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Abstract

In this paper, we investigate two known solution approaches for set-valued
optimization problems, both of which are based on so-called vectorization strate-
gies. These strategies consist of deriving a parametric family of multi-objective
optimization problems whose optimal solution sets approximate those of the orig-
inal set-valued problem with arbitrary accuracy in a certain sense. Thus, these
approaches can serve as a basis for the numerical solution of set-valued optimiza-
tion problems using established solution algorithms from multi-objective opti-
mization. We show that many properties that have already been obtained for
one of the two vectorization schemes also hold for the other similarly. Thereby,
it turns out that under certain assumptions there exist problem classes for both
vectorization schemes in which the set-valued initial problems are even equiva-
lent to the corresponding multi-objective replacement problems. This property is
fulfilled, for example, for set-valued optimization problems with a finite feasible
set, with a polytope-valued objective map, or with a convex graph. This was
already known for one of the two vectorization schemes, and could now also be
shown for the other scheme.
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1 Introduction
In set-valued optimization, one considers set-valued objective maps with a partially
ordered image space. For comparing the image sets when determining an optimal
solution, we follow the so-called set approach. Thereby, the image sets are compared
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as a whole using set-order relations. In this context, we limit ourselves in this paper
to the lower-type less relation, the upper-type less relation, and the set less relation,
see [25]. For a comprehensive overview of set-order relations, we refer to [19] and
the references therein. This approach has received a lot of attention in the past few
decades, as there is a wide field of applications for it. For example, multi-objective
uncertain optimization problems with a robust approach lead to such set optimization
problems [13]. In addition, there are interdependencies to bilevel optimization [31],
as well as parametric and semi-infinite optimization [36]. Such optimization problems
also arise in finance [9, 12] and socio-economics [2, 30]. For a detailed introduction to
this field of research, we refer, for instance, to [21].

In the literature, various solution algorithms for set-valued optimization problems
have been studied. For unconstrained problems, derivative-free methods have been
developed in [16, 18, 22]. There, the idea is to iteratively find a descent direction of the
set-valued objective map and improve the current iteration point by using a line search
procedure. The drawback here is that this yields only one solution in the preimage
space. However, in set-valued optimization, similar to multi-objective optimization,
the set of all optimal solutions is, in general, infinite. The special case in which the
set-valued optimization problem has only a finite number of feasible points has been
investigated in [10, 11, 23, 24]. Thereby, the image sets are compared pairwise in
a way that tries to avoid unnecessary comparisons. There are also approaches that
exploit a certain structure of the set-valued objective map. For example, in multi-
objective optimization under uncertainty in [4, 13, 14, 20, 34], scalarization methods
have been studied. Moreover, a first-order descent method was considered in [3], and a
branch-and-bound scheme was developed in [5]. Finally, for a set-valued optimization
problem in which the graph of the objective map is polyhedral and the order relation
is generated by a polyhedral cone, solution algorithms were presented in [28, 35].

Another approach for dealing with set-valued optimization problems is the so-called
vectorization strategy, which we want to follow in this paper. Here, the set-valued
optimization problem is replaced by a finite-dimensional multi-objective optimization
problem that approximates the initial set-valued problem well in a certain sense and
for which numerical solution algorithms already exist. Two different finite-dimensional
vectorization schemes have been introduced in [6] and [7], respectively. Thereby, the
vectorization scheme given in [7] assumes that the images of the set-valued objective
map are convex and compact. It is based on a well-known vectorization result pre-
sented in [17], which shows that such a set optimization problem is (in a specific sense)
equivalent to an infinite-dimensional multi-objective optimization problem defined by
minimum value and maximum value functions. For the corresponding vectorization
scheme, one considers then a discretized version of this vectorization result. This leads
to a parametric family of finite-dimensional multi-objective problems whose solution
sets approximate those of the original set-valued problem. In doing so, the quality of
this approximation can be controlled by the fineness of the discretization.

In contrast, the vectorization scheme presented in [6] can be applied to general
set-valued optimization problems, also to those with nonconvex image sets, but is re-
stricted to the lower-type less relation. Here, a parametric family of finite-dimensional
multi-objective optimization problems is constructed, where the natural numbers rep-
resent the set of parameters. In other words, for each natural number, a corresponding
finite-dimensional multi-objective optimization problem is obtained, whose solution
sets in turn approximate those of the set optimization problem. The quality of the
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approximation is now controlled by the values of the natural numbers.
In this paper, we will further investigate the properties of these two vectorization

schemes. In doing so, we formulate a new result that compares the solution behavior,
and thus the approximation properties, with respect to the preimage space for both
schemes. We also show that many properties obtained for the vectorization scheme de-
fined in [6] apply similarly to the other vectorization scheme introduced in [7]. Thereby,
we transfer an approximation result with respect to the image space, which shows that
in a certain sense it is sufficient to investigate the corresponding multi-objective opti-
mization problems instead of the initial set-valued optimization problem.

Moreover, and most importantly, we prove that there exist classes of set-valued op-
timization problems whose problems can be equivalently formulated as multi-objective
optimization problems given by one of the vectorization methods. In particular, we
show that this is the case (under appropriate additional assumptions) for set-valued
maps with a finite preimage set, for polytope-valued maps, and for set-valued maps
with a convex graph. All this provides further valuable theoretical results for both
approaches, and thus for dealing with set-valued optimization problems in general.

The paper is organized as follows. At the beginning, in Section 2, we introduce
our notation and recall some basic definitions and concepts of multi-objective and
set-valued optimization. In the following Section 3, we recall and investigate the afore-
mentioned vectorization schemes. This section contains the main results of the work.
Finally, in Section 4, we give some concluding remarks and outline possibilities for
further research.

2 Preliminaries
In this section, we clarify the notation that we are going to use throughout the paper.
We also define the basic concepts on which we will rely in the forthcoming chapters.

For p P N, we set rps :“ t1, . . . , pu and based on this rps0 :“ t0u Y rps. Moreover,
for a set A Ď Rm, we denote its interior, closure and cardinality by intpAq, clpAq and
|A|, respectively. If the set A is additionally convex, then the set of all extremal points
of A is denoted by extpAq.

The points in Rm are considered as column vectors, and we denote the transpose
operator with the symbol J. However, we sometimes deviate from this notation when
we consider vectors that are formed by other vectors. Thus, for example, given x P Rn

and y P Rm, we may write px, yq instead of pxJ, yJqJ. Based on this, we define for
k P Rm and p P N the vector krps P Rmp by krps :“ pk, . . . , kq. In addition, for a matrix
A P Rsˆt, i P rss and j P rts we denote by Ai its ith-row and by Ai,j the element in the
ith-row and jth-column of A.

The standard Euclidean norm in Rm is denoted by } ¨ } and for a point y0 P Rm and
ε ě 0 we define the sets

Bpy0, εq :“ ty P Rm
| }y0

´ y} ă εu and B̄py0, εq :“ ty P Rm
| }y0

´ y} ď εu.

If y0 “ 0 and ε “ 1, we simply write B and B̄ instead of Bp0, 1q and B̄p0, 1q, respectively.
Recall that a nonempty subset C of Rm is a cone if for all λ ě 0 and y P C it holds

λy P C. Further, a cone C Ď Rm is pointed if CXp´Cq “ t0u, and solid if intpCq ‰ H.
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For a solid cone C Ď Rm and y1, y2 P Rm we define binary relations by

y1
ďC y2 :ðñ y2

´ y1
P C,

y1
ňC y2 :ðñ y2

´ y1
P Czt0u,

y1
ăC y2 :ðñ y2

´ y1
P intpCq.

In case C “ Rm
` , we may omit the subscript C. Thereby, Rm

` denotes the set of points
in Rm that are nonnegative in all components.

The following assumption is used throughout the remaining of this paper and will
be extended later on.

Assumption 1 Let Ω be a nonempty closed subset of Rn, let C Ď Rm be a closed,
convex, pointed, and solid cone, and let an element k̄ P intpCq be fixed.

Based on this, we recall the solution concepts for vector optimization problems.

Definition 2.1 [8, 15, 26] Let Assumption 1 be fulfilled, let f : Rn Ñ Rm be a vector-
valued function, and consider the vector optimization problem associated to this data
given by

min
xPΩ

fpxq w.r.t. ďC . (VP)

(i) Let ε ě 0. We say that x̄ P Ω is an ε-weakly minimal solution of (VP) if there
exists no x P Ω such that fpxq ăC fpx̄q ´ εk̄. When ε “ 0, we just say that x̄ is
a weakly minimal solution of (VP). The set of all ε-weakly minimal solutions of
(VP) is denoted by ε- wargmin (VP) for ε ą 0, and by wargmin (VP) for ε “ 0.

(ii) Let ε ě 0. We say that x̄ P Ω is an ε-minimal solution of (VP) if there exists
no x P Ω such that fpxq ňC fpx̄q ´ εk̄. When ε “ 0, we just say that x̄ is a
minimal solution of (VP). The set of all ε-minimal solutions of (VP) is denoted
by ε- argmin (VP) for ε ą 0, and by argmin (VP) for ε “ 0.

(iii) We say that x̄ P Ω is a supported weakly minimal solution of (VP) if there exists
ℓ P C‹zt0u such that ℓJfpx̄q ď ℓJfpxq for all x P Ω, where C‹ :“ tv P Rm | @ y P

C : vJy ě 0u is the dual cone of C. The set of all supported weakly minimal
solutions of (VP) is denoted by spwargmin (VP).

Note that if C “ Rm
` we call (VP) a multi-objective optimization problem. Thus,

we speak of a multi-objective optimization problem in case we have a finite number of
objective functions, and we use the natural ordering cone, i.e., the nonnegative orthant.
We speak of a vector optimization problem as soon as we allow more general ordering
cones. We also remark that all vector optimization problems that arise in this paper
have only a finite number of objective functions.

Regarding the relationships between the listed solution concepts for vector opti-
mization problems, the following results are well known, see, for instance [15, 21]:

Proposition 2.2 Let Assumption 1 be fulfilled and f : Rn Ñ Rm be a vector-valued
function. Then it holds:

(i) argmin (VP) Ď wargmin (VP),

(ii) spwargmin (VP) Ď wargmin (VP),

4



(iii) and, if additionally fpΩq ` C is convex, spwargmin (VP) “ wargmin (VP).

Since we are interested in the investigation of set-valued optimization problems, we
now give the set relations which we are going to use.

Definition 2.3 Let Assumption 1 be fulfilled. For subsets A,B Ď Rm we define

A ĺl
C B :ðñ B Ď A ` C,

A ĺu
C B :ðñ A Ď B ´ C,

A ĺs
C B :ðñ A ĺl

C B ^ A ĺu
C B.

The binary relation ĺl
C is called lower-type less relation, ĺu

C is called upper-type
less relation and ĺs

C is called set less relation. These have been widely used in the
recent literature on set optimization, see, for instance, [21] and the references therein.
The lower-type less relation compares in a certain sense the best elements of a set,
corresponding to a more optimistic setting, while the upper-type set relation compares
the worst elements of a set, corresponding to a more pessimistic setting. The latter
is for instance related to a robust approach in uncertain multi-objective optimization.
The set less relation is a combination of both.

Note that for all ♢ P tl, u, su the binary relation ĺ
♢
C is reflexive and transitive and

hence a preorder on the power set of Rm. However, the property of being antisymmetric
is in general not satisfied.

Similar to ňC and ăC regarding ďC in the vector optimization setting, there are
also stricter versions regarding ĺ

♢
C , ♢ P tl, u, su defined by:

A ňl
C B :ðñ B Ď A ` Czt0u,

A ňu
C B :ðñ A Ď B ´ Czt0u,

A ňs
C B :ðñ A ňl

C B ^ A ňu
C B,

A ăl
C B :ðñ B Ď A ` intpCq,

A ău
C B :ðñ A Ď B ´ intpCq,

A ăs
C B :ðñ A ăl

C B ^ A ău
C B.

Note that these relations are transitive, but in general neither reflexive nor antisym-
metric.

For a set-valued map F : Rn Ñ Rm the domain and the graph of F are defined by

dompF q :“ tx P Rn
| F pxq ‰ Hu and gphpF q :“ tpx, yq P Rn

ˆ Rm
| y P F pxqu,

and for a given set A Ď Rn we write F pAq :“
Ť

xPA F pxq.
Now we can formulate the extension of Assumption 1, with which we will work in

the remaining of the paper.

Assumption 2 Additionally to Assumption 1 let F : Rn Ñ Rm be a given set-valued
map such that Ω Ď dompF q and F pxq is compact for all x P Ω.

Based on this, we recall those optimality concepts for set-valued optimization prob-
lems that we need in the following (cf. [6, Definition 2.4]):

Definition 2.4 Let Assumption 2 be fulfilled, let ♢ P tl, u, su, and consider the set-
valued optimization problem associated to this data given by

min
xPΩ

F pxq w.r.t. ĺ
♢
C . (SP♢)
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(i) We say that x̄ P Ω is a weakly minimal solution of (SP♢) if there exists no x P Ω
such that F pxq ă

♢
C F px̄q.

(ii) We say that x̄ P Ω is a minimal solution of (SP♢) if there exists no x P Ω such
that F pxq ň

♢
C F px̄q.

The set of all weakly minimal solutions of (SP♢) is denoted by wargmin (SP♢) and
the set of all minimal solutions of (SP♢) is denoted by argmin (SP♢).

It is worth mentioning that the above definition of a minimal solution of a set-valued
optimization problem is not the more traditionally used concept in the literature, see,
for instance, [21, Definition 2.6.19]. Our first motivation for considering this solution
concept comes from its application in multi-objective optimization under uncertainty,
where such a solution concept is introduced for set-valued maps with a particular
structure, see [13, 14]. However, the actual reason for choosing the above definition is
that it has better approximation properties than the classical one, cf. [6] and see for
instance the forthcoming Theorem 3.5.

When dealing with set-valued maps, we will use the following properties (cf. [1,
Section 2.2], [29, Chapter 1] and [32, Definition 5.14]).

Definition 2.5 Let Assumption 2 be fulfilled. Then, F is called

(i) locally bounded at x0 P Rn if there exist δ, ε ą 0 such that for all x P Bpx0, δq it
holds

F pxq Ď εB. (2.1)

(ii) lower semicontinuous (l.s.c.) at x0 P Rn if for each open set O with F px0q X O ‰

H there exists a δ ą 0 such that F pxq X O ‰ H holds for all x P Bpx0, δq.

(iii) upper semicontinuous (u.s.c.) at x0 P Rn if for each open set O with F px0q Ď O
there exists a δ ą 0 such that F pxq Ď O holds for all x P Bpx0, δq.

(iv) continuous at x0 P Rn if it is l.s.c. and u.s.c. at x0.

(v) Lipschitzian at x0 P Rn if there exist L, δ ą 0 such that for all x1, x2 P Bpx0, δq it
holds

F px1
q Ď F px2

q ` L}x2
´ x1

} B̄. (2.2)

If a set-valued map F is locally bounded, l.s.c., u.s.c., continuous, or Lipschitzian at
every point x0 P Ω, then F is called locally bounded on Ω, l.s.c. on Ω, u.s.c. on Ω,
continuous on Ω, or Lipschitzian on Ω, respectively. Moreover, if there exists ε ą 0
such that (2.1) holds for every x P Ω, then F is called globally bounded on Ω.

Note that in contrast to vector-valued functions a set-valued map that is Lips-
chitzian at x0 is not necessarily continuous at x0. However, in our specific case this
implication holds due to the assumed compactness of the image sets of F .

Proposition 2.6 Let Assumption 2 be fulfilled and let F be Lipschitzian at x0 P Ω.
Then, F is continuous at x0.
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Proof. Let x0 P Ω and let L, δ ą 0 such that (2.2) holds for all x1, x2 P Bpx0, δq.
First, we show that F is u.s.c. at x0. Let O Ď Rm be an open set with F px0q Ď O.
Since F px0q is compact, there exists ε ą 0 such that F px0q ` εB̄ Ď O and we define
δ̄ :“ mintδ, ε

L
u. Then, for all x P Bpx0, δ̄q it holds

F pxq Ď F px0
q ` L}x0

´ x}B̄ Ď F px0
q ` L

ε

L
B̄ “ F px0

q ` εB̄ Ď O.

Next, we show that F is l.s.c. at x0. Thus, let O Ď Rm be an open set and y0 P

F px0q X O. Then, there exists ε ą 0 such that ty0u ` εB̄ Ď O and we define again
δ̄ :“ mintδ, ε

L
u. Then, for all x P Bpx0, δ̄q it holds

y0
P F px0

q Ď F pxq ` L}x0
´ x}B̄ Ď F pxq ` εB̄.

Therefore, there exists y P F pxq with y0 ´ y P εB̄. Since B̄ “ ´B̄, we have y ´ y0 P εB̄
and thus, y P ty0u ` εB̄ Ď O. Hence, we obtain y P F pxq X O.

3 Theoretical Comparison of Vectorization Schemes
In this section, we present the two finite dimensional vectorization schemes for set-
valued optimization problems that have been proposed so far in the literature and for
which we present new results in this paper. The first one uses finite subsets of the set
of normed directions of the dual cone defined by

C‹
}¨} :“ tℓ P C‹

| }ℓ} “ 1u.

For finite sets L,U Ď C‹
}¨} with L “ tℓ1, . . . , ℓ|L|u, U “ tℓ|L|`1, . . . , ℓ|L|`|U |u and L Y U ‰

H we consider the following multi-objective optimization problem:

min
xPΩ

fL,Upxq with fL,Upxq :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

infyPF pxqpℓ
1qJy

...
infyPF pxqpℓ

|L|qJy
supyPF pxqpℓ

|L|`1qJy
...

supyPF pxqpℓ
|L|`|U |qJy

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

w.r.t. ďR|L|`|U|

`

. (MOPL,U)

Note that L X U “ H is not required and that under Assumption 2 the infima and
suprema in the definition above are attained. This first approach has been introduced
and investigated in detail in [7].

It turns out that this approach is particularly suitable for set-valued optimization
problems with a convex-valued objective map F , i.e., for problems where F pxq is a con-
vex set for all x P Ω. This is due to the fact that this approach, as already mentioned,
is a discretized finite-dimensional relaxation of a known infinite-dimensional vector-
ization result by Jahn, which was presented in [17]. Thereby, the infinite-dimensional
vectorization schemes make use of the property that for convex sets the set relations
ĺ

♢
C , ♢ P tl, u, su can be equivalently described by using the supporting hyperplanes,

defined by all normalized directions of the dual cone.
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For the second vectorization scheme, we define for a given p P N the set-valued map
F p : Rn Ñ Rmp and the vector-valued function fp : Rn ˆ Rmp Ñ Rmp by

F p
pxq :“

ź

iPrps

F pxq “ F pxq ˆ . . . ˆ F pxq for all x P Rn,

gphΩpF p
q :“ tpx, y1, . . . , yp

q | x P Ω ^ @i P rps : px, yi
q P gphpF qu,

fp
`

x, y1, . . . , yp
˘

:“ py1, . . . , yp
q for all x P Rn, y1, . . . , yp

P Rm,

as well as Cp :“
ś

iPrps

C Ď Rmp.

Based on this we consider now the finite-dimensional vector optimization problem

min
px,y1,...,ypqPgphΩpF pq

fp
`

x, y1, . . . , yp
˘

w.r.t. ďCp . (VPp)

This problem can also be stated as

min

¨

˚

˝

y1

...
yp

˛

‹

‚

w.r.t. ďCp

s.t. y1 P F pxq, . . . , yp P F pxq, x P Ω.

This second approach has been introduced and studied in [6]. While the advantage
of this approach is that it is also suitable for set-valued optimization problems with a
nonconvex-valued objective map, a disadvantage of this second vectorization scheme is
that it only provides results for the lower-type less relation ĺl

C .
Before we continue, we want to clarify that in the following the approximate solu-

tions according to Definition 2.1 for (MOPL,U) are always considered with respect to
the all-ones vector e :“ p1, . . . , 1q P intpR|L|`|U |

` q. For (VPp) this will be done naturally
with respect to the vector k̄rps “ pk̄, . . . , k̄q P intpCpq. Moreover, for ε ě 0, we denote
by ε- wargminx (VPp) the projection of the set ε- wargmin (VPp) onto Rn, that is

ε- wargminx (VPp) :“
"

x1
P Ω

ˇ

ˇ

ˇ

ˇ

D y1, . . . , yp P F px1q :
px1, y1, . . . , ypq P ε- wargmin (VPp)

*

Analogous to this, we denote for ε ě 0 by ε- argminx (VPp) the projection of the set
ε- argmin (VPp) onto Rn.

3.1 Approximation Properties in the Preimage Space
In this subsection, we first recall the main approximation properties of both vector-
ization schemes with respect to the original set-valued optimization problem. More
precisely, we present results concerning the relationships between the sets of weakly
minimal solutions of (MOPL,U) and (SP♢) with ♢ P tl, u, su on the one hand, and of
(VPp) and (SP l) on the other.

We thereby unified the presentation of the results. Note that for both schemes,
these relations can be formulated in the form of “sandwiching properties”. At the end
of this subsection, these properties are complemented by a new sandwiching result on
the relation between the weakly minimal solutions of (MOPL,H) and (VPp), which
provides further insight into the two different vectorization schemes.

We start with a result on the relation of the sets of weakly minimal solutions of
(SP♢), ♢ P tl, u, su and of (MOPL,U) for arbitrary finite sets L,U Ď C‹

}¨}.
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Theorem 3.1 [7, Theorem 3.6] Let Assumption 2 be fulfilled, ♢ P tl, u, su, F be convex-
valued, and let L,U Ď C‹

}¨} be finite sets with L Y U ‰ H, U “ H if ♢ “ l, and L “ H

if ♢ “ u. Then it holds

wargmin (MOPL,U) Ď wargmin (SP♢). (3.1)

The following example shows that a result similar to (3.1) does not hold in general
for the minimal solutions of (MOPL,U) and the minimal solutions of (SP♢).

Example 3.2 Let Ω “ tx1, x2u Ď Rn, C “ R2
`, and consider F : Rn Ñ R2 defined by

F px1q :“ tp 0
0 qu, F px2q :“ tp 1

0 qu and F pxq “ H for all x P RnzΩ. Furthermore, let
L :“ tp 0

1 qu. Then (MOPL,H) is equivalent to minxPΩty2 | y P F pxqu with optimal value
0 and argmin (MOPL,H) “ tx1, x2u. Thereby, argmin (SP l) “ tx1u.

However, based on Theorem 3.1 together with [7, Theorem3.12] the following “sand-
wiching property” is obtained for wargmin (SP♢), ♢ P tl, u, su.

Theorem 3.3 [7, Theorem 3.6, Theorem 3.12] Let Assumption 2 be fulfilled, and let
F be convex-valued and globally bounded on Ω. Then for every ♢ P tl, u, su and every
ε ą 0 there exist finite sets L,U Ď C‹

}¨} with L Y U ‰ H, U “ H if ♢ “ l, and L “ H

if ♢ “ u, such that

wargmin (MOPL,U) Ď wargmin (SP♢) Ď ε- wargmin (MOPL,U) (3.2)

holds.

Remark 3.4 The proof of Theorem 3.3 in [7] provides additional insights in the selec-
tion of L. Let WMinpF pxq, Cq :“ ty P F pxq | ptyu ´ intpCqq X F pxq “ Hu denote the
set of weakly minimal elements of F pxq. First, one obtains under the assumptions of
Theorem 3.3 that

Ll :“ sup
#

}y}

ˇ

ˇ

ˇ

ˇ

ˇ

y P
ď

xPΩ
WMinpF pxq, Cq

+

ă 8. (3.3)

Let now ε ą 0 be given. Then, (3.2) is fulfilled in the case of ♢ “ l for every finite set
L Ď C‹

}¨} with
C‹

}¨} Ď L `
ε

4Ll
B.

Corresponding statements also apply to ♢ P tu, su.

In view of Example 3.2, a similar statement to (3.2) but with minimal elements
instead of weakly minimal elements cannot be expected. For the second vectorization
scheme, such a “sandwiching property” exists for both the weakly minimal elements and
the minimal elements of (VPp) and (SP l). Note that these properties are formulated
by unions over all p P N.

Theorem 3.5 [6, Theorem 3.5] Let Assumption 2 be fulfilled. Then it holds
ď

pPN
wargminx (VPp) Ď wargmin (SP l) “

č

εą0

ď

pPN
ε- wargminx (VPp) (3.4)

and
ď

pPN
argminx (VPp) Ď argmin (SP l) Ď

č

εą0

ď

pPN
ε- argminx (VPp). (3.5)

9



In [6, Example 3.7] it is shown that in (3.5) the second inclusion is indeed strict in
general. Hence, we do not obtain equality for the minimal solutions but only for the
weakly minimal solutions. Note that under the assumptions of Theorem 3.5 even

wargmin (SP l) “
č

εą0

ď

pPN
ε- wargminx (VPp) “

č

εą0

ď

pPN
ε- argminx (VPp)

is fulfilled, see [6, Remark 3.6].
In the previous statements, properties regarding the solution behavior between the

two vectorization schemes on the one hand and the original set-valued optimization
problem on the other were formulated. For a more detailed comparison of the two
approaches, it seems appropriate to also examine the relationship between them. In
the following, we provide a result in case of U “ H for the sets of weakly minimal
solutions provided by both vectorization approaches. We show that the weakly minimal
solutions of the problem (MOPL,U) are sandwiched by the (supported) solutions of the
problem (VPp).

Theorem 3.6 Let Assumption 2 be fulfilled, let F be convex-valued, and let p P N.
Then it holds

spwargminx (VPp) Ď
ď

LĎC‹
}¨}

,

|L|ďp

wargmin (MOPL,H) Ď wargminx (VPp). (3.6)

Proof. For the proof of the first inclusion let x̄ P spwargminx (VPp). Then, by defini-
tion, there exists tȳ1, . . . , ȳpu Ď F px̄q and tℓ̄1, . . . , ℓ̄pu Ď C‹ not all zero such that

px̄, ȳ1, . . . , ȳp
q P argmin

px,y1,...,ypqPgphΩpF pq

p
ÿ

i“1
pℓ̄i

q
Jyi. (3.7)

W.l.o.g. we suppose that ℓ̄i ‰ 0 for all i P rp̄s and ℓ̄p̄`1 “ . . . “ ℓ̄p “ 0 for some p̄ ď p.
Moreover, we define ℓi :“ ℓ̄i

}ℓ̄i}
for all i P rp̄s and q :“ |tℓi | i P rp̄su| ď p̄. W.l.o.g. we

suppose that ℓi ‰ ℓj for all i, j P rqs with i ‰ j, and we define L :“ tℓ1, . . . , ℓqu Ď C‹
}¨}.

For a proof by contradiction, we assume that x̄ R wargmin (MOPL,H). Then there
exists some x̂ P Ω such that fL,Hpx̂q ă fL,Hpx̄q, i.e., it holds

inf
yPF px̂q

pℓi
q

Jy ă inf
yPF px̄q

pℓi
q

Jy for all i P rqs. (3.8)

Due to the compactness of F px̂q the infima are attained. Thus we can choose ŷi P

argminyPF px̂qpℓ
iqJy for all i P rqs. For all i P tq` 1, . . . , p̄u there is an index j P rqs such

that ℓi “ ℓj is fulfilled, and we define in this case ŷi :“ ŷj. Finally, we set ŷi :“ ŷ1 for
all i P tp̄ ` 1, . . . , pu. Thus, it holds

px̂, ŷ1, . . . , ŷq, ŷq`1, . . . , ŷp̄, ŷp̄`1, . . . , ŷp
q P gphΩpF p

q,

and by (3.8) it follows pℓiqJŷi ă pℓiqJy for all y P F px̄q and all i P rp̄s, and thus

pℓ̄i
q

Jŷi
ă pℓ̄i

q
Jȳi for all i P rp̄s.

From this we derive that
p
ÿ

i“1
pℓ̄i

q
Jŷi

“

p̄
ÿ

i“1
pℓ̄i

q
Jŷi

ă

p̄
ÿ

i“1
pℓ̄i

q
Jȳi

“

p
ÿ

i“1
pℓ̄i

q
Jȳi
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– in contradiction to (3.7).
For the proof of the second inclusion, let L “ tℓ1, . . . , ℓru Ď C‹

}¨} with r “ |L| ď p

and let x̄ P wargmin (MOPL,H). Moreover, let ȳi P argminyPF px̄qpℓ
iqJy for all i P rrs

and define in the case r ă p additionally ȳi :“ ȳ1 for all i P tr ` 1, . . . , pu. Then
it holds px̄, ȳ1, . . . , ȳpq P gphΩpF pq. For a proof by contradiction, we assume that
px̄, ȳ1, . . . , ȳpq R wargmin (VPp). Then, there exists px, y1, . . . , ypq P gphΩpF pq such
that yi ăC ȳi for all i P rps. As L Ď C‹

}¨} we obtain by [15, Lemma 3.21] that
pℓiqJyi ă pℓiqJȳi for all i P rrs, and hence,

inf
yPF pxq

pℓi
q

Jy ď pℓi
q

Jyi
ă pℓi

q
Jȳi

“ inf
yPF px̄q

pℓi
q

Jy for all i P rrs

– in contradiction to the initial assumption that x̄ P wargmin (MOPL,H).

It can be easily verified that in the case p “ 1 equality applies to the first inclusion
of (3.6). The following example shows that, in general, both inclusions are strict.
Example 3.7 Let Ω “ tx1, x2, x3, x4, x5, x6u Ď Rn, C “ R2

`, and consider F : Rn Ñ

R2 defined by F px1q :“ tp3, 0qJu, F px2q :“ tp2, 2qJu, F px3q :“ tp2, 4qJu, F px4q :“
tp0, 4qJu, F px5q :“ tp0, 6qJu, F px6q :“ tp3, 6qJu, and F pxq “ H for all x P RnzΩ.
Then, for p “ 1 the corresponding vector optimization problem (VP1) is given by

min
px,yqPgphΩpF q

y w.r.t. ďR2
`

with
gphΩpF q “ gphpF q “ tpx1, p3, 0qq , px2, p2, 2qq , px3, p2, 4qq ,

px4, p0, 4qq , px5, p0, 6qq , px6, p3, 6qqu

and
argmin (SP l) “ argminx (VP1) “ tx1, x2, x4u

Ĺ wargmin (SP l) “ wargminx (VP1) “ tx1, x2, x3, x4, x5u .

As argmin (MOPtℓu,H) “ wargmin (MOPtℓu,H) holds for all ℓ P C‹
}¨}, we obtain

ď

ℓPC‹
}¨}

argmin (MOPtℓu,H) “ tx1, x4, x5
u.

Therefore, for this setting, the second inclusion of (3.6) is strict.
To show that the first inclusion of (3.6) is also strict in general, let now p “ 2 and

L̄ :“ tp1, 0qJ, p0, 1qJu Ď C‹
}¨}. Then it holds fL̄,Hpx1q “ p3, 0qJ, fL̄,Hpx2q “ p2, 2qJ,

fL̄,Hpx3q “ p2, 4qJ, fL̄,Hpx4q “ p0, 4qJ, fL̄,Hpx5q “ p0, 6qJ, and fL̄,Hpx6q “ p3, 6qJ.
Thus, we obtain

␣

x1, x2, x3, x4, x5(
Ď

ď

LĎC‹
}¨}

,

|L|ď2

wargmin (MOPL,H).

Moreover, the corresponding vector optimization problem (VP2) is given by

min
px,y1,y2qPgphΩpF 2q

py1, y2
q w.r.t. ďR4

`

with
gphΩpF 2q “ tpx1, p3, 0q, p3, 0qq , px2, p2, 2q, p2, 2qq , px3, p2, 4q, p2, 4qq ,

px4, p0, 4q, p0, 4qq , px5, p0, 6q, p0, 6qq , px6, p3, 6q, p3, 6qqu,

wargminx (VP2) “ tx1, x2, x3, x4, x5u, and spwargminx (VP2) “ tx1, x4, x5u, i.e., here
the first inclusion of (3.6) is strict.
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Finally, note that we obtain by Theorem 3.6 and Proposition 2.2 piiiq the following
result:

Corollary 3.8 Let Assumption 2 be fulfilled, let F be convex-valued, and let p P N. If
additionally fppgphΩpF pqq ` C is convex, then it holds

spwargminx (VPp) “
ď

LĎC‹
}¨}

,

|L|ďp

wargmin (MOPL,H) “ wargminx (VPp).

3.2 Approximation Properties in the Image Space
A vector optimization problem (VP) satisfies the so-called domination property if for
all x P Ω there exists x̄ P argmin (VP) such that fpx̄q ďC fpxq. This property is
trivially fulfilled in scalar-valued optimization in case there exists a minimal solution.
In vector optimization, it is an important property that is used in many proofs. It states
that the values of the objectives function of the minimal solutions fully dominate the
image set of the vector optimization problem.

The analogous condition for a set-valued optimization problem given by (SP♢),
♢ P tl, u, su is the property

@ x P Ω D x̄ P argmin (SP♢) : F px̄q ĺ
♢
C F pxq. (3.9)

The natural question that now arises is whether we can replace argmin (SP♢) in (3.9)
by the minimal solution sets of the vector optimization and multi-objective optimization
problems of the vectorization schemes. For the second vectorization scheme, an answer
has already been given in [6]:

Theorem 3.9 [6, Theorem 3.9] Let Assumption 2 be fulfilled, and let additionally Ω
be compact, F pΩq be bounded, and gphpF q be closed. Then it holds

@ x P Ω D x̄ P cl
˜

ď

pPN
argminx (VPp)

¸

: F px̄q ĺl
C F pxq.

Now, we show that a similar statement also holds for the other vectorization scheme.
For the proof we need the following result (cf. [1, Theorem 4.2.2 and Theorem 4.2.3]):

Proposition 3.10 Let Assumption 2 be fulfilled, let additionally F be continuous on
Ω and let ℓ P Rm. Then the extremal value functions

ϕℓ : Rn
Ñ R with ϕℓ

pxq :“ inf
yPF pxq

ℓJy for all x P Rn

and
ψℓ : Rn

Ñ R with ψℓ
pxq :“ sup

yPF pxq

ℓJy for all x P Rn

are continuous on Ω.

Now we are able to formulate and prove a result on a type of domination property
also for the first vectorization scheme:
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Theorem 3.11 Let Assumption 2 be fulfilled, let F be convex-valued and Lipschitzian
on Ω, and let Ω be compact. Then it holds

@ x P Ω D x̄ P cl

¨

˚

˚

˝

ď

LĎC‹
}¨}

,

|L|PN

argmin (MOPL,H)

˛

‹

‹

‚

: F px̄q ĺl
C F pxq,

@ x P Ω D x̄ P cl

¨

˚

˚

˝

ď

UĎC‹
}¨}

,

|U |PN

argmin (MOPH,U)

˛

‹

‹

‚

: F px̄q ĺu
C F pxq, and

@ x P Ω D x̄ P cl

¨

˚

˚

˝

ď

L,UĎC‹
}¨}

,

|L|`|U |PN

argmin (MOPL,U)

˛

‹

‹

‚

: F px̄q ĺs
C F pxq.

Proof. Let x P Ω and S “ tℓ1, ℓ2, . . .u be a countable dense subset of the compact set
C‹

}¨}. For all p P N we define on the one hand Lp :“ tℓi | i P rpsu if ♢ P tl, su and
on the other hand Up :“ tℓi | i P rpsu if ♢ P tu, su. Moreover, set Up :“ H if ♢ “ l
and Lp :“ H if ♢ “ u for all p P N, respectively. If there exists p P N such that
x P argmin (MOPLp,Up), then we can choose x̄ “ x and there is nothing left to show.
Hence, we assume that for all p P N it holds x R argmin (MOPLp,Up).

Since F is Lipschitzian and thus by Proposition 2.6 continuous on Ω, it follows
by Proposition 3.10 that fLp,Up is continuous on Ω for all p P N. Thus, due to the
compactness of Ω, we obtain that the image set fLp,UppΩq is compact. Hence, for
all p P N, by [33, Theorem 3.2.9] the domination property holds and there exists
xp P argmin (MOPLp,Up) such that

fLp,Uppxp
q ď fLp,Uppxq. (3.10)

Moreover, due to the compactness of Ω, there exists a subsequence pxpkqkPN of pxpqpPN
that converges to some x̄ P Ω. Hence, it holds

x̄ P cl

¨

˚

˚

˝

ď

L,UĎC‹
}¨}

,

|L|`|U |PN

argmin (MOPL,U)

˛

‹

‹

‚

.

It remains to show that F px̄q ĺl
C F pxq if ♢ P tl, su and that F px̄q ĺu

C F pxq

if ♢ P tu, su, respectively. We do this by using [17, Lemma 2.1 and Remark 2.1]
according to which under our assumptions it holds

F px̄q ĺl
C F pxq ô @ℓ P C‹

}¨} : inf
yPF px̄q

ℓJy ď inf
yPF pxq

ℓJy (3.11)

and
F px̄q ĺu

C F pxq ô @ℓ P C‹
}¨} : sup

yPF px̄q

ℓJy ď sup
yPF pxq

ℓJy. (3.12)
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Let ℓ P C‹
}¨} and ε ą 0, and define Lx̂ :“ maxyPF px̂q }y} for all x̂ P Ω. Since S is a dense

subset of C‹
}¨}, there exists p̄ P N such that for ℓ̄ :“ ℓp̄ it holds }ℓ̄´ ℓ} ď ε and we obtain

inf
yPF pxq

ℓ̄ Jy “ inf
yPF pxq

`

pℓ̄ ´ ℓqJy ` ℓJy
˘

ď inf
yPF pxq

`

}ℓ̄ ´ ℓ}}y} ` ℓJy
˘

ď inf
yPF pxq

`

εLx
` ℓJy

˘

“ εLx
` inf

yPF pxq
ℓJy.

(3.13)

Similarly, we get

inf
yPF px̄q

ℓJy ď εLx̄
` inf

yPF px̄q
ℓ̄ Jy, (3.14)

sup
yPF pxq

ℓ̄ Jy ď εLx
` sup

yPF pxq

ℓJy, and (3.15)

sup
yPF px̄q

ℓJy ď εLx̄
` sup

yPF px̄q

ℓ̄ Jy. (3.16)

Moreover, in the case ♢ P tl, su it holds due to the monotonicity of the sets Lp

w.r.t. inclusion that ℓ̄ P Lp for all p ě p̄, and by (3.10) it follows

inf
yPF pxpq

ℓ̄ Jy ď inf
yPF pxq

ℓ̄ Jy for all p ě p̄. (3.17)

In analogy to this, we obtain in the case ♢ P tu, su that ℓ̄ P Up holds for all p ě p̄, and
it follows again by (3.10)

sup
yPF pxpq

ℓ̄ Jy ď sup
yPF pxq

ℓ̄ Jy for all p ě p̄. (3.18)

In addition, since F is continuous on Ω and thus u.s.c. at x̄, there exists k̄ P N such
that in the case ♢ P tl, su for all k ě k̄ it holds F pxpkq Ď F px̄q ` εB as well as pk ě p̄.
Thus, it follows

inf
yPF pxpk q

ℓ̄ Jy ě inf
yPF px̄q`εB

ℓ̄ Jy

“ inf
yPF px̄q

ℓ̄ Jy ` inf
yPεB

ℓ̄ Jy

“ inf
yPF px̄q

ℓ̄ Jy ´ ε}ℓ̄}

“ inf
yPF px̄q

ℓ̄ Jy ´ ε

(3.19)

for all k ě k̄.
Since F is Lipschitzian at x̄ there exist by definition L, δ ą 0 such that for all

x1, x2 P Bpx̄, δq it holds F px1q Ď F px2q`L}x2 ´x1} B̄. Additionally, using that pxpkqkPN
converges to x̄ there exists k̃ P N such that for all k ě k̃ it holds }x̄´ xpk} ď mint δ

2 ,
ε
L

u

as well as pk ě p̄. Then for k ě k̃ we have F px̄q Ď F pxpkq ` L}x̄ ´ xpk} B̄. Hence, it
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follows
sup

yPF px̄q

ℓ̄ Jy ď sup
yPF pxpk q`L}x̄´xpk } B̄

ℓ̄ Jy

“ sup
yPF pxpk q

ℓ̄ Jy ` sup
yPL}x̄´xpk } B̄

ℓ̄ Jy

“ L}x̄ ´ xpk}}ℓ̄} ` sup
yPF pxpk q

ℓ̄ Jy

ď L
ε

L
` sup

yPF pxpk q

ℓ̄ Jy

“ ε ` sup
yPF pxpk q

ℓ̄ Jy

(3.20)

for all k ě k̃.
In summary, in the case ♢ P tl, su we obtain by using (3.14), (3.19), (3.17) and

(3.13) that
inf

yPF px̄q
ℓJy ď εLx̄ ` inf

yPF px̄q
ℓ̄ Jy

ď εLx̄ ` ε ` inf
yPF pxpk q

ℓ̄ Jy

ď εLx̄ ` ε ` inf
yPF pxq

ℓ̄ Jy

ď ε pLx ` Lx̄ ` 1q ` inf
yPF pxq

ℓJy

holds for all k P N with k ě k̄, and in the case ♢ P tu, su we obtain by using (3.16),
(3.20), (3.18) and (3.15) that

sup
yPF px̄q

ℓJy ď εLx̄ ` sup
yPF px̄q

ℓ̄ Jy

ď εLx̄ ` ε ` sup
yPF pxpk q

ℓ̄ Jy

ď εLx̄ ` ε ` sup
yPF pxq

ℓ̄ Jy

ď ε pLx ` Lx̄ ` 1q ` sup
yPF pxq

ℓJy

holds for all k P N with k ě k̃. Since ε ą 0 was chosen arbitrarily, it follows

inf
yPF px̄q

ℓJy ď inf
yPF pxq

ℓJy and sup
yPF px̄q

ℓJy ď sup
yPF pxq

ℓJy,

depending on which of the two cases applies. Finally, since ℓ P C‹
}¨} was also chosen

arbitrarily, this completes the proof according to (3.11) and (3.12).

Note that by the above proof, the statement of Theorem 3.11 remains true for the
case ♢ “ l if we replace the assumption that F is Lipschitzian on Ω by the weaker
assumption that F is continuous on Ω.

3.3 Finite Dimensional Vectorization Properties
In [6] for set-valued optimization problems (SP l) the weakly finite dimensional vector-
ization property w.r.t. the vectorization scheme (VPp) was introduced. It was shown
that certain classes of (SP l) are, for some finite p P N, even equivalent to the vector
optimization problem (VPp) in the sense that the projection on the x-component of
the set of weakly minimal solutions of (VPp) is equal to the set of weakly minimal
solutions of (SP l). This is stated in the following definition:
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Definition 3.12 [6, Definition 4.1 (i)] Let Assumption 2 be fulfilled. We say that
(SP l) satisfies the weakly minimal finite dimensional vectorization property (wFDVP)
w.r.t. (VPp) if there exists p P N such that wargmin (SP l) “ wargminx (VPp).

Note that if (SP l) satisfies (wFDVP) w.r.t. (VPp), then by (3.4) and [6, Proposition
3.1 (i)] it follows that (SP l) also satisfies (wFDVP) w.r.t. (VPp1) for all p1 P N with p1 ą

p. The aim of this subsection is to transfer Definition 3.12 to the other vectorization
scheme presented in [7] and to find classes of set optimization problems that satisfy
this property. In doing so we initially define, in analogy to the above definition, the
following property:

Definition 3.13 Let Assumption 2 be fulfilled and ♢ P tl, u, su. We say that (SP♢)
satisfies the weakly minimal finite dimensional vectorization property (wFDVP) w.r.t.
(MOPL,U) if there exist p P N and sets L,U Ď C‹

}¨} with |L|`|U | P rps, U “ H if ♢ “ l,
and L “ H if ♢ “ u, such that wargmin (SP♢) “ wargmin (MOPL,U).

Obviously, we obtain here directly by definition that if (SP♢), ♢ P tl, u, su satis-
fies (wFDVP) w.r.t. (MOPL,U) for p P N, then (SP♢) also satisfies (wFDVP) w.r.t.
(MOPL,U) for all p1 ą p.

The first special class of set-valued optimization problems for which it has been
shown that their members satisfy (wFDVP) w.r.t. (VPp) are the problems with finite
feasible set.

Theorem 3.14 [6, Theorem 4.4] Let Assumption 2 be fulfilled. If 2 ď |Ω| ă 8, then
(SP l) satisfies (wFDVP) w.r.t. (VPp) with p “ |Ω| ´ 1.

Note that if Assumption 2 is fulfilled, then, for instance, by [7, Lemma 2.9] it holds
F pxq ć

♢
C F pxq for all x P Ω and ♢ P tl, u, su. Based on this and using |Ω| ă 8 it follows

by the transitivity of ă
♢
C that wargmin (SP♢) ‰ H. This fact is explicitly used in the

proof of Theorem 3.14 given in [6]. It will also be used in the proof of the following
lemma, which is needed to prove an analogous statement for the other vectorization
scheme.

Lemma 3.15 Let Assumption 2 be fulfilled, ♢ P tl, u, su, and F be convex-valued. If
2 ď |Ω| ă 8, then for all x̄ P wargmin (SP♢) there exist L,U Ď C‹

}¨} with |L| ` |U | P

r|Ω| ´ 1s, U “ H if ♢ “ l, and L “ H if ♢ “ u, such that x̄ P wargmin (MOPL,U).

Proof. We restrict ourselves to the case ♢ “ s, since the proofs for the other two cases
are included. Let therefore Ω “ tx1, ..., xku with k :“ |Ω|, x̄ P wargmin (SPs), and
assume w.l.o.g. that x̄ “ xk. Then, for all i P rk ´ 1s it holds F pxiq ćs

C F px̄q and by
[7, Lemma 3.2 (iii)] there exists ℓi P C‹

}¨} for all i P rk ´ 1s with

inf
yPF px̄q

pℓi
q

Jy ď inf
yPF pxiq

pℓi
q

Jy (3.21)

or
sup

yPF px̄q

pℓi
q

Jy ď sup
yPF pxiq

pℓi
q

Jy. (3.22)

Based on this define now

L :“
"

ℓi
| i P rk ´ 1s, inf

yPF px̄q
pℓi

q
Jy ď inf

yPF pxiq
pℓi

q
Jy

*

and U :“ tℓi
| i P rk ´ 1suzL.
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Then it holds L Y U ‰ H, |L| P rk´ 1s0, |U | P rk´ 1s0 and |L| ` |U | P rk´ 1s. Assume
that x̄ R wargmin (MOPL,U). Then there exists j P rk´1s such that fL,Upxjq ă fL,Upx̄q,
but this contradicts (3.21) if ℓj P L and (3.22) if ℓj P U , respectively. Thus it holds
x̄ P wargmin (MOPL,U), which completes the proof.

As mentioned above, this result leads to a similar result to Theorem 3.14 for the
other vectorization scheme.

Theorem 3.16 Let Assumption 2 be fulfilled, F be convex-valued, and ♢ P tl, u, su. If
2 ď |Ω| ă 8, then (SP♢) satisfies (wFDVP) w.r.t. (MOPL,U) for |L| ` |U | P rps with
p “ |Ω| ¨ |Ω ´ 1|.

Proof. Again, we restrict ourselves to the case ♢ “ s and set k :“ |Ω| as well as
X̄ :“ wargmin (SPs). Note that X̄ ‰ H holds due to the arguments given after
Theorem 3.14. Then, for all x̄ P X̄ there exist by Lemma 3.15 sets Lpx̄q,Upx̄q Ď

C‹
}¨} with |Lpx̄q| P rk ´ 1s0, |Upx̄q| P rk ´ 1s0, |Lpx̄q| ` |Upx̄q| P rk ´ 1s, and x̄ P

wargmin (MOPLpx̄q,Upx̄q). Based on this, we now define

L :“
ď

x̄PX̄

Lpx̄q and U :“
ď

x̄PX̄

Upx̄q.

Then |L|`|U | ď |X̄|¨pk´1q ď k ¨pk´1q, and by Theorem 3.1 it is sufficient to show that
X̄ Ď wargmin (MOPL,U). Assume to the contrary that there exists x̄ P X̄ such that
x̄ R wargmin (MOPL,U). Then fL,Upxq ă fL,Upx̄q and thus, in particular, fLpx̄q,Upx̄qpxq ă

fLpx̄q,Upx̄qpx̄q for some x P Ωztx̄u – in contradiction to x̄ P wargmin (MOPLpx̄q,Upx̄q).
Hence, it follows X̄ “ wargmin (MOPL,U), and we are done.

Moreover, it is known that (wFDVP) w.r.t. (VPp) is satisfied by set-valued opti-
mization problems with a polytope-valued objective map F , i.e., for problems where
F pxq is a (nonempty) bounded polyhedron for all x P Ω, if the cardinality of the
extremal points of the image sets is bounded.

Theorem 3.17 [6, Theorem 4.7] Let Assumption 2 be fulfilled and F be polytope-
valued with supxPΩ |extpF pxqq| ă 8. Then, (SP l) satisfies (wFDVP) w.r.t. (VPp)
with p “ maxxPΩ |extpF pxqq|.

To obtain a similar result for the vectorization scheme using (MOPL,U), we will need
a special structure of the polytope-valued map F . This will also allow us to remove the
explicit condition regarding the number of extremal points. Moreover, for the proof of
this result we will use the following three lemmata.

Lemma 3.18 Let C Ď Rm be a cone and let P Ď Rm be a nonempty polyhedron. Then,
the following statements hold:

(i) If there exist Ā P Rpˆm and b̄ P Rp such that P `C “ ty P Rm | Āy ď b̄u, then it
holds ĀJ

i P ´C‹ for all i P rps.

(ii) If there exist Ā P Rpˆm and b̄ P Rp such that P ´C “ ty P Rm | Āy ď b̄u, then it
holds ĀJ

i P C‹ for all i P rps.
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Proof. Since piiq follows directly from piq by replacing C with ´C, it is sufficient to
prove piq. Therefore, we assume that there exists j P rps such that ĀJ

j R ´C‹. Thus
there is k P C such that Ājk ą 0. For any y P P it holds y ` λk P P `C for all λ ě 0,
which leads to a contradiction by

b̄j ě lim
λÑ`8

Ājpy ` λkq “ 8.

Lemma 3.19 Let C Ď Rm be a closed, convex, and pointed cone, and let P Ď Rm be
a nonempty polytope. Then it holds P ˘ C ‰ Rm.
Proof. We restrict ourselves to the proof of P ` C ‰ Rm. Using that C is a closed,
convex, and pointed cone there is a point ȳ P RmzC and by [15, Theorem 3.18] there
exist ℓ P Rmzt0u and α P R such that ℓJȳ ă α ď ℓJy for all y P C. Using standard
arguments, it follows that ℓJy ě 0 for all y P C, and thus ℓ P C‹zt0u. Moreover, since
P is nonempty and compact, Weierstrass’ theorem says that there exists a point x̄ P P
such that ℓJx̄ ď ℓJx for all x P P . Hence, by ℓ P C‹zt0u it follows ℓJx̄ ď ℓJx ` ℓJy
for all x P P and all y P C, and equivalently ℓJx̄ ď ℓJz for all z P P ` C. Finally,
for d :“ ´ℓ ‰ 0 it holds ℓJd “ ´ℓJℓ “ ´}ℓ}2 ă 0, and for z̄ :“ x̄ ` d P Rm it follows
ℓJz̄ “ ℓJx̄ ` ℓJd ă ℓJx̄ and thus z̄ R P ` C.
Lemma 3.20 Let C Ď Rm be a pointed polyhedral cone, and let P be a nonempty
polytope with P “ ty P Rm | Ay ď bu for some A P Rsˆm and b P Rs. Then the
following statements hold:

(i) There exist p P N, Ā P Rpˆm and b̄ P Rp such that

P ` C “ ty P Rm
| Āy ď b̄u (3.23)

and Ā is independent of b.

(ii) There exist p P N, Ā P Rpˆm and b̄ P Rp such that

P ´ C “ ty P Rm
| Āy ď b̄u

and Ā is independent of b.
Proof. Since piiq follows again directly from piq by replacing C with ´C, we restrict
ourselves to the proof of piq. Moreover, throughout the proof, for a set Q Ď Rr and
some natural number t P rrs, we denote by ΠtpQq the projection of Q onto the first t
coordinates, i.e., we set

ΠtpQq :“ tpz1, . . . , ztq P Rt
| Dzt`1, . . . , zr P R : pz1, . . . , zt, zt`1 . . . , zrq P Qu.

Using that the cone C is polyhedral and pointed, there exist q P N and L P Rqˆmzt0u

such that C “ ty P Rm | Ly ď 0u. We will show for the set

Q :“
␣

pw, yq P R2m
| Lw ´ Ly ď 0, Ay ď b

(

(3.24)

that it holds ΠmpQq “ P ` C. First, to see ΠmpQq Ď P ` C, let w P ΠmpQq. Then
there exists y P Rm such that Lw ´ Ly ď 0 and Ay ď b. For w1 :“ y and w2 :“ w ´ y
we obtain that w “ w1 `w2, Aw1 ď b, Lw2 ď 0, and thus w1 P P and w2 P C. Hence,
it holds w P P ` C. To see P ` C Ď ΠmpQq, let w “ w1 ` w2 P P ` C with w1 P P ,
w2 P C, and thus Aw1 ď b and Lw2 ď 0. Then we obtain for y :“ w1 that Lw´Ly ď 0
and Ay ď b. Hence, it holds pw, yq P Q with w P ΠmpQq.

Consider now, for t P rms0, the statement:

18



Sptq: There exists pt P N, At P Rptˆm, Bt P Rptˆpm´tq and bt P Rpt such that

Π2m´tpQq “

$

’

&

’

%

pw, y1, . . . , ym´tq P R2m´t
| Atw ` Bt

¨

˚

˝

y1
...

ym´t

˛

‹

‚

ď bt

,

/

.

/

-

, (3.25)

where the matrices At and Bt are independent of the vector b.

We show by induction on t that Sptq holds for every valid t P rms0. We obtain
for t “ 0 that Π2m´tpQq “ Π2mpQq “ Q and Sp0q is by definition according to (3.24)
fulfilled for

p0 :“ q ` s, A0 :“
„

L
0

ȷ

P Rp0ˆm, B0 :“
„

´L
A

ȷ

P Rp0ˆm and b0 :“
ˆ

0
b

˙

P Rp0
.

Suppose now that Sptq holds for some t P rm ´ 1s0. We proceed then to compute
Π2m´t´1pQq by eliminating the variable ym´t in the representation (3.25) of Π2m´tpQq

via Fourier-Motzkin elimination to show that Spt ` 1q holds. In order to do this, we
define, for ˝ P tă,ą,“u, the index set I˝ :“ ti P rpts | Bt

i,m´t˝0u. Then, we have

@ i P Ią : ym´t ď ´

m
ÿ

j“1

At
ij

Bt
i,m´t

wj ´

m´t´1
ÿ

j“1

Bt
ij

Bt
i,m´t

yj `
bt

i

Bt
i,m´t

and

@ i P Iă : ´

m
ÿ

j“1

At
ij

Bt
i,m´t

wj ´

m´t´1
ÿ

j“1

Bt
ij

Bt
i,m´t

yj `
bt

i

Bt
i,m´t

ď ym´t.

Now, according to correctness of the Fourier-Motzkin elimination, we get that the
following inequalities provide a hyperplane representation of Π2m´t´1pQq :

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

@ i P I“ :
m
ř

j“1
At

ijwj `
m´t´1
ř

j“1
Bt

i,jyj ď bt
i,

@ ps, rq P Iă ˆ Ią : ´
m
ř

j“1

At
sj

Bt
s,m´t

wj ´
m´t´1
ř

j“1

Bt
sj

Bt
s,m´t

yj `
bt

s

Bt
s,m´t

ď

´
m
ř

j“1

At
rj

Bt
r,m´t

wj ´
m´t´1
ř

j“1

Bt
rj

Bt
r,m´t

yj `
bt

r

Bt
r,m´t

.

(3.26)

Note that, in our context, at least one of the index sets I“ or IăˆIą must be nonempty,
and therefore (3.26) is well defined. Indeed, assume otherwise w.l.o.g. that Iă “ rpts.
Then it holds Π2m´t´1pQq “ R2m´t´1 and we obtain ΠmpQq “ P ` C “ Rm, which
contradicts Lemma 3.19.

We continue next by rearranging the inequalities in (3.26) associated to the index
set Iă ˆ Ią to obtain the equivalent representation

$

’

’

’

’

’

&

’

’

’

’

’

%

@ i P I“ :
m
ř

j“1
At

ijwj `
m´t´1
ř

j“1
Bt

i,jyj ď bt
i,

@ ps, rq P Iă ˆ Ią :
m
ř

j“1

´

At
rj

Bt
r,m´t

´
At

sj

Bt
s,m´t

¯

wj `
m´t´1
ř

j“1

´

Bt
rj

Bt
r,m´t

´
Bt

sj

Bt
s,m´t

¯

yj ď

bt
r

Bt
r,m´t

´
bt

s

Bt
s,m´t

.

(3.27)
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Set now pt`1 :“ |I“| ` |Iă||Ią| P N and take any bijection ∆ : rpt`1s Ñ I“ Y

pIă ˆ Iąq. In addition, define matrices At`1 P Rpt`1ˆm, B P Rpt`1ˆpm´t´1q and a vector
bt`1 P Rpt`1 respectively by

@ i P rpt`1
s, j P rms : At`1

ij :“
#

At
∆piq,j if ∆piq P I“,
At

rj

Bt
r,m´t

´
At

sj

Bt
s,m´t

if ∆piq “ ps, rq P Iă ˆ Ią,
(3.28)

@ i P rpt`1
s, j P rm ´ t ´ 1s : Bt`1

ij :“
#

Bt
∆piq,j if ∆piq P I“,
Bt

rj

Bt
r,m´t

´
Bt

sj

Bt
s,m´t

if ∆piq “ ps, rq P Iă ˆ Ią,

(3.29)

@ i P rpt`1
s : bt`1

i :“
#

bt
∆piq if ∆piq P I“,

bt
r

Bt
r,m´t

´
bt

s

Bt
s,m´t

if ∆piq “ ps, rq P Iă ˆ Ią.
(3.30)

Then, according to (3.27), (3.28), (3.29) and (3.30), we have

Π2m´t´1pQq “

$

’

&

’

%

pw, y1, . . . , ym´tq P Rm
ˆ Rm´t

| At`1w ` Bt`1

¨

˚

˝

y1
...

ym´t´1

˛

‹

‚

ď bt`1

,

/

.

/

-

with At`1 P Rpt`1ˆm, Bt P Rpt`1ˆpm´t´1q and bt`1 P Rpt`1 .
Moreover, it is easily observed from (3.28) and (3.29) that the entries of the matrices

At`1 and Bt`1 depend only of those of At and Bt. By the induction hypothesis, we also
have that the entries of the matrices At and Bt are independent of b. It thus follows
that At`1 and Bt`1 are independent of b. This completes the induction argument.

Finally, given the validity of the statement Spmq, we choose

p :“ pm, Ā :“ Am
P Rpˆm and b̄ :“ bm

P Rp

to obtain the desired representation (3.23).

Using these three auxiliary results, we are now able to prove the following main
result.

Theorem 3.21 Let Assumption 2 be fulfilled, C be a polyhedral cone, and ♢ P tl, u, su.
If F is a polytope-valued map defined by

F pxq :“ ty P Rm
| Ay ď bpxqu for all x P Ω

where A P Rsˆm and b : Rn Ñ Rs, then (SP♢) satisfies (wFDVP) w.r.t. (MOPL,U).

Proof. In the case ♢ “ l we obtain by Lemma 3.20 piq that there exist p P N, Ā P Rpˆm

and a map b̄ : Rn Ñ Rp such that

F pxq ` C “ ty P Rm
| Āy ď b̄pxqu for all x P Ω. (3.31)
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By Lemma 3.19 it holds F pxq ` C ‰ Rm for all x P Ω and thus Ā ‰ 0. Moreover, by
Lemma 3.18 piq it follows ĀJ

i P ´C‹ for all i P rps. W.l.o.g. we suppose that ĀJ
i ‰ 0

for all i P rp̄s and ĀJ
p̄`1 “ . . . “ ĀJ

p “ 0 for some p̄ ď p. Moreover, we define

ℓi :“ ´
1

}ĀJ
i }
ĀJ

i P C‹
}¨} for all i P rp̄s (3.32)

and q :“ |tℓi | i P rp̄su| ď p̄. Again, w.l.o.g. we suppose that ℓi ‰ ℓj for all i, j P rqs
with i ‰ j and define L :“ tℓ1, . . . , ℓqu Ď C‹

}¨}.
By Theorem 3.1 it is sufficient to show that wargmin (SP l) Ď wargmin (MOPL,H).

Hence, let x̄ P wargmin (SP l). Assume that x̄ R wargmin (MOPL,H). Then, there exists
some x̂ P Ω such that fL,Hpx̂q ă fL,Hpx̄q, i.e., it holds infyPF px̂qpℓ

iqJy ă infyPF px̄qpℓ
iqJy

for all i P rqs. Let now ȳ P F px̄q and k P intpCq be arbitrarily chosen. Then we obtain
by the definition of ℓi, by F px̂q Ď F px̂q ` C, and by (3.31) that

pℓi
q

Jȳ ě inf
yPF px̄q

pℓi
q

Jy ą inf
yPF px̂q

pℓi
q

Jy “ inf
yPF px̂q

´
1

}ĀJ
i }
Āiy ě ´

b̄ipx̂q

}ĀJ
i }

(3.33)

for all i P rqs. Moreover, for all i P tq ` 1, . . . , p̄u there is an index j P rqs such that
ℓi “ ℓj P C‹

}¨}. Then we obtain, using the same ideas as above,

pℓi
q

Jȳ “ pℓj
q

Jȳ ě inf
yPF px̄q

pℓj
q

Jy ą inf
yPF px̂q

pℓj
q

Jy “ inf
yPF px̂q

pℓi
q

Jy ě ´
b̄ipx̂q

}ĀJ
i }
.

Hence,

´pℓi
q

Jȳ ă
b̄ipx̂q

}ĀJ
i }

is fulfilled for all i P tq ` 1, . . . , p̄u and thus, by (3.33), for all i P rp̄s. It follows that
for k P intpCq there exists λ ą 0 such that for all i P rp̄s it holds

´pℓi
q

J
pȳ ´ λkq ď

b̄ipx̂q

}ĀJ
i }
.

We obtain by the definition of ℓi that Āipȳ ´ λkq ď b̄ipx̂q for all i P rp̄s. Finally, using
ĀJ

p̄`1 “ . . . “ ĀJ
p “ 0 and x̂ P Ω we obtain by (3.31) that Āipȳ ´ λkq “ 0 ď b̄ipx̂q holds

for all i P tp̄ ` 1, . . . , pu, and hence Āpȳ ´ λkq ď b̄px̂q.
Thus it holds ȳ ´ λk P F px̂q `C. By k P intpCq we deduce that ȳ P F px̂q ` intpCq.

Finally, because ȳ was chosen arbitrarily in F px̄q, we conclude that F px̂q ăl
C F px̄q –

contrary to x̄ P wargmin (SP l). Hence, it holds x̄ P wargmin (MOPL,H) and we are
done in the case ♢ “ l.

The proof for ♢ “ u follows the same steps as the proof for ♢ “ l. We give the main
steps of the proof for completeness. At first, we obtain by using that F pxq ´ C ‰ Rm

for all x P Ω and by Lemma 3.20 piiq that there exist p P N, Ā P Rpˆmzt0u and a map
b̄ : Rn Ñ Rp such that

F pxq ´ C “ ty P Rm
| Āy ď b̄pxqu for all x P Ω. (3.34)

By Lemma 3.18 piiq it follows ĀJ
i P C‹ for all i P rps. In contrast to the previous case

we define here
ℓi :“ 1

}ĀJ
i }
ĀJ

i P C‹
}¨} for all i P rp̄s (3.35)
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and U :“ tℓ1, . . . , ℓqu Ď C‹
}¨}, whereby the assumptions regarding p̄ and q are made anal-

ogously. Moreover, let x̄ P wargmin (SPu) and assume that x̄ R wargmin (MOPH,U).
Then, there exists some x̂ P Ω such that fH,Upx̂q ă fH,Upx̄q, i.e., it holds supyPF px̂qpℓ

iqJy ă

supyPF px̄qpℓ
iqJy for all i P rqs. Let now ŷ P F px̂q and k P intpCq be arbitrarily chosen.

We obtain by the definition of ℓi, by F px̄q Ď F px̄q ´ C, and by (3.34) that

pℓi
q

Jŷ ď sup
yPF px̂q

pℓi
q

Jy ă sup
yPF px̄q

pℓi
q

Jy “ sup
yPF px̄q

1
}ĀJ

i }
Āiy ď

b̄ipx̄q

}ĀJ
i }

for all i P rqs. Again, as above, this chain of inequalities holds even for all i P rp̄s and
there exists λ ą 0 such that for all i P rp̄s we obtain

pℓi
q

J
pŷ ` λkq ď

b̄ipx̄q

}ĀJ
i }
,

and we obtain Āpŷ ` λkq ď b̄px̄q. As a consequence, ŷ ` λk P F px̄q ´ C, and thus ŷ P

F px̄q ´ intpCq. Finally, we get F px̂q ău
C F px̄q in contradiction to x̄ P wargmin (SPu).

Hence, it holds x̄ P wargmin (MOPH,U) and we are done in the case ♢ “ u.
Finally, the proof for ♢ “ s follows from the proofs for ♢ P tl, uu and is omitted.

We can apply Theorem 3.21 for set-valued maps F with a polyhedral graph. Such
maps are also called polyhedral convex and are examined, for instance, in [27, 35].
Hence, we assume now that the graph of F is given by

gphpF q “ tpx, yq P Rn
ˆ Rm

| Ay ` Bx ď bu (3.36)

with A P Rsˆm, B P Rsˆn and b P Rs. Then it holds

F pxq “ ty P Rm
| px, yq P gphpF qu “ ty P Rm

| Ay ď b ´ Bxu ,

and we obtain directly by Theorem 3.21 the following corollary:

Corollary 3.22 Let Assumption 2 be fulfilled, C be a polyhedral cone, and ♢ P tl, u, su.
If F is a set-valued map with a polyhedral graph given by (3.36), then (SP♢) satisfies
(wFDVP) w.r.t. (MOPL,U).

We conclude by examining set-valued optimization problems with the objective map
F having a general convex graph. Note that the convexity of gphpF q implies that F is
convex-valued. As one of the main theorems in [6] the following result could be proven:

Theorem 3.23 [6, Theorem 4.16] Let Assumption 2 be fulfilled. Furthermore, let Ω
be convex with Ω Ď intpdompF qq, let gphpF q be convex, and let F be locally bounded
on Ω. Then, (SP l) satisfies (wFDVP) w.r.t. (VPp) with p “ n ` 1.

Theorem 3.23 states that, under appropriate assumptions, the set of all weakly
minimal solutions of (SP l) is given by the set of all weakly minimal solutions of (VPp),
where p is the dimension of the preimage space n added to 1. For the vectorization
scheme using (MOPL,H) we can prove the following result. In contrast to the proof of
Theorem 3.23 in [6], which uses among others optimality conditions and Caratheodory’s
theorem, the proof for the following theorem is much simplier, as we can directly make
use of Theorem 3.23 in combination with Corollary 3.8.
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Theorem 3.24 Let Assumption 2 be fulfilled. Furthermore, let Ω be convex with Ω Ď

intpdompF qq, let gphpF q be convex, and let F be locally bounded on Ω. Then for all
x̄ P wargmin (SP l) there exists L Ď C‹

}¨} with |L| ď n` 1 and x̄ P wargmin (MOPL,H).

Proof. Let x̄ P wargmin (SP l). Then, by Theorem 3.23, it holds x̄ P wargminx (VPp)
with p “ n ` 1. Hence, by Corollary 3.8, it is sufficient to show that

fp
pgphΩpF p

qq “
␣

py1, . . . , yp
q | Dx P Ω : px, yi

q P gphpF q @i P rps
(

is a convex set. Let therefore pỹ1, . . . , ỹpq, pŷ1, . . . , ŷpq P fp pgphΩpF pqq and λ P r0, 1s.
Hence, there exist x̃, x̂ P Ω with px̃, ỹiq, px̂, ŷiq P gphpF q for all i P rps, and by the
convexity of gphpF q we obtain that

λpx̃, ỹi
q ` p1 ´ λqpx̂, ŷi

q “ pλx̃ ` p1 ´ λqx̂, λỹi
` p1 ´ λqŷi

q P gphpF q

for all i P rps. Using the convexity of Ω it follows that λx̃ ` p1 ´ λqx̂ P Ω and
thus λpỹ1, . . . , ỹpq ` p1 ´ λqpŷ1, . . . , ŷpq P fp pgphΩpF pqq, which proves the convexity of
fp pgphΩpF pqq.

4 Conclusions
In this paper, two known practical solution approaches with respect to the set approach
for set-valued optimization problems, which are based on so-called vectorization strate-
gies, are examined in more detail and compared with each other for the first time.
Thereby, the vectorization scheme presented in [6] is applicable for a set-valued opti-
mization problem (SP♢), ♢ P tl, u, su with a convex-valued objective map. In contrast,
the other strategy given in [7] can also be used for problems with nonconvex-valued
objectives but is restricted to the lower-type less relation. Both approaches lead to para-
metric families of multi-objective subproblems, which are able to completely describe
or at least approximate the solution behavior of the original set-valued optimization
problems. It has been shown that many of these strong and useful approximation prop-
erties already obtained for one of the two vectorization schemes also apply to the other.
Of particular importance here is the new result that the so-called weakly minimal finite
dimensional vectorization property (wFDVP) does not only hold w.r.t. (VPp) but also
w.r.t. (MOPL,U) if the initial set-valued optimization problem has a finite feasible set,
and (under further additional assumptions) a polytope-valued objective map. In other
words, for these special classes of problems, the original set-valued problems are in a
certain sense equivalent to the corresponding parametric multi-objective replacement
problems. As a result, many tools and techniques from multi-objective optimization
can now be applied to problems in this setting. This ranges from numerical solution
approaches to deriving new theoretical results like (sufficient) optimality conditions or
existence results.
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