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Abstract

This paper deals with the Constrained Riemannian Optimization (CRO) problem, which
involves minimizing a function subject to equality and inequality constraints on Riemannian
manifolds. The study aims to advance optimization theory in the Riemannian setting by pre-
senting and analyzing a penalty-type method for solving CRO problems. The proposed ap-
proach is based on techniques that involve smoothing the classical ℓ1-exact penalty function.
This penalty-type method extends previous research by incorporating different smoothing func-
tions, refining the penalty multipliers, and relaxing the constraints qualifications necessary for
convergence. The method uses the extended Mangasarian-Fromovitz constraint qualification
to ensure boundedness of Lagrange multipliers and global convergence to feasible and optimal
solutions. In addition, under the assumption that the limit points are feasible, it is shown that
these points satisfy the Approximate KKT (AKKT) conditions. Furthermore, when AKKT is
combined with a weak constraint qualification, it is proved that the limit points satisfy the KKT
conditions. Preliminary numerical experiments are conducted to demonstrate the effectiveness
of the proposed method, which indicates that the method effectively addresses the complexity
associated with CRO problems.
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1 Introduction

This paper addresses the Constrained Riemannian Optimization (CRO) problem, defined as:

Minimize
p∈M

f(p) subject to h(p) = 0 and g(p) ≤ 0, (1)
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where M is an n-dimensional smooth and complete Riemannian manifold, the functions f : M →
R, h = (h1, . . . , hs) : M → Rs and g = (g1, . . . , gm) : M → Rm are continuously differentiable.
Optimization methods for the CRO problem, as well as the theoretical foundations supporting
them in the Riemannian context, are still in early stages of development. Despite considerable
progress in recent years, this field remains nascent, with many challenges and open questions yet
to be explored. The objective here is to advance the CRO field by presenting and analyzing a
penalty-type method for solving Problem (1), inspired by [33, Algorithm 2]. Penalty techniques
have a well-established history in Euclidean spaces, addressing numerous practical problems (see,
for example, [11, 18]). It is reasonable to expect that the success of penalty techniques in the
Euclidean context will extend to the Riemannian setting, providing the primary motivation for this
research.

In contrast to the significant advancements in unconstrained Riemannian optimization, the de-
velopment of theory and methods for CRO remains comparatively limited. The extension of the
Karush-Kuhn-Tucker (KKT) optimality conditions to the Riemannian setting was first introduced
in 2014 [54]. Subsequently, an intrinsic approach to KKT conditions and the analysis of various con-
straint qualifications were explored in [5]. More recent developments include the introduction of the
Approximate KKT (AKKT) conditions by [53] and an extensive investigation of strict constraint
qualifications by [3], providing a comprehensive framework for algorithmic convergence theory in
CRO. These foundational studies have been instrumental in supporting the global convergence of
algorithms, such as the augmented Lagrangian method in [3], which builds upon the initial work of
[33] that introduced penalty methods for CRO. In response to these foundational results, several
approaches for CRO have emerged. For example, an exact penalty method for constrained prob-
lems on Stiefel manifolds was proposed in [27], addressing constraint qualifications and optimality
conditions. Similarly, [15] developed an inexact augmented Lagrangian framework for nonsmooth
optimization on Riemannian submanifolds, while [40] introduced a Riemannian sequential quadratic
optimization algorithm with an ℓ1-penalty function. The primal-dual interior point method for Rie-
mannian manifolds, presented in [30], generalizes the classical primal-dual framework for nonlinear
programming. In [26], the projection robust Wasserstein distance is reformulated as a CRO prob-
lem over the Cartesian product of Stiefel manifolds, where a Riemannian version of an exponential
augmented Lagrangian method is introduced with established global convergence. Furthermore,
[20] addresses the minimization of smooth functions under smooth equality constraints using an
algorithm based on Fletcher’s ℓ1-exact penalty function. Additional studies complementing these
methods are found in [33, 30].

Considering the inherent complexities of designing projection methods within the Riemannian
context, it is expected that future research on the CRO problem will largely focus on penalty-type
and augmented Lagrangian-type methods. These approaches are promising due to their straight-
forward design and analysis, as well as their efficacy in managing the complexities associated with
Riemannian geometry. This prediction is supported by the preceding discussion, highlighting the
advantages of advanced optimization methods in addressing practical problems within the Rieman-
nian framework that are not adequately solved by existing Euclidean theories. In accordance with
current trends, this study proposes a penalty-type method for solving Problem (1). The method
builds upon techniques involving the smoothing of the exact penalty function, which has been ex-
tensively explored in Euclidean spaces. To the best of our knowledge, this methodology originates
from [49] and was further developed in [6, 29, 50]. Additional contributions to this topic include
[19, 21, 32, 34, 36, 37, 41, 29, 43, 50, 51, 52, 56]. The penalty-type method presented in this pa-
per represents an advancement over [33, Algorithm 2] in three aspects. First, it accommodates a
broader range of functions for smoothing the exact penalty function, enhancing both its flexibility
and applicability. Second, unlike previous methods that uniformly adjusted all penalty multipliers
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across constraints, the proposed approach employs a more selective strategy. It adjusts the penalty
multiplier based on the feasibility measure of the violated constraint, offering a more nuanced
and adaptive treatment of constraint handling. Third, and most importantly, the analysis of the
method is conducted under weaker assumptions than those used in prior work, which relied on the
linear independence constraint qualification (LICQ). Instead, it employs the extended Mangasarian-
Fromovitz constraint qualification (EMFCQ), broadening the scope of applicability and enriching
the analytical framework. Additionally, assuming the feasibility of the limit points, it is shown
that these points satisfy the Approximate KKT (AKKT) conditions. Furthermore, when AKKT
points are combined with either the Relaxed Constant Positive Linear Dependence (Relaxed-CPLD)
condition or the Constant Rank of the Subspace Component (CRSC) condition—both recently in-
troduced in [3]—it follows that the limit points satisfy the KKT conditions. The method, along
with its respective designs and analyses, are distinguished for their simplicity. We will delve into
further details on this matter below.

The penalty-type approaches are well-established methodologies for addressing constrained op-
timization problems. These techniques transform the original problem into a sequence of uncon-
strained subproblems by incorporating penalty functions, which enforce constraints indirectly. By
penalizing constraint violations, these methods enable the application of comprehensive uncon-
strained optimization algorithms and theoretical frameworks to the transformed problem. This
approach facilitates the efficient handling of the complexities introduced by constraints, allowing
for the utilization of robust, well-established unconstrained optimization techniques, as the ones
[1, 9, 17, 22, 23, 25, 46]. In this paper, we focus on one of the most popular exact penalty functions
for the proposed method, the so-called ℓ1-exact penalty function, which is defined as

E(p, ρ) := f(p) + ρ
s∑

i=1

|hi(p)|+ ρ
m∑
j=1

max{gj(p), 0}. (2)

This function was introduced in [55], where it was proven that if E(·, ξ) has a minimizer for some
ξ > 0, then the same will be true to E(·, ρ), for any ρ > ξ. Moreover, it is widely acknowledged
that, under mild assumptions, if ρ is sufficiently large, the minimizers of E(·, ρ) that are feasible
to Problem (1) also satisfy the KKT optimality conditions, as demonstrated in [39, Theorem 17.4].
The primary challenge associated with the exact penalty function lies in its non-differentiability,
which impedes the application of efficient minimization algorithms to solve the subproblems. To
circumvent this drawback, one of the important tools is the smoothing approach, which is based
on creating a differentiable approximation of the non-differentiable term in (2). Thus, instead of
solving a sequence of non-differentiable problems, a sequence of differentiable problems is solved.
The first studies on the smoothing approach in Euclidean space are due to [6, 29, 49] and in the
Riemannian setting to [33]. In this paper, we follow this approach but with a slight modification to
the function (2). Instead of penalizing the entire sum with a single parameter ρ, we penalize each
function in the sum with a different parameter, resulting in a function like

E(p, ρ1, . . . , ρs, σ1, . . . , σm) = f(p) +
s∑

i=1

ρi|hi(p)|+
m∑
j=1

σj max{gj(p), 0}, (3)

and then we apply the smoothing approach to each functions |hi(p)| and max{gj(p), 0} individually.
The proposed method involves solving inner subproblems by minimizing a smooth approximation
of the ℓ1-exact penalty function and updating the penalty parameters based on the improvement of
an infeasibility measure of the violated constraints. The smoothness parameters are also updated
in each iteration.
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The organization of this paper is as follows: In Section 2, we recall the notations and fundamen-
tal concepts of Riemannian manifolds used throughout the paper and revisit the topic of smooth
approximations of the absolute value function. Section 3 introduces a class of penalty functions
designed to address Problem (1) and discusses their properties. In Section 4, we analyze a penalty-
type method proposed to solve Problem (1). Preliminary numerical experiments are presented in
Section 5, and final remarks are offered in Section 6.

2 Basics concepts and terminology

In this section, we recall some notations and basic concepts used throughout the paper. The
concepts of Riemannian manifolds can be found, for example, in [13, 31, 44, 47, 48].

Let M be an n-dimensional smooth Riemannian manifold. Denote the tangent space at a point
p by TpM. Assume also that M has a Riemannian metric denoted by ⟨·, ·⟩ and the corresponding
norm by ∥ · ∥. For f : U → R a differentiable function with derivative df(·), where U is an open
subset of the manifoldM, the Riemannian metric induces the mapping f 7→ grad f which associates
its gradient vector field via the following rule ⟨grad f(p), X(p)⟩ := df(p)X(p), for all p ∈ Uand all
vector field X in M. The Riemannian distance between p and q is denoted by d(p, q). This distance
induces the original topology on M, namely (M, d) is a complete metric space and the bounded
and closed subsets are compact. The open and closed balls of radius r > 0, centered at p, are
respectively defined by Br(p) := {q ∈ M : d(p, q) < r} and Br[p] := {q ∈ M : d(p, q) ≤ r}. A
Riemannian manifold is complete if its geodesics ζ(t) are defined for any value of t ∈ R. From
now on, M denotes an n-dimensional smooth and complete Riemannian manifold. For that, given
two points p, q ∈ M, βpq denotes the set of all geodesic segments ζ : [0, 1] → M with ζ(0) = p
and ζ(1) = q. A function f : M → R is said to be convex if, for any p, q ∈ M and ζ ∈ βpq, the
composition f ◦ ζ : [0, 1] → R is convex, i.e., (f ◦ ζ)(t) ≤ (1− t)f(p) + tf(q), for all t ∈ [0, 1] and f
is concave, if −f is convex. If f is convex and differentiable, then critical points p̄ of f are global
minimizers if and only if grad f(p̄) = 0.

In the following, we introduce the positive-linearly dependent condition, an important concept
in understanding constraint qualifications, which will be explored further in the following section;
for more details see [3].

Definition 1. Let U = {u1, . . . , us} and V = {v1, . . . , vm} be finite multisets on TpM, that is,
repetition of the same element is allowed. Then U ∪ V is said to be positive-linearly dependent if
there exist a = (a1, . . . , as) ∈ Rs and b = (b1, . . . , bm) ∈ Rm

+ such that (a, b) ̸= 0 and
∑s

i=1 aiui +∑m
j=1 bjvj = 0. Otherwise, U ∪ V is said to be positive-linearly independent.

Next, we recall a general version of Farkas’ Lemma, also known as Motzkin’s transposition
theorem, with the statement adapted from [45] to suit our specific application of interest.

Lemma 1. Let v ∈ TpM and ui, vj ∈ TpM, for all i ∈ {1, . . . , s} and j ∈ A ⊂ {1, . . . ,m}. The
system: ⟨v, d⟩ < 0, ⟨ui, d⟩ = 0, for i ∈ {1, . . . , s} and ⟨vj , d⟩ ≤ 0, for j ∈ A, has no solution
d ∈ TpM if and only if there exist λ̄i, for all i ∈ {1, . . . , s}, and µ̄j ≥ 0, for j ∈ A, such that
v +

∑s
i=1 λ̄iui +

∑
j∈A µ̄jvj = 0.

Throughout the paper, we define the set of positive integers as N := {1, 2, . . .}.
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2.1 Concepts and terminology of constrained optimization problems

In this section, we present the notations and definitions related to the CRO Problem (1) that are
used throughout the paper. The feasible set Ω of Problem (1) is defined by

Ω := {p ∈ M : h(p) = 0, g(p) ≤ 0},

which is closed. For a given λ ∈ Rs and µ ∈ Rm
+ , the Lagrangian function L(·, λ, µ) : M → R

associated with Problem (1) is defined by

L(p, λ, µ) := f(p) +

s∑
i=1

λihi(p) +

m∑
j=1

µjgj(p). (4)

Since f and g are continuously differentiable, the gradient1 of L(·, λ, µ) : M → R is given by

gradL(p, λ, µ) = grad f(p) +

s∑
i=1

λi gradhi(q) +

m∑
i=1

µj grad gj(p). (5)

For a given point p̄ ∈ Ω, let A(p̄) be the set of indexes of active inequality constraints, that is,

A(p̄) := {j ∈ {1, . . . ,m} : gj(p̄) = 0} .

We say that the Karush/Kuhn-Tucker (KKT) conditions are satisfied at p̄ ∈ M when there exist
so-called Lagrange multipliers λ̄ ∈ Rs and µ̄ ∈ Rm

+ such that the following three conditions hold:

(i) gradL(p̄, λ̄, µ̄) = 0, i.e., grad f(p̄) +
∑s

j=1 λ̄j gradhj(p̄) +
∑m

j=1 µ̄j grad gj(p̄) = 0;

(ii) µ̄j = 0, for all j /∈ A(p̄), i.e, µ̄jgj(p̄) = 0, for all j ∈ {1, . . . ,m};

(iii) p̄ ∈ Ω, i.e., h(p̄) = 0 and g(p̄) ≤ 0.

In this case, we refer to p̄ ∈ M as a KKT point. A constraint qualification (CQ) is a condition
regarding the structure of the feasible set, ensuring that every local minimum is a KKT point. It is
important to note that without a CQ at a local optimum p̄, the existence of Lagrange multipliers
satisfying the KKT conditions cannot be guaranteed; for further details, refer to [3, 5, 53]. Below
we introduce a useful CQ for studying Problem (1). To simplify the notation, we first present the
following definitions: For a given p̄ ∈ M define

A+(p̄) := {j ∈ {1, . . . ,m} : gj(p̄) ≥ 0} ,

and, for each q ∈ M, I ⊆ {1, . . . , s} and J ⊆ {1, . . . ,m}, define the set B(q, I,J ) ⊂ TqM as

B(q, I,J ) := {gradhi(q) : i ∈ I} ∪ {grad gj(q) : j ∈ J }.

Definition 2. The point p̄ ∈ M is said to satisfy the extended Mangasarian-Fromovitz constraint
qualification (EMFCQ) if the set B(p̄, {1, . . . , s},A+(p̄)) is positive-linearly independent.

If in the above definition we consider p̄ ∈ Ω, then it becomes the Mangasarian-Fromovitz
constraint qualification (MFCQ) considered in Riemannian setting in [5]. For more details and
applications of EMFCQ in Euclidean context, see, for example, [28]. Next we state strict constraint
qualifications for the CRO Problem (1), which were introduced in [3]. We begin by recalling
the relaxed Constant Positive Linear Dependence Condition (Relaxed-CPLD), which is stated as
follows:

1Although the Lagrangian L is a function of three variables, to simplify the notation, we denote by gradL the
gradient with respect to the first variable.
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Definition 3. The point p̄ ∈ Ω is said to satisfy Relaxed-CPLD (RCPLD), if there exists ϵ > 0
such that the following two conditions hold:

(a) the rank of {gradhi(p̄) : i = 1, . . . , s} is constant for all p ∈ Bϵ(p̄);

(b) Let K ⊂ {1, . . . , s}, such that {gradhi(p̄) : i ∈ K} is a basis for the subspace generated by
{gradhi(p̄) : i = 1, . . . , s}. For all J ⊂ A(p̄), if B(p̄,K,J ) is positive-linearly dependent,
then B(p,K,J ) is linearly dependent, for all p ∈ Bϵ(p̄).

To state the Constant Rank of the Subspace Component (CRSC), for p̄ ∈ Ω, we define the
linearized cone L(p̄) as follows

L(p̄) :=
{
v ∈ Tp̄M : ⟨gradhi(p̄), v⟩ = 0, i = 1, . . . , s; ⟨grad gj(p̄), v⟩ ≤ 0, j ∈ A(p̄)

}
,

and its polar L(p̄)◦ is given by

L(p̄)◦ =
{
v ∈ Tp̄M : v =

s∑
i=1

λi gradhi(p̄) +
∑

j∈A(p̄)

µj grad gj(p), µj ≥ 0, λi ∈ R
}
.

Definition 4. Let p̄ ∈ Ω and define the index set J−(p̄) := {j ∈ A(p̄) : − grad gj(p̄) ∈ L(p̄)◦}. The
point p̄ is said to satisfy CRSC if there exists ϵ > 0 such that the rank of B(p, {1, . . . , s},J−(p̄)) is
constant for all p ∈ Bϵ(p̄).

In [4], it was proven that the CRSC condition is strictly weaker than RCPLD in the Euclidean
setting. While we do not yet have a similar proof in the Riemannian setting, [3] presents an
example demonstrating that CRSC does not imply RCPLD in any Riemannian manifold M of
dimension n ≥ 2. We conclude this section by revisiting the concept of the Approximate-KKT
condition introduced in [53], which will be instrumental in the analysis of the smooth ℓ1-exact
penalty method.

Definition 5. A point p̄ ∈ Ω is said to be an Approximate KKT (AKKT) point for Problem (1) if
there exist sequences (pk)k∈N ⊂ M, (λk)k∈N ⊂ Rs and (µk)k∈N ⊂ Rm

+ such that

(i) limk→∞ pk = p̄,

(ii) limk→∞ gradL(pk, λk, µk) = 0,

(iii) limk→∞ µkj = 0, for all j /∈ A(p̄).

2.2 Smooth approximation to absolute value function

In this section, we revisit the topic of smooth approximations to the absolute value function. We
focus on presenting some well-known examples from the literature. We denote the max function by
t+ := max{0, t} and the absolute value function by |t| := max{t,−t}, for t ∈ R. Considering that

t+ =
1

2
(t+ |t|),

the problem of approximating the max function is equivalent to approximating the absolute value
function. We begin with the following definition.

Definition 6. Let ϕ : R×R++ → R be a continuously differentiable function. The function ϕτ : R →
R defined by ϕτ (t) := ϕ(t, τ) is called a smooth absolute value function if it satisfies the following
conditions:
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(i) lim(t,τ)→(t̄,+∞) ϕτ (t) = |t̄|, for all t̄ ∈ R;

(ii) ϕτ (t) > 0, for all t ̸= 0;

(iii) ϕ′τ is not decreasing, ϕ′τ is strictly increasing in (−δτ , δτ ), for some δτ > 0, and ϕ′τ (0) = 0;

(iv) 0 < ϕ′τ (t) ≤ 1, for all t > 0;

(v) −1 ≤ ϕ′τ (t) < 0, for all t < 0;

(vi) ϕτ is convex, for all τ > 0;

(vii) limt→+∞ ϕ′τ (t) = 1 and limt→−∞ ϕ′τ (t) = −1, for all τ > 0;

(viii) There hold lim(t,τ)→(t̄,+∞) ϕ
′
τ (t) = −1, for t̄ < 0 and lim(t,τ)→(t̄,+∞) ϕ

′
τ (t) = 1, for t̄ > 0.

Here are several well-known examples of smooth absolute value functions from the literature.

Example 1. In the following, we present several examples of smooth approximations for the abso-
lute value function:

(i) ϕ1,τ (t) := (|t|r + 1
τr/2

)
1
r , for any r > 1

(ii) ϕ2,τ (t) :=
1
τ ln(e

τt + e−τt)

(iii) ϕ3,τ (t) =


t if t ≥ 1

2τ ,

τ t2 + 1
4τ if − 1

2τ , < t < 1
2τ ,

−t if t ≤ − 1
2τ

(iv) ϕ4,τ (t) =

{
τ
2 t

2 if |t| ≤ 1
τ ,

|t| − 1
2τ if |t| > 1

τ

(v) ϕ5,τ (t) := (|t|r + 1
τr/2

)
1
r − 1

τ1/2
, for any r > 1

(vi) ϕ6,τ (t) :=
1
τ ln(e

τt + e−τt)− 1
τ ln(2) =

1
τ ln(cosh(τt)).

The functions in items (i) with r = 2, (ii), (iv), and (v) with r = 2 in Example 1 have been
used to study absolute value equations, as discussed in [42], where their properties are presented,
see also [36, 37, 43]. In particular,

0 = ϕ4,τ (0) < ϕ4,τ (t) < |t| < ϕ3,τ (t), 0 < |t| − ϕ4,τ (t) <
1

2τ
, ∀t ∈ R, t ̸= 0. (6)

The function in item (ii) in Example 1 was used in the context of linear complementarity problems,
see [14]. For future reference, we also note the following properties of the function ϕ6,τ in Example 1

0 = ϕ6,τ (0) < ϕ6,τ (t) < |t|, 0 < |t| − ϕ6,τ (t) <
ln 2

τ
, ∀t ∈ R, t ̸= 0. (7)

Some results, such as those in Section 3.1, require additional assumptions about the smoothing
function, which are stated as follows: For a given function ϕτ , consider the following condition:

0 ≤ ϕτ (t) ≤ |t|, 0 ≤ |t| − ϕτ (t) ≤
κ

τ
, ∀t ∈ R, τ > 0, (8)

for some κ > 0. The functions ϕ4,τ and ϕ6,τ satisfy (8). For future reference, we state the following
lemma, whose proof is straightforward.
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Lemma 2. If ϕτ satisfies (8), then 0 < t+ − (1/2)(t+ ϕτ (t)) ≤ κ
2τ , for all t ∈ R and τ > 0.

We conclude this section with Figure 1, which illustrates the functions ϕ(t) = |t|, Φ(t) = t+,
and the corresponding smoothed functions ϕi,τ (t) and Φi,τ (t) = (t + ϕi,τ (t))/2 from Example 1
for i = 1, . . . , 6 with a smoothing parameter τ = 1 and r = 2 in ϕ1,τ and ϕ5,τ . The functions
ϕi,τ provide an upper approximation to ϕ for i = 1, 2, 3 and a lower approximation for i = 4, 5, 6.
Consequently, the functions Φi,τ approximate Φ from above for i = 1, 2, 3 and from below for
i = 4, 5, 6.
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(a) Approximations of ϕ(t) = |t| (b) Approximations of Φ(t) = t+

Figure 1: Approximations of ϕ(t) = |t| and Φ(t) = t+ as described in Example 1.

3 Smooth ℓ1-exact penalty function

In this section, we introduce a class of penalty functions designed to address Problem (1), by
smoothing the ℓ1-exact penalty function in (3). To achieve this, we use functions that serve
as smooth approximations of the absolute value function, as in Definition 6. Then, for a given
(ρ, σ, τ, θ) ∈ Rs

++ ×Rm
++ ×R++ ×R++, the smoothing ℓ1-exact penalty Lagrangian function associ-

ated with Problem (1), denoted by L(τ,θ)(·, ρ, σ) : M → R is defined as follows:

L(τ,θ)(p, ρ, σ) := f(p) +

s∑
i=1

ρiφτ (hi(p)) +

m∑
j=1

σj (gj(p) + ψθ(gj(p))) , (9)

where φτ and ψθ are smooth absolute value functions satisfying Definition 6. At this point, it is
important to note that we could assign in (9) distinct smooth absolute value functions to each
function hi and gj individually, resulting in a total of s + m smooth absolute value functions.
However, for the sake of simplifying both the notation and analysis, we will instead use a single
function φτ for all hi′s and a single function ψθ for all gj′s. Since φτ and ψθ are nonnegative and
increasing functions for positive parameters, the function L(τ,θ) acts as a penalty for the constraint
hi and gj violated. Since the functions f , h and g are continuously differentiable on M, φτ and ψθ

in Definition 6 are continuously differentiable, we conclude that L(τ,θ)(·, ρ, σ) is also continuously
differentiable. It is worth noting that the terms inside the sums in (9) approximate the ℓ1-exact
penalty terms p 7→ ρi|hi(p)| and p 7→ 2σj(gj(p))+, respectively. Indeed, limτ→+∞ φτ (hi(p)) =
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|hi(p)| and limθ→+∞ (gj(p) + ψθ(gj(p))) = 2(gj(p))+, which were introduced in Euclidean space for
the first time in [55] to define the ℓ1-exact penalty function. For a comprehensive study on exact
penalty functions in Euclidean setting, see, for example, [16]. By selecting suitable scalars ρi and
σj , and smoothing functions φτ and ψθ, such as those demonstrated in Example 1, the function
(9) incorporates those outlined in [33]. Note that, in the Euclidean context, if the approximation
functions φτ and ψθ are the ones described in item (i) of Example 1 with r = 2, then (9) corresponds
to the smooth ℓ1-exact penalty function introduced and analyzed in [29]. This smooth ℓ1-exact
penalty function has also been studied in [50], where it was termed the hyperbolic penalty function.
For additional developments on this topic, see also [10, 36, 37, 51, 52].

For future reference in the upcoming sections, the gradient2 of the smoothing ℓ1-exact penalty
function L(τ,θ)(·, ρ, σ) : M → R is given by

gradL(τ,θ)(p, ρ, σ) = grad f(p)+
s∑

i=1

ρiφ
′
τ (hi(p)) gradhi(p)+

m∑
j=1

σj
(
1 + ψ′

θ(gj(p))
)
grad gj(p). (10)

3.1 Properties of smoothing ℓ1-exact penalty function

In this section, we present some properties of the smoothing exact penalty function (9). Note that
due to item (i) of Definition 6 we have limτ,θ→+∞ L(τ,θ)(p, ρ, σ) = E(p, ρ, σ), where E is defined as
the classic ℓ1-exact penalty Lagrangian function

E(p, ρ, σ) := f(p) +
s∑

i=1

ρi|hi(p)|+
m∑
j=1

σj (gj(p) + |gj(p)|) . (11)

Therefore, we conclude that L(τ,θ) smooths to E. The following lemma presents a straightforward
yet valuable property that establishes a relationship between the penalty function given in (9) and
(11), for the special case when φτ and ψθ satisfy (8). To state the next lemma we set

ρ := (ρ1, . . . , ρs) ∈ Rs
++, ξ̃ :=

s∑
i=1

ρi, σ := (σ1, . . . , σm) ∈ Rm
++, ξ̂ :=

m∑
j=1

σj

Lemma 3. Assume that φτ and ψθ satisfy (8). Then, the following inequalities hold

E(p, ρ, σ)− (ξ̃/τ + ξ̂/θ)κ ≤ L(τ,θ)(p, ρ, σ) ≤ E(p, ρ, σ), (12)

for all (ρ, σ, τ, θ) ∈ Rs
++ × Rm

++ × R++ × R++.

Proof. By combining (9) and (11) with (8), we have

0 ≤ E(p, ρ, σ)−L(τ,θ)(p, ρ, σ) =

s∑
i=1

ρi
(
|hi(p)|−φτ (hi(p))

)
+

m∑
j=1

σj
(
|gj(p)|−ψθ(gj(p))

)
≤

( ξ̃
τ
+
ξ̂

θ

)
κ,

for all (p, ρ, σ, τ, θ) ∈ M× Rs+m+2
++ , which implies the desired inequalities.

To continue our discussion, for a given (ρ, σ, τ, θ) ∈ Rs
++ × Rm

++ × R++ × R++, consider the
smoothed optimization problem:

Minimize
p∈M

L(τ,θ)(p, ρ, σ). (13)

2Although the Lagrangian L(τ,θ) is a function of three variables, to simplify the notation, we denote by gradL the
gradient with respect to the first variable.
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In Euclidean space, it is known that for appropriately chosen penalty parameters ρ and σ, the
solutions of the non-differentiable ℓ1-exact penalized problem also serve as solutions to the original
problem (see, for example, [7, Chapter 4]). Consequently, our next task is to investigate this matter
for the smoothed ℓ1-exact penalty optimization problem in (13). Specifically, we will study the
conditions under which the solutions of Problem (13) are approximated solutions for Problem (1),
for the special case when φτ and ψθ satisfy (8).

Proposition 4. Assume that φτ and ψθ satisfy (8). In addition, assume that p̄ ∈ M is a local
solution to optimization Problem (13). If the point p̄ is feasible for Problem (1), i.e., p̄ ∈ Ω, then p̄
is a local ((ξ̃/τ + ξ̂/θ)κ)-solution to Problem (1), meaning that for all p ∈ Ω ∩Br(p̄) and for some
r > 0, the inequality f(p̄) ≤ f(p) + ((ξ̃/τ + ξ̂/θ)κ) holds.

Proof. Assume that p̄ ∈ M is a local solution to Problem (13). Hence, there exists r > 0 such that
L(τ,θ)(p̄, ρ, σ) ≤ L(τ,θ)(p, ρ, σ), for all p ∈ Br(p̄). Thus, since the first inequality in (8) implies that
φτ (hi(p)) = 0 and gj(p) + ψθ(gj(p)) ≤ 0, for all p ∈ Ω, we obtain that

f(p̄) +
s∑

i=1

ρiφτ (hi(p̄)) +
m∑
i=1

σj (gj(p̄) + ψθ(gj(p̄))) ≤ f(p), ∀p ∈ Ω ∩Br(p̄).

Due to p̄ ∈ Ω, we have |hi(p̄)| = 0 and gj(p̄) + |gj(p̄)| = 0. Thus, the last inequality yelds

f(p̄) +
s∑

i=1

(
ρiφτ (hi(p̄))− ρi|hi(p̄)|

)
+

m∑
j=1

(
σjψθ(gj(p̄))− σj |gj(p̄)|

)
≤ f(p), ∀p ∈ Ω ∩Br(p̄).

Therefore, since φτ and ψθ satisfy (8), we conclude that f(p̄) − ((ξ/τ +m/θ)κ) ≤ f(p) , for all
p ∈ Ω ∩Br(p̄), which concludes the proof.

In the following proposition, we investigate a type of converse of Proposition 4, focusing specif-
ically on the convex case.

Proposition 5. Assume that φτ and ψθ satisfy (8). Moreover, assume that f : M → R and
gj : M → R, for all j = 1, . . . ,m, are convex functions and hi : M → R, for all i = 1, . . . , s,
are both convex and concave functions. In addition, assume p̄ ∈ M, λ̄ = (λ̄1, . . . , λ̄s) ∈ Rs and
µ̄ = (µ̄1, . . . , µ̄m) ∈ Rm satisfy KKT conditions for Problem (1). Then, for all ρ ∈ Rs

++ and
σ ∈ Rm

++ such that ρi ≥ |λ̄i|, for all i = 1, . . . , s, and σj ≥ µ̄j, for all j = 1, . . . ,m, the point p̄ is a

global ((ξ̃/τ + ξ̂/θ)κ)-solution to Problem (13), i.e., L(τ,θ)(p̄, ρ, σ) ≤ L(τ,θ)(p, ρ, σ)+((ξ̃/τ + ξ̂/θ)κ).

Proof. Let η(λ̄,µ̄) : M → R be defined by η(λ̄,µ̄)(p) := L(p, λ̄, µ̄). Since λ̄ ∈ Rs and µ̄ ∈ Rm
+ and

f : M → R and gj : M → R, for all j = 1, . . . ,m, are convex functions and hi : M → R, for all
i = 1, . . . , s, are both convex and concave functions, it follows from (4) that the function η(λ̄,µ̄) is also

convex and differentiable. Moreover, due to p̄, λ̄ and µ̄ satisfying KKT conditions for Problem (1),
we have grad f(p̄) +

∑s
i=1 λ̄i gradhi(p̄) +

∑m
j=1 µ̄j grad gj(p̄) = 0. Thus, grad η(λ̄,µ̄)(p̄) = 0, which

due to η(λ̄,µ̄) being convex implies that p̄ is a global minimizer to η(λ̄,µ̄). Therefore, we conclude
that

L(p̄, λ̄, µ̄) ≤ L(p, λ̄, µ̄), ∀p ∈ M. (14)

Since φτ and ψθ satisfy (8) and p̄ ∈ Ω, it follows from (9), by taking into account that µ̄ :=
(µ̄1, . . . , µ̄m) ∈ Rm

+and µ̄jgj(p̄) = 0, for all j ∈ {1, . . . ,m}, that

L(τ,θ)(p̄, ρ, σ) = f(p̄) +
s∑

i=1

ρiφτ (h(p̄)) +
m∑
j=1

σj (gj(p̄) + ψθ(gj(p̄))) ≤ f(p̄) = L(p̄, λ̄, µ̄).
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Hence, taking into account (14), we obtain that

L(τ,θ)(p̄, ρ, σ) ≤ L(p, λ̄, µ̄), ∀p ∈ M. (15)

On the other hand, for any ρ ∈ Rs
++ and σ ∈ Rm

++ such that ρi ≥ |λ̄i|, for all i = 1, . . . , s, and
σj ≥ µ̄j , for all j = 1, . . . ,m, we have λ̄ihi(p) ≤ ρi|hi(p)| and µ̄i(gj(p)+|gj(p)|) ≤ σi(gj(p)+|gj(p)|).
Hence, using (15) we conclude that

L(τ,θ)(p̄, ρ, σ) ≤ L(p, λ̄, µ̄) = f(p) +

s∑
i=1

λ̄ihi(p) +

m∑
j=1

µ̄jgj(p) ≤ E(p, ρ, σ), ∀p ∈ M.

Therefore, the first inequality in (12) implies the desired inequality, which concludes the proof.

In the next proposition, we demonstrate that E is indeed exact for the Problem (1). To this
end, for a given ρ ∈ Rs and σ ∈ Rm

++, define the following optimization problem

Minimize
p∈M

E(p, ρ, σ) (16)

Proposition 6. Assume that p̄ ∈ M is a local solution to Problem (16). If the point p̄ is feasible
for Problem (1), i.e., p̄ ∈ Ω, then the following two statements hold:

(i) p̄ is a local solution to Problem (1);

(ii) p̄ is a KKT point, i.e., there exist λ̄ ∈ Rs and µ̄ ∈ Rm
+ such that p̄, λ̄ and µ̄ satisfy KKT

conditions.

Proof. To prove item (i), assume that p̄ ∈ M is a local solution to Problem (16). Hence, there
exists r > 0 such that E(p̄, ρ, σ) ≤ E(p, ρ, σ), for all p ∈ Br(p̄). Since p̄ ∈ Ω and E(p, ρ, σ) = f(p),
for all p ∈ Ω, we conclude that f(p̄) ≤ f(p), for all p ∈ Br(p̄) ∩ Ω, which proves item (i). We
proceed to prove that item (ii) holds. For that, define ψρ,σ(p) := E(p, ρ, σ). Since p̄ ∈ M is a local
solution to Problem (16), we have 0 ≤ ψ′

ρ,σ(p̄, d), for all d ∈ TpM. Thus, taking into account that
p̄ ∈ Ω, we have

0 ≤ ⟨grad f(p̄), d⟩+
s∑

i=1

ρi|⟨gradhi(p̄), d⟩|+
∑

j∈A(p̄)

σj⟨grad gj(p̄), d⟩+
∑

j∈A(p̄)

σj |⟨grad gj(p̄), d⟩|,

for all d ∈ Tp̄M. Hence, considering that ρ ∈ Rs
++ and σ ∈ Rm

++, the last inequality implies that
there is no d ∈ Tp̄M satisfying

⟨grad f(p̄), d⟩ < 0, ⟨gradhi(p̄), d⟩ = 0, ∀i ∈ {i, . . . , s}, ⟨grad gj(p̄), d⟩ ≤ 0, ∀j ∈ A(p̄).

Therefore, by applying Lemma 1 in Tp̄M, we conclude that there exist λ̄i, for i = i, . . . , s, and
µ̄j ≥ 0, for all i ∈ A(p̄), such that

grad f(p̄) +
s∑

i=1

λ̄i gradhi(p̄) +
∑

j∈A(p̄)

µ̄j grad gj(p̄) = 0. (17)

Taking into account that p̄ ∈ Ω, defining µ̄j = 0, for all j ∈ {1, . . . ,m}\A(p̄), we have µ̄ ∈ Rm
+ and

µ̄jgj(p̄) = 0, for all j ∈ {1, . . . ,m}, which together with (17) imply that p̄, λ̄ and µ̄ satisfy KKT
conditions and item (ii) is also proved.
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In the following proposition, we present a counterpart to Proposition 6 for Problem (16).

Proposition 7. Assume that f : M → R and gj : M → R, for all j = 1, . . . ,m, are convex
functions and hi : M → R, for all i = 1, . . . , s, are both convex and concave functions. In addition,
assume that p̄ ∈ M, λ̄ = (λ̄1, . . . , λ̄s) ∈ Rn and µ̄ = (µ̄1, . . . , µ̄m) ∈ Rm

+ satisfy KKT conditions
for Problem (1). Then, for all ρ ∈ Rs

++ and σ ∈ Rm
++ such that ρi ≥ |λ̄i|, for all i = 1, . . . , s, and

σj ≥ µ̄j, for all j = 1, . . . ,m, the point p̄ is a global solution to Problem (16).

Proof. Let η(λ̄,µ̄) : M → R be defined by η(λ̄,µ̄)(p) := L(p, λ̄, µ̄). Since µ̄ ∈ Rm
+ and the functions

f and gj , for all i = 1, . . . ,m, are convex and differentiable and hi : M → R, for all i = 1, . . . , s,
are both convex and concave functions and also differentiable, it follows from (4) that the function
η(λ̄,µ̄) is also convex and differentiable. Moreover, due to p̄, λ̄ and µ̄ satisfying KKT conditions for
Problem (1), we have

grad f(p̄) +

s∑
j=1

λ̄i gradhi(p̄) +

m∑
j=1

µ̄j grad gj(p̄) = 0.

Thus, we conclude that grad η(λ̄,µ̄)(p̄) = 0, which implies that p̄ is a global minimizer to η(λ̄,µ̄).

Hence, we obtain that L(p̄, λ̄, µ̄) ≤ L(p, λ̄, µ̄), for all p ∈ M. Due to p̄, λ̄ and µ̄ satisfying KKT
conditions for Problem (1), we have hi(p) = 0, for all i ∈ {1, . . . , s} and µ̄jgj(p̄) = 0, for all
j ∈ {1, . . . ,m}. Therefore, we conclude that

E(p̄, λ̄, µ̄) = f(p̄) = f(p̄) +
s∑

i=1

λ̄ihi(p̄) +
m∑
j=1

µ̄jgj(p̄) = L(p̄, λ̄, µ̄) ≤ L(p, λ̄, µ̄),

for all p ∈ M. On the other hand, taking into account that ρi ≥ |λ̄i|, for all i = 1, . . . , s, and σj ≥ µ̄j ,
for all j = 1, . . . ,m, L(p, λ̄, µ̄) ≤ f(p) +

∑s
i=1 ρi|hi(p)|+

∑m
j=1 σj max{0, gj(p)} = E(p, ρ, σ), for all

p ∈ M. Therefore, combining two previous inequalities, we conclude that E(p̄, λ̄, µ̄) ≤ E(p, ρ, σ),
for all p ∈ M, and the proof is concluded.

Propositions 6 and 7 suggest that instead of solving Problem (1), we can alternatively solve
Problem (16) for sufficiently large ρi′s > 0 and σj′s > 0, as these multipliers penalize the constraints
hi′s and gj′s. In the Euclidean case, it is well-established that only finite penalty weights ρi′s >
0 and σj′s > 0 are needed to achieve exact satisfaction of constraints (see [7, Chapter 4]). A
similar property for the Riemannian case, under a second-order condition, is demonstrated in
[33]. Additionally, Problem (1) can alternatively be solved by addressing the smoothed version
of Problem (16), namely Problem (13). In this context, differentiable optimization methods can
be employed. The following section introduces a smooth penalization algorithm to address this
problem.

The following theorem provides a version of a classical result in exact penalty methods, specif-
ically applied to the smoothed ℓ1-exact penalty optimization problem in (13). It demonstrates
that, under appropriate conditions on the penalty and smoothing parameters, any cluster point of
a sequence of global solutions to the penalized problem is a global solution to the original problem.
The exact conditions for this convergence are detailed below.

Theorem 8. Assume that φτ and ψθ satisfy (8) and that −∞ < c̄ = inf{f(p) : p ∈ Ω}. Take
sequences

(
ρk
)
k∈N ⊂ Rs

++ and
(
σk

)
k∈N ⊂ Rm

++, such that limk→+∞ ρki = +∞, for all i = 1, . . . , s

and limk→+∞ σkj = +∞, for all j = 1, . . . ,m, and strictly increasing sequences (τk)k∈N ⊂ R++ and
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(θk)k∈N ⊂ R++ such that limk→+∞ τk = +∞ and limk→+∞ θk = +∞. Let pk be a global solution
of the penalty problem

Minimize
p∈M

L(τk,θk)(p, ρ
k, σk). (18)

If limk→+∞ σkj /θk = 0, for all j = 1, . . . ,m, then all cluster points of the sequence (pk)k∈N are
global solutions of Problem (1).

Proof. Let (pk)k∈N be the sequence of global minimizers of the penalized problem (18), i.e.,

pk ∈ arg min
p∈M

L(τk,θk)(p, ρ
k, σk).

Let p̄ be any cluster point of (pk)k∈N and (pkℓ)ℓ∈N be a subsequence such that limℓ→+∞ pkℓ = p̄.
Out task is to prove that p̄ ∈ Ω and that f(p̄) = c̄. We will first show that p̄ ∈ Ω. Since pk is global
solution of (18), we have

L(τk,θk)(p
k, ρk, σk) ≤ L(τk,θk)(p, ρ

k, σk), ∀p ∈ M. (19)

Let p ∈ Ω be any feasible point. For such p, due to φτ and ψθ satisfy (8), we obtain that φτk(hi(p)) =
0 and gj(p) + ψθk(gj(p)) ≤ 0. Thus, the penalty term is non-positive and does not increase the
objective value, which implies that L(τk,θk)(p, ρ

k, σk) ≤ f(p), for all p ∈ Ω. Hence, it follows from

(19) that L(τk,θk)(p
k, ρk, σk) ≤ f(p), for all p ∈ Ω. Taking the infimum over all feasible p ∈ Ω, we

conclude that
L(τk,θk)(p

k, ρk, σk) ≤ c̄. (20)

On the other hand, considering that ψθ satisfy (8) and ρk ∈ Rs
++ and σk ∈ Rm

++, we conclude that

f(pk) +
s∑

i=1

ρki φτk(hi(p
k)) +

m∑
j=1

σkj

(
gj(p

k) + |gj(pk)|
)
+ κ

m∑
j=1

σkj
θk

≤ c̄. (21)

Considering that ρki φτk(hi(p
k)) ≥ 0 and σkj

(
gj(p

k) + |gj(pk)|
)
≥ 0, (20) with (21) imply that

f(pk) + κ
m∑
j=1

σkj
θk

≤ f(pk) +

s∑
i=1

ρki φτk(hi(p
k)) +

m∑
j=1

σkj

(
gj(p

k) + |gj(pk)|
)
≤ c̄. (22)

Moreover, since limk→+∞ σki /θk = 0, for all i = 1, . . . ,m, and limℓ→+∞ pkℓ = p̄, it follows from (22)

that limℓ→+∞ ρkℓi φτkℓ
(hi(p

kℓ)) = 0 and limℓ→+∞ σkℓj (gj(p
kℓ) + |gj(pkℓ)|) = 0, for all i = 1, . . . , s

and for all j = 1, . . . ,m. Given that limk→+∞ ρki = +∞ and limk→+∞ σkj = +∞, we conclude

that limℓ→+∞ φτkℓ
(hi(p

kℓ)) = 0 and limℓ→+∞(gj(p
kℓ) + |gj(pkℓ)|) = 0, for all i = 1, . . . , s and for

all j = 1, . . . ,m. Therefore, due to hi being continuous and limℓ→+∞ pkℓ = p̄, by using item (i)
of Definition 6 we conclude that hi(p̄) = 0 for all i = 1, . . . , s. In addition, considering that gj is
continuous, we have gj(p̄) + |gj(p̄)| = 0, or equivalently, gj(p̄) ≤ 0, for all j = 1, . . . ,m. Therefore,
p̄ ∈ Ω. Thus, p̄ is a feasible point of Problem (1).

We proceed to prove the optimality of p̄. For that, we first note that (22) gives

f(pk) + κ
m∑
j=1

σkj
θk

≤ c̄.

Given that limk→+∞ σki /θk = 0 and limℓ→+∞ pkℓ = p̄ along with the continuity of f we obtain that
f(p̄) = limℓ→+∞ f(pkℓ) ≤ c̄. But since p̄ is feasible, we have f(p̄) ≥ c̄, because c̄ is the infimum of
f over all feasible points. Thus, f(p̄) = c̄. Therefore, p̄ is a global minimizer of f over the feasible
set Ω.
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4 Smooth ℓ1-exact penalty algorithm

This section introduces a smooth ℓ1-exact penalty algorithm designed to solve Problem (1). It
is based on an adaptation of the method in [33, Algorithm 2], modified to incorporate general
smoothing functions as defined in Definition 6. The algorithm adjusts both smoothing and penalty
parameters to handle nonlinear constraints effectively. By iteratively refining these parameters, it
penalizes constraint violations while updating the smoothing parameters. Under EMFCQ, if the
algorithm converges, the limit point must satisfy the KKT conditions for Problem (1). Additionally,
it is shown that, assuming feasibility of the limit point, the sequence converges to an AKKT point,
which is also a KKT point for Problem (1) under the weak constraint qualifications RCPLD or
CRSC. If the penalty parameters (ρk)k∈N and (σk)k∈N are bounded and the smoothing parameter
sequences (τk)k∈N and (θk)k∈N grow unbounded, any cluster point satisfies the KKT conditions.
The smooth ℓ1-exact penalty algorithm can be conceptually outlined as follows:

Algorithm 1 : Smooth ℓ1-exact penalty algorithm (Sℓ1-EPA)

Step 0. (Initialization) Take forcing parameters β̃, β̂ ∈ (0, 1) and constants ν̃, ν̂ > 1. Take ρ1 ∈ Rs
++ and σ1 ∈ Rm

++

initial penalty vectors estimate and an initial point p0 ∈M. Choose smoothing parameter sequences (τk)k∈N ⊂
R++ and (θk)k∈N ⊂ R++ and a sequence of tolerance parameters (ϵk)k∈N ⊂ R+ such that limk→+∞ ϵk = 0.
Set k ← 1.

Step 1. (Solve the subproblem) Compute (if possible) pk ∈M such that∥∥∥gradL(τk,θk)(p
k, ρk, σk)

∥∥∥ ≤ ϵk. (23)

If it is not possible, stop the execution of the algorithm, declaring failure;

Step 2. (Updating penalty parameters) For i = 1, . . . , s, if

|hi(p
k)| ≤ β̃|hi(p

k−1)|, (24)

then set ρk+1
i = ρki , otherwise, set ρ

k+1
i = ν̃ρki , and for j = 1, . . . ,m, if

gj(p
k)+ ≤ β̂gj(p

k−1)+, (25)

then set σk+1
j = σk

j , otherwise, set σ
k+1
j = ν̂σk

j ;

Step 3. (Begin a new iteration) Set k ← k + 1 and go to Step 1.

Before proceeding with the analysis of Algorithm 1, we first highlight its main aspects. One
fundamental aspect to address from the outset is the choice of the smoothing functions φτ and ψθ

used in the definition of the smoothed exact penalty Lagrangian function, as indicated in (9). It
is noteworthy that each choice of the functions φτ and ψθ leads to distinct algorithms. It is worth
noting that, due to φτ (t) > 0 and ψθ(t) > 0, for t ̸= 0, (see item (ii) of Definition 6), it follows
from (9) that ρi and σj serve as a penalty parameter when the constraints hi and gj are violated,
respectively. In Step 1, to compute pk satisfying (23), any unconstrained optimization algorithm
can be employed to approximately solve the following subproblem

Minimize
p∈M

L(τk,θk)(p, ρ
k, σk), (26)

which could involve first-order or second-order algorithms, accompanied by a stopping criterion
that satisfies (23). Various algorithms addressing this subproblem have been proposed, such as
those discussed in [1, 17, 22, 23, 25, 46]. In Step 2, we update the penalty multipliers ρki and σkj
based on the feasibility measure (24) and (25) for the violated constraints hi and gj , respectively.
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This selective updating approach contrasts with [33, Algorithm 2], which uniformly updates all
penalty multipliers by assuming uniformity across all constraints hi and gj . On the other hand,
the smoothing parameter sequences (τk)k∈N ⊂ R++ and (θk)k∈N ⊂ R++ are chosen exogenously.
However, if both sequences (τk)k∈N and (θk)k∈N are selected to be increasing, then the smooth ℓ1-
exact penalty function L(τ,θ) progressively converges toward the ℓ1-exact penalty function E with
each iteration. For further insights and discussions on penalty methods in the Euclidean setting,
refer to [7, 39]. It is important to note that the absence of a stopping criterion in Algorithm 1 permits
it to generate an infinite sequence. Therefore, practical implementation requires an appropriate
stopping criterion, which will be thoroughly addressed in the implementation section. Let (pk)k∈N
be a sequence generated by Algorithm 1, which we assume to be infinite and, (ρk)k∈N and (σk)k∈N
denote the associated penalty sequences.

In the following sections, the behavior of the sequence (pk)k∈N is analyzed. For simplicity, the
gradient of the smoothed ℓ1-exact penalty function, as defined in equation (10), is used to introduce
two sequences of associated Lagrange multipliers:

λki := ρki φ
′
τk

(
hi(p

k)
)
, µkj := σkj

(
1 + ψ′

θk

(
gj(p

k)
))
, ∀k ∈ N, (27)

for each i ∈ {1, . . . , s} and j ∈ {1, . . . ,m}. Hence, by combining (5), (10) and (27), we obtain

gradL(pk, λk, µk) = gradL(τk,θk)(p
k, ρk, σk), (28)

which establishes a fundamental equality essential for the analysis of the sequence (pk)k∈N.

4.1 Optimality guarantees of Sℓ1-EPA assuming convergence

In this section, we examine the optimality properties of the limit points of the sequence (pk)k∈N.
To this end, we assume the following condition throughout the section:

(A1) The smoothing parameter sequences (τk)k∈N ⊂ R++ and (θk)k∈N ⊂ R++ are chosen such that
limk→∞ τk = +∞ and limk→∞ θk = +∞.

It is important to note that for large enough k, condition (A1) guarantees that subproblem (26)
closely approximates the ℓ1-exact penalized problem (16). This condition helps control the penalty
parameters, preventing them from growing too large while ensuring that conditions (24) and (25) are
satisfied. Specifically, we show that if condition (A1) holds and (pk)k∈N converges, its limit satisfies
the KKT conditions for Problem (1). Moreover, under EMFCQ, the limit of (pk)k∈N satisfies the
optimality conditions for Problem (1). We begin by establishing the necessary properties of the
Lagrange multipliers.

Lemma 9. Assume that limk→+∞ pk = p̄ and (A1) holds. Then, the following statements are true:

(i) (ρk)k∈N ⊂ Rs
++ and (σk)k∈N ⊂ Rm

++.

(ii) If gj(p̄) < 0 for some j ∈ {1, . . . ,m}, then limk→+∞ µkj = 0.

(iii) If hi(p̄) ̸= 0 for some i ∈ {1, . . . , s}, then the sequence (λki )k∈N is unbounded.

(iv) If gj(p̄) > 0 for some j ∈ {1, . . . ,m}, then the sequence (µkj )k∈N is unbounded.

Consequently, if both sequences (λk)k∈N and (µk)k∈N are bounded, then p̄ ∈ Ω.
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Proof. Since ρ1 ∈ Rs
++ and σ1 ∈ Rm

++, it follows from Step 2 that either ρk+1
i = ρki > 0 or

ρk+1
i = ν̃ρki > 0, for all i ∈ {1, . . . , s} and k ∈ N. Similarly, either σk+1

j = σkj > 0 or σk+1
j = ν̂σkj > 0,

for all j ∈ {1, . . . ,m} and k ∈ N, establishing item (i).
For item (ii), assume that for a given j ∈ {1, . . . ,m}, it holds that gj(p̄) < 0. By the con-

tinuity of gj , there exist δ > 0 and k0 ∈ N such that gj(p
k) < −δ, implying gj(p

k)+ = 0 for

all k ≥ k0. Consequently, by Step 2, (25) holds and σk+1
j = σk0j for all k ≥ k0. Given that

limk→+∞ θk = +∞ and limk→+∞ gj(p
k) = gj(p̄) < 0, it follows from item (viii) of Definition 6 that

limk→+∞ ψ′
θk
(gj(p

k)) = −1. Consequently, the second equality in (27) implies limk→+∞ µkj = 0,
completing the proof of item (ii).

For item (iii), assume hi(p̄) ̸= 0 for some i ∈ {1, . . . , s}. Given the continuity of hi, there exist
δ > 0 and k0 ∈ N such that |hi(pk)| > δ for all k ≥ k0. Since β̃ ∈ (0, 1) and limk→+∞ pk = p̄, the
inequality in (24) cannot hold for infinitely many k ≥ k0. Therefore, ρk+1

i = ν̃ρki for all k ≥ k1
and some k1 > k0. Consequently, the sequence (ρk)k∈N is unbounded. Moreover, since hi(p̄) ̸= 0,
condition (viii) of Definition 6 implies that limk→+∞ |φ′

τk
(hi(p

k))| = 1. Thus, by the first equality

in (27) and the unboundedness of (ρk)k∈N, it follows that the sequence (λki )k∈N is also unbounded,
proving item (iii).

To prove item (iv), assume gj(p̄) > 0 for a given j ∈ {1, . . . ,m}. By the continuity of gj , there
exist δ > 0 and k0 ∈ N such that gj(p

k) > δ for all k ≥ k0. Consequently, gj(p
k)+ > δ for all

k ≥ k0. Given that β̂ ∈ (0, 1) and limk→+∞ pk = p̄, the inequality in (25) cannot hold for infinitely
many k ≥ k0. Thus, σk+1

j = ν̂σkj for all k ≥ k1 and some k1 > k0. Since ν̂ > 1, the sequence

(σk)k∈N is unbounded. Moreover, with gj(p̄) > 0 and condition (viii) of Definition 6, it follows that
limℓ→+∞ ψ′

θk
(gj(p

k)) = 1. Therefore, the second equality in (27) implies that the sequence (µki )k∈N
is unbounded, completing the proof of item (iv).

For the final statement, assume that (λk)k∈N and (µk)k∈N are bounded. Then, by items (iii)
and (iv), hi(p̄) = 0 for all i ∈ {1, . . . , s} and gj(p̄) ≤ 0 for all j ∈ {1, . . . ,m}, implying p̄ ∈ Ω. This
completes the proof.

In the following theorem we study convergence properties of (pk)k∈N under the EMFCQ. In this
case, we establish optimality without assuming that p̄ ∈ Ω.

Theorem 10. Assume that limk→+∞ pk = p̄ and condition (A1) holds. If p̄ satisfies EMFCQ, then
the sequences (λk)k∈N and (µk)k∈N are bounded, implying p̄ ∈ Ω. Moreover, any limit points λ̄ and
µ̄ of (λk)k∈N and (µk)k∈N, respectively, are Lagrange multipliers associated with p̄. Consequently,
p̄ is a KKT point.

Proof. First, note that item (i) of Lemma 9, combined with items (iv) and (v) of Definition 6
and the second equality in (27), implies that (µk)k∈N ⊂ Rm

+ . Given limk→+∞ ϵk = 0, Step 1 of
Algorithm 1 and (28) ensure that limk→∞ gradL(pk, λk, µk) = 0, i.e.,

lim
k→∞

(
grad f(pk) +

s∑
i=1

λki gradhi(p
k) +

m∑
j=1

µkj grad gj(p
k)
)
= 0. (29)

Item (ii) of Lemma 9 further implies that if gj(p̄) < 0, then limk→+∞ µkj = 0. Thus, we have

lim
k→∞

(
grad f(pk) +

s∑
i=1

λki gradhi(p
k) +

∑
j∈A+(p̄)

µkj grad gj(p
k)
)
= 0. (30)

Assume, by contradiction, that ((λk, µk))k∈N ⊂ Rs ×Rm
+ is unbounded. Without loss of generality,

suppose limk→+∞(λk, µk)/∥(λk, µk)∥1 = (λ̂, µ̂). By the continuity of grad f , gradhi, and grad gj ,

16



(30) implies
s∑

i=1

λ̂i gradhi(p̄) +
∑

j∈A+(p̄)

µ̂j grad gj(p̄) = 0.

Thus, given (λ̂, µ̂) ̸= 0, µ̂ ≥ 0, and p̄ satisfying EMFCQ, a contradiction arises. Therefore,
((λk, µk))k∈N is bounded, and, by Lemma 9, p̄ ∈ Ω, proving the first statement.

To prove the final statements, let λ̄ and µ̄ be limit points of (λk)k∈N and (µk)k∈N, respectively,
and consider subsequences (λkℓ)ℓ∈N and (µkℓ)ℓ∈N converging to λ̄ and µ̄. From (29), it follows that

grad f(p̄) +
s∑

i=1

λ̄i gradhi(p̄) +
m∑
j=1

µ̄j grad gj(p̄) = 0.

Moreover, if gj(p̄) < 0, item (ii) of Lemma 9 ensures µ̄j = 0. Since p̄ ∈ Ω, it holds that µ̄jgj(p̄) = 0
for all j ∈ {1, . . . ,m}. Therefore, λ̄ and µ̄ are Lagrange multipliers associated with p̄, concluding
the proof.

An important aspect of Theorem 10 is that it does not require the limit point p̄ of the sequence
(pk)k∈N to be feasible, nor does it assume boundedness of the Lagrange multipliers. Nevertheless,
the EMFCQ condition guarantees both the boundedness of the Lagrange multiplier sequence and
the feasibility of p̄. Furthermore, if the limit point p̄ of (pk)k∈N is feasible, it can be shown to satisfy
the AKKT conditions for Problem (1), as established in the following lemma.

Lemma 11. Assume that limk→+∞ pk = p̄ and that condition (A1) holds. If p̄ ∈ Ω, then p̄ is an
AKKT point for Problem (1).

Proof. Since limk→+∞ pk = p̄, item (i) of Definition 5 is satisfied. From (28), Step 1 of Algorithm 1,
and the fact that limk→+∞ ϵk = 0, it follows that limk→+∞∇L(pk, λk, µk) = 0. Thus, p̄ satisfies
item (ii) of Definition 5. Since p̄ ∈ Ω, item (ii) of Lemma 9 implies that for any j ∈ {1, . . . ,m} with
gj(p̄) < 0, we have limk→+∞ µkj = 0. Consequently, limk→+∞ µkj = 0 for all j /∈ A(p̄). Therefore, p̄
also satisfies item (iii) of Definition 5, completing the proof.

To proceed with the analysis of the sequence (pk)k∈N generated by Algorithm 1, let us recall an
important result, whose proof is detailed in [3, Theorems 3.4 and 3.5].

Theorem 12. Suppose that p̄ ∈ Ω satisfies RCPLD or CRSC. If p̄ is an AKKT point, then p̄ is a
KKT point.

A direct application of Lemma 11 and Theorem 12 yields the following theorem.

Theorem 13. Assume that limk→+∞ pk = p̄ and that condition (A1) holds. Suppose p̄ ∈ Ω satisfies
either RCPLD or CRSC. Then, p̄ is a KKT point.

In Lemma 11 and Theorem 13, it is assumed that the limit point p̄ of the sequence (pk)k∈N
satisfies p̄ ∈ Ω. Under this assumption, p̄ is an AKKT point of Problem (1). If the RCPLD or
CRSC conditions are satisfied, then p̄ is also a KKT point for Problem (1). Next, consider the case
where p̄ /∈ Ω. In this scenario, it is assumed that the sequences (τk)k∈N ⊂ R++ and (θk)k∈N ⊂ R++

are chosen such that

lim
k→∞

τk = τ̄ ∈ (0,+∞), lim
k→∞

θk = θ̄ ∈ (0,+∞). (31)
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Theorem 14. Assume that limk→+∞ pk = p̄ and p̄ /∈ Ω. Then, there exists a bounded sequence
((ρ̄k, σ̄k))k∈N ⊂ Rs

+ × Rm
+ such that

lim
k→+∞

grad
( s∑

i=1

ρ̄ki φτk(hi(p
k)) +

m∑
j=1

σ̄kj
(
gj(p

k) + ψθk(gj(p
k))

))
= 0. (32)

As a consequence, if (31) holds, then there exists (ρ̄, σ̄) ∈ Rs
+ ×Rm

+ , with (ρ̄, σ̄) ̸= 0, such that p̄ is
a stationary point of the following optimization problem:

Minimize
p∈M

s∑
i=1

ρ̄iφτ̄ (hi(p)) +
m∑
j=1

σ̄j (gj(p) + ψθ̄(gj(p))) . (33)

Proof. Since p̄ /∈ Ω, there exists at least one index i or j such that hi(p̄) ̸= 0 or gj(p̄) > 0. By items
(iii) and (iv) of Lemma 9, the sequence ((λk, µk))k∈N ⊂ Rs

++×Rm
++ is unbounded. Considering that

φτk and ψθk are continuously differentiable, and using (27), Definition 6 and limk→+∞ pk = p̄ /∈ Ω,
it follows that ((ρk, σk))k∈N is also unbounded. With limk→+∞ ϵk = 0, Step 1 of Algorithm 1 implies

lim
k→∞

1

∥(ρk, σk)∥1
gradL(τk,θk)(p

k, ρk, σk) = 0. (34)

Set (ρ̄k, σ̄k) := (ρk, σk)/∥(ρk, σk)∥1. Therefore, using taking into account that grad f is continuous
and limk→+∞ pk = p̄, the equality (32) follows from (34), which prove the fist statement.

As ((ρ̄k, σ̄k))k∈N is bounded, we can assume that limk→+∞((ρk, σk)/∥(ρk, σk)∥1) = (ρ̄, σ̄), with
(ρ̄, σ̄) ̸= 0, it follows from (32) and the continuity of gradhi, and grad gj that

s∑
i=1

ρ̄iφ
′
τ̄ (hi(p̄)) gradhi(p̄) +

m∑
j=1

σ̄j
(
1 + ψ′

θ̄(gj(p̄))
)
grad gj(p̄) = 0,

proving that p̄ is a critical point of problem (33), thus completing the proof.

Exact penalty methods have their foundation on strong theoretical principles and can effectively
solve a wide range of constrained optimization problems by exploring feasible regions. However,
their practical application is often limited by numerical instability, especially in high-dimensional
settings. This instability typically arises from the need to increase penalty parameters substantially
(see [39, Chapter 17], [7]). Nonetheless, for suitably chosen penalty parameters ρ and σ, the
solutions to the non-differentiable ℓ1-exact penalized problem also solve the original problem (see,
for example, [7, Chapter 4]). Since problem (26) serves as a smooth approximation of the ℓ1-exact
penalized problem (16), it is expected that increasing penalty parameters will induce less instability
in this context. The next section analyzes the convergence properties of Algorithm 1, assuming
that the sequences of penalty parameters (ρk)k∈N and (σk)k∈N remain bounded.

4.2 Convergence analysis of Sℓ1-EPA

In this section we analyze the convergence properties of Sℓ1-EPA, demonstrating its effectiveness in
finding optimal solutions when the penalty parameter sequences (ρk)k∈N and (σk)k∈N are bounded.
Assuming that these parameters remain bounded and the smoothing parameter sequences (ρk)k∈N
and (θk)k∈N grows unbounded, it is shown that the cluster points of the sequence (pk)k∈N generated
by Sℓ1-EPA satisfy the KKT conditions for Problem (1). The formal assumption necessary for this
section, which is applied only when explicitly stated, is as follows:
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(A2) The penalty sequences (ρk)k∈N and (σk)k∈N are bounded.

Before proceeding with the analysis, some remarks on assumptions (A1) and (A2) are necessary,
as they are crucial in the context of the ℓ1-exact penalized problem (16) and must be considered
together. Traditional penalty methods often rely on unboundedly increasing penalty parameters
to ensure feasibility (see Theorem 8). However, this requirement can impose unrealistic or com-
putationally prohibitive conditions. Bounded penalty parameters, on the other hand, may prevent
strict feasibility in the classical sense, which motivates assumption (A1) to ensure that subproblem
(26) sufficiently approximates the ℓ1-exact penalized problem (16). As discussed in Section 3.1, the
parameters ρi and σj need not diverge for the solutions of the non-differentiable ℓ1-exact penalized
problem (16) to also be solutions of the original problem (1) (see, for example, [7, Chapter 4]).
Thus, it is both practical and theoretically meaningful to explore the balance between the growth
of penalty parameters and the smoothing parameter. By examining their interaction, we can as-
sess their impact on the accuracy and quality of feasible solutions. In the following analysis, the
essential properties of the penalty parameters are established to ensure the existence of Lagrange
multipliers, even when these parameters remain bounded.

Lemma 15. Assume that p̄ is a cluster point of the sequence (pk)k∈N, and let (pkℓ)ℓ∈N be a subse-
quence such that limℓ→+∞ pkℓ = p̄. Then, the following conditions hold:

(i) The sequences (ρk)k∈N ⊂ Rs
++ and (σk)k∈N ⊂ Rm

++.

(ii) If (ρki )k∈N is bounded for some i ∈ {1, . . . , s}, then hi(p̄) = 0. Additionally, the sequence
(λki )k∈N is bounded.

(iii) If the sequence (σkj )k∈N is bounded for some j ∈ {1, . . . ,m}, then gj(p̄) ≤ 0. Moreover, the se-

quence (µkj )k∈N is bounded. If the smoothing parameter sequence (θk)k∈N satisfies assumption

(A1) and gj(p̄) < 0, then limℓ→+∞ µkℓj = 0.

Consequently, if the sequences (ρk)k∈N and (σk)k∈N satisfy assumption (A2), and the smoothing
parameter sequence (θk)k∈N satisfies (A1), then p̄ ∈ Ω.

Proof. The proof of item (i) follows directly from that of item (i) in Lemma 9. We now proceed
to prove item (ii). Since ν̃ > 1 and (ρki )k∈N is bounded, it follows from Step 2 that the equality
ρk+1
i = ν̃ρki cannot hold for infinitely many k ∈ N. Therefore, there exists k0 ∈ N such that

inequality (24) holds for all k > k0. In particular, (24) implies that limk→+∞ |hi(pk)| = 0. Given
that limℓ→+∞ pkℓ = p̄ and the continuity of h, it follows that hi(p̄) = 0 for all i ∈ {1, . . . , s}. This
completes the proof of the first statement. The second statement follows from the first equality in
(27), along with the boundedness of (ρki )k∈N and items (iv) and (v) of Definition 6.

To prove item (iii), observe that, due to ν̂ > 1 and the boundedness of (σkj )k∈N, it follows from

Step 2 that the equality σk+1
j = ν̂σkj cannot hold for infinitely many k ∈ N. Thus, there exists

k0 ∈ N such that (25) holds for all k > k0. In particular, (25) implies that limk→+∞ gj(p
k)+ = 0.

Since limℓ→+∞ pkℓ = p̄, it follows that gj(p̄)+ = 0, proving the first statement in item (iii).
The boundedness of (µkj )k∈N follows from the boundedness of (σkj )k∈N and items (iv) and (v)
of Definition 6. Assuming gj(p̄) < 0, it follows from item (viii) of Definition 6 and assumption
(A1) that

lim
ℓ→+∞

ψ′
θkℓ

(gj(p
kℓ)) = −1.

Using the second equality in (27) and the boundedness of (σkj )k∈N, we conclude that limℓ→+∞ µkℓj =
0, completing the proof of the last statement in item (iii).
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Finally, to prove the last statement of the lemma, assume that (ρk)k∈N and (σk)k∈N satisfy
assumption (A2). It follows from items (ii) and (iii) that hi(p̄) = 0 for all i ∈ {1, . . . , s} and
gj(p̄) ≤ 0 for all j ∈ {1, . . . ,m}. Hence, p̄ ∈ Ω, completing the proof.

An essential aspect of Lemma 15 is that the cluster point p̄ of the sequence (pk)k∈N generated by
Algorithm 1 is not initially assumed to be feasible. Nevertheless, under assumptions (A2) and (A1),
it is guaranteed that the sequences of Lagrange multipliers (λk)k∈N and (µk)k∈N remain bounded,
and that the cluster point p̄ becomes feasible. With these conditions satisfied, it is possible to
demonstrate that the feasible points satisfy the AKKT conditions for Problem (1). This is formally
established in the subsequent lemma.

Lemma 16. Suppose that assumptions (A1) and (A2) hold. Let p̄ be a cluster point of the sequence
(pk)k∈N. Then, p̄ is an AKKT point for Problem (1).

Proof. Let (pkℓ)ℓ∈N be a subsequence of (pk)k∈N such that limℓ→+∞ pkℓ = p̄. By assumptions (A1)
and (A2), and using Lemma 15, it follows that p̄ ∈ Ω, thus satisfying item (i) of Definition 5.
Furthermore, by combining the equalities in (27) with (5) and (10), we obtain

gradL(pkℓ , λkℓ , µkℓ) = gradL(τkℓ ,θkℓ )
(pkℓ , ρkℓ , σkℓ),

for all ℓ ∈ N. Given that limℓ→+∞ ϵkℓ = 0, Step 1 of Algorithm 1 implies

lim
ℓ→+∞

gradL(pkℓ , λkℓ , µkℓ) = 0,

satisfying item (ii) of Definition 5. According to item (iii) of Lemma 15, for any j ∈ {1, . . . ,m}
with gj(p̄) < 0, we have limℓ→+∞ µkℓj = 0. Consequently, limℓ→+∞ µkℓj = 0 for all j /∈ A(p̄),
satisfying item (iii) of Definition 5. This completes the proof.

A direct application of Lemma 15, Lemma 16 and Theorem 12 yields the following theorem.

Theorem 17. Suppose that assumptions (A1) and (A2) hold. Let p̄ be a cluster point of the
sequence (pk)k∈N. If p̄ satisfies either RCPLD or CRSC, then for any subsequence (pkℓ)ℓ∈N of
(pk)k∈N converging to p̄, i.e., limℓ→+∞ pkℓ = p̄, the associated sequences (λkℓ)ℓ∈N and (µkℓ)ℓ∈N are
bounded. Moreover, any cluster points λ̄ of (λkℓ)ℓ∈N and µ̄ of (µkℓ)ℓ∈N are Lagrange multipliers
associated with p̄. Consequently, p̄ is a KKT point.

In Lemma 15, conditions (A2) and (A1) are assumed to ensure that p̄ ∈ Ω. However, when
p̄ /∈ Ω, both conditions (A2) and (A1) cannot hold simultaneously, leading to unbounded sequences
of Lagrange multipliers, (λk)k∈N and (µk)k∈N, as implied by Lemma 15. Additionally, let the
sequences (τk)k∈N ⊂ R++ and (θk)k∈N ⊂ R++ be chosen to satisfy (31). In this case, a result
analogous to Theorem 14 is obtained, following a similar proof structure, which is therefore omitted.

Theorem 18. Let p̄ be a cluster point of the sequence (pk)k∈N such that p̄ /∈ Ω and (pkℓ)ℓ∈N a
subsequence of (pk)k∈N converging to p̄. Then, there exists a bounded sequence ((ρ̄kℓ , σ̄kℓ))ℓ∈N ⊂
Rs
+ × Rm

+ such that

lim
ℓ→+∞

grad
( s∑

i=1

ρ̄kℓi φτkℓ
(hi(p

kℓ)) +

m∑
j=1

σ̄kℓj
(
gj(p

kℓ) + ψθkℓ
(gj(p

kℓ))
))

= 0.

Consequently, if (31) holds, then there exists (ρ̄, σ̄) ∈ Rs
+ × Rm

+ with (ρ̄, σ̄) ̸= 0 such that p̄ is a
stationary point of the following optimization problem

Minimize
p∈M

s∑
i=1

ρ̄iφτ̄ (hi(p)) +

m∑
j=1

σ̄j (gj(p) + ψθ̄(gj(p))) .
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As discussed earlier, increasing the penalty parameter enforces feasibility but can lead to nu-
merical instability. In contrast, increasing the smoothing parameter provides better approximations
of the ℓ1-exact penalized problem (16), potentially reducing the need for a high penalty param-
eter. However, when the smoothing parameter becomes too large, problem (16) approaches a
non-differentiable form, making it more challenging to solve. The next section presents numer-
ical experiments that illustrate the performance of Algorithm 1 across different problem classes,
providing insights into the behavior of the method under various parameter settings.

5 Numerical experiments

In this section, we report numerical experiments to illustrate the performance of Algorithm 1. We
implemented Algorithm 1 in Matlab (R2024b, version 24.2.0.2712019). The code is available for
download at https://github.com/lfprudente/Sl1EPA.git. In the numerical experiments, we
considered three families of problems. The first family corresponds to the non-negative principal
component analysis problem, already considered in [33]. The second family of problems corresponds
to the problem of packing circles in an ellipse, introduced in [8] and also considered in [17]. The
last family of problems corresponds to the four classification problems introduced in [12]. All tests
were conducted on a computer with a 3.7 GHz Intel Core i5 6-Core processor and 8GB 2667MHz
DDR4 RAM, running macOS Sequoia 15.0.

In the implementation, following basic ideas of augmented Lagrangian methods in Euclidean
spaces (see [11, p.116]), given tolerances εfeas, εcompl, εopt > 0, we defined as stopping criterion

max

{
max

i=1,...,s

{
|hi(pk)|

}
, max
j=1,...,m

{
max{0, gj(pk)}

}}
≤ εfeas, (35)

max
j=1,...,m

{∣∣∣min{−gj(pk), µkj }
∣∣∣} ≤ εcompl, (36)∥∥∥gradL(τk,θk)(p

k, ρk, σk)
∥∥∥
∞

≤ εopt. (37)

It is worth recalling that, due to (5), (10), and (27), gradL(τk,θk)(p
k, ρk, σk) = gradL(pk, λk, µk).

Therefore, the stopping criterion does not depend on the smoothing function, the penalty parame-
ter, or the smoothing parameter, but only on the primal iterate pk and the estimates λki and µkj of
the Lagrange multipliers. As tolerance for the subproblem of iteration k, we considered ϵ1 =

√
εopt

and ϵk = max{ϵk−1/10, εopt} for k ≥ 1. For the initial value of the penalty parameters (see [11,
p.153]), we considered

ρ1i = max

{
10−8,min

{
10

max
{
1, |f(p0)|

}
max{1, φτ1(hi(p

0))}
, 108

}}
for 1, . . . , s

and

σ1j = max

{
10−8,min

{
10

max
{
1, |f(p0)|

}
max{1, [gj(p0) + ψθ1(gj(p

0))]/2}
, 108

}}
for j = 1, . . . ,m,

as well as β̃ = β̂ = 1
2 and ν̃ = ν̂ = 10 for their update. For the smoothing parameters, we considered

τk = θk = 10k−1. For the computation of pk ∈ M, an approximate solution to (26), we employed
the RLBFGS routine, which implements a Riemannian limited-memory BFGS algorithm for un-
constrained optimization [24], available in the Manopt toolbox (version 7.1). In the implementation
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of the smoothing functions ϕ2,τ and ϕ6,τ , to avoid a possible overflow caused by the calculation of
ex with x > 0, we used

ln
(
eτt + e−τt

)
= τ |t|+ ln(1 + e−2τ |t|)

for all t ∈ R.
In the numerical experiments, we also considered a variant of Algorithm 1 in which a single

penalty parameter is used for all of the constraints. In this variant, we considered ρ1i = ζ for all i
and σ1j = ζ for all j with

ζ = max

10−8,min

10
max

{
1, |f(p0)|

}
max

{
1,
∑s

i=1 φτ1(hi(p
0)) +

∑m
j=1[gj(p

0) + ψθ1(gj(p0))]/2
} , 108


 .

Moreover, Step 2 of Algorithm 1 was replaced by

Step 2’. (Updating penalty parameters) If

max{∥h(pk)∥∞, ∥g(pk)+∥∞} ≤ β̃max{∥h(pk−1)∥∞, ∥g(pk−1)+∥∞},

then set ρk+1
i = ρki for all i and σk+1

j = σkj for all j. Otherwise, set ρk+1
i = ν̃ρki for all i and

σk+1
j = ν̃σkj for all j.

The convergence theory of this variant, which was not taken into account in the previous sections,
is analogous to that of the analyzed algorithm.

In all numerical experiments, we considered the same smooth approximation of the absolute
value function to handle both equality and inequality constraints. Since we have six different
options ϕ1,τ , . . . , ϕ6,τ , and for each option we can consider a penalty parameter for each constraint
or a single penalty parameter for all constraints, we considered a total of twelve variations of
Algorithm 1. We have arbitrarily set r = 2 for the functions ϕ1,τ and ϕ5,τ .

5.1 Non-negative principal component analysis problem

The problem of non-negative principal component analysis (non-negative PCA) arises in the context
of the spiked model [38], in which the data matrix A ∈ Rn×n is constructed as

A =
√
β v0v

T
0 +B,

where v0 ∈ Rn
+ is the principal signal vector with ∥v0∥ = 1, β > 0 is the signal-to-noise ratio, and

B ∈ Rn×n is a symmetric noise matrix. The goal is to recover the signal v0 by solving

Minimize
v∈Rn

−vTAv subject to ∥v∥ = 1 and v ≥ 0.

The constraint ∥v∥ = 1 ensures that v lies on the unit sphere Sn−1. Therefore, the problem can be
rewritten in the format of (1) as

Minimize
v∈Sn−1

−vTAv subject to v ≥ 0.

To generate synthetic instances of the problem, we followed the methodology outlined in [33].
The matrix A was constructed varying the problem parameters:

• the dimension n ∈ {10, 50, 200, 500, 1000, 2000},
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• the signal-to-noise ratio β ∈ {0.05, 0.1, 0.25, 0.5, 1.0, 2.0}, and

• the sparsity level δ ∈ {0.1, 0.3, 0.7, 0.9}, which determines the proportion of nonzero entries
in v0.

We therefore generated 6×6×4 = 144 different instances. For each combination of n, β, and δ, we
randomly generated the support S ⊂ {1, . . . , n} of cardinality |S| = ⌊δn⌋, and defined the entries
of v0 as

[v0]i =


1√
|S|
, if i ∈ S,

0, otherwise.

The noise matrix B was constructed independently for each problem instance, where its off-diagonal
entries follow a Gaussian distribution N (0, 1/n), and its diagonal entries follow a Gaussian distri-
bution N (0, 2/n).

In the experiments with the non-negative PCA, we considered εfeas = εopt = εcompl = 10−4.
Lower values lead to failures of the method used to solve the subproblems. Detailed tables with
the results of applying the twelve variations of Algorithm 1 on the 144 instances can be found in
https://github.com/lfprudente/Sl1EPA.git. Next we present an analysis using performance
profiles. The first observation is that, with the exception of a single variation on a single instance,
all twelve variations found in all 144 instances a point that satisfies the nonnegativity constraints
exactly, i.e., they stopped at a vk ≥ 0. (In the one exception, the variant stopped at a vk that
satisfied the constraints with the required precision εfeas). For a given instance, let f1, . . . , f12 be
the function values of the final iterate vk of each of the twelve variations of Algorithm 1. Let
fmin = min{i=1,...,12} {fi}. We say that the variant i found a solution equivalent to the best one if

fi ≤ fmin + ftolmax{1, |fmin|},

where ftol > 0 is a pre-specified precision. Table 1 shows the number of instances in which each
variant of Algorithm 1 found a best-equivalent solution, as a function of ftol ∈ {0.1, 10−2, . . . , 10−5}.
In column SC, the table also shows the number of instances in which each variant managed to find
a point that satisfies the stopping criterion (35,36,37). In the remaining instances, the variants
stopped because the subproblem solver failed to find a point that satisfies the stopping criterion (23)
in two consecutive iterations. Figures in the table show that at low accuracies, the solutions found
by the different variants are all considered equivalent, but at higher accuracies, some variants
stand out, or in other words, some variants failed to find solutions equivalent to the best solution.
For the variants using ϕ3,τ and ϕ4,τ with multiple penalty parameters and the variant using ϕ4,τ
with a single penalty parameter, it seems clear that the failure for high accuracies is related to
the difficulty in solving the subproblems. It is also worth noting that for the variants using ϕ4,τ ,
ϕ5,τ and ϕ6,τ , which approximate the modulus from below, it is practically the same whether a
single penalty parameter or a different penalty parameter is used for each constraint. For the three
other variants, which approximate the modulus from above, it is always better to consider a single
penalty parameter. Therefore, there seems to be no practical advantage in using multiple penalty
parameters. A similar result was observed in [2] in the context of augmented Lagrangian methods.

In relation to the quality of the obtained solution, considering ftol = 10−5, the variants using ϕ1,τ
and ϕ5,τ stand out. It is worth noting that the variant using ϕ1,τ with a single penalty parameter
corresponds, basically, to the Qlqr-algorithm considered in [33]. If, on the other hand, we consider
that ftol = 0.1 is sufficient to consider the values of the objective function equivalent, then all
methods find equivalent solutions. In that case, it is worth asking which one is more efficient.
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Variant ftol
Penalty Index i

SC 0.1 10−2 10−3 10−4 10−5

parameter of ϕi,τ

si
n
gl
e

1 127 144 144 143 136 124
2 130 144 143 141 134 107
3 120 144 144 143 104 46
4 80 144 141 125 59 23
5 110 144 143 141 132 115
6 104 144 144 143 120 75

m
u
lt
ip
le

1 110 144 143 141 132 115
2 104 144 144 143 120 75
3 72 144 144 123 76 36
4 77 144 141 124 58 22
5 110 144 143 141 132 115
6 104 144 144 143 120 75

Table 1: Comparison of the function values found by the different variants of Algorithm 1, as a function of
the ftol tolerance used to determine whether a function value is equivalent to the best or not.

Figure 2 shows the performance profiles of the twelve variants. In the figure, for i = 1, . . . , 12,

Γi(κ) =

∣∣{j ∈ {1, . . . , q} | tij ≤ κmin{ℓ=1,...,12}{tℓj}}
∣∣

q
for κ ≥ 1,

where q = 144 is the number of instances considered, tij is the CPU time of the variant i applied
to instance j, and i from 1 to 6 corresponds to the variants that use ϕτ,i and a single penalty
parameter (solid lines in the graphic), and i from 7 to 12 corresponds to the variants that use
ϕτ,7−i and multiple penalty parameters (dashed lines in the graphic). The figure emphasizes that
in cases where the absolute value is approximated from below, it makes little difference whether
a single or multiple penalty parameters are considered. But for the variants that approximate it
from above, using a single penalty parameter is consistently more efficient. In terms of efficiency,
the variants using ϕ2,τ and ϕ3,τ with a single penalty parameter stand out. What the experiments
show is that having a theory that encompasses a variety of smoothing functions allows different
alternatives to be tested when addressing a particular problem.

5.2 Packing circles within ellipses

The circle packing problem considered in this section seeks to maximize the radius r of N identical
circles that can be arranged without overlapping within a fixed-size two-dimensional container [35].
This problem has diverse applications, as highlighted in [8, 35]. If we consider the container to be
an ellipse with semi-axes a ≥ b > 0, then, employing continuous variables (r;u, v, s) ∈ R × (Rn)3,
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Figure 2: Performance profiles comparing the CPU time spent by the twelve variants of Algorithm 1 in
the 144 instances of the non-negative PCA in which, with ftol = 0.1, it was considered that all variants
found equivalent solutions.

the problem can be formulated [8] as follows

Maximize
(r;u,v,s)∈R×(Rn)3

r

subject to u2i + v2i = 1, i = 1, . . . , N

xi = a[1 + (si − 1)(b2/a2)]ui, i = 1, . . . , N

yi = bsivi, i = 1, . . . , N

b2(si − 1)2[(b2/a2)u2i + v2i ] ≥ r2, i = 1, . . . , N

0 ≤ si ≤ 1, i = 1, . . . , N

(xi − xj)
2 + (yi − yj)

2 ≥ (2r)2, i = 1, . . . , N, j = i+ 1, . . . , N

r ≥ 0.
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The constraint u2i + v2i = 1 ensures that (ui, vi) lies on the unit circle S1 ⊂ R2. Therefore, the
problem can be rewritten in the format of (1) as

Minimize
(r;u,v;s)∈R×(S1)N×Rn

−r

subject to xi = a[1 + (si − 1)(b2/a2)]ui, i = 1, . . . , N

yi = bsivi, i = 1, . . . , N

b2(si − 1)2[(b2/a2)u2i + v2i ] ≥ r2, i = 1, . . . , N

0 ≤ si ≤ 1, i = 1, . . . , N

(xi − xj)
2 + (yi − yj)

2 ≥ (2r)2, i = 1, . . . , N, j = i+ 1, . . . , N

r ≥ 0.

In both models, xi and yi correspond to the Cartesian coordinates (xi, yi) of the center of the
ith circle. In fact, they do not represent model variables and were included only to simplify the
presentation. In practice, the expression on the right in the equations defining xi and yi is used to
substitute xi and yi in the second to last inequality, which represents the non-overlap between the
circles.

In the experiments with the packing problem, we also considered εfeas = εopt = εcompl = 10−4.
We solved instances with N ∈ {5, 6, . . . , 10} ∪ {20, 30, . . . , 100} and an ellipse with semi-axes a = 2
and b = 1 using the six variants of Algorithm 1 with a single penalty parameter. Tables 2 and 3
show the results. Figure 3 illustrates some of the solutions found. In the tables, r is the radius
found (i.e., minus the minimized objective function), ∥c∥, ∥s∥, and ∥ gradL∥ are the left-hand
sides of (35), (36), and (37), respectively. Column SC stands for “stopping criterion”. In this
column, 0 means that (35,36,37) holds, while 4 means that Algorithm 1 stopped because the
subproblem solver did not find a point satisfying the stopping criterion (23) in two consecutive
iterations. Column k corresponds to the number of “outer” iterations performed by Algorithm 1,
while

∑k
i=1 ki corresponds to the sum of the “inner” iterations, i.e., the sum of the iterations

required by the inner solver to tackle all subproblems. The last three columns labeled with #fcnt,
#gcnt, and Time correspond to different measures of the computational cost, namely, the total
number of evaluations of the objective function, the total number of evaluations of its gradient,
and the elapsed CPU time in seconds. In the tables, the best solutions are emphasized in bold.

The first observation is that the problem considered in this section is a non-convex problem with
many local non-global minimizers. For this reason, the different variants generally find different
solutions. If we consider as equivalent the values of r that are equal to 4 significant digits in the
tables, then the variants from 1 to 6 find 5, 9, 3, 1, 7, and 4 best solutions, respectively. In terms
of robustness, using this criterion, variant 2 would be the best, followed by variant 5. Variant 1 is
the only one where the inner solver never failed to solve a subproblem. For variants 1 to 6, out of a
total of 15 instances, the number of failures is 0, 2, 5, 7, 2, and 4. It is important to note that the
failures of the inner solver are concentrated on the larger problems, as there are no failures recorded
in Table 2. Another observation from the tables is that variants 1, 2, and 3, which approximate
the absolute value from above, have fewer failures in solving the subproblems than their respective
companions 5, 6, and 4, which approximate the absolute value from below. In summary, variant
2 stands out for having found the largest number of best solutions, and variant 1 stands out for
apparently having subproblems that are easier to solve. The latter would be an advantage in a
multistart strategy that tries to find good quality local solutions, i.e. better approximations of
global minimizers.
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N ϕi,τ r ∥c∥ ∥s∥ ∥ gradL∥ SC k
∑k

i=1 ki #fcnt #gcnt Time

5

1 5.236e-01 0e+00 4e-05 9e-05 0 12 254 372 266 4.1
2 5.236e-01 0e+00 2e-05 7e-06 0 6 181 259 187 3.3
3 5.235e-01 0e+00 5e-05 6e-05 0 5 185 357 190 3.8
4 4.829e-01 0e+00 1e-04 9e-05 0 5 255 491 260 6.5
5 5.236e-01 0e+00 3e-05 5e-05 0 12 260 376 272 3.8
6 5.235e-01 0e+00 3e-05 8e-05 0 6 213 341 219 4.1

6

1 4.917e-01 0e+00 5e-05 4e-05 0 10 223 307 233 3.4
2 4.326e-01 0e+00 3e-05 8e-05 0 6 217 360 223 4.7
3 4.917e-01 0e+00 5e-05 6e-05 0 5 196 308 201 4.2
4 4.400e-01 0e+00 1e-04 8e-05 0 5 385 626 390 9.9
5 4.917e-01 0e+00 7e-05 1e-04 0 11 265 362 276 4.2
6 4.326e-01 0e+00 4e-05 9e-05 0 6 226 356 232 6.2

7

1 4.326e-01 0e+00 8e-05 8e-05 0 11 326 441 337 8.7
2 4.505e-01 0e+00 5e-05 6e-05 0 6 433 609 439 13.3
3 4.505e-01 0e+00 5e-05 7e-05 0 5 665 1030 670 22.1
4 4.325e-01 0e+00 1e-04 3e-05 0 5 393 666 398 12.0
5 4.326e-01 0e+00 3e-05 8e-05 0 13 408 548 421 9.0
6 4.505e-01 0e+00 6e-05 7e-05 0 6 512 768 518 15.8

8

1 4.285e-01 0e+00 8e-05 9e-05 0 11 372 474 383 9.2
2 4.285e-01 0e+00 3e-05 6e-05 0 6 316 444 322 9.3
3 4.285e-01 0e+00 5e-05 4e-05 0 5 326 476 331 10.0
4 4.293e-01 0e+00 1e-04 8e-05 0 5 959 1721 964 34.4
5 4.285e-01 0e+00 4e-05 3e-05 0 13 575 729 588 15.6
6 4.285e-01 0e+00 4e-05 1e-04 0 6 369 519 375 11.2

9

1 3.949e-01 0e+00 7e-05 8e-05 0 12 606 770 618 18.7
2 3.949e-01 0e+00 3e-05 9e-05 0 6 362 555 368 11.7
3 3.903e-01 0e+00 5e-05 5e-05 0 5 358 492 363 11.9
4 3.948e-01 0e+00 1e-04 8e-05 0 5 1506 2538 1511 58.7
5 3.949e-01 0e+00 4e-05 8e-05 0 14 647 833 661 18.9
6 3.949e-01 0e+00 4e-05 9e-05 0 6 429 644 435 14.3

10

1 3.793e-01 0e+00 3e-05 8e-05 0 12 627 781 639 20.4
2 3.793e-01 0e+00 3e-06 5e-05 0 7 816 1313 821 32.1
3 3.793e-01 0e+00 5e-05 4e-05 0 5 924 1427 929 36.9
4 3.792e-01 0e+00 1e-04 4e-05 0 5 2721 4935 2726 116.4
5 3.793e-01 0e+00 6e-05 7e-05 0 13 692 858 705 22.3
6 3.793e-01 0e+00 5e-05 5e-05 0 6 673 996 679 27.4

20

1 2.745e-01 0e+00 6e-05 8e-05 0 12 1144 1344 1156 69.4
2 2.751e-01 0e+00 3e-05 9e-05 0 6 725 848 731 45.0
3 2.750e-01 0e+00 5e-05 9e-05 0 5 993 1322 998 64.0
4 2.704e-01 0e+00 1e-04 8e-05 0 5 1864 2669 1869 128.3
5 2.748e-01 0e+00 8e-05 9e-05 0 14 1343 1585 1357 88.6
6 2.744e-01 0e+00 5e-05 8e-05 0 6 798 986 804 52.9

30

1 2.260e-01 0e+00 2e-05 9e-05 0 13 1907 2167 1920 177.7
2 2.270e-01 0e+00 5e-05 1e-04 0 6 1138 1424 1144 106.2
3 2.246e-01 0e+00 5e-05 8e-05 0 5 1504 1853 1509 140.9
4 2.231e-01 0e+00 1e-04 9e-05 0 5 1749 2132 1754 163.9
5 2.251e-01 0e+00 8e-05 6e-05 0 12 2016 2329 2028 184.8
6 2.260e-01 0e+00 4e-05 9e-05 0 6 1257 1495 1263 122.1

Table 2: Numerical results of applying the six variants of Algorithm 1 with a single penalty parameter to
the problem of maximizing the radius of N identical circles packed into a given elliptic container. In this
table, N ∈ {5, 6, . . . , 10, 20, 30}.

5.3 Classification problem

In this section, we consider the classification scheme described in [12], which can be modeled as
an optimization problem on the set of positive definite matrices. Given a training set of labeled
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N ϕi,τ r ∥c∥ ∥s∥ ∥ gradL∥ SC k
∑k

i=1 ki #fcnt #gcnt Time

40

1 1.975e-01 0e+00 4e-05 9e-05 0 13 2936 3353 2949 398.9
2 1.977e-01 0e+00 3e-05 8e-05 0 6 1712 1971 1718 226.8
3 1.970e-01 0e+00 5e-05 1e-04 0 5 1651 2000 1656 225.8
4 1.913e-01 0e+00 1e-03 1e-02 4 4 2178 2691 2182 288.5
5 1.916e-01 0e+00 6e-05 1e-04 0 13 2292 2649 2305 290.8
6 1.963e-01 0e+00 6e-05 9e-05 0 6 1704 2004 1710 218.8

50

1 1.766e-01 0e+00 9e-05 9e-05 0 12 2899 3324 2911 471.9
2 1.782e-01 0e+00 3e-05 7e-05 0 6 1859 2176 1865 307.5
3 1.766e-01 0e+00 5e-05 9e-05 0 5 1688 2003 1693 281.5
4 1.686e-01 0e+00 1e-03 3e-01 4 4 2206 2701 2210 370.8
5 1.776e-01 0e+00 3e-04 3e-03 4 13 4414 4954 4427 705.0
6 1.781e-01 0e+00 6e-05 1e-04 0 6 2276 2651 2282 379.1

60

1 1.619e-01 0e+00 7e-05 9e-05 0 12 4998 5620 5010 1029.7
2 1.628e-01 0e+00 3e-05 1e-04 0 6 2635 3125 2641 549.1
3 1.619e-01 0e+00 5e-04 4e-03 4 4 2190 2584 2194 462.0
4 1.522e-01 0e+00 1e-03 1e+00 4 4 2239 2965 2243 482.6
5 1.626e-01 0e+00 6e-05 1e-04 0 14 5635 6553 5649 1161.5
6 1.616e-01 0e+00 6e-05 1e-04 0 6 3205 3713 3211 660.6

70

1 1.502e-01 0e+00 9e-05 9e-05 0 11 2917 3296 2928 721.2
2 1.503e-01 0e+00 3e-05 8e-03 4 6 3198 3782 3204 801.3
3 1.483e-01 0e+00 5e-04 5e-02 4 4 2352 2723 2356 590.9
4 1.359e-01 0e+00 1e-03 3e-01 4 4 2458 3383 2462 625.2
5 1.511e-01 0e+00 5e-05 9e-05 0 15 6145 7080 6160 1605.8
6 1.510e-01 0e+00 7e-05 2e-03 4 6 3768 4420 3774 958.2

80

1 1.409e-01 0e+00 5e-05 9e-05 0 13 4336 5040 4349 1270.5
2 1.403e-01 0e+00 4e-05 1e-04 0 6 1765 2090 1771 532.9
3 1.398e-01 0e+00 5e-06 5e-02 4 6 2876 3438 2882 893.5
4 1.396e-01 0e+00 1e-05 1e-01 4 6 2508 3075 2514 734.4
5 1.415e-01 0e+00 5e-05 8e-05 0 14 5624 6591 5638 1654.3
6 1.414e-01 0e+00 5e-05 2e-03 4 6 2948 3514 2954 916.4

90

1 1.332e-01 0e+00 3e-05 1e-04 0 13 5728 6683 5741 1947.0
2 1.333e-01 0e+00 4e-06 8e-05 0 7 3442 4104 3449 1189.1
3 1.322e-01 0e+00 5e-04 5e-04 4 4 2154 2581 2158 763.6
4 1.269e-01 0e+00 1e-03 1e-01 4 4 2341 2723 2345 831.8
5 1.337e-01 0e+00 6e-05 9e-05 0 15 6803 7841 6818 2329.4
6 1.337e-01 0e+00 1e-09 1e+00 4 6 2538 3055 2542 866.9

100

1 1.270e-01 0e+00 5e-05 1e-04 0 13 5997 6978 6010 2433.6
2 1.265e-01 0e+00 3e-04 5e-04 4 5 2562 3032 2567 1009.4
3 1.253e-01 0e+00 5e-04 2e-02 4 4 2198 2572 2202 896.4
4 1.169e-01 0e+00 1e-03 8e-01 4 4 2459 3180 2463 995.8
5 1.267e-01 0e+00 3e-04 2e-04 4 13 5878 6725 5891 2246.3
6 1.259e-01 0e+00 6e-04 1e-03 4 5 2856 3337 2861 1152.2

Table 3: Numerical results of applying the six variants of Algorithm 1 with a single penalty parameter to
the problem of maximizing the radius of N identical circles packed into a given elliptic container. In this
table, N ∈ {40, 50, . . . , 100}.

examples
D =

{
(zi, wi), i = 1, . . . , m̄, zi ∈ R2, andwi ∈ {1,−1}

}
,

we want to find a classifier ellipse E(A, b) = {y ∈ R2 | yTAy+ bT y = 1} such that zTi Azi + bT zi ≤ 1
when wi = 1 and zTi Azi + bT zi ≥ 1 when wi = −1. Since such an ellipse may not exist, we define
I = {i ∈ {1, . . . , m̄} |wi = 1} and O = {i ∈ {1, . . . , m̄} |wi = −1} and try to minimize the function
given by

f(A, b) =
1

m̄

[∑
i∈I

max{0, zTi Azi + bT zi − 1}2 +
∑
i∈O

max{0, 1− zTi Azi − bT zi}2
]
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N = 5 N = 6 N = 7

N = 8 N = 10 N = 20

N = 50 N = 70 N = 100

Figure 3: Solutions found for the problem of packing N ∈ {5, 6, 7, 8, 10, 20, 50, 70, 100} identical circles of
maximum radius r into an ellipse with semi-axes (a, b) = (2, 1).

provided that A is symmetric and positive definite. To consider a constrained problem, we added
a constraint on the center c = (c1, c2) of the ellipse to be found. The center corresponds to the
solution of the linear system Ac = −b/2. Thus,

c1 =
1

2

a12 b2 − a22 b1
a11 a22 − a12 a21

and c2 =
1

2

a21 b1 − a11 b2
a11 a22 − a12 a21

,

where aij with i and j between 1 and 2 are the elements of the matrix A, and b1, b2 are the
components of the vector b. Constraints are given by 1 ≤ c1 ≤ 10 and 1 ≤ c2 ≤ 10. Therefore,
denoting by Sym(n)++ the set of symmetric positive definite real matrices of size n, this problem
can be written as

Minimize
(A,b)∈Sym(2)++×R2

1

m̄

[∑
i∈I

max{0, zTi Azi + bT zi − 1}2 +
∑
i∈O

max{0, 1− zTi Azi − bT zi}2
]

subject to c1 = (a12 b2 − a22b1)/[2(a11 a22 − a12 a21)],

c2 = (a21 b1 − a11 b2)/[2(a11 a22 − a12 a21)],

1 ≤ c1 ≤ 10,

1 ≤ c2 ≤ 10.
(38)

Note that c1 and c2 are not variables of the problem. They are only used to simplify the represen-
tation of the constraints.

Following [12], we considered four instances with m̄ = 10,000 in which the points zi are randomly
generated with uniform distribution in the box [−10, 10]2. In the first instance, the points inside
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a circle of radius 7 centered on the origin are labeled wi = 1, while the other points are labeled
wi = −1. The other three instances correspond to points that get the label 1 if they are inside a
square with side 7 centered on the origin, a rectangle with height 7 and width 14 centered on the
origin, and a triangle with corners (−7, 0), (0,−7), and (7, 7).

In this problem we considered εfeas = εopt = εcompl = 10−6. We solved the four instances using
the six variants of Algorithm 1 with a single penalty parameter. Table 4 shows the results. Fig-
ure 4 illustrates some of the solutions found. All variants tackled the problem effectively, producing
solutions that met the feasibility criteria and provided high quality objective function values. Al-
though variants 3 and 4 always stopped due to failures of the inner solver (SC equal to 4), they
still find objective function values equivalent to the best value found across all tested algorithms in
most cases. Variant 5 stopped with SC equal to 4 only in instance 2, where the algorithm almost
successfully converged: during earlier iterations, the feasibility and optimality conditions ((35) and
(37), respectively) were satisfied within the tolerance 10−6, and the complementarity measure (36)
reached the order of 10−6, but the inner solver subsequently failed. Despite this failure, the al-
gorithm successfully identified a solution equivalent to the best solution found. In particular, all
instances produced a final solution where the center of the ellipse coincided with (c1, c2) = (1, 1) up
to three decimal places, while variants 1, 2, 5, and 6 achieved at least five correct decimal places,
confirming that the constraints c1 ≥ 1 and c2 ≥ 1 are active in the solution. This accuracy reflects
the symmetry of the problem, where the global solution is expected to have its center at (1, 1).

Inst. ϕi,τ f ∥c∥ ∥s∥ ∥ gradL∥ SC k
∑k

i=1 ki #fcnt #gcnt Time

1

1 3.521e-03 0e+00 9e-07 8e-07 0 17 415 1191 426 22.7
2 3.521e-03 0e+00 5e-08 6e-07 0 9 286 1001 290 17.7
3 3.521e-03 0e+00 0e+00 2e-03 4 7 394 2300 392 36.5
4 3.521e-03 0e+00 0e+00 2e-03 4 7 440 2514 438 40.0
5 3.521e-03 0e+00 4e-07 6e-07 0 18 418 1213 430 23.0
6 3.521e-03 0e+00 5e-07 8e-07 0 8 277 938 280 16.8

2

1 7.682e-03 0e+00 7e-07 9e-07 0 18 314 1068 327 19.1
2 7.681e-03 0e+00 0e+00 7e-04 4 9 199 806 202 14.1
3 7.682e-03 0e+00 0e+00 7e-04 4 5 211 1613 208 24.1
4 7.681e-03 0e+00 0e+00 7e-04 4 7 294 1910 294 29.5
5 7.681e-03 0e+00 1e-07 7e-04 4 20 361 1236 371 22.2
6 7.681e-03 0e+00 6e-07 9e-07 0 8 175 754 180 12.7

3

1 9.499e-03 0e+00 5e-07 5e-07 0 18 531 1561 541 30.1
2 9.499e-03 0e+00 6e-07 4e-07 0 8 322 973 325 18.9
3 9.499e-03 0e+00 5e-06 1e-03 4 6 365 2165 365 34.1
4 9.499e-03 0e+00 0e+00 2e-03 4 7 365 2402 361 37.5
5 9.499e-03 0e+00 7e-07 7e-07 0 18 467 1238 478 24.5
6 9.499e-03 0e+00 6e-07 4e-07 0 8 308 979 310 18.2

4

1 1.195e-02 0e+00 1e-06 9e-07 0 17 392 928 406 18.9
2 1.195e-02 0e+00 5e-07 1e-06 0 8 282 696 287 14.3
3 1.196e-02 0e+00 0e+00 4e-03 4 5 268 1555 266 25.0
4 1.195e-02 0e+00 0e+00 4e-03 4 7 340 2005 338 31.7
5 1.195e-02 0e+00 5e-07 8e-07 0 18 435 1136 447 22.2
6 1.195e-02 0e+00 6e-07 1e-06 0 8 190 617 195 11.7

Table 4: Numerical results of applying the six variants of Algorithm 1 with a single penalty parameter to
solve the four instances of the classification problem (38).
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Figure 4: Illustration of the solutions obtained by Algorithm 1 for different smoothing functions in solving
the four instances of the classification problem (38). The center of each ellipse is marked with a star.

6 Conclusion

Our study advances the field of CRO by introducing and thoroughly analyzing a novel penalty-
type method. Rooted in Riemannian optimization principles and the smoothing of exact penalty
functions, this methodology addresses key challenges in constrained optimization on Riemannian
manifolds, offering robust and efficient solutions. Through our investigation, we identified im-
provements over existing approaches. These advancements include greater flexibility in applying
smoothing techniques, a more refined strategy for adjusting penalty multipliers, and an analysis
under EMFCQ. Our convergence analysis provides global optimality guarantees under the assump-
tion of convergence. Furthermore, assuming the feasibility of limit points, we demonstrated that
these points satisfy the AKKT conditions. Additionally, when AKKT points are combined with
either the Relaxed-CPLD or the CRSC conditions—both recently introduced in [3]—we show that
the limit points indeed satisfy the KKT conditions. Moreover, we conducted an analysis under the
assumptions that the penalty sequences are bounded and that the smoothing parameter sequence
associated with the inequality constraints is unbounded, yielding similar positive results. By lever-
aging these methodologies, our research contributes valuable insights and strategies to the CRO
community, paving the way for future advancements. As the field of CRO continues to evolve,
we anticipate that penalty-type methods will remain essential for addressing practical constrained
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problems within the Riemannian framework. Our work lays the groundwork for further research
and applications, fostering continued innovation and effectiveness in this domain.
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