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Abstract The Augmented Lagrangian Method (ALM) is one of the most common approaches for
solving linear and nonlinear constrained problems. However, for non-convex objectives, handling non-
linear inequality constraints remains challenging. In this paper, we propose a stochastic ALM with
Backtracking Line Search that performs on a subset (mini-batch) of randomly selected points for the
solving of nonconvex problems. The considered class of problems include both nonlinear equality and
inequality constraints. Together with the formal proof of the convergence properties (in expectation) of
the proposed algorithm and its computational complexity, the performance of the proposed algorithm
are then numerically compared against both exact and inexact state-of-the-art ALM methods. Further,
we apply the proposed stochastic ALM method to solve a multi-constrained network design problem.
We perform extensive numerical executions on a set of instances extracted from the SNDlib to study
its behavior and performance, as well as potential improvements of this method. Then analysis and
comparison of the results against those obtained by extending the method developed in [Contardo2021]
to nonlinear constraints are provided for the approximation of separable nonconvex optimization
programs.
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Mathematics Subject Classification (2020) 65K05 · 68Q25 · 90C46 · 90C30 · 90C25

1 Introduction

Minimization problems involving both equality and inequality nonlinear constraints are of significant
interest as shown by an abundant literature, e.g. [61] [36] [13] [58] to cite a few. The generic problem
in nonlinear optimization is to minimize a smooth (possibly nonconvex) function h : RK → R subject
to nonlinear equality constraints and nonlinear inequality constraints. More formally,

minimize h(x) (1.1)

subject to c1(x) = b1, c2(x) ≤ b2, x ∈ C,

Dimitri Papadimitriou (Corresponding author)
3nLab & Universite Libre de Bruxelles (ULB)
& Belgium Research Center (BeRC), Huawei
3001 Leuven, Belgium
dpapadimitriou@3nlab.org

B`̆ang Công Vũ
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where c1 and c2 are smooth vector functions from RK to Rm, (b1, b2) ∈ Rm × Rm and C is a closed
convex subset of RK . This typical problem finds applicability in mathematical optimization, in semidef-
inite programming and nonlinear split feasibility problems. It covers a wide class of applications in the
domain of signal processing including image recovery problems [6] [58], in machine learning through
various constrained problems in statistical learning as well as in operational research with, e.g., network
design problems. In this context, the augmented Lagrangian-based methods (ALM) can be considered
as a major breakthrough in constrained optimization providing the basis for fundamental algorithms
that have been extensively studied for various classes of problems.

The main objective of this paper in this respect is to design the additional mechanisms and tools
required to achieve a wider applicability of augmented Lagrangian-based methods (ALM) [23] [39] in
the nonlinear setting described by the above model. Introduced by Powell and Hestenes in 1969 [49]
[33], ALM alternates updates of the primal variable by minimizing the Augmented Lagrangian function
and the Lagrangian multiplier by dual gradient ascent. Although the latter leads to the loss of the
decomposability property, the resulting method shows improved convergence properties. Since then,
this method has been subject to a vast amount of studies for the solving of both convex and nonconvex
problems involving linear and nonlinear constraints. Indeed, in many of the applications described
above, the optimization model turns out to include nonlinearities that the nonlinear composite problem
(1) essentially captures. However, constraints are often assumed to be convex meaning that the feasible
set is convex; in turn, this assumption implies that equality constraint functions must be affine and
inequality constraint functions must be convex. With the proposed method, the minimization of
the (possibly) nonconvex objective function h can be subject to nonlinear equality and inequality
constraints without imposing convexity of its functions (or operators). Moreover, our method relies
on line search that performs on a subset of randomly selected points only; hence, the stochastic ALM
algorithm does not require the evaluation of all gradients (of objective function and constraints) at each
iteration. This property enables, as long as the selected mini-batch verifies a well-defined minimum
size criterion, the solving of larger scale nonconvex problems without compromising on convergence
properties and computational complexity compared to its deterministic variant.

Following these formal developments, various numerical solving frameworks and methods based
on ALM have been developed since the early 90’s (and even before). As part of them, the ALGEN-
CAN algorithmic scheme [1] [2] aims to provide a general method for solving smooth (non)convex
optimization problems subject to both nonlinear equality and inequality constraints. That is, in AL-
GENCAN, the Augmented Lagrangian is defined not only with respect to equality constraints but also
with respect to inequalities (without slack variables). Remember from this perspective that no ALM
algorithm can solve such problem without assuming either the solving of nonconvex subproblems to
their global minima or updating penalty sequence to remain bounded on the problem at hand. Hence,
it aims at preserving the property of external penalty methods that global minimizers of the original
problem can be obtained if each outer iteration computes a global minimizer of the subproblem. The
general algorithm belongs to the Powell-Hestenes-Rockafellar (PHR) Augmented Lagrangian type.
PHR-based Augmented Lagrangian methods are based on the iterative (approximate) minimization
of the Lagrangian followed by the updating of the penalty parameter and the KKT multipliers approx-
imations. It is a safeguarded Augmented Lagrangian method in the sense that approximations of the
Lagrange multipliers are estimated at every iteration. Primal subproblems are solved using GENCAN
[12]. GENCAN (that is included in ALGENCAN) is a Fortran code for minimizing a smooth function
with a potentially large number of variables and box-constraints. The framework does not use matrix
manipulations at all and, to enable solving large problems with moderate computer time.

More recently, several efforts have been dedicated to tackle composite nonconvex problems of
the form h(x) = f(x) + g(x), where f is continuously differentiable but possibly nonconvex and g
is closed convex but possibly nonsmooth, subject to (possibly nonlinear) equality constraints vector
function with continuously differentiable components c(x) = 0 [51] and (possibly nonlinear) inequality
constraints d(x) ≤ 0 [61]. For the latter, authors propose their equivalent reformulation as equality
constraints d(x) + s = 0 by enforcing the nonnegativity of slack variable s. Moreover, ALM generally
uses a sequence of penalty parameters {ρk}, which is nondecreasing and possibly unbounded. However,
when the penalty parameter ρk becomes too large, the ALM subproblem can become ill-conditioned.
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Therefore, instead using bounded ρk sequences is desirable, although for general nonconvex (and
nonsmooth) problems, this condition might not be sufficient for the convergence of ALM [10, Section
2.1]. Further comparison against ALM methods is detailed in Section 5.

Alternatively, one could think of extending the applicability of the alternating direction method
of multipliers (ADMM) [24] so that it can also solve Problem (1.1). This extension could be realized
by adding non-negative slack variables s to the set of optimization variables. Now, it is fundamental
to observe here that Problem (1.1) includes both nonlinear equality and inequality constraints. The
usual trick of adding non-negative slack variables s does not transform the nature of the constraints
and the complexity of the problem but only if the nonlinear constraints c2(x) ≤ b2 are affine, that is
c2(x) = Lx. Hence, ADMM can straightforwardly deal with linear inequality constraints by adding
non-negative slack variables. For nonlinear inequality constraints, the situation is completely differ-
ent. Adding such equality constraints would transform the nature of the problem and the solving of
its subproblems. Furthermore, transforming the constraints into indicator functions and adding them
to the objective function implies in turn to compute (in every iteration) a projection onto the more
complicated feasible set {x | c2(x) ≤ b2}. Few papers in the literature deal with this specific issue and
mostly in the convex setting [26]; therefore, we defer this study to a dedicated paper.

The generic formulation of the problem dealt with in this paper can be stated as follows.

Problem 1 Let M and K be strictly positive integers, let (mq)
M
q=1 be a finite sequence of strictly

positive integers with
∑M

q=1mq = m <∞. Let (ωq)1≤q≤M be a sequence in [0, 1]
M

with
∑M

q=1 ωq = 1.

For every q ∈ {1, . . . ,M}, let hq : RK → ] −∞,+∞] and cq : RK → Rmq be smooth functions with
Lipschitz continuous gradients. Let b = (bq)1≤q≤M ∈ ⊕M

q=1Rmq , and Sq be a closed convex cone of

Rmq . Let C be a closed convex subset of RK . The problem is to

minimize h(u) =

M∑
q=1

ωqhq(u) (1.2)

subject to (∀q ∈ {1, . . . ,M}) cq(u)− bq ∈ Sq, u ∈ C. (1.3)

In this paper, we further apply the proposed stochastic Lagrangian-based method on an operational
research problem, namely, the network design problem. More precisely, given a set of finite-size point-
to-point traffic demands and a network topology described by a graph, the problem is to minimize the
cost of the bandwidth capacity that has to be provisioned on the individual arcs so that the network
can accommodate all demands simultaneously. This problem is also referred to in the literature as the
network capacity planning problem because the objective is to minimize the cost of provisioning arcs
with minimum capacity compared to the traffic flow routing problem which consists of minimizing
the total cost of transporting traffic units from source to destination, i.e., finding the set of individual
(per arc) flows with the least total transport cost.

In its simplest form, the network design problem studied as a use case in this paper consists of
minimizing the capacity provisioned on each of its arcs so that the network can simultaneously serve
all incoming traffic demands at minimum cost. It refers to the situation where demand values are
certain, i.e., they are not subject to fluctuations and variations, and flows defined by continuous real
variables. The resulting cost minimization problem can be solved in polynomial time. However, min-
imizing the network design cost comes nowadays with additional constraints to the usual demand
satisfaction, flow conservation, and capacity (linear and convex) constraints. Recent developments
have motivated the need to also accommodate various nonlinear constraints such as delay constraints
and other congestion constraints. Accommodating nonlinear constraints changes the very nature of the
original problem. In turn, these requirements make the solving of these optimization problems more
computationally challenging even when limited to the static case (i.e., with fixed traffic demand ma-
trices). Similar reasoning can be drawn for the minimum cost multi-commodity network flow (MCF)
problems. The variant involving continuous (real) flow variables is solvable in polynomial time by an
LP solver, whereas its integer flow counterpart is NP-hard. Here again, the (transit) time-constrained
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MCF problem is NP-hard and the complexity of fractional MCF over time is NP-hard.

Contribution: The main contribution of this paper is threefold.

– First, we propose a stochastic Augmented Lagrangian Method (ALM) method relying on Back-
tracking Line Search that performs on a subset (mini-batch) of randomly selected points to solve
optimization problems involving the minimization of a smooth (possibly nonconvex) objective
function subject to both nonlinear equality and inequality constraints. The convergence properties
(in expectation) of the proposed algorithm are then thoroughly demonstrated under very general
assumptions. The main features of the proposed algorithm compared to [61] [51] are the follow-
ing. Firstly, it is structured as a single-loop algorithm; more precisely, it does not require calling a
first-order method (such as proximal gradient descent) to compute inner iterates. For instance, [61]
further involves the use of an intermediate interior Proximal Point (iPP) method to approximately
solve the primal subproblems of the ALM. Secondly, since performing on a mini-batch whose size
is ≪ M , the proposed algorithm does not require the evaluation of all gradients (of the objective
function and constraints) at each iteration. Thirdly, it uses the backtracking line search technique
to find both primal and dual stepsize.

– Second, from the modeling perspective, we define a delay constrained network design problem,
which has received relatively limited attention in the network optimization community due to its
nonlinear nature. Let us cite, among others, [8] which approaches the problem from the MCF
formulation perspective with the objective of minimizing the total routing cost while assuming
that the routing path sets are given as input, and its robust variant [31]. We then propose a
reformulation of this network optimization problem that can be solved by means of the stochastic
ALM with Backtracking Line Search.

– Finally, we provide extensive numerical executions of the proposed algorithm and compare the
results with those obtained by means of an extension to nonlinear constraints of the method
developed in [19] for the approximation of separable nonconvex optimization programs. The exe-
cutions are performed using real datasets extracted from the SNDlib library [44] to determine the
performance and applicability but also the potential improvements to these methods.

Structure: The remainder of this paper is structured as follows. After introducing in Section 2 the
preliminary notations and definitions used throughout this paper, the proposed algorithm, namely, the
stochastic ALM with Backtracking Line Search is specified in Section 3.1. Its convergence properties
are thoroughly detailed in Sections 3.2 and 3.3, which determine the conditions for local convergence
(in expectation) of the sequences produced by the proposed Algorithm to a critical point of the
augmented Lagrangian function. Section 4 characterizes the iteration complexity of the proposed
Algorithm together with its formal proof. Next, the comparison against inexact ALM methods [61]
[51] is fully documented in Section 5. This section also reports numerical experiments that corroborate
the empirical performance of the proposed algorithm compared to the one developed in [61] and
ALGENCAN [2]. Section 6 details the use case considered for its numerical evaluation, that is the
multi-constrained network design problem, i.e., finding the capacity to provision on each of its arcs
such that the network can serve all incoming traffic demands simultaneously at minimum cost, where
each demand is specified with a maximum delay that can be incurred by the individual arcs on the
traffic flows traversing the network (a.k.a. load-induced delay). Numerical experiments performed using
the proposed algorithm are detailed in Section 6.3. The results are analyzed and compared against
the piecewise linear relaxation method documented in Section 6.4. Finally, a concluding Section 7
summarizes the findings of this paper together with the research topics identified for future work.
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2 Preliminaries

Notations. Denote by Γ0(RK) the class of all proper lower semicontinuous convex functions from RK

to ]−∞,+∞]. The proximity operator of f ∈ Γ0(RK) is

proxf : RK → RK : x 7→ argmin
y∈RK

f(y) +
1

2
∥x− y∥2.

The conjugate function of f is denoted by f∗. When f is the indicator function of some closed convex
S ⊂ RK , which is denoted by ιS ,

ιS : x 7→

{
0 if x ∈ S
+∞ if x ̸∈ S,

the proximity operator of f reduces to the projection operator denoted by PS . The distance from
x ∈ RK to S is dS(x) = ∥x− PSx∥. Note that the conjugate function of ιS is the support function of
S and is denoted by σS . The normal cone operator of some closed convex set C is NC . When S is a
closed convex cone, the polar cone S⊖ of S is defined as S⊖ =

{
u | sup ⟨S | u⟩ ≤ 0

}
.

Let g : RK × Rm → ]−∞,+∞] be a differentiable function. We denote by ∇1g the gradient of
g with respect to the first variable when the second variable is fixed. The notation ∇2g is defined
similarly. Let c : RK → Rm be a differentiable (smooth) mapping, the Jacobian of c at u ∈ RK is
denoted by Jc(u) and its conjugate is denoted by Jc(u)

⊺. Let ν > 0, the class of all smooth mappings
c : RK → Rm with ν-Lipschitzian Jacobian is denoted by C1ν(RK ,Rm).
The development of this paper relies on the following definitions.

Definition 1 Let M be a strictly positive integer. Let (ωq)1≤q≤M be a sequence in [0, 1]
M

with∑M
q=1 ωq = 1. The weighted inner product on the Hilbert space V , maps each pairs of vectors (y, v) =∈

V × V to the scalar ⟨· || ·⟩ defined as

⟨· || ·⟩ : (y, v) 7→
M∑
q=1

ωq ⟨vq | yq⟩ (2.1)

with vector norm ∥| · ∥| : v 7→
√
⟨v || v⟩, (2.2)

where y = (yq)1≤q≤M and v = (vq)1≤q≤M .

Definition 2 [16] Let f ∈ Γ0(RK), g ∈ Γ0(Rm), c ∈ C1ν(RK ,Rm), and b ∈ Rm. A vector d ∈ RK

defines a descent direction of φ 7→ f(u)+ g(c(u)− b) at u, if the difference ∆0φ(u; d) verifies the strict
inequality

∆0φ(u; d) = f(u+ d) + g
(
c(u)− b+ Jc(u)d

)
− φ(x) < 0, (2.3)

where Jc(u) denotes the Jacobian of the function c at u. A method for which, at each iteration k, the
descent direction dk, at current point uk, verifies the strict inequality ∆0φ(uk; dk) < 0 is referred to
as a descent method.

Definition 3 Let g ∈ Γ0(Rm), let b ∈ Rm and C1ν(RK ,Rm) ∋ c : u 7→ c(u)− b. For every ρ ∈ ]0,+∞[,
and (u, λ) ∈ RK × Rm, the smooth approximation of g(c(·)− b) is defined by

gρ : (u, λ) 7→ sup
y∈Rm

(
⟨c(u)− b || y⟩ − g⋆(y)− 1

2ρ
∥|y − λ∥|2

)
, (2.4)

where ρ is referred to as the smoothing parameter and g⋆ denotes the Fenchel conjugate of the function
g defined by g⋆ : u 7→ supx∈Rm

(
⟨u || x⟩ − g(x)

)
.

The function gρ is a smooth approximation of g, which is known as the smoothing technique. Various
numerical methods have been developed by means of this technique; see, for instance, [43,47,7]. Several
examples where gβ admits a closed-form expression can be found in [43,5]. We recall the following
result concerning the differentiability of gρ.
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Lemma 1 For every ρ > 0, let the function gρ be defined by (2.4). Then, gρ is a differentiable function
with respect to the variable u, and, for every (u, λ) ∈ RK × Rm,

∇1gρ(u, λ) = (Jc(u))
⊺ proxρ−1g⋆(ρ−1(c(u)− b) + λ), (2.5)

where (Jc(u))
⊺ is the (conjugate) transpose of the linear operator Jc(u).

We extend this result to the case where the function g admits a separable structure. More precisely,
we have the following result.

Lemma 2 Let gq = ιSq , where ιSq denotes the indicator function of the closed convex subset Sq of

Rmq , and define the function g : (vq)1≤q≤M 7→
M∑
q=1

ωqgq(vq), where (ωq)1≤q≤M denotes a sequence in

[0, 1]
M

with

M∑
q=1

ωq = 1. Then, for every ρ > 0 and for every (u, λ) ∈ RK × Rm,

gρ(u, λ) =

M∑
q=1

ωqgρ,q(u, λq), (2.6)

where gq,ρ(u, λq) = sup
yq∈Rmq

(
⟨cq(u)− bq | λq⟩ − g⋆q (yq)−

1

2ρ
∥yq − λq∥2

)
, (2.7)

is a differentiable function whose gradient with respect to the first variable u is given by

∇1gρ(u, λ) = ρ

M∑
q=1

ωq(Jcq (u))
⊺

(
cq(u)− bq + ρ−1λq − PSq

(
cq(u)− bq + ρ−1λq

))
. (2.8)

Proof. Following Definition 3, the conjugate g⋆ of the function g can be expressed as

g⋆ : v 7→ sup
y∈Rm

(⟨v || y⟩ − g(y)) = sup
(yq)1≤q≤M∈Rm

M∑
q=1

(ωq ⟨vq | yq⟩ − ωqgq(yq))

=

M∑
q=1

ωqg
⋆
q (vq). (2.9)

Therefore, the smooth approximation of g with parameter ρ, gρ(u, λ), is defined by

gρ(u, λ) = sup
y∈Rm

(
⟨c(u)− b || y⟩ − g⋆(y)− 1

2ρ
∥|y − λ∥|2

)
(2.10)

=

M∑
q=1

ωq sup
yq∈Rmq

(
⟨cq(u)− bq | yq⟩ − gq⋆(yq)−

1

2ρ
∥yq − λq∥2

)
=

M∑
q=1

ωqgq,ρ(u, λq), (2.11)

which proves (2.6). Next, it follows from (2.6) and Lemma 1 that

∇1gρ(u, λ) =

M∑
q=1

ωq∇1gq,ρ(u, λq)

=

M∑
q=1

ωq(Jcq (u))
⊺ proxρg⋆

q
(ρ(cq(u)− bq) + λq)

= ρ

M∑
q=1

ωq(Jcq (u))
⊺

(
cq(u)− bq + ρ−1λq − PSq

(
cq(u)− bq + ρ−1λq

))
, (2.12)
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where the last equality follows from the Moreau’s identity (proxf (x)+proxf⋆(x) = x) and the property
proxιSq

= PSq .

Lemma 3 Let λq ∈ Rmq and ρ ∈ ]0,+∞[. Let (gq)1≤q≤M be defined as Lemma 2. Let

eq,ρ : u 7→ PSq
(cq(u)− bq + ρ−1λq). (2.13)

Then, for every (u, λ) ∈ RK × Rm,

gq,ρ(u, λq) = ⟨cq(u)− bq − eq,ρ(u) | λq⟩+
ρ

2
∥cq(u)− bq − eq,ρ(u)∥2 (2.14)

=
ρ

2
d2Sq

(cq(u)− bq + ρ−1λq)−
1

2ρ
∥λq∥2, (2.15)

where dSq
: vq 7→ ∥vq − PSq

vq∥ defines the distance function dSq
.

Proof. Let us define λ†q := λq + ρ(cq(u)− bq − eq,ρ(u)). Then, the Moreau’s identity gives

λ†q = proxρσSq

(
λq + ρ(cq(u)− bq)

)
and σSq

(λ†q) =
〈
λ†q | eq,ρ(u)

〉
. (2.16)

Therefore, it follows from the definition of gq,ρ (see Definition 3) that

gq,ρ(u, λq) = sup
vq∈Rmq

(
⟨cq(u)− bq | vq⟩ − g⋆q (vq)−

1

2ρ
∥vq − λq∥2

)
=

〈
cq(u)− bq | λ†q

〉
− g⋆q (λ†q)−

1

2ρ
∥λ†q − λq∥2

=
〈
cq(u)− bq − eq,ρ(u) | λ†q

〉
− 1

2ρ
∥λ†q − λq∥2

= ⟨cq(u)− bq − eq,ρ(u) | λq⟩+
ρ

2
∥cq(u)− bq − eq,ρ(u)∥2, (2.17)

which proves (2.14). Next, we have

ρ
〈
cq(u)− bq − eq,ρ(u) | ρ−1λq

〉
=
ρ

2
∥cq(u)−bq−eq,ρ(u)+ρ−1λq∥2−

ρ

2
∥cq(u)−bq−eq,ρ(u)∥2−

ρ

2
∥ρ−1λq∥2,

which implies that

gq,ρ(u, λq) =
ρ

2
∥cq(u)− bq − eq,ρ(u) + ρ−1λq∥2 −

1

2ρ
∥λq∥2 (2.18)

=
ρ

2
d2Sq

(cq(u)− bq + ρ−1λq)−
1

2ρ
∥λq∥2, (2.19)

where the last equality follows from the definition of dSq . Hence, (2.15) is verified.
Let (u, λ) ∈ RK × Rm and ρ > 0. By using (2.11) and (2.19)

gρ(u, λ) =

M∑
q=1

ωqgq,ρ(u, λq),

where gq,ρ(u, λq) := ιSq,ρ(u, λq) =
ρ

2
d2Sq

(cq(u)− bq + ρ−1λq)−
1

2ρ
∥λq∥2,

we can define the smooth approximation of the augmented objective function Lρ by involving the
indicator functions ιSq,ρ(u, λq) as follows

Lρ : (u, λ) 7→
M∑
q=1

(
ωqhq(u) +

ρωq

2
d2Sq

(cq(u)− bq + ρ−1λq)

)
− 1

2ρ
∥|λ∥|2. (2.20)
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Moreover, assuming the smoothing parameter ρk and multiplier λk are given at iteration k, one
can define the function φk by

φk : u 7→ Lρk
(u, λk) = h(u) + ψk ◦ c(u), (2.21)

where ◦ denotes the function composition, and

ψk : (wq)1≤q≤M 7→
M∑
q=1

ρωq

2
d2Sq

(wq − bq + ρ−1λk,q)−
1

2ρ
∥|λk∥|2. (2.22)

The following Lemma generalizes the definition of the descent direction dk to nonconvex functions
φk. This result is obtained by defining the function φk as the composition of a convex and a nonconvex
function set as the argument of the former (convex) function.

Lemma 4 Assume c : RK → Rm × ]−∞,+∞] : u 7→ c(u) =(c(u), c0(u)) together with c : RK →
Rm : u 7→ c(u) and c0 = h. Define the function Ψk : RK × R → R : (u, ξ) 7→ ψk(u) + IdR(ξ), where
IdR : R ∋ ξ 7→ ξ.
If the function ψk : Rm → ]−∞,+∞] is convex; then, the function Ψk is convex. The composition
(Ψk ◦ c) verifies the identity

(Ψk ◦ c)(u) = ψk ◦ c(u) + IdR ◦c0(u) ≡ φk(u), (2.23)

where φk is defined by (2.21). Moreover, by defining, for every u ∈ dom(φ) and d ∈ RK ,

∆φk(u; d) = ψk(c(u) + Jc(u)d) + ⟨∇h(u) | d⟩ − ψk(c(u)), (2.24)

the following identity is verified

∆0(Ψk ◦ c)(u; d) ≡ ∆φk(u; d). (2.25)

Proof. The proof follows the same reasoning as the one used when h ≡ f + g, see [46]. For the sake of
completeness, we reproduce it here with this setting. The function Ψk(u, ξ) defined by ψk(u) + IdR(ξ)
is convex since the identity function on R is convex, by assumption, the function ψk(u) is convex, and
the sum of two convex functions is again convex. The expression (2.23) follows from the definition of
composition functions. Let us now prove (2.25). By definition of ∆0 in (2.3), we get

∆0(Ψk ◦ c)(u; d) = Ψk(c(u) + Jc(u)d)− Ψk(c(u))

By expanding the last equality using the definition of (Ψk ◦ c)(u; d) given by (2.23), we obtain

∆0(Ψk ◦ c)(u; d) = ψk(c(u) + Jc(u)d) + IdR(c0(u) + ⟨∇c0(u) | d⟩)− IdR ◦c0(u)− ψk ◦ c(u)
= ψk(c(u) + Jc(u)d) + IdR ◦ ⟨∇c0(u) | d⟩ − ψk ◦ c(u)

Then, since c0 : u 7→ h(u) and the scalar product ⟨∇c0(u) | d⟩ ∈ R, we deduce the expression

∆0(Ψk ◦ c)(u; d) = ψk(c(u) + Jc(u)d) + ⟨∇h(u) | d⟩ − ψk(c(u)) ≡ ∆φk(u; d), (2.26)

which completes of the proof.
Using Lemma 3, one can then prove that at each iteration k the descent direction computer at uk

verifies the strict inequality ∆φ(uk; dk) < 0; hence, it can be referred to as defining a descent method.
We recall the basic properties of the projection operator onto the nonempty closed convex subset

Sq denoted PSq
, that will be used in Section 3.1.

Lemma 5 [5, Proposition 29.3, Theorem 3.16] Let q ∈ {1, . . . ,M}, let Sq be a non-empty closed

convex subset in Rmq and S =
∏M

q=1 Sq. Then, the following hold.

(i) For any v = (vq)
M
q=1 ∈ ⊕M

q=1Rmq , PSv = (PSq
vq)1≤q≤M .
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(ii) For any v = (vq)
M
q=1 ∈ ⊕M

q=1Rmq ,

p = PSv ⇐⇒ (∀w ∈ S) ⟨v − p || w − p⟩ ≤ 0. (2.27)

Let (Ω,F,Prob) be a probability space and H = RK . A H-valued random variable is a measurable
function X : Ω → H, where H is endowed with the Borel σ-algebra. We denote by σ(X) the σ-
field generated by X. The expectation of a random variable X is denoted by E[X]. The conditional
expectation of X given a σ-field A ⊂ F is denoted by E[X|A]. A H-valued random process is a
sequence (xk)k∈N of H-valued random variables. The abbreviation a.s. stands for ’almost surely’.

Lemma 6 ([62, Theorem 1]) Let (Fk)k∈N be an increasing sequence of sub-σ-algebras of F, let (zk)k∈N,
(θk)k∈N, (ζk)k∈N and (tk)k∈N be sequences of [0,+∞[-valued random variables such that, for every k ∈
N, zk, θk, ζk and tk are Fk-measurable. Moreover, assume that

∑
k∈N tk < +∞,

∑
k∈N ζk < +∞ a.s.

and

(∀k ∈ N) E[zk+1|Fk] ≤ (1 + tk)zk + ζk − θk a.s..

Then (zk)k∈N converges a.s. to a [0,+∞[-valued random variable and (θk)k∈N is summable a.s..

Corollary 1 ([64, Corollary 2.6]) Let (Fk)k∈N be an increasing sequence of sub-σ-algebras of F, let
(xk)k∈N be a [0,+∞[-valued random sequence such that, for every k ∈ N, xk−1 is Fk-measurable and∑

k∈N
E[xk|Fk] < +∞ a.s.. (2.28)

Then,
∑
k∈N

xk < +∞ a.s..

3 Algorithm and Convergence

In this section, we detail the specification of Algorithm 1 for solving Problem 1. The main design
principles of this single-loop algorithm can be summarized as follows:

(i) Formulate a generalization of the augmented Lagrangian function by smoothing the nonlinear
constraints cq(u) − bq ∈ Sq. This function is the sum of smoothed functions with respect to the
primal variable u and the dual variable λ.

(ii) Then, given a point u and the Lagrangian multiplier λ, we apply the projected stochastic mini-batch
gradient to update the primal variable as u+ = PC(u− tkdk), where tk is the primal stepsize and
dk is the mini-batch stochastic gradient; provided the size of the mini-batch satisfies a well-defined
minimum size criteria.

(iii) We use the backtracking technique to find the stepsizes tk and σk. Then, the update of the dual
variable λ is performed as λ+ = λ+ σk∇2Lρ(u

+, λ).

Thus, this algorithm does not involve any subsolver or auxiliary solver to compute the values of
primal or dual variables; hence, it is referred to as a single-loop algorithm.

The stochastic gradient method was first introduced in [63]. This method as well as its extension,
the stochastic proximal gradient method, have been widely adopted nowadays as optimization method
in machine learning (statistical learning, deep learning, etc.), linear inverse problem, and game theory;
see [4,14,15,42,32] for examples. A main feature of the stochastic gradient is that it uses only one
sample point per iteration compared to the full gradient whose computational cost becomes prohibitive
when the number of points of points is large. Nevertheless, the stochastic gradient does not guarantee
convergence of the iterates without either ensuring the sequence of stepsizes decreases (leading to
a decreasing stepsize method) or involving a variance reduction technique. A relaxation consists of
using a minibatch approach where only a subset of samples is used per iteration. This idea leads to
the minibatch stochastic gradient; see [15] for detailed development. The major advantage of the mini-
batch stochastic gradient is the reduction of variance when the minibatch size increases [15,38,21].
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Further comparison against inexact augmented Lagrangian methods such as [61] and [51] is provided
in Section 5.

Further, we characterize the convergence properties of the sequences (uk, λk)k∈N generated by the
proposed algorithm. For this purpose, we suppose that the Jacobian Jc of the constraints c verifies
the following assumption.

Assumption 1 Let C a closed convex subset of RK . Assume

µ0 = sup
u∈C
∥Jc(u)⊺∥ < +∞ and (∀(u, ũ) ∈ C × C) ∥Jc(u)− Jc(ũ)∥ ≤ µc∥u− ũ∥, (3.1)

where µc is a positive constant.

We further assume that the variance of dk,ip in (3.7) denoted by Var(dk,ip) is bounded. More precisely,
we need the following.

Assumption 2 Let ip be a random variable with probability Prob(ip = q) = ωq. Let dk,ip be defined
by Step 2 of Algorithm 1. Assume that for all k ∈ N,

Var(dk,ip) = Eip [∥dk,ip −∇Lρk
(uk, λk)∥2|Ek] ≤ σ2

k < +∞, (3.2)

where Ek is the σ−algebra generated by u0, u1, . . . , uk.

Consequently the (sample) variance of the estimator of the descent direction dk ∈ RK is also bounded.
More precisely,

Var(dk) ≤
1

m2k

mk∑
p=1

Var(dk,ip), (3.3)

where mk denotes the size of the sample. Given λk ∈ S⊖ and ξk = (ip)1≤p≤mk . Define

fλk,ξk(·) =
1

mk

mk∑
p=1

(
hip(·) +

ρk
2
d2Sip

(cip(·)− bip + ρ−1
k λk,ip)−

1

2ρk
∥λk,ip∥2

)
. (3.4)

In the remainder of this paper, ℓξk refers to the Lipschitz constant of ∇fλk,ξk . The Lipschitz constant

of ∇Lρk
(·, λk) is denoted by ℓk. Recall also that S =

∏M
q=1 Sq.
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3.1 Algorithm

Algorithm 1 ALM algorithm with backtracking

1: ▷ Initialization

2: Set u0 ∈ C, u−1 ̸= u0, λ0 ∈ S⊖

3: Set σ−1 ≫ 1, ρ−1 ∈ ]0,∞[, 1≫ ε > 0, (θ, ν) ∈ ]0, 1[
2
, n ∈ N

4: Compute µ0 from (3.1)

5: ▷ Main Loop

6: for k ← 0 : n do
7: ▷ Step 1
8: Select ρk ∈ ]0,∞[ such that

βk := 1− ρk
2
∥Jc(uk)∥2 > ε

√
ρk∥|c(uk)− b− PS

(
c(uk)− b+ ρ−1

k λk
)
∥| ≤ min1≤i≤k ∥ui − ui−1∥

ρk < ρk−1 + εσk−1

(3.5)

9: ▷ Step 2
10: Select mini-batch size mk ∈ N.
11: Generate mk random variables ξk = (ip)1≤p≤mk with Prob(ip = q) = ωq

12: Compute vk,ip and dk,ip

vk,ip = λk,ip + ρk
(
cip(uk)− bip − PSip

(cip(uk)− bip + ρ−1
k λk,ip)

)
(3.6)

dk,ip = ∇hip(uk) + Jcip (uk)
⊺vk,ip (3.7)

13: Compute dk

dk =
1

mk

mk∑
p=1

dk,ip (3.8)

14: ▷ Step 3: Find {tk = θj (j ∈ N), σk ≤ ρk} such that

νβk −
1

2
tk(1 + tkℓξk)

2 − tk
(
1 + tkℓk)

2 − 2(1 + ε)tk − ς1,k ≥
ε

2
(3.9)

where ς1,k := (1 + ε)4σk

[
4µ2

0 + µ2
ct

2
k∥dk∥2

]
tk (3.10)

and fλk,ξk

(
ūk+1

)
< fλk,ξk(uk) + νtk∆fλk,ξk(uk;−dk) +O

( 1

(k + 1)1+ε

)
(3.11)

where ūk+1 := PC(uk − tkdk) and fλk,ξk is defined by (3.4)

15: ▷ Step 4: Update

uk+1 = PC(uk − tkdk) (3.12)

λk+1 = λk + σk

(
c(uk+1)− b− PS

(
c(uk+1)− b+ ρ−1

k λk
))

(3.13)

16: end for

3.2 Main Theorem
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Before presenting our main convergence results, we summarize the general strategy followed. The
main principle is to derive the descent property of the Lagrange function values

(
Lρk

(uk, λk)
)
k∈N

with respect to (tk∥dk∥2)k∈N. To reach this goal, we consider the following steps:

(i) We first need to show that Step 1 and Step 3 are well defined. They are presented in Lemma 9
as well as in Lemma 10. In particular, we obtain the descent property of the stochastic function
fξk,λk

as in (3.11).

(ii) We further estimate ∆fλk,ξk(uk;−dk) ≤ −βk∥dk∥2 as proved in Lemma 8. Combining this result
to (3.11), we obtain the descent of fξk,λk

with respect to dk as written in (3.65).

(iii) Based on Eξk [Lρk,ξk(uk, λk,ξk)] = Lρk
(uk, λk), we use the results obtained in Lemma 7 where we

show that the Lagrange function satisfies a sufficient-decrease condition and Lemma 11 to derive
the descent property of

(
Lρk

(uk, λk)
)
k∈N from (3.65) as in (3.81).

(iv) From (3.81), it is easy to find the convergence property of the proposed method as in Theorem 3.

We first prove several auxiliary results, which will be used in the proof of the main Theorem part
of this section.

Lemma 7 Let k ∈ N. Then,

Lρk+1
(uk+1, λk+1) ≤ Lρk

(uk+1, λk) +
(σk + 0.5(ρk+1 − ρk))

σk
∥|λk+1 − λk∥|2. (3.14)

Proof. In view of Lemma 3, for ek+1 = PS(c(uk+1)− b+ ρ−1
k+1λk+1), we have

Lρk+1
(uk+1, λk+1) = h(uk+1) + ⟨c(uk+1)− b− ek+1 || λk+1⟩+

ρk+1

2
∥|c(uk+1)− b− ek+1∥|2. (3.15)

By defining pk+1 := PS(c(uk+1)− b+ ρ−1
k λk), we can express the third term in the right hand side of

(3.15) as

ρk+1

2
∥|c(uk+1)− b− ek+1∥|2 =

ρk+1

2
∥|c(uk+1)− b− pk+1∥|2 +

ρk+1

2
∥|ek+1 − pk+1∥|2

+ ρk+1⟨c(uk+1)− b− pk+1 || pk+1 − ek+1⟩. (3.16)

The second term in the right hand side of (3.15) can be written as

⟨c(uk+1)− b− ek+1 || λk+1⟩ = ⟨c(uk+1)− b− pk+1 || λk⟩+ ⟨c(uk+1)− b− ek+1 || λk+1⟩
− ⟨c(uk+1)− b− pk+1 || λk⟩ . (3.17)

Using the definition of pk+1, the update rule of the dual variables can be written as

λk+1 = λk + σk(c(uk+1 − b− pk+1)). (3.18)

Thus, it follows that

⟨c(uk+1)− b− ek+1 || λk+1⟩ = ⟨c(uk+1)− b− pk+1 || λk⟩+ ⟨c(uk+1)− b− ek+1 || λk+1⟩
− ⟨c(uk+1)− b− pk+1 || λk+1⟩+ σk∥|c(uk+1)− b− pk+1∥|2

= ⟨c(uk+1)− b− pk+1 || λk⟩+ ⟨pk+1 − ek+1 || λk+1⟩
+ σk∥|c(uk+1)− b− pk+1∥|2. (3.19)

Therefore, (3.15) becomes

Lρk+1
(uk+1, λk+1) = Lρk

(uk+1, λk) + (σk +
ρk+1 − ρk

2
)∥|c(uk+1)− b− pk+1∥|2 + ok, (3.20)
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where we set

ok := ⟨pk+1 − ek+1 || λk+1⟩+ ρk+1⟨c(uk+1)− b− pk+1 || pk+1 − ek+1⟩+
ρk+1

2
∥|ek+1 − pk+1∥|2

= ⟨pk+1 − ek+1 || λk+1⟩+ ρk+1 ⟨c(uk+1)− b− ek+1 || pk+1 − ek+1⟩ −
ρk+1

2
∥|pk+1 − ek+1∥|2

≤ ρk+1

( 〈
pk+1 − ek+1 || ρ−1

k+1λk+1

〉
+ ⟨c(uk+1)− b− ek+1 || pk+1 − ek+1⟩

)
= ρk+1

( 〈
pk+1 − ek+1 || ρ−1

k+1λk+1 + c(uk+1)− b− ek+1

〉 )
≤ 0, (3.21)

where the last inequality follows from Lemma 5. Therefore, using the expression (3.18), the conclusion
follows from (3.20).

Lemma 8 Let k ∈ N and let βk, dk and fλk,ξk be defined, respectively, by Step 1, Step 2 and Step 3
of Algorithm 1. Then,

∆fλk,ξk(uk;−dk) ≤ −βk∥dk∥2. (3.22)

Proof. At each iteration k ∈ N, define

cξk = (cip)1≤p≤mk

vξk = (vk,ip)1≤p≤mk

bξk = (bip)1≤p≤mk

λk,ξk = (λk,ip)1≤p≤mk

Sξk = (Sip)1≤p≤mk

hξk(·) =
1

mk

mk∑
p=1

hip(·)

ψξk(·) =
1

mk

mk∑
p=1

(
ρk
2
d2Sip

((·)− bip + ρ−1
k λk,ip)−

1

2ρk
∥λk,ip∥2

)
Lρk,ξk(·, λk) = hξk(·) + (ψξk ◦ cξk)(·).

Then, we obtain

fλk,ξk(·) = Lρk,ξk(·, λk). (3.23)

The direction dk ∈ RK defined by (3.8) satisfies following (2.24),

∆fλk,ξk(uk; dk) = ψξk(cξk(uk) + Jcξk (uk)dk) + ⟨∇hξk(uk) | dk⟩ − ψξk(cξk(uk)). (3.24)

For the sake of clarity and conciseness, let us define the following
eξk := PSξk

(cξk(uk)− bξk + ρ−1
k λξk),

zξk := PSξk
(cξk(uk) + Jcξk (uk)dk − bξk + ρ−1

k λk),

sξk := Jcξk (uk)dk − zξk + eξk .

(3.25)

We also use the following scalar product

⟨⟨· | ·⟩⟩ : (wξk , vξk) 7→
mk∑
p=1

〈
wip | vip

〉
with vector norm ∥∥ · ∥∥ : vξk 7→

√
⟨⟨vξk | vξk⟩⟩.
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Using these notations, by Lemma 3, we have

mkψξk(cξk(uk) + Jcξk (uk)dk)

= ⟨⟨cξk(uk) + Jcξk (uk)dk − bξk − zξk | λξk⟩⟩+
ρk
2
∥∥cξk(uk) + Jcξk (uk)dk − bξk − zξk∥∥

2

= ⟨⟨c
ξk
(uk)− bξk − eξk + sξk | λξk⟩⟩+

ρk
2
∥∥cξk(uk)− bξk − eξk + sξk∥∥2

= ⟨⟨cξk(uk)− bξk − eξk | λξk⟩⟩+ ⟨⟨sξk | λξk⟩⟩+
ρk
2
∥∥cξk(uk)− bξk − eξk∥∥2

+ ρk⟨⟨cξk(uk)− bξk − eξξk | sξk⟩⟩+
ρk
2
∥∥sξk∥∥2, (3.26)

which implies, using the definition of eξk , that

mk
(
ψξk(cξk(uk) + Jcξk (uk)dk)− ψξk

(cξk(uk))
)

= ⟨⟨sξk | λξk⟩⟩+ ρk⟨⟨cξk(uk)− bξk − eξk | sξk⟩⟩+
ρk
2
∥∥sξk∥∥2

= ⟨⟨λξk + ρk
(
cξk(uk)− bξk − eξk

)
| sξk⟩⟩+

ρk
2
∥∥sξk∥∥2

= ⟨⟨vξk | sξk⟩⟩+
ρk
2
∥∥sξk∥∥2. (3.27)

Note that

∥∥sξk∥∥2 = ∥∥Jcξk (uk)dk∥∥
2 + 2⟨⟨Jcξk (uk)dk | eξk − zξk⟩⟩+ ∥∥eξk − zξk∥∥

2. (3.28)

Therefore,

mk
(
ψξk(cξk(uk) + Jcξk (uk)dk)− ψξk(cξk (uk))

)
≤ ⟨⟨vξk | sξk⟩⟩+

ρk
2
∥∥Jcξk (uk)dk∥∥

2 + ρk⟨⟨Jcξk (uk)dk | eξk − zξk⟩⟩+
ρk
2
∥∥eξk − zξk∥∥2

= ⟨⟨Jcξk (uk)
⊺vξk | dk⟩⟩+

ρk
2
∥∥J

ξk
(uk)dk∥∥2 + ⟨⟨vξk + ρkJξk

(uk)dk | eξk − zξk⟩⟩+
ρk
2
∥∥eξk − zξk∥∥2.

(3.29)

The weighted inner product ⟨⟨vξk + ρkJcξk (uk)dk | eξk − zξk⟩⟩ satisfies

⟨⟨vξk + ρkJcξk (uk)dk | eξk − zξk⟩⟩

= ρk⟨⟨cξk(uk)− bξk + Jcξk (uk)dk + ρ−1
k λξk − eξk | eξk − zξk⟩⟩

= ρk⟨⟨cξk(uk)− bξk + Jcξk (uk)dk + ρ−1
k λξk − zξk | eξk − zξk⟩⟩ − ρk∥∥zξk − eξk∥∥2

≤ −ρk∥∥zξk − eξk∥∥2, (3.30)

where the last inequality follows from Lemma 5. In turn,

ψξk(cξk(uk) + Jcξk (uk)dk)− ψξk(cξk(uk)) ≤
1

mk

(
⟨⟨Jcξk (uk)

⊺vξk | dk⟩⟩+
ρk
2
∥|Jcξk (uk)dk∥|

2
)
. (3.31)

Adding ⟨⟨∇hξk(uk) | dk⟩⟩ to both sides of (3.31) and using the definition of the descent direction dk,
we obtain

∆fλk,ξk(uk; dk) ≤ ⟨⟨∇hξk(uk) +
1

mk
Jcξk (uk)

⊺vξk | dk⟩⟩+
ρk
2mk
∥|Jcξk (uk)dk∥|

2 (3.32)

Observe that the stochastic direction dk is the gradient of fλk,ξk at the current point uk, i.e dk =
∇fλk,ξk(uk). Hence,

∆fλk,ξk(uk;−dk) ≤ −∥dk∥2 +
ρk
2mk
∥|Jcξk (uk)dk∥|

2

≤ −
(
1− ρk

2mk
∥Jcξk (uk)∥

2
)
∥dk∥2

≤ −βk∥dk∥2

< 0, (3.33)
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where the second inequality follows from (3.5).

Lemma 9 The sequence (λk)k∈N belongs to the polar cone S⊖ when λ0 ∈ S⊖ and Step 1 of Algorithm
1 is well defined.

Proof. Suppose that λk ∈ S⊖. Let u ∈ C and ρ > 0 and set a = c(u) − b. Then, it follows from [5,
Theorem 6.30(i)] and [5, Proposition 29(ii)] that

ρ

(
a− PS

(
a+ ρ−1λk

))
= ρ

(
PS⊖

(
a+ ρ−1λk

)
− ρ−1λk

)
= ρPS⊖

(
(ρa+ λk)/ρ

)
− λk

= ρPS⊖/ρ

(
(ρa+ λk)/ρ

)
− λk

= PS⊖
(
ρa+ λk

)
− λk. (3.34)

The latter equality implies that for u = uk, the following identity is verified

λk = PS⊖
(
ρ(c(uk)− b) + λk

)
− ρ

(
c(uk)− b− PS(c(uk)− b+ ρ−1λk)

)
. (3.35)

Therefore,

ρ∥|c(uk)− b− PS(c(uk)− b+ ρ−1λk)∥| = ∥|λk − PS⊖
(
ρ(c(uk)− b) + λk

)
∥| ≤ ρ∥|c(uk)− b∥|. (3.36)

Hence, by choosing

ρk = ρ ≤ min

{(
min

1≤i≤k
∥ui − ui−1∥

)2

∥|c(uk)− b∥|−2, ρk−1 + εσk−1, 2(1− ε)∥Jc(uk)∥−2

}
, (3.37)

we get 
1− ρk

2
∥Jc(uk)∥2 > ε

√
ρk∥|c(uk)− b− PS

(
c(uk)− b+ ρ−1

k λk
)
∥| ≤ min1≤i≤k ∥ui − ui−1∥

ρk < ρk−1 + εσk−1.

(3.38)

Consequently, Step 1 is well defined when λk ∈ S⊖. We next prove λk+1 ∈ S⊖. Indeed, we have

λk = PS⊖
(
ρk(c(uk+1)− b) + λk

)
− ρk

(
c(uk+1)− b− PS(c(uk+1)− b+ ρ−1

k λk)
)
. (3.39)

Thus

λk+1 = (1− σk/ρk)λk + (σk/ρk)PS⊖(c(uk+1)− b+ ρ−1
k λk) ∈ S⊖, (3.40)

where the last inclusion follows from λk ∈ S⊖ and σk ≤ ρk. Therefore, the lemma is proved by
induction.

Lemma 10 The line search (Step 3 of Algorithm 1) terminates after a finite number of steps, i.e.,
there exists tk > 0 such that

fλk,ξk

(
ūk+1

)
< fλk,ξk(uk) + νtk∆fλk,ξk(uk;−dk) +O

( 1

(k + 1)1+ε

)
. (3.41)

Proof. In view of [16, Lemma 5.1], for a fixed ν ∈ ]0, 1[, there exists a finite upper limit tk > 0 of
the primal stepsize interval such that for all primal stepsizes included in the open interval ]0, tk[, the
function φk verifies the following inequality

(∀t ∈
]
0, tk

[
) fλk,ξk(uk − tdk) ≤ fλk,ξk(uk) + tν∆fλk,ξk(uk;−dk), (3.42)

Since limt↓0 PC(uk − tdk) = uk and fλk,ξk is continuous, we obtain

lim
t↓0
|fλk,ξk(PC(uk − tdk))− fλk,ξk(uk − tdk)| = 0. (3.43)
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Therefore, there exists

tk ∈
]
0, tk

[
(3.44)

such that

fλk,ξk(PC(uk − tdk)) ≤ fλk,ξk(uk − tdk) +O(1/(k + 1)1+ε), (3.45)

which implies that the condition (3.11) is well-defined.

Lemma 11 Let dk be defined by (3.8). Set

ς1,k := (1 + ε)4σk

[
4µ2

0 + µ2
ct

2
k∥dk∥2

]
tk. (3.46)

Then

Eξk

[1 + ε

σk
∥|λk+1 − λk∥|2|Ek

]
≤ Eξk

[
ς1,ktk∥dk∥2|Ek

]
+ 2(1 + ε)t2k−1∥dk−1∥2. (3.47)

Proof. Define

(∀k ∈ N) ek := PS(c(uk)− b+ ρ−1
k λk) and qk := c(uk)− b− ek. (3.48)

and

(∀k ∈ N) pk+1 := PS(c(uk+1)− b+ ρ−1
k λk) and q̄k+1 := c(uk+1)− b− pk+1. (3.49)

Then, by the update rules {
vk = λk + ρkqk

λk+1 = λk + σkq̄k+1,
(3.50)

we obtain the following inequality

∥|λk+1 − λk∥|2 = σ2
k∥q̄k+1∥2

≤ 2σ2
k(∥|qk∥|2 + ∥|qk − q̄k+1∥|2)

=2σ2
k(∥|qk∥|2 + ∥|c(uk+1)− c(uk)− pk+1 + ek∥|2)

≤ 2σ2
k∥|qk∥|2 + 4σ2

k∥|c(uk+1)− c(uk)∥|2 + 4σ2
k∥|pk+1 − ek∥|2. (3.51)

Using (3.49), the third term in the RHS of (3.51) becomes

∥|pk+1 − ek∥|2 = ∥|PS(c(uk+1)− b+ ρ−1
k λk)− PS(c(uk)− b+ ρ−1

k λk)∥|2

≤ ∥|c(uk+1)− c(uk)∥|2. (3.52)

Therefore, inequality (3.51) can be written as

∥|λk+1 − λk∥|2 ≤ 2σ2
k∥|qk∥|2 + 8σ2

k∥|c(uk+1)− c(uk)∥|2. (3.53)

By the Step 1 of Algorithm 1 and σk ≤ ρk, the first term in the RHS of (3.53) verifies the inequality

2σ2
k∥|qk∥|2 ≤ 2σk∥|uk − uk−1∥|2. (3.54)

Since the Jacobian Jc(uk) of c is µc−Lipschitz continuous on the subset C of Rm, the second term in
the RHS of (3.53) satisfies the inequality

∥|c(uk+1)− c(uk)∥|2 ≤ (∥|Jc(uk)(uk+1 − uk)∥|+ (µc/2)∥uk+1 − uk∥2)2

≤ 2∥|Jc(uk)(uk+1 − uk)∥|2 + (µ2
c/2)∥uk+1 − uk∥4

≤ 2∥Jc(uk)∥2∥(uk+1 − uk)∥2 + (µ2
c/2)∥uk+1 − uk∥4. (3.55)

By our assumption, supk∈N ∥Jc(uk)∥ ≤ µ0 is finite. It follows that

8σ2
k∥|c(uk+1)− c(uk)∥|2 ≤ 16µ2

0σ
2
k∥(uk+1 − uk)∥2 + 4µ2

cσ
2
k∥uk+1 − uk∥4. (3.56)
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Summing the RHS of (3.54) and (3.56), we deduce from (3.53) that

∥|λk+1 − λk∥|2 ≤ 16µ2
0σ

2
k∥uk+1 − uk∥2 + 4µ2

cσ
2
k∥uk+1 − uk∥4 + 2σk∥uk − uk−1∥2. (3.57)

Since ∥uk+1 − uk∥ ≤ tk∥dk∥, we further bound (3.57) as

1 + ε

σk
∥|λk+1 − λk∥|2 ≤ (1 + ε)

[
16µ2

0σkt
2
k∥dk∥2 + 4µ2

cσkt
4
k∥dk∥4 + 2t2k−1∥dk−1∥2

]
. (3.58)

= (1 + ε)
[
16µ2

0σktk + 4µ2
cσkt

3
k∥dk∥2

]
tk∥dk∥2 + 2(1 + ε)t2k−1∥dk−1∥2

= ς1,ktk∥dk∥2 + 2(1 + ε)t2k−1∥dk−1∥2, (3.59)

which proves (3.47) by taking the expectation with respect to ξk both sides of (3.59) and using
Eξk [t

2
k−1∥dk−1∥2] = t2k−1∥dk−1∥2.

Theorem 3 Let ((uk, λk))k∈N be the primal-dual sequence generated by Algorithm 1. Suppose that
Assumptions 1 & 2 are satisfied and (Lρk

(uk, λk))k∈N is bounded below. Further assume that, the size
mk of the mini-batch selected at each iteration k, verifies

mk ≥ O(σ2
ktk,max(k + 1)1+ε) (3.60)

together with (1 + t2kℓξk) ≤ tk,max < +∞ a.s., and (1 + t2kℓk) ≤ tk,max < +∞ a.s., where tk,max is
independent of ξk.

Then, the following hold.

(i) The sequence (Eξk

[
∥uk+1 − uk√

tk
∥2|Ek

]
)k∈N is summmable, i.e.,

∑
k∈N

Eξk

[
∥uk+1 − uk√

tk
∥2|Ek

]
< +∞. (3.61)

(ii) The sequence (Eξk

[
σk∥|c(uk+1)− b− PS(c(uk+1 − b+ ρ−1

k λk)∥|2|Ek
]
)k∈N is summable, i.e.,∑

k∈N
Eξk

[
σk∥|c(uk+1)− b− PS(c(uk+1 − b+ ρ−1

k λk)∥|2|Ek
]
< +∞. (3.62)

(iii) Define uek+1 = PC(uk − tk∇Lρk
(uk, λk)). Then, the sequence (E

[
∥
uek+1 − uk√

tk
∥2|Ek

]
)k∈N is sum-

mmable, i.e., ∑
k∈N

Eξk

[
∥
uek+1 − uk√

tk
∥2|Ek

]
< +∞, a.s. (3.63)

(iv) Choosing σk such that supk∈N σk ≤ σ∞ < +∞ where σ∞ is independent of ξk. Then, the sequence
(Eξk

[
σk∥|c(uek+1)− b− PS(c(u

e
k+1)− b+ ρ−1

k λk)∥|2|Ek
]
)k∈N is summable, i.e.,∑

k∈N
Eξk

[
σk∥|c(uek+1)− b− PS(c(u

e
k+1)− b+ ρ−1

k λk)∥|2|Ek
]
< +∞, a.s. (3.64)

Proof. In this proof, we denote by Eξk [X] = Eξk [X|Ek] the conditional expectation of X with respect
to Ek. Using Lemma 8 and Lemma 10, we obtain

fλk,ξk(uk+1) < Lρk,ξk(uk, λk,ξk)− tkβkν∥dk∥2 +O
( 1

(k + 1)1+ε

)
. (3.65)

Note that uek+1 = PC(uk − tk∇Lρk
(uk, λk)). Then, it follows from the nonexpansiveness of the pro-

jection operator PC that

∥uek+1 − uk+1∥2 = ∥PC(uk − tk∇Lρk
(uk, λk))− PC(uk − tkdk)∥2 ≤ t2k∥dk −∇Lρk

(uk, λk)∥2. (3.66)
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Let ℓξk be the Lipschitz constant of ∇fλk,ξk . Then, it follows from the Descent Lemma [5, Lemma
2.64] that

fλk,ξk(u
e
k+1)− fλk,ξk(uk+1) ≤

〈
∇fλk,ξk(uk+1) | uek+1 − uk+1

〉
+
ℓξk
2
∥uek+1 − uk+1∥2

≤ ∥∇fλk,ξk(uk+1)∥∥uek+1 − uk+1∥+
ℓξk
2
∥uek+1 − uk+1∥2

≤
(
∥∇fλk,ξk(uk)∥+ ∥∇fλk,ξk(uk+1)−∇fλk,ξk(uk)∥

)
∥uek+1 − uk+1∥

+
ℓξk
2
∥uek+1 − uk+1∥2. (3.67)

Since ∥∇fλk,ξk(uk+1)−∇fλk,ξk(uk)∥ ≤ ℓξk∥uk+1 − uk∥, the RHS of (3.67) verifies(
∥∇fλk,ξk(uk)∥+ ∥∇fλk,ξk(uk+1)−∇fλk,ξk(uk)∥

)
∥uek+1 − uk+1∥+

ℓξk
2
∥uek+1 − uk+1∥2

≤ (1 + tkℓξk)∥dk∥∥uek+1 − uk+1∥+
ℓξk
2
∥uek+1 − uk+1∥2

≤tk(1 + tkℓξk)∥dk∥∥dk −∇Lρk
(uk, λk)∥+

ℓξk
2
t2k∥dk −∇Lρk

(uk, λk)∥2

≤ 1

2
t2k(1 + tkℓξk)

2∥dk∥2 +
1

2
(1 + t2kℓξk)∥dk −∇Lρk

(uk, λk)∥2. (3.68)

Combining (3.68) with (3.65), we deduce

fλk,ξk(u
e
k+1) < Lρk,ξk(uk, λk,ξk)− tk

(
νβk −

1

2
tk(1 + tkℓξk)

2
)
∥dk∥2

+
1

2
(1 + t2kℓξk)∥dk −∇Lρk

(uk, λk)∥2 +O
( 1

(k + 1)1+ε

)
. (3.69)

Let ℓk be the Lipschitz constant of ∇Lρk
(·, λk). Then, it follows from the Descent Lemma [5, Lemma

2.64] that

Lρk
(uk+1, λk)− Lρk

(uek+1, λk) ≤
〈
∇Lρk

(uek+1, λk) | uk+1 − uek+1

〉
+
ℓk
2
∥uek+1 − uk+1∥2 (3.70)

The RHS of (3.70) verifies〈
∇Lρk

(uek+1, λk) | uk+1 − uek+1

〉
+
ℓk
2
∥uek+1 − uk+1∥2

≤ ∥∇Lρk
(uek+1, λk)∥∥uek+1 − uk+1∥+

ℓk
2
∥uek+1 − uk+1∥2

≤
(
∥∇Lρk

(uk, λk)∥+ ∥∇Lρk
(uk, λk)−∇Lρk

(uek+1, λk)∥
)
∥uek+1 − uk+1∥+

ℓk
2
∥uek+1 − uk+1∥2

≤
(
∥Eξk [dk]∥+ ℓk∥uk − uek+1∥

)
∥uek+1 − uk+1∥+

ℓk
2
∥uek+1 − uk+1∥2

Using (3.66), we obtain(
∥∇Lρk

(uk, λk)∥+ ℓk∥uk − uek+1∥
)
∥uek+1 − uk+1∥+

ℓk
2
∥uek+1 − uk+1∥2

≤ tk
(
∥∇Lρk

(uk, λk)∥+ tkℓk∥∇Lρk
(uk, λk)∥

)
∥dk −∇Lρk

(uk, λk)∥+
ℓk
2
t2k∥dk −∇Lρk

(uk, λk)∥2

≤ tk∥∇Lρk
(uk, λk)∥

(
1 + tkℓk

)
∥dk −∇Lρk

(uk, λk)∥+
ℓk
2
t2k∥dk −∇Lρk

(uk, λk)∥2

≤ 1

2
t2k
(
1 + tkℓk

)2∥∇Lρk
(uk, λk)∥2 +

1

2
(1 + t2kℓk)∥dk −∇Lρk

(uk, λk)∥2

≤ t2k
(
1 + tkℓk

)2∥dk∥2 + 3

2
(1 + t2kℓk)∥dk −∇Lρk

(uk, λk)∥2 (3.71)
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Combining (3.69) and (3.71), we deduce

Lρk
(uk+1, λk)− Lρk

(uek+1, λk) + fλk,ξk(u
e
k+1)

≤ Lρk,ξk(uk, λk,ξk)− tk
[(
νβk −

1

2
tk(1 + tkℓξk)

2
)
∥dk∥2 − tk

(
1 + tkℓk

)2∥dk∥2]
+

1

2
(1 + t2kℓξk)∥dk −∇Lρk

(uk, λk)∥2 +
3

2
(1 + t2kℓk)∥dk −∇Lρk

(uk, λk)∥2 +O
( 1

(k + 1)1+ε

)
.

(3.72)

Taking the conditional expectation with respect to ξk, using Lemma 7, we derive from (3.72) that

Eξk [Lρk+1
(uk+1, λk+1)] ≤ Lρk

(uk, λk)−Eξk

[
tk

(
νβk −

1

2
tk(1 + tkℓξk)

2 − tk
(
1 + tkℓk)

2
)
∥dk∥2

]
+Eξk

[1
2
(1 + t2kℓξk)∥dk −∇Lρk

(uk, λk)∥2 +
3

2
(1 + t2kℓk)∥dk −∇Lρk

(uk, λk)∥2

+
1 + ϵ

σk
∥|λk+1 − λk∥|2

]
+O

( 1

(k + 1)1+ε

)
. (3.73)

Then, by Lemma 11,

Eξk [Lρk+1
(uk+1, λk+1)] ≤ Lρk

(uk, λk)−Eξk

[
tk

(
νβk −

1

2
tk(1 + tkℓξk)

2 − tk
(
1 + tkℓk)

2
)
∥dk∥2

]
+Eξk

[1
2
(1 + t2kℓξk)∥dk −∇Lρk

(uk, λk)∥2
]
+Eξk

[3
2
(1 + t2kℓk)∥dk −∇Lρk

(uk, λk)∥2
]

+Eξk

[
ς1,ktk∥dk∥2

]
+ 2(1 + ϵ)t2k−1∥dk−1∥2 +O

( 1

(k + 1)1+ε

)
. (3.74)

Next, by using Assumption 1, (1 + t2kℓk) ≤ tk,max and Assumption 2, we get for the third term of the
RHS of (3.74)

Eξk

[1
2
(1 + t2kℓξk)∥dk −∇Lρk

(uk, λk)∥2
]
≤ 1

2
tk,maxEξk

[
∥dk −∇Lρk

(uk, λk)∥2
]

≤ 1

2

tk,maxσ
2
k

mk
(3.75)

and by the same manner, for the fourth term of the RHS of (3.74)

Eξk

[3
2
(1 + t2kℓk)∥dk −∇Lρk

(uk, λk)∥2
]
≤ 3

2
tk,maxEξk

[
∥dk −∇Lρk

(uk, λk)∥2
]

≤ 3

2

tk,maxσ
2
k

mk
. (3.76)

Adding (3.75) and (3.76), we obtain

Eξk

[1
2
(1 + t2kℓξk)∥dk −∇Lρk

(uk, λk)∥2
]
+Eξk

[3
2
(1 + t2kℓk)∥dk −∇Lρk

(uk, λk)∥2
]
≤ 2

tk,maxσ
2
k

mk
.

(3.77)

Consequently, in order to satisfy (3.60), the following inequality must be verified

2
tk,maxσ

2
k

mk
≤ O

( 1

(k + 1)1+ε

)
. (3.78)

Then, by using the LHS of (3.77), we can simplify the RHS of (3.74) as

Eξk

[
Lρk+1

(uk+1, λk+1)
]
≤ Lρk

(uk, λk)−Eξk

[
tk
(
νβk −

1

2
tk(1 + tkℓξk)

2 − tk
(
1 + tkℓk)

2
)
∥dk∥2

]
+Eξk

[
ς1,ktk∥dk∥2

]
+ 2(1 + ε)t2k−1∥dk−1∥2 +O

( 1

(k + 1)1+ε

)
. (3.79)
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Adding Eξk

[
2(1 + ε)t2k∥dk∥2

]
to both sides of (3.79), we get

Eξk

[
Lρk+1

(uk+1, λk+1) + 2(1 + ε)t2k∥dk∥2
]

≤ Lρk
(uk, λk)−Eξk

[
tk
(
νβk −

1

2
tk(1 + tkℓξk)

2 − tk
(
1 + tkℓk)

2
)
∥dk∥2

]
+Eξk

[
ς1,ktk∥dk∥2 + 2(1 + ε)t2k∥dk∥2

]
+ 2(1 + ε)t2k−1∥dk−1∥2 +O

( 1

(k + 1)1+ε

)
. (3.80)

We can further obtain from (3.80) that

Eξk

[
Lρk+1

(uk+1, λk+1) + 2(1 + ε)t2k∥dk∥2
]

≤ Lρk
(uk, λk) + 2(1 + ε)t2k−1∥dk−1∥2

−Eξk

[
tk
(
νβk −

1

2
tk(1 + tkℓξk)

2 − tk(1 + tkℓk)
2 − 2(1 + ε)tk − ς1,k

)
∥dk∥2

]
+O

( 1

(k + 1)1+ε

)
≤ Lρk

(uk, λk) + 2(1 + ε)t2k−1∥dk−1∥2 −
ε

2
Eξk

[
tk∥dk∥2

]
+O

( 1

(k + 1)1+ε

)
. (3.81)

Since the (Lρk
(uk, λk))k∈N is bounded below, by adding − infk∈N Lρk

(uk, λk) to both sides of (3.81),
we derive from Lemma 6 that ∑

k∈N
Eξk [tk∥dk∥2] < +∞. (3.82)

As a consequence, by Corollary 1, we obtain

∑
k∈N

tk∥dk∥2 < +∞ a.s. (3.83)

(i): This conclusion follows directly from (3.83) and ∥uk+1 − uk√
tk

∥ ≤
√
tk∥dk∥.

(ii): Note that under the condition (3.9), ς1,k < 1 and tk−1 ≤ 1 a.s. Hence, we can derive from Lemma
11 that

∑
k∈N

Eξk

[1 + ε

σk
∥|λk+1 − λk∥|2

]
≤

∑
k∈N

Eξk [ς1,ktk∥dk∥2] +
∑
k∈N

2(1 + ε)t2k−1∥dk−1∥2

≤
∑
k∈N

Eξk

[
tk∥dk∥2 + 2(1 + ε)t2k−1∥dk−1∥2

]
< +∞, (3.84)

where the last inequality follows from (i) and (3.81). Therefore, the conclusion follows from (3.84) and
the update rule of λk+1.

(iii): We have

Eξk

[
∥
uek+1 − uk√

tk
∥2
]
≤ 2Eξk

[
∥
uek+1 − uk+1√

tk
∥2
]
+ 2Eξk

[
∥uk+1 − uk√

tk
∥2
]

≤ 2Eξk [tk∥dk −∇Lρk
(uk, λk)∥2] + 2Eξk

[
∥uk+1 − uk√

tk
∥2
]

(3.85)
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Since tk ∈ ]0, 1[, the first term of the RHS of (3.85) verifies Eξk [tk∥dk −∇Lρk
(uk, λk)∥2] ≤ Eξk [∥dk −

∇Lρk
(uk, λk)∥2]; hence

2Eξk [tk∥dk −∇Lρk
(uk, λk)∥2] + 2Eξk

[
∥uk+1 − uk√

tk
∥2
]

≤ 2Eξk

[
∥dk −∇Lρk

(uk, λk)∥2
]
+ 2Eξk

[
∥uk+1 − uk√

tk
∥2
]

≤ 2
σ2
k

mk
+ 2Eξk

[
∥uk+1 − uk√

tk
∥2
]

= 2Eξk

[
∥uk+1 − uk√

tk
∥2
]
+O

( 1

(k + 1)1+ϵ

)
, (3.86)

which implies that the sequence
(
E
[
∥
uek+1 − uk√

tk
∥2
])

k∈N
is summable.

(iv): Let us set {
rek+1 = c(uek+1)− b− PS(c(u

e
k+1)− b+ ρ−1

k λk)

rk+1 = c(uk+1)− b− PS(c(uk+1)− b+ ρ−1
k λk).

Since PS is nonexpansive,

σk∥|rk+1 − rek+1∥|2 ≤ 2σk∥|c(uek+1)− c(uk+1)∥|2

≤ 4σk∥|Jc(uek+1)(uk+1 − uek+1)∥|2 + σkµ
2
c∥uk+1 − uek+1∥4 (3.87)

Then, using Assumption 1 & 2, and tk ≤ 1, the RHS of (3.87) verifies

Eξk

[
4σk∥|Jc(uek+1)(uk+1 − uek+1)∥|2 + σkµ

2
c∥uk+1 − uek+1∥4

]
(3.88)

≤ Eξk

[
4σkµ

2
0∥uk+1 − uek+1∥2 + σkµ

2
c∥uk+1 − uek+1∥4

]
≤ Eξk

[
4σkµ

2
0t

2
k∥dk −∇Lρk

(uk, λk)∥2 + σkµ
2
ct

4
k∥dk −∇Lρk

(uk, λk)∥4
]

≤ Eξk

[
4µ2

0∥dk −∇Lρk
(uk, λk)∥2 + µ2

c∥dk −∇Lρk
(uk, λk)∥4

]
sup
k∈N

(σk)

≤
(
4µ2

0

σ2
k

mk
+ µ2

c(
σ2
k

mk
)2
)
sup
k∈N

(σk)

= O
( 1

(1 + k)1+ϵ

)
. (3.89)

Therefore, the sequence (Eξk

[
4σk∥|Jc(uek+1)(uk+1−uek+1)∥|2+σkµ2

c∥uk+1−uek+1∥4)k∈N is summable.
By (3.87), the sequence (σk∥|rk+1 − rek+1∥|2)k∈N is also summable. Hence, in view of (ii) and

∥|rek+1∥|2 ≤ 2∥|rk+1 − rek+1∥|2 + ∥|rk+1∥|2,

it follows that the sequence (∥|rek+1∥|2)k∈N is summable and thus, the result is proved.

Corollary 2 Under the same conditions stated in Theorem 3. The followings hold almost surely,

(i) The sequence (∥uk+1 − uk√
tk

∥)k∈N is square summable.

(ii) The sequence
(√
σk∥|c(uk+1)− b− PS(c2(uk+1)− b+ ρ−1

k λk)∥|
)
k∈N is square summable.

(iii) The sequence (∥
uek+1 − uk√

tk
∥)k∈N is square summable.

(iv) The sequence
(√
σk∥|c(uek+1)− b− PS(c2(u

e
k+1)− b+ ρ−1

k λk)∥|
)
k∈N is square summable.

Proof. The results follow from Theorem 3 as well as Corollary 1.
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3.3 Convergence to KKT points

In this section, we determine the conditions for the local convergence of the sequences (uk, λk)k∈N
produced by the Algorithm 1 to a critical point of the augmented Lagrangian function Lρ defined by
(2.20).

Let us first recall the first-order KKT conditions for the constrained optimization problem at
hand. If NC(u

†) defines the normal cone of the set C at the point u†, a local minimum of Problem 1,
that satisfies the regularity conditions stated here below; then, there exists a vector λ ∈ Rm, where
m =

∑M
q=1mq, such that the following conditions hold:

Stationarity: −
(
∇h(u†) +

m∑
i=1

λiJci(u
†)
)
∈ NC(u

†),

Primal feasibility: c(u†)− b ∈ S,
Dual feasibility: λ ∈ S⊖1,

Complementary slackness:
〈
λ | c(u†)− b

〉
= 0.

(3.90)

Throughout this paper, the set K of KKT points is non-empty. The first-order KKT conditions hold
if some regularity conditions, called constraint qualification (CQ) conditions, are satisfied by feasible
points. The constraint qualification of c on Z ⊆ C, a non-empty closed convex subset of H, can be
stated as follows: there exists a strictly positive constant ζ ∈ ]0,+∞[ such that for all v ∈ Y =
c(Z)− b of Rm, the following inequality is verified for all u ∈ Z

ζ∥v∥ ≤ ∥Jc(u)⊺v∥. (3.91)

In nonlinear programming, see, e.g., [13] [51], the uniform regularity condition (3.91) is equivalent
to the well-known Mangasarian-Fromovitz Constraint Qualification (MFCQ) of c on Z. Let u† be a
local minimizer for Problem 1. The MFCQ conditions holding at u† guarantee the existence2 and the
boundedness -but not necessarily the uniqueness- of KKT multipliers (λ) at u†.

Throughout this paper, in addition to the lower boundedness of Lρk
(uk, λk) for all k ∈ N, the

following conditions and properties are assumed to be verified. Let (uk)k∈N ⊂ Z ⊆ C.

P1 Constraint c verifies the MFCQ conditions on Z with constant ζ ∈ ]0,+∞[ ;
P2 The sequence (ρk)k∈N is bounded from above.
P3 The primal sequence (uk)k∈N generated by Algorithm 1 is bounded.

The reasoning developed is to first demonstrate by means of Proposition 1 that the limit points
of the subsequences produced by Algorithm 1 verify the first-order KKT conditions (3.90). The next
step consists of proving that the set of limits points is non-empty (cf. Proposition 2). Knowing this
property, the last step then requires to prove that, under certain conditions, the sequences produced
by the algorithm converge to such limit point (cf. Corollary 3).

Proposition 1 Assume that the conditions stated for Theorem 3 hold. Suppose, according to property
P2, that (ρk)k∈N is bounded from above. Let ((unk

, λnk
))k∈N be a subsequence of ((uk, λk))k∈N such

that 
(unk

, λnk
)→ (u†, λ†),

(unk+1 − unk
)/tnk

→ 0,

c(unk+1)− b− PS(c(unk+1)− b+ ρ−1
nk
λnk

)→ 0.

(3.92)

Then, the limit point (u†, λ†) verifies the KKT conditions (3.90).

1 where S⊖ refers to the polar cone of S, see infra for its definition.
2 The set of KKT multipliers (λ) at u† is nonempty.
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Proof. (i). Primal feasibility. Since tk (= θj , j ∈ N) ≤ 1,

∥unk+1 − unk
∥ ≤ ∥(unk+1 − unk

)/tnk
∥. (3.93)

Hence, uk+1 − uk → 0 implies that
unk+1 → u†. (3.94)

Since PS and c are continuous, it follows that

lim
k→∞

PS(c(unk+1)− b) = PS(c(u
†)− b). (3.95)

By assumption dS(c(unk+1)− b) ≤ ∥|c(unk+1)− b−PS(c(unk+1)− b+ρ−1
nk
λnk

)∥| → 0; hence, it follows
that

c(u†)− b = PS(c(u
†)− b) ∈ S, (3.96)

ii) Dual feasibility and Complementarity slackness: consider the negative of the dual cone of S3,
i.e., the polar cone S⊖ of S defined as S⊖ =

{
u | sup ⟨S | u⟩ ≤ 0

}
. Then, by [5, Theorem 6.30], we

have
(∀a ∈ Rm) a = PSa+ PS⊖a, (3.97)

In turn, by using [5, Proposition 29(ii)], we obtain for the constraints c(u) − b ∈ S, and ak+1 =
c(uk+1)− b that

ρk

(
ak+1 − PS

(
ak+1 + ρ−1

k λk
))

= ρk

(
PS⊖

(
ak+1 + ρ−1

k λk
)
− ρ−1

k λk

)
= ρkPS⊖

(
(ρkak+1 + λk)/ρk

)
− λk

= ρkPS⊖/ρk

(
(ρkak+1 + λk)/ρk

)
− λk

= PS⊖
(
ρkak+1 + λk

)
− λk. (3.98)

The latter equality implies that for all k, the following identity is verified

λk = PS⊖
(
ρk(c(uk+1)− b) + λk

)
− ρk

(
c(uk+1)− b− PS(c(uk+1)− b+ ρ−1

k λk)
)
. (3.99)

Following property P2, the sequence (ρk)k∈N is bounded; hence, we derive from (3.99) that

λ† = PS⊖
(
ρ†(c(u†)− b) + λ†

)
∈ S⊖, (3.100)

where ρ† is a cluster point of (ρnk
)k∈N. Moreover, since λ†/2 ∈ S⊖, by the Projection theorem [5,

Theorem 3.16], we get 〈
c(u†)− b || λ†

〉
= 0. (3.101)

iii) Stationarity: We also have

vnk
:= λnk

+ ρnk

(
c(unk

)− b− PS(c(unk
)− b+ ρ−1

nk
λnk

)
)
→ λ†

∇Lρk
(uk, λk) =

(
∇h(unk

) + Jc(unk
)⊺vnk

)
→ d† =

(
∇h(u†) + Jc(u

†)⊺λ†
)
. (3.102)

Next, we deduce from the definition of uek+1 that

(unk
− uenk+1)/tnk

+∇Lρk
(uk, λk) ∈ NC(u

e
nk+1). (3.103)

By Corollary 2(iii), (unk
− uenk+1)/tnk

→ 0 and uenk+1 → u†. Hence, it follows from (3.102) that

d† ∈ NC(u
†). (3.104)

The expressions (3.96), (3.100), (3.101) and (3.104) are exactly the first-order KKT conditions (3.90).
Consequently, the limit point (u†, λ†) ∈ K.

Note that when the set C is bounded, the primal sequence is bounded. In the general case, we
have the following result.

3 The dual cone S⋆ is always convex irrespective of the original set
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Proposition 2 Assume that the conditions stated for Theorem 3 hold, the sequence (uk)k∈N is bounded
(property P3), and the sequence (ρk)k∈N is bounded from above (property P2). We further suppose that
the subsequences (dnk

)k∈N is bounded. Then, the subsequence (unk
, λnk

)k∈N is bounded. Consequently,
the set of cluster points of (uk, λk)k∈N is non-empty.

Proof. It follows from our assumption that there exists a constant O(1) such that (∀k ∈ N) ∥dnk
∥ ≤

O(1). Hence,

(∀k ∈ N) ∥∇Lρnk
(unk

, λnk
)∥ = ∥Eξnk

[dnk
]∥ ≤ Eξnk

[∥dnk
∥] ≤ O(1). (3.105)

Note that

∇Lρk
(uk, λk) = ∇h(unk

) + Jc(unk
)⊺vnk

with vnk
= λnk

+ ρnk

(
c(unk

)− b− PS(c(unk
)− b+ ρ−1

nk
λnk

)
)
, (3.106)

which implies that
∥Jc(unk

)⊺vnk
∥ ≤ ∥∇Lρnk

(unk
, λnk

)∥+ ∥∇h(unk
)∥. (3.107)

Since the primal sequence (uk)k∈N is bounded and since the function h is differentiable with µh-
Lipschitz continuous gradient ∇h, it follows from (3.105) and (3.107) that

∥Jc(unk
)⊺vnk

∥ ≤ O(1). (3.108)

Now, using the Mangasarian-Fromowitz (MF) condition of c on Z (property P1), there exists a strictly
positive constant ζc such that

ζc∥|(vnk
)∥| ≤ ∥Jc(unk

)⊺vnk
∥. (3.109)

Hence, (vnk
)k∈N defines a sequence bounded by

ζc∥|(vnk
)∥| ≤ ∥Jc(unk

)⊺vnk
∥ ≤ O(1).

Since (ρk)k∈N is bounded and (uk)k∈N is bounded, By Step 1 of Algorithm 1, the sequence
(
ρnk

(
c(unk

)−

b−PS(c(unk
)− b+ ρ−1

nk
λnk

)
))

k∈N
is bounded. In turn, by the definition of vnk

defined by (3.106), the

sequence (λnk
)k∈N is also bounded. Consequently, the set of cluster points of (uk, λk)k∈N is non-empty.

Corollary 3 Assume the conditions stated for Theorem 3 hold. Suppose, the properties P1, P2, and
P3 are satisfied. If

∑
k∈N tk =∞, and ∥dk∥ = O(1), and kρk →∞. Then, there exists a subsequence

(unk
, λnk

)k∈N of (uk, λk)k∈N that converges to a limit point (u†, λ†) ∈ K.

Proof. Since
∑

k∈N tk = ∞, and by Theorem 3,
∑

k∈N tk∥dk∥2 < +∞, we get infk∈N ∥dk∥ = 0. Then
there exists a subsequence (dpk

)k∈N such that limk→∞ dpk
= 0. By Proposition 2, there exists a

subsequence (unk
, λnk

)k∈N of (upk
, λpk

)k∈N of such that (unk
, λnk

)→ (u†, λ†). We first have

∥unk+1 − unk

tnk

∥ ≤ ∥dnk
∥ → 0. (3.110)

Moreover, it follows Step 1 of Algorithm 1 that

ρk∥|c(uk)− b− PS

(
c(uk)− b+ ρ−1

k λk
)
∥|2 ≤ min

1≤i≤k
∥ui − ui−1∥2

≤ 1

k

k∑
i=1

∥ui − ui−1∥2

≤ 1

k

k∑
i=1

t2i ∥di∥2

≤ O(1/k), (3.111)
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where the last estimation follows from Corollary 2. Since kρk →∞, we get ∥|c(uk)− b− PS

(
c(uk)−

b+ ρ−1
k λk

)
∥| → 0 and hence

∥|c(uk+1)− b− PS

(
c(uk+1)− b+ ρ−1

k λk
)
∥| → 0. (3.112)

In view of Proposition 1, we get (u†, λ†) ∈ K.

4 Iteration Complexity

In this Section, we characterize the iteration complexity of the proposed Algorithm in terms of the
difference ∆Lk(·, λk) and the feasibility. By iteration complexity, we refer here to the number of
iterations required to obtain an approximate ε-KKT point of Problem 1 by means of the proposed
algorithm (cf. Section 3.1).

Theorem 4 Let µcip
and µhip

be, respectively, the Lipschitz constant of Jcip and ∇hip . Set

µc,ξk =
1

2mk

mk∑
p=1

µcip
and µh,ξk =

1

2mk

mk∑
p=1

µhip
(4.1)

Suppose that C = H×G. Assume that the conditions stated in Theorem 3 are satisfied. Then, tk and
uk verify the following

tk ≥
2θ(1− ν)βξk

βξkµc,ξkρk + µh,ξk

and min
0≤i≤k

2θ(1− ν)βξi
βξiµc,ξiρi + µh,ξi

∥ui+1 − ui
ti

∥2 = O(1/(k + 1)), (4.2)

where the constant of O is a random variable which is independent of k, and

βξk := max
0≤t≤1,1≤p≤mk

(
dSip

(cip(uk − tdk)− bip + ρ−1
k λk,ip) + dSip

(cip(uk)− Jcip (uk)(tdk)− bip + ρ−1
k λk,ip)

)
.

(4.3)

Suppose that there exists a positive constant β such that

βξktk ≤ β and 2θ(1− ν)βξk − tkµh,ξk ≥ ϵ1 (4.4)

Then, ρk is bounded below by ρmin := ϵ1/(βµ
e
c) with µ

e
c := Eξk [µc,ξk ]. Moreover,

∥|c(uk)− b− PS

(
c(uk)− b+ ρ−1

k λk
)
∥| ≤ O(1/

√
k). (4.5)

Proof. Suppose that the line search step (3.11) does not yet terminate at a certain t = θj , θ ∈ ]0, 1].
Then, we have

νt∆fλk,ξk(uk;−dk) ≤ fλk,ξk(uk − tdk)− fλk,ξk(uk). (4.6)

Following the definition of the function fλk,ξk , the terms of the right-hand side in (4.6) can be written
respectively as

fλk,ξk(uk − tdk) = ψξk(cξk(uk − tdk)) + hξk(uk − tdk), (4.7)

fλk,ξk(uk) = ψξk(cξk(uk)) + hξk(uk). (4.8)

Thus, the right-hand side of (4.6) becomes

fλk,ξk(uk − tdk)− fλk,ξk(uk) = [ψξk(cξk(uk − tdk))− ψξk

(
cξk(uk))] + [hξk(uk − tdk)− hξk(uk)].

(4.9)

Using the definition of ∆fλk,ξk(uk;−tdk), the second term

−ψξk(cξk(uk)) = ∆fλk,ξk(uk;−tdk)− ψξk(cξk(uk)− Jcξk (uk)tdk) + ⟨∇hξk(uk) | tdk⟩ ;
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thus, the right-hand side of (4.6) can be expressed as

fλk,ξk(uk − tdk)− fλk,ξk(uk) = ∆fλk,ξk(uk;−tdk) + ψξk(cξk(uk − tdk))− ψξk(cξk(uk)− Jcξk (uk)tdk)
+ hξk(uk − tdk)− hξk(uk) + ⟨∇hξk(uk) | tdk⟩ . (4.10)

By Lemma 4, the function Ψξk : RK ×R→ R : (u, ξ) 7→ ψξk(u) + IdR(ξ) is convex. Hence, by defining
cξk : RK → Rm × ]−∞,+∞] : u 7→ cξk(u) =(cξk(u), c0(u)), it follows from [16, Lemma 3.1] that

∆fλk,ξk(uk; tdk) = ∆0(Ψξk ◦ cξk)(uk; tdk)
≤ t∆0(Ψξk ◦ cξk)(uk; dk) = t∆fλk,ξk(uk; dk). (4.11)

In turn, simple calculations show that

∆fλk,ξk(uk,−tdk) + ψξk(cξk(uk − tdk))− ψξk(cξk(uk)− Jcξk (uk)tdk)
≤ t∆fλk,ξk(uk;−dk) + ψξk(cξk(uk − tdk))− ψξk(cξk(uk)− Jcξk (uk)tdk). (4.12)

To determine the upper bound of the third term in the RHS of (4.12), we make use of the Assumption
1 and the µcip

- Lipschitz continuity property of Jcip to obtain

ψξk(cξk(uk − tdk))− ψξk(cξk(uk)− Jcξk (uk)tdk)

=
ρk
2mk

mk∑
p=1

(
d2Sip

(cip(uk − tdk)− bip + ρ−1
k λk,ip)− d2Sip

(cip(uk)− Jcip (uk)tdk − bip + ρ−1
k λk,ip)

)

≤ βξkρk
2mk

mk∑
p=1

(
dSip

(
cip(uk − tdk)− bip + ρ−1

k λip
)
− dSip

(
cip(uk)− Jcip (uk)tdk − bip + ρ−1

k λip
))

≤ βξkρk
2mk

mk∑
p=1

∥cip(uk − tdk)− cip(uk)− Jcip (uk)tdk∥

≤ βξkµc,ξkρk
2

∥tdk∥2. (4.13)

Moreover, since the gradient of hξk is µh,ξk -Lipschitz continuous, we also have

hξk(uk − tdk)− hξk(uk) + ⟨∇hξk(uk) | tdk⟩ ≤
µh,ξk

2
t2∥dk∥2. (4.14)

Therefore, we derive from (4.6), (4.12), (4.13) and (4.14) that

νt∆fλk,ξk(uk;−dk) ≤ t∆fλk,ξk(uk;−dk) +
1

2

(
βξkµc,ξkρk + µh,ξk

)
t2∥dk∥2, (4.15)

which implies that

t ≥ 2(1− ν)(
βξkµc,ξkρk + µh,ξk

)
∥dk∥2

|∆fλk,ξk(uk;−dk)|. (4.16)

In turn, the line search step (3.11) terminates at tk > 0 (since ν ∈ ]0, 1[) with

tk ≥
2θ(1− ν)(

βξkµc,ξkρk + µh,ξk

)
∥dk∥2

|∆fλk,ξk(uk;−dk)|. (4.17)

In view of Lemma 8,
|∆fλk,ξk(uk;−dk)| ≥ βk∥dk∥2. (4.18)

It follows by combining (4.18) with (4.17) that

tk ≥
2θ(1− ν)βk

βξkµc,ξkρk + µh,ξk

, (4.19)
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which is the first assertion in (4.2). Hence, by involving Corollary 2, we deduce∑
k∈N

2θ(1− ν)βk∥dk∥2

βξkµc,ξkρk + µh,ξk

< +∞, (4.20)

which implies the second assertion in (4.2). Moreover, from (4.3) and (4.19), we also obtain

βµc,ξkρk ≥ βξkµc,ξkρktk ≥ 2θ(1− ν)βξk − tkµh,ξk ≥ ϵ1. (4.21)

This inequality implies that the sequence (ρk)k∈N is bounded below by ρmin. Note also that∑
k∈N
∥uk+1 − uk∥2 ≤

∑
k∈N

tk∥dk∥2 < +∞. (4.22)

Hence, using the Step 1 of Algorithm 1, it follows that

√
ρmin

2∥|c(uk)− b− PS

(
c(uk)− b+ ρ−1

k λk
)
∥|2 ≤ min

1≤i≤k
∥uk − uk−1∥2 = O(1/k), (4.23)

which proves the last conclusion.

5 Comparison and Related Work

The augmented Lagrangian method (ALM) is one of the most common approaches for solving non-
linear constrained problems. However, as stated in the Introduction section, constraints are often
assumed to be convex implying that equality constraint functions must be affine and inequality con-
straint functions must be convex. With the proposed method, the minimization of the (possibly)
nonconvex objective function h can be subject to nonlinear equality and inequality constraints.

The handling of such problems has been the subject of significant efforts, including LANCELOT,
GENCAN, and ALGENCAN due to the ability of ALM to solve large-scale problems. The latter (and
most recent) algorithmic scheme iterates by approximately minimizing the so-called PHR-Augmented
Lagrangian function subject to bound constraints as well as updating both the penalty parameter and
the Lagrange multipliers. ALGENCAN includes a decision that takes into account improvements in
both the feasibility and complementary conditions. If both feasibility and complementary conditions
were improved, it is considered that the penalty parameter is sufficiently large; thus, it is not further
increased. Otherwise, it is multiplied by factor large than 1. ALGENCAN imposes that the KKT
multiplier estimates must be bounded by explicitly projecting the estimates on a compact box after
each update. The main reason invoked is to preserve the property of external penalty methods such
that global minimizers of the original problem are obtained if each outer iteration computes a global
minimizer of the subproblem. The boundedness of penalty parameters imposes in turn to assume
that the KKT multipliers are within the bounds imposed by the algorithm. For these purposes,
ALGENCAN uses safeguarded KKT multipliers such that limit points converge to KKT points under
the Constant Positive Linear Dependence (CPLD) constraint qualification –which is weaker than
MFCQ– and exhibit good properties in terms of penalty parameter boundedness. Although insufficient
to ensure convergence for general nonconvex problems, as shown, for instance, in [10, Section 2.1], the
properties of this algorithmic scheme have been shown to be competitive against alternatives such as
interior point methods.

Recently, several ALM-based methods have been proposed to deal with the minimization of noncon-
vex objective functions subject to nonconvex equality constraints [51] and even fewer with inequality
constraints [61]. In [61], authors aim to minimize over x ∈ Rn, the composite function f(x) + g(x)
subject to equality constraints c(x) = 0 and inequality constraints d(x) ≤ 0 with f continuously
differentiable but possibly nonconvex, g closed convex but possibly nonsmooth, and c, d being vector
functions from Rn → Rl. Further, in addition to uniform regularity conditions (to ensure near feasibil-
ity of a near-stationary point to the augmented Lagrangian function), their proposed method assumes
weak convexity of both the function f and each component of the vector function c; these assump-
tions significantly restrict its applicability. Constraints are then handled by introducing slack variables
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s ≥ 0, leading the reformulation of the inequality constraints as d(x) + s = 0. Using the boundedness
of the multipliers {yk}, authors then show that their algorithm enables to reach an ϵ−KKT point
(x̄; s̄) with a corresponding multiplier (ȳ, z̄). It turns out that x̄ is an O(ϵ)−KKT point of the original
problem in terms of primal feasibility, dual feasibility, and the complementarity condition.

The former [51] applies the accelerated proximal gradient method as proposed by [25] to find an
approximate primal solution to the ALM subproblems. The latter [61], referred to as Rate-Improved
(RI)-iALM uses an inexact proximal point (iPP) method to approximately solve each ALM subprob-
lem. The iPP procedure itself relies on the accelerated proximal gradient (APG) algorithm to solve
each iPP subproblem. This combination yields a triple loop algorithm: each iteration k of the main
ALM routine calls the iPP procedure to compute a xk+1 iterate that is itself the output obtained
after running t iterations of the APG algorithm. This triple loop structure contrasts with the single-
loop characterizing the proposed stochastic ALM algorithm. In [61], authors report that this change
of subroutine for the solving of nonconvex subproblems enables to obtain order-reduced complexity
by geometrically increasing the penalty parameter in ALM compared to [51] as well as more stable
and efficient numerical results under the same assumptions. The complexity result of iPP has the
best dependence on the smoothness and weak convexity constant (per iteration); however, for most
problems, their explicit formula remains unknown and the corresponding parameters tuned. Table 5
compares the proposed stochastic ALM algorithm with inexact ALM (iALM) [51] and Rate-Improved
ALM (RI-ALM) [61]. The complexity in the number of iterations (last column) is demonstrated in
Section 4.

Table 1 Comparison of ALM methods for nonconvex nonlineary constrained problems

Method Type Objective Constraints Type Regularity Complexity

Condition

iALM [37] Inexact Convex Convex Inequality Õ(ε−1)

iALM [51] Inexact Nonconvex Nonconvex Equality [51, Equation 18] Õ(ε−4)

RI-iALM [61] Inexact Nonconvex
Convex Equality [61, Assumption 3]

Õ(ε−3)
Nonconvex Inequality†

This paper
Inexact

Nonconvex
Convex Equality

Assumption 1
Õ(1/

√
k)

(Line Search) Nonconvex Inequality ∼ Õ(ε−2)

5.1 Numerical Evaluation and Comparison

In this section, we detail the realization of numerical experiments to illustrate the empirical perfor-
mance of the proposed algorithm compared to the one developed [61] and the ALGENCAN method
as implemented in the nlopt framework [34]. For this purpose, we consider the Generalized Eigen-
value (GEV) problem in Section 5.1.1 and the max-cut problem in Section 5.1.2. All executions were
performed on GNU Octave version 7.2 [22].

5.1.1 Generalized Eigenvalue Problem (GEV)

Let U, V be symmetric matrices in Rd×d. The generalized eigenvalue problem can be formulated as

minimize ⟨x | Ux⟩
subject to ⟨x | V x⟩ = 1.

(5.1)

The problem (5.1) is a particular case of Problem (1.1) with C = Rd, the objective function
h : x 7→ ⟨x | Ux⟩ whose gradient is Lipschitz continuous with constant µh = 2∥U∥, c1 : x 7→ ⟨x | V x⟩
whose gradient is Lipschitz continuous with constant µc = 2∥V ∥, b1 = 1 ∈ R, and c2 ≡ 0 with b2 ≡ 0.
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For the sake of our numerical experiments, we implement Algorithm 1 with the matrices U and V
defined by U = w diag(1/i2)w⊤ and V = z diag(1/i)z⊤, where w and z are orthogonal matrices. Since
V is positive definite, we have ∥x∥2 ≤ ∥V −1∥ which defines the set C.

The following executions have been performed. First, Algorithm 1 is executed up to n = 15000
iterations on matrices of dimension d = 1000 to 10000 by increments of 1000. We record the compu-
tation time (in seconds) as reported by the Octave v7.2 solver and the relative gap to the optimal
value h⋆

| h(xn)− h⋆ |
| h⋆ |

. (5.2)

Then Algorithm 1 is executed on matrices of dimension d× d, where d = 1000, 2000, 3000, 4000,
5000, 6000, 7000, 8000, 9000 and 10000. Executions are stopped when the relative gap -defined by (5.2)-
reaches a value obtained by means of the alternative method, i.e., either RI-ALM or ALGENCAN. In
Table 2 (and 4), we report the performance results obtained: Columns 2, 3 and 4 of these two tables
list respectively the feasibility, the relative gap (to the optimal solution given by the opposite of the
largest eigenvalue) and the computation time obtained when running this algorithm to reach this gap.
The values of the relative gap reported in the Tables 2 and 4 show that the value obtained with Our
Algorithm is always lower than the one obtained with both RI-ALM and ALGENCAN.

Table 2 compares these results against those collected by executing the RI-ALM algorithm [61]. The
relative gap (Column 6 of Table 2) is obtained by running this triple loop algorithm until reaching
the fixed computation time obtained with Our Algorithm (Column 4). Next, Column 7 lists the
computation time required by RI-ALM to reach the relative gap value reported in Column 3. Column
7 also reports the number of ALM iterations, iPP iterations and APG iterations required by RI-ALM.

The following setting is considered for the execution of the RI-ALM algorithm: the parameter
ε = 0.001 except for d = 1000 (ε = 0.0001), σ = 2, β0 = 0.5 and since the general formula of the
update of the dual step size [61, Equation 17] is used, M = 0.001 and q = 1. The initial values for the
primal and dual variables are x0 = 0.5× randn(n, r), where r is the rank set to 20, and y0 = 0.

Importantly, in order to obtain these results, we need to define the matrix V as V + 1
2Id×d (to

ensure that the regularity condition is met) but also to modify the smoothness L̂k and weak convexity
parameters ρ̂k compared to their suggested setting in the original specification of the RI-ALM algo-
rithm. Indeed, since both GEV and max-cut problems do not have an explicit compact constraint set,
[61, Assumption 2] is not satisfied. Nevertheless, the feasibility region of (5.1) is bounded due to the
positive definiteness of the matrix V .
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Table 2 GEV problem: Comparison between Algorithm 1 and RI-ALM method

Our Algorithm RI-ALM
d Feasibility Relative Computation Feasibility Relative Comp. Time (s)

Gap Time (s) Gap Iterations
1000 2.96873e-13 2.98361e-13 17.9452 9.08386e-03 9.09256e-03 26.63848

27-464-13352
2000 6.29274e-13 1.49437e-12 62.3169 5.73541e-08 7.42032e-08 79.64402

63-360-15239
3000 2.12496e-13 3.77504e-12 331.3266 1.41369e-07 4.38408e-08 466.70770

62-249-19789
4000 1.40776e-13 4.70914e-12 1344.7046 1.52398e-07 3.61829e-09 1263.4407

73-276-24072
5000 7.26085e-14 1.04429e-12 3221.6046 1.08289e-07 1.67550e-08 2632.8747

88-293-28502
6000 6.10622e-14 7.29320e-12 4150.0458 3.76529e-08 3.30732e-08 4118.6702

89-284-30428
7000 3.44169e-14 3.29640e-12 6902.2255 2.21097e-08 1.45204e-08 4939.5622

215-417-34203
8000 1.37667e-14 2.62173e-12 8769.7175 8.59245e-10 8.59508e-10 8364.7827

1197-1421-51453
9000 2.33146e-14 3.88959e-12 10516.1510 2.86114e-08 7.71071e-09 11404.8650

104-333-41691
10000 1.73194e-14 3.27909e-12 13740.4867 1.23436e-08 4.69542e-09 13896.0151

106-321-43546

Table 3 lists for each matrix size d, the value of the parameters β0,M , and q, as well as the update
rule for the parameters ρ̂k (weak convexity), L̂k (smoothness) and ωk (dual step size). The value of
the parameter σ (in βk = β0σ

k) is set to 1 for all executions of the RI-ALM algorithm.



Stochastic ALM 31

Table 4 GEV problem: Comparison between Our Algorithm 1 and ALGENCAN

Our Algorithm ALGENCAN

d Feasibility Relative Computation Feasibility Relative Computation

Gap Time (s) Gap Time (s)

1000 2.96873e-13 2.98361e-13 17.9452 1.79856e-14 4.30595e-13 31.2438

2000 6.29274e-13 1.49437e-12 62.3169 3.32068e-13 1.58337e-12 332.6893

3000 2.12496e-13 3.77504e-12 331.3266 1.23679e-13 3.91351e-12 1126.5961

4000 1.40776e-13 4.70914e-12 1344.7046 6.66134e-16 4.95375e-12 2809.7044

5000 7.26085e-14 1.04429e-12 3221.6046 4.31188e-12 1.12477e-12 4006.3148

6000 6.10622e-14 7.29320e-12 4150.0458 2.73531e-11 7.42048e-12 8191.0748

7000 3.44169e-14 3.29640e-12 6902.2255 4.32321e-13 3.34667e-12 15519.1857

8000 1.37667e-14 2.62173e-12 8769.7175 1.22125e-15 2.65238e-12 19020.3227

9000 2.33146e-14 3.88959e-12 10516.1510 5.93174e-12 3.99288e-12 21599.7243

10000 1.73194e-14 3.27909e-12 13740.4867 1.73195e-13 3.36005e-12 25306.0546

Table 3 RI-ALM Parameters

d β0 ρ̂k L̂k M q ωk

1000 200 4k0.1 0.8n+
log(k + 2)∥yk∥

100
+ ρ̂k 15 0.1 min

{15((k + 1)q)

∥c(xk+1)∥
, 105

}
2000 1500 4k0.1 0.9n+

log(k + 2)∥yk∥
100

+ ρ̂k 20 0.1 min
{20((k + 1)q)

∥c(xk+1)∥
, 105

}
3000 1800 2k0.1 2800 +

log(k + 2)∥yk∥
100

+ 2ρ̂k 25 0.1 min
{25((k + 1)q)

∥c(xk+1)∥
, 105

}
4000 2400 2k0.1 3500 +

log(k + 2)∥yk∥
100

+ 2ρ̂k 25 0.1 min
{25((k + 1)q)

∥c(xk+1)∥
, 105

}
5000 3000 2k0.1 4500 +

log(k + 2)∥yk∥
10

+ 2ρ̂k 30 0.1 min
{30((k + 1)q)

∥c(xk+1)∥
, 105

}
6000 5100 2k0.1 5500 +

log(k + 2)∥yk∥
10

+ 2ρ̂k 40 0.1 min
{40((k + 1)q)

∥c(xk+1)∥
, 105

}
7000 5900 2k0.1 6000 +

log(k + 2)∥yk∥
10

+ 2ρ̂k 40 0.1 min
{40((k + 1)q)

∥c(xk+1)∥
, 105

}
8000 6100 2k0.1 6200 +

log(k + 2)∥yk∥
10

+ 2ρ̂k 40 0.1 min
{40((k + 1)q)

∥c(xk+1)∥
, 105

}
8000 6700 2k0.1 7200 +

log(k + 2)∥yk∥
10

+ 2ρ̂k 45 0.1 min
{45((k + 1)q)

∥c(xk+1)∥
, 105

}
10000 9000 2k0.1 8500 +

log(k + 2)∥yk∥
10

+ 2ρ̂k 45 0.1 min
{45((k + 1)q)

∥c(xk+1)∥
, 105

}

Table 4 compares these results against those collected by executing the Augmented Lagrangian
method as specified by the ALGENCAN framework (using nlopt) with Limited-memory BFGS (L-
BFGS) set as primal subproblem solver. The following setting is considered: the size of the storage
window for the L-BFGS subsolver is set to 20 and the absolute tolerance on the objective function
value is set to 1e-16. In this case, the absolute tolerance on the objective function value (set to 1e-16)
is used as the stopping criterion. Feasibility, Relative gap to optimal value and Computation time are
measured once this criterion is reached as reported in Columns 5, 6 and 7 of Table 4.

From Table 2, we can observe that for low dimension matrices (with d = 1000, 2000 and 3000), our
algorithm remains competitive against RI-ALM. For larger values of d (i.e., from 4000 to 8000), the RI-
ALM algorithm is up to 1.5 × faster when input data are customized so as to fit all required conditions
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of smoothness and weak convexity, including regularity conditions. Note also a factor 100 in favor of
our method for what concerns feasibility. However, above a certain matrix dimension (d > 8000), our
algorithm becomes again more computationally efficient. That is, beyond this threshold, the RI-ALM
algorithm requires progressively less inner iterations (the number of outer iterations is nearly equal
for d = 9000 and d = 10000) but each iteration takes more computation time. This behavior seems to
be induced by the regularity condition (in addition to the well-controlled dual step size) that RI-ALM
imposes to achieve best-known convergence rates.

Compared to ALGENCAN, our Algorithm 1 remains competitive in computation time. For all
instances, the computation time is divided by a factor 2 (except for d = 5000) up to a factor 5
(d = 2000). ALGENCAN shows indeed higher computation time, independently of the size d × d of
the matrices. Its computation time doubles as the size of the matrices increases by steps of 1000 from
d = 3000 to d = 7000 and saturates for larger values of d (i.e., d = 8000, 9000, 10000).

5.1.2 Max-Cut Problem

Consider an undirected (edge-)weighted graph G = (V,E, ω) with vertex set V , edge set E and weight
function ω that assigns to each edge (i, j) ∈ E the weight ωij such that the matrix Ω = (ωij). The
max-cut problem consists of partitioning the vertex set V into two disjoint complementary subsets
to maximize the number of edges crossing the cut (unweighted case) or the sum of the weights of
the edges crossing the cut (weighted case). The problem of finding a maximum cut is an NP-Hard
combinatorial optimization problem [28]. The best known approximation to the max-cut problem is
defined by its relaxation to a semidefinite program [29]. The optimal solution value of the SDP gives
an upper bound of the weights of the max-cut.

Let X be a real symmetric matrix (X = xx⊺) and e the 1-vector (1, 1, . . . , 1)⊺ ∈ Rm, the SDP
relaxation of the primal max-cut problem can be formulated as

maximize
1

4
⟨L | X⟩

subject to diag(X) = e, X ⪰ 0.
(5.3)

The shorthand X ⪰ 0 indicates that the matrix X is positive semidefinite. The operation ⟨L | X⟩ =
Tr(L⊺X) represents the Frobenius (component-wise) inner product of the real symmetric matrices L
and X of the same dimension. The matrix L denotes the graph Laplacian L = (D −Ω) where Ω is a
symmetric weight matrix, such that individual edge weights ωij ∈ R0, ωij = ωji for all (i, j) ∈ E, i, j ∈
{1, . . . ,m}, with ωii = 0 for i = 1, . . . ,m, and D = Diag(d1, . . . , dm) is the degree (diagonal) matrix of
the graph G with di =

∑m
i=1 ωij . The Laplacian L = D−Ω is symmetric and positive semidefinite and

can also be interpreted as the linear map from RV to itself, i.e., (Lx)i =
∑

j:(i,j)∈E

ωij(xi−xj), ∀x ∈ RV .

Since xi = ±1 ∧ x2i = 1, ∀ i, the objective function 1
4

∑
i

∑
j wij(1 − xixj) can be formulated as

1
4 (⟨Ω | J⟩ − ⟨Ω | X⟩), where J is the matrix where every element is equal to one. The SDP relaxation
thus aims to find a convex set S := {xx⊺ : x ∈ {±1}m}, which contains all the rank-1 matrices X
such that X ∈ S. Note also that if the optimal solution X of the primal max-cut SDP has rank 1,
then we may write matrix X in the form X = xx⊺ and therefore recover the optimal cut; in this case,
the SDP relaxation is exact. Since any matrix in S is positive semidefinite (X ⪰ 0) and the diagonal
entries are equal to 1 (Xii = 1), solving the primal max-cut SDP problem (5.3) is equivalent to

−minimize
1

4
⟨Ω | X⟩

subject to diag(X) = e, X ⪰ 0.
(5.4)

Therefore, the SDP relaxation (5.4) can be seen as a particular case of Problem (1.1) with i)
h : x 7→ 1

4 ⟨Ω | X⟩; ii) c1 : x 7→ diag(X) and iii) b1 = e ∈ Rm. The SDP optimal value is then given by
the sum of the weight matrix elements ⟨Ω | J⟩ minus Tr(ΩX) divided by 4.
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Table 5 Max-cut problem: numerical results for data sets 1) G1, 2) G30, 3) GD97b, 4) GD97c, 5) LFAT5t, 6) Sbbrail,
7) Shermann1, 8) Trefethen20b, 9) Trefethen200b, 10) Trefethen500

Dim Size ηmin(C) ηmax(C) Computed r r⋆ Number of Computation

(n) (Bytes) value iterations Time (sec)

1 800 70728 3.48e-17 17.738 12083.17247 10 10 2498 5.6367

2 2000 227719 1.2e-16 9.2 8382.54360 10 10 8702 560.6142

3 47 4142 0 1549.3 15340.10553 5 5 4082 0.9437

4 452 4039 0 85.2 384.00125 5 5 2657 1.1022

5 14 999 8.68e-12 4.71e6 189.88141 5 5 306170 69.0450

6 734 7775 2.66e-19 2.5842 834.04961 5 5 2882 0.8367

7 1000 10780 0 1.2441 279.53284 5 5 4584 1.5695

8 19 1336 1.51e-16 6.1897 48.66725 5 4 498 0.1242

9 199 5825 1.094e-16 5.2072 1006.60390 5 5 870 0.2164

10 500 15699 1.26e-16 2.6727 3014.46360 5 5 1749 0.6422

We execute Algorithm 1 on the following data sets: G1, G30, GD97b, GD97c, LFAT5t, Sbbrail,
Shermann1, Trefethen20b, Trefethen200b, and Trefethen500. These datasets are openly available and
accessible at https://networkrepository.com/networks.php. We consider the stop condition given by
the relative gap (5.2) < 10−5, where h⋆ corresponds to the value of the objective function as computed
by the cvx-Matlab solver. This value is referred to as the optimal in the context of this study.

The results are presented in Table 5 listing the best computed value (in Column 6), the target
rank r (in Column 7), the rank of the approximation solution r⋆ (in Column 8), the number of
iterations (in Column 9) and the running time in seconds (in Column 10) as well as the smallest and
the largest singular value of the set C denoted respectively by ηmin(C) and ηmax(C) (in Columns 3
and 4, respectively).

We then compare the results obtained for Algorithm 1 against the following methods: RI-ALM,
and ALGENCAN. For the ALGENCAN method, we develop the model in C and execute it by tuning
the AUGLAG algorithm provided in nlopt, a free/open-source library for nonlinear optimization.
Limited-memory BFGS (L-BFGS) is set as the primal subproblem solver. The following setting is
considered: the size of the storage window for the L-BFGS subsolver is set to 10 and the absolute
tolerance on the objective function value is set to 1e-06. Concerning the RI-ALM method [61], we
implement the main loop as well as the iPP and the APG subsolvers in Octave 7.2. The following
setting is considered: the parameter ε = 0.001, σ = 1.5, β0 = 10. The initial values for primal and
dual variables are x0 = randn(n, r) where r is the rank, and y0 = 0.

For this purpose, we execute the RI-ALM and ALGENCAN algorithms on the following data
sets: G1, G30, GD97b, GD97c, LFAT5t, Sbbrail, Shermann1, Trefethen20b, Trefethen200b, and Tre-
fethen500. The results are presented in Table 6. Each algorithm is executed 20 times, and we take
the average of the results obtained for the computation time (Column 5), the number of iterations
(Column 44 and the computed value (Column 3). The second column of Table 6 gives the value of the
objective function obtained by means of the Goemans-Williamson convex relaxation for the max-cut
problem. This method, which provides an upper bound of the max-cut problem with the optimal value
obtained by SDP, has been executed on the cvx-Matlab solver.

As it can be observed from Table 6, for every data set, the Algorithm 1 performs much better than
RI-ALM in terms of computational time required to satisfy the stop condition set to < 10−5. Among
them only the third one meets the ε approximation threshold (set to 0.001) within 1000 iterations of
the iPP method (while the number of inner APG loop ranges in the order of 1). For all data sets,
the computation time significantly improves by at least a factor 10 except for the datasets G30 and
GD97c, for which the gain is more limited though still substantial for the latter (about a factor 2).
These results emphasize thus the computational limitation of inexact ALM methods relying on triple
embedded loops. Observe also that for the dataset G30, the computation time required by RI-ALM is
about 2 third of the one needed by Algorithm 1. This result indicates that RI-ALM starts also to show

4 where (o) indicates the number of outer iterations

https://networkrepository.com/networks.php
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Table 6 Max-cut problem: Comparison of Algorithm 1 against Rate-improved ALM (RI-ALM) and ALGENCAN

Algorithm SDP Optimal Computed Number of Computation

Value (cvx) Value Iterations Time (s)

G1

Our method

12083.19789

12083.17247 2498 5.6367

RI-ALM 12064.36612 5000 62.6936

ALGENCAN 10186.99315 149 (o) 2757.0824

G30

Our method

8380.76452

8382.54360 8702 560.6142

RI-ALM 8189.02740 21214 844.2031

ALGENCAN — — —

GD97b

Our method

15340.05392

15340.10553 4082 0.9437

RI-ALM 15339.93391 36000 22.6120

ALGENCAN 15144.91984 91 (o) 0.3250

GD97c

Our method

383.99999

384.0012 2657 1.1022

RI-ALM 384.0000 4512 2.3750

ALGENCAN 301.6125 14 (o) 45.6560

LFAT5t

Our method

189.88246

189.88141 306170 69.4050

RI-ALM 189.38262 219394 9325.4687

ALGENCAN — — —

Sbbrail

Our method

834.05469

834.04961 2882 0.8367

RI-ALM 834.02713 86000 720.6418

ALGENCAN 582.82795 453 (o) 4905.9364

Sherman1

Our method

279.53561

279.53284 4584 1.5695

RI-ALM 279.88156 54000 633.7705

ALGENCAN 272.17087 188 (o) 5452.4516

Trefethen20b

Our method

48.66760

48.66725 498 0.1242

RI-ALM 48.66796 7179 3.5344

ALGENCAN 43.39074 41 (o) 0.1840

Trefethen200b

Our method

1006.60980

1006.60390 870 0.2164

RI-ALM 1006.61334 21000 17.2612

ALGENCAN 914.41553 74 (o) 18.4548

Trefethen500

Our method

3014.49374

3014.46360 1749 0.6422

RI-ALM 3014.51402 26000 36.1249

ALGENCAN 2399.19682 101 (o) 396.9699

some limits as the size of the problem increases since G30 is the largest max-cut instance considered
in our experiments. Note also from Table 6, that the values computed by ALGENCAN are quite far
from the optimal; hence, performance of ALGENCAN are not comparable to Algorithm 1.

6 Use Case

In this section, we evaluate the performance of the proposed algorithm for the solving of multi-
constrained network design problem, namely, the multi-commodity network design problem with load-
induced delay constraints. The problem consists of finding the minimum capacity to be provisioned on
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each arc of the network topology such that the network can serve all demands simultaneously, i.e., all
incoming demands can be routed simultaneously from their source to their destination. Compared to
the usual multi-commodity network design problem, the problem considered in this paper assumes that
each demand is specified together with a maximum delay that can be incurred on the traffic traversing
the network (a.k.a. load-induced delay). The resulting constraints yield a problem involving nonlinear
(equality and inequality) constraints. The numerical experiments performed by means of the proposed
algorithm are then analyzed and compared against the convex relaxation method.

We are given a directed graph G = (V,A) where V is the set of nodes (|V | = n) and A the set of
possible arcs (|A| = m). Each arc is denoted by (i, j) where i is the head end and j the tail end of the
arc. Each arc (i, j) ∈ A from node i to node j provides a nominal maximum capacity κij > 0. The
cost per unit of capacity on arc (i, j) ∈ A is given by the real number αij/κij = ςij ≥ 0, where αij is
the installation cost for arc (i, j).

6.1 Aggregated demand matrix

This aggregated formulation assumes that the n×n fixed demand matrix D where D(s, t) is the total
amount of traffic sent from source s to destination t, for any pair of nodes s, t ∈ V, s ̸= t, is given.
Moreover, each (s, t) pair is specified with a time delay upper bound τst that represents the maximum
amount of time that can elapse for traffic to flow from source s to destination t.

Let D ⊂ Rn×n
+ be a bounded set, in the static case, the demand matrix D ∈ D is certain (not

variable). In this setting, routing is defined as a function f : D → Rm×(n×n) that assigns an (s, t)-
aggregated flow to the given realization of the demand matrix D ∈ D. A capacity allocation x ∈ Rm

+

is said to support the demand D if there exists a routing f serving D such that for every demand
D(s, t), the corresponding flow matrix fst ∈ Rn×n does not exceed the arc capacities given by x.

6.1.1 Variables

The following variables are defined.

– Continuous capacity allocation variables xij ≥ 0 that represent the amount of capacity installed
in the arc (i, j).

– Continuous flow variables fstij ≥ 0 that represent the amount of flow on arc (i, j) from source
s to destination t. With this definition of the flow variables, the load on arc (i, j) is defined as∑

s,t∈V f
st
ij and the flow conservation and demand satisfaction constraints formulate as

∑
j:(i,j)∈A

fstij −
∑

j:(j,i)∈A

fstji =

 D(s, t) if i = s
−D(s, t) if i = t

0 otherwise
∀i, s, t ∈ V. (6.1)

6.1.2 Formulation

For static routing, the initial formulation of the model involves the continuous variables defined in
Section 6.1.1. The cost function Φ is assumed (piecewise linear) convex in variable xij . Accounting for
demand satisfaction and flow conservation (6.3), capacity allocation (6.4) and delay (6.6) constraints,
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yields the following formulation:

min
∑

(i,j)∈A

Φ(xij) (6.2)

s.t.∑
j:(i,j)∈A

fstij −
∑

j:(j,i)∈A

fstji =

 D(s, t) if i = s
−D(s, t) if i = t

0 otherwise
∀i, s, t ∈ V (6.3)

∑
s,t∈V

fstij ≤ xij ∀(i, j) ∈ A (6.4)

xij ≤ κij ∀(i, j) ∈ A (6.5)∑
(i,j)∈A

δ(fstij , (i, j))
1

κij − xij
≤ τst ∀s, t ∈ V (6.6)

fstij ≥ 0 ∀(i, j) ∈ A, s, t ∈ V (6.7)

xij ≥ 0 ∀(i, j) ∈ A (6.8)

The constraints (6.3) enforce flow conservation that ensures that the demand flow requirements
given by the matrix elements D(s, t) are appropriately routed for each (s, t) pair. Note that the flow
conservation constraints are disaggregated per source. To account for the source-to-destination delay,
one considers the sum over the average delay for passing through each intermediate node (i.e., channel)
along the path. The capacity constraints (6.4) impose that the sum of the flows fstij along each arc
(i, j) ∈ A does not exceed the capacity that would be allocated to this arc. Observing that the Little’s
Formula is valid for the steady state of any queueing process, the waiting time (delay) per channel/arc
amodeled as a M/M/1 queuing system can be computed by applying the Little’s formula: 1/(κij−xij).
This expression can be generalized to M/G/1 queuing systems by means of the Pollaczek-Khinchin
mean formula for the waiting time [48] [35]. The total delay to send a traffic flow unit from a source s
to a destination t is then given by the sum of the load-induced delay incurred on the individual arcs
from s to t. Consequently, the nonlinear delay constraints (6.6) are fractional in the capacity variables
xij . They involve the binary indicator variable δ(fstij , (i, j)) = 1 which equals 1 if the flow fstij from
source s to destination t along arc (i, j) is strictly greater than zero and 0 otherwise.

6.1.3 Reformulation

We reformulate Problem (6.2)-(6.8) as an instance of the nonlinear composition problem. For this
purpose, we apply the following variable transformation

(∀(i, j) ∈ A) yij =
κij

κij − xij
, (6.9)

Then, the capacity allocation variable xij becomes

(∀(i, j) ∈ A) xij = κij −
κij
yij

. (6.10)
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In turn, the original nonlinearly constrained minimization problem (6.2)-(6.8) can be reformulated as
follows.

(CFP )min
∑

(i,j)∈A

Φ
(
κij(1−

1

yij
)
)

(6.11)

s.t.∑
j:(i,j)∈A

fstij −
∑

j:(j,i)∈A

fstji =

 D(s, t) if i = s
−D(s, t) if i = t

0 otherwise
∀i, s, t ∈ V (6.12)

κij ≤ yij
(
κij −

∑
s,t∈V

fstij
)

∀(i, j) ∈ A (6.13)

∑
(i,j)∈A

δ(fstij , (i, j))
yij
κij
≤ τst ∀s, t ∈ V (6.14)

fstij ≥ 0 ∀(i, j) ∈ A, s, t ∈ V (6.15)

yij ≥ 1 ∀(i, j) ∈ A (6.16)

Observe that the objective function of this model, referred to as (CFP), is now concave, which, in
turn, requires approximation by piecewise linear functions for its solving. In the (CFP) formulation,
the flow variables can be reformulated as

fstij = zstijD(s, t) (6.17)

together with constraints of the form 0 ≤ zstij ≤ zmax (∀ (i, j) ∈ A, s, t ∈ V ) and zstij ≥ 0 (∀ (i, j) ∈
A, s, t ∈ V ). Note that when zmax = 1, one refers to fractional flow variables. The flow conservation
constraints then become∑

j:(i,j)∈A

zstij −
∑

j:(j,i)∈A

zstji =

 1 if i = s
−1 if i = t
0 otherwise

∀i, s, t ∈ V (6.18)

The combination of (6.18) together with (6.17) yields variables zstij that define a source-destination
percentage flow. In this case, the variable zst determines for every demand from source s to destination
t, the paths that are used to route the demand and what is the percentage splitting among these paths.
This setting defines the static routing case since the flow for demand from source s to destination t can
only change linearly with D(s, t) on the paths described by the variables zst. However, the restriction
of the (CFP) to the static formulation doesn’t facilitate the handling of the constraints (6.14).

The main alternative consists of defining the flow variables fstij as fstij = bstijD(s, t) (∀(i, j) ∈ A, s, t ∈
V ) together with the binary variables bstij ∈ {0, 1} (∀(i, j) ∈ A, s, t ∈ V ). Consequently, one obtains
the formulation referred to as (BFP):

(BFP )min
∑

(i,j)∈A

Φ
(
κij(1−

1

yij
)
)

(6.19)

s.t.∑
j:(i,j)∈A

bstij −
∑

j:(j,i)∈A

bstji =

 1 if i = s
−1 if i = t
0 otherwise

∀i, s, t ∈ V (6.20)

κij ≤ yij
(
κij −

∑
s,t∈V

D(s, t)bstij
)

∀(i, j) ∈ A (6.21)

∑
(i,j)∈A

bstij
yij
κij
≤ τst ∀s, t ∈ V (6.22)

bstij ∈ {0, 1} ∀(i, j) ∈ A, s, t ∈ V (6.23)

yij ≥ 1 ∀(i, j) ∈ A (6.24)
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With binary flow variables, traffic flow units are routed along a single path, yielding the unsplittable
flow problem (UFP), which is NP-hard even without delay constraints. Also, since there now exists a
single path from source s to destination t for every demandD(s, t), static and dynamic routing coincide
for all demands. Note that the UFP is modeled under the No-Bottleneck Assumption (NBA) since the
largest demand is upper-bounded by the smallest arc capacity, i.e., max(s,t)D(s, t) ≤ min(i,j)∈A κij .
The main advantage of this formulation stems from the expression of the constraints (6.22) as a sum
of products of binary variables, which can be linearized through standard techniques [27].

6.2 Per-commodity flow

This formulation assumes a set of commodities K, where each commodity k ∈ K is defined by its

sources sk ∈ V , destination tk ∈ V , and demand size value dk ≥ 0. Let D ⊂ R|K|
+ be a bounded set,

in the static case, the demand vector d = {d1, . . . , d|K|} ∈ D is certain (not variable).

Moreover, each commodity flow is specified with a time delay upper bound τk that represents the
maximum amount that can elapse for traffic to flow from source s to destination t. In this case, a
routing is a function f : D → R|A|×|K| that assigns a multi-commodity flow to the given realization
of the demand vector d ∈ D.

A capacity allocation x ∈ R|A|
+ is said to support the demand vector d = {d1, . . . , d|K|} if there

exists a routing f serving d such that for every commodity k ∈ K of demand size value dk, the
corresponding flow vector fk ∈ R|A| does not exceed the arc capacities given by x.

6.2.1 Variables

The following variables are defined.

– Continuous capacity allocation variables xij ≥ 0 represent the amount of capacity installed on arc
(i, j) ∈ A

– Continuous flow variables fkij ≥ 0 represent the amount of flow on arc (i, j) from source s to

destination t for commodity k. The load on arc (i, j) is defined as
∑

k∈K fkij .

In this case, the flow variables satisfy the flow conservation and demand satisfaction constraints.

∑
j:(i,j)∈A

fkij −
∑

j:(j,i)∈A

fkji =

 dk if i = sk
−dk if i = tk

0 otherwise
∀i ∈ V, k ∈ K (6.25)
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6.2.2 Formulation

Assuming per-commodity flow, the problem can be formulated as follows

min
∑

(i,j)∈A

Φ(xij) (6.26)

s.t.∑
j:(i,j)∈A

fkij −
∑

j:(j,i)∈A

fkji =

 dk if i = sk
−dk if i = tk

0 otherwise
∀i ∈ V, k ∈ K (6.27)

∑
k∈K

fkij ≤ xij ∀(i, j) ∈ A (6.28)

xij ≤ κij ∀(i, j) ∈ A (6.29)∑
(i,j)∈A

δ(fkij , (i, j))
1

κij − xij
≤ τk ∀k ∈ K (6.30)

fkij ≥ 0 ∀(i, j) ∈ A, k ∈ K (6.31)

xij ≥ 0 ∀(i, j) ∈ A (6.32)

In this formulation, δ(fkij , (i, j)) = 1 if the value of the flow variable fkij for commodity k along the

arc (i, j) is strictly greater than zero (fkij > 0) and 0 otherwise.

Applying the variable transformation (6.9), the original nonconvex minimization problem can be
reformulated as follows.

(CFP )min
∑

(i,j)∈A

Φ
(
κij(1−

1

yij
)
)

(6.33)

s.t.∑
j:(i,j)∈A

fkij −
∑

j:(j,i)∈A

fkji =

 dk if i = sk
−dk if i = tk

0 otherwise
∀i ∈ V, k ∈ K (6.34)

κij ≤ yij
(
κij −

∑
k∈K

fkij
)

∀(i, j) ∈ A (6.35)

∑
(i,j)∈A

δ(fkij , (i, j))
yij
κij
≤ τk ∀k ∈ K (6.36)

fkij ≥ 0 ∀(i, j) ∈ A, k ∈ K (6.37)

yij ≥ 1 ∀(i, j) ∈ A (6.38)

Here, also, one can define the flow variables as fkij = bkijdk (∀(i, j) ∈ A, k ∈ K) together with the

binary variables bkij ∈ {0, 1} (∀(i, j) ∈ A, k ∈ K). With this definition of the flow variables, one obtains
the (BFP) formulation:
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(BFP )min
∑

(i,j)∈A

Φ
(
κij(1−

1

yij
)
)

(6.39)

s.t.∑
j:(i,j)∈A

bkij −
∑

j:(j,i)∈A

bkji =

 1 if i = sk
−1 if i = tk
0 otherwise

∀i ∈ V, k ∈ K (6.40)

κij ≤ yij
(
κij −

∑
k∈K

dkb
k
ij

)
∀(i, j) ∈ A (6.41)

∑
(i,j)∈A

bkij
yij
κij
≤ τk ∀k ∈ K (6.42)

bkij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (6.43)

yij ≥ 1 ∀(i, j) ∈ A (6.44)

In the remainder, the transport cost function Φ is defined as a quadratic function of the load
xij =

∑
k∈K fkij of the arc (i, j) ∈ A. More precisely, we set Φ(xij) = x2ij . With this setting, the

objective function becomes ∑
(i,j)∈A

αij

κ2ij
x2ij =

∑
(i,j)∈A

αij

κ2ij

( ∑
k∈K

fkij
)2
, (6.45)

where αij is the cost of the arc (i, j) ∈ A, κij the capacity of the arc (i, j) ∈ A and fkij ≥ 0. Similarly,

when flows are defined as binary variables, i.e. bkij ∈ {0, 1} the objective function reads as∑
(i,j)∈A

αij

κ2ij
x2ij =

∑
(i,j)∈A

αij

κ2ij

( ∑
k∈K

dkb
k
ij

)2
. (6.46)

6.3 Numerical Experiments, Results and Analysis

6.3.1 Data Sets and Network Instances

To evaluate the formulations of the (CFP) and (BFP) models presented in Section 6.2.2, we consider
a set of network topologies extracted from the SNDlib topology library [44]. From this database,
the following topologies have been extracted (in alphabetical order): austria, atlanta, cost266, france,
germany50, india35, norway, pioro40, zib54. All datasets are openly available and accessible at http:
//sndlib.zib.de/problems.overview.action. Their main properties are summarized in Table 7. The arc
cost αij as well as the arc capacity κij are provided as part of the dataset.

For each topology, a set K of n demands is generated, where each element k ∈ K is a tuple that
comprises a source s, a destination t, a positive size value dst and a delay upper bound τst. Note that
demand size and delay bounds are generated such that a feasible solution exists; for instance, the size
of individual demands never exceeds the nominal arc capacity.

6.3.2 McCormick Envelope - PWL method

Reformulation Linearization Technique (RLT) relaxations [52] [53] can be used to obtain tight yet
solvable convex relaxations of problems with quadratic terms that linearize constraints (6.13). This
technique essentially consists of two main steps: a reformulation step in which certain additional
nonlinear valid inequalities are (automatically) generated, and a linearization step in which each
product term is replaced by a single continuous variable. In general, variables i are restricted to lie in

http://sndlib.zib.de/problems.overview.action
http://sndlib.zib.de/problems.overview.action
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Table 7 Network Topologies and Properties

Topology Nodes Arcs Min, Max, Avg Degree Diameter Demands

austria 65 216 1, 10, 3.32 9 934

atlanta 15 44 2, 4, 2.93 5 210

cost266 37 114 2, 5 3.08 8 1332

france 25 90 2, 10, 3.60 5 300

germany50 50 176 2, 5, 3.52 9 662

giul39 39 172 3, 8, 4.41 6 1471

india35 35 160 2, 9, 4.57 7 595

norway 27 102 2, 6, 3.78 7 702

pioro40 40 178 4, 5, 4.45 7 780

zib54 54 81 1, 10, 3.00 8 1501

the interval [Li, Ui], resulting in the so-called bound factors, that is, nonnegative expressions of the
form (xi − Li) and (Ui − xi).

Observe that in both the original and the reformulated problem, variables fstij are naturally lower
bounded by 0 and upper bounded by the minimum between the capacity κij of arc (i,j) and the demand
between (s, t); thus, 0 ≤ fstij ≤ min{κij , dst}. Instead, variables yij are lower bounded by yL = 1 but
require the setting of an arbitrary upper bound (since yij →∞ when

∑
s,t∈V f

st
ij → κij). In practice,

due to the convex shape of the objective function, this upper bound can be selected in the range
[2/3κij , κij [. Observe that when yij → κij , constraints (6.13) become 1+

∑
s,t∈V f

st
ij ≤ κij ,∀(i, j) ∈ A.

Note that (iteratively) decreasing this upper bound closer to its minimum produces tighter relax-
ations. Observe also that the product fstij yij ≥ 0,∀(s, t) ∈ K, (i, j) ∈ A. Moreover, we further restrict
the variables fstij to be fractional (and multiply them by the demand size dst in constraints (6.12)) in
order to obtain constraints of the form 0 ≤ fstij ≤ 1.

– Reformulation step: since variables fstij and yij are lower and upper bounded, that is, 0 ≤ fstij ≤ 1
and 1 ≤ yij ≤ yU , the following implied inequality constraints can be generated as product of
(first-order) bound factors:

0 ≤ (fstij − 0)(yij − 1) ⇒ fstij yij ≥ fstij
0 ≤ (1− fstij )(yU − yij) ⇒ fstij yij ≥ yUfstij + yij − yU
0 ≤ (fstij − 0)(yU − yij) ⇒ fstij yij ≤ yUfstij
0 ≤ (1− fstij )(yij − 1) ⇒ fstij yij ≤ fstij + yij − 1

(6.47)

The first two inequalities are referred to as the under-estimators of the product yijf
st
ij and the last

two inequalities as the over-estimators of this product. Note that since variables fstij are fractional,
higher-order polynomial factors could also be considered to strengthen under-estimators.

– Linearization (or convexification) step: the linearization step consists of replacing the bilinear
products yijf

st
ij appearing in the resulting constraints including (6.13) by the auxiliary variable

zstij together with the following set of constraints (under- and overestimators). This step enables
finding the tightest possible convex approximation of the expression zstij = yijf

st
ij .

zstij ≥ fstij
zstij ≥ yUfstij + yij − yU
zstij ≤ yUfstij
zstij ≤ fstij + yij − 1

(6.48)

In the simplest form considered in this paper, due to the bilinear nature of the terms in constraints
(6.13), this type of convex relaxation method is analogous to the McCormick envelopes [40]. The
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principle behind McCormick envelopes is to replace distinct products of variables, i.e. bilinear terms,
by auxiliary variables together with bound constraints which form convex under-estimators (lower
envelope) and over-estimators (upper envelope) of the bilinear terms. The essence of the McCormick
envelopes technique is very similar to that of the RLT. However, the goal of the former is to replace
all bilinear terms with appropriately bounded auxiliary variables whereas the goal of the latter is to
produce additional, potentially redundant, constraints in order to minimize the set of candidate solu-
tions to the relaxed problem. Convex envelopes represent the uniformly best convex under-estimators
for nonconvex polynomials over some region.

Following the transformation of the capacity variables xij , the objective function itself becomes
nonconvex. The developed technique replaces this nonlinear function by its piecewise linear (PWL)
approximating functions. This replacement results in a formulation that can be tackled using state-
of-the-art machinery from linear programming. By properly choosing and refining the piecewise linear
approximations, this method can provide guarantees on the quality of the solutions computed. A
similar method has been developed in [19] although it is limited to linearly constrained optimization
problems.

6.3.3 Stochastic ALM with Backtracking: Setup

The following setup is considered for the solving of the static design problem (formulated per com-
modity k = (s, t)) by means of Algorithm 1:

r = |A| length of A

n = |K|
m = |V |
q = (i, j)

κ = (κ1, . . . , κr)

ς = (ς1, . . . , ςr)

d = [d1, . . . , dn]

τ = [τ1, . . . τn]

∆ = δ(fkij , (i, j))k∈K,(i,j)∈A = (δp,q).

(6.49)

The following variables are defined
xk = (fkij)(i,j)∈A = (fk1 , . . . f

k
r );

x = (x1, . . . , xn)

y = (yij)(i,j)∈A = (y1, y2, . . . , yr)

u = (x, y).

Define the set C by
C =

{
u = (x, y) | x ≥ 0, y ≥ 1

}
. (6.50)

By setting 
τ = (τst)(s,t)∈V×V = (τk)k∈K

Bw =
(δ(fstij , (i, j))

κij

)
(i,j)∈A;(s,t)∈V×V

=
(δ(fkij , (i, j))

κij

)
(i,j)∈A;k∈K

,

the delay constraints can be formulated as

Bwy ≤ τ . (6.51)

The flow conservation and demand satisfaction constraints (6.3), i.e.,

∑
j:(i,j)∈A

fstij −
∑

j:(j,i)∈A

fstji =


D(s, t) if i = s

−D(s, t) if i = t,

0 otherwise,

(6.52)
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can be rewritten as

(∀k = (s, t) ∈ V × V ) B0w(:, k) = b0,k, b0 = (b0,k)k∈K , (6.53)

where B0 corresponds to the (per-) vertex-arc incidence matrix in the standard LP formulation
(Ax = b) of the left hand side of (6.52), the matrix w = (fkij)(i,j)∈A;k∈K (thus, the vector w(:, k)
denotes all arc-flow variables per commodity k), and b0,k corresponds to the size of the commodity
indexed by k = (s, t) in the right hand side of (6.52).

The capacity constraints can be formulated as follows

κij ≤ yij
(
κij −

∑
k∈K

fkij
)
=⇒ yq(⟨x | 1⟩ − κq) + κq ≤ 0. (6.54)

Therefore,

cq(x, y) = yq(⟨x | 1⟩ − κq), (6.55)

bq = −κq, (6.56)

Sq = ]−∞, 0]. (6.57)

6.4 Numerical Results

In this section, we detail the results obtained with the proposed algorithm (see Section 3.1) and
compare them against those obtained with the method presented in Section 6.3.2. The purpose being
to identify and characterize tradeoffs (computation time vs. gap to (near-)optimality) as well as
determine potential direction(s) of improvement.

6.4.1 Numerical Results: motivation

Since constraining the flow assignment to account for the load-induced delay reduces the nominal
capacity available per arc, one could think of the following safety margin heuristic. Solve the network
design, a.k.a capacity assignment problem, with reduced capacity per arc (e.g., 5, 10 or 20% of the
nominal capacity) –without delay constraints. Under these conditions, Table 8 lists the objective
function value obtained by solving, down to a relative gap of 1e-08, the capacity assignment problem
(with binary flows) using CPLEX v12.9. Note that the goal here is to establish the limits of this heuristic
in terms of the quality of the solution it produces (not its computational performance).

Table 8 Network design: reduced arc capacity

Topology
Arc Capacity

60% 80% 90% 95% 99% 100%

austria 542648 542648 542648 542648 542648 542648

atlanta infeasible 18470139 18446781 18415925 18398292 18398292

cost266 814763 814763 814763 814763 814763 814763

france infeasible infeasible 7366 7288 7265 7261

germany50 infeasible infeasible 132237 132007 131893 131882

giul39 infeasible infeasible 4560 4524 4505 4501

india35 infeasible 12814 12625 12576 12549 12543

norway infeasible 386964 386964 386964 386964 386964

pioro40 infeasible infeasible infeasible 31040 30862 30820

zib54 8897907 8626820 8580150 8570517 8562851 8560935
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6.4.2 Stochastic ALM with Backtracking

The numerical results obtained by executing the Stochastic ALM algorithm with Backtracking are
presented in Tables 9 and 10. The parameters used to execute the algorithm for each data set are
displayed in Table 11. For each topology, Table 9 lists the initial objective value (Column 2) and
feasibility (Column 3), the minimum objective value obtained at the end of the execution of the
Stochastic ALM algorithm (Column 4), the feasibility measure obtained (Column 5) and the number
of null load arcs, i.e., the number of unused arcs (Column 6). Next, Table 10 details in Column 4 the
total time (i.e., the sum of the generation (Column 2) and computation time (Column 3) and number
of iterations required to obtain the objective value listed in Column 4 of Table 9.

In Table 10, for the austria dataset, we have to tune the parameter ρk and increase ρk up to
3e+05 to reduce the feasibility (measure) down to 7.6310e-04. Moreover, the feasibility decreases slowly
when it reaches 134 while the objective value remains unchanged when the feasibility sits below 134.
Therefore, we terminate the execution of the algorithm when the feasibility measure reduces to 0.372
after 14092 iterations.

Table 9 Capacity cost minimization: Stochastic ALM algorithm

Topology
Initial Feasibility Minimum Feasibility Null Load

Objective value Objective value Arcs

austria 7.0668e+05 135240.23 6.6594e+05 7.6310e-04 56

atlanta 3.3206e+07 2087.70 1.8895e+07 7.4047e-04 0

cost266 1.0001e+06 685.34 9.1343e+05 7.3247e-04 0

france 1.3459e+04 650.67 7.2643e+03 8.5600e-04 2

germany50 0.0000e+00 9.81 1.3467e+05 1.0340e-01 7

giul39 2.5867e+04 177.61 5.0210e+03 9.9534e-04 0

india35 4.6828e+03 122.56 1.3080e+04 8.7505e-04 2

norway 2.1717e+05 85.32 4.3771e+05 9.4864e-04 0

pioro40 1.2960e+04 654.76 3.5840e+04 5.4435e-04 3

zib54 6.9166e+04 1821.12 1.3129e+07 3.3126e-03 28

Table 10 Capacity cost minimization: Stochastic ALM algorithm

Topology
Solving Time (s) Number of

Generation Computation Total Iterations

austria 19.3163 534615.01 < 5.3464e+05 135964

atlanta 0.2324 58.04 < 5.8273e+01 629

cost266 4.4124 2581.00 < 2.5855e+03 1032

france 1.0579 147.40 < 1.4846e+02 745

germany50 8.4489 11454.10 < 1.1463e+04 9199

giul39 5.7150 7887.41 < 7.8932e+03 1581

india35 3.7575 2553.23 < 2.5570e+03 989

norway 1.7206 542.01 < 5.4374e+02 821

pioro40 5.5732 16473.20 < 1.6479e+04 9491

zib54 12.0360 16827.05 < 1.6840e+04 3206

Table 12 lists the feasibility measure associated to the delay constraints (6.51), the flow conservation
and demand satisfaction constraints (6.52), and the capacity constraints (6.54). The reported values
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Table 11 Stochastic ALM: parameters and initial variables values

Topology
Parameters (s) Initial var. values

ρk tk σ0 σk x0 y0

austria 10 0.015/µh 1/10 (1 +
0.1

k
)σk−1 10 1+rand

atlanta 70 0.99/µh 1 (1 +
0.5

k
)σk−1 2 1+rand

cost266 10 0.205/µh 2/5 (1 +
0.2

k
)σk−1 2 1+rand

france 4 0.5/µh 1/5 (1 +
0.2

k
)σk−1 1/200 1+rand

germany50 2 0.3143/µh 1 (1 +
0.2

k
)σk−1 1/200 1+rand

giul39 40 0.24/µh 2 (1 +
0.05

k
)σk−1 1 1+rand

india35 6 0.5/µh 1/5 (1 +
0.2

k
)σk−1 1/595 1+rand

norway 70 0.05/µh 1/5 (1 +
0.2

k
)σk−1 1 1+rand

pioro40 50 0.003/µh 1/20 (1 +
0.1

k
)σk−1 1 10+rand

zib54 2 0.0013461 1 (1 +
0.1

k
)σk−1 1 1+rand

Table 12 Stochastic ALM: Constraint validation

Topology Constraint (6.54) Constraint (6.52) Constraint (6.51)

austria 1e-12 7.6310e-04 -1.0100

atlanta 1e-12 7.4047e-04 -1.0952

cost266 1e-12 4.5399e-04 -1.0865

france 1e-12 8.5600e-04 -0.9249

germany50 1e-12 9.3198e-04 +0.1034

giul39 1e-11 9.9534e-04 -0.3320

india35 1e-12 8.7505e-04 -0.1461

norway 1e-10 9.4864e-04 -1.0891

pioro40 1e-12 5.4435e-04 -1.0239

zib54 1e-12 3.3126e-03 -1.0110

show that, except for germany50, satisfying the flow conservation constraints is more demanding than
the two others. Moreover, for all topologies considered in our numerical experiments satisfying the
capacity constraints is more easily achievable.

Table 13 shows the λmin and λmax value for the delay constraints (6.51), the flow conservation
and demand satisfaction constraints (6.52), and the capacity constraints (6.54). The main observation
that can be drawn from this table is that the values of the dual variables remain below 1e+06. This
result is a strong indication that model constraints verify the MF Constraint Qualification (MFCQ)
condition.
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Table 13 Stochastic ALM: λmin and λmax

Topology
Constraint (6.51) Constraint (6.52) Constraint (6.54)

λmax λmin λmax λmin λmax λmin

austria -3.2153e-09 -3.5216e-06 9466.21 -8101.82 1.8271e-06 -6.0215e-05

atlanta 3.4227e+02 -4.1804e+01 1011.26 342.27 1.9623e+05 9.1665e+05

cost266 8.9867e+00 -8.0113e+00 4285.50 -4029.10 4.1249e+05 4.5484e+04

france 4.6253e-15 -5.6152e-15 4253.76 -4316.88 5.1550e+04 5.1550e+04

germany50 2.6877e+03 -5.9981e+00 197.20 -166.75 0.4251e+02 0.3313e+02

giul39 2.1029e+05 1.9474e+04 59.02 -52.07 0.13861e-01 1.2342e-03

india35 0.2230e+03 -5.1934e+01 389.51 -416.24 2.0500e+03 7.2353e+02

norway 1.1393e-15 -1.1371e-15 3359.40 -3348.72 8.2488e+04 0.4404e+04

pioro40 4.1716e+02 -1.6706e+01 1835.26 -1888.90 5.8916e+04 1.8818e+03

zib54 5.5709e-15 -5.5440e-15 598.45 -600.80 2.7488e+04 2.7488e+04

6.4.3 Convex Relaxation (CR) + PWL

The results of solving the nonlinearly constrained network design problem with McCormick envelopes
and piecewise linear approximation of the objective function are reported in Table 14. For each topol-
ogy (listed in the first column), this table records the minimum objective value obtained (Column
2), the relative gap to optimality as reported by the solver (Column 3), the number of null load
arcs, i.e., the number of unused arcs (Column 4), the computation/solving time referred to as root
+ Branch&Cut (B&C) (Column 5) and the Total time, i.e., the sum of the computation and model
generation time (Column 6).

Table 14 Convex Relaxation (CR) + PWL - MILP solver configuration: 128GB/8

Topology
Objective Rel. Gap Null Load Computation Time (s)

value Optimality Arcs Root+B&C Total

austria 656674 0.00% 0 467 489

atlanta 18737126 0.00% 0 5 6

cost266 893727 0.00% 0 396 406

france 7291 0.00% 2 678 687

germany50 135392 0.70% 0 47561 47578

giul39 4774 0.30% 0 119401 119410

india35 12728 0.33% 2 6487 6501

norway 401462 0.00% 0 747 753

pioro40 32540 0.34% 1 9176 9190

zib54 — — — — —

A clear cut can be observed between instances (such as atlanta, austria, cost266, france, nor-
way) that can be efficiently solved to optimality (0.00% gap) in less than 1000s and others such as
germany50, giul39, india35 and pioro40 that remain with a gap of less than 1% but require more
computation time. Among those, giul39 hits the configured maximum time limit configured and ger-
many50 requires about one order of magnitude longer to produce a near-optimal solution (gap of
0.70%). The zib54 topology could not be solved with the proposed method.
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6.4.4 Stochastic ALM with (backtracking and) LP start

Instead of using randomly generated flow variable values to initialize the stochastic ALM algorithm,
we consider running the algorithm with the initial flow variable values obtained by solving the capacity
design problem with continuous flows but without delay constraints. The network design problem is
solved with the minimum capacity fraction that produces a feasible solution as detailed in Table 8
(cf. Section 5.4.1). The main motivation stems as follows: with a (piecewise linear) objective function
that is convex in the capacity variables, the network design problem provides a lower bound to the
nonlinearly/delay constrained problem. Consequently, the LP solver would find a feasible solution
to the network design problem whereas the iterative algorithm handles the nonlinearly constrained
problem.

The flow variable values are first projected on the set C and then used to produce the initial
conditions (x0, y0) for the stochastic ALM algorithm. Also, this algorithm is executed with the same
parameter setting for all network instances as indicated in Table 15.

Table 15 Stochastic ALM algortihm: parameters

Parameter Initial Value Iterate

ρ ρ0 = 0.01µh ρk = min(ρk−1, σk−1)

t t0 = 1 tk =
1

2

√
1 + 4t2k−1

σ σ0 = 1.1 σk = 1.1

The computation time required to obtain the flow variable values used as initial conditions for
the Stochastic ALM algorithm is reported in Table 16 (Column 2). This table also lists the initial
objective function value obtained (Column 4). The computation time required to reach a relative gap
of 1e-09 is reported in (Column 5) together with the feasibility associated to the flow conservation
constraints (Column 6), the delay constraints (Column 7) and capacity constraints (Column 8).

Table 16 Capacity cost minimization: Initialization of Stochastic ALM with LP start

Topology
Computation Relative Objective Computation Feasibility

Time (s) Gap value time (s) C.(6.52) C.(6.51) C.(6.54)

austria 28.25 0 542648.58 92.88 3.2977e-04 -1.0999 2.0118e-09

atlanta 1.89 0 18466583.53 0.26 1.3034e-04 -1.0922 9.0949e-13

cost266 93.07 0 814768.43 11.00 2.0919e-04 -1.0995 1.9213e-11

france 1.17 0 7364.96 1.54 2.5849e-04 -1.0499 4.5474e-13

germany50 18.89 0 132283.42 55.82 1.7468e-04 -0.3854 1.4210e-14

giul39 374.18 0 4559.70 38.42 2.8276e-04 -0.6316 9.0949e-13

india35 16.04 0 13017.02 15.18 1.2451e+02 -0.9374 2.2737e-13

norway 2.84 0 386968.21 4.77 2.1798e-04 -1.0846 5.9685e-13

pioro40 17.95 0 31037.86 16.29 2.2262e-04 -1.0425 8.2422e-13

zib54 136.36 0 8790313.59 97.83 3.0537e+02 -1.0937 3.6379e-12

For each topology, Table 17 reports the computational results obtained when executing the ALM
algorithm initialized with the flow variable values obtained after solving the network design cost
minimization problem without delay constraints. This table reports the number of iterations (Column
2) and the computation time (Column 3) required by the ALM algorithm to converge to a solution
meeting both flow conservation and delay constraints down to a feasibility threshold of 1e-06 if not
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interrupted before the time limit (T.L.) set to 43200s. Note that for the flow conservation constraints,
the L∞ norm is used (instead of the L2-norm) to measure feasibility.

Table 17 Capacity cost minimization: Stochastic ALM with LP start

Topology
Objective Nbr of Computation Feasibility

value iterations time (s) C.(6.52) C.(6.51) C.(6.54)

austria 542648.69 585 20119 9.5726e-07 -1.0999 1.8923e-09

atlanta 18466588.81 421 113 9.4628e-07 -1.0947 9.0949e-13

cost266 814763.43 384 4192 9.5798e-07 -1.0992 1.8190e-11

france 7269.07 330 550 9.7837e-07 -1.0022 4.2632e-13

germany50 132233.43 614 26636 8.6057e-07 -0.3855 5.6843e-14

giul39 4559.67 1298 40125 5.7243e-08 -9.1393e-03 9.0949e-13

india35 18103.25 1479 T.L. 9.3674e-02 -0.4164 2.2737e-13

norway 386964.69 494 2354 9.9381e-07 -1.0927 4.5474e-13

pioro40 31037.89 332 5828 9.5056e-07 -0.9949 7.6738e-13

zib54 9110875.05 676 T.L. 5.1074e-02 -1.0932 4.5474e-13

6.5 Comparative Analysis

In this section, we compare, in addition to the solution quality, the performance in terms of the
computation time required by the two proposed stochastic ALM methods (with and without LP
start) against the conventional CR + PWL method. For this purpose, Tables 18 (ALM without LP
start) and 19 (ALM with LP start) indicate in Columns 3 and 5, the total computation time required
to obtain the objective value reported in Column 2 and 4, respectively.

Table 18 Capacity cost minimization: Comparison Stochastic ALM with CR + PWL method

Topology

ALM CR + PWL Gain

Minimum Computation Minimum Comp. Abs. Rel.

Obj. value Time (Iter.) Obj. value Time (s)

austria 1.1864e+06 40616 s (1246) 6.56674e+05 489 s +40127 83.06

atlanta 1.8880e+07 119 s (580) 1.8737e+07 6 s +113 19.86

cost266 9.14003e+05 8735 s (1165) 8.9373e+05 406 s +8329 21.51

france 7.3650e+03 838 s (996) 7.2910e+03 687 s +151 1.21

germany50 1.3457e+05 7971 s (327) 1.3539e+05 47578 s -39607 0.17

giul39 5.9791e+03 39488 s (937) 4.7740e+03 119410 s -79922 0.33

india35 1.3345e+04 7593 s (409) 1.2728e+04 6501 s +1092 1.17

norway 4.3755e+05 9802 s (3724) 4.0162e+05 753 s +9049 1.08

pioro40 3.6421e+04 11249 s (978) 3.2540e+04 9190 s +2059 1.22

zib54 2.0437e+07 16065 s (150) — — — —
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The performance of the stochastic ALM method strongly depends on its parameterization (initial
values (x0, y0) and smoothing parameter ρ) but also on the finding of the primal tk and dual σk
stepsize in each iteration following conditions (3.11).

As shown in Table 18, for relatively small size instances such as atlanta, cost266, france, norway but
also india35 and pioro40, the computational time remains at the advantage of the CR+PWL method.
The stochastic ALM method shows its advantages for larger and/or more complex instances such as
germany50, giul39, and zib54 by significantly decreasing for the two first instances the computational
time. Observe also that, although the value of the objective function obtained with the ALM method
is slightly better for germany50, its computation time shows a gain by a factor of about 6 in favor of
the latter method. For giul39, the gain in computation time reaches a factor of about 3. Moreover, for
the zib54 instance, that can’t be solved by the CR+PWL method, the objective value obtained with
the ALM method can still be improved as indicated in Column 1 of Table 19. The same behaviour
can be observed for the two other instances.

Table 19 Capacity cost minimization: Comparison Stochastic ALM + LP start with CR + PWL method

Topology

ALM + LP Start CR + PWL Gain

Minimum Computation Minimum Comp. Abs. Rel.

Obj. value Time (Iter.) Obj. value Time (s)

austria 5.4265e+05 20119 s (585) 6.5667e+05 489 s +19630 41.14

atlanta 1.8466e+07 113 s (359) 1.8737e+07 6 s +107 18.83

cost266 8.1476e+05 4192 s (384) 8.9373e+05 406 s +3786 10.32

france 7.2690e+03 550 s (330) 7.2910e+03 687 s -137 0.80

germany50 1.3233e+05 26636 s (614) 1.3539e+05 47578 s -20942 0.56

giul39 4.5597e+03 40125 s (1298) 4.7740e+03 119410 s -79285 0.34

india35 1.8103e+04 43200 s (1479) 1.2728e+04 6501 s +36699 6.64

norway 3.8696e+05 2354 s (494) 4.0162e+05 753 s +1601 3.13

pioro40 3.1037e+04 5828 s (332) 3.2540e+04 9190 s -3362 0.63

zib54 9.1108e+06 43200 s (676) — — — —

As shown in Table 19, the stochastic ALM+LP start method competes with the CR+PWL method
in terms of solution quality. In total, a smaller objective value is obtained for 9 of the 10 instances:
austria, atlanta, cost266, germany50, giul39, norway, pioro40 and zib54 (for the latter, the CR+PWL
method cannot produce a feasible solution). The main reason seems to find its root in the relaxation
of the original problem and the gap this approximation yields in the solving of the resulting model.

Compared to the method without LP start, the stochastic ALM method with LP start also sig-
nificantly improves for all instances (except for india35 and zib54 ) the feasibility of flow conservation
constraints (6.52) by orders of magnitude. Indeed, by comparing Column 2 of Table 12 to Column
5 of Table 17, we can observe an improvement of the order of 1e03 for all instances except the two
cited. The plausible explanation being that the initial flow variable values, which are derived from the
solving of the LP problem without nonlinear delay constraints, yield the iterative solver close to a local
minimum of the problem with delay constraints. This observation is corroborated by Column C.(6.52)
of Table 16, which shows that after one iteration, the feasibility of the flow conservation constraints
reaches 1e-04 for all instances (except for india35 and zib54 ). The latter two instances show that the
combination of an LP start to the ALM method may yield a feasible point that is not necessarily
suited as initial condition for the minimization of the augmented Lagrangian. Finally, for four of these
instances, namely, france, germany50, giul39 and pioro40, the improvement of the objective function
value is accompanied by a decrease in the computation time, as indicated by the absolute and relative
gain columns of Table 19.
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Hence, although drawing final conclusion on the performance gain for the stochastic ALM method
(thus NLP solvers over MIP solvers) remains premature, it is nevertheless evident that there is clear
cut for the latter beyond which instances cannot be solved. This cut limit depends on resource factors
(number of threads and working memory space) but also properties of the instance (number of vertices
and arcs, arc capacity, and demand properties). Indeed austria is the largest instance in terms of the
number of vertices and arcs but the nominal size of the demands is limited, as demonstrated by the 24
unused arcs and the total number of demands proportional to the number of vertices n (instead of n2

compared to the other instances). A Lagrangian relaxation could also be investigated for comparative
purposes; however, experience [45] shows that the resulting problem shall be decomposable per node
to yield any potential advantage -which is not the case here due to the delay constraints.

On the other hand, beyond the potential improvements of the stochastic ALM method in terms
of computational time (potentially due also to the experimental nature of the code developed), es-
tablishing the actual limits of the method remains open. One can observe though that as the size of
the instance increases, the computation time tends nevertheless to become rather large as shown for
austria although driving initial flow variable values significantly mitigates this increase (by a factor
10 in this case). At least we did not find any instance that could not be solved by means of the pro-
posed ALM method. As part of our future work, experiments with more general nonconvex objective
functions will be considered. Such experiments would also enable to further characterize and capture
the gain of the proposed method.

7 Conclusion and future work

The performance analysis (computation time, number of iterations, etc.) performed in this paper re-
quires to consider the full sample variant of the stochastic ALM algorithm in order to allow comparison
against existing Lagrangian-based variants, including ALGENCAN and RI-ALM. In this setting, for
the max-cut problem, the stochastic ALM algorithm nevertheless outperforms both of them in terms of
computed value and performance (number of iterations and computation time). For the GEV problem,
the results obtained are more contrasted. The stochastic ALM algorithm remains competitive against
ALGENCAN by reaching a smaller relative gap and being twice less computation demanding. How-
ever, compared to RI-ALM, our algorithm shows similar performance in terms of computation time.
The “full sample” experiments realized provide also the best objective value that could be achieved
by the stochastic ALM algorithm.

From the use case under consideration, namely the multi-commodity network design problem with
load-induced delay constraints, the numerical results obtained are promising. This observation can be
drawn if we consider that the stochastic nature of the algorithm would reduce the computation time
without necessarily significantly affecting the objective value. The latter being for 90% of the instances
considered in our numerical experiments better than the value produced by means of customized LP
solving methods.

Nevertheless, finding nonlinearly constrained programming models with nonconvex objectives
where, compared to the deterministic variant, the stochastic ALM is competitive in terms of per-
formance but also computes objective values that remain near to those produced by the deterministic
variant remains an open research topic part of our future work.
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48. F. Pollaczek, Über eine Aufgabe der Wahrscheinlichkeitstheorie, Math. Z, Vol. 32, pp. 64–100, 1930.
49. M. J. D. Powell, A method for non-linear constraints in minimization problems, Optimization, R. Fletcher Ed.,

Academic Press, New York, NY, pp. 283–298, 1969.
50. M. Poss and C. Raack, Affine Recourse for the Robust Network Design Problem: Between Static and Dynamic

Routing, Networks, Vol. 61, pp. 180–198, 2013.
51. M. F. Sahin, A. Alacaoglu, F. Latorre and V. Cevher, An inexact augmented Lagrangian framework for nonconvex

optimization with nonlinear constraints, In Advances in Neural Information Processing Systems, pp. 13943–13955,
2019.

52. H. D. Sherali and W. P. Adams, A hierarchy of relaxations between the continuous and convex hull representations
for zero-one programming problems, SIAM J. Discret. Math., Vol. 3, pp. 411-430, 1990.

53. H. D. Sherali and C. H. Tuncbilek, A global optimization algorithm for polynomial programming problems using a
reformulation-linearization technique, J. Glob. Optim., Vol. 2, pp. 101-112, 1992.

54. H. D. Sherali and W. P. Adams, A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-
one programming problems, Discrete. Appl. Math., Vol. 52, pp. 83-106, 1994.

https://hal.archives-ouvertes.fr/hal-03336022
https://www.octave.org
https://arxiv.org/pdf/1610.02967.pdf
https://arxiv.org/pdf/1610.02967.pdf
http://github.com/stevengj/nlopt
https://arxiv.org/abs/2003.08880


Stochastic ALM 53

55. H. D. Sherali and W. P. Adams, A Reformulation-Linearization Technique for Solving Discrete and Continuous
Nonconvex Problems, Kluwer Academic Publishers, Dordrecht, Boston, London, 1999.

56. H. D. Sherali and H.Wang, Global optimization of nonconvex factorable programming problems, Math. Program.,
Vol 89, pp. 459-478, 2001.

57. W. P. Adams and H. D. Sherali, A hierarchy of relaxations leading to the convex hull representation for general
discrete optimization problems, In M. Guignard, K. Spielberg (Eds.), State-of-the-Art in Integer Programming,
Ann. Oper. Res., Vol. 140, pp. 21-47, 2005.

58. T. Valkonen, A primal-dual hybrid gradient method for nonlinear operators with applications to MRI, Inverse
Probl., Vol.30, 055012, 2014.

59. http://proximity-operator.net/
60. https://sites.google.com/site/fomsolv
61. Z. Li, P. Y. Chen, S. Liu, S. Lu and Y. Xu, Rate-improved Inexact Augmented Lagrangian Method for Constrained

Nonconvex Optimization, Proceedings of the 24th International Conference on Artificial Intelligence and Statistics
(AISTATS), San Diego, California, USA. PMLR, Vol. 130, 2021.

62. H. Robbins and D. Siegmund, A convergence theorem for non negative almost supermartingales and some appli-
cations, In: Rustagi JS, editor. Optimizing methods in statistic, New York (NY): Academic Press, pp. 233-257,
1971.

63. H. Robbins and S. Monro, A Stochastic Approximation Method, Ann. Math. Statist., Vol. 22, pp. 400-407, 1951.
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