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Abstract

This paper introduces and develops coderivative-based Newton methods with Wolfe linesearch condi-
tions to solve various classes of problems in nonsmooth optimization and machine learning. We first pro-
pose a generalized regularized Newton method with Wolfe linesearch (GRNM-W) for unconstrained C1,1

minimization problems (which are second-order nonsmooth) and establish global as well as local superlin-
ear convergence of their iterates. The Newton directions in the algorithm are obtained by solving linear
equations extracted from coderivatives. To deal with convex composite minimization problems (which are
first-order nonsmooth and can be constrained), we combine the proposed GRNM-W with two algorithmic
frameworks: the forward-backward envelope and the augmented Lagrangian method resulting in the two
new algorithms called CNFB and CNAL, respectively. Finally, we present numerical results to solve Lasso
and support vector machine problems appearing in, e.g., machine learning and statistics, which demonstrate
the efficiency of the proposed algorithms.

Keywords: nonsmooth optimization, machine learning, variational analysis, nonsmooth Newton meth-
ods, Wolfe linesearch, Lasso problems, support vector machines

1 Introduction
The classical Newton method is an efficient second-order algorithm for unconstrained C2-smooth minimiza-
tion problems, with superlinear or quadratic local convergence when the Hessian of the objective function
is positive-definite around a solution. Nevertheless, it has some serious drawbacks such as lack of global
convergence, high computational cost, and restricted applicability. Accordingly, many modifications of
Newton’s method have been proposed, including damped Newton method, regularized Newton method,
quasi-Newton methods, trust-region Newton methods, cubic regularized Newton method, etc. For such
Newton-type methods, second-order smoothness of the objective function is required either in the problem
formulation, or in the convergence analysis. However, in many natural models, the objective function is not
second-order differentiable while we still want to utilize some generalized second-order derivatives to design
nonsmooth Newton algorithms with the hope that they retain the fast convergence of the classical Newton
method. With that in mind, we first focus our attention on the class of unconstrained C1,1 minimization
problems, where the objective functions are continuously differentiable with locally Lipschitz continuous
gradients. In this way, several nonsmooth Newton methods employing different generalized differentiation
constructions have been proposed and developed in the literature. The most popular by far generalized New-
ton method is known as the semismooth Newton method (SNM), which primarily addresses, along with its
various modifications, to solving Lipschitzian gradient equations that arise, e.g., from stationary conditions
for minimizing C1,1 functions as well as systems that can be reduced to this framework. The main analytic
tools in SNM and its versions are generalized Jacobians by Clarke [9]. Among an enormous amount of pub-
lications on SNM and its modifications, we refer the reader to the books [13, 22, 28] and the bibliographies
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therein for a variety of results, discussions, and historical comments. Due to the well-recognized limitations
of SNM discussed in the aforementioned publications, the search of other nonsmooth Newtonian methods
has been undertaken over the years. In particular, the semismooth∗ Newton method [17] and its SCD (sub-
space containing derivative) [18] variant have been proposed for solving set-valued inclusions. The reader
can find more information on recent developments in the fresh book [43].

This paper develops a quite recent direction in variational theory and applications of nonsmooth Newton
methods with algorithms constructed by employing coderivatives by Mordukhovich [41] instead of general-
ized Jacobians by Clarke. Newtonian iterations to find stationary points and local minimizers are defined in
this way by using coderivative-based second-order subdifferentials/generalized Hessians of objective func-
tions in the sense of [39, 41]. The latter constructions of second-order variational analysis enjoy comprehen-
sive calculus rules and admit explicit calculations in terms of the given data for broad classes of nonsmooth
functions that overwhelmingly appear in various settings of optimization and its applications to machine
learning, data science, statistics, biochemical modeling, etc.; see [43] for more details and references. A va-
riety of coderivative-based Newtonian algorithms have been developed and applied in [1, 25, 26, 27, 43, 45]
with establishing their local and global convergence, convergence rates, and applications to practical mod-
eling. To ensure global convergence of the generalized damped Newton method in [25, 26, 43] and the
generalized regularized Newton method in [27, 43], together with their algorithmic implementations for
various classes of optimization problems, the backtracking Armijo linesearch has been widely employed.

In this paper, we first propose and justify a generalized regularized Newton method with the Wolfe
linesearch (GRNM-W) for C1,1 minimization problems. Its iterative procedure is given in the form

xk+1 = xk + τkdk with −∇ϕ(xk) ∈ ∂
2
ϕ(xk)(dk)+µkBkdk,

where τk is a stepsize determined by a linesearch that satisfies the Wolfe conditions, where ∂ 2ϕ(xk) :=
(D∗∇ϕ)(xk) is Mordukhovich’s generalized Hessian (i.e., coderivative of the gradient mapping), where
µk > 0 is a regularization parameter, and where Bk ≻ 0 is a regularization matrix. Note that the nonlinear
inclusion in the above formula can be implemented by solving linear equation; see Remark 1 for more
details. GRNM-W has two crucial differences from the generalized regularized Newton method (GRNM)
in [27]. On one hand, GRNM-W uses a Wolfe linesearch strategy instead of the backtracking linesearch.
On the other hand, GRNM-W incorporates a more general regularization matrix than GRNM, which uses
the identity matrix. We establish global convergence and local superlinear convergence rates of GRNM-W
under the same assumptions as in [27]. Moreover, we present an appropriately modified version of GRNM-
W so that it can be applied to arbitrary nonconvex functions. Global convergence with convergence rates of
the modified GRNM-W are established for general nonconvex functions satisfying the Polyak-Łojasiewicz-
Kurdyka conditions. To the best of our knowledge, the obtained results are new for nonsmooth Newton-type
methods. We show that the Wolfe linesearch is more efficient than the backtracking Armijo linesearch
employed in [27] and other nonsmooth Newton methods mentioned above, especially when evaluations
of gradients are not too expensive and the starting point is far enough from a solution. One particularly
impressive property of the Wolfe linesearch for Newton-type methods is that it allows us to choose larger-
than-unit stepsizes in the initial stage of the iteration.

Starting with unconstrained problems of C1,1 optimization, we then extend our GRNM-W method to
significantly more general classes of constrained optimization problems, which may be even first-order
nonsmooth. Of our primary interest here are problems of convex composite minimization, where one of
the functions in summation is extended-real-valued and hence incorporates constraints. We combine the
coderivative-based GRNM-W with the two algorithmic frameworks: forward-backward envelope from [49]
and augmented Lagrangian method from [54]. These combinations lead us to the two new algorithms
called CNFB (coderivative-based Newton forward-backward method) and CNAL (coderivative-based New-
ton augmented Lagrangian method). The main difference of CNFB from GRNM in [27] is the usage of
the Wolfe linesearch instead of the Armijo one, while CNAL is different from SSNAL (semismooth New-
ton augmented Lagrangian method) in [31] by using coderivatives instead of generalized Jacobians and the
Wolfe conditions instead of the Armijo condition. We present applications of our results to support vector
machines and Lasso problems with numerical experiments that demonstrate the efficiency of our algorithms.

The remaining parts of the paper are organized as follows. In Section 2, we review preliminaries from
variational analysis including generalized differentiation constructions and the semismooth and semismooth∗

properties. Section 3 proposes and develops a generalized regularized Newton method with the Wolfe line-
search (GRNM-W) for C1,1 functions whose generalized Hessians are positive-semidefinite. Global con-
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vergence results with local superlinear convergence rates are derived in this section. A modified version of
GRNM-W is given in Section 4 in such a way that it is applicable to arbitrary nonconvex C1,1 functions
without any positive-semidefiniteness assumptions whatsoever. We then verify global convergence and con-
vergence rates for the modified GRNM-W assuming the PLK property of the objective function. Our study
of convex composite minimization problems begins in Section 5, where we propose the CNFB algorithm
by combining GRNM-W with the forward-backward envelope. Section 6 develops the CNAL algorithm
by embedding GRNM-W in the augmented Lagrangian method. In Section 7, we compare GRNM-W with
GRNM numerically. Applications of the obtained results to support vector machines and Lasso problems
together with the corresponding numerical experiments are reported in Section 8 and Section 9, respectively.
Finally, Section 10 presents concluding remarks and discusses some directions of our future research.

Our notations are standard. Recall that N := {0,1, . . .}, that R is the field of real numbers, and that
R :=R∪{∞}. The distance between x ∈Rn and a nonempty set Ω ⊂Rn is defined by dist(x,Ω) := inf{∥x−
y∥ | y ∈ Ω}. The symbol Bδ (x̄) = {x ∈ Rn | ∥x− x̄∥ < δ} stands for the open ball centered at x̄ with radius
δ . For a symmetric matrix A ∈Rn×n, the notation A ≻ 0 means that A is positive-definite. The norm defined
by such a matrix A is denoted by ∥x∥A :=

√
⟨x,Ax⟩.

2 Preliminaries from Variational Analysis
Here we overview some well-known notions and results of variational analysis broadly employed in the
paper; see the books [41, 42, 43, 55] for more details and related material.

For a nonempty set Ω ⊂ Rn, the (Fréchet) regular normal cone to Ω at x̄ ∈ Ω is

N̂Ω(x̄) :=
{

v ∈ Rn
∣∣∣ limsup

x Ω→x̄

⟨v,x− x̄⟩
∥x− x̄∥

≤ 0
}
, (1)

where the symbol x Ω→ x̄ indicates that x → x̄ with x ∈ Ω. The (Mordukhovich) basic/limiting normal cone
to Ω at x̄ ∈ Ω is defined by

NΩ(x̄) :=
{

v ∈ Rn ∣∣ ∃xk
Ω→ x̄,vk → v as k → ∞ with vk ∈ N̂Ω(xk)

}
. (2)

Note that the set NΩ(x̄) is often nonconvex as, e.g., for Ω := {(x,α) ∈ R2 | α ≥ −|x|} at x̄ = 0. Thus
(2) cannot be generated in duality by any tangential approximation of Ω at x̄ since duality always yields
convexity. Nevertheless, the limiting normal cone (2) and the corresponding coderivative and subdifferential
constructions enjoy full calculus based on variational/extremal principles.

Consider a set-valued mapping/multifunction F : Rn ⇒ Rm with the graph gphF := {(x,y) ∈ Rn ×
Rm | y ∈ F(x)}. Generated by the corresponding normal cone in (1) and (2), the regular coderivative and
limiting coderivative of F at (x̄, ȳ) ∈ gphF are defined, respectively, by

D̂∗F(x̄, ȳ)(v) :=
{

u ∈ Rn ∣∣ (u,−v) ∈ N̂gphF(x̄, ȳ)
}
, v ∈ Rm, (3)

D∗F(x̄, ȳ)(v) :=
{

u ∈ Rn ∣∣ (u,−v) ∈ NgphF(x̄, ȳ)
}
, v ∈ Rm. (4)

When F : Rn → Rm is single-valued, we omit ȳ = F(x̄) in the notations (3) and (4). Recall further that a
multifunction F : Rn ⇒Rm is metrically regular at (x̄, ȳ) ∈ gphF if there exist a positive constant µ > 0 and
neighborhoods U of x̄ and V of ȳ such that

dist
(
x;F−1(y)

)
≤ µ dist(y;F(x)) for all x,y) ∈U ×V. (5)

Given now an extended-real-valued function ϕ : Rn →R with domϕ := {x ∈Rn | ϕ(x)< ∞}, define the
limiting subdifferential of ϕ at x̄ ∈ domϕ geometrically by

∂ϕ(x̄) :=
{

v ∈ Rn ∣∣ (v,−1) ∈ Nepiϕ (x̄,ϕ(x̄))
}

(6)

while observing that (6) admits various analytic representations that can be found in the aforementioned
books. The second-order subdifferential (or generalized Hessian) of ϕ at x̄ ∈ domϕ for v̄ ∈ ∂ϕ(x̄) is defined
in [39] as the coderivative of the subgradient mapping ∂ 2ϕ(x̄, v̄) : Rn ⇒ Rn by

∂
2
ϕ(x̄, v̄)(u) :=

(
D∗

∂ϕ
)
(x̄, v̄)(u) whenever u ∈ Rn. (7)
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Note that if ϕ is a C2-smooth function around x̄, then (7) reduces to the classical (symmetric) Hessian matrix
∂ 2ϕ(x̄)(u) = {∇2ϕ(x̄)(u)} for all u ∈Rn. Over the years, extensive calculus rules, explicit calculations, and
a variety of applications have been obtained in terms of (7), which have been summarized in the recent book
[43] with the numerous references therein.

Among the striking applications of (7), we mention complete characterizations in its terms several no-
tions of variational stability in finite and infinite dimensions. It concerns, in particular, the following major
stability notion in optimization introduced in [50].
Definition 1 (tilt stability). For ϕ : Rn →R, a point x̄ ∈ domϕ is called a tilt-stable local minimizer of ϕ if
there exists a number γ > 0 such that the mapping

Mγ : v 7→ argmin
{

ϕ(x)−⟨v,x⟩
∣∣ x ∈ Bγ(x̄)

}
is single-valued and Lipschitz continuous on some neighborhood of 0 ∈ Rn with Mγ(0) = {x̄}. A Lipschitz
constant of Mγ around 0 is called a modulus of tilt stability of ϕ at x̄.

The next notion of semismoothness was introduced in [35] for real-valued functions and then extended
to vector-valued functions in [29, 53] with applications to generalized Newton’s methods for directionally
differentiable Lipschitz continuous functions.
Definition 2 (semismoothness). A mapping f : Rn → Rm is said to be semismooth at x̄ if it is locally
Lipschitz continuous around x̄ and the limit

lim
A∈co∇ f (x̄+tu′)

u′→u,t↓0

Au′ (8)

exists for all u ∈ Rn, where ‘co’ stands for the convex hull of the set in question, and where

∇ f (x) :=
{

A ∈ Rm×n ∣∣ ∃xk
Ω f→ x with ∇ f (xk)→ A

}
with Ω f signifying the set of points at which f is differentiable.

Note that the set ∇ f (x) above is also written as ∂B f (x) and is called the B-subdifferential of f at x. The
convex hull co∇ f (x) is also written as ∂C f (x) and is called the (Clarke) generalized Jacobian of f at x.
Observe the relationship (with AT standing for the matrix transposition)

coD∗ f (x̄)(v) =
{

AT ∣∣ A ∈ ∂C f (x̄)
}
, v ∈ Rm,

between the coderivative (4) and the generalized Jacobian of f at x̄, valid for any f : Rn → Rm locally
Lipschitzian around x̄. The following characterization of semismoothness is taken from [53, Theorem 2.3].
Proposition 1 (characterization of semismoothness). Let f : Rn → Rm be locally Lipschitzian around x̄.
Then f is semismooth at x̄ if and only if it is directionally differentiable at x̄ in every direction and for any
x → x̄ and A ∈ ∂C f (x̄) we have the condition

f (x)− f (x̄)−A(x− x̄) = o(∥x− x̄∥). (9)

To proceed further, recall that the directional normal cone to a set Ω⊂Rs at z̄∈Ω in the direction d ∈Rs

is introduced in [19] by

NΩ(z̄;d) :=
{

v ∈ Rs ∣∣ ∃ tk ↓ 0, dk → d, vk → v with vk ∈ N̂Ω(z̄+ tkdk)
}
.

The directional coderivative of F : Rn ⇒ Rm at (x̄, ȳ) ∈ gphF in the direction (u,v) ∈ Rn ×Rm is

D∗F ((x̄, ȳ);(u,v))(q) :=
{

p ∈ Rn ∣∣ (p,−q) ∈ NgphF
(
(x̄, ȳ);(u,v))

)}
, q ∈ Rm, (10)

as defined in [16]. Using (10), the semismoothness was extended in [17] to set-valued mappings F : Rn ⇒
Rm as follows: F is said to be semismooth∗ at (x̄, ȳ)∈ gphF if for all (u,v)∈Rn×Rm we have the condition

⟨p,u⟩= ⟨q,v⟩ whenever (q, p) ∈ gphD∗F
(
(x̄, ȳ);(u,v)

)
.

We refer the reader to [17] and [43, Section 9.1.2] for various properties of semismooth∗ mappings. In
particular, if F = f : Rn → Rm is single-valued and locally Lipschitzian around x̄, then its semismooth∗

property at x̄ is equivalent to condition (9) without assuming the directional differentiability of f at x̄.
In the algorithms developed in this paper, we achieve several convergence rates defined, e.g., in [13].

The following technical lemma from [27, Lemma 4] is useful below.
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Lemma 2 (linear convergence of sequences). Let {αk},{βk},{γk} be sequences of positive real numbers.
Assume that there exist constants c1,c2,c3 > 0 satisfying the estimates for large k ∈ N:

αk −αk+1 ≥ c1β
2
k , βk ≥ c2γk, c3γ

2
k ≥ αk.

Then {αk} converges to zero Q-linearly while {βk} and {γk} converge to zero R-linearly.

3 Regularized Newtonian Method with Wolfe Linesearch
Consider the following unconstrained optimization problem:

minimize ϕ(x) subject to x ∈ Rn, (11)

where ϕ is of class C1,1, i.e., it is continuously differentiable with the locally Lipschitzian gradient. We
propose and justify the generalized regularized Newton method with the Wolfe linesearch (GRNM-W) for
solving the second-order nonsmooth problem (11). Here is the algorithm:

Algorithm 1 Generalized regularized Newton method with the Wolfe linesearch (GRNM-W)
Input: x0 ∈ Rn, c > 0, 0 < σ1 < σ2 < 1, ρ ∈ (0,1].

1: for k = 0,1, . . . do
2: If ∇ϕ(xk) = 0, stop; otherwise set µk = c∥∇ϕ(xk)∥ρ and go to next step.
3: Choose Bk ≻ 0. Find dk ∈ Rn such that −∇ϕ(xk) ∈ ∂ 2ϕ(xk)(dk)+µkBkdk.
4: Set τk = 1 and check the Wolfe conditions:

ϕ(xk + τkdk)≤ ϕ(xk)+σ1τk ⟨∇ϕ(xk),dk⟩ ,

⟨∇ϕ(xk + τkdk),dk⟩ ≥ σ2 ⟨∇ϕ(xk),dk⟩ .

If these conditions do not hold, adjust τk (using any specific implementation of the Wolfe linesearch) until
it satisfies the Wolfe conditions. We assume that in the implementation there exists an upper bound τmax on
the maximum stepsize allowed.

5: Set xk+1 = xk + τkdk.
6: end for

The proposed algorithm is a counterpart of the globally convergent coderivative-based GRNM from [27]
with replacing the Armijo linesearch by the Wolfe one. The reader can consult [11, 52] and the references
therein for some other versions of globally convergent regularized Newton methods in the case of convex
C2-smooth objective functions using the Armijo linesearch for globalization.
Remark 1 (implementation of Algorithm 1). Let us address the issue of implementing the inclusion

−∇ϕ(xk) ∈ ∂
2
ϕ(xk)(dk)+µkBkdk (12)

in line 3 of Algorithm 1. The generalized Hessian ∂ 2ϕ(x)(d) := D∗∇ϕ(x)(d) is nonlinear in d in general,
but we can always extract a linear mapping from it as follows. Let S ∗∇ϕ(x) be the SC limiting coderivative
defined in [18]. By [18, Lemma 3.7, Lemma 3.11], we can always pick a linear subspace Lx ∈ S ∗∇ϕ(x)
represented by a matrix Ax ∈ Rn×n such that Axd ⊂ D∗∇ϕ(x)(d) for all d ∈ Rn. Therefore, it is possible to
solve the nonlinear inclusion (12) by solving the linear equation in dk:

−∇ϕ(xk) = (Ak +µkBk)dk, (13)

where Ak is chosen from the SC limiting coderivative S ∗∇ϕ(xk), which is always nonempty and is con-
tained in the limiting coderivative D∗∇ϕ(xk) =: ∂ 2ϕ(xk). Note that once the coderivative is calculated, it is
usually easy to extract such a linear mapping.

To proceed with the justification of Algorithm 1, we first present the following lemma.
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Lemma 3 (existence of Newton-Wolfe directions). Let ϕ : Rn →R be of class C1,1 around a point x ∈Rn

such that ∇ϕ(x) ̸= 0 and ∂ 2ϕ(x) is positive-semidefinite, i.e.,

⟨z,u⟩ ≥ 0 for all u ∈ Rn and all z ∈ ∂
2
ϕ(x)(u). (14)

Then for any positive-definite symmetric matrix B ∈ Rn×n, there exists d ̸= 0 such that

−∇ϕ(x) ∈ ∂
2
ϕ(x)(d)+Bd.

Proof. This can be distilled from the similar proof of [27, Theorem 3(i)], and hence is omitted.

Now we get the well-posedness of the proposed CRNM-W.
Theorem 4 (well-posedness of Algorithm 1). Let ϕ : Rn →R be of class C1,1 and be bounded from below,
and let x0 ∈ Rn be a starting point such that for all x ∈ Rn with ϕ(x) ≤ ϕ(x0) the generalized Hessian
∂ 2ϕ(x) is positive-semidefinite.1 If ∇ϕ(xk) ̸= 0, then there exists dk ̸= 0 such that the condition in line 3 of
Algorithm 1 holds and the Wolfe linesearch is well defined. Moreover, Algorithm 1 either stops after finitely
many iterations at a stationary point, or generates a sequence {xk} such that {ϕ(xk)} is decreasing.

Proof. The existence of dk follows from Lemma 3. Since ∂ 2ϕ(xk) is positive-semidefinite (by the suffi-
cient decrease condition and the assumption on x0), and since −∇ϕ(xk)− µkBkdk ∈ ∂ 2ϕ(xk)(dk), we get
⟨−∇ϕ(xk)−µkBkdk,dk⟩ ≥ 0 giving us the estimate

⟨−∇ϕ(xk),dk⟩ ≥ µk∥dk∥2
Bk
. (15)

Using µk > 0 and dk ̸= 0 ensures that ⟨−∇ϕ(xk),dk⟩ > 0. This tells us that dk is a descent direction. By
[47, Lemma 3.1], a stepsize satisfying the Wolfe conditions always exists when the objective function is
C1-smooth and bounded from below. By design, Algorithm 1 either stops at a stationary point after finitely
many iterations, or generates a sequence of iterates {xk} such that ϕ(xk+1)< ϕ(xk) for all k ∈ N.

The next theorem establishes stationarity of accumulation points of iterates in GRNM-W.
Theorem 5 (stationarity of accumulation points in Algorithm 1). Under the assumptions of Theorem 4,
suppose that the eigenvalues of the regularization matrices Bk in Algorithm 1 are contained in [m2

lower,m
2
upper]

with mupper ≥ mlower > 0, which implies that mlower∥x∥ ≤ ∥x∥Bk ≤ mupper∥x∥ for all x ∈ Rn. Then every
accumulation point of {xk} is stationary for problem (11).

Proof. It follows from Theorem 4 that Algorithm 1 either stops after finitely many iterations (in which case
it must land at a stationary point), or generates a sequence of iterates {xk} such that ϕ(xk+1)< ϕ(xk) for all
k ∈ N. This tells us that {xk} ⊂ Ω := {x ∈ Rn | ϕ(x) ≤ ϕ(x0)}. Suppose that the algorithm does not stop
after finitely many steps. Then we have ∇ϕ(xk) ̸= 0 for all k ∈ N. Recall that µk := c∥∇ϕ(xk)∥ρ with c > 0
and ρ ∈ (0,1]. Define the modified directions

d̃k := ∥∇ϕ(xk)∥ρ−1dk, k ∈ N, (16)

which is possible due to condition ∥∇ϕ(xk)∥ > 0. Let us show that the sequence {d̃k} is bounded. Indeed,
the algorithm design (line 3 of Algorithm 1) provides

−∇ϕ(xk)−µkBkdk ∈ ∂
2
ϕ(xk)(dk) for all k ∈ B,

which ensures by the positive-semidefiniteness of ∂ 2ϕ(xk) that

⟨−∇ϕ(xk),dk⟩ ≥ µk∥dk∥2
Bk

≥ µkm2
lower∥dk∥2. (17)

By the Cauchy-Schwarz inequality with the choice of the regularization parameter µk = c∥∇ϕ(xk)∥ρ and
the regularization matrices Bk, we have

c∥∇ϕ(xk)∥ρ m2
lower∥dk∥2 ≤ c∥∇ϕ(xk)∥ρ∥dk∥2

Bk
≤ ∥∇ϕ(xk)∥∥dk∥,

1This condition always holds when ϕ is convex; see [7].
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which brings us to the estimate

∥∇ϕ(xk)∥ρ−1∥dk∥ ≤ 1
m2

lowerc
, k ∈ N.

This justifies that the sequence of ∥d̃k∥= ∥∇ϕ(xk)∥ρ−1∥dk∥ is bounded.
Let {xk j} be a subsequence of {xk} such that xk j → x̄ as j → ∞, i.e., x̄ is an accumulation point of {xk}.

Since ϕ(x̄) is clearly an accumulation point of the decreasing sequence {ϕ(xk)}, we have ϕ(xk)→ ϕ(x̄) as
k → ∞. It follows from the Wolfe conditions

ϕ(xk+1)−ϕ(xk)≤ σ1τk ⟨∇ϕ(xk),dk⟩< 0

that the passage to the limit leads us to

lim
k→∞

τk ⟨∇ϕ(xk),dk⟩= 0. (18)

The boundedness of {d̃k} provides a convergent subsequence, which can be taken as {d̃k j} without loss of
generality. We get that {dk j} is convergent with limit d̄ := lim j→∞ dk j = lim j→∞ ∥∇ϕ(xk j)∥1−ρ d̃k j by the
continuity of the function ∥ · ∥1−ρ on R, which is equivalent to ρ ≤ 1. Next we claim that

⟨∇ϕ(x̄), d̄⟩= 0. (19)

If limsup
j→∞

τk j > 0, then (19) follows from (18). Hence we only need to consider the case where limsup
j→∞

τk j = 0,

which is the same as lim
j→∞

τk j = 0 (since 0 ≤ liminf
j→∞

τk j ≤ limsup
j→∞

τk j = 0). Note that

⟨∇ϕ(xk j + τk j d
k j),dk j⟩ ≥ σ2⟨∇ϕ(xk j),dk j⟩ for all j ∈ N.

Letting j → ∞ yields ⟨∇ϕ(x̄), d̄⟩ ≥ 0 by σ2 < 1. On the other hand, taking limits in ⟨∇ϕ(xk j),dk j⟩ < 0
ensures that ⟨∇ϕ(x̄), d̄⟩ ≤ 0 and justifies (19) in this case. Combining further (19) with (17), we have

m2
lowerc∥∇ϕ(x̄)∥ρ∥d̄∥2 = m2

lower lim
j→∞

µk j∥dk j∥2 = 0. (20)

If ∥d̄∥ ̸= 0, then ∥∇ϕ(x̄)∥ρ = 0 by (20). Since ρ > 0, we get ∥∇ϕ(x̄)∥ = 0. If ∥d̄∥ = 0, we can still show
that ∥∇ϕ(x̄)∥ = 0. Indeed, recall that ϕ is of class C1,1 around x̄ and −∇ϕ(xk)− µkBkdk ∈ ∂ 2ϕ(xk)(dk).
Then it follows from [41, Theorem 1.44] that there is l > 0 with∥∥∥∇ϕ(xk j)+µk j Bk j d

k j
∥∥∥≤ l

∥∥∥dk j
∥∥∥

for all large j. Letting j → ∞ verifies ∥∇ϕ(x̄)∥ ≤ l∥d̄∥= 0 and thus completes the proof.

Theorem 6 (convergence and convergence rates of GRNM-W). In the setting of Theorem 5, let x̄ be
an accumulation point of {xk} such that ∇ϕ is metrically regular around x̄. Then x̄ is a tilt-stable local
minimizer of ϕ , and Algorithm 1 converges to x̄ with the convergence rates as follows:

(i) The sequence {ϕ(xk)} converges Q-linearly to ϕ(x̄).
(ii) The sequences {xk} and {∇ϕ(xk)} converge R-linearly to x̄ and 0, respectively.
(iii) The convergence rates of {xk}, {ϕ(xk)}, and {∇ϕ(xk)} are Q-superlinear if ∇ϕ is semismooth∗ at

x̄ and one of the following two groups of conditions holds:
(a) ∇ϕ is directionally differentiable at x̄ and σ1 ∈ (0, 1

2 ).
(b) σ1 ∈ (0, 1

2lκ ) and σ2 ∈ (1− κ

l ,1), where κ > 0 and l > 0 are moduli of the metric regularity and
Lipschitz continuity of ∇ϕ around x̄, respectively.

Proof. We split the proof into seven claims. Note that the proof under the wolfe conditions is rather different
and more involved that the proof of [27, Theorem 4] in the Armijo case. In particular, we have to establish
that the unit stepsize satisfies the Wolfe conditions, which are more stringent than the Armijo one.
Claim 1: x̄ is a tilt-stable local minimizer of ϕ . By Theorem 5, x̄ is a stationary point of ϕ being such
that ϕ(x̄) ≤ ϕ(x0). The positive-semidefiniteness of ∂ 2ϕ(x̄) and the metric regularity of ∇ϕ around x̄ with
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modulus κ imply by [12, Theorem 4.13] that x̄ is a tilt-stable local minimizer of ϕ with the same modulus.
Claim 2: Let {xk j} be a subsequence of {xk} with xk j → x̄ as j → ∞. Then the subsequence of stepsizes τk j

in Algorithm 1 is bounded from below by a positive number γ and satisfies

ϕ(xk j)−ϕ(xk j+1)≥ σ1γ

κ
∥dk j∥2 for all large j ∈ N.

To verify this, suppose on the contrary that {τk j} is not bounded from below by a positive number, and
so there exists a subsequence of {τk j} that converges to 0. We can assume without loss of generality that
τk j → 0 as j → ∞. By the second-order characterization of tilt-stable minimizers from [44, Theorem 3.5]
and [8, Proposition 4.6], there exists δ > 0 such that

⟨z,w⟩ ≥ 1
κ
∥w∥2 for all z ∈ ∂

2
ϕ(x)(w), x ∈ Bδ (x̄), and w ∈ Rn. (21)

Since −∇ϕ(xk j)−µk j Bk j d
k j ∈ ∂ 2ϕ(xk j)(dk j), it follows that

⟨−∇ϕ(xk j),dk j⟩ ≥
(

µk j m
2
lower +

1
κ

)
∥dk j∥2 ≥ 1

κ
∥dk j∥2 for large j ∈ N. (22)

Combining the Cauchy-Schwarz inequality, the Lipschitz continuity of ∇ϕ around x̄ with Lipschitz constant
l, and the Wolfe conditions yields

lτk j∥dk j∥2 ≥ ⟨∇ϕ(xk j + τk j d
k j)−∇ϕ(xk j),dk j⟩ ≥ −(1−σ2)⟨∇ϕ(xk j),dk j⟩ .

This tells us together with the estimates in (22) that

τk j ≥
(1−σ2)⟨−∇ϕ(xk j),dk j⟩

l∥dk j∥2
≥ 1−σ2

lκ
> 0,

which shows in turn that the subsequence {τk j} is bounded from below by γ := 1−σ2
lκ . Using finally the

Wolfe conditions and (22) justifies the claimed assertion by

ϕ(xk j)−ϕ(xk j+1)≥ σ1τk j ⟨−∇ϕ(xk j),dk j⟩ ≥ σ1γ

κ
∥dk j∥2 for all large j.

Claim 3: The sequence {xk} is convergent. We show this by applying the convergence criterion based on
Ostrowski’s condition [13, Proposition 8.3.10]. Let us first check that x̄ is an isolated accumulation point of
{xk}. Indeed, if x̃ ∈ Bδ (x̄) is an accumulation point of {xk}, we get by Theorem 5 that x̃ is a stationary point
of ϕ . It follows from (21) and the second-order characterization of strong convexity for C1,1 functions in [7,
Theorem 5.2(i)] that ϕ is strongly convex with modulus κ−1 on Bδ (x̄), which ensures that x̃ = x̄. To verify
further Ostrowski’s condition, let {xk j} be a subsequence of {xk} that converges to x̄. We need to show that
lim j→∞ ∥xk j+1 − xk j∥= 0. To see this, deduce from Claim 2 that∥∥∥xk j+1 − xk j

∥∥∥2
= τ

2
k j
∥dk j∥2 ≤ τmax∥dk j∥2 ≤ τmaxκ

σ1γ

(
ϕ(xk j)−ϕ(xk j+1)

)
→ 0

as j → ∞. Applying finally [13, Proposition 8.3.10] yields the convergence of {xk} to x̄ as k → ∞.

Claim 4: {ϕ(xk)} converges at least Q-linearly, while {xk} and {∇ϕ(xk)} converge at least R-linearly. We
use the strong convexity of ϕ with modulus κ−1 on Bδ (x̄) to get the estimates

ϕ(x)≥ ϕ(u)+ ⟨∇ϕ(u),x−u⟩+ 1
2κ

∥x−u∥2, (23)

⟨∇ϕ(x)−∇ϕ(u),x−u⟩ ≥ 1
κ
∥x−u∥2 (24)

for all x,u ∈ Bδ (x̄). Since xk → x̄, this shows that xk ∈ Bδ (x̄) for all k sufficiently large. Letting x = xk,u = x̄
and using the Cauchy-Schwarz inequality lead us to the conditions

ϕ(xk)≥ ϕ(x̄)+
1

2κ
∥xk − x̄∥2, ∥∇ϕ(xk)∥ ≥ 1

κ
∥xk − x̄∥. (25)
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Due to [22, Lemma A.11], the Lipschitz continuity of ∇ϕ around x̄ with modulus l > 0 implies that

ϕ(xk)−ϕ(x̄) =
∣∣∣ϕ(xk)−ϕ(x̄)−⟨∇ϕ(x̄),xk − x̄⟩

∣∣∣≤ l
2
∥xk − x̄∥2. (26)

By −∇ϕ(xk)−µkBkdk ∈ ∂ 2ϕ(xk)(dk), it follows from [41, Theorem 1.44] that∥∥∥∇ϕ(xk)+µkBkdk
∥∥∥≤ l∥dk∥. (27)

Since xk → x̄ and ∇ϕ(x̄) = 0, we have µk = c∥∇ϕ(xk)∥ρ → 0 as k → ∞, and so µk ≤ l when k is large. Thus
∥∇ϕ(xk)∥ ≤ ∥∇ϕ(xk)+µkdk∥+µk∥dk∥ ≤ 2l∥dk∥. Together with Claim 2, this yields

ϕ(xk)−ϕ(xk+1)≥ σ1γ

κ
∥dk∥2 ≥ σ1γ

4κl2 ∥∇ϕ(xk)∥2. (28)

Combining the estimates in (25)–(28) and applying Lemma 2 with the choices of αk = ϕ(xk)−ϕ(x̄), βk =
∥∇ϕ(xk)∥, γk = ∥xk − x̄∥, c1 =

σγ

4κl2 , c2 =
1
κ
, and c3 =

l
2 justifies this claim.

Claim 5: If ∇ϕ is semismooth∗ at x̄, then ∥xk +dk − x̄∥= o(∥xk − x̄∥) as k → ∞. To verify this, deduce from
the subadditivity property of coderivatives in [26, Lemma 5.6] that

∂
2
ϕ(xk)(dk)⊂ ∂

2
ϕ(xk)(xk +dk − x̄)+∂

2
ϕ(xk)(−xk + x̄).

On the other hand, by −∇ϕ(xk)−µkBkdk ∈ ∂ 2ϕ(xk)(dk), there is vk ∈ ∂ 2ϕ(xk)(−xk + x̄) with

−∇ϕ(xk)−µkBkdk − vk ∈ ∂
2
ϕ(xk)(xk +dk − x̄).

It follows from (21) and the Cauchy-Schwarz inequality that

∥xk +dk − x̄∥ ≤ κ

∥∥∥∇ϕ(xk)+ vk +µkBkdk
∥∥∥≤ κ

(
∥∇ϕ(xk)−∇ϕ(x̄)+ vk∥+µk∥Bkdk∥

)
. (29)

Combining −∇ϕ(xk)−µkBkdk ∈ ∂ 2ϕ(xk)(dk) and (21) gives us

⟨−∇ϕ(xk),dk⟩ ≥ (κ−1 +µkm2
lower)∥dk∥2 ≥ κ

−1∥dk∥2. (30)

Using the Cauchy-Schwarz inequality again together with the Lipschitz continuity of ∇ϕ , we have

∥dk∥ ≤ κ∥∇ϕ(xk)∥= κ∥∇ϕ(xk)−∇ϕ(x̄)∥ ≤ κl∥xk − x̄∥. (31)

Moreover, the Lipschitz continuity of ∇ϕ on Bδ (x̄) guarantees that

µk = c∥∇ϕ(xk)∥ρ = c∥∇ϕ(xk)−∇ϕ(x̄)∥ρ ≤ c lρ∥xk − x̄∥ρ . (32)

Employing now the semismooth∗ property of of ∇ϕ at x̄ and the inclusion vk ∈ ∂ 2ϕ(xk)(−xk + x̄) allows us
to deduce from [25, Lemma 5.2] that

∥∇ϕ(xk)+ vk∥= ∥∇ϕ(xk)−∇ϕ(x̄)+ vk∥= o(∥xk − x̄∥). (33)

Combining finally the estimates in (29) and (31)–(33) together with ρ ∈ (0,1] tells us that

∥xk +dk − x̄∥ ≤κ

(
∥∇ϕ(xk)−∇ϕ(x̄)+ vk∥+µk∥dk∥

)
≤κ o(∥xk − x̄∥)+κc lρ∥xk − x̄∥ρ

κl∥xk − x̄∥
=o(∥xk − x̄∥)+O(∥xk − x̄∥1+ρ)

=o(∥xk − x̄∥) as k → ∞,

(34)

which justifies the claimed convergence rate.
Claim 6: We have τk = 1 for all k sufficiently large if ∇ϕ is semismooth∗ at x̄, and if either condition
(a) or condition (b) of this theorem holds. Observe that in case (a), the directional differentiability and
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semismoothness∗ of ∇ϕ at x̄ ensure by [17, Corollary 3.8] that the gradient mapping ∇ϕ is semismooth
at x̄. From (30), we conclude by [13, Proposition 8.3.18] that the Newton direction satisfies the sufficient
decrease condition. Let us check that it also satisfies the Wolfe curvature condition therein. To furnish this,
denote ∂ 2

Cϕ := co∇(∇ϕ) and deduce from the semismoothness of ∇ϕ at x̄ that

∇ϕ(xk +dk) = ∇ϕ(x̄)+Hk(xk +dk − x̄)+o(∥xk +dk − x̄∥),

where Hk ∈ ∂ 2
Cϕ(xk + dk). By (34), we have ∥xk + dk − x̄∥ = o(∥xk − x̄∥). It follows from [9, Proposi-

tion 2.6.2(d)] that the matrix sequence {Hk} is bounded, and thus ∇ϕ(xk + dk) = o(∥xk − x̄∥). Employing

now [13, Lemma 7.5.7] yields lim
k→∞

∥xk−x̄∥
∥dk∥ = 1, and hence

∇ϕ(xk +dk) = o(∥dk∥). (35)

It follows therefore that for large k ∈ N, we get the relationships

⟨∇ϕ(xk +dk),dk⟩−σ2 ⟨∇ϕ(xk),dk⟩=−σ2 ⟨∇ϕ(xk),dk⟩+o(∥dk∥2)

≥ σ2

κ
∥dk∥2 +o(∥dk∥2)> 0,

where the equality holds by (35) and the inequality is valid due to (30).
In case (b), we deduce from estimate (23) that the Newton direction satisfies the sufficient decrease

condition by [27, Lemma 1]. To check that the Wolfe curvature condition also holds, observe by σ2 > 1− 1
lκ

and lim
k→∞

∥xk−x̄∥
∥dk∥ = 1 (due to [13, Lemma 7.5.7]) that

⟨∇ϕ(xk +dk),−dk⟩−σ2 ⟨∇ϕ(xk),−dk⟩

≤⟨∇ϕ(xk),−dk⟩− 1
κ
∥dk∥2 −σ2 ⟨∇ϕ(xk),−dk⟩

≤∥dk∥2
(
− 1

κ
+(1−σ2)l

∥xk − x̄∥
∥dk∥

)
< 0,

where the first inequality follows from (24). Thus the claim is justified.
Claim 7: The assertions about superlinear convergence hold. To verify this, we have by Claim 6 that τk = 1
for large k, and hence

∥xk+1 − x̄∥= ∥xk + τkdk − x̄∥= ∥xk +dk − x̄∥= o(∥xk − x̄∥) as k → ∞.

Then the Q-superlinear convergence of {ϕ(xk)} follows from estimates (25) and (26), while the Q-superlinear
convergence of {∇ϕ(xk)} follows from estimate (25) and the Lipschitz continuity of ∇ϕ . Combining
Claims 1–7, we thus validate all the assertions of the theorem.

4 Modified GRNM-W under PLK Conditions
A characteristic feature of GRNM-W (the same as for its “Armijo” predecessor in [27]) is the positive-
semidefiniteness assumption on the generalized Hessian required for its well-posedness (i.e., the existence
of iterates satisfying the algorithmic procedures); see Theorem 4. In this section, we propose a modification
of GRNM-W, labeled as GRNM-WM, which is well posed for general nonconvex functions of class C1,1

without any requirements on the generalized Hessian. Then we establish global convergence with explicit
convergence rates for GRNM-WM under the fulfillment of the corresponding Polyak-Łojasiewicz-Kurdyka
(PLK) conditions; see Definition 3 below and the discussions around it.

Here is the proposed algorithm for general C1,1 functions.
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Algorithm 2 Modified regularized Newton method with Wolfe linesearch (GRNM-WM)
Input: x0 ∈ Rn, c > 0, 0 < σ1 < σ2 < 1, M > m > 0.

1: for k = 0,1, . . . do
2: If ∇ϕ(xk) = 0, stop; otherwise go to next step.
3: Choose µk ≥ 0 in such a way that there exists dk ∈ Rn with

−∇ϕ(xk) ∈ ∂
2
ϕ(xk)(dk)+µkdk,

m∥dk∥2 ≤ ⟨−∇ϕ(xk),dk⟩ , ∥∇ϕ(xk)∥ ≤ M∥dk∥.

4: Set τk = 1 and check the Wolfe conditions:

ϕ(xk + τkdk)≤ ϕ(xk)+σ1τk ⟨∇ϕ(xk),dk⟩ ,

⟨∇ϕ(xk + τkdk),dk⟩ ≥ σ2 ⟨∇ϕ(xk),dk⟩ .

If the conditions do not hold, adjust τk until it satisfies the Wolfe conditions. We assume that in the
implementation there exists an upper bound τmax on the allowed maximum stepsize.

5: Set xk+1 = xk + τkdk.
6: end for

We first show that Algorithm 2 is well posed in the general nonconvex setting.
Theorem 7 (well-posedness of Algorithm 2). Suppose that the set Ω= {x∈Rn |ϕ(x)≤ϕ(x0)} is bounded.
Then for any k ∈N, there exists µk such that the inclusion in line 3 of Algorithm 2 is solvable and the required
conditions therein are satisfied.

Proof. It follows from [22, Proposition 1.51] that /0 ̸= ∂B(∇ϕ)(xk)d ⊂ ∂ 2ϕ(xk)(d). Pick any matrix Hk ∈
∂B(∇ϕ)(xk), which is always symmetric. Then the linear system (Hk +µk)d =−∇ϕ(xk) is solvable if µk >
max(0,−λmin(Hk)), where λmin(Hk) is the smallest eigenvalue of Hk that may be negative since ϕ is noncon-
vex. Moreover, the solution is nonzero whenever ∇ϕ(xk) is nonzero. Choose µk = max(0,−λmin(Hk))+m
with m > 0 and observe that the symmetric matrix Hk + µkI is positive-definite and that ⟨−∇ϕ(xk),dk⟩ =
⟨(Hk +µkI)dk,dk⟩ ≥ m∥dk∥2. Furthermore, since ∇ϕ is locally Lipschitzian on the compact set Ω, it is
Lipschitz continuous on Ω with some constant l > 0. By [41, Theorem 1.44], we have that ∥w∥ ≤ l∥d∥ for
any d and any w ∈ ∂ 2ϕ(xk)(d). Combining the latter with the definition of µk brings us to

∥∇ϕ(xk)∥= ∥(Hk +µkI)dk∥ ≤ ∥Hkdk∥+∥µkdk∥ ≤ l∥dk∥+ l∥dk∥+m∥dk∥= M∥dk∥

with M := 2l +m > m and thus completes the proof of the theorem.

Remark 2 (discussions on GRNM-WM).
(i) It follows from the proof of Theorem 7 that the regularization parameter µk can be chosen as µk :=

l +m, where m > 0 is arbitrary and l is the Lipschitz constant of ∇ϕ on Ω. Observe that, even without the
prior knowledge of l, we can adaptively choose µk in the following way: pick any number m > 0 and set
µk := m+ µr j, where µ > 0, r > 1 and j ≥ 0 is the first nonnegative integer such that the linear system is
solvable and the conditions on dk hold. This procedure terminates in finitely many steps.

(ii) In Algorithm 2, we can also use a more general regularization matrix Bk ≻ 0 similarly to Algorithm 1.
An appropriate modification of the proof of Theorem 7 shows that such an algorithm is still well posed.
Although our convergence analysis below can be easily extended to this more general case, for simplicity
we focus on the case of the identity regularization matrix.

Next we formulate and discuss some efficient conditions, which provide global convergence and con-
vergence rates for numerical algorithms of optimization; in particular, those developed in this paper. For
functions of class C1,1, Polyak [51] introduced the condition

∥∇ f (x)∥ ≥ (1/2M)| f (x)− f (x̄)|1/2, c > 0,
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and used it to prove a linear convergence of the gradient descent method In Hilbert spaces. Independently,
Łojasiewicz [34] introduced the inequality

∥∇ f (x)∥ ≥ b | f (x)− f (x̄)|q, b := 1/M(1−q), q ∈ [0,1), (36)

for analytic functions in the finite-dimensional framework of semialgebraic geometry with no applications
to optimization. The gradient inequality (36) is referred to (especially in the literature on machine learning
and computer science) as the Polyak-Łojasiewicz (PL) condition; see, e.g., [24]. The subsequent algebraic-
geometric extension of (36) was developed by Kurdyka [30] for the class of definable differentiable functions
on Rn. A nonsmooth extension of that condition was first proposed in [5] in the form of Definition 3(i) via
Clarke’s subdiffential under the name of “Kurdyka-Łojasiewicz (KL) inequality” without any reference to
the pioneering work by Polyak. We suggest using the name Polyak-Łojasiewicz-Kurdyka (PKL) conditions
for the properties of this type formulated below.
Definition 3 (PLK conditions). Let f : Rn → R be an extended-real-valued lower semicontinuous (l.s.c.)
function, and let x̄ ∈ dom f . We say that:

(i) The basic PLK property holds for f at x̄ if there exist a number η ∈ (0,∞]), a neighborhood U of x̄,
and a function ψ : [0,η)→R+ such that ψ is concave and C1-smooth on (0,η) with ψ(0) = 0 and ψ ′(s)> 0
for all s ∈ (0,η), and that we have

ψ
′( f (x)− f (x̄)

)
dist

(
0,∂ f (x)

)
≥ 1 for all x ∈U ∩

{
x ∈ Rn ∣∣ f (x̄)< f (x)< f (x̄)+η

}
.

(ii) If ψ can be chosen in (i) as ψ(s) = cs1−θ with θ ∈ [0,1) for some c > 0, then f satisfies the exponent
PLK property at x̄ with the exponent θ .

(iii) f is a PLK function (of exponent θ ∈ [0,1)) if f enjoys the basic PLK property (of exponent θ ,
respectively) at every point x̄ ∈ dom f .

A large class of descent algorithms for which the PLK conditions are instrumental for deriving impres-
sive convergence properties is described in [2] via the following generic properties of iterative sequences:

(H1) There exists a > 0 such that for all k ≥ 0 we have

ϕ(xk+1)≤ ϕ(xk)−a∥xk+1 − xk∥2. (H1)

(H2) There exists b > 0 such that for all k ≥ 0 we have

∥∇ϕ(xk+1)∥ ≤ b∥xk+1 − xk∥. (H2)

The next lemma presents convergence results under the PLK properties for abstract descent algorithms
satisfying conditions (H1) and (H2).
Lemma 8 (convergence of abstract descent algorithms under PLK conditions). Let ϕ : Rn → R be of
class C1,1, and let {xk} satisfy conditions (H1) and (H2). The following hold:

(i) If ϕ is a PLK function, then we have ∑
∞
k=0 ∥xk+1 − xk∥ < ∞. In particular, {xk} converges to a

stationary point x̄ as k → ∞.
(ii) If ϕ is a PLK function of exponent θ ∈ (0,1), then {xk} converges to x̄ with the rates:

(a) When θ ∈ (0, 1
2 ), for any ε > 0 and any large k ∈ N we have

∥xk+1 − x̄∥ ≤ ε∥xk − x̄∥
1

2θ .

If furthermore x̄ is a local minimizer of ϕ , then there is no function ϕ of class C1,1 satisfying the PLK
property at x̄ with such an exponent.

(b) When θ = 1
2 , there exist γ > 0 and q ∈ (0,1) such that for all large k ∈ N we have

∥xk − x̄∥ ≤
∞

∑
j=k

∥x j+1 − x j∥ ≤ γqk.

(c) When θ ∈ ( 1
2 ,1), there exists γ > 0 such that

∥xk − x̄∥ ≤
∞

∑
j=k

∥x j+1 − x j∥ ≤ γk
1−θ

1−2θ .
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Proof. Assertions (i) and (ii) in cases (b) and (c), as well as the convergence rates in case (a) of (ii) for
arbitrary stationary points of ϕ , are taken from [48, Theorems 3.1 and 3.2] with a small rewording. The
inconsistency between the class C1,1 and the PLK property of ϕ with exponent θ ∈ (0, 1

2 ) at local minimizers
of ϕ has been recently observed in [4, Theorem 4].

Remark 3 (modified generic conditions). For some important descent algorithms, condition (H2) does not
hold, while its replacement

(H2’) There exists b > 0 such that for all k ≥ 0 we have

∥∇ϕ(xk)∥ ≤ b∥xk+1 − xk∥

does; see more discussions in [4] on such algorithms for general l.s.c. functions. It follows from [4, Theo-
rem 2] that for any abstract algorithm satisfying (H1) and (H2’), the PLK property of exponent θ ∈ (0, 1

2 ) at
a stationary point x̄ of ϕ yields the finite termination of the algorithm.

The next lemma shows that the iterative sequence {xk} generated by GRNM-WM (Algorithm 2) for
minimizing of C1,1 functions satisfies conditions (H1) and (H2).
Lemma 9 (embedding GRNM-WM into the generic scheme). Let ϕ : Rn →R be a function of class C1,1,
and let x0 ∈ Rn be a starting point. Suppose that the set Ω = {x ∈ Rn | ϕ(x)≤ ϕ(x0)} is bounded. Then the
sequence {xk} generated by Algorithm 2 satisfies conditions (H1) and (H2).

Proof. To verify condition (H1), we deduce from the algorithmic design that

ϕ(xk+1)−ϕ(xk)≤ σ1τk ⟨∇ϕ(xk),dk⟩
=−σ1τk ⟨−∇ϕ(xk),dk⟩
≤ −σ1τkm∥dk∥2

=−σ1m
τk

∥τkdk∥2

≤−σ1m
τmax

∥τkdk∥2

=−σ1m
τmax

∥xk+1 − xk∥2,

where the first inequality is the sufficient decrease property, the second one follows from the condition
⟨−∇ϕ(xk),dk⟩≥m∥dk∥2 guaranteed in Algorithm 2, and the third inequality holds since τk is upper bounded
by τmax, the maximum stepsize allowed.

Next we show that condition (H2) holds. Note that ϕ is Lipschitz continuous on Ω with some constant
l since Ω is compact and ϕ is locally Lipschitz continuous by the imposed assumptions. It follows from the
curvature condition as in the proof of Claim 6 of Theorem 6 that

(σ2 −1)⟨∇ϕ(xk),dk⟩ ≤ ⟨∇ϕ(xk+1)−∇ϕ(xk),dk⟩ ≤ lτk∥dk∥2.

From this and m∥dk∥2 ≤ ⟨−∇ϕ(xk),dk⟩, we deduce that τk ≥ (1−σ2)m
l . Therefore,

∥∇ϕ(xk+1)∥ ≤ ∥∇ϕ(xk+1)−∇ϕ(xk)∥+∥∇ϕ(xk)∥
≤ l∥xk+1 − xk∥+M∥dk∥

= l∥xk+1 − xk∥+ M
τk
∥τkdk∥

≤ l∥xk+1 − xk∥+ Ml
(1−σ2)m

∥xk+1 − xk∥

=

(
l +

Ml
(1−σ2)m

)
∥xk+1 − xk∥,

where the second inequality follows from the condition ∥∇ϕ(xk)∥ ≤ M∥dk∥ in Algorithm 2.

The following theorem summarizes the main results for GRNM-WM obtained above.
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Theorem 10 (performance of CRNM-WM). Let ϕ : Rn →R be of class C1,1, and let {xk} be the sequence
generated by Algorithm 2. Suppose that the set Ω = {x ∈Rn | ϕ(x)≤ ϕ(x0)} is bounded. Then Algorithm 2
is well defined and exhibits the convergence properties of Lemma 8 under the fulfillment of the corresponding
PLK conditions therein.
Proof. This follows directly from Theorem 7 and Lemmas 8, 9.

5 Coderivative-Based Newton Forward-Backward Method
This section is devoted to a class of convex composite minimization problems, which are first-order non-
smooth and can incorporate constraints. Therefore, the coderivative-based Newton methods CRNM-W
and CRNM-WM proposed and developed in previous sections cannot be applied directly. Following the ap-
proach in [27], implemented there for the case of Armijo’s linesearch, we now employ the forward-backward
envelope (FBE) machinery from [49] to the novel Wolfe linesearch in coderivative-based Newtonian algo-
rithms. For brevity, our main attention is paid here to applying CRNM-W to the FBE setting. We label the
new algorithm as the coderivative-based forward-backward Newton method (abbr. CNFB).

Consider the class of convex composite minimization problem

minimize ϕ(x) = f (x)+g(x) over all x ∈ Rn, (37)

where f : Rn → R is a C2-smooth convex function and g : Rn → R is proper, l.s.c., and convex. The word
“composition” signifies here that the functions f and g have completely different natures. Being extended-
real-valued, the function g allows us to implicitly incorporate constraints in the seemingly unconstrained
framework of optimization. Problems of type (37) arise in many areas of research and practical modeling
like machine learning, data science, signal processing, and statistics, where the nonsmooth term plays a role
of regularizators. The main idea of CNFB is applying CRNM-W to the FBE associated with ϕ in (37),
which happens to be of class C1,1 and allows us to eventually solve the original problem.

To begin with, recall the relevant definitions and facts needed in what follows. The first constructions
are classical; see, e.g., in [55]. Given a proper l.s.c. function ϕ : Rn → R, the Moreau envelope of ϕ with a
parameter γ > 0 and the associated proximal mapping of ϕ are defined, respectively, by

eγ ϕ(x) := inf
y∈Rn

{
ϕ(y)+

1
2γ

∥y− x∥2
}
, x ∈ Rn, (38)

Proxγϕ(x) := argmin
y∈Rn

{
ϕ(y)+

1
2γ

∥y− x∥2
}
, x ∈ Rn. (39)

Let ϕ : Rn →R= f +g, where f : Rn →R is C1-smooth and where g : Rn →R is proper l.s.c. The forward-
backward envelope (abbr. FBE) of ϕ with parameter γ > 0 is introduced in [49] by

ϕγ(x) := inf
y∈Rn

{
f (x)+ ⟨∇ f (x),y− x⟩+g(y)+

1
2γ

∥y− x∥2
}
, x ∈ Rn. (40)

The following properties of FBEs are taken from [49, 56].
Proposition 11 (properties of FBEs). Consider the class of functions ϕ = f + g, where f : Rn → R is
convex, C2-smooth and being such that ∇ f is Lipschitz continuous with modulus l > 0, and where g :Rn →R
is proper l.s.c., and convex. Then we have the assertions:

(i) The FBE ϕγ of ϕ in (40) is C1-smooth function with the gradient

∇ϕγ(x) = γ
−1 (I − γ∇

2 f (x)
)(

x−Proxγg
(
x− γ∇ f (x)

))
.

Moreover, the set of optimal solutions to problem (37) coincides with the set of stationary points of the FBE
ϕγ for all parameter values γ ∈ (0, l−1).

(ii) If f (x) = 1
2 ⟨A,x⟩+ ⟨b,x⟩+α with A ∈ Rn×n being a symmetric and positive-semidefinite matrix,

b ∈ Rn, and α ∈ R, then for all γ ∈ (0, 1
l ), the FBE ϕγ of ϕ is convex and its gradient ∇ϕγ is Lipschitz

continuous with modulus L := 2(1− γλmin(A))/γ . If A is positive-definite, then ϕγ is strongly convex with
modulus K := min{(1− γλmin(A))λmin(A),(1− γλmax(A))λmax(A)}.
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Consider further the unconstrained optimization problem

minimize ϕγ(x) over all x ∈ Rn (41)

whose stationary points are optimal solutions to (37) when f is C2-smooth with the Lipschitz continuous
gradient. Since the gradient ∇ϕγ may not be locally Lipschitz continuous, (41) is not a C1,1 optimization
problem in general. From now on, we assume that f is a quadratic function as in Proposition 11(ii), and
thus ∇ϕγ is Lipschitz continuous.

In what follows, we focus on the convex composite minimization problem

minimize ϕ(x) =
1
2
⟨Ax,x⟩+ ⟨b,x⟩+g(x) over all x ∈ Rn, (42)

where A ∈ Rn×n is a positive-semidefinite symmetric matrix, where b ∈ Rn, and where g : Rn → R is a
proper l.s.c. convex function. To implement GRNM-W for problem (42), we need to use the generalized
Hessian of ϕγ , which is calculated in [27].
Proposition 12 (calculating of generalized Hessians of FBEs). Let ϕ = f +g be as in (42), and let γ > 0
be such that R := I − γA ≻ 0. Then the generalized Hessian of ϕγ is calculated by

z̄ ∈ ∂
2
ϕγ(x̄)(w)

⇐⇒ R−1z̄−Aw ∈ ∂
2g
(

Proxγg(ū),
1
γ
(ū−Proxγg(ū))

)
(w− γR−1z̄)

for x̄ ∈ Rn,w ∈ Rn, ū := x̄− γ(Ax̄+b). This can be equivalently expressed as

∂
2
ϕγ(x̄)(w) = γ

−1R
(
w+D∗(−Proxγg)(ū)(Rw)

)
. (43)

We employ (43) in the construction of CNFB to solve (42).

Algorithm 3 Coderivative-based Newton forward-backward method (CNFB)
Input: x0 ∈ Rn, γ > 0 such that R := I − γA ≻ 0, 0 < σ1 < σ2 < 1, c > 0, ρ ∈ (0,1].

1: for k = 0,1, . . . do
2: If ∇ϕγ(xk) = 0, stop; otherwise set uk := xk − γ(Axk + b), vk := Proxγg(uk), µk = c∥∇ϕγ(xk)∥ρ =

cγ−1∥R(xk − vk)∥ρ and go to next step.
3: Choose Bk ≻ 0. Find dk ∈ Rn such that −∇ϕγ(xk) ∈ ∂ 2ϕγ(xk)(dk)+µkBkdk, i.e.,

γ
−1R(vk − xk) ∈ γ

−1R
(
dk +D∗(−Proxγg)(uk)(Rdk)

)
+µkBkdk.

4: Set τk = 1 and check the Wolfe conditions:

ϕγ(xk + τkdk)≤ ϕγ(xk)+σ1τk ⟨∇ϕγ(xk),dk⟩ ,

⟨∇ϕγ(xk + τkdk),dk⟩ ≥ σ2 ⟨∇ϕγ(xk),dk⟩ .

If the latter conditions do not hold, adjust τk (using any specific implementation of the Wolfe linesearch)
until it satisfies the Wolfe conditions. We assume that in the implementation there exists an upper bound
τmax on the maximum stepsize allowed.

5: Set xk+1 = xk + τkdk.
6: end for

To proceed with establishing the convergence properties of Algorithm 3, we need to recall the two results
obtained in [27]. The first one is taken from [27, Proposition 5].
Proposition 13 (metric regularity of FBEs). Let ϕ = f + g be as in (42), and let γ > 0 be such that
R := I − γA ≻ 0. For any x̄ ∈ Rn with 0 ∈ ∂ϕ(x̄), the following assertions hold:

(i) ∂ϕ is metrically regular around (x̄,0) if and only if ∇ϕγ is metrically regular around x̄.
(ii) x̄ is a tilt-stable local minimizer of ϕ if and only if x̄ is a tilt-stable local minimizer of ϕγ .
(iii) ∥∂ 2ϕγ(x̄)−1∥ ≤ ∥∂ 2ϕ(x̄,0)−1∥+ γ∥R−1∥.
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In the next proposition taken from [27, Propositions 6], we use the notion of twice epi-differentiability of
extended-real-valued functions, which is studied and applied to optimization in [55] and more recent papers;
see, e.g., [36, 37, 38], where the reader can find more details and references.
Proposition 14 (semismoothness∗ and directional differentiability for FBEs). In the setting of Proposi-
tion 13, the following assertions hold:

(i) ∇ϕγ is semismooth∗ at x̄ if ∂g is semismooth∗ at (x̄, v̄), where v̄ :=−Ax̄−b;
(ii) ∇ϕγ is directionally differentiable at x̄ if g is twice epi-differentiable at x̄ for v̄.
Now we are ready to establish comprehensive convergence results for CNFB.

Theorem 15 (performance of CNFB). Consider the convex composite minimization problem (42), where
the symmetric matrix A is positive-semidefinite. Then we have the assertions:

(i) CNFB (Algorithm 3) either stops after finitely many iterations at a minimizer of ϕ , or generates a
sequence {xk} whose accumulation points are optimal solutions to problem (42).

(ii) If the subgradient mapping ∂ϕ is metrically regular around (x̄,0) with modulus κ > 0 (which is
satisfied, in particular, when A is positive-definite), where x̄ is an accumulation point of {xk}, then the
sequence {xk} converges with local R-linear rate to x̄, and x̄ is a tilt-stable local minimizer of ϕ .

(iii) The local convergence rate of {xk} is Q-superlinear if the subgradient mapping ∂g is semismooth∗

at (x̄, v̄), where v̄ :=−Ax̄−b, and if either one of the following conditions holds:
(a) g is twice epi-differentiable at x̄ for v̄.
(b) The linesearch constants satisfy the conditions σ1 ∈ (0, 1

2LK ) and σ2 ∈ (1− K
L ,1), where L := 2(1−

γλmin(A))/γ and K := κ + γ∥B−1∥.

Proof. By Proposition 11(i), minimizing ϕ reduces to minimizing the FBE function ϕγ of class C1,1 when
the parameter γ > 0 is sufficiently small. We now verify each claim of the theorem.

(i) Proposition 11(ii) tells us that the FBE ϕγ is convex and its gradient ∇ϕγ is Lipschitz continuous
with modulus L := 2(1− γλmin(A))/γ . By [7, Theorem 3.2], the generalized Hessian ∂ 2ϕγ(x) is positive-
semidefinite for all x ∈ Rn. Then GRNM-W is well defined, and the claimed assertion (i) follows from
Theorems 4 and 5.

(ii) By [12, Proposition 4.5], the tilt stability of ϕ at x̄ with modulus κ follows from the metric regu-
larity of ∂ϕ and the convexity of ϕ . By Proposition 13 (i), the gradient mapping ∇ϕγ is metrically regular
around x̄. Then the R-linear convergence of {xk} follows from Theorem 6(ii). We also need to show that
if A is positive-definite, then ∂ϕ is metrically regular around (x̄,0). Indeed, the positive-definiteness of A
ensures by Proposition 11(ii) that ϕγ is strongly convex with the Lipschitz continuous gradient. Using [7,
Theorem 5.1] tells us that ∂ 2ϕγ(x) is positive-definite for all x ∈ Rn. This implies by [12, Proposition 4.5
and Theorem 4.6] that ∇ϕγ is metrically regular around x̄. Therefore, we deduce from Proposition 13(i) that
∂ϕ is metrically regular around (x̄,0).

(iii) Proposition 14(i) verifies that ∇ϕγ is semismooth∗ at x̄. In case (a), ∇ϕγ is directionally differentiable
at x̄ by Proposition 14(ii). Then Theorem 6(iii,a) yields assertion (iii) in this case.

To complete the proof, it remains to consider case (b) in (iii). It follows from Proposition 11(ii) that the
number L therein is a Lipschitz constant of ∇ϕγ around x̄. Then Proposition 13(i) and the Mordukhovich
criterion from [55, Theorem 9.40] (see [40]) ensure that the FBE ϕγ is metrically regular around x̄ with the
modulus K defined above, and thus the claimed assertion (iii) holds by Theorem 6(iii,b).

6 Coderivative-Based Newton Augmented Lagrangian Method
In this section, we develop another algorithm for a class of convex composite minimization problems, first-
order nonsmooth and constrained, by embedding GRNM-W into the augmented Lagrangian method. In-
spired by the semismooth Newton augmented Lagrangian method (SSNAL) [31], an augmented Lagrangian
method employing the semismooth Newton method as inner problem solver, we propose here the new
coderivative-based Newton augmented Lagrangian method (abbr. CNAL).

Consider the following linear-convex composite minimization problem written in the unconstrained
extended-real-valued format as

(P) minimize f (x) := h(A x)−⟨c,x⟩+ p(x) over all x ∈ Rn, (44)
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where A : Rn →Rm is a linear mapping, h : Rm →R is a l.s.c. convex function, p : Rn →R is a proper l.s.c.
convex function, and c ∈ Rn. The dual problem of (44) is given by

(D) minimize h∗(y)+ p∗(z)

subject to A ∗y+ z = c,
(45)

where h∗ and p∗ are the Fenchel conjugates of h and p, respectively, and A ∗ = A T is the adjoint/transpose
mapping of A ; see, e.g., [55, Example 11.41].

Given σ > 0, the augmented Lagrangian associated with (45) is

Lσ (y,z;x) := h∗(y)+ p∗(z)−⟨x,A ∗y+ z− c⟩+ σ

2
∥A ∗y+ z− c∥2

whenever (y,z,x) ∈ Rm ×Rn ×Rn. From now on, the following additional assumption is imposed:
Assumption 1. The function h in (44) is strongly convex and C2-smooth.

Now we propose the coderivative-based Newton augmented Lagrangian method (CNAL) to solve the
dual problem (45)(and thus the primal problem (44) by strong duality) designed as follows:

Algorithm 4 Coderivative-based Newton augmented Lagrangian method (CNAL)
Input: σ0 > 0, (y0,z0,x0) ∈ Rm ×dom p∗×Rn.

1: for k = 0,1, . . . do
2: Compute

(yk+1,zk+1)≈ argmin
{

Ψk(y,z) := Lσk(y,z;xk)
}

(46)

via the coderivative-based Newton method GRNM-W. The stopping criterion is: Ψk(yk+1,zk+1)− infΨk ≤
ε2

k /2σk with ∑
∞
k=0 εk < ∞.

3: Compute xk+1 = xk −σk(A
∗yk+1 + zk+1 − c) and update σk+1 ↑ σ∞ ≤ ∞ .

4: end for

The next theorem establishes convergence properties of iterates in Algorithm 4.
Theorem 16 (convergence of CNAL). Suppose that the primal problem (44) admits an optimal solu-
tion and that all the assumptions imposed above are satisfied. Then for any infinite sequence of iterates
{(yk,zk,xk)} generated by Algorithm 4, we have that {xk} converges to an optimal solution of problem (44)
while {(yk,zk)} converges to an optimal solution of the dual problem (45).
Proof. Observe first that Assumption 1 ensures by [55, Proposition 12.60] that h∗ is strongly convex and
C2-smooth. It follows from the classical Fenchel duality theorem that strong duality holds in the setting of
(44) and (45). Employing finally [54, Theorem 4] verifies the claimed convergence results.

Next we consider the subproblem in (46) formulated as

minimize Ψ(y,z) := Lσ (y,z; x̃) over (y,z) ∈ Rm ×Rn

for which the optimal solution is given by

ȳ = argminψ(y), z̄ = Proxp∗/σ (x̃/σ −A ∗ȳ+ c)

via the proximal mapping (39), where the function ψ is defined by

ψ(y) := inf
z

Ψ(y,z) = h∗(y)+ e 1
σ

p∗
(
x̃/σ − (A ∗y− c)

)
− 1

2σ
∥x̃∥2 (47)

via the Moreau envelope (38). To solve subproblem (46), we apply GRNM-W to minimizing the function
ψ . The gradient of ψ is computed by

∇ψ(y) = ∇h∗(y)−A ∇e 1
σ

p∗
(
x̃/σ − (A ∗y− c)

)
= ∇h∗(y)−A

(
σ(u′−Prox 1

σ
p∗(u

′))
)

= ∇h∗(y)−A
(
σ(σ−1 Proxσ p(σu′))

)
= ∇h∗(y)−A Proxσ p

(
x̃−σ(A ∗y− c)

)
,
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where u′ := x̃/σ − (A ∗y− c). Note that ∇ψ is locally Lipschitz continuous while being nonsmooth due to
the presence of the proximal mapping.

To implement Algorithm 4, we need to constructively evaluate the generalized Hessian of ψ (i.e., the
limiting coderivative of ∇ψ) in line 2. The precise calculation of the generalized Hessian ∂ 2ψ in this case
is challenging, but we can give an upper estimate that is sufficient for computational purposes.
Theorem 17 (upper estimate of generalized Hessians). The generalized Hessian of ψ from (47) admits
the following upper estimate, where u = x̃−σ(A ∗y− c):

∂
2
ψ(y)(w) ⊂ ∇

2h∗(y)(w)−σA
(
D∗ Proxσ p

)
(u)(−A ∗w), w ∈ Rm.

Proof. Note that the standing Assumption 1 implies that h∗ is C2-smooth. It follows from the coderivative
sum rule in [42, Theorem 3.9] that(

D∗
∇ψ

)
(y)(w) = ∇

2h∗(y)(w)+
(
D∗(−A S)

)
(y)(w),

where S(y) := Proxσ p(x̃−σ(A ∗y− c)). By [42, Theorem 3.11, (i)], we have(
D∗(−A S)

)
(y)(w)⊂ D∗S(y)(−A ∗w)⊂−σA

(
D∗ Proxσ p

)
(u)(−A ∗w)

since A and Proxσ p are Lipschitz continuous.

Remark 4. For ψ from (47), we write ∂̂ 2ψ(y)(w) := ∇2h∗(y)(w)−σA
(
D∗ Proxσ p

)
(u)(−A ∗w). Theo-

rem 17 tells us that ∂ 2ψ(y)(w)⊂ ∂̂ 2ψ(y)(w) for all w∈Rm. Suppose that D∗ Proxσ p is positive-semidefinite
(in the sense that ⟨w,d⟩ ≥ 0 for d ∈Rn and w ∈ D∗ Proxσ p(u)(d)) and that Proxσ p is semismooth∗. These as-
sumptions hold in many practical models such as , e.g., the Lasso problem considered in Section 9. Then we
can prove, by using similar arguments as in Section 3, that GRNM-W (Algorithm 1) with ∂̂ 2ψ(y) (instead
of ∂ 2ψ(y)) also converges superlinearly for the minimization of (47).

7 Numerical Comparison with GRNM
In this section, we compare our algorithm GRNM-W with GRNM [27], which employs Armijo line search.

Consider the following test minimization problem:

min
x∈Rn

ϕγ(x) :=
1
2
∥Ax−b∥2 − γ

2
∥A∗(Ax−b)∥2 + eγ g(x− γA∗(Ax−b)), (48)

where γ > 0, A ∈ Rm×n, b ∈ Rm, g(x) := λ∥x∥1 with λ > 0, and eγ g is the Moreau envelope (38) of g. This
problem is a reformulation of the Lasso problem (57) via the forward-backward envelope (40). We omit the
implementation details since our purpose is only to compare the line searches in GRNM-W and GRNM.

In our experiments. the matrix A is generated randomly with iid standard Gaussian entries, and the
vector b is generated randomly with iid standard uniform components. We set λ = 10−3, γ = 1

2∥A∗A∥−1 and
choose an initial point x0 with large components: each of the components of x0 is 103. In this way, x0 is far
from the sparse minimizer. This allows us to test the performance of GRNM-W and GRNN when the initial
point is far from the optimal solution. The (absolute) KKT residual ηk = ∥xk −Proxλ∥·∥1(x

k −A∗(Axk −b))∥
is used to measure the accuracy of an approximate minimizer and also serves as the stopping criterion. The
results are displayed in Table 1, where ‘iter’ stands for the number of iterations and ‘CPU time’ refers to the
time needed to obtain an approximate solution of prescribed accuracy 10−6. In Table 2, we also show the
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results for different initial points.

Table 1: Test problems
Size CPU time iter

m n GRNM GRNM-W GRNM GRNM-W

m > n

20 10 0.17s 0.01s 3850 65
50 10 0.16s 0.01s 3385 58
100 10 0.15s 0.01s 3238 55
200 100 9.63s 0.72s 11181 76
500 100 12.39s 0.96s 10597 67
1000 100 13.76s 1.25s 10239 64

m = n

10 10 0.16s 0.02s 3939 95
50 50 2.58s 0.48s 11510 725
100 100 8.05s 2.46s 15641 775
500 500 248.54s 32.12s 34973 1113
1000 1000 1259.01s 119.31s 48904 1252

m < n

10 20 0.59s 0.06s 6487 127
10 50 2.24s 0.47s 9259 302
10 100 7.26s 3.02s 12711 565
100 200 73.90s 18.37s 24490 1152

Table 2: Test problems with different initial points
Size x0 CPU time iter

m n GRNM GRNM-W GRNM GRNM-W

m > n 1000 500

0 0.10s 0.15s 6 6
1 0.28s 0.35s 35 13
10 2.21s 0.78s 273 19
100 19.31s 1.72s 2632 27

m = n 1000 1000

0 1.54s 2.77s 30 30
1 3.97s 5.94s 77 66
10 13.12s 9.87s 512 123
100 125.39s 32.86s 4909 308

m < n 500 1000

0 60.81s 207.82s 1402 1402
1 52.19s 176.94s 1221 1196
10 72.58s 185.06s 1758 1284
100 207.29s 181.70s 6846 1383

It is clear from Table 1 and Table 2 that the Wolfe linesearch used in GRNM-W is more efficient than
the Armijo linesearch used in GRNM when the initial point is far from the solution, since the former can
greatly reduce the number of iterations. In practice, we cannot make sure that the initial point is close to an
optimal solution, so the Wolfe line search is particularly attractive in such situations.

8 Applications of CNFB to Support Vector Machines
In this section, we apply the proposed CNFB to optimization problems arising in support vector machines,
which can be formulated as a quadratic programming problem with some special structure. The constructive
implementations of CNFB to solve such problems with conducting numerical experiments require explicit
calculations of the generalized Hessians for the functions in question.
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8.1 Support Vector Machines
A support vector machine (SVM) is a machine learning model for binary classification. Given a training set
{xi,yi}n

i=1 with xi ∈ Rd and yi ∈ {1,−1}, the aim of SVMs is to select an appropriate class of classifiers for
the training data and to optimize its characteristics under the imposed requirements; see, e.g., [23, Chapter 6]
with the references therein.

For the class of linear classifiers, the optimization problem in SVMs is formulated as follows:

minimize
1
2
∥w∥2 +C

n

∑
i=1

ξi over w,b,ξ

subject to yi(wT xi +b)≥ 1−ξi, ξi ≥ 0 for i = 1, . . . ,n.

(49)

The dual problem of (49) is defined by

minimize
1
2

λ
T Dλ −λ

T e over λ ∈ Rn

subject to λ
T y = 0, 0 ≤ λ ≤Ce,

(50)

where e ∈ Rn is the all-one vector, and where D ∈ Rn×n is a positive-semidefinite symmetric matrix with
Di j = yiy jxT

i x j. We can see that (50) is a convex quadratic programming problem with a single linear
constraint and bound constraints on the variables (i.e., the feasible region is the intersection of a hyperplane
and a box). Note that for nonlinear classifiers in SVMs, the dual optimization problem can also be written
in such a form by using a kernel function.

Having this in mind, we consider below the following general class of convex quadratic programs with
a single linear constraint and bound constraints on the variables (abbr. SLBQP):

minimize
1
2

xT Qx+ cT x over x ∈ Rn

subject to aT x = b, l ≤ x ≤ u,
(51)

where Q ∈ Rn×n is a positive-semidefinite symmetric matrix, c ∈ Rn, a ∈ Rn, b ∈ R, l ∈ (R∪{−∞})n, and
u ∈ (R∪{∞})n. This class includes support vector machine and bound-constrained quadratic programming
problems as special cases.

Observe that the quadratic program (51) is a special case of the convex composite minimization problems
of type (42) with ϕ(x) := f (x)+g(x), f (x) := 1

2 xT Qx+cT x, g(x) := δΓ(x), where δΓ is the indicator function
of the feasible set Γ := {x ∈Rn | aT x = b, l ≤ x ≤ u}. To apply the proposed CNFB to solving problem (51),
we need to explicitly calculate the generalized Hessian of FBE, which reduces to calculating the coderivative
of the (minus) proximal mapping (see Step 3 of Algorithm 3) and eventually to calculating the coderivative
of the (minus) projection operator ProjΓ. This goal is achieved in the next subsection.

8.2 Coderivatives of Polyhedral Projectors
Let Γ be a nonempty convex polyhedral set given by

Γ : =
{

x ∈ Rn ∣∣ ⟨ai,x⟩= bi for i ∈ R, ⟨ci,x⟩ ≤ di for i ∈ S
}

=
{

x ∈ Rn ∣∣ AT x = b, CT x ≤ d
}
,

(52)

where b ∈ R|R|×1, d ∈ R|S|×1, and where the matrices AT ∈ R|R|×n and CT ∈ R|S|×n are formed by the row
vectors aT

i as i ∈ R and cT
i as i ∈ S, respectively.

The following result is taken from [21, Corollary 4.3].
Lemma 18 (coderivative calculations for normals to polyhedra). Given a convex polyhedron Γ in (52),
define the family of index sets

IΓ :=
{

S′ ⊂ S
∣∣ ∃x ∈ Γ such that ⟨ci,x⟩= di, i ∈ S′ and ⟨ci,x⟩< di, i ∈ S\S′

}
and pick any x̄∗ ∈ NΓ(x̄) with x̄ ∈ Γ. Then we have z ∈ D∗NΓ(x̄; x̄∗)(w) if and only if{

−w ∈ BJ,K :=
{

x
∣∣ ⟨ai,x⟩= 0, i ∈ R; ⟨ci,x⟩= 0, i ∈ J; ⟨ci,x⟩ ≤ 0, i ∈ K

}
,

z ∈ AJ,K := B∗
J,K = span

{
ai, i ∈ R

}
+ span

{
ci, i ∈ J

}
+ cone

{
ci, i ∈ K\J

}
,

(53)

where K ∈ IΓ, J ⊂ K ⊂ I(x̄) :=
{

i ∈ S
∣∣ ⟨ci, x̄⟩= di

}
, x̄∗ ∈ span

{
ai, i ∈ R

}
+ cone

{
ci, i ∈ J

}
.
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The next lemma follows from the fact that for any convex set Γ, we have ProjΓ = (I +NΓ)
−1.

Lemma 19 (coderivatives of projections and normal cone mappings). Let u ∈ Rn. Then the inclusion
w ∈ D∗(−ProjΓ)(u)(d) is equivalent to

w+d ∈ D∗NΓ

(
ProjΓ(u),u−ProjΓ(u)

)
(−w).

Combining the two lemmas above, we arrive at the explicit formula to calculate coderivatives of (minus)
projection operators.
Theorem 20 (calculating coderivatives of polyhedral projections). We have w ∈ D∗(−ProjΓ)(u)(d) if
and only if w ∈ BJ,K and w+d ∈ AJ,K , where all the data are taken from Lemma 18.

It is computationally convenient to extract a linear mapping from the above coderivative descriptions. It
can be done, e.g., by selecting the data as follows:

J = K = I
(

ProjΓ(u)
)
=
{

i ∈ S
∣∣ ⟨ci,ProjΓ(u)⟩= di

}
.

Then we get from (53) the description{
w ∈ BJ,J =

{
x
∣∣ ⟨ai,x⟩= 0, i ∈ R; ⟨ci,x⟩= 0, i ∈ J

}
,

w+d ∈ AJ,J = span
{

ai, i ∈ R
}
+ span

{
ci, i ∈ J

}
= B⊥

J,J ,

which is equivalent to the simple inclusions

d ∈ −w+B⊥
J,J , −w ∈ BJ,J .

Therefore, we arrive at the projection expression

−w = ProjBJ,J
(d)⇐⇒ w =−ProjBJ,J

(d),

which finally brings us to the exact explicit formula

w =−(I −B†B)d, where B :=
(

cT
i , i ∈ J = I

(
ProjΓ(u)

)
aT

i , i ∈ R

)
with B† standing for the Moore-Penrose inverse of the matrix B.

Now we examine computing the coderivative of the projector to a specific convex polyhedron, the inter-
section of a hyperplane and a box, given by

Γ :=
{

x ∈ Rn ∣∣ ⟨a,x⟩= b, l ≤ x ≤ L
}

=
{

x ∈ Rn ∣∣ aT x = b,Cx ≤ d
}
,

(54)

where a ∈ Rn and l,L ∈ Rn
represent lower and upper bounds (which can be infinite), and where

C :=
(

In
−In

)
, d =

(
L
−l

)
.

Without loss of generality, assume that li < Li for all 1 ≤ i ≤ n. According to the above, we take B :=
(

CJ
aT

)
,

where CJ ∈ R|J|×n is the matrix formed by the rows corresponding to the index set J ⊂ [2n] defined by

J := I
(

ProjΓ(u)
)
=
{

i
∣∣ ProjΓ(u)i = Li}∪

{
n+ i

∣∣ ProjΓ(u)i = li
}
.

Proposition 21 (coderivative calculations for specific polyhedra). Let Γ be given in (54), and let the
matrix P (depending on u ∈ Rn) be defined by

P := I −B†B = Σ−Σa(aT
Σa)†aT

Σ =

{
Σ if Σa = 0,

Σ−∥Σa∥−2
ΣaaT

Σ if Σa ̸= 0,

where Σ := I −Θ, and where Θ := diag(θ) with

θi :=

{
0 if li < ProjΓ(u)i < Li,

1 otherwise.

Then we have the inclusion −Pd ⊂ D∗(−ProjΓ)(u)(d).
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Proof. This follows from Theorem 20 by calculating the dagger matrix B†.

By choosing the regularization matrices as Bk = R := I − γQ ≻ 0, we get the following Newton system
in our algorithm CNFB:(

(1+µk)I −PR
)
d = ProjΓ(u

k)− xk, where uk := xk − γ(Qxk + c).

Keeping in mind the structure of P, the Newton system in CNFB can be solved as follows:

• If Σa = 0, then we have {
(1+µk)dδ = (vk − xk)δ ,

(1+µk)Iδ̄
−R

δ̄×δ̄
d

δ̄
= (vk − xk)

δ̄
+R

δ̄×δ
dδ ,

(55)

where vk := ProjΓ(u
k), δ := {i | vk

i = li or vk
i = Li}, and δ̄ = [n]−δ = {i | li < vk

i < Li}.

• If Σa ̸= 0, then we have{
(1+µk)dδ = (vk − xk)δ ,

(1+µk)Iδ̄
−P

δ̄×δ̄
R

δ̄×δ̄
)d

δ̄
= (vk − xk)

δ̄
+P

δ̄×δ̄
R

δ̄×δ
dδ .

(56)

8.3 Numerical Results of CNFB for SLBQP
Here we compare our algorithm CNFB for SLBQP with the following algorithms:

(1) Gurobi, a commercial software for QPs (which implements a highly optimized IPM).
(2) MATLAB’s ‘quadprog’ solver for QPs.
(3) QPPAL [33], a two-phase proximal augmented Lagrangian method for QPs.
(4) P2GP [10], a two-phase gradient method specialized for the class of SLBQPs.
The positive-semidefinite symmetric matrix Q ∈ Rn×n in our experiments is generated as Q = CTC,

where C ∈ Rr×n (r ≤ n) is a random matrix with i.i.d. Gaussian entries. Thus the rank of Q is expected to
be r. The results are reported in Table 3. It can be observed that in the high rank case, P2GP is the most
efficient algorithm followed by CNFB while Gurobi, MATLAB, QPPAL are less efficient. In the low-rank
case, Gurobi has the best performance followed by MATLAB and CNFB, while P2GP and QPPAL are less
efficient. Therefore, our proposed CNFB is the only algorithm that is competitive regardless of the rank of
the matrix Q in the objective function.

9 Applications of CNAL to Lasso Problems
This section presents some implementations of the proposed CNAL to the class of Lasso problems. We
confine our attention to the basic Lasso problem introduced in [57] as the ℓ1-regularized least squares
regression model formulated as

minimize ϕ(x) :=
1
2
∥Ax−b∥2

2 +λ∥x∥1 over x ∈ Rn, (57)

where A∈Rm×n is the data matrix (with m being the number of samples and n being the number of features),
b∈Rm, λ > 0, and ∥·∥1, ∥·∥2 are the ℓ1-norm and ℓ2-norm, respectively. We see that the Lasso problem (57)
is a special case of (44) with h(Ax) = 1

2∥Ax∥2, c = A∗b, p(x) = λ∥x∥1, h∗(y) = 1
2∥y∥2, and p∗(z) = δB∞(λ ),

where B∞(λ ) := {z ∈ Rn | ∥z∥∞ ≤ λ} is the closed ball with radius λ in the ℓ∞-norm.
The proximal mapping of σ p is the soft-thresholding operator

[Proxσ p(u)]i = sign(ui)(|ui|−σλ )+ for i = 1, . . . ,n,

where (|ui|−σ)+ := max{0, |ui|−σ}.
In order to apply CNAL to the Lasso problem (57), we need to compute the coderivative of Proxσ p.

Since Proxσ p is separable and piecewise linear, its coderivative is easily calculated by(
D∗ Proxσ p)

)
(u)(d) =

{
w ∈ Rn ∣∣ wi ∈ Gi(ui,di)

}
,
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Table 3: Solving random SLBQPs
rank size measure CNFB P2GP MATLAB Gurobi QPPAL

r = n

1000
time 0.31s 0.24s 0.79s 0.72s 5.30s
residual 7.38e-13 4.16e-09 3.17e-08 2.94e-06 3.79e-06

2000
time 0.91s 0.28s 4.70s 3.16s 16.06s
residual 2.25e-12 9.86e-09 6.12e-07 2.39e-05 7.11e-07

5000
time 7.67s 1.55s 47.92s 39.98s 208.36s
residual 7.86e-12 3.68e-10 1.01e-06 1.46e-04 1.91e-04

r = 0.9n

1000
time 0.26s 0.21s 0.78s 0.67s 5.64s
residual 8.39e-13 5.43e-09 7.40e-10 8.54e-05 1.27e-06

2000
time 0.99s 0.35s 4.67s 3.18s 16.13s
residual 1.93e-12 9.08e-09 4.43e-06 9.28e-05 1.20e-06

5000
time 9.20s 1.44s 50.11s 41.90s 424.25s
residual 7.90e-12 3.62e-08 1.30e-05 8.97e-05 1.73e-05

r = 0.5n

1000
time 0.84s 0.55s 0.73s 0.43s 5.10s
residual 6.85e-13 2.09e-09 4.17e-06 3.34e-05 1.60e-05

2000
time 4.56s 2.07s 4.18s 1.53s 24.89s
residual 1.92e-12 8.58e-09 1.64e-07 7.23e-06 3.32e-05

5000
time 36.42s 12.80s 39.57s 13.40s 1010.14s
residual 6.34e-12 2.58e-08 1.45e-05 1.42e-04 1.97e-05

r = 0.1n

1000
time 2.75s 17.10s 0.71s 0.16s 6.76s
residual 1.69e-09 1.19e+00 3.10e-09 2.11e-11 2.91e-04

2000
time 8.76s 27.08s 5.20s 0.47s 70.24s
residual 4.22e-08 2.77e+00 2.70e-06 2.43e-08 1.58e-05

5000
time 52.85s 120.59s 51.60s 3.07s 1710.12s
residual 1.18e-08 1.86e-03 1.22e-05 2.13e-05 3.63e-05

where the set-valued mapping G : R×R⇒ R is defined by

Gi(ui,di) :=



di if |ui|> σλ ,

{0,di} if ui = σλ ,di > 0,
[0,di] if ui = σλ ,di ≤ 0,
0 if |ui|< σλ ,

[0,di] if ui =−σλ ,di ≥ 0,
{0,di} if ui =−σλ ,di < 0.

We can directly extract a linear mapping from (D∗ Proxσ p)(u) as follows: for all d ∈ Rn, take Pd ⊂
D∗(Proxσ p)(u)(d), where P ∈ Rn×n is a diagonal matrix with the entries

Pii :=

{
1 if |ui|> σλ ,

0 if |ui| ≤ σλ .

Note that for the Lasso problem under consideration, the proposed CNAL is closely related to SSNAL de-
signed to solve Lasso models in [32], because the Newton systems in both algorithms are identical in this
case with the major difference in the linesearch strategy. CNAL uses the Wolfe linesearch for the coderiva-
tive Newton subproblem solver GRNM-W while SSNAL employs the backtracking Armijo linesearch for
the semismooth Newton subproblem solver as stated in [32]. In the numerical implementations, our codes
are adapted from SuiteLasso, with the major change being a different Wolfe linesearch that appears to be
more efficient, at least for random instances.
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9.1 Numerical Results of CNAL for Lasso
Here we present the results of numerical experiments to compare our algorithm CNAL with the following
well-known first-order and second-order algorithms to solve Lasso problems:

(1) The Semismooth Newton Augmented Lagrangian Method (SSNAL)2 [31], one of the most efficient
methods for Lasso.

(2) The Matrix-Free Interior Point Method (mfIPM)3 [14], an interior point method that is highly opti-
mized for Lasso.

(3) The (Nesterov) Accelerated Proximal Gradient Method (APG) [46] and the closely related in this
case Fast Iterative Shrinkage-Thresholing Algorithm (FISTA)4 [3], a simple and efficient first-order method.

(4) The Alternating Direction Method of Multipliers (ADMM)5 [15, 20], a classical and popular primal-
dual splitting method.

We tested these algorithms on the standard data set LIBSVM [6]. The parameter λ in (57) is chosen to
be λ = λc∥AT b∥∞ where λc = 10−3. The relative KKT residual

η =
∥x̃−Proxλ∥·∥1(x̃−AT (Ax̃−b))∥

1+∥x̃∥+∥AT (Ax̃−b)∥

is used to measure the accuracy of an approximate minimizer x̃ of (57). The results are reported in Table 4.
In the table, ‘NA’ means ‘not applicable’ (it appears because mfIPM is not applicable by design in the m > n
case). We can observe that CNAL is as efficient as SSNAL and both algorithms are highly accurate and
much faster than the others in comparison.

Table 4: Solving Lasso problems in LIBSVM
Problem Measure CNAL SSNAL mfIPM APG ADMM
covtype time 0.01s 0.01s NA 70.49s 11.95s
581012;54 residual 2.17e-07 2.18e-07 NA 2.75e-05 4.26e-04
YearPredictionMSD time 0.01s 0.01s NA 326.84s 55.99s
463715;90 residual 2.48e-07 3.74e-07 NA 5.66e-04 6.18e-04
E2006.test time 0.14s 0.14s 2.04s 0.10s 21.85s
3308;72812 residual 8.25e-07 1.60e-07 4.62e-09 2.97e-07 4.68e-07
E2006.train time 0.40s 0.38s 5.84s 0.36s 187.12s
16087;150348 residual 8.51e-07 1.65e-07 5.65e-09 2.94e-06 8.54e-08
news20 tfidf test time 0.34s 0.33s 14.71s 21.02s 60.41s
7532;49909 residual 5.02e-07 6.77e-07 1.69e-05 3.01e-06 8.03e-07
housing expanded7 time 1.91s 1.93s 249.77s 114.20s 104.52s
506;77520 residual 8.83e-07 8.83e-07 2.97e-01 7.57e-04 1.78e-04
pyrim expanded5 time 1.14s 1.15s 875.85 63.90s 156.27s
74;169911 residual 9.37e-07 9.37e-07 4.46e-07 2.57e-03 3.50e-04

10 Conclusions
This paper proposes the globally convergent coderivative-based generalized regularized Newton method
with the Wolfe linesearch (GRNM-W) to solve C1,1 optimization problems. The Newton directions are
found by solving linear equations extracted from coderivatives. The local convergence rate of GRNM-W
is at least linear and becomes superlinear under the semismooth∗ property of the gradient mapping. We
also presented a modified version of GRNM-W that is applicable to arbitrary nonconvex functions. Under
the imposed PLK properties of the objective function, we proved convergence and convergence rate results
for the modified GRNM-W. We further combined the coderivative-based Newton method GRNM-W with

2https://github.com/MatOpt/SuiteLasso
3http://www.maths.ed.ac.uk/ERGO/mfipmcs/
4We use the implementation in SLEP: http://yelabs.net/software/SLEP/
5We use the implementation at https://web.stanford.edu/~boyd/papers/admm/lasso/lasso.html
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the forward-backward envelope and the augmented Lagrangian method while proposing the two algorithms
CNFB and CNAL for solving convex composite minimization problems that are first-order nonsmooth and
constrained. Numerical experiments on support vector machines (formulated as special quadratic program-
ming problems) and the Lasso problem indicate that both CNFB and CNAL are efficient, which confirms
the effectiveness of the main novel algorithmic scheme GRNM-W. Our future research includes further ap-
plications of the proposed nonsmooth Newton algorithms to a large variety of optimization problems arising
in machine learning, data science, statistics, and other fields.
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