
Mixed Integer Linear Programming Formulations for Robust Surgery

Scheduling

Ankit Bansal∗ Jean-Philippe Richard† Bjorn P. Berg‡ Yu-Li Huang§

Abstract

We introduce Mixed Integer Linear Programming (MILP) formulations for the two-stage robust

surgery scheduling problem (2SRSSP). We derive these formulations by modeling the second-stage

problem as a longest path problem on a layered acyclic graph and subsequently converting it into a

linear program. This linear program is then dualized and integrated with the first-stage, resulting in

a MILP formulation for 2SRSSP. Additionally, we propose methods to improve the computational

performance of the these MILP formulations. An extensive numerical study, based on data from an

academic medical center, reveals that the computational performance of the Column and Constraint

Generation (C&CG) Algorithm, the only exact method previously applied to this problem in the

literature, is outperformed by at least one of the MILP formulations we introduce in this paper.

1 Introduction

Effective operating room (OR) management continues to receive high attention from healthcare deliv-

ery systems and the research community (Schouten et al. 2023). ORs represent a substantial portion

of healthcare expenses and resources while serving as critical hubs for delivering surgical care. Efficient

management of these resources aims to simultaneously attain high capacity utilization and high service

levels and access for patients while containing costs. Effective OR management directly contributes to

improved healthcare outcomes, efficient use of resources, and the financial sustainability of healthcare

delivery systems.

In this paper we introduce a monolithic mixed integer linear programming (MILP) formulation

for the two-stage robust surgery scheduling problem (2SRSSP). The primary objective of 2SRSSP is

∗Department of Systems Science and Industrial Engineering, State University of New York-Binghamton, Binghamton,
NY, 13905, abansal@binghamton.edu (Corresponding author)

†Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN, 55455
‡Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, MN,

55455
§Robert D. and Patricia E. Kern Center for the Science of Healthcare Delivery, Mayo Clinic, Rochester, MN, 55905

1

to minimize the combined expenses related to opening ORs and overtime costs when surgeries extend

beyond their initially planned OR time. In the first stage of 2SRSSP, decisions are made regarding how

many ORs to open and how surgeries will be allocated to the opened ORs. Subsequently, the second

stage identifies and evaluates the worst-case costs with respect to the first-stage allocation decisions,

subject to a budget of uncertainty, which imposes an upper-bound on the number of surgeries that

surpass their anticipated duration.

The problem addressed in this paper, 2SRSSP, was first described by Denton et al. (2010) as a

robust extension of a deterministic formulation and a two-stage stochastic programming formulation

of the surgery scheduling problem. Exact solution approaches for 2SRSSP based on Column and

Constraint (C&CG) algorithms have been proposed (Neyshabouri and Berg 2017, Bansal et al. 2021).

Yet, these approaches suffer from long solution times for moderately-sized problems. The bilinear

modeling approach typically employed to formulate the second-stage of 2SRSSP has prevented the

formulation of a monolithic MILP for 2SRSSP and the computational benefits such formulations

typically confer. The approach that we propose yields new exact monolithic MILP formulations of

2SRSSP that can be readily solved using commercial solvers.

1.1 Problem statement

In this section we present a general 2SRSSP formulation based on that which was initially presented by

Denton et al. (2010) and subsequently studied in the literature. Consider a surgery-to-OR assignment

problem where a collection of surgeries, represented by the set N , are to be assigned to a set of ORs,

represented by the set M . We let m := |M | and n := |N |. Each surgery i in N has a nominal

duration dli and an upper bound on its deviation above the nominal duration d◦i . All ORs in M have

capacity U , which represents the maximum amount of time that can be allocated to surgeries in each

room without incurring additional overage costs. Opening an OR incurs a fixed cost of cf . If an

OR is utilized beyond its capacity U , an additional cost c◦ is incurred for each minute it exceeds the

capacity.

Binary decision variables yi,j indicate whether surgery i ∈ N is assigned to OR j ∈ M , whereas

binary variables xj indicate whether OR j ∈M is opened. Variable β represents the worst case over-

time for a given (x,y). To ensure robustness in decision-making, a second-stage problem is formulated

to calculate the worst-case overtime that can result from solution (x,y). This worst-case overtime is

determined by introducing binary variables ri, which indicate whether surgery i exceeds its nominal

time. The number of surgeries that have durations longer than their nominal completion time is upper

2

bounded by τ , which is referred to as the budget of uncertainty. Using this notation, the 2SRSSP is

formulated as

v∗ := min
∑
j∈M

cfxj + c◦β (1a)

s.t. β ≥ F (x,y) (1b)∑
j∈M

yi,j = 1 ∀i ∈ N (1c)

yi,j ≤ xj ∀i ∈ N,∀j ∈M (1d)

xj ≥ xj+1 ∀j ∈M \m (1e)

k∑
j=1

yk,j = 1 ∀k ∈M (1f)

min{i,m}∑
k=j

yi,k ≤
i−1∑

l=j−1

yl,j−1 ∀i ∈ N,∀j ∈M, i ≥ j (1g)

β ≥ 0, xj ∈ {0, 1} , yi,j ∈ {0, 1} ∀i ∈ N, ∀j ∈M, (1h)

where

F (x,y) := max
∑
j∈M

(∑
i∈N

(
dli + rid

◦
i

)
yi,j − Uxj

)+

(2a)

s.t.
∑
i∈N

ri ≤ τ (2b)

ri ∈ {0, 1} ∀i ∈ N, (2c)

where (·)+ := max{·, 0}. Objective function (1a) aims to minimize the total cost, which is composed of

the fixed costs of opening ORs and the total worst-case overtime cost that would occur from the choice

of x and y. Constraint (1b) defines the worst-case overtime cost and is satisfied at equality in optimal

solutions. Constraints (1c) ensure that each surgery is assigned to exactly one OR whereas constraints

(1d) ensure that a surgery can be assigned to an OR only if it is open. Constraints (1e)-(1g) are the

symmetry-breaking constraints described in Section 4.1 of Denton et al. (2010).

The robustness of a solution (x,y) ∈ {0, 1}m+mn is evaluated through (1b) and (2a)-(2c) which

determine the maximum possible total overtime cost that can be incurred from solution (x,y). Ob-

jective function (2a) aims to maximize total overtime. Constraints (2b) ensure that the number of

surgeries selected to exceed their nominal time does not exceed the specified budget of uncertainty,

3

τ . In formulating (2), we assume that any surgery exceeding its nominal duration takes its maximum

possible completion time since there is always an optimal solution of 2SRSSP for which this property

holds (Neyshabouri and Berg 2017). A solution (β,x,y) ∈ [0,∞) × {0, 1}m+mn is said to be robust

feasible if it satisfies (1b)-(1h) and is said to be robust optimal if it is optimal for (1). To maintain

brevity, we often omit mentioning the component β when discussing robust feasible and robust optimal

solutions (β,x,y) of (1). However, unless stated otherwise, a solution of (1) denoted as (x,y) should

be understood to have an associated component β that is computed as F (x,y).

In this paper, we model (2) as a longest-path problem on a layered acyclic graph that, for fixed

values of x and y, leads to a Linear Program (LP) for the computation of F (x,y). This formulation

can then be dualized and integrated with (1) to obtain an exact monolithic MILP reformulation for

2SRSSP.

1.2 Literature review

OR and surgery management decisions are typically categorized in a hierarchical fashion including

strategic decisions (e.g., facility size and types of surgeries), tactical decisions (e.g., scheduling windows

and specialty block assignments), and operational decisions (e.g., managing delays and mitigating

overtime); see (Gupta 2007). The problem in this paper spans across tactical and operational decisions

where managers must decide how many ORs are to be prepared and how surgeries should be assigned

to the ORs for a specialty on a particular day. The objective of this problem balances a trade-off

between the costs of opening additional ORs to which surgeries are assigned and the costs of using

overtime to complete the day’s scheduled surgeries. Surgery duration uncertainty is directly considered

in this problem, although demand uncertainty is not as we focus on scheduling specialty elective cases.

This model was initially proposed and studied by Denton et al. (2010). The authors reformulate

the second stage mixed-integer nonlinear program as a mixed-integer linear program and apply LP

duality to the resulting LP relaxation to yield an easy to solve, though approximate and not exact,

formulation of 2SRSSP (Ardestani-Jaafari and Delage 2021).

A similar problem is the surgical case assignment problem (SCAP) where surgeries are assigned to

operating room blocks across a planning horizon of multiple days. Besides the duration of the planning

horizon, a significant difference between SCAP and 2SRSSP is that in SCAP surgeries are selected

from a wait list and a penalty is incurred for delaying care. In contrast, surgeries in 2SRSSP have been

assigned a day and delaying surgery is not an option. This focus gives SCAP the additional benefit of

having a linear objective in the second stage. Addis et al. (2014) and Marques and Captivo (2017) both

4

consider two-stage robust formulations of SCAP. While each formulation considers different details of

SCAP, both robust formulations rely on applying duality and linearizing the second stage to formulate

a mixed-integer linear program.

Rath et al. (2017) develop a variation of 2SRSSP where anesthesiologists are also assigned to

surgeries. As a result the sequence of surgeries within an OR must also be determined in the first stage.

Through strong duality the second stage LP is converted, along with the first stage, into a single mixed-

integer program. However, the resulting mixed-integer program remains computationally challenging

due, in part, to the use of Big-M type constraints. The relatively complete recourse structure of the

problem is leveraged in a heuristic algorithm that is used to obtain solutions.

Neyshabouri and Berg (2017) propose a formulation of 2SRSSP which also considers downstream

recovery resource capacity. Surgeries are assigned to OR blocks in the first stage according to spe-

cialty. The second stage involves two separate recourse problems where in the first the worst-case

overtime costs are determined and in the second the worst-case costs associated with insufficient re-

covery capacity are determined. Both recourse problems have max-min objective structures and are

reformulated into mixed-integer linear programs. A C&CG algorithm is adapted from the algorithm

presented in Zeng and Zhao (2013) to obtain exact solutions.

A reformulation of 2SRSSP as a value function-based formulation is presented by Bansal et al.

(2021). The resulting formulation’s structure is analyzed to identify cuts that strengthen the formu-

lation. The value function-based formulation is solved using a C&CG algorithm. Computation results

show an improvement with the proposed formulation when compared to that in Neyshabouri and Berg

(2017). The second stage of 2SRSSP was approximated using a series of valid inequalities by Bansal

et al. (2024). The valid inequalities yield an LP relaxation that more closely approximates the origi-

nal second stage mixed-integer program. The duality of the resulting LP is then used to reformulate

2SRSSP as a single mixed-integer linear program. This formulation is approximate and not exact.

Computational experiments show favorable results, when compared to those obtained with C&CG.

1.3 Contributions

The contributions of this paper are as follows:

1. We present a new formulation of the second-stage problem, (2) which is an LP for fixed values

of (x,y). We do so by modeling the second-stage problem as longest path problem on a layered

acyclic graph.

5

2. We derive new monolithic exact MILP formulations for 2SRSSP by dualizing the LP formulation

for the second-stage problem and integrating with the first-stage problem.

3. We propose methods to enhance the computational performance of these MILP formulations.

These methods include strengthening the constraints, introducing valid inequalities, integrating

these formulations with C&CG formulation for 2SRSSP (Neyshabouri and Berg 2017, Zeng and

Zhao 2013), and deriving a lower bound for the optimal objective function of 2SRSSP.

The remainder of the paper is organized as follows. In Section 2, we introduce a longest path formula-

tion for the second-stage problem. Section 3 covers the derivation of the exact MILP formulations for

2SRSSP, including methods to strengthen the constraints, and introduces valid inequalities for these

formulations. In Section 4, we integrate the formulations from Section 3 with the C&CG formulation

for 2SRSSP, resulting in a new formulation that demonstrates improved computational results in our

experiments. Section 5 presents the derivation of a lower bound for the optimal objective function

value of 2SRSSP. Section 6 details the computational experiments and their results. We conclude the

paper in Section 7.

2 A longest path formulation for the second-stage problem

Given a leader solution (x,y), we next formulate the problem of computing F (x,y) as a longest path

problem on a layered acyclic digraph that we refer to as Gx,y(V ,E). We define L = {0, . . . , τ}. The

node set V contains m(τ +1)+2 nodes. In addition to a source node s and a sink node t, the digraph

has m internal layers (one for each OR), each containing τ + 1 nodes. We denote the nodes in the

internal layers as vj,k, where j ∈ M is the index of the layer/OR and k ∈ L is the level of the node

within its layer. To be consistent with this notation, the source s can be written as v0,0 whereas the

sink t can be denoted by vm+1,τ . We make use of both notations in the remainder of the paper. The

arc set E contains 2(τ+1)+(m−1) (τ+1)(τ+2)
2 arcs. Arcs (s, v1,k), for k ∈ L, are created between s and

each node of the first layer. Arcs are created between each node vj,k of an internal layer j ∈M\{m},

and each node vj+1,k′ of the following layer that has higher level k′ ≥ k. These arcs are of the form

(vj,k, vj+1,k′). Finally, arcs (vm,k, t), for k ∈ L, are created between each node of the last internal layer

and the sink node t. An illustration of Gx,y(V ,E) is given in Figure 1. Because arcs only go from one

layer to the next, digraph Gx,y(V ,E) is acyclic. Paths from s to t in this digraph correspond to the

process of allocating extensions of surgery durations between ORs. In particular, node vj,k is visited

when at total of k extensions have been assigned to ORs 1, . . . , j and arc (vj−1,k, vj,k′) is traversed

6

when assigning an additional k′ − k extensions to OR j.

s

v1,0 v2,0 v3,0 vm,0

v1,1 v2,1 v3,1 vm,1

v1,2 v2,2 v3,2 vm,2

v1,3 v2,3 v3,3 vm,3

v1,τ v2,τ v3,τ vm,τ

...

t

...

...

...

...

...

...

OR 1 OR 2 OR 3 OR OR m

Level 0

Level 1

Level 2

Level 3

...

Level τ

Figure 1: Graph Gx,y(V ,E) for the second-stage problem

Next, we describe the lengths of the arcs of the digraph. To this end, for k ∈ L and for any vector

v ∈ Bn, we introduce the function

µk [v] := max

{ ∑
i∈N

d◦i viχi

∑
i∈N

χi ≤ k, 0 ≤ χi ≤ 1,∀i ∈ N

}
. (3)

Function µk [v] is the optimal value of an LP that always has an optimal binary solution χ = (χi)i∈N

since its constraint matrix is totally unimodular. Thinking of v = (vi)i∈N as an indicator vector of a

collection of surgeries collectively assigned to an OR, function µk [v] computes the sum of the highest

k values of d◦i among the surgeries assigned to that OR, i.e., the maximum additional time beyond

the nominal duration that is taken when at most k of these surgeries extend beyond their nominal

surgery times. Arc lengths in Gx,y(V ,E) are then computed as follows:

• The length of arc (vj−1,k, vj,k′) where j ∈M\{m}, and k, k′ ∈ L with k′ ≥ k, , which we denote

as cj,k,k′(x,y), is the maximum possible increment in total overtime when at most k′−k surgeries

in OR j take their maximum possible time. Specifically,

cj,k,k′(x,y) =


∑
i∈N

dliyi,j − Uxj + µk′−k

[
yj

]
if k′ − k > 0

max

{
0,
∑
i∈N

dliyi,j − Uxj

}
if k′ − k = 0

 (4)

where max
{
0,
∑

i∈N dliyi,j − Uxj
}

calculates the total overtime in OR j under the condition

that none of the surgeries assigned to that OR take their maximum possible time.

7

• The length of arc (s, v1,k′) = (v0,0, v1,k′) where k′ ∈ L is given by c1,0,k′(x,y), as defined in (4).

• The length of arc (vm,k, t) = (vm,k, vm+1,τ) where k ∈ L, denoted by cm+1,k,τ (x,y), is set to 0.

Under this setup, the length of a dipath s, v1,k1 , . . ., vj,kj in Gx,y(V ,E) from node s to node vj,kj

at level kj of OR j gives the maximum sum of overtimes among the first j ORs when k1, k2− k1, . . . ,

kj−kj−1 surgeries assigned to ORs {1, . . . , j} take their maximum possible duration. This observation

leads to the following proposition.

Proposition 1. For 2SRSSP with n surgeries, m ORs, budget of uncertainty, τ and for a solution

(x,y) ∈ Bm×Bn×m that satisfies (1c)-(1g), the optimal value of the second-stage problem (2) is equal

to the length of the longest dipath from s to t in Gx,y(V ,E).

Proof. Let (x,y) ∈ Bm × Bn×m be a solution that satisfies (1c)-(1g). Let c∗(x,y) be the length of a

longest dipath from s to t in Gx,y(V ,E). We show that c∗(x,y) = F (x,y).

First, consider any dipath P from s to t in Gx,y(V ,E). We argue that its length c(P) ≤ F (x,y).

The arcs of P must be (v0,k0 , v1,k1), (v1,k1 , v2,k2), . . . , (vm−1,km−1 , vm,km), (vm,km , vm+1,km+1) for suit-

able indices k0, k1, . . ., km, km+1 such that 0 = k0 ≤ k1 ≤ . . . ≤ km ≤ km+1 = τ . Define

Z> = {j ∈ M | kj−1 < kj} and Z0 = {j ∈ M | kj−1 = kj}. Then, the length of P is given by

c(P) =
∑

j∈Z>

(∑
i∈N dliyi,j − Uxj + µkj−kj−1

[
yj

])
+
∑

j∈Z0

(
max

{
0,
∑

i∈N dliyi,j − Uxj
})

. With-

out loss of generality we assume that, for each j ∈ Z>, cj :=
∑

i∈N dliyi,j −Uxj +µkj−kj−1

[
yj

]
> 0 as

otherwise, a longer (or an equal length) dipath can be obtained by setting k′0 = 0, k′m+1 = τ , and, for

j ∈M , k′j = k′j−1+(kj−kj−1) for j ∈ Z> with cj > 0 and k′j = k′j−1 otherwise. Further, for each j ∈M ,

let χ[j] be an optimal vertex of the problem defining µkj−kj−1

[
yj

]
in (3). We may assume, without loss

of generality, that this solution is such that (i)
∑

i∈N χ
[j]
i ≤ kj−kj−1 for each j ∈M , and (ii) χ

[j]
i ≤ yi,j

for each i ∈ N and j ∈ M . For each i ∈ N , define r∗i :=
∑

j∈M χ
[j]
i ≤

∑
j∈M yi,j = 1. It follows that∑

i∈N r∗i =
∑

j∈M
∑

i∈N χ
[j]
i ≤

∑
j∈M (kj − kj−1) = km − k0 ≤ τ . This ensures that r∗ satisfies (2b).

Using this definition of r∗, we obtain that c(P) =
∑

j∈Z>

(
(
∑

i∈N dliyi,j − Uxj) +
∑

i∈N d◦i yi,jr
∗
i

)
+∑

j∈Z0

((∑
i∈N dliyi,j − Uxj

)+)
=
∑

j∈M
(∑

i∈N
(
dli + r∗i d

◦
i

)
yi,j − Uxj

)+ ≤ F (x,y).

Second, consider an optimal solution r∗ of (2) and define cj :=
((∑

i∈N
(
dli + r∗i d

◦
i

)
yi,j − Uxj

)+)
.

Then, F (x,y) =
∑

j∈M cj . Next, define Z> = {j ∈ M | cj > 0} and Z0 = {j ∈ M | cj = 0}. Without

loss of generality, we assume that for each i ∈ N such that yi,j = 1 for some j ∈ Z0, we have that

r∗i = 0. This is because there is no reason to extend the duration of surgery i in OR j if no overtime

occurs when this surgery is extended. For each j ∈ Z>, define ηj = {i ∈ N | r∗i = 1, yi,j = 1}. Next, set

k0 = 0, kj = kj−1 for each j ∈ Z0, and kj = kj−1 + |ηj | for each j ∈ Z>. As r∗ is an optimal solution

8

of (2),
∑

i∈N d◦i r
∗
i yi,j = µ|ηj |

[
yj

]
for each j ∈ Z>. Now consider a dipath P of Gx,y(V ,E) with arcs

(v0,k0 , v1,k1), (v1,k1 , v2,k2), . . . , (vm−1,km−1 , vm,km), (vm,km , vm+1,km+1). Let c(P) be the length of P .

With the notations introduced above, we write that

F (x,y) =
∑
j∈Z>

(∑
i∈N

(
dli + r∗i d

◦
i

)
yi,j − Uxj

)

=
∑
j∈Z>

(∑
i∈N

dliyi,j − Uxj + µ|ηj |
[
yj

])

=
∑
j∈Z>

(∑
i∈N

dliyi,j − Uxj + µkj−kj−1

[
yj

])

=
∑
j∈Z>

(∑
i∈N

dliyi,j − Uxj + µkj−kj−1

[
yj

])
+
∑
j∈Z0

max

(
0,

(∑
i∈N

dliyi,j − Uxj

))
= c(P)

≤ c∗(x,y)

where the second to last equality is due to the definition of Z0 and dipath P , and the last equality

holds because of (4).

As a consequence of Proposition 1, we can replace the formulation (2) for the second-stage problem

with the problem of determining the longest path between s and t in the layered acyclic digraph

Gx,y(V ,E). It is well-known that such a longest path problem can be formulated as an LP; see

(Ahuja et al. 1988). We give an explicit description of this LP next.

Proposition 2. Let (x,y) ∈ Bm × Bn×m be a solution that satisfies (1c)-(1d). Then

F (x,y) = max
∑
k∈L

c1,0,k(x,y)w1,0,k +
∑

j∈M\{1}

∑
k∈L

∑
l∈L:l≥k

cj,k,l(x,y)wj,k,l (5a)

[π0,0] s.t. −
∑
k∈L

w1,0,k = −1 (5b)

[π1,k] w1,0,k −
∑

l∈L:l≥k

w2,k,l = 0 ∀k ∈ L (5c)

[πj,k]
∑

k′∈L:k′≤k

wj,k′,k −
∑

l∈L:l≥k

wj+1,k,l = 0 ∀k ∈ L,∀j ∈M\{1,m} (5d)

[πm,k]
∑

k′∈L:k′≤k

wm,k′,k − wm+1,k,τ = 0 ∀k ∈ L (5e)

[πm+1,τ]
∑
k∈L

wm+1,k,τ = 1 (5f)

wj,k,l ≥ 0 ∀j ∈M\{1}, ∀k, l ∈ L : l ≥ k (5g)

9

w1,0,k ≥ 0 wm+1,k,τ ≥ 0, ∀k ∈ L. (5h)

Consequently, the value of F (x,y) can be computed through the solution of an LP for any given (x,y).

Proof. It is well-known that longest path problems in acyclic digraphs can be formulated as minimum

cost flow problems where a unit of supply is provided at the source node s and a unit of demand is

extracted at the sink node t. Minimum cost flows problems are formulated using variables to indicate

the amount of flow on each arc of the digraph and flow balance equations to require that the flow

into a node matches the flow out of a node. The constraint matrix generated by the flow balance

constraints is the incidence matrix of the digraph, which is known to be totally unimodular.

To formulate this problem, we define variables w1,0,k for k ∈ L, to represent the total flow from

source node s = v0,0 to node v1,k at level k of OR 1. Similarly, for j ∈M\{1} and k, l ∈ L with l ≥ k,

we define variables wj,k,l to represent the total flow from node vj−1,k at level k of OR j−1 to node vj,l

at level l of OR j. Finally, for k ∈ L, we define variables wm+1,k,τ to represent the total flow from node

vm,k at level k of OR m to sink node t = vm+1,τ . The flow balance constraints for Gx,y(V ,E) are as

follows: (5b) ensures that one unit of flow is sent from s, (5f) ensures that one unit of flow arrives at t,

and (5c)-(5e) are flow balance constraints for nodes v1,k, vj,k, and vm,k, respectively. Finally, objective

(5a) maximizes the total distance of a unit flow traveling from s to t in Gx,y(V ,E) by multiplying the

flow on each arc by its length.

LP (5) for the second-stage problem can be dualized and integrated with (1) to obtain a monolithic

MILP model for 2SRSSP. Additionally, this LP captures the value of F (x,y) exactly, and thus leading

to a monolithic MILP that is an exact reformulation of 2SRSSP. We state the dual variables of the

constraints in square brackets before each constraint in (5). We formalize this discussion in the next

section.

3 MILP formulations for 2SRSSP

In this section, we present two MILP formulations for 2SRSSP. These formulations are derived in two

steps. In the first, we integrate the dual of the shortest path formulation (5) of the second stage (2)

within (1). This formulation makes use of the functions µk [v] defined in (3). In the second step, we

introduce two approaches to represent µk [v] with linear constraints.

10

Proposition 3. The following optimization model is an exact formulation for 2SRSSP:

z∗ = min
∑
j∈M

cfxj + c◦β (6a)

s.t. (1c)− (1h)

β ≥ πm+1,τ (6b)

π1,0 ≥ 0 (6c)

π1,0 ≥
∑
i∈N

dliyi,1 − Ux1 (6d)

π1,k ≥
∑
i∈N

dliyi,1 − Ux1 + µk [y1] ∀k ∈ L\{0} (6e)

πj,k − πj−1,k ≥ 0 ∀j ∈M\{1},∀k ∈ L (6f)

πj,k − πj−1,k ≥
∑
i∈N

dliyi,j − Uxj ∀j ∈M\{1},∀k ∈ L (6g)

πj,l − πj−1,k ≥
∑
i∈N

dliyi,j − Uxj + µl−k

[
yj

]
∀j ∈M\{1},∀k ∈ L : l ≥ k + 1 (6h)

πm+1,τ − πm,k ≥ 0 ∀k ∈ L. (6i)

Proof. Using the formulation of F (x,y) given in (5) and linear programming duality, constraint (1b)

of the leader problem can be rewritten as

β ≥ πm+1,τ − π0,0 (7a)

π1,k − π0,0 ≥ c1,0,k(x,y) ∀k ∈ L (7b)

πj,l − πj−1,k ≥ cj,k,l(x,y) ∀j ∈M\{1}, ∀k, l ∈ L : l ≥ k (7c)

πm+1,τ − πm,k ≥ 0 ∀k ∈ L. (7d)

Because the constraints in (5) are linearly dependent (since the rows of the incidence matrix of a

digraph sum up to the zero vector), we may set any of the dual variables πj,k to zero. Replacing the

arc lengths c1,0,k(x,y) and cj,k,l(x,y) in (7b) and (7c) by their definitions in (4) and fixing π0,0 = 0,

(7b) yields (6c), (6d) and (6e), and (7c) yields (6f), (6g) and (6h). Finally, (6i) is the same as (7d).

Function µk

[
yj

]
in (6e) and (6h) is defined as the maximum objective function value of the LP

(3) when v = yj . The following lemma introduces two alternative methods for representing µk

[
yj

]
that we will use to develop two explicit MILP formulations for 2SRSSP.

11

Lemma 1. For k = 0, . . . , τ , it holds that

µk

[
yj

]
= min

{
kρj,k +

∑
i∈N

σj,k,i ρj,k + σj,k,i ≥ d◦i yi,j ,∀i ∈ N, ρj,k, σj,k,i ≥ 0,∀i ∈ N

}
(8a)

µk

[
yj

]
= max

S⊆N :|S|≤k

{ ∑
i∈S

d◦i yi,j

}
. (8b)

Proof. The LP in (8a) is the dual of the LP in (3) for v = yj where ρj,k and σj,k,i i ∈ N are the dual

variables of the cardinality and bound constraints in (3), respectively. As the LP in (3) is feasible

and bounded, the equality in (8a) holds due the Strong Duality Theorem. The maximization problem

described on the right side of equation (8b) aims to select a subset of N consisting of no more than k

surgeries assigned to OR j, that maximizes the sum of d◦i values. Thus, the optimal objective function

value of this maximization problem must be equal to µk

[
yj

]
.

We use Lemma 1 to derive two MILP reformulations of (6). Section 3.1 gives an MILP formulation

obtained by replacing (6e) and (6h) using inequalities derived from (8a). Section 3.2 presents another

MILP formulation, which is obtained by replacing (6e) and (6h) using inequalities derived from (8b).

3.1 Reformulation of MIP (6) using (8a)

A first formulation is obtained by using the expression for µk

[
yj

]
stated in (8a) to reformulate (6e)

and (6h). This formulation requires the introduction of variables ρj,k and σj,k,i, which are polynomially

many in m, n, and τ . We obtain the following result.

Proposition 4. Model (vF) defined as

v∗ = min
∑
j∈M

cfxj + c◦β

s.t. (1c)− (1h),

(6b)− (6d), (6f), (6g), (6i)

π1,k ≥
∑
i∈N

dliyi,1 − Ux1 + kρ1,k +
∑
i∈N

σ1,k,i ∀k ∈ L\{0} (9a)

πj,l − πj−1,k ≥
∑
i∈N

dliyi,j − Uxj

+ (l − k)ρj,l−k +
∑
i∈N

σj,l−k,i ∀j ∈M\{1},∀k ∈ L : l ≥ k + 1 (9b)

ρj,k + σj,k,i ≥ d◦i yi,j ∀i ∈ N, j ∈M,k ∈ L\{0} (9c)

ρj,k, σj,k,i ≥ 0 ∀i ∈ N,∀j ∈M, ∀k ∈ L\{0}, (9d)

12

is a valid monolithic reformulation of 2SRSSP.

3.2 Reformulation of MIP (6) using (8b)

A second formulation is obtained by using the expression for µk

[
yj

]
stated in (8b) to reformulate

(6e) and (6h). This formulation requires the introduction of mτ additional variables zj,k, for j ∈ M ,

k ∈ L\{0} where zj,k = µk

[
yj

]
represents the sum of the highest k values of d◦i among the surgeries

assigned to OR j. It also linearizes the expression µk

[
yj

]
= maxS⊆N

∑
i∈S d◦i yi,j for all j ∈ M and

k ∈ L\{0} by enumerating all possible choices of S ⊆ N with |S|= k. We obtain

Proposition 5. Model (zF) defined as

v∗ = min
∑
j∈M

cfxj + c◦β (10a)

s.t. (1c)− (1h) (10b)

(6b)− (6d), (6f), (6g), (6i)

π1,k ≥
∑
i∈N

dliyi,1 − Ux1 + z1,k ∀k ∈ L\{0} (10c)

πj,l − πj−1,k ≥
∑
i∈N

dliyi,j − Uxj + zj,l−k ∀j ∈M\{1}, ∀k ∈ L : l ≥ k + 1 (10d)

zj,k ≥
∑
i∈S

d◦i yi,j ∀S ⊆ N : |S|= k, ∀k ∈ L\{0}, ∀j ∈M (10e)

zj,k ≥ 0 ∀k ∈ L\{0},∀j ∈M, (10f)

is a valid monolithic reformulation of 2SRSSP.

It is worth noting that the number of constraints (10e) in zF is exponential in the number of

surgeries. Algorithm 1 gives a polynomial time algorithm for separating these inequalities from a

solution for which the entries of yj are binary. We implement this algorithm to add inequalities (10e)

to zF in a lazy manner using callbacks in a commercial MILP solver.

13

Algorithm 1 Separation algorithm for (10e)

1: Input: A vector (y∗
j , z

∗
j,k) where y∗

j ∈ Bn for j ∈M and k ∈ L\{0}.

2: Output: An inequality of the form (10e) violated by (y∗
j , z

∗
j,k), if one exists.

3: Ij ← argsort{d◦i |y∗i,j = 1} Note: sorting is done in non-increasing order ▷ Step 1

4: Let Ij = {i1, i2, . . . , ik̄}

5: k̃ ← min(k, k̄) ▷ Step 2

6: if z∗j,k <
∑k̃

p=1 d
◦
ip

then ▷ Step 3

7: if (k̃ = k) then

8: return zj,k ≥
∑k̃

p=1 d
◦
ip
yip,j . ▷ Step 3a

9: else

10: return zj,k ≥
∑k̃

p=1 d
◦
ip
yip,j +

∑
i∈S d◦i yij for any S ⊆ N \ Ij with |S|= k − k̃. ▷ Step 3b

11: end if

12: else

13: return No violated inequality (10e) exists for (y∗
j , z

∗
j,k) for the given j and k. ▷ Step 4

14: end if

For a given OR j, a given k, and a vector (y∗
j , z

∗
j,k) where y∗

j ∈ Bn, Step 1 of Algorithm 1 involves

creating the set Ij of surgeries assigned to OR j, arranged in non-increasing order of their d◦i values.

In Step 2, k̃ is computed to represent the maximum number of surgeries assigned to OR j that can be

extended to their maximum possible time. This value is upper bounded by k and the total number

of surgeries assigned to OR j, k̄. Next, if z∗j,k is less than the sum of the d◦i values for the first

k̃ surgeries in Ij , then Step 3 considers two cases. If k̃ = k, then Step 3a returns the inequality

zj,k ≥
∑k̃

p=1 d
◦
ip
yip,j , which is violated by (y∗

j , z
∗
j,k). If k̃ < k, then Step 3b returns the inequality

zj,k ≥
∑k̃

p=1 d
◦
ip
yip,j+

∑
i∈S d◦i yij for a suitable set S ⊆ N \Ij . The second term on the right-hand side

of this inequality ensures that all returned inequalities through this algorithm are of type (10e). If z∗j,k

is not less than the sum of the d◦i values for the first k̃ surgeries, Step 4 states that no inequality (10e)

exists that violates (y∗
j , z

∗
j,k). When implementing Algorithm 1 in practice, various choices of S can

be considered. Because of the symmetry-breaking constraints (1f) the vectors (y∗
j , z

∗
j,k) we consider

will always be such that OR j is only assigned surgeries from the set {j, j + 1, . . . , n}. Hence, we will

construct S by selecting in priority k − k̃ indices from {j, j + 1, . . . , n} \ Ij with largest values of d◦.

The remainder of this section is focused on strengthening zF. In Section 3.2.1, we strengthen

constraints (10e) using the Lovász Extension of µk [·]. In Section 3.2.2, we describe valid inequalities

14

(VIs) that are derived from the definitions of zj,k.

3.2.1 Strengthening (10e) using the Lovász Extension of µk [·]

Inequalities (10e) are used to linearize the constraints

zj,k ≥ µk

[
yj

]
, ∀k ∈ L\{0},∀j ∈M. (11)

Although the linearization in (10e) provides the exact value of zj,k when yj is binary, its linear

relaxation can be improved. A possible approach to improve the relaxation is to replace (11) with

constraints of the form

zj,k ≥ coe
[0,1]n

(µk [·]), (12)

where coeH(f) denotes the convex envelope of function f over domain H. The convex envelope of

function f overH is the largest convex function defined overH that lies below f . Although the problem

of determining the convex envelope of a given function can be difficult, it is not so for submodular

functions, which motivate the following result.

Proposition 6. For each k ∈ L, µk [·] : Bn → R+ is a submodular function.

Proof. We prove that µk [·] is submodular by showing that it has decreasing marginal values. Let

y1,y2 ∈ Bn and l ∈ N be such that y1 ≨ y2 and y2+ el ∈ Bn, where el ∈ Bn is a vector whose entries

are equal to 0 except for the lth entry which is equal to 1. The vectors y1 and y2 can be viewed as

indicator vectors of two subsets N1, N2 ⊂ N . Given our assumptions, N1 ⊂ N2 and l /∈ N2. We must

show that

µk

[
y1 + el

]
− µk

[
y1
]
≥ µk

[
y2 + el

]
− µk

[
y2
]
. (13)

For a set N q ⊆ N , we define kq = min(k, |N i|) and Sq to be the set of indices of the kq surgeries

with highest values of d◦i in N q, sorted in non-increasing order. Clearly, k1 ≤ k2. We write that

S1 = {i1, i2, . . . , ik1} and S2 = {j1, j2, . . . , jk2} with d◦i1 ≥ d◦i2 ≥ . . . ≥ d◦ik1
and d◦j1 ≥ d◦j2 ≥ . . . ≥ d◦jk2

.

As N1 ⊂ N2, we have that d
◦
ik1
≤ d◦jk2

. Define N3 = N1 ∪{l} and N4 = N2 ∪{l}. When k2 < k, then

S3 = S1 ∪ {l} and S4 = S2 ∪ {l}. Thus, the value of both left-hand side and right-hand side of (13) is

equal to d◦l . However, when k ≤ k2, we must consider the following cases:

15

Case 1. d◦l ≤ d◦ik1
: In this case, S4 = S2. Two subcases may occur:

Case 1a. k1 ≥ k: In this subcase, S3 = S1. Thus, the values of the left-hand side and

right-hand side of (13) are both equal to 0.

Case 1b. k1 < k = k2: In this subcase, S3 = S1 ∪ {l}. Thus, the value of the left-hand side

of (13) is equal to d◦l whereas that of the right-hand side is equal to 0.

Case 2. d◦ik1
< d◦l ≤ d◦jk2

: In this case, S4 = S2. Two subcases may occur.

Case 2a. k1 ≥ k: In this subcase, the right-hand side of (13) is equal to zero. However,

S3 = S1 ∪ {l}\{ik1} and consequently, the left-hand side of (13) is given by µk

[
y1 + el

]
−

µk

[
y1
]
=
∑k1−1

p=1 d◦ip + d◦l −
∑k1

p=1 d
◦
ip
= d◦l − d◦ik1

> 0.

Case 2b. k1 < k: In this subcase, S3 = S1 ∪ {l}. Thus, the value of the left-hand side of

(13) is equal to d◦l whereas that of the right-hand side is equal to 0.

Case 3. d◦l > d◦jk2
: In this case, S4 = S2 ∪ {l}\{jk2}. Two subcases may occur.

Case 3a. k1 ≥ k: In this subcase, S3 = S1 ∪ {l}\{ik1}. Thus, the left-hand side of (13)

is given by µk

[
y1 + el

]
− µk

[
y1
]
=
∑k1−1

p=1 d◦ip + d◦l −
∑k1

p=1 d
◦
ip

= d◦l − d◦ik1
whereas its

right-hand side is µk

[
y2 + el

]
− µk

[
y2
]
=
∑k2−1

p=1 d◦jp + d◦l −
∑k2

p=1 d
◦
jp

= d◦l − d◦jk2
. As

d◦ik1
≤ d◦jk2

, we conclude that d◦l − d◦ik1
≥ d◦l − d◦jk2

which shows that (13) holds.

Case 3b. k1 < k: In this subcase, S3 = S1 ∪ {l}. Thus, the value of the left-hand side of

(13) is equal to d◦l whereas that of the right-hand side is given by: µk

[
y2 + el

]
−µk

[
y2
]
=∑k2−1

p=1 d◦jp + d◦l −
∑k2

p=1 d
◦
jp

= d◦l − d◦jk2
. As d◦l > d◦l − d◦jk2

, (13) holds.

Given yj ∈ [0, 1]n, the Lovász Extension (Lovász 1983) of submodular function µk [·] at yj is

defined to be

µL
k [yj] =

∑
i∈N

(
µk

[(
i∑

l=1

eπ(l)

)]
− µk

[(
i−1∑
l=1

eπ(l)

)])
yπ(i),j , (14)

where π : {1, 2, . . . n} → {1, 2, . . . n} is a permutation such that yπ(1),j ≥ yπ(2),j ≥ . . . ≥ yπ(n),j . We

denote the Lovász Extension of µk [·] over the hypercube [0, 1]n as µL
k [·]. It is known that the Lovász

Extension of a submodular function defined over the vertices of the hypercube [0, 1]n is in fact the

convex envelope of this function over the entire hypercube [0, 1]n; see for instance Lemma 3.2 and

16

Corollary 2.7 of Tawarmalani et al. (2013). In this case, it can be verified that for any permutation

π : {1, 2, . . . , n} 7→ {1, 2, . . . , n} and for any yj ∈ [0, 1]n,

µL
k [yj] ≥

∑
i∈N

(
µk

[(
i∑

l=1

eπ(l)

)]
− µk

[(
i−1∑
l=1

eπ(l)

)])
yπ(i),j ,

showing that this envelope can be described by n! linear inequalities. It is also easy to verify that

µL
k [yj] = µk

[
yj

]
for all yj ∈ Bn. Hence, (12) reduces to

zj,k ≥ µL
k [yj], ∀k ∈ L\{0}, ∀j ∈M. (15)

Further, replacing constraints (10e) of zF with (15) yields a model that computes the value of zj,k

exactly at integer points yj and has a tighter LP relaxation for zF. We refer to this modified zF

formulation as zF+L and (15) as Lovász-ineq in the remainder of the paper.

For a given (y∗
j , z

∗
j,k) ∈ [0, 1]n×R+, Algorithm 2 gives a polynomial time algorithm for separating

inequalities (15). Using this algorithm, we introduce these constraints to the zF+L in a lazy manner.

Similar to (10e) in the zF, we do so using callbacks in the commercial MILP solver.

Algorithm 2 Separation algorithm for (15)

1: Input: A vector (y∗
j , z

∗
j,k) where y∗

j ∈ [0, 1]n for j ∈M , k ∈ L\{0}.

2: Output: An inequality of the form (15) violated by (y∗
j , z

∗
j,k), if one exists.

3: Obtain permutation π of {1, 2, 3, . . . n} such that y∗π(1),j ≥ y∗π(2),j ≥ . . . y∗π(n),j . ▷ Step 1

4: Determine µL
k [y

∗
j] using (14). ▷ Step 2

5: if z∗j,k < µL
k [y

∗
j] then ▷ Step 3

6: return zj,k ≥
∑

i∈N

(
µk

[(∑i
l=1 eπ(l)

)]
− µk

[(∑i−1
l=1 eπ(l)

)])
yπ(i),j . ▷ Step 3a

7: else

8: return No violated inequality (15) exists for (y∗
j , z

∗
j,k) for the given j and k. ▷ Step 3b

9: end if

For a given OR j and k, and (y∗
j , z

∗
j,k) ∈ [0, 1]n × R+, Step 1 of Algorithm 2 involves determining

a permutation π of surgeries such that y∗π(1),j ≥ y∗π(2),j ≥ . . . y∗π(n),j through sorting. In Step 2, the

value of the Lovász Extension at y∗
j , µ

L
k [y

∗
j] is determined using (14). Next, in Step 3, two possibilities

are considered. If z∗j,k is less than µL
k [y

∗
j], then in Step 3a, an inequality defining (15) is returned.

Otherwise, a statement stating that no such inequality exists is returned in Step 3b.

17

3.2.2 Valid inequalities for zF and zF+L

In this section, we introduce valid inequalities for (10) that can be included in zF and zF+L. Although

these inequalities would be naturally satisfied by at least one optimal solution when the exponentially

many inequalities (10e) are imposed, our implementation does not generate all constraints (10e).

Proposition 7. The collection of inequalities

zj,k ≥ zj,k−1 ∀k ∈ L \ {0, 1},∀j ∈M (16a)

zj,1 ≥ zj,2 − zj,1 ∀j ∈M (16b)

zj,k − zj,k−1 ≥ zj,k+1 − zj,k ∀k ∈ L \ {0, 1, τ}, j ∈M, (16c)

is satisfied by at least one optimal solution of (10).

Proof. Consider any optimal solution (x∗,y∗,π∗, z∗, β∗) of (10) where z∗j,k = µk

[
y∗
j

]
for each j ∈ M

and each k ∈ L\{0, 1}. We show that this solution satisfies (16a)-(16c). Pick j ∈ M and sort the

elements of N = {i1, . . . , in} such that d◦i1y
∗
i1,j
≥ d◦i2y

∗
i2,j
≥ . . . ≥ d◦iny

∗
in,j

. First, consider (16a) for a

given k ∈ L\{0, 1}. We write that

z∗j,k = µk

[
y∗
j

]
= max

S⊆N :
|S|≤k

∑
i∈S

d◦i y
∗
i,j =

k∑
p=1

d◦ipy
∗
ip,j ≥

k−1∑
p=1

d◦ipy
∗
ip,j = max

S⊆N :
|S|≤k−1

∑
i∈S

d◦i y
∗
i,j = µk

[
y∗
j

]
= z∗j,k−1,

where the inequality is due to the fact that d◦iky
∗
ik,j
≥ 0. Second, consider (16b). We write that

z∗j,1 + z∗j,1 = µ1

[
y∗
j

]
+ µ1

[
y∗
j

]
= d◦i1y

∗
i1,j + d◦i1y

∗
i1,j ≥ d◦i1y

∗
i1,j + d◦i2y

∗
i2,j = max

S⊆N :
|S|≤2

∑
i∈S

d◦i y
∗
i,j = µ2

[
y∗
j

]
= z∗j,2,

where the inequality holds because d◦i1y
∗
i1,j
≥ d◦i2y

∗
i2,j

. Third, consider (16c) for a given k ∈ L\{0, 1, τ}.

We write that

z∗j,k − z∗j,k−1 = µk

[
y∗
j

]
− µk−1

[
y∗
j

]
= max

S⊆N :
|S|≤k

∑
i∈S

d◦i y
∗
i,j − max

S⊆N :
|S|≤k−1

∑
i∈S

d◦i y
∗
i,j =

k∑
p=1

d◦ip −
k−1∑
p=1

d◦ip = d◦ik

≥ d◦ik+1
=

k+1∑
p=1

d◦ip −
k∑

p=1

d◦ip = max
S⊆N :

|S|≤k+1

∑
i∈S

d◦i y
∗
i,j − max

S⊆N :
|S|≤k

∑
i∈S

d◦i y
∗
i,j = z∗j,k+1 − z∗j,k,

which proves the result.

As zj,k in (10) denotes the sum of the highest k values of d◦i among the surgeries assigned to OR

18

j, (16a) ensures that the sum of the k highest values of d◦i is at least as large as the sum of the k − 1

highest values of d◦i among the surgeries assigned to OR j. Additionally, following the definition of

zj,k, for any k ∈ L\{0, 1}, zj,k−zj,k−1 is equal to the kth highest d◦i value among the surgeries assigned

to OR j. Constraint (16b) ensures that among the surgeries assigned to OR j, the highest d◦i value is

at least as large as the second highest d◦i value whereas Constraint (16c) ensures that the kth highest

d◦i value is at least as large as the (k + 1)th highest d◦i value. We refer to these inequalities as z-ineq

in the remainder of this paper.

4 Integrating C&CG constructs into formulations vF, zF, and zF+L

In this section, we show that the formulations described in Section 3 can be integrated with the for-

mulation that forms the basis of the C&CG algorithm for 2SRSSP proposed in (Neyshabouri and Berg

2017, Zeng and Zhao 2013) to obtain a new formulation that, in our experiments, yields improved

computational results. We provide the derivation of this hybrid formulation starting from zF+L al-

though analogous hybrid formulations can be easily derived from vF and zF. An interested reader will

find more details about the C&CG algorithm in Appendix A.

The C&CG formulation utilizes the same variables x, y, and β used in the formulations presented

earlier in this paper. In addition, it generates the collection S = {S1, S2, . . . , Sp} of all subsets of

N of cardinality τ , indexed by the set P := {1, . . . , p}. Each element k in P , which we refer to as

a scenario, corresponds to one possible way (Sk) of extending the length of exactly τ surgeries. In

addition, the C&CG formulation introduces continuous variables okj to describe the amount of overtime

incurred in OR j when scenario k is realized. The C&CG reformulation of 2SRSSP, whose relaxation

forms the master problem of the C&CG algorithm, is then written as

v∗ := min
∑

j∈M cfxj + c◦β (17a)

s.t.
∑
j∈M

yi,j = 1 ∀i ∈ N (17b)

yi,j ≤ xj ∀i ∈ N, ∀j ∈M (17c)

β ≥
∑
j∈M

okj ∀k ∈ P (17d)

okj ≥
∑
i∈N

dliyi,j +
∑
i∈Sk

d◦i yi,j − Uxj ∀k ∈ P ,∀j ∈M (17e)

okj ≥ 0 ∀k ∈ P ,∀j ∈M (17f)

19

β ≥ 0, xj ∈ {0, 1} , yi,j ∈ {0, 1} ∀i ∈ N, ∀j ∈M. (17g)

Objective (17a) and constraints (17b), (17c), and (17g) are identical to those in (1). Constraints (17e)

compute the overtime experienced in OR j under scenario k, where durations d◦i are increasing the

right-hand side value only for those surgeries i that are assigned to OR j and belong to the set Sk of

surgeries whose duration is extended in this scenario. Constraints (17d) capture that the worst total

overtime incurred is larger than the total overtime experienced in any of the scenarios.

As |P | can be large, the C&CG algorithm solves relaxations of (17) obtained by imposing (17e) for

subsets P s ⊆ P that grow larger with the iteration count s. During iteration s, the master problem is

solved for P s to obtain an optimal solution (xs,ys,os, βs). The value of F (xs,ys) is then computed

by finding an optimal solution rs to (2). If βs ̸= F (xs,ys), then the scenario Sq corresponding to rs

is added to P s to define P s+1 = P s ∪ {q}.

As new variables okj must be introduced in each iteration for the new scenario, new columns are

added to the master problem along with the additional constraints (17d)-(17f) these variables belong

to. This justify the name Column & Constraint Generation for this algorithm. The generation of

new columns is necessary to ensure the exactness of C&CG. However, the iterative inclusion of new

variables during the branch & bound algorithm is not supported by existing commercial solvers. As a

result, the MILP that forms the master problem has to be solved from scratch at each iteration. This

significantly deteriorates the computational performance of C&CG, especially for problem instances with

larger numbers of surgeries.

Next, we describe a formulation that integrates constraints (17d)-(17f) of the C&CG formulation into

zF+L. This formulation has the advantage of combining the strength of both formulations while yielding

an exact model that can be solved within the single branch & bound tree produced by commercial

solvers. Specifically, the hybrid formulation we propose is

v∗ = min
∑
j∈M

cfxj + c◦β (18a)

s.t. (1c)− (1h) (18b)

(6b)− (6d), (6f)(6g) (18c)

(10c), (10d), (10f), (15) (18d)

β ≥
∑
j∈M

okj ∀k ∈ P ′ (18e)

20

okj ≥
∑
i∈N

dliyi,j +
∑
i∈Sk

d◦i yi,j − Uxj ∀k ∈ P ′, ∀j ∈M (18f)

okj ≥ 0 ∀k ∈ P ′, ∀j ∈M, (18g)

where P ′ ⊆ P . Unlike (17), (18) is an exact reformulation of 2SRSSP (1) for any P ′ ⊆ P as (18c)-(18d)

already ensure that β is at least equal to the worst-case overtime when at most τ surgeries take their

maximum time. This allows us to only include (18e)-(18g) for any subset P ′ ⊆ P . We refer to these

inequalities as ccg-ineq.

We thus propose to a priori fix the number of scenarios, K̃ = |P ′| that we will include in (18) and

set P ′ = {1, 2, . . . , K̃}. The model is initialized with constraints okj ≥ 0 instead of (18f) for k ∈ P ′.

The exact scenarios Sk to include in this collection will be determined as the branch & bound algorithm

proceeds. In particular, we will derive these scenarios from the first K̃ cost improving, robust feasible

solutions found in the branch & bound tree obtained using the commercial solver. In particular, for

each cost improving, robust feasible solution (xk,yk) found in the branch & bound tree for k ≤ K̃, we

solve the second-stage problem (5) for (xk,yk) to determine the set of surgeries Sk, i.e., the set of τ

surgeries that take their maximum possible value. Then, we add the constraint (18f) for Sk using the

callback features of the commercial MILP solver. Doing so allows us to continue the branch & bound

algorithm without having to restart it. Once we have exceeded the pre-specified maximum number of

scenarios K̃, these type of constraints are not updated anymore.

5 Lower bound for 2SRSSP (1)

The hybrid formulation described above help in the solution of 2SRSSP because it often improves

the lower bounds obtained using the LP relaxation. In this section, we describe another approach to

obtain a lower bound on the optimal value of 2SRSSP under a mild condition. This lower bound can

lead to the faster termination of the branch & bound algorithms for the three formulations.

Proposition 8. For a set S∗ of τ surgeries with highest d◦i values in N , define

m̃ =

⌈∑
i∈N dli +

∑
i∈S∗ d◦i

U

⌉
. (19)

If c◦

cf
≥ 1

U and m ≤ m̃− 1, then L̃ = cfm+ c◦
{∑

i∈N dli +
∑

i∈S∗ d◦i −mU
}
is a lower bound for the

optimal objective function value of 2SRSSP.

Proof. Let (x∗,y∗) be a robust optimal solution of 2SRSSP with optimal value v∗ such that
∑

j∈M x∗j =

21

m− k ≤ m ≤ m̃− 1 where k ≥ 0. Let r̄ ∈ Bn be the indicator vector of S∗, i.e., r̄i = 1 if i ∈ S∗ and

0, otherwise. We write

v∗ ≥
∑
j∈M

cfx∗j + c◦
∑
j∈M

max

{
0,
∑
i∈N

(
dli + d◦i r̄i

)
y∗i,j − Ux∗j

}

≥
∑
j∈M

cfx∗j + c◦max

0,
∑
j∈M

(∑
i∈N

(
dli + d◦i r̄i

)
y∗i,j − Ux∗j

)
=
∑
j∈M

cfx∗j + c◦max

0,
∑
i∈N

(
dli + d◦i r̄i

)∑
j∈M

y∗i,j − U
∑
j∈M

x∗j


= cf (m− k) + c◦max

{
0,
∑
i∈N

dli +
∑
i∈S∗

d◦i − U (m− k)

}

= cf (m− k) + c◦

{∑
i∈N

dli +
∑
i∈S∗

d◦i − U (m− k)

}

= cfm+ c◦

{∑
i∈N

dli +
∑
i∈S∗

d◦i − Um

}
+
{
−cf + c◦U

}
k

≥ cfm+ c◦

{∑
i∈N

dli +
∑
i∈S∗

d◦i −mU

}
(20)

where the first inequality is due to the fact that all surgeries in S∗ taking their maximum possible

time is a feasible solution to the second-stage problem for (x∗,y∗), the second inequality is due to

the fact that
∑W

l=1max{0, al} ≥ max{0,
∑W

l=1 al} for all a1, . . . , aW ∈ R, the second equality holds

because of (1c) and the assumption that
∑

j∈M x∗j = m− k, the third equality holds because of (19)

and the assumption that m̃ ≥ m + 1, and the last inequality is due to the assumptions that c◦

cf
≥ 1

U

and k ≥ 0.

Quantity L̃ can be interpreted as the optimal objective function value of a modified 2SRSSP with

N surgeries and one OR with capacity of mU and with fixed opening cost of cfm. In this modified

2SRSSP, the worst case overtime is given by
∑

i∈N dli+
∑

i∈S∗ d◦i −mU where τ surgeries with highest

d◦i values take their maximum duration.

6 Computational experiments

In this section, we denote by vF-ccg the version of vF that incorporates ccg-ineq. Similarly, zF-ccg

and zF+L-ccg refer to zF and zF+L with z-ineq and ccg-ineq. When applied to these formulations,

branch & bound is terminated when a feasible solution is found with a relative MILP Gap of ϵ.

22

Finally, whenever we discuss the four algorithms, we refer to branch & bound applied to the three

formulations vF-ccg, zF-ccg, and zF+L-ccg, and to C&CG.

The computational experiments utilize historical orthopedic surgery data from Mayo Clinic, an

academic quaternary medical center and health system that operates campuses in Rochester, MN,

Jacksonville, FL, and Scottsdale, AZ. Based on the data set for 10 working days, orthopedic surgeries

last an average 221 minutes with standard deviation of 156 minutes. Based on this data, we fix n = 25

surgeries and consider four distinct values of m, namely {11, 14, 16, 18}. In accordance with Bansal

et al. (2021) and Neyshabouri and Berg (2017), we assume that dli for each orthopedic surgery follows a

log-normal distribution, with an average of 221 minutes and a standard deviation (SD) of 156 minutes.

Moreover, we define d◦i for surgery i as αSD, where α is drawn uniformly at random between 0.5 and

1.5. We determine the values of d◦i in this manner to introduce heterogeneity among surgeries. This

heterogeneity arises because surgery times are influenced by various factors beyond the specialty itself,

such as the patient’s medical history and the specific type of surgery being performed.

We set U equal to 480 minutes and τ = ⌈ξn⌋ where ⌈a⌋ represents the integer nearest to a. We

consider three values of ξ ∈ {0.3, 0.5, 0.7} in our experiment. Because only the relative values of cf

and c◦ matter in the objective, we set cf to 1 and c◦

cf
= χ = c◦. Following Denton et al. (2010), we

consider the two values of χ, 1
30 = 0.0333 and 1

120 = 0.0083. As 30 < 120 < 480 = U , these values

satisfy the condition that c◦

cf
≥ 1

U in Proposition 8.

Based on the pilot experiment described in Appendix B, we set K̃ = 25 and add ccg-ineq to the

three formulations for the first 25 cost improving, robust feasible solutions found by the commercial

MILP solver. Before initiating the commercial MILP solver for both zF-ccg and zF+L-ccg, we include

all the constraints (10e) and Lovász-ineq required to solve the LP relaxation of zF-ccg and zF+L-ccg,

respectively. Furthermore, to enhance the root node relaxation for both formulations, we also add

these inequalities for all fractional solutions that violate them at the root node of the branch & bound

tree. These inequalities are added as lazy constraints to the formulation through callbacks in the

commercial MILP solver. We set a time limit of 3, 600 seconds for each instance and each formulation.

We enforce the same time limit for C&CG. We fix ϵ to be 0.01, meaning that we terminate any of the

algorithms whenever it finds a feasible solution with a relative MILP Gap of 1%. Additionally, since

all instances with m = {11, 14, 16} satisfy the condition m ≤ m̃ − 1 as stated in Proposition 8, we

terminate the branch & bound for these instances once a feasible solution within 1% of L̃ is found. We

run our experiments using an intel(R) Xeon(R) Gold 6132 CPU @ 2.6 GHz processor with 128 GB

RAM, Python 3.9, and GUROBI 10.0.2.

23

Next, we compare in Section 6.1 the computational performance of the three formulations vF-ccg,

zF-ccg, and zF+L-ccg and of C&CG, the only other exact algorithm in the literature that has been

specifically applied to 2SRSSP. In Section 6.2, we investigate the computational effectiveness of

z-ineq, v-ineq, and ccg-ineq. Lastly, in Section 6.3, we explore the strength of the lower bound L̃.

6.1 Comparison of the computational performance

To compare the computational performance of vF-ccg, zF-ccg, zF+L-ccg, and of C&CG for different

values of m, we set ξ = 0.5 and perform a full factorial design across the considered values of m and χ.

For each case, we generate five random instances and summarize the computational results in Tables 1,

2, and 3. Furthermore, to compare the computational performance of these four algorithms across

different values of ξ, we fix m = 16 and conduct a full factorial design over the possible values of χ

and ξ. Again, we generate five random instances for each case and present the computational results

in Tables 4, 5, and 6.

To streamline the presentation, each case is assigned a distinct number, which is recorded in the

first column of each table. The second column of each table contains the parameter values chosen for

the associated case. The third to sixth columns of Table 1 and Table 4 give the average (maximum)

MILP Gap for the four algorithms. For an instance solved using algorithm p, we calculate the

MILP Gap as UBp−LBp

UBp × 100, where UBp and LBp are the best upper and lower bounds found by

algorithm p for that instance when the algorithm is terminated. Tables 2 and 5 provide the percentage

of instances in each case for which the four algorithms find a solution with a 1% MILP Gap within

3600 seconds. If such a solution is found for an instance, we consider the instance to be solved to

1%-optimality. Tables 3 and 6 give the average (maximum) computational time in seconds for the

four algorithms.

Case # Case %-Gap-vF-ccg %-Gap-zF-ccg %-Gap-zF+L-ccg %-Gap-C&CG
χ—m

1 0.0333—11 0.80(1.50) 0.59(1.43) 0.79(1.80) 0.96(2.06)
2 0.0333—14 7.65(16.96) 7.29(14.26) 6.82(12.30) 7.26(14.00)
3 0.0333—16 5.33(12.98) 2.66(8.06) 3.47(10.70) 7.79(13.79)
4 0.0333—18 1.82(6.06) 0.92(0.99) 0.90(0.99) 3.18(5.98)

5 0.0083—11 0.38(1.39) 0.44(1.66) 0.58(1.39) 0.87(1.47)
6 0.0083—14 4.87(9.76) 5.04(9.84) 4.94(9.43) 5.43(10.38)
7 0.0083—16 5.15(8.79) 4.44(8.03) 4.36(8.51) 6.09(11.22)
8 0.0083—18 4.95(9.40) 3.36(8.30) 4.15(8.65) 5.96(10.53)

Table 1: Comparison between the four algorithms based on MILP Gaps for m = {11, 14, 16, 18}
and ξ = 0.5

24

Case # Case %-Inst-vF-ccg %-Inst-zF-ccg %-Inst-zF+L-ccg %-Inst-C&CG
χ—m

1 0.0333—11 80 80 80 80
2 0.0333—14 40 40 40 40
3 0.0333—16 20 60 60 20
4 0.0333—18 80 100 100 20

5 0.0083—11 80 80 80 80
6 0.0083—14 40 40 40 40
7 0.0083—16 40 40 40 20
8 0.0083—18 20 60 40 0

Table 2: Comparison between the four algorithms based on the percentage of instances solved to
1% MILP Gap in 3600s for m = {11, 14, 16, 18} and ξ = 0.5

Case # Case Time-vF-ccg Time-zF-ccg Time-zF+L-ccg Time-C&CG
χ—m

1 0.0333—11 724(3600) 723(3600) 733(3600) 724(3600)
2 0.0333—14 2168(3600) 2199(3600) 2178(3600) 2182(3600)
3 0.0333—16 2983(3600) 2254(3600) 2136(3600) 2881(3600)
4 0.0333—18 1126(3600) 883(1971) 721(1598) 2895(3600)

5 0.0083—11 726(3600) 722(3600) 725(3600) 723(3600)
6 0.0083—14 2168(3600) 2164(3600) 2184(3600) 2177(3600)
7 0.0083—16 2322(3600) 2323(3600) 2298(3600) 2288(3600)
8 0.0083—18 3041(3600) 2616(3600) 2962(3600) 3600(3600)

Table 3: Comparison between the four algorithms based on computational time (in seconds) for
m = {11, 14, 16, 18} and ξ = 0.5

Case # Case %-Gap-vF-ccg %-Gap-zF-ccg %-Gap-zF+L-ccg %-Gap-C&CG
χ—ξ

1 0.0333—0.3 0.63(3.16) 1.21(2.85) 0.83(0.99) 4.82(7.22)
2 0.0333—0.5 5.33(12.98) 2.66(8.06) 3.47(10.70) 7.79(13.79)
3 0.0333—0.7 7.63(13.51) 7.89(13.49) 7.78(15.31) 6.32(11.50)

4 0.0083—0.3 2.80(6.66) 2.34(5.43) 2.29(6.16) 6.07(10.38)
5 0.0083—0.5 5.15(8.79) 4.44(8.03) 4.36(8.51) 6.09(11.22)
6 0.0083—0.7 5.37(9.07) 5.20(8.67) 5.21(8.79) 4.03(6.87)

Table 4: Comparison between the four algorithms based on MILP Gaps for ξ = {0.3, 0.5, 0.7} and
m = 16

Case # Case %-Gap-vF-ccg %-Gap-zF-ccg %-Gap-zF+L-ccg %-Gap-C&CG
χ—ξ

1 0.0333—0.3 80 80 100 0
2 0.0333—0.5 20 60 60 20
3 0.0333—0.7 20 20 0 20

4 0.0083—0.3 40 40 60 0
5 0.0083—0.5 40 40 40 20
6 0.0083—0.7 20 0 20 20

Table 5: Comparison between the four algorithms based on the percentage of instances solved to
1% MILP Gap in 3600s for ξ = {0.3, 0.5, 0.7} and m = 16

25

Case # Case Time-vF-ccg Time-zF-ccg Time-zF+L-ccg Time-C&CG
χ—ξ

1 0.0333—0.3 1390(3600) 1050(3600) 1148(3600) 3600(3600)
2 0.0333—0.5 2983(3600) 2254(3600) 2136(3600) 2881(3600)
3 0.0333—0.7 2888(3600) 2884(3600) 2885(3600) 2881(3600)

4 0.0083—0.3 2845(3600) 2363(3600) 2243(3600) 3600(3600)
5 0.0083—0.5 2322(3600) 2323(3600) 2298(3600) 2288(3600)
6 0.0083—0.7 2887(3600) 2884(3600) 2883(3600) 2880(3600)

Table 6: Comparison between the four algorithms based on computational time (in seconds) for
ξ = {0.3, 0.5, 0.7} and m = 16

As can be seen in Tables 1, 2, and 3, all algorithms perform well for instances involving 11 ORs.

These problems are relatively easy to solve because they are highly constrained due to the low total

OR time availability with respect to the total surgery time to be scheduled. On the contrary, for the

problem instances with m = 14, 16, and 18, we observe differences in the performance of all four

algorithms. These differences are more prominent for cases with m = 16 and m = 18. Specifically, for

the case 0.0333|16, the average MILP Gaps of solutions produced by zF-ccg and zF+L-ccg are 65.8%

and 55.4% lower, respectively, compared to those of solutions generated by C&CG. Moreover, zF-ccg

and zF+L-ccg achieve 1%-optimal solutions for 60% of the instances, whereas C&CG accomplishes this

for only 20% of the instances. The solutions from zF-ccg and zF+L-ccg are achieved with average

computational times that are 21.7% and 25.85% lower than those of C&CG. For the same case, vF-ccg

is also outperformed by both zF-ccg and zF+L-ccg in terms of average MILP Gaps, percentage

of instances solved to 1%-optimality, and average computational times. For case 0.0083|16, all four

algorithms exhibit similar average computational times while both zF-ccg and zF+L-ccg outperform

C&CG and vF-ccg in terms of average MILP Gap.

In case 0.0333|18, both zF+L-ccg and zF-ccg achieve 1%-optimal solutions across all instances.

In contrast, vF-ccg achieves such solutions for 80% of the instances, whereas C&CG only manages this

for 20% of them. Notably, zF+L-ccg achieves these high-quality solutions with 35.9% and 75% less

average computational time compared to vF-ccg and C&CG, respectively. Furthermore, in this specific

case, zF+L-ccg exhibits approximately an 18% lower average computational time than zF-ccg. In

the 0.0083|18 case, zF-ccg achieves the smallest average MILP Gaps and solves 60% of the instances

to 1%-optimality. In contrast, C&CG fails to solve any of the instances to 1%-optimality. It obtains

these solutions with average computational times that are 11.6%, 14%, and 27% lower compared to

zF+L-ccg, vF-ccg, and C&CG, respectively.

When examining the variation across different values of ξ for m = 16, distinct trends emerge in

26

Tables 4, 5, and 6 for all cases. In instances where ξ = 0.3, C&CG is notably outperformed by vF-ccg,

zF-ccg, and zF+L-ccg in average MILP Gap, percentage of instances solved to 1%-optimality, and

average computational time. Overall, for this case, zF+L-ccg exhibits the most favorable performance.

In the 0.0333|0.5 case, vF-ccg and C&CG are markedly outperformed by zF-ccg and zF+L-ccg across

all three criteria mentioned above while zF-ccg and zF+L-ccg demonstrate similar performance in

this case. In the 0.0083|0.5 case, vF-ccg, zF-ccg, and zF+L-ccg outperform C&CG across all three

criteria. Lastly, in cases with ξ = 0.7, C&CG delivers the best overall performance.

To summarize, the computational performance of C&CG (as measured by MILP Gap, computation

times, and the percentage of instances where the algorithm finds a solution with a 1% MILP Gap

within 3600 seconds) is outperformed by at least one of vF-ccg, zF-ccg, or zF+L-ccg for instances

with m = 16, 18 surgeries and ξ = 0.5. Additionally, when comparing across different values of ξ,

C&CG is outperformed by at least one of vF-ccg, zF-ccg, or zF+L-ccg for instances with ξ = 0.3, 0.5

and m = 16.

6.2 Effectiveness of z-ineq and ccg-ineq

In this section, we study the computational advantages of using valid inequalities z-ineq and ccg-ineq.

We do so by eliminating each of these inequalities individually from vF-ccg and zF+L-ccg and by

comparing the lower bounds obtained from the resulting MILP formulation with those obtained from

vF-ccg and zF+L-ccg. As zF+L-ccg includes all the inequalities that we propose to strengthen zF, we

exclude zF-ccg from this section. We compare these formulations based on the lower bound obtained

after 3600 seconds of computation (LB-Final) and the root node lower bound (LB-Root). For this

analysis, we consider the same cases and instances considered in Section 6.1.

Tables 7 and 8 present a comparison of lower bounds obtained from zF+L-ccg without ccg-ineq

or z-ineq and zF+L-ccg for different values of m (with ξ = 0.5) and for different values of ξ (with

m = 16), respectively. Specifically, the third and fourth columns of these tables record the aver-

age (maximum) % improvement in LB-Final and LB-Root achieved by incorporating ccg-ineq into

zF+L-ccg. For LB-Final, we calculate the %-improvement as LB
Zf−LBF

LBF ×100, where LBZf and LBF

are the best lower bounds obtained from zF+L-ccg and zF+L-ccg without ccg-ineq, respectively

after 3600s of computation. For LB-Root, the %-improvement is calculated as LBZr−LBR

LBR ×100, where

LBZr is the root-node lower bound obtained from zF+L-ccg, and LBR is the root-node lower bound

from zF+L-ccg without ccg-ineq. The fifth and sixth columns present similar %-improvements for

z-ineq. Likewise, Tables 9 and 10 give %-increase in LB-Final and LB-Root due to the addition of

27

ccg-ineq z-ineq

Case # Case LB-Final LB-Root LB-Final LB-Root
χ—m

1 0.0333—11 31.47 (48.21) 53.04 (67.87) 0.33 (2.21) 0.09 (13.18)
2 0.0333—14 12.09 (36.07) 102.90 (147.10) -1.44 (1.75) -3.37 (0.00)
3 0.0333—16 1.25 (6.45) 50.05 (119.70) 0.21 (0.76) 0.71 (3.47)
4 0.0333—18 0.49 (2.28) 34.91 (126.41) -0.01 (0.1) -0.09 (0.00)

5 0.0083—11 25.32 (35.56) 31.68 (38.70) 0.55 (2.14) 0.44 (11.32)
6 0.0083—14 12.85 (35.04) 50.03 (64.88) 0.21 (0.75) 0.00 (0.00)
7 0.0083—16 6.31 (24.94) 27.61 (46.76) -0.02 (0.79) -0.06 (0.00)
8 0.0083—18 0.83 (2.24) 21.68 (53.21) -0.51 (0.01) -0.06 (0.02)

Table 7: Average (maximum) %-increase in LB-Final and LB-Root obtained from zF+L due to the
addition of ccg-ineq or z-ineq for m = {11, 14, 16, 18} and ξ = 0.5

ccg-ineq z-ineq

Case # Case LB-Final LB-Root LB-Final LB-Root
χ—m

1 0.0333—0.3 0.01 (0.31) 19.59 (50.66) 0.15 (0.36) 4.31(21.44)
2 0.0333—0.5 1.25 (6.45) 50.05 (119.70) 0.21 (0.76) 0.71 (3.47)
3 0.0333—0.7 20.42 (63.97) 77.70 (158.20) 2.40 (7.84) 5.59 (27.95)

4 0.0083—0.3 -0.14 (0.02) 10.98 (18.82) 0.11 (1.05) -2.52 (0.17)
5 0.0083—0.5 6.31 (24.94) 27.61 (46.76) -0.02 (0.79) -0.06 (0.00)
6 0.0083—0.7 16.88 (52.56) 37.12 (66.52) 3.04 (13.16) -6.39 (19.79)

Table 8: Average (maximum) %-increase in LB-Final and LB-Root obtained from zF+L due to the
addition of ccg-ineq or z-ineq for ξ = {0.3, 0.5, 0.7} and m = 16

ccg-ineq in vF.

Tables 7, 8, 9 and 10 illustrate that including ccg-ineq substantially improves lower bounds for

zF+L-ccg and vF-ccg across almost all cases. The inclusion of z-ineq has the most significant impact

on cases with ξ = 0.7. In particular, for the case 0.0333|0.7, we observe an average improvement of

2.40% and 5.59% in LB-Final and LB-Root, respectively, due to the inclusion of z-ineq. Moreover,

there are instances in this case where the improvement in LB-Final and LB-Root is as high as 7.84%

and 27.95%, respectively. For case 0.0083|0.7, we observe an average improvement of 3.04%, with a

maximum improvement of 13.16%, in LB-Final due the inclusion of z-ineq in zF+L-ccg.

6.3 Strength of lower bound L̃

In this section, we assess the strength of the lower bound L̃ by comparing it with the best lower

bounds obtained from vF-ccg, zF-ccg, and zF+L-ccg. Additionally, we analyze the percentage of

instances in each case for which L̃ led to an early termination of the branch & bound for the three

28

Case # Case LB-Final LB-Root
χ—m

1 0.0333—11 39.76 (65.72) 68.79 (105.16)
2 0.0333—14 11.45 (39.00) 109.08 (147.14)
3 0.0333—16 2.84 (12.89) 67.23 (120.42)
4 0.0333—18 -1.58 (-0.56) 35.52 (126.74)

5 0.0083—11 32.98 (51.60) 45.79 (59.12)
6 0.0083—14 9.90 (29.62) 50.23 (64.90)
7 0.0083—16 5.60 (9.14) 32.75 (46.91)
8 0.0083—18 2.64 (8.92) 21.53 (53.30)

Table 9: Average (maximum) %-increase in LB-Final and LB-Root obtained from vF-ccg due to the
addition of ccg-ineq for m = {11, 14, 16, 18} and ξ = 0.5

Case # Case LB-Final LB-Root
χ—m

1 0.0333—0.3 -0.43 (0.00) 27.10 (50.99)
2 0.0333—0.5 2.84 (12.89) 67.23 (120.42)
3 0.0333—0.7 20.87 (34.22) 118.89 (160.34)

4 0.0083—0.3 -0.86 (0.00) 14.65 (28.21)
5 0.0083—0.5 9.90 (29.62) 50.23 (64.90)
6 0.0083—0.7 15.33 (26.49) 53.78 (67.06)

Table 10: Average (maximum) %-increase in LB-Final and LB-Root obtained from vF-ccg due to
the addition of ccg-ineq for ξ = {0.3, 0.5, 0.7} and m = 16

29

formulations. We assess the effectiveness of the lower bound L̃ across various combinations of values

of m and ξ. We explore the impact of different m values while holding ξ at 0.5, conducting a full

factorial design across m = {11, 14, 16} and χ = {0.0333, 0.0083}. These values of m are considered

because all instances with these values satisfy the condition m ≤ m̃−1 as stated in Proposition 8. For

each case, we consider the same instances as considered in Section 6.1 and summarize computational

results in Table 11. Subsequently, we examine the influence of ξ on L̃ by fixing m at 14 and conducting

another full factorial design over the considered values of χ and ξ. For each case, we use the same

instances as in Section 6.1 and present the results in Table 12.

The third column of Tables 11 and 12 are formatted as a1|a2|a3, where a1 represents the percentage

of instances where the lower bound L̃ is at least 0.5% higher than the best lower bound determined

by vF-ccg, a2 denotes the percentage of instances where L̃ is at least 0.5% lower than the best lower

bound determined by vF-ccg, and a3 indicates the percentage of instances where L̃ is within 0.5% of

the highest lower bound determined by vF-ccg. Columns four and five of both tables state the same

for zF-ccgand zF+L-ccg. The sixth, seventh, and eighth columns of both tables, for each case, state

the percentage of instances solved using vF-ccg (%-vF), zF-ccg (%-zF), and zF+L-ccg (%-zF+L),

respectively, that terminated early due to the lower bound L̃. Recall that we embed this lower bound

within the MILP solver using callback such that whenever a feasible solution within 1% of this lower

bound is found, the solver terminates.

Case # Case vF-ccg zF-ccg zF+L-ccg %-vF %-zF %-zF+L
χ—m

1 0.0333—11 0—0—100 40—0—60 60—0—40 0 20 40
2 0.0333—14 0—40—60 0—20—80 0—20—80 0 0 0
3 0.0333—16 0—100—0 0—80—20 20—80—0 0 0 20

4 0.0083—11 0—0—100 0—0—100 40—0—60 0 0 20
5 0.0083—14 0—40—60 20—20—60 20—20—60 0 0 20
6 0.0083—16 0—100—0 0—80—20 20—80—0 0 0 20

Table 11: Evaluation of the strength of lower bound L̃ for m = {11, 14, 16} and ξ = 0.5

As can be seen in Table 11, the relative strength of L̃ is more pronounced among cases with

m = 11. Specifically, for all instances in cases with m = 11, L̃ is at least 0.5% better or within

0.5% of the highest lower bounds found in each of the three formulations. Additionally, for the case

0.0333|11, L̃ enables early termination in 40% and 20% of the instances solved using zF+L and zF,

respectively. When comparing across different values of ξ in Table 12, we observe that for all cases

with ξ = 0.7, L̃ is at least 0.5% better or within 0.5% of the highest lower bounds found in each of

the three formulations. Additionally, for the case 0.0083|0.7, L̃ enables early termination in 40% of

30

Case # Case vF-ccg zF-ccg zF+L-ccg %-vF %-zF %-zF+L
χ—ξ

1 0.0333—0.3 0—80—20 0—80—20 20—80—0 0 0 20
2 0.0333—0.5 0—40—60 0—20—80 0—20—80 0 0 0
3 0.0333—0.7 0—0—100 40—0—60 20—0—80 0 20 0

4 0.0083—0.3 0—80—20 20—80—0 0—80—20 0 20 0
5 0.0083—0.5 0—40—60 20—20—60 20—20—60 0 0 20
6 0.0083—0.7 0—0—100 40—0—60 40—0—60 0 40 0

Table 12: Evaluation of the strength of lower bound L̃ for ξ = {0.3, 0.5, 0.7} and m = 14

the instances solved using zF. For cases with ξ = 0.5, L̃ surpasses the highest lower bounds found in

each of the three formulations by at least 0.5%, or it is within 0.5% of these bounds, for at least 60%

of the instances.

In summary, the relative strength of L̃ is more significant in cases with m = 11 and ξ = 0.5.

Furthermore, for these cases, including L̃ in zF-ccg and zF+L-ccg is computationally advantageous.

Similarly, for cases with ξ = 0.7 and m = 14, including L̃ in zF-ccg is computationally beneficial.

7 Conclusion

In this paper, we model the second-stage of 2SRSSP as a longest path problem on a layered acyclic

graph. As a result, the second-stage problem can be represented as an LP, which can be dualized

and integrated back into the first-stage model. This integration yields two monolithic MILP formula-

tions for 2SRSSP. We present methods to enhance their computational performance. Our numerical

experiments demonstrate the computational advantages of these MILP formulations over C&CG. Fur-

thermore, we show the effectiveness of the proposed methods to improve the computational efficiency

of the MILP formulations. Future research will focus on exploring the polyhedral structure of these

MILP formulations to derive tighter reformulations and reduce solution times further.

References

Addis B, Carello G, Tànfani E (2014) A robust optimization approach for the operating room planning problem

with uncertain surgery duration. Proceedings of the international conference on health care systems engineer-

ing, 175–189 (Springer).

Ahuja RK, Magnanti TL, Orlin JB (1988) Network flows (Cambridge, Mass.: Alfred P. Sloan School of Man-

agement, Massachusetts).

31

Ardestani-Jaafari A, Delage E (2021) Linearized robust counterparts of two-stage robust optimization problems

with applications in operations management. INFORMS Journal on Computing 33(3):1138–1161.

Bansal A, Berg BP, Huang YL (2021) A value function-based approach for robust surgery planning. Computers

& Operations Research 132:105313.

Bansal A, Richard JP, Berg BP, Huang YL (2024) A sequential follower refinement algorithm for robust surgery

scheduling. INFORMS Journal on Computing 36(3):918–937.

Denton BT, Miller AJ, Balasubramanian HJ, Huschka TR (2010) Optimal allocation of surgery blocks to

operating rooms under uncertainty. Operations Research 58(4):802–816.

Gupta D (2007) Surgical suites’ operations management. Production and Operations Management 16(6):689–

700.

Lovász L (1983) Submodular functions and convexity. Mathematical Programming The State of the Art: Bonn

1982 235–257.

Marques I, Captivo ME (2017) Different stakeholders’ perspectives for a surgical case assignment problem:

Deterministic and robust approaches. European Journal of Operational Research 261(1):260–278.

Neyshabouri S, Berg BP (2017) Two-stage robust optimization approach to elective surgery and downstream

capacity planning. European Journal of Operational Research 260(1):21–40.

Rath S, Rajaram K, Mahajan A (2017) Integrated anesthesiologist and room scheduling for surgeries: Method-

ology and application. Operations Research 65(6):1460–1478.

Schouten AM, Flipse SM, van Nieuwenhuizen KE, Jansen FW, van der Eijk AC, van den Dobbelsteen JJ (2023)

Operating room performance optimization metrics: a systematic review. Journal of Medical Systems 47(1):19.

Tawarmalani M, Richard JPP, Xiong C (2013) Explicit convex and concave envelopes through polyhedral

subdivisions. Mathematical Programming 138(1):531–577.

Zeng B, Zhao L (2013) Solving two-stage robust optimization problems using a column-and-constraint generation

method. Operations Research Letters 41(5):457–461.

32

Appendix A: C&CG for 2SRSSP

The C&CG algorithm involves reformulating the follower problem (2) as

F (x,y) =max
r

min
o

∑
j∈M

c◦oj (21a)

s.t. oj ≥
∑
i∈N

(
dli + rid

◦
i

)
yi,j − Uxj ∀j ∈M (21b)

∑
i∈N

ri ≤ τ (21c)

ri ∈ {0, 1} ∀i ∈ N (21d)

oj ≥ 0 ∀j ∈M, (21e)

where oj gives the total overtime of OR j; see (Neyshabouri and Berg 2017). Constraints (21b), (21e),

and the minimization in (21a) ensure that oj =
∑

i∈N
(
dli + rid

◦
i

)
yij − Uxj ≥ 0 if there is overtime

in OR j, and 0 otherwise. To replace the maximum over r in the definition of F (·, ·), all feasible

solutions rk to the follower problem are enumerated. For each solution rk, a variable okj is introduced.

By incorporating this representation into (1), a new formulation is obtained where the number of

variables and constraints depend on the number of solutions rk. Model (21) is solved by iteratively

generating its constraints and variables. In its K̄th iteration, C&CG solves the following master problem,

which we refer to as (CCGK̄),

LBK̄ =min
∑
j∈M

cfxj + c◦β (22a)

s.t. (1c), (1d), (1e), (1f), (1g) (22b)

β ≥
∑
j∈M

okj ∀k ∈ {1, 2, . . . , K̄} (22c)

okj ≥
∑
i∈N

(
dli + d◦i r

k
i

)
yi,j − Uxj ∀j ∈M, ∀k ∈ {1, 2, . . . , K̄} (22d)

xj ∈ {0, 1} , yij ∈ {0, 1} , okj ≥ 0 ∀i ∈ N,∀j ∈M, ∀k ∈ {1, . . . , K̄}. (22e)

After obtaining an optimal solution (xK̄ ,yK̄ ,oK̄ , βK̄) for (CCGK̄), the second stage problem, (2), is

solved to determine whether (xK̄ ,yK̄) is a robust optimal solution or if there exists a new rK̄+1 that

improves upon (CCGK̄).

Algorithm 3 gives the pseudo-code for C&CG. The algorithm begins with initialization, where K̄ is

33

set to 0, LB is set to negative infinity, and UB is set to positive infinity. In Step 1 of the K̄th iteration,

(CCGK̄) is solved to determine (xK̄ ,yK̄) and LBK̄ . In Step 2, the Lower Bound (LB) is updated to

be equal to LBK̄ . Next, in Step 3, the second stage problem, (2) is solved for (xK̄ ,yK̄) to determine

rK̄+1. In Step 4, the Upper Bound (UB) is updated based on the robust feasible solution produced in

Step 3. Moving on to Step 5, (CCGK̄+1) is formulated using rK̄+1. Then, in Step 6, K̄ is incremented

by 1, and the algorithm proceeds to the next iteration if the stopping condition UB−LB
UB ≤ ϵ is not

met. Here, ϵ is a small positive number. Proposition 2 of Zeng and Zhao (2013) demonstrates that

Algorithm 3 terminates and yields an ϵ-optimal solution to 2SRSSP in a finite number of iterations.

Algorithm 3 C&CG algorithm for 2SRSSP

1: Input: Instance of 2SRSSP.

2: Output: Robust-optimal solution to 2SRSSP.

3: Initialize K̄ ← 0, LB ← −∞, UB ←∞. ▷ Step 0

4: while UB−LB
UB ≤ ϵ do

5: Solve (CCGK̄) to determine (xK̄ ,yK̄). ▷ Step 1

6: LB ← LBK̄ . ▷ Step 2

7: Solve the second stage problem, (2) for (xK̄ ,yK̄) to obtain rK̄+1. ▷ Step 3

8: UB ← min{UB,
∑

j∈M cfxK̄j + c◦F (xK̄ ,yK̄)}. ▷ Step 4

9: Formulate (CCGK̄+1) adding variables and constraints associated with rK̄+1. ▷ Step 5

10: K̄ ← K̄ + 1. ▷ Step 6

11: end while

12: return (xK̄ ,yK̄).

Appendix B: Results of the pilot experiment

We conduct a pilot experiment to determine the value of parameter K̃, the maximum number of

ccg-ineq to be included in the formulations. We aim to add ccg-ineq for the first K̃ cost improving,

robust feasible solutions found in the branch & bound algorithm. Additionally, we also investigate the

impact on the computational performance when ccg-ineq is applied to the first K̃ robust feasible

solutions instead of the first K̃ cost improving, robust feasible solutions. We refer to the former

approach as Implementation-1 and the latter approach as Implementation-2 . We consider three

candidate values of K̃ = {25, 50, 75}. We conduct pilot experiments for cases with values of χ ∈

{0.0333, 0.0083}. For this pilot experiment, we set m = 14 and ξ = 0.5, and use the zF+L formulation.

34

We run a full factorial design over the considered values of K̃ and χ, and solve three random instances

for each case for a maximum of 3600 seconds.

Table 13 summarizes the result of the pilot experiment. The second column of the table specifies

the cases considered. The third and fourth columns display the average (maximum) MILP Gap for

Implementations 1 and 2, referred to in the table as %-Gap-1 and %-Gap-2, respectively. The fifth

and sixth columns present, for each implementation, the average (maximum) number of ccg-ineq

added during the branch & bound. These columns are labeled as #-Added-1 and #-Added-2, re-

spectively. The last column (Nodes-5%) records, for each case, the fraction of instances in which the

branch & bound for Implementation-1 explored at least 5% more nodes than the branch & bound for

Implementation-2 .

Case # Case %-Gap-1 %-Gap-2 #-Added-1 #-Added-2 Nodes-5%

χ—K̃

1 0.0333—25 12.13 (15.97) 12.40 (16.96) 18 (20) 25 (25) 66.67
2 0.0333—50 12.44 (17.24) 12.51 (16.79) 19 (23) 50 (50) 66.67
3 0.0333—75 12.03 (16.07) 13.91 (18.54) 25 (34) 75 (75) 66.67

4 0.0083—25 7.61 (10.32) 7.90 (11.09) 18 (20) 25 (25) 66.67
5 0.0083—50 7.82 (11.04) 8.04 (11.22) 20 (30) 50 (50) 100
6 0.0083—75 7.87 (10.81) 8.09 (11.59) 19 (28) 75 (75) 100

Table 13: Computational results of the pilot experiment

As observed in Table 13, Implementation-1 yields a lower average MILP Gap across all cases when

compared to Implementation-2 . Additionally, Implementation-1 yields a lower maximum MILP Gap

across all cases but one (0.0333|50). This inferior performance can be attributed to the higher number

of ccg-ineq inequalities added in Implementation-2 , as evident from the fifth and sixth columns. The

increased number of ccg-ineq inequalities in Implementation-2 may result in higher solution time

for the LPs in the branch & bound. Consequently, this results in a reduction in the number of nodes

explored by the branch & bound during the allotted computational time. Specifically, Implementation-

2 , as compared to Implementation-1 , explores at least 5% fewer nodes for at least two-thirds of the

instances; see last column of Table 13. Exploring fewer nodes can lead to both weaker upper and lower

bounds, which we believe is the reason behind the higher MILP Gap observed in Implementation-2 .

When comparing across the values of K̃ for Implementation-1 , we find that K̃ = 25 yields the lowest

average (maximum) MILP Gap among all cases. Based on these results, in the main experiment, we

add ccg-ineq for the first K̃ = 25 cost improving, robust feasible solutions found by the commercial

MILP solver.

35

