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Abstract

This paper presents a novel restarted version of Nesterov’s accelerated gradient method and
establishes its optimal iteration-complexity for solving convex smooth composite optimization
problems. The proposed restart accelerated gradient method is shown to be a specific instance
of the accelerated inexact proximal point framework introduced in [28]. Furthermore, this work
examines the proximal bundle method within the inexact proximal point framework, demon-
strating that it is an instance of the framework. Notably, this paper provides new insights into
the underlying algorithmic principle that unifies two seemingly disparate optimization methods,
namely, the restart accelerated gradient and the proximal bundle methods.
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1 Introduction

Nesterov’s accelerated gradient methods [5, 30, 31, 33] have been widely employed to solve convex
smooth composite optimization (CSCO) problems of the form

ϕ∗ := min
x∈Rn

{ϕ(x) := f(x) + h(x)} , (1)

where f is typically a convex and L-smooth function, and h is a convex and possibly nonsmooth
function with a simple proximal mapping, satisfying domh ⊂ dom f . Extensive research has been
dedicated to developing a theoretical understanding of these methods [1, 6, 13, 17, 35, 37], extending
their scopes [7, 9, 14, 19, 20, 22, 24], and improving their practical performance [5, 25, 27, 32, 36].

Among many approaches to enhance the convergence of accelerated gradient methods in prac-
tice, in particular to suppress the oscillating behavior, the restart technique has shown remarkable
improvement in the context of CSCO [2, 3, 4, 8, 10, 27, 29, 34, 35, 36]. The most natural restart
scheme is to restart the accelerated gradient method after a fixed number of iterations, and an
optimal fixed restart scheme is presented in [29]. Various adaptive restart schemes have also been
explored in the literature. Paper [34] proposes a function restart scheme (i.e., it restarts when the
function value increases) and a gradient restart scheme (i.e., it restarts when the momentum term
and the negative gradient make an obtuse angle). However, this paper only provides a heuristic dis-
cussion but no non-asymptotic convergence rate. Inspired by an ODE interpretation of Nesterov’s
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accelerated gradient method, [35] develops speed restart schemes in both continuous and discrete
times. In discrete time, the scheme restarts when ∥xk−xk−1∥ < ∥xk−1−xk−2∥. The paper presents
a convergence analysis in continuous time, while some constants are just shown to exist. Based
on a restart condition for estimating the strong convexity parameter, [36] proposes parameter-free
restarted accelerated gradient methods for strongly convex optimization.

Leveraging the A-HPE framework proposed in [28], we develop a novel restart accelerated
composite gradient (ACG) method and establish the same optimal iteration-complexity as the
accelerated gradient method for CSCO problems (1). A-HPE is a generic framework built on an
acceleration scheme. Two specific implementations of A-HPE are given in [28], namely, FISTA
[5] (a variant of accelerated gradient method) and an accelerated Newton proximal extragradien
method, which is the first optimal second-order method. Our main contribution is to show restart
ACG is another instance of A-HPE and establish the optimal complexity bound of restart ACG.

Another contribution of the paper is that it demonstrates the modern proximal bundle (MPB)
method [21, 23], an optimal method for solving convex nonsmooth composite optimization (CNCO)
problems, is indeed an instance of the HPE framework [11], which can be understood as the non-
accelerated counterpart of A-HPE for CNCO. As a result, MPB can be viewed as a restarted version
of the cutting-plane method. Building upon the novel perspectives of restart ACG and MPB as
multi-step implementations of A-HPE and HPE, respectively, this paper fconcludes by offering a
qualitative analysis to elucidate the superior practical performance of restart ACG and MPB in
comparison to their corresponding single-step counterparts, FISTA and the subgradient method.

1.1 Basic definitions and notation

A proper function f : Rn → (−∞,+∞] is µ-strongly convex for some µ > 0 if for every x, y ∈ dom f
and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− λ(1− λ)µ

2
∥x− y∥2.

For ε ≥ 0, the ε-subdifferential of f at x ∈ dom f is denoted by

∂εf(x) := {s ∈ Rn : f(y) ≥ f(x) + ⟨s, y − x⟩ − ε, ∀y ∈ Rn} .

We denote the subdifferential of f at x ∈ dom f by ∂f(x), which is the set ∂0f(x) by definition.
For a given subgradient f ′(x) ∈ ∂f(x), we denote the linearization of convex function f at x by
ℓf (·;x), which is defined as

ℓf (·;x) := f(x) + ⟨f ′(x), · − x⟩⟩.

2 Restart ACG

This section first reviews an ACG variant used in the paper, then presents the restart ACG method,
and finally provides the complexity analysis of restart ACG and shows that it is optimal for CSCO.

2.1 Review of an ACG variant

In this subsection, we consider

min{ψ(x) := g(x) + h(x) : x ∈ Rn}, (2)

where g is µ-strongly convex and (L+ µ)-smooth, and h is as in (1). We describe an ACG variant
tailored to (2) and present some basic results regarding the ACG variant.
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Algorithm 1 Accelerated Composite Gradient

Initialize: given initial point x0 ∈ Rn, set A0 = 0, τ0 = 1/L, and y0 = x0
for j = 0, 1, · · · do

1. Compute

τj+1 = τj +
µaj
L
, aj =

τj +
√
τ2j + 4τjAj

2
, Aj+1 = Aj + aj , x̃j =

Aj

Aj+1
yj +

aj
Aj+1

xj ; (3)

2. Compute

ỹj+1 = argmin
u∈Rn

{
ℓg(u; x̃j) + h(u) +

L+ µ

2
∥u− x̃j∥2

}
, (4)

yj+1 ∈ Argmin {ψ(u) : u ∈ {yj , ỹj+1}} , (5)

xj+1 =
(L+ µ)aj ỹj+1 − AjajL

Aj+1
yj

Aj+1µ+ 1
. (6)

end for

The following three lemmas are standard results for ACG. Therefore, we omit their proofs in
this subsection but provide them in the Appendix for completeness.

Lemma 2.1. The following statements hold for every j ≥ 0:

(a) τj = (1 + µAj)/L;

(b) Aj+1τj = a2j .

Lemma 2.2. Define Γ0 ≡ 0 and

γ̃j(·) := ℓg(·; x̃j) + h(·) + µ

2
∥ · −x̃j∥2, (7)

γj(·) := γ̃j(ỹj+1) + L⟨x̃j − ỹj+1, · − ỹj+1⟩+
µ

2
∥ · −ỹj+1∥2, (8)

Γj+1(·) :=
AjΓj(·) + ajγj(·)

Aj+1
. (9)

Then, the following statements hold for every j ≥ 0:

(a) γj ≤ γ̃j ≤ ψ, γ̃j(ỹj+1) = γj(ỹj+1),

min
u∈Rn

{
γ̃j(u) +

L

2
∥u− x̃j∥2

}
= min

u∈Rn

{
γj(u) +

L

2
∥u− x̃j∥2

}
, (10)

and these minimization problems have ỹj+1 as a unique optimal solution;

(b) γj and Γj are µ-strongly convex quadratic functions;

(c) xj = argmin
u∈Rn

{
AjΓj(u) + ∥u− x0∥2/2

}
.

Lemma 2.3. For every j ≥ 0, we have

Ajψ(yj) ≤ min
u∈Rn

{
AjΓj(u) +

1

2
∥u− x0∥2

}
. (11)

3



The following lemma is the same as Proposition 1(c) of [27] and hence we omit the proof.

Lemma 2.4. For every j ≥ 1, we have

Aj ≥ max

{
j2

4L
,
1

L

(
1 +

√
µ

2
√
L

)2(j−1)
}
.

2.2 The algorithm

Subsection 2.1 outlines a single-loop ACG method. Designing a restart ACG requires repeatedly
invoking Algorithm 1 as a subroutine within a double-loop algorithm. This approach aligns nat-
urally with the proximal point method (PPM), which iteratively solves a sequence of proximal
subproblems using a recursive subroutine. More precisely, we adopt the A-HPE framework from
[28] as an inexact PPM. Within each loop of A-HPE, Algorithm 1 is employed to solve a certain
proximal subproblem, while between successive loops, an acceleration scheme from A-HPE is ap-
plied. Consequently, the proposed restart ACG method (i.e., Algorithm 2) can be described as
“doubly accelerated.”

Algorithm 2 Restart ACG

Initialize: given initial point w0 ∈ domh and stepsize λ > 0, set z0 = w0 and B0 = 0
for k = 1, 2, · · · do

1. Compute

bk =
λ+

√
λ2 + 4λBk−1

2
, Bk = Bk−1 + bk, z̃k =

Bk−1

Bk
wk−1 +

bk
Bk

zk−1;

2. Call Algorithm 1 with

x0 = z̃k, ψ = ϕ+
1

2λ
∥ · −z̃k∥2, g = f +

1

2λ
∥ · −z̃k∥2 (12)

to find a triple (w̃k, uk, ηk) satisfying

uk ∈ ∂ηkϕ(w̃k), (13)

∥λuk + w̃k − z̃k∥2 + 2ληk ≤ 0.9∥z̃k − w̃k∥2; (14)

3. Compute zk = zk−1 − bkuk and wk ∈ Argmin {ϕ(u) : u ∈ {wk−1, w̃k}}.
end for

From the “inner loop” perspective, Algorithm 2 keeps performing ACG iterations until (13) and
(14) are satisfied, and then restarts ACG with the initialization as in (12). From the “outer loop”
perspective, Algorithm 2 is an instance of the A-HPE framework of [28] for solving (1) with λk = λ
for every k ≥ 1 and ACG as its subroutine for step 2. The constant 0.9 in (14) is not critical and can
be any arbitrary number within the interval (0, 1). With minor modification, such as generalizing
f to ϕ, the results in Section 3 of [28] are applicable to this paper. Consequently, Theorem 3.8 of
[28] also holds. For completeness, we state the theorem below in our context without providing a
proof.

Theorem 2.5. For every k ≥ 1, we have

ϕ(wk)− ϕ∗ ≤
2d20
λk2

.
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We next provide some PPM interpretations of conditions (13) and (14). Each call to ACG in
step 2 of Algorithm 2 approximately solves the proximal subproblem

ẑk = argmin
u∈Rn

{
ϕ(u) +

1

2λ
∥u− z̃k∥2

}
(15)

such that criteria (13) and (14) are satisfied. They can be equivalently written as

λuk + w̃k − z̃k ∈ ∂ληk

(
λϕ(·) + 1

2
∥ · −z̃k∥2

)
(w̃k)

∥λuk + w̃k − z̃k∥2 + 2ληk ≤ 0.9∥z̃k − w̃k∥2.

Alternatively, we can derive a relative solution accuracy guarantee on (15). It follows from (13)
that for every u ∈ Rn,

ϕ(u) ≥ ϕ(w̃k) + ⟨uk, u− w̃k⟩ − ηk,

which together with (14) implies that

0.9∥z̃k − w̃k∥2 ≥ ∥λuk + w̃k − z̃k∥2 + 2ληk

≥ ∥λuk + w̃k − z̃k∥2 + 2λ[ϕ(w̃k) + ⟨uk, u− w̃k⟩ − ϕ(u)].

Taking u = ẑk, which is the exact solution to (15), we have

0.9∥z̃k − w̃k∥2 ≥ ∥λuk∥2 + 2λ

[
ϕ(w̃k) +

1

2λ
∥w̃k − z̃k∥2 − ϕ(ẑk) + ⟨uk, ẑk − z̃k⟩

]
≥ ∥λuk + ẑk − z̃k∥2 + 2λ

[
ϕ(w̃k) +

1

2λ
∥w̃k − z̃k∥2 − ϕ(ẑk)−

1

2λ
∥ẑk − z̃k∥2

]
.

Therefore,

ϕ(w̃k) +
1

2λ
∥w̃k − z̃k∥2 − ϕ(ẑk)−

1

2λ
∥ẑk − z̃k∥2 ≤

0.9

2λ
∥z̃k − w̃k∥2,

indicating that w̃k is an approximate solution to (15) with respect to the relative accuracy given
above.

2.3 Complexity analysis

This subsection provides the complexity analysis of Algorithm 2. It first establishes the iteration-
complexity for ACG to find a triple (w̃k, uk, ηk) satisfying (13) and (14).

To set the stage, recall the initialization in (12), we note that ACG invoked at step 2 of Algo-
rithm 2 solves (2) with

ψ(·) = ϕ(·) + 1

2λ
∥ · −x0∥2, g(·) = f(·) + 1

2λ
∥ · −x0∥2, µ =

1

λ
. (16)

Lemma 2.6. Define

ϕj(·) := Γj(·)−
1

2λ
∥ · −x0∥2, (17)

where Γj is as in (9). Then, for every j ≥ 1, we have

v̂j ∈ ∂εjϕ(yj), ∥λv̂j + yj − x0∥2 + 2λεj = ∥λvj∥2 + 2λ[ψ(yj)− Γj(xj)] (18)

where

vj :=
x0 − xj
Aj

, v̂j :=
x0 − xj
Aj

+
x0 − xj

λ
, εj := ϕ(yj)− ϕj(xj)− ⟨v̂j , yj − xj⟩. (19)
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Proof: It follows from the optimality condition of (6) and the definition of ϕj in (17) that

vj =
x0 − xj
Aj

(6)
∈ ∂Γj(xj)

(17)
= ∂ϕj(xj) +

1

λ
(xj − x0),

which together with (19) implies that v̂j ∈ ∂ϕj(xj). This inclusion, the fact that ϕ ≥ ϕj , and the
definition of εj in (19) yields that for every u ∈ Rn,

ϕ(u) ≥ ϕj(u) ≥ ϕj(xj) + ⟨v̂j , u− xj⟩ = ϕ(yj) + ⟨v̂j , u− yj⟩ − εj ,

and hence that the inclusion in (18) holds. Noting that v̂j = vj + (x0 − xj)/λ, we have

∥λv̂j + yj − x0∥2 + 2λεj

=∥λvj + yj − xj∥2 + 2λ [ϕ(yj)− ϕj(xj)]− 2λ⟨vj , yj − xj⟩ − 2⟨x0 − xj , yj − xj⟩

=∥λvj∥2 + 2λ

[
ϕ(yj) +

1

2λ
∥yj − x0∥2 − ϕj(xj)−

1

2λ
∥xj − x0∥2

]
.

Finally, the identity in (18) follows from the above one and the definitions of ψ and ϕj in (16) and
(17), respectively.

Lemma 2.7. Define
x̂j := argmin {Γj(u) : u ∈ Rn} , (20)

where Γj is as in (9). Assuming that Aj ≥ 3λ, then the following statements hold for every j ≥ 1:

a)

ψ(yj)− Γj(x̂j) ≤
1

2Aj
∥x̂j − x0∥2 ≤

1

Aj − 2λ
∥yj − x0∥2; (21)

b)

∥vj∥ ≤ 3∥yj − x0∥
2Aj

. (22)

Proof: a) Using Lemma 2.3, we have

ψ(yj)
(11)

≤ min
u∈Rn

{
Γj(u) +

1

2Aj
∥u− x0∥2

}
≤ Γj(x̂j) +

1

2Aj
∥x̂j − x0∥2,

and hence the first inequality in (21) holds. Since Γj is as in (9), it follows from Lemma 2.2(b)
and the fact that µ = 1/λ (see (16)) that Γj is λ−1-strongly convex. This observation, the above
inequality, and the definition of x̂j in (20) thus imply that for every u ∈ Rn,

ψ(yj)−
1

2Aj
∥x̂j − x0∥2 ≤ Γj(x̂j) ≤ Γj(u)−

1

2λ
∥u− x̂j∥2.

Taking u = yj in the above inequality and using the fact that Γj ≤ ψ, we obtain

∥yj − x̂j∥2 ≤
λ

Aj
∥x̂j − x0∥2.

Using the above inequality, the triangle inequality, and the fact that (a+ b)2 ≤ 2(a2 + b2), we have

∥x̂j − x0∥2 ≤ 2(∥x̂j − yj∥2 + ∥yj − x0∥2) ≤
2λ

Aj
∥x̂j − x0∥2 + 2∥yj − x0∥2,
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and hence the second inequality in (21) follows.
b) It follows from Lemma 2.3 and the fact that Γj is λ−1-strongly convex that

ψ(yj) +
1

2

(
1

λ
+

1

Aj

)
∥u− xj∥2 ≤ min

u∈Rn

{
Γj(u) +

1

2Aj
∥u− x0∥2

}
+

1

2

(
1

λ
+

1

Aj

)
∥u− xj∥2

≤ Γj(u) +
1

2Aj
∥u− x0∥2.

Taking u = yj in the above inequality and using the fact Γj ≤ ψ, we have

1

2

(
1

λ
+

1

Aj

)
∥yj − xj∥2 ≤ Γj(yj)− ψ(yj) +

1

2Aj
∥yj − x0∥2 ≤

1

2Aj
∥yj − x0∥2,

and hence

∥yj − xj∥2 ≤
λ

λ+Aj
∥yj − x0∥2 ≤

1

4
∥yj − x0∥2

where the second inequality is due to Aj ≥ 3λ. Finally, (22) immediately follows from the definition
of vj in (19), the triangle inequality, and the above inequality.

Proposition 2.8. The number of iterations performed by ACG to find a triple (w̃k, uk, ηk) satisfying
(13) and (14) is at most

min

{
2
√
6λL,

(
1

2
+
√
λL

)
ln(6λL)

}
. (23)

Proof: It is easy to verify that (23) and Lemma 2.4 imply that Aj ≥ 6λ. Consider the first j such
that Aj ≥ 6λ, then we prove that

uk = v̂j , ηk = εj , w̃k = yj (24)

satisfy (13) and (14). First, it follows from Lemma 2.6 that the inclusion in (18) is equivalent to
(13) with the assignment (24). Using the identity in (18) and Lemma 2.7 we have

∥λv̂j + yj − x0∥2 + 2λεj = ∥λvj∥2 + 2λ[ψ(yj)− Γj(xj)]

(21),(22)

≤ 9λ2∥yj − x0∥2

4A2
j

+
2λ

Aj − 2λ
∥yj − x0∥2

≤
(

1

16
+

1

2

)
∥yj − x0∥2,

where the last inequality is due to the fact that Aj ≥ 6λ. Hence, (14) also holds in view of (24).
Now we are ready to present the main result of the paper.

Theorem 2.9. Given ε̄ > 0, assuming that λ satisfies 1/L ≤ λ ≤ d20/ε̄, then the total iteration-
complexity of Algorithm 2 to find a ε̄-solution to (1) is O(

√
Ld0/

√
ε̄).

Proof: It follows from Theorem 2.5 that to find a ε̄-solution, the number of calls to ACG is at most√
2d0/

√
λε̄. Therefore, the conclusion of the theorem immediately follows from Proposition 2.8 and

the assumption on λ.
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3 Connections between restart ACG and MPB

Inspired by the interpretation of restart ACG as an instance of A-HPE, we revisit the MPB method
and show that it is indeed an instance of the HPE framework for CNCO. To begin with, we present
below the HPE framework, adapted from Framework 1 of [11], for solving (1) where f isM -Lipschitz
continuous instead of being smooth and h is as in (1).

Algorithm 3 HPE framework

Initialize: given initial point w0 ∈ domh, stepsize λ > 0, and tolerance δ > 0
for k = 1, 2, · · · do

1. Find a triple (w̃k, uk, ηk) satisfying

uk ∈ ∂ηkϕ(w̃k), (25)

∥λuk + w̃k − wk−1∥2 + 2ληk ≤ 2λδ; (26)

2. Compute wk = wk−1 − λuk.
end for

3.1 MPB as an instance of HPE

This subsection shows that the MPB method is an instance of the HPE framework. We begin with
a brief review of MPB. A key distinction of MPB from classical PB methods [15, 16, 26, 38] lies
in its incorporation of the PPM. MPB approximately solves a sequence of proximal subproblem of
the form

min
u∈Rn

{
ψ(u) := ϕ(u) +

1

2λ
∥u− wk−1∥2

}
. (27)

Letting x0 = wk−1 be the initial point of the subroutine for solving (27), MPB iteratively solves

xj = argmin
u∈Rn

{
Γj(u) + h(u) +

1

2λ
∥u− x0∥2

}
, (28)

where Γj is a bundle model underneath f . Details about various models and a unifying framework
underlying them are discussed in [23]. MPB keeps refining Γj and solving xj through (28), until a
criterion tj = ψ(x̃j)−mj ≤ δ is met, where

mj = Γj(xj) + h(xj) +
1

2λ
∥xj − x0∥2, x̃j ∈ Argmin {ψ(u) : u ∈ {x0, x1, . . . , xj}}. (29)

As explained in [18], the criterion tj ≤ δ indicates that a primal-dual solution to (27) with primal-
dual gap bounded by δ is obtained. It also implies that x̃j is a δ-solution to (27) (see also [21]).
Once the condition tj ≤ δ is met, MPB updates the prox center to wk = xj , resets the bundle
model Γj from scratch, and proceeds to solve (27) with wk−1 replaced by wk.

Lemma 3.1. Given x0 = wk−1, the MPB method is an instance of the HPE framework with

wk = xj , w̃k = x̃j , uk =
x0 − xj

λ
, ηk = ϕ(x̃j)− (Γj + h)(xj) +

1

λ
⟨x0 − xj , xj − x̃j⟩, (30)

where j is the first iteration index such that the condition tj ≤ δ is met.

8



Proof: Let εj = ϕ(x̃j)− (Γj + h)(xj) + ⟨x0 − xj , xj − x̃j⟩/λ, we first prove that

x0 − xj
λ

∈ ∂εjϕ(x̃j), ∥xj − x̃j∥2 + 2λεj = 2λtj . (31)

It follows from the optimality condition of (28) that

x0 − xj
λ

∈ ∂(Γj + h)(xj).

This inclusion and the assumption that Γj ≤ f imply that for every u ∈ Rn,

ϕ(u) ≥ (Γj + h)(u) ≥ (Γj + h)(xj) +
1

λ
⟨x0 − xj , u− xj⟩.

Using the definition of εj , we thus have for every u ∈ Rn,

ϕ(u) ≥ ϕ(x̃j) +
1

λ
⟨x0 − xj , u− x̃j⟩ − εj ,

and hence the inclusion in (31) follows. Next, we show the identity in (31). Recalling that

2λtj = 2λ[ψ(x̃j)−mj ]
(29)
= 2λϕ(x̃j) + ∥x̃j − x0∥2 − 2λ(Γj + h)(xj)− ∥xj − x0∥2,

after simple algebraic manipulation, we obtain

∥xj − x̃j∥2 + 2λεj = ∥xj − x̃j∥2 + 2⟨x0 − xj , xj − x̃j⟩+ 2λ[ϕ(x̃j)− (Γj + h)(xj)] = 2λtj .

In view of (30), it is easy to verify that (25) is equivalent to the inclusion in (31). Moreover, it
follows from (30) and the identity in (31) that ∥wk − w̃k∥2+2ληk = 2λtj , which together with step
2 of Algorithm 3 implies that ∥λuk + w̃k −wk−1∥2 +2ληk = 2λtj . Finally, MPB satisfies (26) since
it terminates solving (27) once the condition tj ≤ δ is met.

3.2 Restart schemes via PPM

A standard scheme of updating the bundle model Γj in (28) is a cutting-plane scheme, the approxi-
mate solutions xj and x̃j to (27) are obtained via the cutting-plane method. Similar to restart ACG,
MPB is also a double-loop algorithm and can be viewed as a restarted version of the cutting-plane
method from the “inner loop” perspective.

On the other hand, from the “outer loop” perspective, restart ACG (resp., MPB) is an instance
of A-HPE (resp., HPE) employing a multi-step subroutine for solving the proximal subproblem
(15) (resp., (27)). As illustrated by Algorithm 1 of [28], a triple (w̃k, uk, ηk) satisfying (13) and
(14) can be obtained via one step (i.e., a proximal mapping of h) given the stepsize λ ≈ 1/L is
small enough. It is noted at the end of Section 5 of [28] that its Algorithm 1 is equivalent to
the well-known FISTA. In contrast, Algorithm 2 of this paper admits relatively large stepsize, i.e.,
1/L ≤ λ ≤ d20/ε̄ (see Theorem 2.9), and results in a multi-step subroutine, namely, Algorithm 1,
for solving (15). A common feature between Algorithm 2 and FISTA is that they both share the
optimal complexity for CSCO problems (1), namely, O(

√
Ld0/

√
ε̄) as in Theorem 2.9.

A similar comparison can be drawn between the MPB method and the subgradient method.
MPB allows relatively large stepsize, i.e., ε̄/M2 ≤ λ ≤ d20/ε̄, while the subgradient method only
takes small stepsize λ = ε̄/M2. As a result, MPB solves the proximal subproblem (27) via the
cutting-plane method as in (28), while the subgradient method always performs only one iteration
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to solve (27). For CNCO problems, MPB and the subgradient method both have optimal complexity
bound O(M2d20/ε̄

2), however, MPB substantially outperforms the subgradient method in practice.
In summary, the relationship between FISTA (specifically, Algorithm 1 of [28]) and the restart

ACG method is analogous to the relationship between the subgradient method and MPB. It is thus
understandable that, while restart ACG and FISTA share the same optimal iteration-complexity,
the restarted version demonstrates superior performance compared with the latter one. This aligns
with the general observation that, in the context of both the A-HPE and HPE frameworks, multi-
step implementations consistently outperform their single-step counterparts.

4 Concluding remarks

This paper proposes a novel restarted version of accelerated gradient method, i.e., restart ACG,
and establishes it optimal iteration-complexity for solving CSCO. It also demonstrates that the
MPB method as an instance of the HPE framework, revealing interesting connections between two
seemingly distinct optimal methods, restart ACG and MPB.

Several related questions merit future investigation. It is interesting to develop a restart ac-
celerated gradient method with optimal complexity under the strong convexity assumption. If the
strong convexity µ is known, it suffices to study the convergence analysis of A-HPE where h is
µ-strongly convex. However, in the absence of prior knowledge about µ, the focus shifts to design-
ing µ-universal methods based on improved analysis of A-HPE, utilizing possible techniques from
recent works [12, 36].
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A Deferred proofs

Proof of Lemma 2.1: (a) This statement immediately follows from the recessions of τj and Aj

in (3) and the facts that τ0 = 1/L and A0 = 0.
(b) It is easy to verify that aj in (3) is the root of equation a2j − τjaj − τjAj = 0, which is

equivalent to statement b) in view of the third identity in (3).
Proof of Lemma 2.2: (a) It follows from (4) and definition of γ̃j in (7) that

ỹj+1 = argmin
u∈Rn

{
γ̃j(u) +

L

2
∥u− x̃j∥2

}
. (32)
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Since γ̃j is µ-strongly convex, (32) implies that

γ̃j(u) +
L

2
∥u− x̃j∥2 ≥ γ̃j(ỹj+1) +

L

2
∥ỹj+1 − x̃j∥2 +

µ+ L

2
∥u− ỹj+1∥2.

Hence, using the definition of γj in (8) and rearranging the terms, we have γj ≤ γ̃j . Using the
definitions of ψ and γ̃j in (2) and (7), respectively, and the assumption that g is µ-strongly convex,
we obtain γ̃j ≤ ψ, and thus prove the inequalities in (a). By the definition of γj in (8), it is easy to
verify that γ̃j(ỹj+1) = γj(ỹj+1) and

ỹj+1 = argmin
u∈Rn

{
γj(u) +

L

2
∥u− x̃j∥2

}
. (33)

Finally, (10) is an immediate consequence of (32), (33) and γ̃j(ỹj+1) = γj(ỹj+1).
(b) It clearly follows from (8) that γj is µ-strongly convex quadratic. Moreover, it follows from

(9) and the fact that Γ0 ≡ 0 that Γj is also µ-strongly convex quadratic.
(c) It follows from (6), the definition of x̃j in (3), and Lemma 2.1(b) that

(Ajµ+ 1)xj+1 = (L+ µ)aj ỹj+1 − L(aj x̃j − τjxj),

which together with Lemma 2.1(a) and the third identity in (3) implies that

aj [L(x̃j − ỹj+1) + µ(xj+1 − ỹj+1)] + (Ajµ+ 1)(xj+1 − xj) = 0.

In view of the definition of γj in (8), the above identity is equivalent to

aj∇γj(xj+1) + (Ajµ+ 1)(xj+1 − xj) = 0. (34)

Hence,
xj+1 = argmin

u∈Rn

{
ajγj(u) + (Ajµ+ 1)∥u− xj∥2/2

}
.

It follows from the definition of γj in (8) that

∇γj(xj+1)−∇γj(xj) = µ(xj+1 − xj),

which together with (34) implies that

aj∇γj(xj) + (Aj+1µ+ 1)(xj+1 − xj) = 0. (35)

It follows from statement b) and (9) that

Aj+1∇Γj+1(xj+1) = Aj+1∇Γj+1(xj) +Aj+1µ(xj+1 − xj)

(9)
= Aj∇Γj(xj) + aj∇γj(xj) +Aj+1µ(xj+1 − xj)

(35)
= Aj∇Γj(xj)− xj+1 + xj

where the last identity is due to (35). Therefore, for every ≥ 0,

Aj+1∇Γj+1(xj+1) + xj+1 − x0 = Aj∇Γj(xj) + xj − x0 = A0∇Γ0(x0) + x0 − x0 = 0.

Therefore, statement c) immediately follows.
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Proof of Lemma 2.3: Proof by induction. Since A0 = 0, the case j = 0 is trivial. Assume that
the claim is true for some j ≥ 0. Using (9), Lemma 2.2(b), and the induction hypothesis that

Aj+1Γj+1(u) +
1

2
∥u− x0∥2

(9)

≥ AjΓj(u) + ajγj(u) +
1

2
∥u− x0∥2

≥ min
u∈Rn

{
AjΓj(u) +

1

2
∥u− x0∥2

}
+
Ajµ+ 1

2
∥u− xj∥2 + ajγj(u)

(11)

≥ Ajψ(yj) +
Ajµ+ 1

2
∥u− xj∥2 + ajγj(u).

It follows from the fact that γj ≤ γ̃j ≤ ψ (see Lemma 2.2(a)) and the definition of x̃j in (3) that

Aj+1Γj+1(u) +
1

2
∥u− x0∥2 ≥ Ajγj(yj) + ajγj(u) +

Ajµ+ 1

2
∥u− xj∥2

≥ Aj+1γj(ũ) +
Ajµ+ 1

2

A2
j+1

a2j
∥ũ− x̃j∥2,

where ũ = (Ajyj + aju)/Aj+1 and the second inequality is due to the convexity of γj . Minimizing
both sides of the above inequality over Rn and using Lemma 2.1(a)-(b), we obtain

min
u∈Rn

{
Aj+1Γj+1(u) +

1

2
∥u− x0∥2

}
≥ min

ũ∈Rn

{
Aj+1γj(ũ) +

Ajµ+ 1

2

A2
j+1

a2j
∥ũ− x̃j∥2

}

=Aj+1min
ũ∈Rn

{
γj(ũ) +

L

2
∥ũ− x̃j∥2

}
(10)
= Aj+1min

ũ∈Rn

{
γ̃j(ũ) +

L

2
∥ũ− x̃j∥2

}
=Aj+1

(
γ̃j(ỹj+1) +

L

2
∥ỹj+1 − x̃j∥2

)
≥ Aj+1ψ(ỹj+1),

where the last inequality follows from the definition of γ̃j in (7) and the assumption that g is
(L + µ)-smooth. Finally, it follows from the definition of yj+1 in (5) that (11) holds for j + 1.
Therefore, we complete the proof by induction.
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