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Abstract
The kidney exchange problem with reserve arcs (KEP-RA) is an extension of the classical kidney

exchange problem in which one is allowed to select in the solution a limited number of arcs that do not
belong to the compatibility graph. This problem is motivated by recent breakthroughs in the field of kidney
transplantation involving immunosuppressants that have allowed certain donors to give their kidney to an
incompatible recipient. After showing that existing integer linear programming formulations for the kidney
exchange problem can easily be extended to KEP-RA, we demonstrate that there always exists an optimal
KEP-RA solution in which every cycle contains at most one reserve arc, and we use that property to develop
effective variable reduction procedures and new ad hoc modelling structures. Empirical experiments show
that trivial model extensions are not able to cope with medium size instances, whereas our enhanced models
are able to solve instances with up to a thousand recipient-donor pairs. We also extend our approaches to
include non-directed donors. Finally, we evaluate the number of transplants enabled by each reserve arc in
various settings and demonstrate that, even though reserve arcs tend to have a diminishing return, there are
instances for which this is not the case.

Keywords: Kidney exchange, Reserve arcs, Exact algorithms, Integer programming, Preprocessing.

1 Introduction

Kidneys are vital organs located in the lower back of the human body, on either side of the spine. They maintain a
healthy balance of water, salts, and minerals, while also filtering blood and removing waste and excessive fluids
from the body. If one does not have at least one fully functioning kidney, they are said to have impaired kidney
function. It is estimated that roughly 10% of the world’s population suffers from such a condition (Bikbov et al.
2020), which often worsens with time, eventually leading to the need for specialist medical care such as dialysis
or transplantation. Whereas the latter option offers both a longer life expectancy and a better quality of life,
even considering the risks involved in the necessary surgery, the supply of donor kidneys (coming from both
living and deceased individuals) is hardly enough to cover the demand.

Besides the fact that the pool of donor kidneys is smaller than the pool of recipients in need of a kidney, there
are also compatibility issues that need to be considered: a donor and a recipient do not always form a match from
a medical perspective. The National Kidney Foundation (2024) describes two kinds of incompatibilities that may
arise between a donor and a recipient: blood-type incompatibility and tissue-type incompatibility. Disregarding
the Rhesus factor, which does not influence blood-type (in)compatibility (National Kidney Foundation 2024),
there exist four blood types, namely O, A, B, and AB. Whereas an O donor is blood-type compatible with all
recipients, an AB donor is only blood-type compatible with other AB recipients. Regarding A and B donors,
they are blood-type compatible with recipients having the same blood type and with AB recipients. Fully
understanding tissue-type incompatibility requires more advanced medical knowledge. In simple terms, each
individual possesses a certain number of Human Leukocyte Antigens (HLA) inherited from their biological
parents, which, put together, form an HLA type. Whereas there are only four blood types to consider when
determining blood-type (in)compatibility, there are many more HLA types to consider when determining
tissue-type (in)compatibility.

If a recipient has found a living donor who is willing and legally allowed to donate them a kidney, the two
individuals go through blood typing and tissue typing procedures to determine whether they form a match. If
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they do not, the recipient-donor pair may consider joining a kidney exchange programme if such a possibility
exists in the country in which they reside. A kidney exchange programme allows a set of recipient-donor pairs
registered in the system to exchange their donor kidneys if the resulting swaps satisfy a set of requirements. An
example of possible swaps between three incompatible recipient-donor pairs is shown in Figure 1. In this figure,
a three-way exchange – also referred to as a cycle in the literature – is illustrated. Donor 1 donates a kidney to
Recipient 2. In return, Donor 2 donates a kidney to Recipient 3. Finally, Recipient 1 receives a kidney from
Donor 3. Hence, each pair donates and receives exactly one kidney.

Figure 1: Kidney exchange between three pairs

Non-directed donors (sometimes referred to as altruistic donors) are willing to give one of their kidneys
without being paired with any recipient. They can trigger a sequence of transplants that forms a chain instead
of a cycle (Roth et al. 2006). Such donors are important in kidney exchange programmes as they significantly
increase the number of transplants: indeed, chains are not only less constrained than cycles from a mathematical
point of view (as no compatibility requirement is imposed on the donor of the last pair of a chain), they are also
less constrained from a logistical point of view (as not all kidney transplants need to take place simultaneously,
which is usually the case with cycles, see Biró et al. 2020).

Compatible pairs may also join a kidney exchange programme with the aim of the recipient obtaining a
better matched kidney than from their paired donor (e.g., from a younger donor); the pair may also help to create
other cycles and chains that would not otherwise exist.

Kidney exchange programmes usually determine a set of feasible cycles and chains at regular intervals
using a matching algorithm. For a cycle or chain to be considered as feasible, typically compatibility and
cardinality constraints are imposed. The former ensures that swapped donors are always compatible with
their new recipient. Compatibility relationships can be captured by a directed graph, where vertices represent
non-directed donors and recipient-donor pairs, and an arc is drawn from one vertex to another if the donor of
the first vertex is compatible with the recipient of the second vertex. Cardinality constraints limit the number
of recipient-donor pairs involved in the same cycle or chain due to practical constraints. Note that due to chains
being less constrained than cycles as described above, typically the maximum chain length L is larger than the
maximum cycle length K. When it comes to determining which set of feasible cycles and chains is the best,
even though each programme has its own rules (see Biró et al. 2019, Biró et al. 2020 for an overview of these
rules in European kidney exchange programmes), one typical goal is to select a set that maximises the total
number of transplants. In what follows, we will restrict attention to cycles initially, and later in the paper we
show how to model chains. We therefore define the Kidney Exchange Problem (KEP) as the problem of finding
a vertex-disjoint set of cycles with the maximum number of transplants, given a set of recipient-donor pairs, a
compatibility graph, and a limit on the number of pairs involved in any cycle (Delorme et al. 2023).

Even though the introduction of kidney exchange programmes has substantially increased the number of
recipient-donor pairs who were able to proceed with a kidney donation (Biró et al. 2020), it can happen that a pair
stays in the programme for many runs without ever being included in a swap. Whereas it is possible for a pair
that has spent a long time in the programme to be given a higher priority (see, e.g., the rules in the UK described
by Manlove and O’Malley 2015), some highly sensitised recipients can be very difficult to match. In recent
years, major breakthroughs involving immunosuppressants and normothermic perfusion machines (Andersson
and Kratz 2020, MacMillan et al. 2023) have allowed a donor to give their kidney to a recipient even though
their blood types were deemed to be incompatible. Immunosuppressants have also been used to allow a donor
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to give their kidney to a recipient that was not a perfect HLA match (Aziz et al. 2021). One could think that
such breakthroughs may have made kidney exchange programmes obsolete since every donor could, in theory,
be made compatible with their recipient. However, this is not yet the case: there is both an additional risk and
an additional cost associated with these procedures. These considerations have led the research community to
study variants of KEP in which incompatible transplants can be made compatible at a certain cost (Andersson
and Kratz 2020, Aziz et al. 2021, Heo et al. 2021). In this work, we study one such variant, the Kidney Exchange
Problem with Reserve Arcs (KEP-RA), an extension of KEP in which one is allowed to select a certain number
of arcs that do not appear in the compatibility graph (called reserve arcs, or RA).

1.1 Our contribution

Inspired by the recent KEP literature with immunosuppressants, we introduce a four-level problem typology
consisting of KEP, KEP-RA, KEP with Half-Compatible Arcs (KEP-HCA), and KEP with Costs (KEP-C). After
classifying the existing literature according to the proposed typology, we show that there is a polynomial-time
reduction from a problem at a certain level to the problem at the next level, and we report known complexity
results for special cases of each problem, namely the case in which only cycles of size two are allowed, the case
in which the cycle size is bounded by an integer greater than or equal to three, and the case in which the cycle size
is unbounded. We then show that existing Integer Linear Programming (ILP) formulations for KEP can easily
be extended to model KEP-RA. We continue by demonstrating that there always exists an optimal KEP-RA
solution in which every cycle contains at most one RA, and we use that property to develop an effective variable
reduction procedure for each model. We then utilize that same property to create a new effective modelling
structure to represent cycles with exactly one RA and we extend our findings to the case where non-directed
donors are also considered in the instance. We then empirically evaluate each of the proposed strategies and
show that we are able to solve KEP-RA instances with the same order of magnitude as solvable KEP instances,
whether reduced-cost variable fixing is used or not. Finally, we provide new managerial insights about KEP-RA,
especially regarding how the total number of transplants evolves when the number of permitted RAs increases.

1.2 Layout

The remainder of this paper is structured as follows. In Section 2, we introduce our four-level problem typology,
review the existing literature associated with each level, and report known complexity results. In Section 3,
we briefly discuss existing ILP models for KEP and show how they can be extended to KEP-RA. In Section 4,
we discuss preprocessing techniques and we introduce our new modelling structure for cycles with exactly one
RA in Section 5. In Section 6, we show how our findings can be extended to also include non-directed donors.
In Section 7, we report the outcomes of extensive computational experiments aimed at evaluating each of the
proposed approaches together with some managerial insights. Finally, conclusions are drawn in Section 8.

2 A four-level typology and previous work

In all problems considered in the proposed typology for KEP with immunosuppressents, we are given a set
of n recipient-donor pairs together with a limit K on the maximum number of pairs that can be included in
any cycle and a compatibility graph G = (V,A) where vertex set V = {v1, v2, . . . , vn} contains one node per
recipient-donor pair. The objective is to compute a subset of arcs A′ ⊆ A, called the transplants, such that |A′|
is maximised while being solely composed of vertex-disjoint cycles with cardinality at most K.

• In the standard KEP, for every (not-necessarily distinct) recipient-donor pairs p1, p2 ∈ V , arc (p1, p2)
belongs to A if the donor of pair p1 is compatible with the recipient of pair p2 (the case p1 = p2 gives a
self-loop and corresponds to a compatible pair).

• In KEP-RA, our problem of interest, we are also given a budget B ∈ N0. In addition, arc set A is split
in two arc subsets: the standard arcs As, and the reserve arcs Ar. Given any (not-necessarily distinct)
recipient-donor pairs p1, p2 ∈ V , arc (p1, p2) belongs to As if the donor of pair p1 is compatible with the
recipient of pair p2. If that is not the case, then (p1, p2) belongs to Ar. At most B arcs in subset Ar can
be selected in the solution.
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• In KEP-HCA, arc set A is now split into three arc subsets: the standard arcs As, the half-compatible arcs
Ah, and the incompatible arcs Ai. Given any (not-necessarily distinct) recipient-donor pairs p1, p2 ∈ V ,
arc (p1, p2) belongs to As if the donor of pair p1 is compatible with the recipient of pair p2, it belongs to
Ah if the donor of pair p1 is not immediately compatible with the recipient of pair p2, but that could be
remedied with the use of immunosuppressents, and it belongs to Ai otherwise. At most B arcs in subset
Ah can be selected in the solution whereas no arcs in Ai are allowed.

• In KEP-C, arc setA is not divided into subsets anymore and contains arc (p1, p2) for every (not-necessarily
distinct) recipient-donor pairs p1, p2 ∈ V . Each arc a ∈ A is also associated with a non-negative integer
cost ca ≤ B + 1. The total cost of the arcs selected in the solution must be at most B.

KEP has been extensively studied in the literature, both from a practical (Biró et al. 2019) and theoretical
(Mak-Hau 2017) point of view. Among the contributions to KEP that are directly relevant to this work, we
mention Roth et al. (2005) who showed that KEP can be solved in polynomial time when the cycle size limit K
is set to 2, and Abraham et al. (2007) who showed that the problem becomes NP-hard when K ≥ 3, but that it
can be solved in polynomial time again when K is unbounded. Due to its applications (one unit of the objective
function is often associated with the life of a human being), KEP usually requires an exact solution, which is
why a large proportion of the literature has focused on developing exact approaches for the problem, including
integer programming (Roth et al. 2007, Abraham et al. 2007, Constantino et al. 2013) and branch-and-price
algorithms (Klimentova et al. 2014, Riascos-Álvarez et al. 2024), among others (Delorme et al. 2022, 2024).

Regarding KEP-RA, the problem was studied by Aziz et al. (2021) who referred to it as “the Silver Bullet
model”. The authors proved that KEP-RA can be solved in polynomial time when the cycle size limit K is
unbounded. They also showed that the cycle formulation for KEP (Roth et al. 2007) can easily be extended to
model KEP-RA. Heo et al. (2021) studied KEP-RA from a mechanism design point of view in the case where
only pairwise exchanges were allowed.

As far as KEP-HCA is concerned, empirical studies were conducted by Sönmez et al. (2018) and Andersson
and Kratz (2020) in which the budget was unlimited and where only pairwise exchanges were allowed. The
former studied a version of the problem where A donors could be made half-compatible with B and O recipients,
whereas the latter studied a version of the problem where all blood-type incompatibilities could be removed
with immunosuppressants (but not tissue-type incompatibilities). Aziz et al. (2021) also proposed an ILP model
for KEP-HCA and empirically showed that each unit increase in the budget B had a diminishing return in the
optimal solution value.

To the best of our knowledge, KEP-C was only studied in the case whereK = 2 under the name of “budgeted
matching” (Berger et al. 2011, Janssen 2022), with a predominant focus on the weighted case (note that in KEP,
each arc has unit weight).

Numerous other KEP extensions have been studied in the literature. We mention for example the work of
Klimentova et al. (2023) who looked for stable KEP solutions given a preference list for each recipient-donor
pair, the work of Blom et al. (2024) who looked for robust KEP solutions taking into account potential failures
of donors and recipients, and the work of Carvalho and Lodi (2023) who studied the multi-agent KEP, which
arises when several countries join their recipient-donor pools.

We continue this section by showing that, in the proposed four-level typology, there is a polynomial-time
reduction from a problem at a certain level to the problem at the next level.

Theorem 1. KEP ∝ KEP-RA ∝ KEP-HCA ∝ KEP-C

Proof. Proof. Given in Appendix A. □

Next, we show that KEP-C can be solved in polynomial time when the cycle size K is at most 2. We point
out that we could not find a formal proof for this theorem in the literature besides the work of Janssen (2022),
and the latter does not handle the case in which both endpoints of an edge may be attached to the same vertex.
For completeness, we formalise the proof in the following.

Theorem 2. When K = 2, KEP-C can be solved in polynomial time

Proof. Proof. Given in Appendix B. □
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We conclude this section by displaying in Table 1 known complexity results for KEP, KEP-RA, KEP-HCA,
and KEP-C whenK = 2, K ≥ 3, andK = ∞. For each case, we state whether the problem is inP , isNP-hard,
or is of unknown complexity. We also report the research article in which the proof of complexity can be found.

Table 1: Complexity for KEP, KEP-RA, KEP-HCA, and KEP-C

Problem K = 2 K ≥ 3 K = ∞

KEP P (Roth et al. 2005) NP-hard (Abraham et al. 2007) P (Abraham et al. 2007)
KEP-RA P (Theorems 1 & 2) NP-hard (Theorem 1) P (Aziz et al. 2021)
KEP-HCA P (Theorems 1 & 2) NP-hard (Theorem 1) unknown
KEP-C P (Theorem 2) NP-hard (Theorem 1) unknown

As a last note, we mention that this four-level typology can be used with other KEP extensions such as KEP
with non-directed donors or the weighted KEP. In the latter problem, each arc is associated with a weight and
the goal is to maximise the total weight of the selected arcs. Note that Table 1 is different for weighted KEP
variants as, for example, weighted KEP-C is clearly NP-hard when K = 2 and K = ∞ by reduction from the
Subset Sum problem (Berger et al. 2011).

3 Adapting ILP models for KEP to KEP-RA

In the following, we show how the four most effective (according to the experiments of Delorme et al. 2023) ILP
formulations for KEP, namely the Cycle Formulation (CF), the Half-Cycle Formulation (HCF), the Extended
Edge Formulation (EEF), and the Position-Indexed Edge Formulation (PIEF), can easily be extended to model
KEP-RA.

3.1 Cycle formulation for KEP-RA

In CF, which was introduced by Roth et al. (2007), one enumerates every cycle c of G containing at most K
vertices and gathers them in cycle set C. A binary variable xc is then associated with each cycle c ∈ C, taking
value 1 if cycle c is selected in the solution and value 0 otherwise. If we denote by V(c) the set of recipient-donor
pairs included in cycle c and by rc the number of RAs contained in cycle c, the adaptation of CF to KEP-RA is
as follows:

max z =
∑
c∈C

|V(c)| xc (1)

s.t.
∑
c∈C

v∈V(c)

xc ≤ 1 v ∈ V, (2)

∑
c∈C

rcxc ≤ B, (3)

xc ∈ {0, 1} c ∈ C. (4)

The objective function (1) maximises the number of transplants, whereas constraints (2) ensure that each
recipient-donor pair is included in at most one of the selected cycles. Finally, constraint (3) ensures that the
number of RAs used in the solution is at most B. CF has |C| variables and |V|+1 constraints. As in the case of
a complete compatibility graph, |C| ≈ |V|K , the number of variables in CF increases very quickly with K and
|V| in practice.

3.2 Half-Cycle formulation for KEP-RA

To reduce the rate of the variable increase displayed by CF, Delorme et al. (2023) introduced HCF, a cycle-based
formulation in which each cycle is represented by two compatible halves instead of a whole. From the mod-
elling perspective, such a strategy reduces the number of necessary variables at the expense of supplementary
constraints. In practice, one enumerates every sequence of up to

⌈
K
2

⌉
+1 vertices (also called a half-cycle) and

gathers them in set H. A binary variable xh is then associated which each half-cycle h ∈ H, taking value 1 if
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half-cycle h is selected in the solution and value 0 otherwise. If we denote by Vs(h) the recipient-donor pair
starting half-cycle h, by Ve(h) the recipient-donor pair ending half-cycle h, by Vm(h) the other recipient-donor
pairs included in half-cycle h (i.e., those appearing in the middle of the half-cycle), and by rh the number of
RAs contained in half-cycle h the adaptation of HCF to KEP-RA for even K values is as follows:

max z =
∑
h∈H

(|Vm(h)|+ 1) xh (5)

s.t.
∑
h∈H

v∈Vs(h)∪Ve(h)

0.5xh +
∑
h∈H

v∈Vm(h)

xh ≤ 1 v ∈ V, (6)

∑
h∈H

v1∈Vs(h),v2∈Ve(h)

xh =
∑
h∈H

v1∈Ve(h),v2∈Vs(h)

xh v1 ∈ V, v2 ∈ V : v2 > v1, (7)

∑
h∈H

rhxh ≤ B, (8)

xh ∈ {0, 1} h ∈ H. (9)

The objective function (5) maximises the number of transplants (note that the starting and ending nodes of a
selected half-cycle only count for halves as they both also appear in another selected half-cycle). Constraints
(6) make sure that each recipient-donor pair appears at most once in the middle or at most twice at the start
or end of the selected half-cycles. Constraints (7) ensure that every selected half-cycle can be combined with
another selected half-cycle to form a complete cycle. Finally, constraint (8) makes sure that the number of RAs
used in the solution is at most B. When K is odd, one needs to prevent two half-cycles with size

⌈
K
2

⌉
+ 1 to

be combined together to form a cycle with size K + 1. This is done by setting all variables associated with
half-cycles h ∈ H such that Vs(h) > Ve(h) and |Vm(h)| =

⌈
K
2

⌉
to 0. HCF has |H| variables and O(|V|2)

constraints. In the case of a complete compatibility graph, |H| ≈ |V|1+⌈
K
2 ⌉, the number of variables in HCF is

smaller than the number of variables in CF when K ≥ 4.

3.3 Extended edge formulation for KEP-RA

In EEF, which was introduced by Constantino et al. (2013), one duplicates the compatibility graphG once for each
vertex, resulting in n compatibility graphs G1 = (V1,A1 = {A1s∪A1r}), . . . ,Gn = (Vn,An = {Ans∪Anr}),
where A⟩∫ and A⟩∇ denote the standard and reserve arcs in G⟩, respectively (1 ≤ i ≤ n). For each graph copy
corresponding to v ∈ V , we gather in Av(v

′) the arcs that emanate from the vertex corresponding to recipient-
donor v′. We also associate a binary variable xva to each arc a ∈ Av, taking value 1 if arc a is selected
in graph copy v and value 0 otherwise. If we denote by t(a) the tail of arc a and by h(a) the head of arc
a (v ∈ V, a ∈ Av), the adaptation of EEF to KEP-RA is as follows:

max z =
∑
v∈V

∑
a∈Av

xva (10)

s.t.
∑
v∈V

∑
a∈Av(v′)

xva ≤ 1 v′ ∈ V, (11)

∑
a∈Av

h(a)=v′

xva =
∑
a∈Av
t(a)=v′

xva v ∈ V, v′ ∈ Vv, (12)

∑
a∈Av

xva ≤ K v ∈ V, (13)

∑
v∈V

∑
a∈Avr

xva ≤ B, (14)

xva ∈ {0, 1} v ∈ V, a ∈ Av. (15)

The objective function (10) maximises the number of transplants whereas constraints (11) make sure that each
recipient-donor pair is included in at most one transplant over the n graph copies. Flow conservation constraints
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(12) ensure that the arcs selected in a given graph copy (if any) form (at least) one cycle. Constraints (13) make
sure that, for each graph copy v ∈ V , the cycles selected in the graph copy involve at most K recipient-donor
pairs in total (this can be, for example, a single cycle with size K or one cycle with size K − 3 and one cycle
with size 3). Finally, budget constraint (14) limits the total number of RAs used in the solution over the n graph
copies. EEF has O(|V||A|) variables and O(|V|2) constraints, which is polynomial in the input size (unlike
CF and HCF), but still grows quickly with |V| in practice because of the fact that the compatibility graph is
complete. Note, however, that several EEF model improvements initially proposed for KEP can be extended
to KEP-RA: (i) given a certain node ordering, it is only necessary to consider recipient-donor pair v′ in graph
copy v if v ≤ v′ (v, v′ ∈ V), (ii) an arc can only be selected in graph copy v ∈ V if v itself belongs to an arc
selected in graph copy v, and (iii) an arc can only be selected in graph copy v if there exists at least one feasible
cycle satisfying (i) and (ii) that includes that arc.

3.4 Position-indexed edge formulation for KEP-RA

The main drawback of EEF is its weaker Linear Programming (LP) relaxation compared to CF and HCF, which
comes from the fact that cycles above the cycle size limit may be created when the decision variables are continu-
ous (e.g., a cycle with size 2K where each arc is selected 0.5 times) whereas this was not the case in CF and HCF.

To remedy the situation, Dickerson et al. (2016) introduced PIEF, an extension of EEF in which the vertex
set Vv (v ∈ V) of each compatibility graph is duplicated once for each position a vertex is allowed to take
in a cycle, resulting in K vertex sets V1

v , . . . ,VK
v . The associated arc set Av is then updated accordingly to

link nodes between vertex sets Vk
v and Vk+1

v (k = 1, . . . ,K − 1) to extend the cycle as well as nodes between
vertex sets Vk

v and V1
v (k = 1, . . . ,K) to close the cycle (with a corresponding update made to the RA set

Avr ). We gather in Av(v
′) the arcs in graph copy v that emanate from one of the K vertices corresponding to

recipient-donor v′. As in EEF, one then associates in each graph copy v ∈ V a binary variable xva to each arc
a ∈ Av, taking value 1 if arc a is selected in graph copy v and value 0 otherwise. The adaptation of PIEF to
KEP-RA is as follows:

max z =
∑
v∈V

∑
a∈Av

xva (16)

s.t.
∑
v∈V

∑
a∈Av(v′)

xva ≤ 1 v′ ∈ V, (17)

∑
a∈Av

h(a)=v′

xva =
∑
a∈Av
t(a)=v′

xva v ∈ V, k = 1, . . . ,K, v′ ∈ Vk
v , (18)

∑
v∈V

∑
a∈Avr

xva ≤ B, (19)

xva ∈ {0, 1} v ∈ V, a ∈ Av. (20)

The objective function (16) maximises the number of transplants, capacity constraints (17) make sure that each
recipient-donor pair is included in at most one transplant over the n graph copies and over the K cycle positions,
flow conservation constraints (18) ensure that the arcs selected in a given graph copy (if any) form exactly one
cycle, and budget constraint (19) limits the total number of RAs used over the n graph copies in the solution.
PIEF has O(K|V||A|) variables and O(K|V|2) constraints, but several variable reduction procedures initially
proposed for KEP can be extended to KEP-RA: (i) given a certain node ordering, it is only necessary to consider
the K vertices associated with recipient-donor pair v′ in graph copy v if v ≤ v′ (v, v′ ∈ V), (ii) if a cycle is
formed in graph copy v ∈ V , then it must start by a vertex associated with recipient-donor pair v, or in other
words, V1

v = {v} (v ∈ V), and (iii) an arc can only be selected in graph copy v if there exists at least one
feasible cycle satisfying (i) and (ii) that includes that arc.

4 Preprocessing techniques for KEP-RA

As will be shown in our computational experiments, the size of KEP-RA instances that can be solved to
optimality by the aforementioned models with a state-of-the-art ILP solver is much smaller than the size of
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solvable KEP instances. Indeed, the fact that the compatibility graph is complete not only increases the number
of variables and constraints required by each model, it also decreases the impact of most existing preprocessing
techniques tailored for KEP. In this section, we introduce a KEP-RA-specific symmetry-reduction criterion and
show how it can be used to derive an effective variable reduction procedure for each of the studied models.

Theorem 3. There always exists an optimal KEP-RA solution in which every cycle contains at most one RA.

Proof. Proof. Consider an optimal KEP-RA solution s in which at least one cycle, say c, contains k ≥ 2 RAs
(see the left part of Figure 2, where RAs are represented as dotted arcs). After removing the k RAs from c, one
obtains a set of k weakly connected components, each of those either being composed of v ≥ 2 vertices linked
by a set of v − 1 arcs forming a directed path, or consisting of a single vertex (see the middle part of Figure
2). One can then add an arc (which may or may not be an RA) to each of the k weakly connected components
so as to obtain k cycles, either by linking the last and first vertices of the component’s directed path if it has
two vertices or more, or by adding a self-loop if the component has only one vertex. We obtain an equivalent
KEP-RA solution s′ in which every recipient-donor pair that was included in cycle c is now included in one of
the k cycles with at most one RA per cycle (see the right part of Figure 2). The resulting solution s′ is feasible
because: (i) it satisfies the budget constraint as it contains no more RAs than solution s as the solution was
constructed by removing k RAs and adding k arcs, which are either standard arcs or RAs, (ii) it satisfies the
capacity and cardinality constraints as the new cycles generated are disjoint and their size is always below the
size of (feasible) cycle c. Finally, observe that since solution s′ includes the exact same recipient-donor pairs as
solution s, it is therefore also optimal. □

Figure 2: Transforming a cycle with 3 RAs into 3 cycles with one RA
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Based on Theorem 3, one does not need to account for the possibility of using more than one RA per cycle
in any of the above mentioned models. In particular, only cycles (resp. half-cycles) with one RA need to be
generated in set C (resp. set H) for CF (resp. for HCF) and model improvement (iii) in EEF and PIEF becomes
“an arc can only be selected in graph copy v if there exists at least one feasible cycle containing one RA or fewer
satisfying (i) and (ii) that includes that arc”.

5 A tailored cycle representation for KEP-RA

In this section we introduce a new structure aimed at efficiently modelling cycles with exactly one RA. Such
a structure is inspired by the Position-Indexed Chain-Edge Formulation (PICEF), which was introduced by
Dickerson et al. (2016) to model chains in KEP. Indeed, following the arguments presented in the previous
section, a cycle of size k with exactly one RA can also be seen as a chain of size k − 1 with no RA.

Our structure, which is referred to as Position-Indexed Cycle with One Reserve Arc (PICORA) in the
following, models every cycle of size at most K containing exactly one RA as a path in a graph G′ composed
of up to K arcs. Given the compatibility graph G = (V,A) of a KEP-RA instance, graph G′ = (V ′,A′) is built
such that:

• Vertex set V ′ = {V ′
1 ∪ V ′

2 ∪ · · · ∪ V ′
K ∪ τ} where V ′

1 contains a copy of every vertex that can start a
path, V ′

k contains a copy of every vertex that can be in position k (k = 2, . . . ,K) in a path, and τ is a
dummy vertex used to represent the end of a path. More specifically, V ′

1 contains a copy of every vertex
in V , and V ′

k contains a copy of every vertex in the set {v′ ∈ V | ∃ v ∈ V ′
k−1 such that V(v) ̸= v′ and

(V(v), v′) ∈ A}, where V(v′) is a function that maps a vertex copy v′ ∈ V ′
k (k = 1, . . . ,K) to its original

vertex v ∈ V .
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• Arc set A′ contains a non-terminal arc (v, v′) for every distinct pair of vertices v ∈ V ′
k, v

′ ∈ V ′
k+1 of

every position k = 1, . . . ,K − 1 if both (V(v),V(v′)) ∈ A and V(v) ̸= V(v′), and a terminal arc (v, τ)
for every vertex v ∈ V ′

k of every position k = 1, . . . ,K.

Example 1. Consider the KEP-RA instance with |V| = 6 recipient-donor pairs whose compatibility graph is
shown on the left part of Figure 3. The corresponding PICORA graph G′ for K = 3 is depicted on the right part
of the figure. Cycle A → B → C → A of size 3 with one RA in G is represented by path A1 → B2 → C3 → τ
in G′ whereas cycle C → C of size 1 with one RA in G is represented by path C1 → τ in G′. (Note that the
model will forbid a path such as A1 → B2 → A3 → τ , containing two vertices v, v′ such that V(v) = V(v′).)

Figure 3: Example of the proposed modelling structure for cycles with exactly 1 RA
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After constructing graph G′ = (V ′,A′), one associates a binary variable ya to each arc a ∈ A′ taking value
1 if arc a is selected in the solution and value 0 otherwise. Note that PICORA needs another structure to model
cycles with no RA. Any of the structures proposed in the KEP literature (e.g., CF, HCF, EEF, or PIEF) may be
used. For example, model CF+PICORA for KEP-RA is as follows:

max z =
∑
c∈C

|V(c)| xc +
∑
a∈A′

ya (21)

s.t.
∑
c∈C

v∈V(c)

xc +
∑
a∈A′

V(t(a))=v

ya ≤ 1 v ∈ V, (22)

∑
a∈A′

h(a)=v

ya =
∑
a∈A′

t(a)=v

ya v ∈ V ′ \ {V ′
1 ∪ τ}, (23)

∑
a∈A′

h(a)=τ

ya ≤ B, (24)

xc ∈ {0, 1} c ∈ C, (25)
ya ∈ {0, 1} a ∈ A′. (26)

The objective function (21) maximises the number of transplants, whether those occur in the CF structure or
in the PICORA structure. Constraints (22) make sure that each recipient-donor pair is included in at most one
transplant, independently of the structure in which it is used. Constraints (23) ensure flow conservation at every
node in the PICORA structure, except those that start or end a path. Finally, constraint (24) limits the number
of paths used in the PICORA structure, which is equivalent to the number of RAs used in the solution, to at
most B. On its own, the PICORA structure has O(K|A|) variables and O(K|V|) constraints.
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6 Including non-directed donors in KEP-RA

Thus far we have included only cycles in our models, but we now show how to incorporate chains in KEP-RA.
The most intuitive (but not necessarily the most efficient) way to model chains in KEP-RA is to treat them
as cycles, which can be done by pairing each non-directed donor with a dummy recipient that is compatible
with the donor of every recipient-donor pair. One can also extend the PICEF structure proposed by Dickerson
et al. (2016) and represent every chain (both the ones that include RAs and the ones that do not) as a path
in a graph G′′. As in PICORA, given the compatibility graph G = (V,A) of a KEP-RA instance, graph
G′′ = (V ′′,A′′) is built such that vertex set V ′′ = {V ′′

1 ∪ V ′′
2 ∪ · · · ∪ V ′′

L ∪ τ} where V ′′
1 contains a copy of

every non-directed donor, V ′′
l (l = 2, . . . , L) contains a copy of every vertex v ∈ V , and τ is a dummy vertex

used to represent the end of every chain. Arc set A′′ contains an arc (v, v′) for every distinct pair of vertices
v ∈ V ′′

l , v
′ ∈ V ′′

l+1,V(v) ̸= V(v′) of every position l = 1, . . . , L−1, and an arc (v, τ) for every vertex v ∈ V ′′
l of

every position l = 1, . . . , L. Each selected arc (v, v′) ∈ A′′ then contributes 1 to the RA budget if (V(v),V(v′))
is an RA in G, and 0 otherwise.

Example 2. Let us consider the KEP-RA instance with four recipient-donor pairs A,B,C,D and one non-
directed donor Z for which the compatibility graph is shown on the left part of Figure 4. The corresponding
PICEF graph G′′ for L = 4 is depicted on the right part of the figure (arcs corresponding to RAs are dotted
whereas terminal arcs from each vertex to τ are omitted for visibility). Chain Z → D → A → B of length 4
with one RA in G is represented by path Z → D2 → A3 → B4 → τ in G′′, whereas chain Z → B → C of
length 3 with no RA in G is represented by path Z → B2 → C3 → τ in G′′.

Figure 4: Example of the direct extension of PICEF to model chains with and without RAs
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After constructing graph G′′ = (V ′′,A′′), one associates a binary variable za to each arc a ∈ A′′, taking
value 1 if arc a is selected in the solution and value 0 otherwise. Note that the extension of PICEF needs
another structure to model cycles with and without RAs, such as those presented in Sections 3, 4, and 5. From
a modelling perspective, a set of constraints similar to (23) should be added to enforce flow conservation in the
PICEF structure, whereas the objective function, capacity and budget constraints should be updated to include
the za variables (extending 21, 22, and 24) respectively. The adapted PICEF structure has O(|V|2L) variables
and O(|V|L) constraints.

To reduce the number of arcs that are necessary to model the RAs in G′′, one may consider using the
original PICEF structure for the standard arcs only, and model the RAs using one dummy vertex ωl per subset
V ′′
l (l = 2, . . . , L) attached to each vertex v ∈ V ′′

l−1 by an arc (v, ωl), and to each vertex v ∈ V ′′
l by an arc

(ωl, v). (Each selected arc of the form (ωl, v) contributes 1 to the RA budget.) This reduced PICEF structure has
O((|A|+ |V|)L) variables and O(|V|L) constraints and results in a significant model size decrease in practice.

Example 2. (resumed) Let us consider the same KEP-RA instance with four recipient-donor pairs A,B,C,D
and one non-directed donor Z for which the compatibility graph is shown on the left part of Figure 4. The
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corresponding reduced PICEF graph G′′ for L = 4 is depicted in Figure 5 (arcs corresponding to RAs are dotted
whereas terminal arcs from each non-dummy vertex to τ are omitted for visibility). Chain Z → D → A → B
of length 4 with one RA in G is represented by path Z → D2 → ω3 → A3 → B4 → τ in G′′ whereas chain
Z → B → C of length 3 with no RA in G is represented by path Z → B2 → A3 → τ in G′′.

Figure 5: Example of the improved extension of PICEF to model chains with and without RAs
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Finally, we discuss the adaptation of Theorem 3 when chains are considered in KEP-RA.

Theorem 4. There always exists an optimal KEP-RA solution in which no chains include an RA that is followed
by K − 1 or fewer standard arcs.

Proof. Proof. Given in Appendix C. □

Based on Theorem 4, one does not need to account for the possibility of using an RA in a chain unless it is
followed by at least K standard arcs. This means that:

• A valid reduction procedure forbids two consecutive RAs in a chain. In the reduced PICEF adaptation,
this means that arc (v, ωl) only needs to be created if v is the head of at least one standard arc, whereas
arc (ωl, v) only needs to be created if v is the tail of at least one standard arc. For example in Figure
5, arcs (ω2, C2), (C2, ω3), (ω3, D3), (D3, ω4), and (ω4, D4) do not need to be generated, and therefore,
nodes C2, D3, and D4 can be removed;

• A valid reduction procedure forbids RAs to occur in the last K arcs of a chain (disregarding the final arc
to τ ). In the reduced PICEF adaptation, this means that only dummy vertices ω2, ω3, . . . , ωL−K and their
associated arcs need to be generated. It also means that RAs do not need to be considered in chains unless
L ≥ K + 2. For example in Figure 5, it is not necessary to consider RAs in chains if K ≥ 3. If K = 2,
then one only needs to consider dummy vertex ω2 in the chain structure. The chain corresponding to path
Z → D2 → ω3 → B3 → C4 → τ in G′′ can be replaced by combining the chain corresponding to path
Z → D2 → τ of length 2 without RAs with cycle B → C → B of size 2 with one RA.

7 Computational experiments

In this section, we first empirically evaluate the performance of each of the models and techniques introduced
in Sections 3, 4, and 5 and we measure the improvement brought by reduced-cost variable fixing (see Section
D of the Appendix for a description of reduced-cost variable fixing) on the most promising solution methods.
We then compare the strategies presented in Section 6 to take non-directed donors into account. Finally,
we analyze how the total number of transplants evolves when the number of allowed RAs changes. Our
algorithms were all implemented in C++ and can be downloaded from https://github.com/mdelorme2/
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Mathematical_models_for_the_kidney_exchange_problem_with_reserve_arcs. All computational
tests were executed on a virtual machine AMD EPYC-Rome Processor with 2.00 GHz and 64 GB of RAM
memory, running under Ubuntu 20. The ILP models were solved using Gurobi 11.0.2. A single core was
used for the tests and the barrier algorithm was used to solve the root nodes of the models. For the algorithms
using reduced-cost variable fixing, we deactivated the crossover operation when solving the LP models. For
every run, a time limit of 3600 seconds was imposed.

7.1 Evaluating the proposed solution methods for KEP-RA

We first evaluated the performance of the proposed adaptations of models CF, HCF, EEF, and PIEF to KEP-RA
using the KEP instances introduced by Delorme et al. (2023) which were created using the instance generator
of Delorme et al. (2022) available at https://wpettersson.github.io/kidney-webapp. This dataset
contains 20 instance files for each size n ∈ {50, 100, 200, 400, 600, 800, 1000}. In our first set of experi-
ments, we selected the instances with size up to 400 and ran these with K ∈ {3, 4} and B ∈ {0, 1, 2, 3, 4, 5},
resulting in 4 × 20 × 2 × 6 = 960 KEP-RA instances in total. We solved these with 16 solution methods
MODEL+CONFIGURATION where: MODEL is either (i) CF as described in Section 3.1, (ii) HCF as described in
Section 3.2, (iii) EEF as described in Section 3.3, or (iv) PIEF as described in Section 3.4; and CONFIGURATION
is either (i) NONE if the reduction procedure derived from Theorem 3 is not applied, (ii) 1RA if this reduction
procedure is applied, (iii) PICORA if the structure introduced in Section 5 is used to model cycles with RAs, or
(iv) PICORA+RCVF if this structure is used together with reduced-cost variable fixing.

We report in Table 2 the results obtained by each model in configurations NONE and 1RA on instances
with n = 50 recipient-donor pairs. The first two columns of the table identify the model and the number of
allowed RAs. The following columns provide, for each configuration and each K value, the number of optimal
solutions found (column “#opt”), the average CPU time in seconds over each run of the dataset including the
ones terminated by the time limit (column “T(s)”), and the average number of variables (column “#var”) and
constraints (column “#const”) in the model.

Table 2: Results of the tested models in configurations NONE and 1RA for instances with n = 50

Model B
K = 3 K = 4

NONE 1RA NONE 1RA

#opt T(s) #var #const #opt T(s) #var #const #opt T(s) #var #const #opt T(s) #var #const

CF

0 20 0 23 51 20 0 23 51 20 0 66 51 20 0 66 51
1 20 0 983 51 20 0 983 51 20 0 3534 51 20 0 3534 51
2 20 0.2 10,991 51 20 0 983 51 20 1 62,870 51 20 0.1 3534 51
3 20 0.5 40,475 51 20 0 983 51 20 6.4 477,360 51 20 0.1 3534 51
4 20 1.4 40,475 51 20 0 983 51 20 22 1,422,275 51 20 0.1 3534 51
5 20 1 40,475 51 20 0 983 51 20 213 1,422,275 51 20 0.1 3534 51

HCF

0 20 0 90 68 20 0 90 68 20 0 136 78 20 0 136 78
1 20 0 1250 331 20 0 1250 331 20 0.1 2935 385 20 0.1 2935 385
2 20 0.3 12,216 1276 20 0 1250 331 20 1 32,234 1276 20 0.1 2935 385
3 20 1.2 41,700 1276 20 0 1250 331 20 2 80,900 1276 20 0.1 2935 385
4 20 1 41,700 1276 20 0 1250 331 20 3.8 80,900 1276 20 0.1 2935 385
5 20 1 41,700 1276 20 0 1250 331 20 2.3 80,900 1276 20 0.1 2935 385

EEF

0 20 0 47 131 20 0 47 181 20 0 101 154 20 0 101 204
1 20 0 1337 490 20 0 1337 540 20 0.1 2462 560 20 0.1 2462 610
2 20 0.5 12,427 1376 20 0 1337 540 20 1 17,495 1376 20 0.2 2462 610
3 20 1.5 42,925 1376 20 0.1 1337 540 20 2.3 42,925 1376 20 0.2 2462 610
4 20 1.4 42,925 1376 20 0.1 1337 540 20 4.2 42,925 1376 20 0.2 2462 610
5 20 1.6 42,925 1376 20 0.1 1337 540 20 8.3 42,925 1376 20 0.3 2462 610

PIEF

0 20 0 49 83 20 0 49 83 20 0 118 117 20 0 118 117
1 20 0 1469 580 20 0 1469 580 20 0.1 3199 886 20 0.1 3199 886
2 20 0.4 13,354 2253 20 0 1469 580 20 0.9 26,651 3041 20 0.1 3199 886
3 20 1 44,150 2551 20 0 1469 580 20 2.1 80,101 3664 20 0.1 3199 886
4 20 1.2 44,150 2551 20 0 1469 580 20 2.3 85,800 3776 20 0.1 3199 886
5 20 1.7 44,150 2551 20 0 1469 580 20 2 85,800 3776 20 0.1 3199 886

First and foremost, the experiments clearly show that every model has a much lower computation time in
configuration 1RA than in configuration NONE. This can be explained by the fact that the number of variables and
constraints for all models stops increasing once B = 1 in configuration 1RA whereas it only stops increasing
once B = K in configuration NONE. Interestingly, we observe that the model size alone does not fully explain
the poor empirical performance displayed by the models in configuration NONE: for example for instances where
n = 50 and K = 4, CF+NONE took 22 seconds on average to solve an instance when B = 4 whereas it took 213
seconds on average to solve an instance when B = 5. Further investigation showed that this difference could
mostly be attributed to the presolve phase of the solver, which was significantly longer when B = 5 than when
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B = 4, while not being more effective. As far as comparing the models in configuration 1RA is concerned, not
much can be said at this stage as all instances with 50 recipients could be solved within a fraction of a second.

We report in Table 3 (resp. Table 6 in the Appendix) the results obtained by each model in configurations
1RA, PICORA, and PICORA+RCVF on instances with n ∈ {50, 100, 200, 400} recipient-donor pairs and cycle size
limit K = 4 (resp. K = 3). The first two columns of the tables now identify the instance size and the number
of allowed RAs whereas the following columns provide, for each model and for each configuration, the number
of optimal solutions found and the average CPU time. Information related to the average model size is provided
in Tables 7 and 8 of the Appendix.

Table 3: Results of the tested models in configurations 1RA, PICORA, and PICORA+RCVF for instances with
K = 4

n B
CF HCF EEF PIEF

1RA PICORA PICORA+
RCVF 1RA PICORA PICORA+

RCVF 1RA PICORA PICORA+
RCVF 1RA PICORA PICORA+

RCVF

#opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s)

50

0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0
1 20 0 20 0 20 0 20 0.1 20 0 20 0 20 0.1 20 0 20 0 20 0.1 20 0 20 0
2 20 0.1 20 0 20 0 20 0.1 20 0 20 0 20 0.2 20 0 20 0 20 0.1 20 0 20 0
3 20 0.1 20 0 20 0 20 0.1 20 0 20 0 20 0.2 20 0 20 0 20 0.1 20 0 20 0
4 20 0.1 20 0 20 0 20 0.1 20 0 20 0 20 0.2 20 0 20 0 20 0.1 20 0 20 0
5 20 0.1 20 0 20 0 20 0.1 20 0 20 0 20 0.3 20 0 20 0 20 0.1 20 0 20 0

100

0 20 0 20 0 20 0 20 0 20 0 20 0 20 0.1 20 0.1 20 0 20 0.1 20 0.1 20 0.1
1 20 0.5 20 0.1 20 0 20 1.1 20 0.1 20 0 20 29.1 20 0.2 20 0.1 20 1.2 20 0.2 20 0.1
2 20 1.1 20 0.1 20 0.1 20 1.2 20 0.1 20 0.1 20 80 20 0.2 20 0.1 20 1.1 20 0.2 20 0.1
3 20 1.1 20 0.1 20 0.1 20 1.2 20 0.1 20 0.1 20 85.6 20 0.2 20 0.1 20 1.4 20 0.2 20 0.1
4 20 1 20 0.1 20 0.1 20 1.3 20 0.1 20 0.1 20 98.8 20 0.3 20 0.3 20 1.4 20 0.2 20 0.2
5 20 1 20 0.1 20 0.1 20 1.2 20 0.1 20 0.1 20 54.7 20 0.2 20 0.2 20 1.5 20 0.2 20 0.1

200

0 20 0.4 20 0.4 20 0.2 20 0.4 20 0.4 20 0.3 20 1.6 20 1.5 20 1.4 20 0.9 20 1 20 0.7
1 20 16.3 20 0.8 20 0.4 20 16.9 20 0.9 20 0.5 13 2007.1 20 2.2 20 1.6 20 36.5 20 1.6 20 0.9
2 20 21 20 0.8 20 0.5 20 19 20 1 20 0.6 11 1971.7 20 2.1 20 1.4 20 45.4 20 1.5 20 1.1
3 20 21 20 0.8 20 0.5 20 18.2 20 0.9 20 0.5 14 1662 20 1.9 20 1.3 20 39.6 20 1.7 20 1.1
4 20 22.8 20 0.7 20 0.5 20 17.2 20 0.9 20 0.6 16 1429 20 2 20 1.4 20 49.1 20 1.6 20 1.1
5 20 22.4 20 0.9 20 0.6 20 18.1 20 1 20 0.6 14 1585.1 20 1.9 20 1.4 20 52.8 20 1.6 20 1.2

400

0 20 8.7 20 9.9 20 5.1 20 17.4 20 18.6 20 9.4 20 64.4 20 58.9 20 45.8 20 34.3 20 34.7 20 19.1
1 20 488.8 20 16.7 20 7.5 20 477.3 20 26 20 12.3 1 3561.4 20 102.9 20 66.2 19 1283.8 20 41.6 20 23.1
2 20 457.7 20 14.5 20 7.7 20 460.1 20 31.6 20 13.2 1 3480.5 20 88.2 20 48.5 19 1334.3 20 46.2 20 23.9
3 20 466 20 16 20 7.7 20 501.6 20 28.2 20 12.6 0 3600 20 91 20 51.9 19 1472.1 20 40.1 20 22.4
4 20 487.9 20 16.3 20 8 20 521.5 20 28.2 20 11.8 2 3429.4 20 87.5 20 49.2 19 1519.8 20 42.1 20 23.4
5 20 463.7 20 14.7 20 7.7 20 589.1 20 28.3 20 13.1 0 3600 20 72.3 20 44.1 19 1610 20 49.3 20 23.5

Indubitably, every model obtained better performance in configuration PICORA than in configuration 1RA,
which can mostly be attributed to a sharp reduction in the model size when using the former configuration over
the latter. As far as reduced-cost variable fixing is concerned, it appears that using the technique is beneficial
for every model (e.g., HCF+PICORA needed 28.3s on average to solve an instance with n = 400,K = 4, and
B = 5 whereas HCF+PICORA+RCVF only needed 13.1s).

Finally, we point out that the average computation time increase caused by RAs (i.e., when B goes from 0
to 1) is greatly reduced in configurations PICORA and PICORA+RCVF: for instances with n = 400 and K = 4,
the average solving time jumped from 8.7s to 488.8s for CF+1RA, whereas it only went from 9.9s to 16.7s for
CF+PICORA and from 5.1s to 7.5s for CF+PICORA+RCVF. This indicates that RAs can be taken into account
without significantly increasing the average solving time, and that, therefore, we should be able to solve KEP-RA
instances with the same order of magnitude as solvable KEP instances. We confirm this conclusion in Table 9 of
the Appendix, where we evaluate the performance of each model in configuration PICORA+RCVF for instances
with n = {600, 800, 1000}. Clearly, CF, HCF, and PIEF are able to solve large size KEP-RA instances in
configuration PICORA+RCVF, but this is not the case for EEF when K = 4.

7.2 Evaluating the proposed solution methods for KEP-RA with non-directed donors

In this second set of experiments, we compared two strategies presented in Section 6 to include non-directed
donors: one that uses the direct extension of PICEF (corresponding to Figure 4) to model the chains, which is
referred to as DPICEF, and one that uses the improved extension of PICEF (corresponding to Figure 5) together
with the preprocessing derived from Theorem 4, which is referred to as IPICEFTH4. We used CF+PICORA to
model the cycles with and without RAs as it obtained the best performance in our previous set of experiments,
and we also used reduced-cost variable fixing to reduce the size of the overall model. We created new KEP
instances using the same instance generator as before, in which the field “Proportion of donors who are altruistic”
was set to 0.1. An instance with 600 recipient-donor pairs would have size n = 667 in total, which includes
67 non-directed donors, as 67

667 ≈ 0.1. We report in Table 4 the results obtained by CF+PICORA+DPICEF+RCVF
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and by CF+PICORA+IPICEFTH4+RCVF on instances with n ∈ {600 + 67, 800 + 89, 1000 + 111}, K ∈ {3, 4},
L ∈ {K, 2K}, and B ∈ {0, 1, 2, 3, 4, 5}. A similar table with the average model size is provided in Table 10 of
the Appendix.

Table 4: Results of CF+PICORA+DPICEF+RCVF and CF+PICORA+IPICEFTH4+RCVF for large instances with
chains

n B

CF+PICORA+DPICEF+RCVF CF+PICORA+IPICEFTH4+RCVF

K = 3 K = 4 K = 3 K = 4

L = 3 L = 6 L = 4 L = 8 L = 3 L = 6 L = 4 L = 8

#opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s)

667

0 20 1.8 20 16.7 20 63.4 20 128.6 20 1.8 20 17.4 20 63.8 20 130.6
1 20 11.5 20 124 20 134.9 20 698.5 20 4.8 20 27.4 20 86 20 161.9
2 20 11.1 20 104 20 135.5 20 580.9 20 4.5 20 24.7 20 85.5 20 166.7
3 20 11.1 20 98.7 20 131.1 20 439.1 20 4.7 20 25.8 20 85.5 20 146.5
4 20 11 20 90.5 20 130.8 20 522.8 20 4.6 20 25.8 20 78.7 20 146.3
5 20 10.9 20 94.7 20 130.5 20 457.7 20 4.8 20 24.6 20 85.8 20 155.1

889

0 20 4.5 20 46.1 20 179.4 20 319.8 20 4.4 20 47.4 20 153.5 20 308.8
1 20 27 20 334.5 20 453.7 19 2655 20 11.3 20 74.2 20 204.1 20 359.8
2 20 27.1 20 311.7 20 382.7 20 2479.8 20 11.5 20 77.1 20 197.3 20 435.1
3 20 26.7 20 297.2 20 355.2 20 1889.3 20 11.2 20 68.9 20 201.7 20 411.8
4 20 26 20 318 20 375.8 20 1412.6 20 11.4 20 69.8 20 229 20 432.7
5 20 25.9 20 302.1 20 402.7 20 1517 20 11.6 20 72 20 198.7 20 407.1

1111

0 20 10.2 20 92.7 20 511 20 850.9 20 9.3 20 88.4 20 470 20 830.4
1 20 55.5 20 697.6 20 2149.3 3 3400.6 20 26.7 20 138.8 20 606.2 20 933.4
2 20 53.9 20 746.2 20 1417.3 0 3600 20 24.2 20 132.2 20 576.5 20 965.5
3 20 52.7 20 667 20 892.4 2 3570 20 24.5 20 138.3 20 562.9 20 906.2
4 20 53.1 20 621.5 20 1029.6 10 3076 20 24 20 145.8 20 554.7 20 903.2
5 20 53.1 20 582.6 20 1047.1 18 2779.1 20 25.6 20 138.7 20 644.3 20 1103.1

Even though CF+PICORA+DPICEF+RCVF was able to solve every large size instance within the time limit,
except those whereK = 4 andL = 8, the performance increase resulting from the improved PICEF structure and
the preprocessing derived from Theorem 4 is significant as witnessed by the sharp reduction in the computation
time needed by CF+PICORA+IPICEFTH4+RCVF, and the fact that the approach is able to solve all tested large size
instances. Such a speed-up can be explained by the significant difference in the number of variables required
by the two approaches when RAs are considered (especially for larger K and L values, as shown in Table 10
in the Appendix). Interestingly, we observe that CF+PICORA+IPICEFTH4+RCVF is only mildly impacted by
the presence of RAs, with an average computation time around a third higher when B > 0 compared to when
B = 0, whereas CF+PICORA+DPICEF+RCVF is strongly impacted by the presence of RAs, as witnessed by its
results on instances with n = 1111,K = 4, and L = 8: all instances could be solved when B = 0, but only 3
could be solved when B = 1. We also notice that the difficulty of a KEP-RA instance did not increase linearly
with B for the two approaches.

7.3 Measuring the number of additional transplants brought by RAs

Our last set of experiments is aimed at empirically evaluating the impact of RAs in various settings. To do so, we
generated smaller KEP instances with a 0.1 proportion of non-directed donors and n ∈ {50+6, 100+11, 200+
22, 400+44}, and solved them with maximum cycle size K ∈ {3, 4}, maximum chain length L ∈ {1,K, 2K},
and maximum number of allowed RAs B ∈ {0, 1, 2, 3, 4, 5}. The average number of transplants in each setting
is reported in Table 5 in column “#trans”, whereas the average number of extra transplants brought by the
addition of the last RA is displayed in column “#extra”. Note that when L = 1, each non-directed donor is
involved in a chain that links them directly to the terminal node τ , and therefore counts towards 1 unit in the
objective function. The latter can be seen as not allowing chains in KEP-RA.

Interestingly, we observe that RAs have a much larger impact when the instance size is small: for instances
with n = 222, even the 5th RA still brings 2.8 additional transplants on average when K = 3 and L = 1,
whereas it only brings 2.1 additional transplants on average for instances with n = 400. We also notice that
RAs have a smaller impact when the maximum cycle size increases: for instances with n = 222, the 1st RA
brings 2.1 additional transplants on average when K = L = 3, whereas it only brings 1.1 additional transplants
on average when K = L = 4. We also observe that the presence of RAs is less impactful when long chains
are considered: for instances with n = 56 and K = 3, the 5th RA brings 2.7 additional transplants on average
when L = 1, whereas it only brings 1.9 additional transplants on average when L = 3, and 1.2 when L = 6.
Finally, we observe that in several settings, especially for large instances where long chains are allowed, each
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Table 5: Average number of transplants in KEP-RA instances with chains depending on n, B, K, and L

n B
K = 3 K = 4

L = 1 L = 3 L = 6 L = 1 L = 4 L = 8

#trans #extra #trans #extra #trans #extra #trans #extra #trans #extra #trans #extra

56

0 22.9 - 31.4 - 37.6 - 27.2 - 36.2 - 38.7 -
1 25.9 3 34.4 3 40.2 2.6 31 3.8 39.2 3 41 2.3
2 28.9 3 37.2 2.8 42.1 1.8 34.3 3.3 41.4 2.3 42.7 1.8
3 31.7 2.9 39.7 2.6 43.5 1.4 37.2 3 43.1 1.7 43.9 1.2
4 34.5 2.8 42.1 2.4 44.8 1.3 39.7 2.5 44.6 1.5 45 1.1
5 37.2 2.7 44 1.9 46 1.2 41.5 1.9 45.8 1.2 46 1

111

0 53.7 - 67.7 - 77.7 - 63.1 - 77 - 78.3 -
1 56.7 3 70.6 2.9 79.5 1.8 66.9 3.8 79 2 79.6 1.3
2 59.7 3 73.6 3 80.7 1.2 70.3 3.5 80.5 1.6 80.8 1.2
3 62.7 3 76.4 2.9 81.8 1.1 73.3 3 81.6 1.1 81.8 1
4 65.7 3 79 2.6 82.8 1 76 2.8 82.7 1.1 82.8 1
5 68.6 2.9 81.4 2.4 83.8 1 78.2 2.2 83.7 1 83.8 1

222

0 136.9 - 164 - 166.4 - 148.8 - 166.4 - 166.4 -
1 139.9 3 166.1 2.1 167.4 1 151.4 2.7 167.4 1.1 167.4 1
2 142.9 3 167.8 1.7 168.4 1 153.6 2.2 168.4 1 168.4 1
3 145.8 3 169 1.2 169.4 1 155.8 2.2 169.4 1 169.4 1
4 148.7 2.9 170.2 1.2 170.4 1 157.6 1.8 170.4 1 170.4 1
5 151.5 2.8 171.2 1 171.4 1 159.3 1.7 171.4 1 171.4 1

444

0 297.4 - 331.3 - 331.4 - 301.7 - 331.4 - 331.4 -
1 300.3 2.9 332.4 1.1 332.4 1 304 2.3 332.4 1 332.4 1
2 303.1 2.8 333.4 1 333.4 1 306 2 333.4 1 333.4 1
3 305.5 2.4 334.4 1 334.4 1 307.9 1.9 334.4 1 334.4 1
4 307.8 2.3 335.4 1 335.4 1 309.8 1.9 335.4 1 335.4 1
5 309.9 2.1 336.4 1 336.4 1 311.6 1.8 336.4 1 336.4 1

extra RA only triggers one additional transplant (the one brought by the RA itself), indicating that the overall
benefit of allowing RAs in those settings is limited. If one had to rank the impact of each feature based on the
outcomes of these experiments, it appears that allowing chains results in the highest number of extra transplants,
whereas considering longer cycles, longer chains, and RAs all seem to have an effect with the same order of
magnitude. Note, however, that not all these features pose the same level of logistical and legal challenges in a
kidney exchange programme. These conclusions differ from the ones reported by Andersson and Kratz (2020)
in the context of KEP-HCA, as the latter found that the inclusion of HCAs was more impactful than the inclusion
of chains or longer cycles. Such a difference could be due to the fact that the chain size was limited to 2 in the
experiments of Andersson and Kratz 2020, whereas the budget was unlimited.

As a final remark, we point out that these experiments showed that each unit increase in the number of
allowed RAs had a diminishing return in terms of extra number of transplants they enabled (which, this time, is
in line with the findings of Aziz et al. 2021 in the context of KEP-HCA). One could postulate that this finding
is true for every KEP-RA instance. However, we present in Figure 6 an instance with n = 5 and K = 3 for
which this is not the case: with no RAs (in the left part of the figure), an optimal solution consists of cycle
B → C → B for a total of 2 transplants; with one RA (in the middle), an optimal solution consists of cycles
B → C → B and E for a total of 3 transplants, and with two RAs (in the right part of the figure), an optimal
solution consists of cycles B → A → B and E → C → D → E for a total of 5 transplants. In this instance,
the first RA enables one extra transplant whereas the second RA enables two extra transplants.

Figure 6: A KEP-RA instance for which the RAs do not have a diminishing return

A

B C

D

E

A

B C

D

E

A

B C

D

E

15



8 Conclusion

We studied the Kidney Exchange Problem with Reserve Arcs (KEP-RA), an extension of the well known Kidney
Exchange Problem (KEP) in which a fixed number of transplants that are deemed incompatible can be made
feasible (e.g., with immunosuppressants). We introduced and empirically tested various modelling strategies
for the problem, and showed that our best approaches, which use the fact that there always exists an optimal
KEP-RA solution where each cycle contains at most one Reserve Arc (RA), could solve instances with up to
1,000 recipient-donor pairs. We also discussed how non-directed donors could be taken into account in the
proposed approaches. Finally, we measured the number of additional transplants enabled by the presence of
RAs and outlined that the latter was particularly impactful in small size instances and in instances without
non-directed donors. We also showed that each supplementary RA had a diminishing return in the general case,
but that one could also construct artificial KEP-RA instances for which this was not the case. As future work,
we plan to study KEP with half-compatible arcs and KEP with costs, two generalizations of KEP-RA. Another
research direction involves analyzing how concepts such as stability, robustness, and the multi-agent setting,
which were recently considered for KEP, could be extended to KEP-RA.
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Roth, A., Sönmez, T., and Ünver, M. (2005). Pairwise kidney exchange. Journal of Economic Theory, 125(2):151–188.
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APPENDIX

A Proof of Theorem 1

Let us start by showing that KEP ∝ KEP-RA. Suppose G = (V,A) and K is an instance of KEP. One can easily
build a corresponding KEP-RA instance G′ = (V ′,A′ = {A′

s ∪ A′
r}), K ′, and B′ by setting V ′ = V , A′

s = A,
A′

r = ∅, K ′ = K and B′ = 0. In other words, a KEP instance can be seen as a KEP-RA instance in which the
budget is set to 0.

Let us continue by showing that KEP-RA ∝ KEP-HCA. Suppose G = (V,A = {As ∪ Ar}), K, and B is an
instance of KEP-RA. One can easily build a corresponding KEP-HCA instanceG′ = (V ′,A′ = {A′

s∪A′
h∪A′

i}),
K ′, and B′ by setting V ′ = V , A′

s = As, A′
h = Ar, A′

i = ∅, K ′ = K, and B′ = B. In other words, a KEP-RA
instance can be seen as a KEP-HCA instance in which the set of infeasible arcs is empty.

Let us finish by showing that KEP-HCA ∝ KEP-C. Suppose G = (V,A = {As ∪ Ah ∪ Ai}), K, and B is an
instance of KEP-HCA. One can easily build a corresponding KEP-C instance G′ = (V ′,A′), c′a (a ∈ A′), K ′,
and B′ by setting V ′ = V , A′ = As ∪ Ah ∪ Ai, c′a = 0 (a ∈ As), c′a = 1 (a ∈ Ah), c′a = B + 1 (a ∈ Ai),
K ′ = K, and B′ = B. In other words, a KEP-HCA instance can be seen as a KEP-C instance in which the
feasible arcs have cost 0, the half-compatible arcs have cost 1, and the infeasible arcs have cost B + 1.

B Proof of Theorem 2

Let us first recall that, given a non-directed graph G′ = (V ′, E ′) and a vector cost c′ that associates each edge
e ∈ E ′ to cost c′e, a minimum cost perfect matching M′ of G′ can be computed in polynomial time (Duan et al.
2018). Such a problem is referred to as MCPM hereafter. Given G = (V,A), c, K = 2, and B an instance of
KEP-HCA, we build a corresponding MCPM instance by:

• Setting V’ = V ′
o ∪ V ′

d where V ′
o = V is the original set of vertices and V ′

d is a set of |V| dummy nodes,
one for each vertex in V , to account for the fact that a vertex may be matched with itself (allowing for
compatible pairs). Note that there are therefore always an even number of nodes in V ′;

• Setting E ′ = {{p1, p2} | p1, p2 ∈ V ′ and p1 ̸= p2} with cost c′p1,p2 equals to:

– cp1,p2 + cp2,p1 if p1, p2 ∈ V ′
o,

– cp1,p1 if p1 ∈ V ′
o, p2 ∈ V ′

d, and p2 is the dummy node associated with p1,
– B + 2 if p1 ∈ V ′

o, p2 ∈ V ′
d, and p2 is not the dummy node associated with p1,

– 0 if p1, p2 ∈ V ′
d.

After finding an optimal solution for the resulting MCPM instance, say with objective value z′, one can derive
the minimum budget B′ = z′ that is needed to match all |V| recipient-donor pairs. If B′ ≤ B, then an optimal
solution for KEP-C was found. Otherwise, we know for a fact that it is impossible to include all |V| recipient-
donor pairs in the solution and |V| − 1 becomes a valid upper bound for the KEP-C instance. We therefore
transform the MCPM instance such that one original vertex and its associated dummy node are now allowed to
not be included in the solution. To permit this, we add (i) one vertex v to set V ′

o together with an edge {p, v}
with cost 0 for every vertex p ∈ V ′

o \ {v} to E’ and (ii) one vertex w to set V ′
d together with an edge {p, w} with

cost 0 for every vertex p ∈ V ′
d \ {w} to E’. After finding an optimal solution for the resulting MCPM instance,

one can derive the minimum budget B′ that is needed to match all but one recipient-donor pair. If B′ ≤ B,
then an optimal solution for KEP-C was found. Otherwise, we know for a fact that it is impossible to include
|V| − 1 recipient-donor pairs in the solution and |V| − 2 becomes a valid upper bound for the KEP-C instance.
We therefore transform the MCPM instance such that two original vertices and their associated dummy nodes
are now allowed to not be included in the solution and we iterate the procedure until B′ ≤ B. As the total
number of iterations is bounded by |V|, the overall complexity of the resulting routine is polynomial.

18



C Proof of Theorem 4

Let us consider an optimal KEP-RA solution s in which at least one chain, say c, contains at least one RA that
is followed by K − 1 or fewer standard arcs (see the left part of Figure 7, where RAs are represented as dotted
arcs). After removing all the RAs from c, one obtains a set of k weakly connected components, each of those
either being composed of v ≥ 2 vertices linked by a set of v − 1 arcs forming a directed path, or consisting of
a single vertex (see the middle part of Figure 7). We group in Π≥K the components that contain K vertices or
more and we group in Π<K the remaining components. Following our assumption, it holds that |Π<K | ≥ 1.
One can then add an arc to each of the |Π<K | weakly connected components composed of K − 1 vertices or
fewer so as to obtain |Π<K | cycles, either by linking the last and first vertices of the component’s directed path
if it has two vertices or more, or by adding a self-loop if the component consists of a single vertex. One finishes
by linking the Π≥K remaining components together to form a new chain (see the right part of Figure 7). This
equivalent KEP-RA solution s′ is feasible because: (i) it satisfies the budget constraint as it contains no more
RAs than solution s, as the solution was constructed by removing k RAs and adding k arcs, which are either
standard arcs or RAs, (ii) it satisfies the capacity and cardinality constraints as each new cycle generated is of
size at most K and the new chain generated is of size at most the size of c. Finally, observe that since solution
s′ includes the exact same recipient-donor pairs as solution s, it is therefore also optimal.

Figure 7: Transforming a chain that includes an RA followed by K − 1 standard arcs or fewer in a KEP-RA
instance where K = 2 and L = 9
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D Description of reduced-cost variable fixing

Reduced-cost variable fixing is a technique arising from linear optimization that is used to reduce the number
of variables that needs to be considered in an ILP model. In the context of KEP, Delorme et al. (2024, 2023)
showed that using reduced-cost variable fixing was empirically beneficial when using the CF, PICEF, PIEF, and
HCF models. To apply reduced-cost variable fixing for KEP-RA, one first solves the LP-relaxation of one of
the four models considered, saves the objective value, say ẑ, and uses it to derive a valid upper bound U = ⌊ẑ⌋
on the optimal solution value. From now on, we are only looking for an integer solution with objective value
U . Delorme et al. (2024) showed that any LP solution in which a variable v with reduced cost ŝv ≤ U − ẑ − ϵ
takes value 1 or above must have objective value strictly below U (ϵ is a very small number used to avoid
precision errors). Therefore, no integer solution where xv = 1 can have objective value U , meaning that xv
can be deactivated (i.e., set to 0 or not created at all). If we find a solution with value U for the reduced model,
then that solution is optimal. If that is not the case, then it means that no solution with objective value U exists,
so U − 1 becomes a valid upper bound. U is thus decremented and all the variables are reactivated except the
ones with reduced cost smaller than or equal to the updated U − ẑ − ϵ value. The algorithm is iterated until
a solution with value U is found (which may occur immediately after updating the upper bound if the solution
obtained at the previous iteration had value U − 1 for example).

E Supplementary tables
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Table 6: Results of the tested models in configurations 1RA, PICORA, and PICORA+RCVF for instances with
K = 3

n B
CF HCF EEF PIEF

1RA PICORA PICORA+RCVF 1RA PICORA PICORA+RCVF 1RA PICORA PICORA+RCVF 1RA PICORA PICORA+RCVF

#opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s)

50

0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0
1 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0
2 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0
3 20 0 20 0 20 0 20 0 20 0 20 0 20 0.1 20 0 20 0 20 0 20 0 20 0
4 20 0 20 0 20 0 20 0 20 0 20 0 20 0.1 20 0 20 0 20 0 20 0 20 0
5 20 0 20 0 20 0 20 0 20 0 20 0 20 0.1 20 0 20 0 20 0 20 0 20 0

100

0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0
1 20 0 20 0.1 20 0 20 0.2 20 0.1 20 0 20 0.8 20 0.1 20 0 20 0.3 20 0.1 20 0.1
2 20 0.1 20 0 20 0 20 0.2 20 0 20 0 20 0.8 20 0 20 0 20 0.3 20 0.1 20 0.1
3 20 0.1 20 0 20 0 20 0.2 20 0 20 0 20 0.8 20 0 20 0 20 0.3 20 0.1 20 0.1
4 20 0.1 20 0 20 0 20 0.2 20 0 20 0 20 0.9 20 0 20 0 20 0.3 20 0.1 20 0.1
5 20 0.1 20 0 20 0 20 0.2 20 0 20 0 20 0.9 20 0.1 20 0 20 0.3 20 0.1 20 0.1

200

0 20 0 20 0 20 0 20 0.1 20 0.1 20 0 20 0.1 20 0.1 20 0.1 20 0.4 20 0.4 20 0.3
1 20 0.4 20 0.2 20 0.1 20 1.8 20 0.2 20 0.1 20 52.4 20 0.3 20 0.2 20 2.9 20 0.6 20 0.5
2 20 1.1 20 0.2 20 0.1 20 1.8 20 0.2 20 0.1 20 53.4 20 0.3 20 0.2 20 2.7 20 0.6 20 0.4
3 20 1.1 20 0.2 20 0.1 20 1.8 20 0.2 20 0.1 20 54.3 20 0.3 20 0.2 20 2.6 20 0.5 20 0.5
4 20 1.1 20 0.2 20 0.1 20 1.9 20 0.2 20 0.2 20 136.3 20 0.3 20 0.2 20 2.7 20 0.5 20 0.5
5 20 1.1 20 0.2 20 0.1 20 1.9 20 0.2 20 0.2 20 90.4 20 0.3 20 0.2 20 3.1 20 0.6 20 0.5

400

0 20 0.3 20 0.3 20 0.2 20 0.4 20 0.3 20 0.3 20 0.7 20 0.7 20 0.5 20 3 20 2.9 20 2.8
1 20 9.4 20 1 20 0.5 20 19.5 20 1.2 20 0.6 2 3525.1 20 1.7 20 0.8 20 33.2 20 4 20 3.1
2 20 9.4 20 0.9 20 0.5 20 18.9 20 1.1 20 0.7 3 3452.3 20 1.7 20 1 20 30.6 20 4 20 3.2
3 20 8.9 20 1 20 0.5 20 18.4 20 1.1 20 0.7 2 3488.3 20 1.8 20 0.9 20 29.8 20 4.1 20 3.2
4 20 8.8 20 1 20 0.6 20 19.2 20 1.2 20 0.8 5 3128.1 20 1.8 20 1 20 30.9 20 4.1 20 3.3
5 20 8.8 20 1 20 0.6 20 18 20 1.1 20 0.8 6 3034.5 20 1.9 20 1 20 32.4 20 4.1 20 3.3

Table 7: Average number of variables and constraints (in thousands) for the tested models in configurations
1RA, PICORA, and PICORA+RCVF for instances with K = 3

n B
CF HCF EEF PIEF

1RA PICORA PICORA+RCVF 1RA PICORA PICORA+RCVF 1RA PICORA PICORA+RCVF 1RA PICORA PICORA+RCVF

#var #const #var #const #var #const #var #const #var #const #var #const #var #const #var #const #var #const #var #const #var #const #var #const

50

0 0 0.1 0 0.1 0 0.1 0.1 0.1 0 0.1 0 0.1 0 0.2 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1
1 1 0.1 0.6 0.1 0.2 0.1 1.2 0.3 0.6 0.2 0.2 0.1 1.3 0.5 0.6 0.2 0.2 0.2 1.5 0.6 0.6 0.2 0.2 0.2
2 1 0.1 0.6 0.1 0.2 0.1 1.2 0.3 0.6 0.2 0.2 0.1 1.3 0.5 0.6 0.2 0.2 0.2 1.5 0.6 0.6 0.2 0.2 0.2
3 1 0.1 0.6 0.1 0.2 0.1 1.2 0.3 0.6 0.2 0.2 0.1 1.3 0.5 0.6 0.2 0.2 0.2 1.5 0.6 0.6 0.2 0.2 0.2
4 1 0.1 0.6 0.1 0.2 0.1 1.2 0.3 0.6 0.2 0.2 0.1 1.3 0.5 0.6 0.2 0.2 0.2 1.5 0.6 0.6 0.2 0.2 0.2
5 1 0.1 0.6 0.1 0.2 0.1 1.2 0.3 0.6 0.2 0.2 0.1 1.3 0.5 0.6 0.2 0.2 0.2 1.5 0.6 0.6 0.2 0.2 0.2

100

0 0.1 0.1 0.1 0.1 0 0.1 0.3 0.2 0.2 0.2 0.1 0.2 0.3 0.5 0.3 0.4 0.2 0.3 0.3 0.3 0.3 0.3 0.2 0.3
1 6.9 0.1 2.2 0.3 0.5 0.2 8.2 1.6 2.3 0.4 0.6 0.3 8.9 2.2 2.4 0.6 0.6 0.5 9.5 2.7 2.4 0.5 0.6 0.4
2 6.9 0.1 2.2 0.3 0.5 0.2 8.2 1.6 2.3 0.4 0.6 0.3 8.9 2.2 2.4 0.6 0.6 0.5 9.5 2.7 2.4 0.5 0.6 0.4
3 6.9 0.1 2.2 0.3 0.5 0.2 8.2 1.6 2.3 0.4 0.6 0.3 8.9 2.2 2.4 0.6 0.6 0.5 9.5 2.7 2.4 0.5 0.6 0.4
4 6.9 0.1 2.2 0.3 0.5 0.2 8.2 1.6 2.3 0.4 0.6 0.3 8.9 2.2 2.4 0.6 0.6 0.5 9.5 2.7 2.4 0.5 0.6 0.4
5 6.9 0.1 2.2 0.3 0.5 0.2 8.2 1.6 2.3 0.4 0.6 0.3 8.9 2.2 2.4 0.6 0.6 0.5 9.5 2.7 2.4 0.5 0.6 0.4

200

0 1.1 0.2 1.1 0.2 0.3 0.2 1.9 0.8 1.7 0.8 0.8 0.7 1.9 1.5 1.9 1.3 1.1 1.2 2 1.2 2 1.2 1.2 1.1
1 52.3 0.2 8.9 0.6 2.1 0.5 57.8 7.4 9.5 1.2 2.5 1 62.6 10 9.7 1.7 2.9 1.5 65.3 13.4 9.7 1.6 3 1.4
2 52.3 0.2 8.9 0.6 2.2 0.5 57.8 7.4 9.5 1.2 2.6 1 62.6 10 9.7 1.7 3 1.5 65.3 13.4 9.7 1.6 3 1.4
3 52.3 0.2 8.9 0.6 2.4 0.5 57.8 7.4 9.5 1.2 2.9 1 62.6 10 9.7 1.7 3.3 1.5 65.3 13.4 9.7 1.6 3.3 1.4
4 52.3 0.2 8.9 0.6 2.4 0.5 57.8 7.4 9.5 1.2 2.8 1 62.6 10 9.7 1.7 3.1 1.5 65.3 13.4 9.7 1.6 3.2 1.4
5 52.3 0.2 8.9 0.6 1.9 0.5 57.8 7.4 9.5 1.2 2.4 1 62.6 10 9.7 1.7 2.8 1.5 65.3 13.4 9.7 1.6 2.7 1.4

400

0 7.6 0.4 7.6 0.4 2.7 0.4 11.4 3.8 11 3.8 5.4 3 12.4 6.1 12.4 5.7 7.1 4.9 12.7 5.6 12.7 5.6 7 5
1 387.2 0.4 36.9 1.2 2.8 0.4 410.5 36.8 40.3 4.6 5.4 3 441 46.6 41.7 6.5 7.1 4.9 452.8 66 42 6.4 7.1 5
2 387.2 0.4 36.9 1.2 5.3 0.6 410.5 36.8 40.3 4.6 7.6 3.3 441 46.6 41.7 6.5 9.4 5.2 452.8 66 42 6.4 9.4 5.2
3 387.2 0.4 36.9 1.2 4.7 0.5 410.5 36.8 40.3 4.6 7.4 3.2 441 46.6 41.7 6.5 9.1 5 452.8 66 42 6.4 9.1 5.1
4 387.2 0.4 36.9 1.2 6.2 0.6 410.5 36.8 40.3 4.6 8.9 3.4 441 46.6 41.7 6.5 10.9 5.3 452.8 66 42 6.4 10.6 5.3
5 387.2 0.4 36.9 1.2 6.2 0.6 410.5 36.8 40.3 4.6 8.8 3.3 441 46.6 41.7 6.5 10.9 5.2 452.8 66 42 6.4 10.7 5.3

Table 8: Average number of variables and constraints (in thousands) for the tested models in configurations
1RA, PICORA, and PICORA+RCVF for instances with K = 4

n B
CF HCF EEF PIEF

1RA PICORA PICORA+RCVF 1RA PICORA PICORA+RCVF 1RA PICORA PICORA+RCVF 1RA PICORA PICORA+RCVF

#var #const #var #const #var #const #var #const #var #const #var #const #var #const #var #const #var #const #var #const #var #const #var #const

50

0 0.1 0.1 0.1 0.1 0 0.1 0.1 0.1 0.1 0.1 0 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
1 3.5 0.1 0.8 0.2 0.1 0.1 2.9 0.4 0.9 0.2 0.1 0.2 2.5 0.6 0.9 0.3 0.2 0.2 3.2 0.9 0.9 0.2 0.2 0.2
2 3.5 0.1 0.8 0.2 0.2 0.1 2.9 0.4 0.9 0.2 0.2 0.2 2.5 0.6 0.9 0.3 0.2 0.3 3.2 0.9 0.9 0.2 0.2 0.2
3 3.5 0.1 0.8 0.2 0.2 0.2 2.9 0.4 0.9 0.2 0.2 0.2 2.5 0.6 0.9 0.3 0.3 0.3 3.2 0.9 0.9 0.2 0.3 0.2
4 3.5 0.1 0.8 0.2 0.2 0.2 2.9 0.4 0.9 0.2 0.2 0.2 2.5 0.6 0.9 0.3 0.3 0.3 3.2 0.9 0.9 0.2 0.2 0.2
5 3.5 0.1 0.8 0.2 0.3 0.2 2.9 0.4 0.9 0.2 0.3 0.2 2.5 0.6 0.9 0.3 0.4 0.3 3.2 0.9 0.9 0.2 0.4 0.2

100

0 0.7 0.1 0.7 0.1 0.1 0.1 0.9 0.3 0.8 0.3 0.3 0.3 1 0.7 1 0.6 0.6 0.6 1.1 0.6 1.1 0.6 0.6 0.6
1 47.4 0.1 3.8 0.4 0.6 0.3 30.3 1.9 3.9 0.6 0.7 0.4 24.4 2.8 4 0.9 1.2 0.7 30.7 5.1 4.2 0.9 0.9 0.7
2 47.4 0.1 3.8 0.4 0.7 0.3 30.3 1.9 3.9 0.6 0.9 0.5 24.4 2.8 4 0.9 1.3 0.8 30.7 5.1 4.2 0.9 1.1 0.8
3 47.4 0.1 3.8 0.4 0.7 0.3 30.3 1.9 3.9 0.6 0.9 0.5 24.4 2.8 4 0.9 1.3 0.8 30.7 5.1 4.2 0.9 1.1 0.8
4 47.4 0.1 3.8 0.4 1.3 0.3 30.3 1.9 3.9 0.6 1.5 0.5 24.4 2.8 4 0.9 2 0.8 30.7 5.1 4.2 0.9 1.8 0.8
5 47.4 0.1 3.8 0.4 1.5 0.4 30.3 1.9 3.9 0.6 1.7 0.5 24.4 2.8 4 0.9 2 0.8 30.7 5.1 4.2 0.9 1.9 0.8

200

0 11.5 0.2 11.5 0.2 3.4 0.2 9.7 2 9.5 2 4.1 1.5 10.2 3.5 10.2 3.3 6.8 3 11.4 3.9 11.4 3.9 5.7 3.3
1 741.5 0.2 23.1 0.8 6.1 0.5 334.5 9.3 21.1 2.6 6.7 1.8 251.5 12.7 21.8 3.9 9.3 3.3 307.5 26.9 22.9 4.5 8.1 3.6
2 741.5 0.2 23.1 0.8 8 0.6 334.5 9.3 21.1 2.6 8.4 2 251.5 12.7 21.8 3.9 10.9 3.4 307.5 26.9 22.9 4.5 9.8 3.8
3 741.5 0.2 23.1 0.8 8 0.6 334.5 9.3 21.1 2.6 8.4 2 251.5 12.7 21.8 3.9 11 3.4 307.5 26.9 22.9 4.5 10 3.8
4 741.5 0.2 23.1 0.8 8.2 0.6 334.5 9.3 21.1 2.6 8.6 2 251.5 12.7 21.8 3.9 11.6 3.4 307.5 26.9 22.9 4.5 10.2 3.8
5 741.5 0.2 23.1 0.8 8.9 0.6 334.5 9.3 21.1 2.6 9.3 2 251.5 12.7 21.8 3.9 11.9 3.4 307.5 26.9 22.9 4.5 10.9 3.9

400

0 159.1 0.4 159.1 0.4 58.3 0.4 100 13.2 99.6 13.2 49.7 10.1 100.3 19.2 100.3 18.8 70.5 16.6 109.2 23 109.2 23 58.4 19.7
1 10,713.9 0.4 202.9 1.6 69.2 0.8 3447.8 45.3 143.4 14.4 60.3 10.6 2538.5 56.4 144.1 20 79.9 17 3066.5 133.2 153 24.2 69 20.2
2 10,713.9 0.4 202.9 1.6 73.5 1 3447.8 45.3 143.4 14.4 64.6 10.8 2538.5 56.4 144.1 20 83.6 17.2 3066.5 133.2 153 24.2 73.2 20.4
3 10,713.9 0.4 202.9 1.6 73.5 1 3447.8 45.3 143.4 14.4 64.6 10.8 2538.5 56.4 144.1 20 83.6 17.2 3066.5 133.2 153 24.2 73.2 20.4
4 10,713.9 0.4 202.9 1.6 73.5 1 3447.8 45.3 143.4 14.4 64.6 10.8 2538.5 56.4 144.1 20 83.6 17.2 3066.5 133.2 153 24.2 73.2 20.4
5 10,713.9 0.4 202.9 1.6 74.5 1 3447.8 45.3 143.4 14.4 65.6 10.8 2538.5 56.4 144.1 20 84.6 17.3 3066.5 133.2 153 24.2 74.3 20.5
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Table 9: Results of the tested models in configuration PICORA+RCVF for large instances

n B
CF+PICORA+RCVF HCF+PICORA+RCVF EEF+PICORA+RCVF PIEF+PICORA+RCVF

K = 3 K = 4 K = 3 K = 4 K = 3 K = 4 K = 3 K = 4

#opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s)

600

0 20 0.9 20 48.6 20 1.2 20 48.9 20 2.7 20 602.3 20 10.4 20 138.4
1 20 2.1 20 63.2 20 2.6 20 58.4 20 3.7 20 695.9 20 11.7 20 161.5
2 20 2.3 20 66 20 2.7 20 61.4 20 4.3 20 606.9 20 11.8 20 146
3 20 2.4 20 68.1 20 2.9 20 64.7 20 4.4 20 531.4 20 12 20 145.6
4 20 2.3 20 64.3 20 2.9 20 59.2 20 4.3 20 504.1 20 12 20 159.7
5 20 2.5 20 65.7 20 3.1 20 63 20 4.9 20 632.2 20 12.3 20 151.8

800

0 20 2.4 20 112.5 20 3.7 20 137.1 20 9 13 2883.3 20 26.1 20 594.8
1 20 4.6 20 143.3 20 5.8 20 153.1 20 12.1 7 3308 20 28.4 20 486.5
2 20 5.2 20 134 20 6.9 20 160.8 20 13.4 7 3079.5 20 29.6 20 521
3 20 5.5 20 154.9 20 7.2 20 168 20 13.7 11 2829.9 20 29.7 20 590.6
4 20 5.1 20 180.1 20 7.2 20 167.1 20 13.6 8 3259.5 20 30.2 20 547.3
5 20 5.4 20 173.1 20 6.9 20 176.5 20 14 9 2944.1 20 30.4 20 610.6

1000

0 20 5.3 20 317.6 20 7.5 20 387.9 20 27.7 0 3600 20 55.4 20 978
1 20 9.6 20 394.1 20 12.6 20 493.1 20 32.8 0 3600 20 61.1 17 1481.1
2 20 11.3 20 384.3 20 16.9 20 469.2 20 38.5 0 3600 20 63.8 18 1382.8
3 20 11.6 20 421.7 20 16.1 20 455.5 20 35.2 0 3600 20 62.9 17 1419.5
4 20 11.2 20 405.5 20 15.6 20 478.9 20 36.2 0 3600 20 62.7 19 1323.5
5 20 10.9 20 428.3 20 16 20 533.8 20 36.2 0 3600 20 63 17 1408.1

Table 10: Average number of variables and constraints (in thousands) for CF+PICORA+DPICEF+RCVF and
CF+PICORA+IPICEFTH4+RCVF for large instances with chains

n B

CF+PICORA+DPICEF+RCVF CF+PICORA+IPICEFTH4+RCVF

K = 3 K = 4 K = 3 K = 4

L = 3 L = 6 L = 4 L = 8 L = 3 L = 6 L = 4 L = 8

#var #const #var #const #var #const #var #const #var #const #var #const #var #const #var #const

667

0 37.9 1.9 123.7 3.9 407.7 2.6 522.6 5.2 37.9 1.9 125.5 3.9 407.7 2.6 525.1 5.2
1 195.2 2.9 785.6 4.9 756.4 4.2 1548.8 6.8 74.4 2.9 161.9 4.9 469.6 4.2 587.2 6.8
2 197.9 2.9 789.6 4.9 760.5 4.2 1552.8 6.8 74.4 2.9 161.9 4.9 469.6 4.2 587.2 6.8
3 197.9 2.9 789.6 4.9 760.5 4.2 1552.8 6.8 74.4 2.9 161.9 4.9 469.6 4.2 587.2 6.8
4 197.9 2.9 789.6 4.9 760.5 4.2 1552.8 6.8 74.4 2.9 161.9 4.9 469.6 4.2 587.2 6.8
5 197.9 2.9 789.6 4.9 760.5 4.2 1552.8 6.8 74.4 2.9 161.9 4.9 469.6 4.2 587.2 6.8

889

0 77 2.5 232.8 5.2 1254 3.4 1462.2 7 77 2.5 235 5.2 1254 3.4 1465.5 7
1 360.1 3.9 1424.5 6.5 1884.1 5.5 3308.3 9.1 143.5 3.9 301.5 6.5 1366.8 5.5 1578.4 9.1
2 361.9 3.9 1427.2 6.5 1886.8 5.5 3311 9.1 143.5 3.9 301.5 6.5 1366.8 5.5 1578.4 9.1
3 361.9 3.9 1427.2 6.5 1886.8 5.5 3311 9.1 143.5 3.9 301.5 6.5 1366.8 5.5 1578.4 9.1
4 361.9 3.9 1427.2 6.5 1886.8 5.5 3311 9.1 143.5 3.9 301.5 6.5 1366.8 5.5 1578.4 9.1
5 361.9 3.9 1427.2 6.5 1886.8 5.5 3311 9.1 143.5 3.9 301.5 6.5 1366.8 5.5 1578.4 9.1

1111

0 138.5 3.2 386.3 6.5 3188.1 4.3 3519.2 8.8 138.5 3.2 388.7 6.5 3188.1 4.3 3522.9 8.8
1 584.1 4.8 2243.3 8.2 4175.8 6.9 6393.5 11.4 243.8 4.8 494 8.2 3367.4 6.9 3702.3 11.4
2 585.4 4.8 2245.3 8.2 4177.8 6.9 6395.4 11.4 243.8 4.8 494 8.2 3367.4 6.9 3702.3 11.4
3 585.4 4.8 2245.3 8.2 4177.8 6.9 6395.4 11.4 243.8 4.8 494 8.2 3367.4 6.9 3702.3 11.4
4 585.4 4.8 2245.3 8.2 4177.8 6.9 6395.4 11.4 243.8 4.8 494 8.2 3367.4 6.9 3702.3 11.4
5 585.4 4.8 2245.3 8.2 4177.8 6.9 6395.4 11.4 243.8 4.8 494 8.2 3367.4 6.9 3702.3 11.4
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