∑

k A
2
k and φ(a) := e

θ2

2 a − 1, [R12, lemma 7.5.1] yields

P (σmax(G) ≥ t) ≤ 1

eθt − 1
tr φ(M) ≤ 1

eθt − 1

tr(M)

λmax(M)
φ(λmax(M)) ≤ 2m

eθ
2/2 − 1

eθt − 1
.

Taking θ = t and using the fact that
x− 1

x2 − 1
=

1

x+ 1
≤ 1

x
, we finally get

P (σmax(G) ≥ t) ≤ (2m)e−t2/2. (B.1)

We can view (B.1) as a strengthened version of the tail bound provided in [R4, theorem 1]. Finally, to
convert this tail bound into a bound on E[σmax(G)2] we use the characterization of the expected value for
non-negative random variables:

E[σmax(G)2] =

∫ ∞

0

P
(
σmax(G)2 ≥ t

)
dt =

∫ ∞

0

P
(
σmax(G) ≥

√
t
)
dt

=

∫ τ

0

P
(
σmax(G) ≥

√
t
)
dt+

∫ ∞

τ

P
(
σmax(G) ≥

√
t
)
dt,

with τ := 2 log(2m) (such that 2me−τ/2 = 1). We bound the probability in the first integral by 1. For the
second integral, we have from our tail bound∫ ∞

τ

P
(
σmax(G) ≥

√
t
)
dt ≤ (2m)

∫ ∞

τ

e−t/2dt = (2m)
[
−2e−t/2

]∞
τ

= 2

All together, we get E[σmax(G)2] ≤ τ + 2 = 2 log(2m) + 2. ⊓⊔

B.2 Proof of Proposition 2

In this section, we construct an example of a matrix W for which Algorithm 2 cannot achieve a performance
guarantee that scales better than 1/ logm.

Consider m orthonormal vectors u1, . . . ,um and apply Algorithm 2 with a covariance matrix W defined
as

W (i,i) = uiu
⊤
i , and W (i,j) = αuiu

⊤
j ,

for some α ∈ (0, 1). This matrix satisfies all the constraints of the semidefinite relaxation (8). The columns
of the matrix G generated by Algorithm 2 are of the form

gi = ziui, with z ∼ N
(
0, (1− α)Im + αee⊤

)
.
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The SVD of G is precisely

G = U

|z1| . . .
|zm|


sign(z1)

. . .
sign(zm)

 .

Hence, σmax = maxi |zi| and the columns of the matrix Q are of the form

qi = diui, with P(di = 1) = 1− P(di = −1) =
1 + |zi|/σmax

2
.

In particular, qiq⊤
i = uiu

⊤
i a.s., and conditioned on z, we have

E
[
qiq

⊤
j |z

]
= E [di|z]E [dj |z]uiu

⊤
j =

|zi||zj |
maxk |zk|2

uiu
⊤
j .

Let us denote bm(α) := E
[
|zi||zj |

maxk |zk|2

]
. If there exists a constant β > 0 such that E[vec(Q) vec(Q)⊤] ⪰

βW , then, applying it to the vector vec(U), we get

(1 + bm(α)(m− 1))m ≥ β(1 + α(m− 1))m, i.e.,
1 + bm(α)(m− 1)

1 + α(m− 1)
≥ β.

In other words, for large values of m, β = O

(
bm(α)

α

)
. Let us assume for now that there exists a constant

Cα > 0 such that

bm(α) ≤ Cα

logm
, (B.2)

then it rules out the existence of a constant β that vanishes to 0 as m → +∞ slower than 1/ logm, thus
ensuring that our analysis of Algorithm 2 is tight (in terms of dependency on m).

Proof (Equation (B.2)). For any a > 0,

E
[
|z1||z2|

maxk |zk|2

]
= E

[
|z1||z2|

maxk |zk|2
1(max

k
|zk|2 < a)

]
+ E

[
|z1||z2|

maxk |zk|2
1(max

k
|zk|2 ≥ a)

]
≤ P(max

k
|zk|2 < a) +

E [|z1||z2|]
a

,

where the inequality follows from the fact that |z1||z2|/maxk |zk|2 ≤ 1. We control each term separately.
For the first term, let us write each random variable zk as zk =

√
1− αyk +

√
αg with y ∼ N (0, Im) and

g ∼ N (0, 1) independent of y. Conditioned on g, we have z|g ∼ N (
√
αg, (1 − α)Im), i.e., the zk’s are i.i.d.

Hence, conditioning on g, we have for the tail probability:

P
(
max

k
|zk|2 < a|g

)
= P

(
|zk|2 < a,∀k|g

)
=
∏
k

P
(
|zk| <

√
a|g
)
= P

(
|z| <

√
a
)m

with z ∼ N (
√
αg, 1−α). By Anderson’s inequality [R1, theorem 1], P (|z| <

√
a) is lower than P (|N (0, 1− α)| <

√
a).

Hence, we have

P
(
max

k
|zk|2 < a|g

)
≤ P

(
|N (0, 1)| <

√
a/(1− α)

)m
.

Denoting t = a/(1− α), we have

P
(
|N (0, 1)| <

√
t
)m

=
(
1− 2P

(
N (0, 1) >

√
t
))m

≤ exp
(
−2mP

(
N (0, 1) >

√
t
))

,
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and

P
(
N (0, 1) >

√
t
)
≥ 1√

2π

1√
t+ 1/

√
t
e−t/2 ≥ 1√

2π

1

2
√
t
e−t/2,

by [R13, proposition 2.1.2]. Taking a = 2(1 − α) (1 − ϵ) logm for some ϵ ∈ (0, 1), i.e., t = 2 (1 − ϵ) logm,
yields

P
(
max

k
|zk|2 < a|g

)
≤ exp

(
− 1

2
√
π

1√
(1− ϵ) logm

mϵ

)
.

Taking the expectation over g, we obtain

P
(
max

k
|zk|2 < a

)
= E

[
P
(
max

k
|zk|2 < a|g

)]
≤ exp

(
− 1

2
√
π

1√
(1− ϵ) logm

mϵ

)
.

For the second term, (z1, z2) is a two-dimensional Gaussian vector with unit variance and correlation α.
We have E[|z1z2|] = E[|z1||z2|] ≤

√
E[z21 ]

√
E[z22 ] = 1.

All together, we have

E
[
|z1||z2|

maxk |zk|2

]
≤ P(max

k
|zk|2 < a) +

E [|z1||z2|]
a

≤ exp

(
− 1

2
√
π

1√
(1− ϵ) logm

mϵ

)
+

1

2(1− α)(1− ϵ) logm
.

For any value of ϵ, we must have mϵ ≥ 2
√
π(1− ϵ) logm (log logm) for sufficiently large m, in which case

we have

E
[
|z1||z2|

maxk |zk|2

]
≤ 1

logm
+

1

2(1− α)(1− ϵ) logm
,

which proves Equation (B.2). ⊓⊔

B.3 Deterministic Projection May Violate Equation (9)

Consider the counterexample with n = 4,m = 2 and

W ⋆ =

(
A B
B⊤ C

)
,

with

A = Diag


0.025
0.177
0.263
0.535

 , B = Diag


−0.042979
0.229513
0.201629
−0.388163

 , C = Diag


0.076
0.300
0.159
0.465

 .

We sample 25, 000 matrices G as in Algorithm 2, define Q as Q = UV ⊤ where G = UΣV ⊤ is an SVD of
G, and compute λmin

(
E
[
vec(Q)vec(Q)⊤ − vec(G)vec(G)⊤

σmax(G)2

])
. Repeating this process 200 times we construct

a 95% confidence interval around λmin and find

λmin

(
E
[
vec(Q)vec(Q)⊤ − vec(G)vec(G)⊤

σmax(G)2

])
= −0.0154± 0.000025 < 0.
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B.4 Proof of Theorem 2

In this section, we prove Theorem 2. Actually, we will obtain Theorem 2 as a special case of a more general
performance guarantee for Algorithm 2, which we now formally state and prove.

Theorem B.1. Let G ∈ Rn×m be a Gaussian matrix generated by Algorithm 2. Then, for any T ≥ 0 and
δ ∈ (0, 1), G satisfies the inequality:

E
[
vec(G)vec(G)⊤

σmax(G)2

]
⪰
(
βn,m(T ) +

e−2T log(6m/δ)

2 log(6m/δ)

(
1−
√
δ
))

W ⋆, (B.3)

with

βn,m(T ) := min
λ∈[0,1]

∫ T

0

(
1 + 2tm

1− λ
nm− 1

)−(nm−1)/2

(1 + 2tmλ)−3/2dt.

We can numerically optimize for T ≥ 0, δ ∈ (0, 1) to compute the tightest constant and better evaluate the
performance of our algorithm. We recover Theorem 2 by setting T =∞. Qualitatively, we recover the same
Θ(1/ logm) asymptotic regime as Theorem 1 by taking T = 0:

E
[
vec(G)vec(G)⊤

σmax(G)2

]
⪰ 1−

√
δ

2 log(m) + 2 log(6/δ)
W ⋆,

which scales like 1/(2 logm).

Proof. For any T ≥ 0, we can write

1

σmax(G)2
=

∫ T

t=0

e−tσmax(G)2dt+

∫ ∞

t=T

e−tσmax(G)2dt. (B.4)

By Tonelli’s theorem [e.g., R5], and using non-negativity of each term in the integral, this leads to

E
[
vec(G)vec(G)⊤

σmax(G)2

]
=

∫ T

t=0

E[vec(G)vec(G)⊤e−tσmax(G)2 ]dt︸ ︷︷ ︸
J1(T )

+

∫ ∞

t=T

E[vec(G)vec(G)⊤e−tσmax(G)2 ]dt︸ ︷︷ ︸
J2(T )

.

The rest of the proof follows by deriving lower bounds for each integral J1(T ) and J2(T ), and combining
them. We obtain a bound that is valid for any T ≥ 0, and thus can be optimized with respect to T to obtain
the tightest possible lower bound.

Lower bound on J1(T ): We use the operator bound σmax(G)2 ≤ ∥G∥2F to obtain

J1(T ) ⪰
∫ T

t=0

E[vec(G)vec(G)⊤e−t∥G∥2
F dt.

The inner expectation can be computed analytically: Denote r = rank(W ⋆) ≤ nm and consider an eigenvalue
decomposition of W ⋆, W ⋆ = HΛH⊤. We have the multivariate normal identity vec(G) = HΛ1/2z, with
z ∼ N (0r, Ir) and thus

E[vec(G)vec(G)⊤ exp(−t∥G∥2F )] = HΛ1/2E[zz⊤ exp(−tz⊤Λz)]Λ1/2H⊤.

Furthermore,

E[zz⊤ exp(−tz⊤Λz)] =
1

(2π)r/2

∫
zz⊤ e−tz⊤Λze−

1
2z

⊤zdz =
1√

det(Inm + 2tΛ)
(Ir + 2tΛ)−1,

by completing the square. So, the first integral is lower bounded by

HΛ1/2BΛ1/2H⊤ with B :=

∫ T

0

1√
det(Inm + 2tΛ)

(Ir + 2tΛ)−1dt.
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Indeed, if there existed a scalar β > 0 such that B ⪰ βIr, then we could conclude that J1(T ) ⪰ βW ⋆.
To find such β, observe that B is a diagonal matrix with diagonal entries∫ T

0

r∏
i′=1

(1 + 2tΛi′)
−1/2

(1 + 2tΛi)
−1dt.

Hence, it is sufficient to find a lower bound on the diagonal entries of B. Given the constraints on W ⋆, the
eigenvalues Λ must satisfy: Λi ≥ 0 (from W ⋆ ⪰ 0),

∑r
i=1 Λi = m (from tr(W ⋆) =

∑m
i=1 tr(W

⋆(i,i)) = m).
Hence, we can take

β = min
Λ∈[0,m]r :

∑r
i=1 Λi=m

∫ T

0

r∏
i=1

(1 + 2tΛi′)
−1/2

(1 + 2tΛ1)
−1dt.

For any t ≥ 0, the function Λ 7→
∫ T

0

∏r
i=1 (1 + 2tΛi′)

−1/2
(1 + 2tΛ1)

−1 is log-convex, hence is convex
[R2, Section 3.5.1]. By integration over t, the function Λ 7→

∫ T

0

∏r
i=1 (1 + 2tΛi′)

−1/2
(1 + 2tΛ1)

−1dt is also
convex. In addition, we observe that this function is invariant by any permutation of the Λi, i > 1. So,

by Jensen’s inequality, we can restrict our attention to minimizers of the form Λ1 = λ, Λi =
m− λ
r − 1

, i > 1

without loss of optimality, and

β = min
λ∈[0,m]

∫ T

0

(
1 + 2t

m− λ
r − 1

)−(r−1)/2

(1 + 2tλ)−3/2dt. (B.5)

Recall that for any scalar x, the sequence (1+ x/k)−k is monotonically decreasing and converges to e−x.
As a result, for a fixed value of t and λ, the integrand is decreasing in r = rank(W ⋆). Looking at the worst
case, we have

β ≥ βn,m(T ) := min
λ∈[0,m]

∫ T

0

(
1 + 2t

m− λ
nm− 1

)−(nm−1)/2

(1 + 2tλ)−3/2dt

= min
λ∈[0,1]

∫ T

0

(
1 + 2tm

1− λ
nm− 1

)−(nm−1)/2

(1 + 2tmλ)−3/2dt,

where we relabel λ← λ/m to normalize the optimization problem.

Lower bound on J2(T ): For the second integral, we leverage tail bounds on σmax(G)2; see Equation (B.1)
in the proof of Lemma 1. For any θ > 0, we have∫ ∞

t=T

e−tσmax(G)2dt =
e−Tσmax(G)2

σmax(G)2
≥ e−Tθ

θ
(1− 1(σmax(G)2 > θ)).

So for any unit vector u,

u⊤
(∫ ∞

t=T

E[vec(G)vec(G)⊤e−tσmax(G)2 ]dt

)
u ≥ e−Tθ

θ

(
u⊤W ⋆u− E

[
(vec(G)⊤u)2(1(σmax(G)2 > θ)

])
,

For the last term, we apply Cauchy-Schwarz to get

E
[
(vec(G)⊤u)2 (1(σmax(G)2 > θ)

]
≤
√

E [(vec(G)⊤u)4] E [(1(σmax(G)2 > θ)]

≤
√
3 (u⊤W ⋆u)

√
2me−θ/4,

where the last inequality follows from 4th moment formula for multivariate Gaussian variables (E[Z4] = 3σ4)
applied to Z := vec(G)⊤u ∼ N (0,u⊤W ⋆u); and the tail bound P(σmax(G)2 > θ) ≤ 2me−θ/2 (Equation
(B.1)). All together,

J2(T ) ⪰
e−Tθ

θ

(
1−
√
6me−θ/4

)
W ⋆.
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Taking θ = 2 log(6m/δ) for δ ∈ (0, 1), we get

J2(T ) ⪰
e−2T log(6m/δ)

2 log(6m/δ)

(
1−
√
δ
)
W ⋆. (B.6)

Combining the bounds for J1(T ) and J2(T ) concludes the proof. ⊓⊔

Remark B.1. We observe that the first part of the bound, J1(T ), is obtained by looking at the worst-case
instance over all covariance matrices W ⋆. In particular, Equation (B.5) provides a tighter value of βn,m(T )
that depends explicitly on the rank of W ⋆, r, instead of the ambient dimension n. For instance, if r = 1, we
get

β = min
λ∈[0,m]

∫ T

0

(1 + 2tλ)−3/2dt = min
λ∈[0,m]

1− (1 + 2λT )−1/2

λ
=

1− (1 + 2mT )−1/2

m
.

Alternatively, by the Barvinok-Pataki bound, we know there exists some optimal solution W ⋆ with rank
at most n + m and we could use this bound to refine our constant. Furthermore, if W ⋆ has additional
structure (e.g., W ⋆ is block diagonal), we can derive additional constraints on the eigenvalues Λ, hence
tighter constants βn,m(T ).

We now provide some interesting qualitative features of the bound in Theorem B.1.

Proposition B.1. The constant

βn,m(T ) = min
λ∈[0,1]

∫ T

0

(
1 + 2tm

1− λ
nm− 1

)−(nm−1)/2

(1 + 2tmλ)−3/2dt.

in Theorem B.1 satisfies the following properties:
(a) For any T ≥ 0 and any integer m, the constant βn,m(T ) is non-increasing in n.
(b) For any T ≥ 0 and any integer n, the constant βn,m(T ) is non-increasing in m wherever it exists (n ≥ m)

.
(c) For any T ≥ 0, any m, we have

βn,m(T ) →
n→+∞

β∞,m(T ) = min
λ∈[0,1]

∫ T

0

e−tm(1−λ) (1 + 2tmλ)−3/2dt.

(d) For any T ≥ 0 and any integer n,m (with n ≥ m), we can also express βn,m(T ) as

βn,m(T ) = min
λ∈[0,1]

EX∼χ2
1,Y∼χ2

nm−1

[
X

m(1−λ)
nm−1 Y +mλX

(
1− e−

Tm(1−λ)
nm−1 Y−TmλX

)]
.

(e) For any T ≥ 0 and any integer m, we can also write β∞,m(T ) as

β∞,m(T ) = min
λ∈[0,1]

EX∼χ2
1

[
X

m(1− λ) +mλX

(
1− e−T (m(1−λ)+mλX)

)]
.

(f) For m = 1, taking T =∞ in (B.3) is optimal and the inequality

E
[
vec(G)vec(G)⊤

σmax(G)2

]
⪰ βn,m(∞)W ⋆

is tight (in the sense that there exists a covariance matrix W ⋆ satisfying it at equality).

Proof. We prove each claim separately.

Claim (a) For any λ ∈ [0, 1] and t ∈ [0, T ], the integrand(
1 + 2tm

1− λ
nm− 1

)−(nm−1)/2

(1 + 2tmλ)−3/2

is decreasing in n. Integrating over t and minimizing over λ gives βn+1,m(T ) ≤ βn,m(T ).
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Claim (b) For any λ ∈ [0, 1] and t ∈ [0, T ], we claim that the integrand(
1 + 2tm

1− λ
nm− 1

)−(nm−1)/2

(1 + 2tmλ)−3/2

is decreasing in m. To see this, first observe that (1+2tmλ)−3/2 is obviously decreasing in m. Next, consider

the quantity
(
1 + 2tm

1− λ
nm− 1

)−(nm−1)/2

. By letting u = nm− 1, a = 2t(1− λ)/n ≥ 0 and c = a/(1 + a),

we obtain the relationships
m

nm− 1
=

(u+ 1)/n

u
=

1

n

(
1 +

1

u

)
,

and thus we get

1 + 2tm
1− λ
nm− 1

= 1 + a
(
1 +

1

u

)
= (1 + a)

(
1 +

c

u

)
, c :=

a

1 + a
∈ [0, 1).

In particular, we have the equivalent polynomial (1 + a)−u/2(1 + c/u)−u/2. This polynomial is decreasing in
u, since h(u) := u log(1 + c/u) has derivative

h′(u) = log
(
1 +

c

u

)
− c

u+ c
≥ 0,

because log(1 + x) ≥ x
1+x for x > 0. Thus, the polynomial is also decreasing in m. Thus, the integrand is

decreasing in m, and integrating with respect to t gives the result.

Claim (c) The series (1 + x/k)−k converging to e−x, we have that, for any λ ∈ [0, 1] and t ∈ [0, T ], the
integrand monotonically converges to e−tm(1−λ) (1 + 2tmλ)−3/2, as n→∞. By the dominated convergence
theorem, the functions

fn(λ) :=

∫ T

0

(
1 + 2tm

1− λ
nm− 1

)−(nm−1)/2

(1 + 2tmλ)−3/2dt

are continuous and converge monotonically to f∞(λ) :=
∫ T

0
e−tm(1−λ) (1+2tmλ)−3/2dt. From fn(λ) ≥ f∞(λ),

we get βn,m(T ) ≥ β∞,m(T ). Taking λ⋆ the minimizer of the continuous function f∞(λ) over the compact set
[0, 1], we have fn(λ⋆) ≥ βn,m(T ) ≥ β∞,m(T ). In the limit, fn(λ⋆) → f∞(λ⋆) = β∞,m(T ) by continuity, so,
by sandwiching, βn,m(T )→ β∞,m(T ).

Claim (d) Take Z ∼ N(0, 1) and observe that for any scalar a > 0, E
[
e−aZ2

]
= (1 + 2a)−1/2, which

implies (by differentiation w.r.t. a) E
[
Z2e−aZ2

]
= (1+2a)−3/2. Introducing nm−1 additional independent,

standard normal random variables Z1, . . . , Znm−1, we have(
1 + 2tm

1− λ
nm− 1

)−(nm−1)/2

(1 + 2tmλ)−3/2 =
nm−1∏
i=1

E
[
e
−

tm(1−λ)
nm−1 Z2

i

]
E
[
Z2e−tmλZ2

]
= E

[
Z2e

−
tm(1−λ)
nm−1

∑
i Z

2
i −tmλZ2

]
= E

[
Xe

−
tm(1−λ)
nm−1 Y−tmλX

]
,

where X ∼ χ2
1 and Y ∼ χ2

nm−1. Integrating over t ∈ [0, T ] and invoking Tonelli’s theorem to exchange the
order of the integral and the expectation, we get∫ T

0

(
1 + 2tm

1− λ
nm− 1

)−(nm−1)/2

(1 + 2tmλ)−3/2dt = E

[∫ T

0

Xe
−

tm(1−λ)
nm−1 Y−tmλX

dt

]

= E

[
X

m(1−λ)
nm−1 Y +mλX

(
1− e−

Tm(1−λ)
nm−1 Y−TmλX

)]
,

as claimed.
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Claim (e) Taking Z ∼ N(0, 1) and making the same observations as in the proof of Claim (c), we get

e−tm(1−λ) (1 + 2tmλ)−3/2 = E
[
Z2e−tmλZ2

e−tm(1−λ)
]
,∫ T

t=0

e−tm(1−λ) (1 + 2tmλ)−3/2dt = E

[
Z2

∫ T

t=0

e−tmλZ2

e−tm(1−λ)dt

]
= E

[
Z2 1− e−TmλZ2−T m(1−λ)

mλZ2 +m(1− λ)

]
,

where the second equality permutes the order of the integral and the expectation, according to Tonelli’s
theorem. Defining X := Z2 ∼ χ2

1 leads to the expression of Claim (e).

Claim (f) Observe that for m = 1, σmax(G)2 = ∥G∥2F and βn,m(∞) is the tightest constant (over all possible
covariance matrices W ⋆) such that

E
[
vec(G)vec(G)⊤

∥G∥2F

]
⪰ βW ⋆.

⊓⊔

B.5 Computing the Approximation Constant for Finite n,m

We report the value of the constant βn,m = βn,m(∞) from Theorem 2 in Table B.1 and the constant from
Theorem B.1 in Table B.2 for some values of n,m.

To compute these constants numerically in Julia, we model all integrals using Gauss-Kronrod quadrature
in t with a relative tolerance of 10−8 and an absolute tolerance of 10−10. We identify an approximately optimal
T using a grid of 1000 values distributed uniformly in log space over [10−6, 106], in addition to explicitly
considering 0 and +∞. For each value of T , in our outer maximization problem, we use golden section search
with a tolerance of 10−8 to maximize for δ. Given a value of T and δ, we minimize with respect to λ via
an inner golden section search with a tolerance of 10−8. To improve stability when t is large, we evaluate
the two factors in the integrand in the log domain and exponentiate at the end. The edge case nm = 1 is
handled separately via its analytic limit.

As a sanity check, we tightened all our tolerances by two orders of magnitude and increased the grid
resolution for T by an order of magnitude, and then recomputed our constants. We found that none of them
changed to within the first six decimal places, which indicates that the aggregate numerical error is below
10−6.

We observe that for m ≤ 13 and all n considered, the optimal constant is attained by setting T = +∞.
However, once m > 13, we obtain a strictly better constant by optimizing for T .

Finally, we made the observation in Remark B.1 that one can marginally improve the constants by
leveraging the Barvinok-Pataki bound to bound the rank of W ⋆. For instance, when n = m = 2, we find
that it improves the approximation constant from 0.375 to 0.3877. However, for larger n,m, the effects of
this observation are negligible.
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C Analysis of Benchmark Algorithms

C.1 Uniform Sampling

Let us analyze the performance of uniform sampling.

Proposition C.1. Let Q ∈ Rn×m be distributed uniformly over {U ∈ Rn×m : U⊤U = Im}. We have

E[⟨A, vec(Q)vec(Q)⊤⟩] ≤ max
U∈Rn×m:U⊤U=Im

⟨A, vec(U)vec(U)⊤⟩ ≤ nmE[⟨A, vec(Q)vec(Q)⊤⟩].

Proof. By optimality, Q being feasible for (4),

⟨A, vec(Q)vec(Q)⊤⟩ ≤ max
U∈Rn×m:U⊤U=Im

⟨A, vec(U)vec(U)⊤⟩,

which leads to the first inequality.
Furthermore,

max
U∈Rn×m:U⊤U=Im

⟨A, vec(U)vec(U)⊤⟩ ≤ max
u∈Rnm:∥u∥2=m

⟨A,uu⊤⟩ = mλmax(A) ≤ m tr(A).

To conclude, observe that since Q is distributed according to the Haar measure, we have E[qiq⊤
i ] =

1
nIn and

E[qiq⊤
j ] = 0 for i ̸= j [cf. R9]. Therefore, we have E[vec(Q)vec(Q)⊤] = 1

nInm and E[⟨A, vec(Q)vec(Q)⊤⟩] =
1
n tr(A). ⊓⊔

Remark C.1. Proposition C.1’s upper bound is tight for uniform rounding. Indeed, if A is an identity matrix,
then any uniformly sampled Q is optimal and the left inequality is tight. Moreover, if A is a matrix such that
A

(i,j)
i,j = 1 for i, j ∈ [m] and A(i,j)

l1,l2
= 0 for l1 ̸= i or l2 ̸= j otherwise, then tr(A) = m and an optimal choice of

U is Ui = ei, giving both maxU∈Rn×m:U⊤U=Im⟨A, vec(U)vec(U)⊤⟩ = m2 and nmE[⟨A, vec(Q)vec(Q)⊤⟩] =
m2. This corresponds to a family of instances of increasing size for which our bound on uniform rounding is
tight.

C.2 A Stronger Benchmark via Linear Algebra Techniques

We propose a second benchmark for constructing a feasible solution to (4). The procedure is inspired by
the deflation procedure for PCA and considers eigenvectors of the diagonal blocks A. We show that it leads
to a 1/m2–approximation guarantee, which is better than uniform sampling for m ≪ n but weaker than
Algorithm 2.

Algorithm C.1 constructs the columns of U : To compute ui, it projects the diagonal block A(i,i) onto the
subspace orthogonal to the columns already constructed, u1, . . . ,ui−1, and takes its leading eigenvector. In
practice, we can process the diagonal blocks in any order, with each ordering leading to a different candidate
solution. In our implementation, we consider N random permutations of {1, . . . ,m} and generate N feasible
solutions to allow for a fair comparison with our sampling-based approach.

Algorithm C.1 A Deflation-Inspired Benchmark for Orthogonality Constrained Optimization
Require: Positive semidefinite matrix A ∈ Snm

+

Initialize U = 0
for i = 1, . . . ,m do

Define B = (In − ui−1u
⊤
i−1) · · · (In − u1u

⊤
1 )A

(i,i)(In − u1u
⊤
1 ) · · · (In − ui−1u

⊤
i−1)

Compute vi ∈ argmaxx ∥x∥2=1 x⊤Bx
Define ui = zivi with P(zi = 1) = 1− P(zi = −1) = 1/2.

end for
return Semi-orthogonal matrix U

We can show the following guarantee for this deflation procedure:
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Proposition C.2. Let Q be generated according to Algorithm C.1 with a random ordering of the blocks.
Then, we have

E
[
⟨A, vec(Q)vec(Q)⊤⟩

]
≤ max

U∈Rn×m:U⊤U=Im

[
⟨A, vec(U)vec(U)⊤⟩

]
≤ m2E

[
⟨A, vec(Q)vec(Q)⊤⟩

]
.

Remark C.2. Observe that if A is a block diagonal matrix with identical diagonal blocks A(i,i) = Σ and
zero off diagonal blocks A(i,j) = 0 for i ̸= j, as in principal component analysis, then the proposed algorithm
corresponds to deflation in PCA and is thus exact.

Proof. First, at iteration i, since qi is collinear to the leading eigenvector of the matrix obtained by A(i,i)

onto a space orthogonal to q1, . . . , qi−1, we have that q⊤
i qj = 0 for each i > j and thus Q is feasible, so the

left inequality holds.
Second, since zi, zj are i.i.d. with mean 0, in expectation, we have that E

[
q⊤
i A

(i,j)qj
]
= 0 for i ̸= j,

and thus the expected objective value attained by Q is E[⟨vec(Q)vec(Q)⊤,A⟩] =
∑

i∈[m] E[q⊤
i A

(i,i)qi] =∑
i∈[m] v

⊤
i A

(i,i)vi. When treating the blocks in the order 1, . . . ,m, we have E[⟨vec(Q)vec(Q)⊤,A⟩] ≥
v⊤
1 A

(1,1)v1 = λmax(A
(1,1)). By taking the average over random permutations of {1, . . . ,m} as well, we

get E[⟨vec(Q)vec(Q)⊤,A⟩] ≥ 1

m

∑
i∈[m] λmax(A

(i,i)).
On the other hand, for any 2× 2 block of A we have(

A(i,i) A(i,j)

A(j,i) A(j,j)

)
⪰ 0,

so for any orthogonal matrix U ,

u⊤
i A

(i,j)uj + u⊤
j A

(j,i)ui ≤ u⊤
i A

(i,i)ui + u⊤
j A

(j,j)uj ,

and
∑

i,j∈[m]

u⊤
i A

(i,j)uj ≤ m
∑
i∈[m]

u⊤
i A

(i,i)ui ≤ m
∑
i∈[m]

λmax(A
(i,i)) ≤ m2E[⟨vec(Q)vec(Q)⊤,A⟩].

⊓⊔

Remark C.3. Our proof technique shows that E[⟨vec(Q)vec(Q)⊤,A⟩] ≥ 1

m

∑
i∈[m] λmax(A

(i,i)). Thus, Al-
gorithm (C.1) yields a 1/m-factor approximation when A is a block diagonal matrix and a 1/(2m)-factor
approximation when A is block diagonally dominant. In general, however, the block diagonal objective
bounds the full objective within a factor of m, hence the overall 1/m2 guarantee. It is also worth noting that
the semidefinite 

A(1,1) A(1,2) . . .A(1,m)

A(2,1) A(2,2) . . .A(2,m)

A(3,1)
...

. . . A(3,m)

A(m,1) A(m,2) . . .A(m,m)

 ⪯ m

A(1,1) 0 . . .0

0 A(2,2) . . .0

0
...

. . . 0
0 0 . . .A(m,m)


which we implicitly prove as part of our approximation guarantee, is actually a special case of the pinching
inequality from quantum information theory [see R10, lemma II.2].

D Additional Numerical Results

The numerical experiments in Section 4 were conducted on one Intel(R) Xeon(R) Platinum 8370C 2.80GHz
CPU with 128GB of RAM. Table D.1 reports the time required to solve our semidefinite relaxation (8)
for different values of m, using Mosek as the semidefinite optimization solver. Table D.2 reports the time
required by each feasibility heuristic (excluding time to solve the relaxation when needed).
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Table D.1: Computational time (average and standard deviation) for solving (8) for n = 50 and various
values of m. Results are aggregated over 5 instances.

m Average Time (s) Std Dev (s)

1 2.01 0.15
2 3.71 0.34
5 7.35 0.63

10 19.06 1.69
15 38.07 2.94
20 80.33 7.34
25 140.67 21.99
30 244.0 37.19
40 510.24 82.15
60 1789.24 321.35
80 3240.3 552.06

100 7233.63 69.91

Table D.2: Computational time (average and standard deviation) for different feasibility heuristics for n = 50
and various values of m. For methods that require solving the relaxation (8) (Alg. 2, Alg. 2 with projection,
[R3]), time for solving the relaxation is not included but reported in Table D.1. Results are aggregated over
5 instances.

m Alg. 2 Alg. 2 with projection Burer and Park Deflation Uniform

2 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.23 (0.09) 0.01 (0.0)
5 0.07 (0.01) 0.07 (0.01) 0.06 (0.01) 0.8 (0.45) 0.07 (0.01)

10 0.34 (0.03) 0.34 (0.03) 0.22 (0.02) 2.7 (1.76) 0.33 (0.03)
15 0.6 (0.35) 0.6 (0.35) 0.5 (0.02) 5.81 (3.98) 0.53 (0.19)
20 0.99 (0.31) 0.99 (0.31) 0.92 (0.01) 9.17 (6.44) 0.92 (0.15)
25 1.44 (0.24) 1.44 (0.24) 1.49 (0.02) 9.32 (0.86) 1.44 (0.24)
30 2.59 (0.35) 2.59 (0.35) 2.36 (0.03) 12.1 (0.53) 2.59 (0.36)
40 7.0 (0.71) 7.0 (0.71) 5.51 (0.1) 20.37 (1.03) 7.0 (0.71)
60 26.98 (1.93) 26.98 (1.93) 17.01 (0.24) 43.14 (2.38) 26.97 (1.93)
80 79.83 (23.52) 79.83 (23.52) 37.32 (0.3) 77.44 (6.37) 79.82 (23.52)

100 124.65 (3.67) 124.65 (3.67) 66.53 (0.38) 116.52 (9.99) 124.34 (3.54)
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