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Abstract. Service Network Design Problems (SNDPs) are prevalent in the freight industry. While the classic SNDP is defined

on a discretized planning horizon with integral time units, the Continuous-Time SNDP (CTSNDP) uses a continuous-time hori-

zon to avoid discretization errors. Existing CTSNDP algorithms primarily rely on the Dynamic Discretization Discovery (DDD)

framework, which iteratively refines discretization and constructs a partially time-expanded network based on the discretization

to derive relaxation and feasible solutions. However, the existing DDD algorithms struggle with computational performance, par-

ticularly for instances with a high-cost ratio of vehicle-based costs over flow-based costs and high time flexibility, leaving many

instances unsolved. This study enhances the DDD solution framework by introducing three new strategies: (i) a new initial relax-

ation strategy based on timed-node-based time-expanded commodity networks and significant time points identified by solving

minimum-hitting set problems; (ii) a new mixed-integer-programming-based strategy for computing upper bounds; and (iii) a new

discretization refinement strategy based on eliminating too-long paths in a newly defined dispatch-node graph. Computational exper-

iments demonstrate that our enhanced DDD algorithm achieves exceptional performance, optimally solving all classic CTSNDP

instances within one hour. These results validate the effectiveness of the proposed strategies in addressing the limitations of existing

DDD algorithms.
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1. Introduction
The Service Network Design Problem (SNDP) is a well-known optimization problem focused on planning

transportation operations for carriers specializing in managing small shipments relative to vehicle capac-

ities (Crainic 2000, Wieberneit 2008, Crainic and Hewitt 2021). This problem is particularly prevalent in

industries such as parcel and small package delivery and Less-Than-Truckload (LTL) freight. LTL carri-

ers support numerous supply chains, while parcel and small package carriers are essential for facilitating

e-commerce sales. These industries collectively contribute billions of dollars to the global economy, exem-

plified by the LTL industry’s $46 billion valuation in the United States in 2021 and UPS’s reported revenue

of $69.44 billion from its US and international small package operations in 2020 (Hewitt and Lehuédé

2023). These figures underscore the economic significance and scale of the SNDP-involved industries.
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Given the markets they serve, these carriers employ freight consolidation operations as a key strategy to

enhance profitability. Transportation costs are incurred both on a per-vehicle basis, dependent on distances

traveled and per-unit-of-distance costs, and on a flow basis, influenced by the quantity of flow and per-

unit-of-flow costs. Consolidation operations enable carriers to consolidate multiple shipments into the same

vehicle dispatch, increasing vehicle utilization and reducing vehicle-based transportation costs. To achieve

such consolidation, carriers in these industries utilize a network of consolidation terminals where ship-

ments can be transferred from inbound to outbound vehicles. These consolidation terminals allow for the

consolidation of multiple shipments onto a single outbound vehicle for more efficient transportation. Each

shipment is scheduled to be picked up at its origin terminal at an appropriate time following its availability,

routed through the terminal network following a predefined path and consolidation plan, and delivered to

its destination terminal within a specified timeframe. Shipments can be temporarily held at both the origin

and intermediate terminals along their designated path, allowing for efficient consolidation of shipments.

The SNDP has been extensively explored in the literature, with researchers investigating numerous vari-

ants owing to its applicability across diverse industries. The classic SNDP aims to establish the delivery

path for each shipment within a terminal network and determine suitable dispatch times for terminal-to-

terminal movements on this path. This must be done while adhering to delivery timeframes and minimizing

the overall transportation costs. Shipments are consolidated when multiple shipments are scheduled for

simultaneous dispatch from the same terminal.

A common technique employed in the literature to model the SNDP is discretization, which involves

dividing the planning horizon into an adequate number of time units or points. The problem can then be

formulated as an Integer Programming (IP) model on a discretized time-expanded network. In this network,

nodes represent locations in time and space, and arcs represent physical movements between locations or

in time at a single location. The formulation identifies consolidation opportunities when multiple shipments

travel on the same arc in the time-expanded network. It ensures that enough vehicles are available on the

same arc to serve the consolidation by utilizing knapsack-type linking constraints. However, the granularity

of the time discretization in the time-expanded network significantly impacts the computational tractability

of the model and the quality of the solutions obtained. This complicates accurate scheduling and shipment

consolidation on a continuous-time planning horizon, known as the Continuous-Time SNDP (CTSNDP).

The CTSNDP poses significant computational challenges due to the continuous nature of time and

the increased complexity of the optimization problem. To address this, Boland et al. (2017) proposed a

Dynamic Discretization Discovery (DDD) algorithm that iteratively refines the time discretization of the

time-expanded network until the proven optimal solution is obtained. Specifically, the DDD algorithm

begins with an initial discretization and, in each iteration, updates the lower and upper bounds on the opti-

mal solution cost of the problem. The lower bound is obtained by solving a relaxation model based on the

current discretization. In contrast, the upper bound is derived by finding a feasible solution based on the
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relaxation model’s solution. If the current upper bound cannot be proven optimal based on the current lower

bound, the algorithm refines the time discretization of the time-expanded network by adding new timed-

nodes. The DDD algorithm has been extended to address the CTSNDP in an interval-based time-expanded

network, where nodes represent locations in time intervals and space (Marshall et al. 2021). It has also been

applied to variants of the CTSNDP (He et al. 2022a, Shu et al. 2024).

However, existing DDD algorithms for the CTSNDP face challenges in achieving efficient solutions, par-

ticularly for instances characterized by a high-cost ratio of vehicle-based costs over flow-based costs and

high time flexibility, nearly half of which still need to be solved. The limitations of current DDD algorithms

in efficiently solving such instances can be attributed to several factors. The first factor is weak relaxation.

A loose relaxation allows numerous impossible consolidations indicated by the available times and due

times of shipments. Consequently, this can lead to weak relaxation solutions with many impossible con-

solidations. These weak relaxation solutions resulting from the relaxation thus pose difficulties in proving

the solution’s optimality within a reasonable computational time. The second factor is the ineffectiveness

of heuristic methods for deriving upper-bound solutions. All existing DDD algorithms employ a heuris-

tic approach to derive upper-bound solutions by adhering to the routing plan obtained from the relaxation

model but repairing the corresponding consolidation plan. However, these heuristic methods do not guar-

antee the computation of high-quality, feasible solutions, thus impeding the algorithm’s convergence. The

third factor is the inefficiency of the refinement methods. An effective refinement method should ensure the

attainment of a sufficiently fine discretization within a small number of iterations. However, existing refine-

ment methods may fail to reach a reasonably fine discretization or require excessive iterations, adversely

affecting the algorithm’s overall performance.

1.1. Contributions of this Paper

This paper proposes a new DDD algorithm for the CTSNDP to address the aforementioned challenges.

While it shares a similar solution framework with previous DDD algorithms, it distinguishes itself through

innovative DDD strategies. The major contributions of our study are summarized as follows.

• The new DDD algorithm features the following innovative strategies:

— A new initial relaxation strategy: We construct a timed-node-based time-expanded commodity net-

work for each shipment, enhancing the initial discretization by adding a minimal set of significant time

points, determined through the solution of minimum-hitting set problems. This process effectively elimi-

nates infeasible consolidations from the relaxation model over these networks, yielding a tighter relaxation

than the one proposed by Boland et al. (2017). This strategy emphasizes identifying and adding significant

time points in advance, improving the algorithm’s convergence.

— A new upper-bound deriving strategy: Introducing a new Mixed-Integer Programming (MIP) model,

we derive the best upper-bound solution based on all feasible CTSNDP solutions that adhere to the routing
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plans provided by a collection of feasible solutions of the relaxation model, significantly enhancing the

accuracy and quality of upper-bound solutions. This strategy significantly diverges from the heuristic meth-

ods utilized by previous CTSNDP algorithms, aiming at identifying the best CTSNDP solution among all

feasible solutions that utilize the routing plans derived by the relaxation model.

— A more effective discretization refinement strategy: We present a new discretization refinement strat-

egy which focuses on eliminating newly identified structural patterns (referred to as minimum too-long

paths in a newly defined dispatch-node graph) that cause the infeasibility of the solutions provided by

the relaxation model. Based on this, we adopt a three-stage approach capable of eliminating all minimum

too-long paths of a collection of feasible solutions of the relaxation model with a few time points. This

strategy ensures the algorithm converges to the optimal solution within a few iterations and with a small

final network.

• We conduct extensive computational experiments to validate the efficiency and effectiveness of the

enhanced DDD algorithm and each proposed strategy. Results demonstrate that the enhanced DDD algo-

rithm exhibited dominant computational performance, being the first to optimally solve all classic CTSNDP

instances in the literature.

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature. Section 3

provides a formal description of the CTSNDP. An overview of the newly developed enhanced DDD algo-

rithm for the CTSNDP is presented in Section 4, whose details are described in Sections 5-7. Specifically,

we introduce the new initial relaxation (§5), illustrate an MIP-based approach for upper-bound computation

(§6), and detail the new discretization refinement strategy (§7). We then present the computational studies

in Section 8. Finally, the paper is concluded in Section 9. Proofs of the statements and additional materials

are available in the e-companion to this paper.

2. Related Work
The SNDP has been a focal point of research in the operations research community since the 1990s, given

its extensive practical applications and theoretical significance (Crainic and Rousseau 1986, Farvolden and

Powell 1994). The SNDP is closely associated with the multicommodity flows over time problem, which

involves routing and scheduling multiple commodities through a network while considering release and

due times for the commodities. The multicommodity network flow problem addresses routing multiple

commodities through a network, assuming instantaneous flow travel and disregarding flow changes over

time (Ford Jr and Fulkerson 1958b). To incorporate flow changes over time, the concept of dynamic flows,

also known as flows over time, was introduced by Ford Jr and Fulkerson (1958a) for single commodities

within a discrete-time framework. They considered a maximal dynamic flow problem over a network with

transit times on the arcs, specifying the time it takes to pass through the arcs, aiming to maximize flow from

a source to a sink within a specified time horizon. They demonstrated that a flow-over-time problem in a
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network with transit times can be formulated as a linear program over a time-expanded network. Fleischer

and Tardos (1998) extended this work to continuous time, addressing dynamic flows in a continuous-time

setting. Furthermore, Hall et al. (2007) extended the notion of flows over time to multicommodity cases

and proved the NP-hardness of the multicommodity flows over time problem. A comprehensive overview

of this research area can be found in Skutella (2009). By highlighting the relationship between SNDP and

multicommodity flows over time, we establish the context and draw attention to the relevant literature that

forms the basis for addressing the temporal component in the SNDP.

Similar to the approach taken in multicommodity flows over time, existing studies on the SNDP have

primarily approximated the temporal component of the problem using a time-indexed formulation over a

discretized time-expanded network (Crainic 2000, Andersen et al. 2009, Crainic and Hewitt 2021). How-

ever, selecting an appropriate discretization level poses a significant challenge. To assist in this decision

within the SNDP, Boland et al. (2019) proposed metrics to estimate the price of discretization and intro-

duced a mechanism for selecting a suitable discretization level based on a given tolerance. Even with careful

discretization, some time-expanded network models become too large to solve efficiently, prompting many

studies to develop heuristics (Pedersen et al. 2009, Teypaz et al. 2010, Erera et al. 2013).

The CTSNDP has garnered significant attention in recent years, with breakthroughs in developing exact

algorithms based on discretized time-indexed formulations to obtain continuous-time optimal solutions.

Boland et al. (2017) introduced a DDD algorithm to solve the CTSNDP optimally. The DDD algorithm

addresses the problem by solving a sequence of relaxation models defined on a subset of time points (i.e.,

a partial discretization), with variables indexed by time points in the subset providing lower bounds on the

optimal objective function value. New times are discovered and used to refine the partial discretization at

each iteration. Once the correct subset of time points is discovered, the resulting relaxation model yields the

optimal continuous-time solution. Following this work, Marshall et al. (2021) proposed a similar dynamic

algorithm for the CTSNDP, but based on an interval-based network where nodes are attributed by time

intervals and space, as opposed to the method proposed by Boland et al. (2017), which uses a network with

nodes labeled with time points. This DDD algorithm has been successfully extended to several variants of

the CTSNDP. For instance, He et al. (2022a) employed the DDD algorithm to address the CTSNDP variant

with hub capacity constraints, while Hewitt (2022) and Shu et al. (2024) extended the DDD framework to

tackle CTSNDP variants considering flexible commodity available and due times and holding costs, respec-

tively. Additionally, Van Dyk and Koenemann (2024) adopted the DDD framework for the CTSNDP with

restricted routes for each commodity, using a network with arc-dependent time discretizations. Specifically,

they optimized the time-expanded network by assigning distinct departure time points to different services

departing from the same terminal, in contrast to the general time-expanded network, where all services from

the same terminal share a common set of departure time points. However, similar sparsity can be achieved

by safely removing certain arcs based on specific reduction rules for the general time-expanded network,



Shu et al.: New DDD Strategies for the CTSNDP
6

as demonstrated in Marshall et al. (2021). The DDD framework exhibits versatility extending beyond the

CTSNDP, being applied to several transportation-related problems, including the Time-Dependent Travel-

ing Salesman Problem with Time Windows (Vu et al. 2020), the Time-Dependent Shortest Path Problem (He

et al. 2022b), the Continuous-time Load Plan Design Problem (Hewitt 2019), the Continuous-time Inventory

Routing Problem (Lagos et al. 2022), and the Two-echelon Location Routing Problem (Escobar-Vargas and

Teodor Gabriel 2024), among others. For further insights into time-dependent models and an introduction

to DDD algorithms, interested readers can refer to Boland and Savelsbergh (2019). The research presented

here complements and extends the work in Boland et al. (2017) and Marshall et al. (2021), providing a

robust foundation to enhance DDD algorithms for CTSNDP variants and other transportation problems.

The DDD algorithm was initially introduced by Boland et al. (2017) for solving the CTSNDP. However,

the concept of dynamically refining discretization had already been applied in previous research within

related domains. For the Traveling Salesman Problem with Time Windows (TSPTW), Wang and Regan

(2009) introduced a time window discretization method and discussed its convergence properties. They

demonstrated that their time window discretization method always converges to the optimal continuous-

time solution when the length of partition intervals approaches infinitesimally small values. However, their

approach utilized a predetermined uniform interval size for each time window in the formulation and did not

propose a dynamic solution algorithm. Dash et al. (2012) introduced a branch-and-cut algorithm for solv-

ing the TSPTW by partitioning the time windows into subwindows, referred to as buckets. They employed

dynamic discretization discovery as a preprocessing step within the branch-and-cut framework to deter-

mine a good discretization for these buckets. Once the final discretization was established, it remained

unchanged throughout the algorithm. Fischer and Helmberg (2014) designed a dynamic framework that

solves a sequence of shortest path problems on valid subnetworks with a given finite time horizon to address

the original shortest path problem with infinite time horizons. In each iteration, the dynamic framework

recognizes whether the current network excludes the shortest paths that exceed the current time horizon

and then extends the current valid subnetwork accordingly. This approach is specific to the shortest path

problem, and the methods for generating and refining the networks differ from the DDD approach.

3. Problem Description
The SNDP can be defined as follows. We are given a directed graph D = (N ,A) where N represents the

physical terminal set and set A indicates the arc set, and a set K of commodities which must be routed

through the network D. The network D is referred to as the flat network to distinguish it from the time-

expanded network typically used in the modeling method for the problem. In the flat network D, each arc

(i, j) is characterized by its travel time τi,j ∈ N>0, a per-unit-of-flow cost cki,j ∈ R>0 for each commodity

k ∈K, a fixed cost fi,j ∈R>0 for each dispatch of a vehicle on the arc, and a capacity ui,j ∈N>0 for each

vehicle served on the arc. Each commodity k ∈K is defined by a single origin ok ∈N , a single destination
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dk ∈ N , a transportation demand qk ∈ N>0, and a time window [ek, lk], where ek ∈ N≥0 is the earliest

available time at its origin, and lk ∈N>0 denotes the due time for arriving at its destination. Each demand

qk must be delivered from the origin to the destination following a single delivery path or route. Multiple

demands can be consolidated to pass through arc (i, j), reducing the total fixed cost for using the service on

arc (i, j). For all practical purposes, we allow the travel times and time window restrictions to be integers

in minutes and assume mink∈K{ek}= 0. We use (i, j) and a interchangeably to represent an arc in A.

The SNDP seeks to determine the routing and consolidation plans for the commodities and the required

services/resources to execute them. It aims to minimize total flow and fixed costs while ensuring compliance

with time constraints on the commodities.

A feasible solution to the SNDP must first specify each commodity’s delivery path. In this paper, we

formally represent a path p in a network as a sequence of arcs in the network. However, for simplicity, we

will adopt an abuse of notation and use the expression n ∈ p to indicate that node n is either the head or

tail node of some arc in the path p. A flat path pk = (ak
1 , ..., a

k
|pk|) is called k-feasible for commodity k if

it is a simple path from ok to dk with ek + τa∈pkτa ≤ lk, where τa∈pk =
∑

a∈pk τa denotes the total travel

time of the path. To identify the consolidation plan and the required resources for executing the routing

and consolidation plans, a feasible solution to the SNDP must also specify a set of departure times tk =

(tk
ak1
, ..., tk

ak
|pk|

) associated with the arcs of the path pk. These times must satisfy tk
ak1
≥ ek, tk

akn
≥ tk

akn−1
+τakn−1

for each n= 2, . . . , |pk|, and tk
ak
|pk|

+ τak
|pk|
≤ lk. We refer to such tk as pk-dispatch times. Without loss of

optimality, all commodities that pass through the same arc with the same departure time can be consolidated.

For each arc a∈A and each departure time t∈
⋃

k∈K,a∈pk{tka}, the consolidation set can thus be expressed

as κ(a, t) = {k ∈ K : a ∈ pk and tka = t}. The number of vehicles required to transport each consolidation

set κ(a, t) is calculated as
⌈∑

k∈κ(a,t) q
k/ua

⌉
.

A set of k-feasible flat paths, {pk}k∈K together with pk-dispatch times, {tk}k∈K, indicates a feasible

solution to the SNDP with a total cost of∑
a∈A

∑
t∈

⋃
k∈K,a∈pk

{tka}

fa

⌈∑
k∈κ(a,t) q

k

ua

⌉
+
∑
k∈K

∑
a∈pk

ckaq
k,

where the two terms represent the fixed and flow costs, respectively. As defined above, the SNDP seeks

a feasible solution that minimizes the total cost. Without loss of generality, we assume that there always

exists a k-feasible flat path for each k ∈K, which is sufficient to ensure a feasible solution to the SNDP.

The SNDP is typically modeled using a time-indexed formulation based on a time-expanded net-

work. To achieve this, we define a time-expanded network D∆
T = (N∆

T ,A∆
T ∪ H∆

T ) with a given dis-

cretization parameter ∆. Here, T = {Ti}i∈N represents the set of time points for all i ∈ N , where Ti =

{0,∆,2∆, ...,∆⌈maxk∈K lk/∆⌉}. Time points in Ti, i ∈ N , are also represented by set {ti1, ti2, . . . , tini
}

where ni = |Ti|. The node set N∆
T consists of a node (i, t) for each i ∈ N and t ∈ Ti. The set of arcs

in D∆
T includes two subsets of timed-arcs. (i) Holding arcs H∆

T : For every terminal i ∈ N and every n ∈
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{1, ..., ni− 1}, there exists an arc ((i, tin), (i, t
i
n+1)) representing a holding of (tin+1− tin) time units at ter-

minal i. (ii) Service arcsA∆
T : For every arc (i, j)∈A and node (i, t)∈N∆

T , there exists an arc ((i, t), (j, t̄))

with t̄= t+∆⌈τij/∆⌉, representing a dispatch from terminal i at time t arriving at time t̄ at terminal j.

The time-indexed formulation of the SNDP can be modeled based on the graph D∆
T with two types of

decision variables. Flow variables xktt̄
i,j are binary variables equal to 1 if commodity k ∈ K is routed along

arc (i, j) ∈A, departing at time t and arriving at j, and 0 otherwise. Design variables ytt̄
i,j are nonnegative

integer variables representing the number of vehicles on arc (i, j) ∈ A required to serve the commodities

that dispatch from terminal i at time t and arrive at time t̄ in j. The SNDP seeks to optimize the following

model SND(D∆
T ).

z(D∆
T ) =min

∑
((i,t),(j,t̄))∈A∆

T

fi,jy
tt̄
i,j +

∑
k∈K

∑
((i,t),(j,t̄))∈A∆

T

(cki,jq
k)xktt̄

i,j (1)

s.t.
∑

((i,t),(j,t̄))∈A∆
T ∪H∆

T

xktt̄
i,j −

∑
((j,t̄),(i,t))∈A∆

T ∪H∆
T

xkt̄t
j,i =

 1 (i, t) = (ok, ek),
−1 (i, t) = (dk, lk),
0 otherwise,

∀k ∈K, (i, t)∈N∆
T , (2)

∑
k∈K

qkxktt̄
i,j ≤ ui,jy

tt̄
i,j, ∀ ((i, t), (j, t̄))∈A∆

T , (3)

xktt̄
i,j ∈ {0,1}, ∀k ∈K, ((i, t), (j, t̄))∈A∆

T ∪H∆
T , (4)

ytt̄
i,j ∈N≥0, ∀((i, t), (j, t̄))∈A∆

T . (5)

The objective function (1) aims to minimize the total cost, computed as the sum of fixed and flow costs,

respectively. Constraints (2) represent flow conservation constraints, ensuring that each commodity k ∈ K

is routed along a single path starting from its origin after it becomes available and ending at its destination

before its due time. Without loss of optimality, it is assumed that all commodities passing through the

same service arc ((i, t), (j, t̄)) ∈ A∆
T can be consolidated. Constraints (3) represent capacity constraints,

ensuring that sufficient capacity is available to serve the flows on each service arc ((i, t), (j, t̄)) ∈ A∆
T .

Finally, constraints (4) and (5) specify the domains of the variables. For presentational convenience, we

assume that the nodes (ok, ek) and (dk, lk) are contained inN∆
T for all k ∈K. Otherwise, nodes (ok, t) with

t= argmin{s∈ Tok : s≥ ek} and (dk, t′) with t′ = argmax{s∈ Tdk : s≤ dk} can be used instead in (2).

The discretization parameter ∆ introduces deviations to travel times, available times, and due times,

inevitably leading to approximations in the problem. The key to the modeling technique based on a time-

expanded network lies in the discretization parameter ∆. Indeed, the quality of the approximate solution

heavily depends on the choice of ∆ for the time-expanded network. Fine discretizations typically provide

good approximations to the continuous-time problems. Still, they may result in large, potentially intractable

integer programs, whereas coarse discretizations are more computationally amenable but generally yield

poorer approximations. According to Boland et al. (2017), no approximations are introduced when ∆ takes

a value such that all values τij/∆, ek/∆, and lk/∆ are naturally integers. Let ∆̂ be the greatest common

divisor of all τij , ek, and lk. In the worst case, ∆̂ takes a value of 1. D∆̂
T is a fully time-expanded network
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such that z(D∆̂
T ) provides the optimal solution cost of the CTSNDP, and SND(D∆̂

T ) becomes a complete

time-indexed model for the CTSNDP. The corresponding discretization is the complete discretization. We

thus define the CTSNDP as SND(D∆̂
T ). As shown in Boland et al. (2017), this fully time-expanded network

D∆̂
T can be further reduced to include only time points ek for some commodity k or time points of the form

ek +
∑

a∈p τa for some commodity k and some path p⊆A originating at ok.

4. An Enhanced Dynamic Discretization Discovery Algorithm: Overview
and New Strategies

This section provides an overview of our newly developed enhanced DDD algorithm for the CTSNDP,

denoted as EDDD, which follows the DDD framework proposed by Boland et al. (2017), but differs in key

algorithm components, as summarized in Section 4.3.

4.1. DDD Algorithm in the Literature

With the fully time-expanded network D∆̂
T , the optimal solution for the CTSNDP can be obtained by solv-

ing SND(D∆̂
T ). The size of the fully time-expanded network D∆̂

T can be prohibitively large for practical

instances, and solving the resulting SND(D∆̂
T ) becomes challenging. Therefore, Boland et al. (2017) pro-

posed a DDD algorithm, which iteratively expands the size of the time-expanded network.

The DDD algorithm proposed by Boland et al. (2017) utilizes the concept of a partially time-expanded

network, denoted by DT = (NT ,AT ∪HT ). Here, NT represents a subset of the set of all possible timed-

nodesN ∆̂
T ,HT comprises the timed-node pairs connecting consecutive timed-nodes at the same node in the

flat network, and AT is a set of timed-node pairs (i, t), (j, t′) ∈NT for which (i, j) ∈A. Additionally, the

network DT satisfies the following Properties 1-4, introduced by Boland et al. (2017).

Property 1 For all commodities k ∈K, nodes (ok, ek) and (dk, lk) are in NT .

Property 2 Every arc ((i, t), (j, t̄))∈AT has t̄≤ t+ τi,j .

Property 3 For every (i, j)∈A and every (i, t)∈NT , these exists a timed-copy arc ((i, t), (j, t̄))∈AT .

Property 4 For each arc ((i, t), (j, t̄))∈AT , there does not exist a node (j, t′)∈NT with t̄ < t′ ≤ t+ τi,j .

By Property 2, we observe that the lengths of arcs in AT can be shorter than their true travel times; these

arcs are denoted as short-arcs. The DDD algorithm constructs initial setsNT ,HT , andAT , usually in such

a way that
∣∣NT

∣∣<<
∣∣∣N ∆̂

T

∣∣∣, and modifies them at each iteration of the algorithm.

Building on the properties above, Boland et al. (2017) demonstrated that SND(DT ) is a valid relaxation

of the CTSNDP, i.e., a feasible SND(DT ) solution (x,y) provides a relaxation solution to the CTSNDP.

The DDD algorithm, introduced by Boland et al. (2017), follows an iterative approach to solve the relaxation

model, SND(DT ), providing an optimal relaxation solution and a valid lower bound for the CTSNDP.

Simultaneously, it solves a linear program to minimize the total dispatch time difference between any two

commodities in any consolidation indicated by the optimal relaxation solution. This process yields a feasible



Shu et al.: New DDD Strategies for the CTSNDP
10

Algorithm 1: EDDD Algorithm for the CTSNDP

Input: CTSNDP defined on a flat network D= (N ,A), optimality tolerance;
Output: Solution

(
{pk}k∈K,{tk}k∈K

)
of cost UB;

begin
1 UB←+∞, LB←−∞;
2 (Initial Relaxation) Compute a minimum set of significant time points to establish an initial

discretization T , initial time-expanded commodity networks DK
T , and an initial relaxation

model SND(DK
T ) (see §5);

3 while (UB−LB)/UB > optimality tolerance do
4 (Lower Bound Computation) Solve SND(DK

T ) to obtain a collection of relaxation solutions,
including the optimal relaxation solution, and set LB equal to the optimal objective value of
SND(DK

T );
5 (Upper Bound Computation) (i) For each relaxation solution obtained, solve a new MIP

model to obtain the best CTSNDP solution among all feasible solutions that utilize the
routing plan given by the relaxation solution; (ii) Select the best of these best solutions as(
{p̂k}k∈K,{t̂k}k∈K

)
along with its objective value as a valid upper bound ẑ (see §6);

6 if ẑ < UB then
7 UB← ẑ and

(
{pk}k∈K,{tk}k∈K

)
←

(
{p̂k}k∈K,{t̂k}k∈K

)
;

8 end
9 if (UB−LB)/UB > optimality tolerance then

10 (Discretization Refinement) Apply a new three-stage approach to refine the discretization
T and update the networks in DK

T , so that all the obtained relaxation solutions that
utilize infeasible routing and consolidation plans become infeasible to SND(DK

T ) under
the updated DK

T (see §7);
11 end
12 end
13 return Solution

(
{pk}k∈K,{tk}k∈K

)
of cost UB;

14 end

solution whose total cost is an upper bound on the optimal solution cost of the CTSNDP. The algorithm,

therefore, dynamically updates a lower bound (LB) and upper bound (UB). If the obtained upper bound

falls within a pre-determined optimality tolerance, indicating the finding of an optimal solution (within

the specified tolerance) for the CTSNDP, the DDD algorithm terminates. In cases where this condition is

not met, an MIP is formulated and solved to identify short-arcs in AT that need adjustment to their true

travel times. Subsequently, this travel time adjustment is then achieved by incorporating new time points to

the current discretization T , and refining the corresponding partially time-expanded network DT through

further modifications to the arcs, ensuring adherence to the four defined properties.

4.2. Overview of Our EDDD Algorithm

Algorithm 1 outlines the main steps of the EDDD algorithm.
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The EDDD algorithm begins by enhancing the initial discretization T through the incorporation of a

minimum set of significant time points, which are then utilized to construct the corresponding timed-node-

based time-expanded commodity networks in DK
T and the initial relaxation model SND(DK

T ) (line 2). The

time-expanded commodity network was initially proposed by Marshall et al. (2021) as an interval-based

network. We extend it here to a timed-node-based network enriched with significant time points. These

significant time points are introduced to tighten the lower bound derived from the relaxation model obtained,

thereby expediting the algorithm’s convergence.

Subsequently, the EDDD algorithm solves the relaxation model SND(DK
T ) based on the time-expanded

commodity networks DK
T iteratively to compute a collection of relaxation solutions in each iteration, which

includes the optimal relaxation solution with its objective value serving as a valid lower bound for the

CTSNDP (line 4). For each obtained relaxation solution, an upper bound for the CTSNDP is then derived

by solving a new MIP model. This MIP model aims to achieve a feasible CTSNDP solution, aligning with

the routing plan outlined by the relaxation solution while minimizing the total cost (line 5). The algorithm

accordingly updates the lower and upper bounds (LB and UB).

If the obtained upper bound fails to meet a predetermined optimality tolerance, a new three-stage refine-

ment based on the obtained relaxation solutions is employed to identify new time points that need to be

incorporated into the discretization T , consequently updating the corresponding time-expanded commodity

networks DK
T , so that all the obtained relaxation solutions that utilize infeasible routing and consolidation

plans become infeasible to SND(DK
T ) under the updated DK

T (line 10). Otherwise, the EDDD algorithm

terminates, finding an optimal (within the imposed tolerance) solution to the CTSNDP.

As we will explain later, our upper bound computation and discretization refinement ensure that if the

optimal relaxation solution can be transformed to a feasible CTSNDP solution based on the same rout-

ing plan without changing its cost value, then both LB and UB will be equal to the optimal cost value of

the CTSNDP, and otherwise, the optimal relaxation solution will not be feasible to the relaxation model

after the refinement of discretization with some additional time points. This ensures the convergence of our

EDDD algorithm towards an optimal CTSNDP solution in a finite number of iterations. Our EDDD algo-

rithm utilizes a collection of relaxation solutions including the optimal relaxation solution for upper-bound

computation and discretization refinement to expedite its convergence further. The relaxation solutions can

be obtained by applying a general optimization solver (like Gurobi) on the relaxation model SND(DK
T ).

4.3. Summary of New Strategies: EDDD vs. DDD

The proposed EDDD algorithm differs significantly from Boland et al. (2017)’s DDD and its extension,

the DDDI algorithm Marshall et al. (2021), by employing innovative strategies for initial relaxation, upper-

bound derivation and discretization refinement:
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• It uses a new initial relaxation, SND(DK
T ), based on timed-node-based time-expanded commodity

networks for shipments, in contrast to the timed-node-based and interval-based time-expanded networks

employed by Boland et al. (2017) and Marshall et al. (2021), respectively, while integrating a set of signifi-

cant time points into the initial discretization. These significant time points eliminate impossible consolida-

tions from the relaxation model, resulting in a tighter relaxation than that used by Boland et al. (2017), and

are efficiently computed by solving a series of minimum hitting set problems for intervals (see §5).

• It employs a novel MIP-based approach to compute an upper bound at each iteration, leveraging a

collection of relaxation solutions. Unlike the heuristic methods used by Boland et al. (2017) and Marshall

et al. (2021), the EDDD algorithm utilizes an MIP model to identify the best CTSNDP solution among all

feasible solutions that adhere to the routing plans provided by the relaxation solutions (see §6).

• It refines the discretization by eliminating newly identified structural patterns, referred to as minimum

too-long paths in a newly defined dispatch-node graph, suggesting impractical routing and consolidation

plans in the relaxation solutions. To achieve this, it adopts a novel three-stage approach that identifies

additional time points to prevent a group of impractical routing and consolidation plans from emerging in

the relaxation model, thereby accelerating the convergence of the EDDD algorithm (see §7).

Below, we provide a detailed description of the key improvements introduced in our EDDD algorithm.

5. Initial Relaxation Based on Commodity Networks and Significant Time
Points

The quality of the relaxation directly impacts the convergence efficiency of the DDD algorithm. Existing

DDD algorithms for the CTSNDP (Marshall et al. 2021) and variants of the CTSNDP, i.e., the CTSNDP

with holding costs (Shu et al. 2024), have focused on generating valid inequalities to strengthen the relax-

ation model and consequently expedite the algorithm’s convergence. The results reported by Marshall et al.

(2021) and Shu et al. (2024) demonstrated that strengthening the relaxation can significantly accelerate the

convergence of the DDD algorithm.

In this section, we propose a new strategy for the initial relaxation model based on timed-node-based

time-expanded commodity networks and specific significant time points to strengthen the lower bound fur-

ther and expedite the DDD algorithm’s convergence. We first introduce timed-node-based time-expanded

commodity networks in Section 5.1, to derive a tighter relaxation model SND(DK
T ) of CTSNDP than

SND(DT ) by reducing decision variables. The relaxation model SND(DK
T ) is further strengthened by incor-

porating a minimum set of significant time points to the initial discretization T (see Section 5.2). These

significant time points are identified by solving minimum-hitting set problems.

5.1. Timed-Node-Based Time-Expanded Commodity Networks and Relaxation SND(DK
T )

First, following an approach similar to that in Marshall et al. (2021) for the interval-based time-

expanded commodity network, we can define a timed-node-based time-expanded commodity network
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Dk
T = (NT ,Ak

T ∪HT ) for every commodity k ∈ K, where each service arc set Ak
T consists of only arcs

((i, t), (j, t̄))∈AT with i ̸= dk and j ̸= ok and satisfies the following two properties:{
(i) ek +ϕk

ok,i
+ τi,j +ϕk

j,dk
≤ lk,

(ii) max{s∈ Ti : s≤ ek +ϕk
ok,i
} ≤ t≤max{s∈ Ti : s+ τi,j +ϕk

j,dk
≤ lk},

(6)

where ϕk
i′,j′ , i

′, j′ ∈N , indicate the length of the shortest-time path from terminal i′ to terminal j′ over the

flat networkD for commodity k ∈K. Here, property (i) ensures that there exists a path inD such that it uses

arc (i, j), starts at ok no earlier than ek, and reaches dk no later than lk. Property (ii) ensures that in Dk
T , the

departure time t of i cannot be excessively earlier than its earliest departure time (ek +ϕk
ok,i

), or later than

its latest departure time (lk−ϕk
j,dk
− τi,j).

Let DK
T = {Dk

T }k∈K denote the collection of the timed-node-based time-expanded commodity networks

Dk
T for k ∈K. Define AK

T =
⋃

k∈KAk
T . We can replace AT with AK

T in SND(DT ) to reduce the number of

decision variables and obtain the following optimization model, which is referred to as SND(DK
T ).

z(DK
T ) =min

∑
((i,t),(j,t̄))∈AK

T

fi,jy
tt̄
i,j +

∑
k∈K

∑
((i,t),(j,t̄))∈Ak

T

(cki,jq
k)xktt̄

i,j (7)

s.t.
∑

((i,t),(j,t̄))∈Ak
T ∪HT

xktt̄
i,j −

∑
((j,t̄),(i,t))∈AT ∪HT

xkt̄t
j,i =

 1 (i, t) = (ok, ek),
−1 (i, t) = (dk, lk),
0 otherwise,

∀k ∈K, (i, t)∈NT ,

(8)∑
k∈K:((i,t),(j,t̄))∈Ak

T

qkxktt̄
i,j ≤ ui,jy

tt̄
i,j, ∀ ((i, t), (j, t̄))∈AK

T , (9)

xktt̄
i,j ∈ {0,1}, ∀k ∈K, ((i, t), (j, t̄))∈Ak

T ∪HT , (10)

ytt̄
i,j ∈N≥0, ∀((i, t), (j, t̄))∈AK

T . (11)

The following proposition holds.

Proposition 1 SND(DK
T ) is a relaxation of the CTSNDP, and it is tighter than SND(DT ).

The relaxation model SND(DK
T ) can further be strengthened by incorporating the following two valid

inequalities, proposed by Marshall et al. (2021) and Boland et al. (2017), respectively, where (12) is based

on a lower bound of the number of vehicles needed, and (13) ensures the existence of a k-feasible delivery

path for each commodity k ∈K.⌈
qk

ui,j

⌉
xktt̄
i,j ≤ ytt̄

i,j, ∀ ((i, t), (j, t̄))∈Ak
T , k ∈K, (12)∑

((i,t),(j,t̄))∈Ak
T

τi,jx
ktt̄
i,j ≤ lk− ek, ∀k ∈K. (13)

Moreover, as illustrated in Marshall et al. (2021) and Shu et al. (2024), some decision variables could be

safely removed to strengthen the relaxation further as it can be proved that there always exists an optimal

SND(DK
T ) solution with these decision variables being zero.
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5.2. Strengthening the Relaxation through Significant Time Points and the Minimum
Hitting Set

We start by observing that consolidating two commodities on an arc may not be possible, even if both

can pass through the arc and reach their destinations before the due times. For each arc (i, j) ∈ A, define

Ki,j = {k ∈ K : dk ̸= i, ok ̸= j, and ek + ϕk
ok,i

+ τi,j + ϕk
j,dk
≤ lk} as the set of commodities k for which

there exists a path that uses arc (i, j), starting at ok no earlier than ek, and reaching dk no later than lk. The

following observation highlights a sufficient condition for the occurrence of impossible consolidations of

two commodities, determined by their available times and due times.

Observation 1 (Impossible Consolidation) Given any arc (i, j) in A and two different commodities k1

and k2 in Ki,j , if ek1 +ϕk1
ok1 ,i

+ τi,j +ϕk2
j,dk2

> lk2 , then in any feasible CTSNDP solution, k1 and k2 cannot

be consolidated on arc (i, j), and such a consolidation of k1 and k2 on arc (i, j) is termed impossible.

Similar to DT , the travel times of arcs in the timed-node-based time-expanded commodity networks DK
T

are lower than or equal to their actual travel times. Thus, the relaxation solution (x,y) obtained by solving

the relaxation model SND(DK
T ) could still contain impossible consolidations, i.e., xk1tt̄

i,j = xk2tt̄
i,j = 1 for

some ((i, t), (j, t̄))∈AT , k1, k2 ∈Ki,j , but ek1 +ϕk1
ok1 ,i

+ τi,j +ϕk2
j,dk2

> lk2 . Below, we present a new initial

discretization T ensuring the absence of impossible consolidations in any feasible solution of SND(DK
T ),

thereby improving the quality of the relaxation.

The following theorem demonstrates that by incorporating a specific time point, a significant time point,

to the discretization, an impossible consolidation of two commodities can be eliminated from any feasible

solutions of the relaxation model SND(DK
T ).

Theorem 1 (Significant Time Points) Given any arc (i, j) in A and two different commodities k1 and k2

inKi,j with ek2 +ϕk2
ok2 ,i

+ τi,j +ϕk1
j,dk1

> lk1 , if there exists a time point t̂ incorporated in Ti of discretization

T with t̂ ∈ (lk1 − ϕk1
j,dk1
− τi,j, e

k2 + ϕk2
ok2 ,i

], which is defined as a significant time point, then commodities

k1 and k2 cannot be consolidated on any arc ((i, t), (j, t′))∈AK
T in any feasible solution of SND(DK

T ).

Remark 1 By a similar argument to that in Marshall et al. (2021), incorporating the time point ek2 +

ϕk2
ok2 ,i

into the discretization can eliminate the impossible consolidation of the two commodities k1 and k2

described in Theorem 1 above. Theorem 1 generalizes this result by showing that any point in the interval

(lk1 −ϕk1
j,dk1
− τi,j, e

k2 +ϕk2
ok2 ,i

] can be used to eliminate such an impossible consolidation.

Section EC.2 of the e-companion to this paper illustrates the effectiveness of Theorem 1 with an example.

Below, we describe how a minimal set of significant time points can be computed efficiently to eliminate

all impossible consolidations.

For each terminal i ∈N , define Wi as the set of all time intervals (lk1 − ϕk1
j,dk1
− τi,j, e

k2 + ϕk2
ok2 ,i

], each

associated with an impossible consolidation of two different commodities k1, k2 ∈ K on arc (i, j) ∈ A.
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Each time interval in Wi is denoted by (ai
m, b

i
m] with ai

m < bim for m∈ {1,2, . . . , |Wi|}. According to The-

orem 1, to eliminate all impossible consolidations, a straightforward approach is to incorporate the right

endpoints bim of each interval (ai
m, b

i
m] to Ti of discretization T , for all m ∈ {1, ..., |Wi|} and i ∈N . How-

ever, this straightforward approach may be overly aggressive, potentially leading to excessive significant

time points in the resulting discretization. To tackle this issue, we propose minimizing the significant time

points required to eliminate impossible consolidations of two commodities as a minimum-hitting set prob-

lem for intervals, as illustrated below.

For each i∈N , consider the time intervals (ai
m, b

i
m] in Wi with m∈ {1, ..., |Wi|}. Assume that these time

intervals (ai
m, b

i
m] are sorted in a non-decreasing order of ai

m, with ties broken by smaller bim. According

to Theorem 1, to find a minimum number of significant time points for the elimination of all impossible

consolidations of two commodities, it is equivalent to finding a minimal hitting set Mi ⊆
⋃|Wi|

m=1(a
i
m, b

i
m]

that is with a minimal cardinality and intersects every time interval in Wi, i.e., |Mi ∩ (ai
m, b

i
m]| ≥ 1 for all

m∈ {1, ..., |Wi|}. This problem is known as the minimum hitting set problem for intervals and can be solved

efficiently in polynomial time by a greedy algorithm (see, e.g., Golumbic 2004). By solving a minimum

hitting set problem for intervals, we obtain a minimal set of significant time points for each terminal i∈N .

These significant time points are incorporated into the discretization Ti, refining the initial discretization T

and eliminating all impossible consolidations of two commodities from the initial relaxation.

The initial timed-node-based time-expanded commodity networks inDK
T are defined to satisfy Properties

1, 2, and 4, and conditions (6)-(i) and (6)-(ii). Specifically, the networks consist of (i) timed-nodes (ok, ek)

and (dk, lk) for all k ∈K; (i,mink∈K{ek+ϕok,i}) for all i∈N , where ϕi,j is the length of the shortest-time

path from terminal i to terminal j over the flat network D; (i, t̂) for i ∈ N and t̂ ∈Mi, and (ii) timed-

arcs in Ak
T and HT . Algorithm 2 in §EC.3.1 of the e-companion to this paper illustrates in detail how the

initialization is performed.

6. An MIP-Based Strategy for Computing an Upper Bound
The optimal solution of the relaxation model SND(DK

T ) may not correspond to a feasible solution of the

CTSNDP with the same cost. Since travel times are underestimated in SND(DK
T ), a relaxation solution,

though corresponding to a collection of k-feasible paths pk for all commodities k as defined by inequali-

ties (13), could still involve an infeasible consolidation that cannot be achieved by any set of pk-dispatch

times. In such cases, existing DDD algorithms in the literature typically employ heuristic methods to derive

feasible CTSNDP solutions (serving as upper-bound solutions) by following the delivery routes given in

the optimal relaxation solution and adjusting the consolidations. However, the quality of such upper-bound

solutions is not guaranteed, limiting the convergence efficiency of these existing DDD algorithms.

In this section, we propose a new MIP-based strategy to derive a tighter upper-bound solution from a

collection of relaxation solutions obtained by solving the relaxation model SND(DK
T ). For each relaxation
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solution, we compute a feasible CTSNDP solution by solving a consolidation planning problem, which

aims to optimize the adjustment of consolidations for the delivery paths pk of the relaxation solution while

minimizing the total cost. The best feasible solution obtained is then used to update the best upper-bound

solution and the upper bound (UB) in our EDDD algorithm. The next section defines the consolidation

planning problem, and Section 6.2 presents its MIP formulation to compute a feasible CTSNDP solution.

6.1. Consolidation Planning Problem (CPP)

The following notation is introduced to define the problem. Consider any relaxation solution (x,y), which

is a feasible solution to the relaxation model SND(DK
T ). Let Qk(x,y) be the timed-path from (ok, ek) to

(dk, lk) with timed-arcs in Ak
T specified by solution (x,y) for commodity k ∈ K, which can be referred

to as a timed-path for commodity k. A collection of such timed-paths {Qk(x,y)}k∈K constitutes a timed-

path solution to the CTSNDP. Let pk(x,y) be the flat path for commodity k associated with the timed path

Qk(x,y), with N k(x,y) = {νk
1 = ok, ..., νk

|Nk(x,y)| = dk} ⊆ N and Ak(x,y) = {ak
1 , ..., a

k
|Ak(x,y)|} ⊆ A

representing the node sequence and arc sequence along pk(x,y), respectively. Accordingly, a collection of

all such flat paths, denoted by P(x,y) = {pk(x,y)}k∈K, represents a routing plan of commodities speci-

fied by the timed-path solution {Qk(x,y)}k∈K. Moreover, a consolidation can be represented by ((i, j), κ)

where (i, j) is an arc in the flat network and κ⊆K is a commodity set, indicating that all commodities in κ

are consolidated on arc (i, j). For each timed arc a= ((i, t), (j, t̄)) ∈
⋃

k∈K Qk(x,y), the set of commodi-

ties that use timed-arc a in the timed-path solution {Qk(x,y)}k∈K can be denoted by κa = {k ∈ K : a ∈

Qk(x,y)}, and these commodities constitute a consolidation ((i, j), κa). Accordingly, a collection of all

such consolidations, denoted by C(x,y) = {((i, j), κa) : a= ((i, t), (j, t̄)) ∈ ∪k∈KQk(x,y)}, represents a

consolidation plan specified by the timed-path solution {Qk(x,y)}k∈K.

The pair (P(x,y),C(x,y)) defines a flat solution of the CTSNDP. A flat solution (P,C) is representable

in DK
T if there exists a feasible solution (x,y) of the relaxation model SND(DK

T ) with (P(x,y),C(x,y)) =

(P,C). A flat solution (P,C) is implementable if there exists a dispatch schedule T (P,C) that is a collection

of departure times tk
νkn

for k ∈ K and n ∈ {1,2, ..., |pk|}, such that (i) tk
νk1
≥ ek and tk

νk
|pk|

+ τak
|pk|
≤ lk for

all k ∈K, (ii) tk
νkn
≥ tk

νkn−1
+ τakn−1

for all k ∈K, n= 2, . . . , |pk|, and (iii) tki = tk
′

i for all ((i, j), κ) ∈ C, k ∈

κ,k′ ∈ κ. The first two conditions ensure pk-dispatch times for each k ∈ K and the last condition ensures

that each consolidation ((i, j), κ) ∈ C is achieved so that all commodities consolidated on each arc (i, j)

pass through the arc at the same time. An implementable flat solution (P,C) together with the dispatch

schedule T (P,C) forms a feasible solution to the CTSNDP.

Let Ω(x,y) be the set of all possible consolidation plans C such that the flat solution (P(x,y),C) is

implementable. Due to the valid inequalities (13) included in the relaxation model SND(DK
T ), each flat

path pk(x,y) must be k-feasible for k ∈ K, ensuring that Ω(x,y) is nonempty. For each C ∈ Ω(x,y),

since (P(x,y),C) is implementable, there must exist a dispatch schedule, denoted by T (P(x,y),C)), such
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that (P(x,y),T (P(x,y),C)) forms a feasible solution to the CTSNDP. Accordingly, given any relaxation

solution (x,y), the consolidation planning problem (or CPP in short) aims to optimize the consolidation

plan C ∈ Ω(x,y), so that the total cost of such a feasible CTSNDP solution (P(x,y),T (P(x,y),C)),

denoted by f(P(x,y),C), is minimized. Thus, the CPP can be formulated as follows:

min
C∈Ω(x,y)

f(P(x,y),C). (14)

For the flat solution (P(x,y),C(x,y)) of a relaxation solution (x,y), whether it is implementable or not,

we can obtain the best feasible CTSNDP solution adhering to the given routing plan P(x,y) by solving

the CPP defined above to optimality. Our EDDD algorithm solves the CPP for each relaxation solution,

including the best one. Among all the feasible CTSNDP solutions obtained, the one with the lowest objective

value is selected to update the upper bound (UB).

Remark 2 The above approach differs from existing DDD algorithms in the literature, such as those pro-

posed by Boland et al. (2017), Marshall et al. (2021), Shu et al. (2024), which derive feasible CTSNDP

solutions solely based on the optimal relaxation solution (x∗,y∗). Furthermore, these methods only slightly

adjust the consolidations of the flat solution (P(x∗,y∗),C(x∗,y∗)) when it is non-implementable, gener-

ating heuristic solutions to the CPP defined by (x∗,y∗). Consequently, the upper bound derived from the

optimal solutions to the CPP for a collection of relaxation solutions, including the best relaxation solution,

is tighter than those obtained using existing methods.

6.2. Solving MIP Formulation of CPP

To compute an upper bound solution for the CTSNDP, we need to solve the CPP defined in (14) for each

given relaxation solution (x,y), which, as illustrated below, can be formulated as an MIP. Let A(x,y) =⋃
k∈KAk(x,y) indicate the set of the arcs used in the routing plan P(x,y). For each (i, j) ∈ A(x,y), let

Ki,j(x,y) = {k ∈ K : (i, j) ∈ Ak(x,y)} be the set of commodities that pass through arc (i, j), indicat-

ing that |Ki,j(x,y)| is a valid upper bound on the number of consolidations on arc (i, j) for any feasible

CTSNDP solution that utilizes the routing plan P(x,y). To formulate the MIP, we assume without loss

of generality that there are exactly |Ki,j(x,y)| consolidations on each arc (i, j) ∈ A(x,y), denoted by

((i, j), κn), n= 1, . . . , |Ki,j(x,y)|, allowing κn = ∅ to indicate an empty consolidation.

To represent a consolidation plan, we introduce a binary variable zkijr for each k ∈ Ki,j(x,y), (i, j) ∈

Ak(x,y), and r ∈ {1,2, · · · , |Ki,j(x,y)|}, indicating whether commodity k is included in the r-th con-

solidation on arc (i, j). To represent the corresponding dispatch schedule, we introduce a non-negative

continuous variable δki for each k ∈K, i ∈N k(x,y), indicating the time when commodity k departs from

terminal i. We also introduce a non-negative continuous variable bijr for each (i, j) ∈ A(x,y) and r ∈

{1,2, ..., |Ki,j(x,y)|} to indicate the time when the consolidated shipments of the r-th consolidation on

arc (i, j) departs from terminal i. Moreover, we introduce a non-negative integer variable γijr for each
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(i, j) ∈ A(x,y) and r ∈ {1, ..., |Ki,j(x,y)|} to indicate the number of vehicles that must be used to serve

the r-th consolidation from terminal i to terminal j.

The CPP defined in (14) can be formulated as the following MIP, which is denoted as CPPMIP(x,y):

min
∑
k∈K

∑
(i,j)∈Ak(x,y)

cki,j q
k +

∑
(i,j)∈A(x,y)

|Ki,j(x,y)|∑
r=1

fi,j γijr (15)

s.t.
|Ki,j(x,y)|∑

r=1

zkijr = 1, ∀ k ∈K, (i, j)∈Ak(x,y), (16)∑
k∈Ki,j(x,y)

qkzkijr ≤ ui,jγijr, ∀ (i, j)∈A(x,y), r ∈ {1,2, ..., |Ki,j(x,y)|}, (17)

δki + τi,j ≤ δkj , ∀ k ∈K, (i, j)∈Ak(x,y), (18)

δkok ≥ ek,∀ k ∈K, (19)

δkdk ≤ lk, ∀ k ∈K, (20)

δki ≤ bijr +M1(1− zkijr), ∀ (i, j)∈A(x,y), k ∈Ki,j(x,y), r ∈ {1,2, ..., |Ki,j(x,y)|}, (21)

δki ≥ bijr−M1(1− zkijr), ∀ (i, j)∈A(x,y), k ∈Ki,j(x,y), r ∈ {1,2, ..., |Ki,j(x,y)|}, (22)

γijr ∈N≥0, ∀ (i, j)∈A(x,y), r ∈ {1,2, ..., |Ki,j(x,y)|}, (23)

zkijr ∈ {0,1}, ∀ k ∈K, (i, j)∈Ak(x,y), r ∈ {1,2, ..., |Ki,j(x,y)|}, (24)

δki ≥ 0, ∀ k ∈K, i∈N k(x,y), (25)

bijr ≥ 0, ∀ (i, j)∈A(x,y), r ∈ {1,2, ..., |Ki,j(x,y)|}. (26)

In model CPPMIP(x,y), the objective function (15) indicates the total cost to be minimized. Constraints

(16) ensure that for every arc (i, j)∈Ak(x,y), commodity k must be included in exactly one consolidation

on arc (i, j). Constraints (17) ensure that sufficient capacity is available to serve the consolidated shipments

of each consolidation. Constraints (18)–(20) are imposed on commodities’ departure times concerning the

travel time of each arc, the earliest available time of each commodity, and the due time of each commodity.

Constraints (21) and (22) ensure that for each arc (i, j) ∈ A(x,y), the commodities consolidated to be

shipped together through arc (i, j) have the same departure time from terminal i. Here, M1 denotes a

sufficiently large constant. Finally, constraints (23) -(26) state the domains of the decision variables.

The above MIP model CPPMIP(x,y) exhibits a high degree of symmetry, resulting in many redundant

solutions that can make the model difficult to solve. To address this challenge, we propose an accelera-

tion strategy, detailed in §EC.3.2 in the e-companion. Our computational study demonstrates that general

optimization solvers can effectively solve the resulting MIP model after applying the acceleration strategy.

By solving model CPPMIP(x,y), the routing plan P(x,y), together with the obtained optimal pk-

dispatch times, {δk}k∈K, represent a feasible solution to the CTSNDP that adheres to the given routing plan

P(x,y) with the total cost calculated in (15) minimized. Algorithm EDDD solves model CPPMIP(x,y)
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for each obtained relaxation solution, including the optimal relaxation solution, and selects the solution with

the lowest cost value among all the feasible solutions obtained to update the best upper bound UB. If the

flat solution (P(x∗,y∗),C(x∗,y∗)) of the optimal relaxation solution (x∗,y∗) is implementable, implying

that C(x,y)∈Ω(x,y), then the optimal objective value of model CPPMIP(x,y), which is an upper bound

for CTSNDP, must be equal to the objective value of the optimal relaxation solution (x∗,y∗), which is a

lower bound for CTSNDP. In this case, the algorithm reaches the termination condition UB=LB.

7. A Three-Stage Approach for Refining Discretization Based on Too-Long
Paths

If the EDDD algorithm termination condition UB=LB is not satisfied, the flat solution of the optimal relax-

ation solution must be non-implementable. In such cases, it is necessary to refine the discretization T to

“eliminate” this non-implementable flat solution so that it no longer corresponds to any feasible solution to

the relaxation model under a refined discretization T ′. In Step 10 of our EDDD algorithm, we refine the

discretization to “eliminate” each non-implementable flat solution derived from a given collection of relax-

ation solutions, which includes the optimal relaxation solution. As a result, all the given relaxation solutions

become infeasible to the relaxation model under such a refined discretization. Moreover, since only a finite

number of flat solutions correspond to all feasible solutions of the CTSNDP, our EDDD algorithm will

eventually obtain an optimal relaxation solution with an implementable flat solution after a finite number of

iterations and reaches UB=LB.

To achieve the refinement of discretization, we adopt the same refinement operation as proposed by

Boland et al. (2017), which involves incorporating new time points to the discretization T . To boost the

convergence of our EDDD algorithm, we adopt a new refinement strategy as detailed in Section 7.1. It

aims to eliminate some newly identified structural patterns, referred to as minimum too-long paths in a

newly defined dispatch-node graph, which cause the infeasibility of flat solutions. Following this refinement

strategy, we develop a three-stage approach to refine the discretization based on the minimal too-long paths,

as outlined in Section 7.1 and detailed in Sections 7.2–7.4.

7.1. A New Refinement Strategy for Eliminating Minimal Too-Long Paths

As proposed by Marshall et al. (2021), a flat solution S = (P,C) can be represented by a solution graph,

which is defined as a directed graph D(S) = (N ,H ) with its node set N and arc set H derived from the

routing plan P and consolidation plan C of S. In particular, the node set N =N1 ∪N2 comprises a subset

of dispatch nodes, N1 = {ηk
i : k ∈K, i ∈ pk}, and a subset of consolidation nodes, N2 = {sκi,j : ((i, j), κ) ∈

C}. For each k ∈ K, nodes ηk
ok

and ηk
dk

are referred to as the origin and the destination dispatch nodes of

commodity k, respectively. The arc set H = H1 ∪H2 comprises a subset of arcs H1 = {(ηk
i , s

κ
i,j) : η

k
i ∈

N1, s
κ
i,j ∈N2, k ∈ κ} from dispatch nodes to consolidation nodes, and a subset of arcs H2 = {(sκi,j, ηk

j ) :

ηk
j ∈N1, s

κ
i,j ∈N2, k ∈ κ} from consolidation nodes to dispatch nodes. For each arc a∈A, the edge length,



Shu et al.: New DDD Strategies for the CTSNDP
20

referred to as its transit time, is 0 for all (ηk
i , s

κ
i,j) ∈ A1, and is τi,j for all (sκi,j, η

k
j ) ∈ A2. Based on the

solution graph, we introduce a dispatch-node graph which only contains the dispatch nodes, depicting the

arrival time correlations resulting from consolidation relationships among commodity pairs.

Definition 1 (Dispatch-node graph) Given a flat solution S, its dispatch-node graph is defined as a

directed graph G (S) = (V ,A ). In particular, the node set comprises only the set of dispatch nodes V =

{ηk
i : k ∈K, i∈ pk} and the arc set is defined by A = {(ηk

i , η
k′
j ) : ((i, j), κ)∈ C, k ∈ κ,k′ ∈ κ}. For each arc

a∈A , it has an edge length ρ(a) (referred to as its transit time), which equals τi,j for all a= (i, j)∈A .

For a given flat solution S, the solution graph D(S) is designed to represent its routing and consolidation

plan. In contrast, the dispatch-node graph G (S) keeps only the relationships between the arrival times of

commodities indicated by its routing and consolidation plan. Each arc (ηk
i , η

k′
j ) in the dispatch-node graph

indicates that the arrival time of k′ at terminal j must be no earlier than the arrival time of k at terminal i

plus the transit time on service (i, j). This arrival time correlation results from consolidating commodities

k and k′ on arc (i, j) indicated by the given flat solution S (see §EC.3.3 for an example).

Let P(S) indicate a set of paths in G (S) with the initial node being the origin dispatch node of a

commodity in K. Consider any path P ∈P(S), where its initial node and final node are denoted by ηk1
ok1

and ηk2
i , respectively. It is worth noting that P may not be a simple path. Let ρ(P ) indicate the total transit

time of path P . Thus, [ek1 +ρ(P )] indicates the earliest arrival time at the final node ηk2
i along path P . Since

ϕk2
i,dk2

denotes the length of the shortest-time path from node i to the destination node dk2 of commodity k2,

commodity k2 cannot arrive at dk2 earlier than [ek1 + ρ(P ) + ϕk2
i,dk2

]. Accordingly, if [ek1 + ρ(P ) + ϕk2
i,dk2

]

exceeds the due time lk2 of k2, or equivalently, the total transit time ρ(P ) exceeds (lk2 − ek1 − ϕk2
i,dk2

), we

define such a path P as a too-long path as established by the following definition.

Definition 2 (Too-long Path) Given a flat solution S, a (not necessarily simple) path P ∈P(S), with its

initial node denoted by ηk1
ok1

and final node denoted by ηk2
i , is a too-long path if ρ(P )> lk2 − ek1 −ϕk2

i,dk2
.

We can establish Theorem 2 below, which reveals the equivalence between the non-implementability of

a flat and the existence of too-long paths in the corresponding dispatch-node graph.

Theorem 2 A flat solution S is nonimplementable if and only if its dispatch-node graph G (S) contains a

too-long path.

Consider any non-implementable flat solution S that is representable in DK
T . Theorem 2 implies that

the corresponding dispatch-node graph G (S) must contain at least one too-long path denoted by P . If we

can refine T to a new discretization T̂ such that P does not exist in the dispatch-node graph of every

representable solution in DK
T̂ , it ensures that S is not representable in DK

T̂ . This indicates that, to eliminate

the non-implementable flat solution S through the refined discretization T̂ , our strategy for discretization

refinement can focus on removing the too-long path P using T̂ .
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Remark 3 According to the definition of the solution graph, each consolidation node sκi,j with κ = {k}

for some k ∈ K is adjacent to a single head end, which is of arc (ηk
i , s

κ
i,j), and to a single tail end, which

is of arc (sκi,j, η
k
j ). Thus, as demonstrated in Marshall et al. (2021), such nodes (sκi,j) can be excluded

from the solution graph D(S), with arcs (ηk
i , s

κ
i,j) and (sκi,j, η

k
j ) replaced by (ηk

i , η
k
j ). We retain such nodes

(sκi,j) in D(S) for the sake of notation simplicity. The similarity and difference between the solution graph

and dispatch-node graph, as well as the too-long paths over dispatch-node graphs, are further illustrated

in EC.3.3 of the e-companion. It is obvious that for each flat solution S, each path P ′ in the solution

graph D(S), with the initial node being the origin dispatch node of a commodity in K, and the final node

being a dispatch node in V1, corresponds to a path P in its dispatch-node graph G (S) that follows the

same sequence of dispatch nodes. We emphasize that distinct paths P ′ in the solution graphs of different

flat solutions may correspond to the same too-long paths in their respective dispatch-node graphs. This

demonstrates our rationale for eliminating flat solutions based on too-long paths in dispatch-node graphs.

Consider any too-long path P ∈P(S). P may contain another too-long path as its partial path. In this

case, to eliminate P , we only need to eliminate such a too-long partial path. As different too-long paths

may share the same too-long partial path, to eliminate too-long paths, we only need to eliminate those that

do not contain any other too-long partial paths, which are defined as minimal too-long paths in Definition 3

below (see an example in EC.3.3 of the e-companion for further illustration).

Definition 3 (Minimal Too-long Path) A too-long path P is minimal if every partial path of P that starts

from the initial node of P , except P itself, is not a too-long path.

Our refinement strategy is to eliminate minimal too-long paths obtained from non-implementable flat

solutions defined by relaxation solutions. Our refinement consists of the following three stages, the details

of which are illustrated in the following:

• Stage 1: Obtain a set of minimal too-long paths from non-implementable flat solutions that are defined

by relaxation solutions;

• Stage 2: Develop an initial refined discretization to eliminate all the obtained minimal too-long paths;

• Stage 3: Enhance the initial refined discretization by reducing its size while still ensuring to eliminate

all the obtained minimal too-long paths.

Remark 4 Based on minimal too-long paths in dispatch-node graphs, our refinement strategy has some

advantages over the refinement strategy adopted by Marshall et al. (2021). The refinement of discretization

in Marshall et al. (2021) relies on “failed paths” and “cycles” in the solution graph. Each failed path that

starts from an origin dispatch node ηk1
ok1

and ends at a destination dispatch node ηk2
dk2

has a total transit time

that exceeds (lk2−ek1). Each cycle revisits the same dispatch node ηk
i exponentially along the cycle route P̃

starting and ending with ηk
i , indicating a path in the solution graph composed of a partial route P from ηk

ok

to ηk
i and m instances of the cycle route P̃ , and ultimately reaching ηk

i with a total transit time that exceeds
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(lk−ek). We emphasize that the too-long path in the dispatch-node graph is not necessarily simple. A cyclic

solution graph with “cycles” is associated with a cyclic dispatch-node graph with non-elementary paths.

Therefore, their approach is equivalent to refining the discretization based on too-long paths in the dispatch-

node graph that follows the same sequence of dispatch nodes to these two types of paths in the solution

graph. Given that these too-long paths in the dispatch-node graph may not be minimal, they could contain

other too-long partial paths. Thus, eliminating these too-long paths is not as effective as our approach,

which eliminates only the minimal too-long paths contained in them, requiring fewer additional time points.

Moreover, the refinement of discretization in Marshall et al. (2021) solely relies on the flat solutions defined

by the optimal relaxation solution to generate failed paths for elimination. In contrast, we use a collection

of relaxation solutions, which includes the optimal relaxation solution, to generate minimal too-long paths.

This enables the elimination of more minimal too-long paths and more non-implementable flat solutions

during each refinement iteration, accelerating the convergence of our EDDD algorithm.

7.2. Stage 1: Obtain Minimal Too-Long Paths for Refinement

When the EDDD algorithm does not terminate, the flat solution (P(x∗,y∗),C(x∗,y∗)) defined by the

optimal solution (x∗,y∗) to the relaxation model SND(DK
T ) must be non-implementable, but it is repre-

sentable in DK
T . Consider a collection of feasible solutions (x,y) to the relaxation model SND(DK

T ), which

includes (x∗,y∗) and is denoted by X . This can be obtained by applying a general-purpose optimization

solver, such as Gurobi (Gurobi Optimization, LLC 2024), to SND(DK
T ). Let S indicate a collection of non-

implementable flat solutions (P(x,y),C(x,y)) with (x,y) ∈ X . Set S includes (P(x∗,y∗),C(x∗,y∗)),

and each non-implementable flat solution in S is representable in DK
T .

The first stage of our discretization refinement is obtaining a P collection of all the minimal too-long

paths from the non-implementable flat solutions in S . As previously mentioned, by eliminating these

minimal too-long paths, we can eliminate all the non-implementable flat solutions in S along with other

non-implementable flat solutions whose dispatch-node graphs contain any of these minimal too-long paths.

In particular, for each non-implementable flat solution S ∈S , we apply an enumeration algorithm based

on label extension to obtain all minimal too-long paths over its dispatch-node graph G (S). Here, a label

represents a path in the dispatch-node graph G (S) from any origin dispatch node of a certain commodity

to any other dispatch node. The algorithm starts with a label set with initial labels for each origin dispatch

node ηk
ok

with k ∈ K. For each label in the label set, towards each of its successor dispatch nodes in the

dispatch-node graph G (S), it can be extended to a new label. After the extension, the old label is removed

from the label set. If a new label represents a too-long path P , which starts from ηk1
ok1

and reaches ηk2
i with

ρ(P ) > lk2 − ek1 − ϕk2
i,dk2

, we add P to P . Otherwise, we add the new label to the label set. We extend

labels until the label set is empty, obtaining all minimal too-long paths to constitute the collection P .
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7.3. Stage 2: Develop Initial Refinement Based on Minimum Too-Long Paths

The second stage of our discretization refinement is to develop an initial refinement of discretization so that

all the minimal too-long paths in P are eliminated. First, we establish a sufficient condition in Lemma 1

below for a discretization T to eliminate any given path P along with all the flat solutions that include P in

their dispatch-node graphs.

Lemma 1 Let P = (ηk1
i1
, ηk2

i2
, . . . , η

k|P |
i|P |

) represent a path in the dispatch-node graph G (S) of a flat solution

S. If there does not exist any timed-path in (NT ,AK
T ∪HT ) from a timed-node (i1, t1) to any timed-node

(i|P |, t̄|P |), with its service arcs denoted by ((ih, th), (ih+1, t̄h+1)) ∈ AK
T for h ∈ {1,2, . . . , |P | − 1}, such

that each ((ih, th), (ih+1, t̄h+1)) is contained in Ak
T for every k ∈ {kh, kh+1}, for every flat solution that is

representable in DK
T , its dispatch-node graph does not contain P .

Consider any too-long path P ∈P , where P = (ηk1
i1
, ηk2

i2
, . . . , η

k|P |
i|P |

) with ηk
ok

= ηk1
i1

and ηk′
i = η

k|P |
i|P |

. For

each g ∈ {1,2, . . . , |P |}, let ρ(P,g) indicate the total transit time of the partial path from the initial node

ηk1
i1

of P to the g-th dispatch node η
kg
ig

of P . Thus, [ek1 + ρ(P,g)] indicates the earliest arrival time at the

g-th dispatch node η
kg
ig

of P along path P . To eliminate P , we can refine T by adding such time points

[ek1 + ρ(P,g)] to Tig for all g ∈ {1,2, . . . , |P | − 1}, because as shown in the proof of Theorem 3, the

resulting discretization, denoted by T̂ , satisfies the sufficient condition specified in Lemma 1.

Theorem 3 (Too-Long Path Elimination I) Consider any too-long path P = (ηk1
i1
, ηk2

i2
, . . . , η

k|P |
i|P |

) ∈P .

Refine T to T̂ with each T̂j = Tj ∪ {ek1 + ρ(P,g) : g ∈ {1,2, . . . , |P | − 1}, ig = j} for j ∈ N . Then, for

every flat solution that is representable in DK
T̂ , its dispatch-node graph does not contain P .

Remark 5 Although each P ∈P is a minimal too-long path by definition, Theorem 3 applies to any too-

long path P contained in a dispatch-node graph of a non-implementable solution. Thus, Theorem 3 gener-

alizes the result of Marshall et al. (2021), as the latter is established to only eliminate a non-implementable

solution based on a specific too-long path P , requiring that P is a simple path and that the final node of

P is a destination dispatch node of a commodity. Theorem 3 reveals that with the refined discretization, all

the flat solutions with their dispatch-node graphs containing the too-long path P are eliminated.

Accordingly, for each P = (ηk1
i1
, ηk2

i2
, . . . , η

k|P |
i|P |

) ∈P , we apply Theorem 3 to obtain a patch of time

points, denoted by set T̃j(P ) = {ek1 +ρ(P,g) : g ∈ {1,2, . . . , |P | − 1}, ig = j}, for each j ∈N . Using these

patches to update T , we obtain an initial discretization refinement T (0) with T (0)
j = Tj ∪ [

⋃
P∈P T̃j(P )] for

j ∈N , which, by Theorem 3, eliminates all the minimal too-long paths P ∈P .

7.4. Stage 3: Enhance Refinement by Reducing Time Points

In Stage 2, we obtain an initial refinement T (0) by using time points in T̃j(P ) with j ∈N and P ∈P . In

Stage 3, we aim to select only a subset set of time points in T̃j(P ) for each j ∈N and P ∈P , so that using

only these selected time points to refine the discretization can still eliminate all the minimal too-long paths
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P ∈P . Let T̂ indicate a currently refined discretization, which is initially set equal to T . Let P̂ denote a

set of minimal too-long paths that have not been eliminated by T̂ , which is initially set equal to P .

We examine each pair (j, t) with j ∈ N and t ∈
⋃

P∈P T̃j(P ) in an increasing order of t (breaking ties

arbitrarily), and check whether t should be selected and added to T̂j . Let Λ(j, t) denote a set of minimal

too-long paths P ∈ P̂ , where P = (ηk1
i1
, ηk2

i2
, . . . , η

k|P |
i|P |

), such that P has an index g ∈ {2,3, . . . , |P | − 1}

with ig = j and ek1 + ρ(P,g) = t. For each too-long path P ∈Λ(j, t), we can check whether P has already

been eliminated by the current refined discretization T̂ . If it is not, the time point t needs to be selected and

added to T̂j , and otherwise, we can remove P from P̂ . Theorem 4 below enables us to check whether P has

been already eliminated by the currently refined discretization T̂ . Specifically, by definition, P must have

an index g ∈ {2,3, . . . , |P | − 1} that satisfies condition (i) in Theorem 4, and condition (ii) in Theorem 4

essentially implies that the sufficient condition in Lemma 1 is satisfied, so that P has been eliminated.

Theorem 4 (Too-Long Path Elimination II) Given a discretization T̂ , consider any too-long path P ∈

P , where P = (ηk1
i1
, ηk2

i2
, . . . , η

k|P |
i|P |

). There exists no flat solution that is representable in DK
T̂ with its

dispatch-node graph containing P if there exists an index g ∈ {2,3, ..., |P | − 1} such that the conditions

below are both satisfied:

(i) [ek1 + ρ(P,h)] is contained in T̂ih for all h∈ {1,2, ..., g− 1}, and

(ii) there does not exist any timed-path in (NT̂ ,AK
T̂ ∪HT̂ ) from (ig−1, e

k1 +ρ(P,g−1)) to any timed-node

(i|P |, t̄|P |), with its service arcs denoted by ((ih, th), (ih+1, t̄h+1))∈AK
T̂ for h∈ {g−1, g, . . . , |P |−1}, such

that each ((ih, th), (ih+1, t̄h+1)) is contained in Ak
T̂ for every k ∈ {kh, kh+1}.

By repeating the above procedure for all pairs (j, t) with j ∈N and t∈
⋃

P∈P T̃j(P ), the final discretiza-

tion refinement T̂ reduces the size of the initial refinement T (0). Furthermore, for those minimal too-long

paths P removed from P̂ , according to Theorem 4, they must be eliminated by T̂ . For those P remained

in P̂ , it can be seen that all the time points in T̃j(P ) with j ∈N are added to T̂ , and thus, by Theorem 3,

such paths P are also eliminated by T̂ .

Remark 6 Theorem 4 essentially generalizes Theorem 3. To see this, we note that Theorem 3 is a spe-

cial case of Theorem 4 for g = |P |. In this case, condition (ii) of Theorem 4 is always satisfied since

P is a too-long path. Moreover, condition (i) is easy to examine. In fact, for the P , g, and T̂ consid-

ered in the refinement procedure of Stage 3, condition (i) is always satisfied, as P ∈ Λ(j, t) implies that

time points [ek1 + ρ(P,h)] are all added to T̂ih for all h ∈ {1, ..., g − 1} in the past iterations. To exam-

ine condition (ii) of Theorem 4, noting that P = (ηk1
i1
, ηk2

i2
, . . . , η

k|P |
i|P |

), we can construct an acyclic net-

work. Its nodes are (h, th) for h ∈ {g− 1, g, . . . , |P |} and th ∈ T̂ih . Its arcs are ((h, th), (h+ 1, t̄h+1)) for

((ih, th), (ih+1, t̄h+1))∈Akh
T̂ ∩A

kh+1

T̂ and ((h, t), (h, t′)) for each two consecutive time points t and t′ in T̂ih ,

for h∈ {g− 1, g, . . . , |P | − 1}. It can be seen that condition (ii) is satisfied if and only if there exists a path

in this acyclic network from (h, ek1 + ρ(P,g)) to any node (|P |, t̄|P |), which can be efficiently determined.
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8. Computational Study
This section presents an extensive computational analysis to demonstrate the effectiveness and efficiency

of the newly proposed EDDD algorithm and better understand the factors contributing to its performance.

Section 8.2 provides a comparison of the newly proposed EDDD algorithm with the state-of-the-art DDD

algorithms proposed by Boland et al. (2017) and Marshall et al. (2021). Section 8.3 delves into the effective-

ness of the new initial relaxation and refinement strategy. Section EC.4 in the electronic companion provides

additional results about the effectiveness of the new MIP-based strategy for upper bounds and using a pool

of relaxation solutions in the upper-bound deriving and refinement strategies.

8.1. Instances

We evaluated the performance of different DDD algorithms by solving 558 CTSNDP instances originally

generated by Boland et al. (2017). These instances, also used in Boland et al. (2019) and Marshall et al.

(2021), were derived from 31 classes of the “C” instances presented in Crainic et al. (2001) for the Capac-

itated Fixed Charge Network Design Problem. Travel times for each arc and time windows for each com-

modity were generated following nominal distributions. According to Boland et al. (2019) and Marshall

et al. (2021), instances were further categorized based on time flexibility and cost ratio.

Instances were classified as having Low Flexibility (LF) if mink∈K lk− (ek +ϕok,dk) < 227; other-

wise, they were considered High Flexibility (HF). For Low Cost Ratio (LC), an instance was identified

if 1
|A|

∑
a∈A

fa
caua

< 0.175; otherwise, it fell under High Cost Ratio (HC). Consequently, instances were

grouped into four distinct categories: “HC/LF”, “HC/HF”, “LC/LF” and “LC/HF.” The instances are char-

acterized by a maximum number of 30 terminals, 683 arcs, and 400 commodities, i.e., |N | ≤ 30, |A| ≤ 683

and |K| ≤ 400.

8.2. Performance of the Enhanced DDD Algorithm

Our enhanced DDD algorithm for the CTSNDP is denoted as EDDD. In comparison, the approaches pre-

sented by Boland et al. (2017) and Marshall et al. (2021) are referred to as BHMS and MBSH, respectively.

Furthermore, to further assess the performance of EDDD, we implemented the algorithm proposed by

Boland et al. (2017) for the CTSNDP, incorporating variables reduction (see §5). This variant is referred to

as IDDD. Both EDDD and IDDD were implemented in Java, and we utilized the Gurobi solver (v.10.0.2)

for LP/MIP computations (Gurobi Optimization, LLC 2024). In the following experiments, we solved each

CTSNDP instance to an optimality tolerance of 1% with a time limit of one hour for both EDDD and IDDD,

as done for BHMS and MBSH in Marshall et al. (2021). All experiments were conducted on an Intel(R)

Core(TM) i7-8700 desktop PC with 3.20 GHz clock speed and 64 GB RAM.

Table 1 summarizes the obtained results. For each group of instances, the table displays the number

of instances in the group and, for each algorithm, the average gap between the final upper bound (UB)

and the final lower bound (LB) (“%Gap”), i.e., 100.0× (UB−LB)

UB
, the average computing time in seconds
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Table 1 Summary Results on the CTSNDP Instances

Group Algorithm %Gap Times(s) #Iterations %Optimal

HC/LF BHMS 0.08 1391.1 5.3 77.1
183 MBSH 0.12 677.8 14.8 85.8

IDDD 0.99 285.5 13.6 95.6
EDDD 0.73 9.1 1.5 100.0

HC/HF BHMS 0.56 1966.7 6.0 53.7
177 MBSH 0.84 1693.8 17.5 56.5

IDDD 2.34 1377.7 14.8 70.1
EDDD 0.85 131.1 2.7 100.0

LC/LF BHMS 0.00 28.6 3.7 100.0
94 MBSH 0.00 0.6 6.5 100.0

IDDD 0.71 0.4 3.8 100.0
EDDD 0.33 0.2 1.0 100.0

LC/HF BHMS 0.00 1.5 2.5 100.0
104 MBSH 0.00 0.1 3.2 100.0

IDDD 0.51 0.1 1.3 100.0
EDDD 0.08 0.1 1.0 100.0

(“Time(s)”), the average number of iterations of the DDD algorithm (“#Iterations”), and the percentage of

instances solved to optimality (“%Optimal”) within the given optimality tolerance and time limit.

The results in Table 1 demonstrate that EDDD successfully solves all 558 instances within one hour.

The other three methods fail to solve all instances in groups “HC/LF” and “HC/HF”. Moreover, EDDD

achieves this with significantly fewer iterations and shorter computational times. Notably, all 558 CTSNDP

instances are solved optimally within five iterations, and for groups “HC/LF”, “LC/LF”, and “LC/HF”,

the majority of instances (nearly 80%) are solved optimally within a single iteration. These highlight the

superior performance of EDDD compared to other existing DDD algorithms for the CTSNDP, emphasiz-

ing the effectiveness of the new initial discretization approach and the new MIP for the upper bound. It’s

important to note that the computational configuration for EDDD differs from that for BHMS and MBSH

in terms of the machines utilized (a cluster of nodes containing 32 cores each, with speeds ranging from 2.3

to 2.8 GHz for BHMS and MBSH) and the MIP solver adopted (Cplex for BHMS and MBSH). However,

comparing the total number of instances solved to proven optimality and the total iterations needed provides

a clear global picture of the relative performance, even with differences in hardware and coding configura-

tions. To further ensure a fair comparison between EDDD and MBSH, the best algorithm known so far, we

also evaluate their results on identical machines with the same solver settings (see §EC.4.1). Table 1 shows

that the algorithm IDDD, our implementation of the algorithm mentioned in Boland et al. (2017), compares

well with both BHMS and MBSH and also demonstrates similar performance on the different groups of

instances. Thus, in the following, we take the algorithm IDDD as a baseline algorithm to further analyze

the detailed performance of the algorithm EDDD.

Figure 1 provides insights into the relative sizes of the initial and final discretization generated by EDDD.

The algorithm creates a new initial discretization by identifying and adding significant time points based
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Figure 1 Relative Network Size

on impossible consolidations. Figure 1-(a) illustrates the relative cardinality of the time points in the new

initial discretization compared to the initial discretization used in IDDD, which does not include these iden-

tified significant time points. Even after incorporating significant time points, the new initial discretization

remains relatively small, with only a nearly 60% increase in time points. Figure 1-(b) shows the relative

number of time points in the final discretization compared to the complete discretization T̂ , where T̂i =

{0,∆,2∆, ...,∆⌈maxk∈K lk/∆⌉} for all i ∈N and ∆= 1. Despite EDDD generating more time points in

the initial discretization and employing a more aggressive refinement strategy, the final discretization, capa-

ble of generating the optimal solution for the CTSNDP, remains a small portion of the time points in the

complete discretization. The corresponding node set cardinality of the final time-expanded network is com-

parable to that of IDDD, some of which fail to generate the optimal solution. In addition, the results from

EDDD demonstrate that all 558 CTSNDP instances can be solved to proven optimality over time-expanded

commodity networks, where |NT |/|N∆=1
T̂ |< 4.15%.
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Figure 2 Detailed Comparison of the First Iteration

Figure 2 highlights the rapid convergence of the EDDD algorithm by comparing the gap between the

upper bound and the lower bound in the first iteration achieved by EDDD and IDDD (Figure 2-(a)), as well

as by showing the improvement in the upper bound and the lower bound achieved by EDDD compared

to IDDD (Figures 2-(b) and 2-(c)). Let LB1 (LB2) and UB1 (UB2) represent the lower bound and upper

bound obtained by EDDD (IDDD) in the first iteration, respectively. The gaps between the upper bound

and the lower bound in the first iteration are calculated as 100.0× (UB1−LB1)/UB1 and 100.0× (UB2−

LB2)/UB2. The improvements in the lower and upper bounds are calculated as 100.0× (LB1−LB2)/LB2

and 100.0× (UB2−UB1)/UB2. Let %LB (%UB) and %LBmax (%UBmax) denote the average and maxi-

mum improvement values in lower bound (upper bound) over the instance group. Figure 2-(a) demonstrates

that the gap between the upper bound and the lower bound reaches close to 2% for all groups after the



Shu et al.: New DDD Strategies for the CTSNDP
28

first iteration in EDDD, while IDDD only achieves a gap of 11.88% and 24.98% for the “HC/LF” and

“HC/HF” groups, respectively. Figures 2-(b) and 2-(c) illustrate that based on the new initial relaxation and

the new MIP for the upper-bound solution, EDDD generates significantly better lower bound and upper-

bound values. Particularly for the most challenging instance group, “HC/HF”, the maximum improvements

in the lower and upper bounds reach 22.54% and 33.63%, respectively. These results thus demonstrate the

significantly fewer iterations and shorter computation times achieved by algorithm EDDD.

8.3. Effectiveness of the Algorithm Components

In this section, we conduct a more in-depth evaluation of the effectiveness of each proposed component

of EDDD. Through preliminary experiments, we noticed that the impact of the new algorithm components

is negligible in the LC class of instances, as all instances in the LC class are relatively easy to solve. As

a result, our assessment primarily focuses on the effectiveness of the components of the newly proposed

algorithm EDDD, particularly within the HC class of instances. The effectiveness of the new initial relax-

ation and refinement strategy is discussed in §8.3.1 and §8.3.2, respectively. Additionally, the effectiveness

of the new MIP-based approach for computing upper bound is analyzed in §EC.4.2 in the e-companion

to this paper. Results show that this new upper-bound deriving method can provide significantly tighter

upper-bound values; however, its standalone use has a limited impact on the algorithm’s convergence. More-

over, the necessity of considering bundle relaxation solutions in the UB deriving and refinement method is

demonstrated in §EC.4.3 in the e-companion to this paper. Some hard instances benefit from this bundling

strategy, without which the EDDD algorithm fails to solve all CTSNDP instances.

8.3.1. Effectiveness of the New Initial Relaxation. Figures 1 and 2 have demonstrated how the

new initial relaxation affects network size and lower bound values. We now assess the effects of adding

significant time points to the discretization to further evaluate the impact on convergence. We, therefore,

conducted additional experiments with various variants of IDDD: 1) with inequalities (12), “IDDD+(12)”;

2) with the addition of the significant time points, “IDDD+STP”; 3) with the addition of the significant time

points and inequalities (12), “IDDD+(12)+STP”. Table 2 presents the results of these variants on the HC

class of instances, utilizing the same notations introduced in Table 1 and includes the percentage of relax-

ation solutions whose dispatch-node graphs are cyclic with non-elementary too-long paths (“%Cyclesol”).

The results presented in Table 2 demonstrate the effectiveness of the inequalities (12) proposed by Mar-

shall et al. (2021). The IDDD variant with the additional inequalities (12) solves more instances and achieves

this with reduced computational time. The results also show that the variant of IDDD with the newly pro-

posed initial relaxation exhibits comparable computational performance to the variant with inequalities (12)

in terms of optimality rate. Additionally, it demonstrates fewer iterations and a smaller optimality gap for

unsolved instances. The results also indicate that with the newly proposed initial relaxation, the IDDD vari-

ants can successfully solve nearly 15% additional HC/HF instances. Moreover, it achieves this with fewer
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iterations, shorter computational times, and smaller optimality gaps for unsolved instances when compared

to both IDDD and the variant with inequalities (12). These findings support the effectiveness of the newly

proposed initial relaxation, regardless of whether inequalities (12) are utilized in the relaxation model.

Table 2 Detailed Results for IDDD Variants With/Without the New Initial Relaxation

Group Algorithm %Gap Times(s) #Iterations %Optimal %Cyclesol

HC/LF IDDD 0.99 285.5 13.6 95.6 1.4
183 IDDD+ (12) 0.87 124.0 10.2 97.8 1.6

IDDD+ STP 0.88 235.0 6.3 96.2 0.0
IDDD+ (12) + STP 0.75 37.7 3.9 100.0 0.0

HC/HF IDDD 2.34 1377.7 14.8 70.1 3.2
177 IDDD+ (12) 1.71 972.9 16.2 82.5 2.8

IDDD+ STP 1.08 1048.8 8.8 79.1 0.0
IDDD+ (12) + STP 0.92 472.9 9.2 94.6 0.0

Furthermore, in all the considered CTSNDP instances, we observed that the relaxation solutions obtained

by the algorithms with the newly proposed initial relaxation are without non-elementary too-long paths in

their dispatch-node graphs, while some relaxation solutions obtained by the algorithms without the newly

proposed initial relaxation are not. Moreover, in algorithm EDDD, all feasible solutions obtained by the

Gurobi solver for the relaxation model are with acyclic dispatch-node graphs containing no non-elementary

too-long paths for all 558 CTSNDP instances. These observations indicate that the newly proposed initial

relaxation can effectively prevent the occurrence of cycles in these instances. However, it is important to

note that the newly proposed initial relaxation may not be able to prevent the occurrence of cycles in all

situations. For instance, if all commodities’ due times are unrestricted or unlimited, there are no impossi-

ble consolidations and, thus, no corresponding significant time points. Consequently, cyclic dispatch-node

graphs may still arise in the relaxation solutions.

8.3.2. Effectiveness of the New Refinement Strategy. To verify the effectiveness of the new

refinement strategy, we executed algorithm IDDD with the new refinement strategy, denoted as variant

IDDD1. We compared its results with the original IDDD approach, which adopts the refinement strategy

proposed by Boland et al. (2017). The comparison results on the HC class of instances are presented in

Table 3, using the same notations introduced in Table 1, and also displaying the relative number of time

points in the final time-expanded network compared to the fully time-expanded network D∆̂
T (“%nSize”).

Table 3 Detailed Results for IDDD Variants with Different Refinement Strategies

Group Algorithm %Gap Times(s) #Iterations %Optimal %nSize

HC/LF IDDD 0.99 285.5 13.6 95.6 1.41
183 IDDD1 0.84 122.0 3.4 98.9 1.53

HC/HF IDDD 2.34 1377.7 14.8 70.1 0.49
177 IDDD1 0.91 611.6 3.8 93.8 0.63

IDDD1: IDDD based on the new refinement strategy.
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As indicated by Table 3, the IDDD variant with the new refinement strategy can solve 23% more HC/HF

instances and 3% more HC/LF instances. The algorithm can converge within fewer iterations and shorter

computational times. We also observed that the cardinality of the node set of the partially time-expanded

network in the last iteration of IDDD1 remains small and comparable to that of the original IDDD algorithm.

These results highlight the effectiveness of the new refinement strategy and demonstrate the substantial

impact the refinement strategy can have on the convergence of DDD algorithms.

9. Conclusions and Future Research
This study proposed theoretical advancements by introducing novel Dynamic Discretization Discovery

(DDD) strategies to solve the Continuous-Time Service Network Design Problem (CTSNDP). These

included the construction of a timed-node-based time-expanded commodity network for each shipment.

The network incorporates a minimal set of significant time points, identified by solving minimum-hitting

set problems, thereby eliminating infeasible consolidations in the relaxation model. This approach yielded a

tighter relaxation than the one proposed by Boland et al. (2017), laying a stronger theoretical foundation for

algorithm convergence. A new Mixed-Integer Programming (MIP) model was also introduced to compute

high-quality upper bounds. This approach differs significantly from heuristic methods in earlier CTSNDP

algorithms, focusing on deriving optimal solutions based on feasible routing plans from relaxation mod-

els. Finally, a novel discretization refinement strategy was implemented, targeting a bundle of relaxation

solutions and structural patterns referred to as minimum too-long paths in a newly defined dispatch-node

graph. The approach utilized a three-stage method to eliminate these paths, ensuring rapid convergence to

the optimal solution with a sparse final network.

The new theoretical advancements were used to design an enhanced DDD algorithm. The enhanced algo-

rithm demonstrated dominant computational performance, becoming the first to optimally solve all classic

CTSNDP instances in the literature. These results underscored the algorithm’s efficiency and robustness in

addressing CTSNDP problems.

The proposed study opens up several promising avenues for future research. From an algorithmic per-

spective, the enhanced DDD algorithm can be adapted to handle interval-based networks and extended to

address other variants of the CTSNDP, such as those involving holding costs and hub capacity constraints.

The innovative components of the newly proposed enhanced DDD algorithm can potentially enhance solu-

tion quality and computational efficiency in these contexts. From a modeling standpoint, the new initial

relaxation for the CTSNDP, based on a newly generated initial discretization, could provide bounds that

are, on average, only around 2% away from the optimal solution to the CTSNDP. These bounds could be

further tightened by identifying additional sets of significant time points. Therefore, exploring a small and

sufficient discretization over which the relaxation model can directly produce the optimal continuous-time

solution within a predefined optimality gap for the CTSNDP and other transportation problems is intriguing.
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E-companion to the paper titled “New Dynamic Discretization Discovery
Strategies for Continuous-Time Service Network Design”

EC.1. Proof of Statements
This section provides the proofs for the various statements presented in the paper.

EC.1.1. Proof of Proposition 1

Proof : Let (x̄, ȳ) be an optimal solution of formulation SND(D∆̂
T̂ ) (i.e., an optimal CTSNDP solution)

of cost z, where T̂ represents the complete discretization under ∆̂. Let A = {((i, t), (j, t+ τij)) ∈ A∆̂
T̂ :

ȳ
t,t+τij
ij > 0} be the set of service arcs traversed by the commodities, and let K((i,t),(j,t+τij)) = {k ∈ K :

x̄ktt̄
i,j > 0} represent the set of commodities dispatched on each arc ((i, t), (j, t + τij)) ∈ A, indicated by

solution (x̄, ȳ).

Below, we show that solution (x̄, ȳ) corresponds to a feasible, but not necessarily optimal, solution (x,y)

of formulation SND(DK
T ) of cost z = z under any given discretization T .

For a given discretization T , according to Boland et al. (2017), solution (x̄, ȳ) corresponds to a feasible,

but not necessarily optimal, solution (x,y) of formulation SND(DT ) of cost z = z. Under the given dis-

cretization T , for any arc a= ((i, t), (j, t+τij))∈A, there exists an unique arc µ(a) = ((i, ρi(t)), (j, σ(a)))

in AT with ρi(t) = max{s ∈ Ti : s≤ t}. The existence and uniqueness of arc µ(a) = ((i, ρi(t)), (j, σ(a)))

inAT is ensured by Properties 1-4 of partially time-expanded network DT . The mapping of solution (x̄, ȳ)

into a solution (x,y) of formulation SND(DT ) defined by µ :A→AT with µ(a) = ((i, ρi(t)), (j, σ(a)))

and computed by the following expressions for each ã= ((i, t̃), (j, t̃′))∈AT :

xkt̃t̃′

ij =
∑

a=((i,t),(j,t+τij))∈A:

µ(a)=ã

x
kt,t+τij
ij and yt̃t̃′

ij =
∑

a=((i,t),(j,t+τij))∈A:

µ(a)=ã

y
t,t+τij
ij , (EC.1)

corresponds to a feasible solution of formulation SND(DT ) of the same cost of solution (x̄, ȳ).

We now prove that this solution (x,y) is also a feasible solution of formulation SND(DK
T ) by showing

that, for each arc a∈A, µ(a)∈AT is contained in Ak
T for all k ∈Ka.

For each arc a= ((i, t), (j, t+ τij)) ∈ A and each k ∈ Ka, it must be ek + ϕk
ok,i
≤ t≤ lk − ϕk

j,dk
− τi,j .

Therefore, µ(a) ∈AT must be contained in Ak
T as it satisfies conditions (6)-(i) and (6)-(ii) on Ak

T . There-

fore, (x,y) is also a feasible solution of formulation SND(DK
T ) of the same cost of solution (x̄, ȳ). This

indicates that SND(DK
T ) is a relaxation of CTSNDP. Additionally, SND(DK

T ) is tighter than SND(DT ) since

AK
T is a subset ofAT . Therefore, each feasible solution of SND(DK

T ) is a feasible solution of SND(DT ). □

EC.1.2. Proof of Theorem 1

Proof : If there exists a time point t̂ ∈ Ti such that t̂ ∈ (lk1 − ϕk1
j,dk1
− τi,j, e

k2 + ϕk2
ok2 ,i

], then according to

the definition of each set Ak
T , conditions (6), every arc ((i, t), (j, t̄)) ∈ Ak2

T must satisfy t ≥max{s ∈ Ti :
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s≤ ek2 + ϕk2
ok2 ,i
} ≥ t̂, and every arc ((i, t′), (j, t̄′)) ∈Ak1

T must satisfy t′ ≤max{s ∈ Ti : s+ τi,j + ϕk1

j,d
k1
≤

lk1}< t̂. This implies thatAk1
T andAk2

T do not have any timed-arcs in common associated with the arc (i, j).

Then, in model SND(DK
T ), commodities k1 and k2 do not share any x variables with same time indices. This

indicates that commodities k1 and k2 cannot be consolidated on any arc ((i, t), (j, t̄)) ∈AK
T in any feasible

solution of the relaxation model SND(DK
T ). □

EC.1.3. Proof of Theorem 2

Proof : Consider a flat solution S = (P,C), with P = {pk}k∈K where each pk = (ak
1 , . . . , a

k
|pk|) represents

the flat path for commodity k ∈ K with each ak
n ∈ A. Let (νk

1 , ..., ν
k
|pk|+1

) represent the node sequence of

path pk with νk
1 = ok and νk

|pk|+1
= dk. Based on the definition of implementability, the flat solution S

is implementable only if there exist a dispatch scheduling T (P,C) consisting of a collection of departure

times tk
νkn

for k ∈K and n∈ {1,2, ..., |pk|}, such that

tk
νk1
≥ ek, ∀k ∈K,

tkνkn ≥ tk
νkn−1

+ τakn−1
, ∀k ∈K, n= 2, . . . , |pk|,

tk
νk
|pk|

+ τak
|pk|
≤ lk, ∀k ∈K,

tki = tk
′

i , ∀((i, j), κ)∈ C, k ∈ κ,k′ ∈ κ.

Equivalently, given its dispatch-node graph G (S) = (V ,A ), the flat solution S is implementable only if

there exist a collection of departure times λv for v ∈ V over G (S), such that

ληk
ok
≥ ek, ∀k ∈K, (EC.2)

λv′ ≥ λv + ρ(a), ∀a= (v, v′)∈A , (EC.3)

ληk
dk
≤ lk, ∀k ∈K, (EC.4)

ληki
= λ

ηk
′

i
, ∀((i, j), κ)∈ C, k ∈ κ,k′ ∈ κ. (EC.5)

It is evident that tki = ληki
for all (i, j)∈ pk and k ∈K, form a feasible dispatch scheduling T (P,C), thus

establishing the equivalence. We have the following two cases.

(a) The dispatch-node graph G (S) contains any too-long path P ′ ∈P(S) with its initial node denoted

by ηk
ok

and final node denoted by ηk′
i with ρ(P ′) > lk′ − ek − ϕk′

i,dk
′ . We now show that, in this case,

there does not exist departure times λ that satisfy (EC.2)-(EC.5), implying the flat solution S can not

be implementable.

Consider any path P = (vP1 , v
P
2 . . . , vP|P |) ∈P(S) in the dispatch-node graph G (S) with vP1 = ηk1

ok1

and vP|P | = ηk2
dk2

. Feasible departure times λ that satisfy (EC.2)-(EC.5) must adhere to the conditions:

λvP1
≥ ek1 , (EC.6)

λvPn+1
≥ λvPn

+ ρ(a= (vPn , v
P
n+1)), ∀n= 1, ..., |P | − 1, (EC.7)

λvP|P |
≤ lk2 . (EC.8)
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Here inequalities (EC.6), (EC.7), and (EC.8), stem from (EC.2), (EC.3), and (EC.4), respectively.

For the too-long path P ′ ∈P(S) with its initial node denoted by ηk
ok

and final node denoted by ηk′
i ,

there must be a path P ′′ in G (S) that starts from node ηk
ok

, along path P ′ to node ηk′
i and then along the

shortest path from ηk′
i to ηk′

dk
′ over G (S). If path P ′′ is not simple, then inequalities (EC.7) can not be

fully satisfied. If path P ′′ is a simple path, (EC.8) is violated due to ek +ρ(P ′′)> ek +ρ(P ′)+ϕk′

i,dk
′ >

lk′ . This indicates that there does not exist departure times λ that satisfy (EC.2)-(EC.5), implying the

flat solution S can not be implementable.

(b) The dispatch-node graph G (S) = (V ,A ) does not contain any too-long path. We can show that, in this

case, there always exists departure times λ that satisfy (EC.2)-(EC.5), implying that the flat solution S

is implementable.

Consider any path P = (vP1 , v
P
2 . . . , vP|P |)∈P(S) with vP1 = ηk1

ok1
and vP|P | = ηk2

i′ . Let t(P,g) indicate

the total transit time of the partial path from the initial node ηk1
ok1

of P to the g-th node vPg of P along

path P , and let T (P,g) = ek + t(P,g) represent the earliest departure time at node vPg along P .

Let E(v) = max{T (P,g) : v = vPg , P ∈P(S), g ∈ {1,2, . . . , |P |}} for all v ∈ V . We can show

that λ, defined by λv = {maxk′∈κE(ηk′
i ) : v = ηk

i , ((i, j), κ) ∈ C and k ∈ κ} if ∃(v, v′) ∈A , otherwise

λv =E(v), for all v ∈ V , satisfy inequalities (EC.2)-(EC.5):

(i) As each ηk
ok

, k ∈K, lacks incoming arcs, it can only serve as the initial node of some P ∈P(S).

For any path P ∈P(S) that passes through node ηk
ok

for any k ∈ K, we have that vP1 = ηk
ok

and T (P,1) = ek, implying that E(ηk
ok
) = ek. It follows that ληk

ok
≥E(ηk

ok
) = ek. Therefore, we

conclude that ληk
ok
≥ ek for all k ∈K, indicating that inequalities (EC.2) are satisfied.

(ii) For each (i, j)∈ pk, k ∈K, we have that λ(ηk
i ) =E(ηk∗

i ) with k∗ = argmax{E(ηk′
i ) : ((i, j), κ)∈

C, k ∈ κ and k′ ∈ κ}, and there must exist an arc (ηk∗
i , ηk

j ) ∈ A according to the definition

of the dispatch-node graph G (S) = (V ,A ). Let (P ∗, g∗) = argmax{T (P,g) : ηk∗
i = vPg , P ∈

P(S), g ∈ {1,2, . . . , |P |}} and let P represent the partial path of P ∗ from its origin node to

ηk∗
i . There must exist a path P ′ ∈P(S) such that P ⊆ P ′ and vP

′
g∗+1 = ηk

j . This implies that

λ(ηk
j )≥E(ηk

j )≥ T (P ′, g∗ +1) = T (P ′, g∗) + τi,j =E(ηk∗
i ) + τi,j = λ(ηk

i ) + τi,j . Therefore, we

conclude that ληkj
≥ ληki

+ τi,j for all k ∈K and (i, j)∈ pk, indicating that inequalities (EC.3) are

satisfied.

(iii) For each k ∈ K, for every path P ∈P(S) that pass through node ηk
dk

with vPĝ = ηk
dk

, we have

that T (P, ĝ)≤ lk as the dispatch-node graph G (S) does not contain any too-long path, indicating

E(ηk
dk
) ≤ lk. We note that ληk

dk
= E(ηk

dk
) as there dose not exists any arc (ηk

dk
, v) ∈ A . This

implies that ληk
dk
≤ dk for all k ∈K, indicating that inequalities (EC.4) are satisfied.

(iv) Moreover, λ
η
k1
i

= λ
η
k2
i

=maxk′∈κE(ηk′
i ) holds for all ((i, j), κ)∈ C, k1 ∈ κ, and k2 ∈ κ, indicat-

ing that inequalities (EC.5) are satisfied.

Therefore, the flat solution S = (P,C) is implementable.
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To sum up the above, we conclude that a flat solution S is nonimplementable if and only if its dispatch-

node graph G (S) contains a too-long path. □

EC.1.4. Proof of Lemma 1

Proof. By the definition of representabiltiy, a flat solution S = (P,C) is representable in DK
T when there

exists a feasible solution (x̂, ŷ) of SND(DK
T ) that utilize this flat solution, i.e., (P(x̂, ŷ),C(x̂, ŷ)) = (P,C).

Consider a path P = (ηk1
i1
, ηk2

i2
, . . . , η

k|P |
i|P |

) in the dispatch-node graph G (S) of this flat solution S. It follows

that such solution (x̂, ŷ) satisfies 1) x̂
kth t̄h+1
ih,ih+1

= 1 for some arc ((ih, th), (ih+1, t̄h+1)) ∈ AK
T for all k ∈

{kh, kh+1} and h= 1, ..., |P |−1, and 2) th ≥ t̄h for all h= 2, ..., |P |−1. These two conditions stem from the

constraints (8)-(9) of SND(DK
T ), and the first condition implies that ((ih, th), (ih+1, t̄h+1))∈Ak

T for all k ∈

{kh, kh+1} and h= 1, ..., |P | − 1. By connecting these arcs ((ih, th), (ih+1, t̄h+1)) ∈AK
T , h= 1, ..., |P | − 1,

with appropriate holding arcs, we obtain a path P̂ in (NT ,AK
T ∪HT ).

We thus conclude that for a flat solution S that is representable in DK
T , for each path P con-

tained in its dispatch-node graph G (S), where P = (ηk1
i1
, ηk2

i2
, . . . , η

k|P |
i|P |

), there exists an timed-path in

(NT ,AK
T ∪HT ) from a timed-node (i1, t1) to any timed-node (i|P |, t̄|P |), with its service arcs denoted by

((ih, th), (ih+1, t̄h+1)) ∈ AK
T for h ∈ {1,2, . . . , |P | − 1}, such that each ((ih, th), (ih+1, t̄h+1)) is contained

inAk
T for every k ∈ {kh, kh+1}. If such timed-path does not exist, it is evidence that path P is not contained

in the dispatch-node graph of any flat solution that is representable in DK
T , thus proving the lemma. □

EC.1.5. Proof of Theorem 3

Lemma 1 establishes a sufficient condition such that for every flat solution that is representable in DK
T , its

dispatch-node graph does not contain a specific too-long path P . To prove Theorem 3, we demonstrate that

this condition is met by incorporating the time points defined in Theorem 3 to the discretization. Theorem

3 uses the following Lemma 2 which gives a lower bound on the dispatch times from terminals when the

discretization T contains some specific time points.

Lemma 2 Let P̂ be a timed-path in (NT ,AK
T ∪HT ) with its service arcs denoted by ((ih, th), (ih+1, t̄h+1))

for h ∈ {1,2, . . . , n}, where i1 = ok and t1 ≥ ek for some k ∈ K. Suppose ek + τ(P̂ , h) ∈ Tih , for all h =

1, ..., n, where τ(P̂ ,1) = 0 and τ(P̂ , h) =
∑h−1

m=1 τim,im+1
for h= 2, ..., n. We have that th ≥ ek + τ(P̂ , h)

for all h= 1, ..., n.

Proof : Suppose ek+τ(P̂ , h)∈ Tih , for all h= 1, ..., n. For any arc ((ih, t), (ih+1, t̄))∈AK
T with h= 1, ..., n,

if t≥ ek + τ(P̂ , h), we must have t̄≥ ek + τ(P̂ , h+1) as indicated by Properties 2-4 of the partially time-

expanded network. Consider the timed-path P̂ in (NT ,AK
T ∪ HT ). If th ≥ ek + τ(P̂ , h) holds for some

h ∈ {1, ..., n− 1}, we must have th+1 ≥ t̄h+1 ≥ ek + τ(P̂ , h+1). When h= 1, th ≥ ek + τ(P̂ , h) holds as

τ(P̂ ,1) = 0, ek ∈ Ti1 and t1 ≥ ek. This indicates that th ≥ ek + τ(P̂ , h) also holds for all h= 2, ..., n. We

thus conclude that th ≥ ek + τ(P̂ , h) for all h= 1, ..., n. □
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Based on Lemma 2, Theorem 3 can be proved as follows.

Proof. Consider any too-long path P ∈P(S) in the dispatch-node graph G (S) of a flat solution S that is

representable in DK
T , where P = (ηk1

i1
, ηk2

i2
, . . . , η

k|P |
i|P |

). Refine T to T̂ with each T̂j = Tj ∪ {ek1 + ρ(P,g) :

g ∈ {1,2, . . . , |P |− 1}, ig = j} for j ∈N . According to Lemma 1, if there does not exist any timed-path P ′

in (NT̂ ,AK
T̂ ∪HT̂ ) from a timed-node (i1, t1) to any timed-node (i|P |, t̄|P |), with its service arcs denoted by

((ih, th), (ih+1, t̄h+1)) ∈ AK
T̂ for h ∈ {1,2, . . . , |P | − 1}, such that each ((ih, th), (ih+1, t̄h+1)) is contained

inAk
T̂ for every k ∈ {kh, kh+1}, it is evidence that path P is not contained in the dispatch-node graph of any

flat solution that is representable in DK
T̂ .

Assume that there exists such timed-path P ′ in (NT̂ ,AK
T̂ ∪HT̂ ). As ((i1, t1), (i2, t̄2)) must be contained

in Ak1
T̂ and ek1 ∈ T̂i1 , based on condition (6)-(ii) on Ak1

T̂ , we have that t1 ≥ ek1 . According to Lemma 2,

with ek1 +ρ(P,g)∈ T̂ig , for all g= 1, ..., |P |− 1, it follows that t|P |−1 ≥ ek1 +ρ(P, |P |− 1). Let k∗ = k|P |.

The existence of timed-path P ′ implies the presence of an arc ((i|P |−1, t|P |−1), (i|P |, t̄|P |)) in Ak∗

T̂ with

t|P |−1 + τi|P |−1,i|P | +ϕk∗

i|P |,dk
∗ > lk

∗
. This violates the condition (6)-(ii) on Ak∗

T̂ , and thus implies that there

does not exist such timed-path P ′. Thereby, according to Lemma 1, path P is not contained in the dispatch-

node graph of any flat solution that is representable in DK
T̂ . □

EC.1.6. Proof of Theorem 4

Proof : Given a discretization T̂ , consider any too-long path P ∈P , where P = (ηk1
i1
, ηk2

i2
, . . . , η

k|P |
i|P |

). Con-

sider any index g∗ ∈ {2,3, ..., |P |−1} with both conditions defined in Theorem 4 satisfied. As indicated by

Lemma 1, if there does not exist any timed-path P ′ in (NT̂ ,AK
T̂ ∪HT̂ ) from a timed-node (i1, t1) to any

timed-node (i|P |, t̄|P |), with its service arcs denoted by ((ih, th), (ih+1, t̄h+1))∈AK
T̂ for h∈ {1,2, . . . , |P |−

1}, such that each ((ih, th), (ih+1, t̄h+1)) is contained in Ak
T̂ for every k ∈ {kh, kh+1}, there exists no flat

solution that is representable in DK
T̂ with its dispatch-node graph containing P .

Assume that there exists such timed-path P ′ in (NT̂ ,AK
T̂ ∪HT̂ ). As ((i1, t1), (i2, t̄2)) must be contained

in Ak1
T̂ , and ek1 ∈ T̂i1 due to condition (i) defined in Theorem 4, based on condition (i) on Ak1

T̂ , we have

that t1 ≥ ek1 . According to Lemma 2, with [ek1 + ρ(P,h)] is contained in T̂ih for all h ∈ {1,2, ..., g − 1},

it follows that tg−1 ≥ ek1 + ρ(P,g− 1). The existence of timed-path P ′ indicates that there exists a timed-

path starting from (ig−1, e
k1 + ρ(P,g − 1)), passing through (ig−1, tg−1), and ending at (i|P |, t̄|P |), with

its service arcs denoted by ((ih, th), (ih+1, t̄h+1)) ∈ AK
T̂ for h ∈ {g − 1, g, . . . , |P | − 1}, such that each

((ih, th), (ih+1, t̄h+1)) is contained inAk
T̂ for every k ∈ {kh, kh+1}. This conflicts with condition (ii) defined

in Theorem 4, leading to the conclusion that P ′ cannot exist. By Lemma 1, we thus can conclude that there

is no flat solution that is representable in DK
T̂ with its dispatch-node graph containing P . □

EC.2. Example Illustrating Theorem 1
Figure EC.1 illustrates Theorem 1 using an example. According to Figure EC.1-(b), it is evident that no

feasible solution of the CTSNDP can consolidate commodities k1 and k2 on arc (i, j) as ek2 + ϕk2
ok2 ,i

+
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τi,j + ϕk1
j,dk1

> lk1 . However, based on the time-expanded commodity networks shown in Figure EC.1-

(e), SND(DK
T ) does contain a feasible solution where commodities k1 and k2 are consolidated on arc

((i, t3), (j, t5)) and represent an impossible consolidation. Figure EC.1-(f) clearly indicates that both com-

modities k1 and k2 have an x variable related to arc ((i, t3), (j, t5)). By including t5 ∈ (lk1 − ϕk1
j,dk1
−

τi,j, e
k2 +ϕk2

ok2 ,i
] into Ti, we obtain new time-expanded commodity networks as shown in Figure EC.1-(g),

along with the corresponding x variables as shown in Figure EC.1-(h). Notably, the two new time-expanded

commodity networks do not share any service arcs as arc ((i, t3), (j, t5)) is removed in Dk2
T due to t3 < t5 =

argmax{s∈ Ti : s≤ ek2 +ϕk2
ok2 ,i
}, implying that the two commodities do not have any x variable associated

with the same service arc. Therefore, based on the time-expanded commodity networks depicted in Figure

EC.1-(g), the updated SND(DK
T ) does not contain any feasible solution where commodities k1 and k2 are

consolidated on arc (i, j).

EC.3. Additional Details of the EDDD Algorithm
This section gives additional details about the algorithms used to create the initial network (§EC.3.1), solv-

ing model CPPMIP(x,y) (§EC.3.2) and the refinement strategy (§EC.3.4).

EC.3.1. Creating the Initial Timed-Node-Based Time-Expanded Commodity Networks

Details on identifying significant time points and constructing the initial time-expanded commodity net-

works are provided in Algorithm 2.

The algorithm initializes the discretization T (lines 1-7). Subsequently, significant time points are added

to the discretization (lines 8-18). Based on the discretization, the timed-node-based time-expanded network

is initialized (lines 19-27), and the corresponding timed-node-based time-expanded commodity networks

are created (lines 28-30).

EC.3.2. Symmetry Breaking and Variable Reductions for Model CPPMIP(x,y)

The model CPPMIP(x,y) exhibits a high degree of symmetry, leading to many redundant solutions that can

complicate its resolution. This section outlines an acceleration strategy to enhance the model’s solvability.

For each (i, j) ∈ A(x,y), we define the conflict set Fi,j(x,y) = {(k, k′) : ek + ϕ̃k
oki

+ τi,j + ϕ̃k

j,dk
′ >

lk
′

or ek
′
+ ϕ̃k

ok
′
i
+τi,j + ϕ̃k

j,dk
> lk, k, k′ ∈Ki,j(x,y), k < k′}, where ϕ̃k

i,j represents the length of the partial

path from node i to node j in pk(x,y). Each pair (k, k′) ∈ Fi,j(x,y) means that commodities k and k′

cannot be consolidated on arc (i, j) if they follow the delivery paths pk(x,y) and pk
′
(x,y), respectively.

A subset of Ki,j(x,y) is considered a conflict subset if each pair of commodities in the subset can form

an element in Fi,j(x,y). We then sort Ki,j(x,y) as (k̃1, ..., k̃n, k̄1, ..., k̄m) where set {k̃1, ..., k̃n} forms a

conflict subset of Ki,j(x,y) containing n commodities, i.e., ∀k, k′ ∈ {k̃1, ..., k̃n}, k < k′, we have (k, k′) ∈
Fi,j(x,y), and where k̄1, ..., k̄m are the remaining commodities. For presentational convenience, we re-

index the elements in Ki,j(x,y) and obtain Ki,j(x,y) = {k1, k2, ..., kn+m}. We thus propose the following

acceleration strategy for each (i, j)∈A(x,y).
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𝑖 𝑗 
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(b) Delivery information
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𝑘1  and 𝒟𝒯
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Figure EC.1 Example Illustrating Theorem 1

1. Apply the following reduction steps:

(a) Step 1: for each kh with h∈ {1, ..., |Ki,j(x,y)|}, remove all variables zkhijr with r > h;

(b) Step 2: for each r ∈ {1, ..., |Ki,j(x,y)|}, remove all variables z
kh
ijr with (kr, kh) ∈ Fi,j(x,y) or

(kh, kr)∈Fi,j(x,y);

(c) Step 3: for each kh with h∈ {1, ..., n}, let zkhijh = 1, which also means that the variable can also be

removed from the model;

(d) Step 4: All redundant constraints relevant to these removed redundant variables can be accordingly

removed.

In Step 1, symmetries are eliminated, and in Step 2, infeasible consolidations are excluded based

on the conflict set Fi,j(x,y). Step 3 further streamlines the model by fixing binary variables with a
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Algorithm 2: Generate the initial Timed-Node-Based Time-Expanded Commodity Networks
Input: Flat network D= (N ,A), commodity set K;
Output: Timed-Node-Based Time-Expanded Commodity Networks DK

T ;
begin

// Generate the initial discretization by adding the fundamental time
points based on network properties

1 Set Ti = ∅ and Wi = ∅ for all i∈N ;
2 for k ∈K do
3 Set Tok = Tok ∪{ek} and Tdk = Tdk ∪{dk}
4 end
5 for i∈N do
6 Set Ti = Ti ∪{mink∈K{ek +ϕok,i}}
7 end

// Generate the initial discretization by identifying and adding
significant time points to address impossible consolidations

8 for i∈N do
9 for (i, j)∈A do

10 for (k1, k2)∈Ki,j ×Ki,j with ek1 +ϕk1

ok1 ,i
+ τi,j +ϕk2

j,dk2
> lk2 do

11 Identify time window ωk1,k2
i,j = (ωk1,k2

ij,o , ωk1,k2
ij,d ];

12 if there does not exist any time point t∈ Ti with t∈ ωk1,k2
i,j then

13 Set Wi =Wi ∪{ωk1,k2
i,j };

14 end
15 end
16 end
17 Solve the minimum-hitting set problem for intervals in Wi to find the minimum hitting setMi for Wi

and Set Ti = Ti ∪Mi;
18 end

// Construct the timed-node-based time-expanded commodity networks
19 for i∈N and t∈ Ti do
20 Add node (i, t) to NT ;
21 end
22 for (i, t)∈NT do
23 for (i, j)∈A do
24 Add arc ((i, t), (j, t′)) where t′ = argmax{s∈ Tj : s≤ t+ τi,j} to AT ;
25 end
26 Find the smallest t′ such that (i, t′)∈NT and t′ > t and add ((i, t), (j, t′)) toHT ;
27 end
28 for k ∈K do
29 Construct Dk

T = (NT ,Ak
T ∪HT ) based on conditions (6) for Ak

T ;
30 end
31 return DK

T = {Dk
T }k∈K;

32 end

required value of 1 or directly removing them. Additionally, Step 4 signifies that certain constraints in

the CPPMIP(x,y) model can be reduced as a consequence of variable removal.

2. Add the following inequalities with the reduced z variables:

z
kh′
ijh ≤ z

kh
ijh, ∀h∈ {n+1, ..., |Fi,j(x,y)|}, h′ ∈ {h, ..., |Fi,j(x,y)|}, (EC.9)
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that further break the symmetric structure of the solutions of the remaining model by restricting that

a commodity kh′ can be included in the h-th consolidation on arc (i, j) only if the commodity kh is

included in the h-th consolidation.

Figure EC.2 illustrates an example that explains the abovementioned acceleration strategy. Let’s consider

an arc (i, j) ∈ A(x,y). Figure EC.2-(a) provides information about Ki,j(x,y) and Fi,j(x,y), and Figure

EC.2-(b) lists the original z variables associated with arc (i, j). Solutions of CPPMIP(x,y) exhibit a high

degree of symmetry with many redundant z variables. Figures EC.2-(c), EC.2-(d), and EC.2-(e) show the

redundant z variables that can be removed in each reduction step, respectively. As illustrated in Figure

EC.2-(f), we finally obtain the reduced set of z variables, retaining only 31% of the original z variables.

After applying these reduction steps, the proposed CPPMIP(x,y) model can be significantly streamlined,

eliminating most of the redundant asymmetric solutions. However, as shown in Figure EC.2-(g), even with

the reduced z variables, there may still be equivalent solutions that have the same consolidation plan on

arc (i, j) but have different z variable solutions. The symmetric structure of the solutions of the reduced

CPPMIP(x,y) can be fully eliminated by adding inequalities (EC.9). Figure EC.2-(h) displays all inequal-

ities (EC.9) identified with the reduced z variables.

To minimize the number of z variables in CPPMIP(x,y), it is recommended to sort Ki,j(x,y) according

to its maximum-size conflict subset for each (i, j)∈A(x,y). A maximum-size conflict subset ofKi,j(x,y)

can be obtained by solving a maximum independent set problem, a well-know NP-hard problem (Garey

and Johnson 1979), over an undirected graph Gi,j that is generated according to Ki,j(x,y) and Fi,j(x,y).

The undirected graph Gi,j can be constructed as follows. Let VG
i,j and AG

i,j denote the vertex set and arc set

in Gi,j , respectively. For each k in Ki,j(x,y), there is a vertex νk in VG
i,j . For each pair of vertexes νk ∈ VG

i,j

and νk′ ∈ VG
i,j with k < k′, if (k, k′) /∈ Fi,j(x,y), then there is an undirected arc between νk and νk′ in

AG
i,j , and nodes νk and νk′ are called adjacent. Finding a maximum-size conflict subset of Ki,j(x,y) is thus

equivalent to finding a maximum independent set of graph Gi,j = (VG
i,j,AG

i,j), which is a vertex set with

pairwise non-adjacent elements and with maximum cardinality.

Our computational study reveals that the size of each Ki,j(x,y) is typically small for a given relaxation

solution (x,y). Consequently, each graph Gi,j is sufficiently compact, allowing for the direct derivation of

its maximum independent set using general-purpose MIP solvers. Furthermore, our computational study

demonstrates that, following the application of the acceleration strategy, the resulting CPPMIP(x,y) models

can be effectively solved by general optimization solvers.The routing plan P(x,y), combined with the

consolidation plan zkijr and dispatch times δki for all k ∈ K and i ∈ N k(x,y) prescribed by the optimal

solution of the CPPMIP(x,y) model, constitutes a feasible solution to the CTSNDP with a total cost equal

to the objective value of the CPPMIP(x,y) model.
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Sorted Kij(x,y) (k1, k2, k3, k4, k5, k6)

Maximal independent
(conflict) subset

(k1, k2, k3)

Fij(x,y)

(k1, k2) (k1, k3)

(k1, k4) (k2, k3)

(k2, k5) (k3, k6)

(k5, k6)

(a) Sets Ki,j(x,y) and Fi,j(x,y)

r 1 2 3 4 5 6

z

zk1ij1 zk1ij2 zk1ij3 zk1ij4 zk1ij5 zk1ij6
zk2ij1 zk2ij2 zk2ij3 zk2ij4 zk2ij5 zk2ij6
zk3ij1 zk3ij2 zk3ij3 zk3ij4 zk3ij5 zk3ij6
zk4ij1 zk4ij2 zk4ij3 zk4ij4 zk4ij5 zk4ij6
zk5ij1 zk5ij2 zk5ij3 zk5ij4 zk5ij5 zk5ij6
zk6ij1 zk6ij2 zk6ij3 zk6ij4 zk6ij5 zk6ij6

(b) Original Variables

r 1 2 3 4 5 6

z

zk1ijr1 zk1
ijr2

zk1
ijr3

zk1
ijr4

zk1
ijr5

zk1
ijr6

zk2ijr1 zk2ijr2 zk2
ijr3

zk2
ijr4

zk2
ijr5

zk2
ijr6

zk3ijr1 zk3ijr2 zk3ijr3 zk3
ijr4

zk3
ijr5

zk3
ijr6

zk4ijr1 zk4ijr2 zk4ijr3 zk4ijr4 zk4
ijr5

zk4
ijr6

zk5ijr1 zk5ijr2 zk5ijr3 zk5ijr4 zk5ijr5 zk5
ijr6

zk6ijr1 zk6ijr2 zk6ijr3 zk6ijr4 zk6ijr5 zk6ijr6

(c) Reduction Step 1

r 1 2 3 4 5 6

z

zk1ij1
zk2
ij1 zk2ij2

zk3
ij1 zk3

ij2 zk3ij3
zk4
ij1 zk4ij2 zk4ij3 zk4ij4
zk5ij1 zk5

ij2 zk5ij3 zk5ij4 zk5ij5
zk6ij1 zk6ij2 zk6

ij3 zk6ij4 zk6
ij5 zk6ij6

(d) Reduction Step 2

r 1 2 3 4 5 6

z

zk1
ij1

zk2
ij2

zk3
ij3

zk4ij2 zk4ij3 zk4ij4
zk5ij1 zk5ij3 zk5ij4 zk5ij5
zk6ij1 zk6ij2 zk6ij4 zk6ij6

(e) Reduction Step 3

r 1 2 3 4 5 6

z
zk4ij2 zk4ij3 zk4ij4

zk5ij1 zk5ij3 zk5ij4 zk5ij5
zk6ij1 zk6ij2 zk6ij4 zk6ij6

(f) Reduced Variables

r 1 2 3 4 5 6

z

zk4ij2 = 1 zk4ij3 zk4ij4
zk5ij1 zk5ij3 zk5ij4 = 1 zk5ij5

zk6ij1 = 1 zk6ij2 zk6ij4 zk6ij6

consolidations (k1, k6) (k2, k4) (k3) (k5)

r 1 2 3 4 5 6

z

zk4ij2 = 1 zk4ij3 zk4ij4
zk5ij1 zk5ij3 zk5ij4 zk5ij5 = 1

zk6ij1 = 1 zk6ij2 zk6ij4 zk6ij6

consolidations (k1, k6) (k2, k4) (k3) (k5)

(g) Two Equivalent Solutions

r 1 2 3 4 5 6

z

zk4ij2 zk4ij3 zk4ij4
zk5ij1 zk5ij3 zk5ij4 zk5ij5
zk6ij1 zk6ij2 zk6ij4 zk6ij6

valid inequalities
zk5ij4 ≤ zk4ij4
zk6ij4 ≤ zk4ij4

(h) Valid Inequalities

Figure EC.2 Example of the Acceleration Strategy
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EC.3.3. Examples illustrating dispatch-node graph and (minimal) too-long paths

Figure EC.3 illustrates the dispatch-node graph and the too-long paths over it. Figures EC.3-(a) and EC.3-

(b) introduce the flat network D and the commodity delivery requirements. Figures EC.3-(c) and EC.3-

(d) present two different flat solutions S1 and S2. Their corresponding solution graphs D(S1) and D(S2)

are depicted in Figures EC.3-(e) and EC.3-(g), respectively, while their dispatch-node graphs G (S1) and

G (S2) are shown in Figures EC.3-(f) and EC.3-(h), respectively. It can be seen that the dispatch-node

graph keeps all dispatch nodes and their connectivity relationships in the respective solution graph but is

without any consolidation nodes. For a given flat solution, the solution graph represents its routing and

consolidation plan. In contrast, the dispatch-node graph emphasizes the relationships between the arrival

times of commodities indicated by its routing and consolidation plan. From both dispatch-node graphs

G (S1) and G (S2), two too-long paths P1 and P2 can be identified as illustrated in Figure EC.3-(i), due to

ek1 + ρ(P1) = 1 + 3 > lk4 = 3 and ek1 + ρ(P2) = 1 + 2 > lk4 − ϕk4
3,4 = 3 − 1 = 2. Since P2 is a partial

too-long path of P1, and any partial path of P2, except P2 itself, is not a too-long path, P2 is identified as

a minimal too-long path, while P1 is not. Figure EC.3-(j) shows the paths in solution graphs D(S1) and

D(S2) associated with the minimal too-long path P2. More specifically, paths P and P ′ share the same

sequence of dispatch nodes as path P2. It is evident that paths P and P ′ are different but are associated with

the same too-long path P2 in their respective dispatch-node graphs G (S1) and G (S2). This demonstrates

our rationale for eliminating flat solutions based on too-long paths in dispatch-node graphs.

EC.3.4. Details on the Refinement Strategy

Algorithm 3 provides the main steps of the refinement strategy. The algorithm begins by initializing the new

discretization T ′ with the current one (line 1) and consists of three stages. In the first stage, the algorithm

obtain a set of minimal too-long paths from non-implementable flat solutions that are defined by relaxation

solutions in the given solution pool X , by applying a label-setting algorithm (lines 2-4). In the second stage,

the algorithm develop an initial refined discretization to eliminate all the obtained minimal too-long paths

based on Theorem 3 (lines 5-7). In the third stage, the algorithm enhance the initial refined discretization

by reducing its size while still ensuring to eliminate all the obtained minimal too-long paths based on

Theorem 4 (lines 8-21). A final refined discretization T ′ is then returned.

EC.4. Additional Experiments Results
This section provides additional experimental results regarding the comparison of EDDD and MBSH

using the same computational environment (§EC.4.1), the bundle strategy used by the refinement strategy

(§EC.4.3) and the effectiveness of the new MIP for computing upper bounds (§EC.4.2).
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(a) Flat network D

k ok dk ek lk

k1 0 4 1 4
k2 0 4 0 4
k3 2 5 1 3
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(b) Commodity information

P C
k pk (i, j) κ
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(c) Flat solution S1
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(e) Solution graph D(S1)
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(f) Dispatch-node graph G (S1)
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(g) Solution graph D(S2)
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(h) Dispatch-node graph G (S2)
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(j) Paths in D(S1), D(S2) associated with P2

Figure EC.3 Examples of flat solutions, solution graphs, dispatch-node graphs and (minimal) too-long

paths
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Algorithm 3: Refinement Strategy
Input: Current discretization T , relaxation solution pool X ;
Output: Refined discretization T ′ ;
begin

1 T ′←T and P = ∅ ;
// Stage 1: Obtain Minimal Too-Long Paths for Refinement

2 for relaxation solutions (x,y) in the solution pool X do
3 Apply label-setting algorithm to identify minimal too-long paths and store these paths in P .
4 end

// Stage 2: Develop Initial Refinement Based on Minimum Too-Long Paths
5 for minimal too-long path P in P do
6 Identify new time points T̃j(P ) for each j ∈N based on Theorem 3;
7 end

// Stage 3: Enhance Refinement by Reducing Time Points

8 P̂←P and T = {(j, t) : j ∈N , t∈
⋃

P∈P T̃j(P )} ;
9 Sort the elements in T in increasing order of time t (breaking ties arbitrarily);

10 for (j, t)∈ T do
11 Λ(j, t) = {P : P ∈ P̂, where P = (ηk1

i1
, ηk2

i2
, . . . , η

k|P |
i|P |

), such that there exists g ∈ {1,2, . . . , |P | − 1}
with ig = j and ek1 + ρ(P,g) = t};

12 for P ∈Λ(j, t) do
13 Let g denote the index ∈ {2, . . . , |P | − 1} of P with ig = j and ek1 + ρ(P,g) = t};
14 if both conditions (i) and (ii) in Theorem 4 are satisfied by P and g then
15 Remove P from P̂;
16 end
17 else
18 T ′

j = T ′
j ∪{t};

19 end
20 end
21 end
22 return T ′;
23 end

EC.4.1. Comparison of EDDD and MBSH in the Same Computational Environment

To ensure a fair comparison between MBSH, the best-known algorithm for the CTSNDP, and EDDD, we

evaluated their results on identical machines with consistent solver settings. A co-author of Marshall et al.

(2021) kindly shared their results for MBSH with us, which were obtained by conducting experiments

on an AMD EPYC 7V12 processor using the Gurobi solver (v.10.0.3) with a single thread. Accordingly,

we conducted our experiments for EDDD on an AMD EPYC 7V12 processor, utilizing the same version

of the Gurobi solver with default settings, except for specifying the usage of a single thread. In addition,

we adjusted the solver’s optimality tolerance setting for EDDD to match the methodology described for

MBSH. Specifically, in MBSH, the solver’s optimality tolerance is with a value of 0.04 for the first iteration,

and max(gap × 0.25, tol × 0.98) for subsequent iterations, where gap is the optimality gap obtained in

the previous iteration, and tol is the overall algorithm’s optimality tolerance. Similarly, in EDDD, we set

the solver’s optimality tolerance to a value of 0.04 for the first iteration, 0.02 for the second iteration, and

max(min(0.015, gap×0.5), tol×0.98) for subsequent iterations. Both experiments for MBSH and EDDD
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were run with a time limit of one hour. The results for EDDD and MBSH with an optimality rate of 1%

and 0.001% are shown in Table EC.1 and Table EC.2, respectively. These results highlight the superior

performance of EDDD compared to MBSH, which was previously considered the best algorithm for the

CTSNDP. The results displayed in Table EC.2 further evidence the effectiveness of the EDDD algorithm

even under a tighter optimality tolerance of 0.001%, as it achieves optimality for nearly 90% of the 558

CTSNDP instances with an optimality tolerance of 0.001% and a time limit of one hour.

Table EC.1 Results for EDDD and MBSH with an optimality rate of 1%

Group Algorithm %Gap Times(s) #Iterations %Optimal

HC/LF MBSH 0.82 142.3 11.7 96.7
183 EDDD 0.66 14.8 1.8 100.0

HC/HF MBSH 1.07 1013.4 17.8 81.4
177 EDDD 0.81 242.3 3.1 100.0

LC/LF MBSH 0.71 0.2 3.9 100.0
94 EDDD 0.33 0.3 1.3 100.0

LC/HF MBSH 0.54 0.1 1.5 100.0
104 EDDD 0.08 0.1 1.3 100.0

Table EC.2 Results for EDDD and MBSH with an optimality rate of 0.001%

Group Algorithm %Gap Times(s) #Iterations %Optimal

HC/LF MBSH 0.08 555.2 15.9 89.6
183 EDDD 0.02 417.5 6.9 91.3

HC/HF MBSH 0.56 1555.2 18.5 61.6
177 EDDD 0.12 1071.6 7.7 75.1

LC/LF MBSH 0.00 0.4 7.4 100.0
94 EDDD 0.00 0.6 3.0 100.0

LC/HF MBSH 0.00 0.1 4.1 100.0
104 EDDD 0.00 0.1 1.8 100.0

EC.4.2. Effectiveness of the New MIP-based Approach for Upper-Bound Solutions

To assess the effectiveness of the newly proposed method for deriving upper-bound solutions (referred to

as the upper-bound deriving method), we conducted a comparison with the method proposed by Boland

et al. (2017), which involves solving a corresponding LP and was also utilized by Marshall et al. (2021). To

achieve this, we executed algorithm IDDD with the newly proposed upper-bound deriving method, denoted

as variant IDDD2, and compared the results with the original IDDD algorithm.

First, we compare the upper-bound solutions obtained from the newly proposed upper-bound deriving

method with those obtained from the upper-bound deriving method proposed by Boland et al. (2017). Note
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that IDDD and IDDD2 share the same best relaxation solution in the first iteration. This comparison is

achieved by comparing the upper-bound solutions of IDDD2, denoted as UB2, with the upper-bound solu-

tions of IDDD denoted as UB1, obtained in the first iteration. Figure EC.4-(a) illustrates the resulting gaps

between these upper-bound solutions and the relaxation solutions in the first iteration achieved by IDDD

and IDDD2, and Figure EC.4-(b) highlights the improvement in the upper-bound value achieved by the

newly proposed upper-bound deriving method compared to the method proposed by Boland et al. (2017),

calculated as %UB = 100.0 × (UB1 − UB2)/UB1. The comparison depicted in Figure EC.4-(b) reveals

a notable improvement achieved by the newly proposed upper-bound deriving method in contrast to the

method proposed by Boland et al. (2017). The maximum improvement (“%UBmax”) amounts to as much

as 35.59%, substantially reducing the gap between the upper bounds and the given lower bounds.
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(b) Improvement on the UB based on the
Figure EC.4 Effect of the New MIP for Upper-Bound Solutions (IDDD2: algorithm IDDD with the newly

proposed upper-bound deriving method).

Second, we assess the effectiveness of the newly proposed upper-bound deriving method on the algo-

rithm’s convergence. Table EC.3 presents the results of algorithms IDDD and IDDD2 on the HC class of

instances with the same notations introduced in Table 1. Unlike the results shown in Tables 2 and 3, which

demonstrate that the new initial relaxation and new refinement strategy significantly affect the algorithm’s

convergence, the results displayed in Table EC.3 reveals the limited contribution of the newly proposed

upper-bound deriving method alone to the convergence of the algorithm. This is primarily due to its heavy

reliance on the routing plan derived from the relaxation solutions. Consequently, if the quality of the relax-

ation solutions improves slowly, the influence of a better upper bound becomes restricted. However, the

results in Table 1 and Figure 2 demonstrate that an improved method for obtaining upper-bound solutions

can still yield certain advantages in optimizing the overall solution. While its impact may be limited due

to the poor performance of the relaxation and refinement, a better upper-bound deriving method can save

iterations and computational time.

EC.4.3. The Effectiveness of Considering a Pool of relaxation solutions in the UB
Deriving Method and Refinement Strategy

Algorithm EDDD derives the upper bounds and refines the discretization based on a pool of relaxation

solutions, referred to as the bundle strategy. To further confirm the necessity of the bundle strategy adopted
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Table EC.3 Detailed Results for IDDD Variants with Different Methods for Deriving the Upper Bound

Group Algorithm %Gap Times(s) #Iterations %Optimal

HC/LF IDDD 0.99 285.5 13.6 95.6
183 IDDD2 0.95 256.1 8.7 96.7

HC/HF IDDD 2.34 1377.7 14.8 70.1
177 IDDD2 1.55 1353.1 12.0 70.6
IDDD2: IDDD based on the newly proposed upper bound deriving method.

in the newly proposed EDDD for solving the CTSNDP, we conducted algorithm EDDD without the bundle

strategy, referred to as EDDD1. The results on HC/HF instances are shown in Table EC.4 using the same

notations introduced in Table 1. Table EC.4 indicates that the bundle strategy adopted in the newly proposed

refinement method is effective for some hard instances. Experiments show that, on average, step 3 of the

refinement approach can reduce the number of identified time points by approximately 30% in algorithm

EDDD. This also contributes to the small size of the final network, even with the aggressive bundle strategy

for refinement.

Table EC.4 Results for EDDD Variants without Bundle Strategy

Group Algorithm %Gap Times(s) #Iterations %Optimal

HC/HF EDDD1 0.86 240.8 3.4 97.7
177 EDDD 0.85 131.1 2.7 100.0

EDDD1: EDDD without the bundle strategy for relaxation solutions.
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