
Analyzing the numerical correctness of
branch-and-bound decisions for mixed-integer

programming

Alexander Hoen1 and Ambros Gleixner1,2

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
hoen@zib.de

2 HTW Berlin, 10313 Berlin, Germany
gleixner@htw-berlin.de

Abstract. Most state-of-the-art branch-and-bound solvers for mixed-
integer linear programming rely on limited-precision floating-point arith-
metic and use numerical tolerances when reasoning about feasibility and
optimality during their search. While the practical success of floating-
point MIP solvers bears witness to their overall numerical robustness, it
is well-known that numerically challenging input can lead them to pro-
duce incorrect results. Even when their final answer is correct, one critical
question remains: Were the individual decisions taken during branch-
and-bound justified, i.e., can they be verified in exact arithmetic? In this
paper, we attempt a first such a posteriori analysis of a pure LP-based
branch-and-bound solver by checking all intermediate decisions critical
to the correctness of the result: accepting solutions as integer feasible,
declaring the LP relaxation infeasible, and pruning subtrees as subopti-
mal. Our computational study in the academic MIP solver SCIP confirms
the expectation that in the overwhelming majority of cases, all decisions
are correct. When errors do occur on numerically challenging instances,
they typically affect only a small, typically single-digit, amount of leaf
nodes that would require further processing.

Keywords: Mixed integer programming, branch and bound, exact com-
putation

1 Introduction

Mixed Integer Programming (MIP) solvers have evolved into highly sophisticated
software capable of solving a growing number of large-scale and complex prob-
lems efficiently. They typically implement a branch-and-bound scheme based
on a linear programming (LP) relaxation. For performance reasons, nearly all
solvers utilize floating-point arithmetic in order to speed up computations and
control memory requirements for representing values of rational numbers. These
computational advantages of floating-point arithmetic, however, also imply limi-
tations in precision: not all rational numbers can be represented exactly, leading
to tiny round-off errors that can accumulate in magnitude over the course of

http://orcid.org/0000-0003-1065-1651
http://orcid.org/0000-0003-0391-5903


2 A. Hoen, A. Gleixner

the algorithm. Therefore, solvers introduce tolerances for feasibility and a zero
tolerance for deciding equality between two numbers. Additionally, by default,
commercial solvers operate with relative gaps between 0.01% and 0.0001%.

It is well documented that sometimes accumulated rounding errors can cause
solvers to incorrectly declare infeasibility, feasibility, or optimality for subopti-
mal solutions [6,15,19,22]. Further, the MIPLIB 2017 instance collection labels
193 instances with problematic numerics with a tag “numerics”, partly because
different solvers reported inconsistent results during tests for the compilation
process [12]. As a result, for applications that require absolute certainty, such as
chip design verification [1], combinatorial auctions [24], or computational proofs
in experimental mathematics [10], the level of trust provided by floating-point
solvers is often not sufficient.

Nevertheless, it is widely accepted that the way that mature floating-point
MIP solvers handle numerics is overall very robust. This judgment is not only
due to the fact that for the vast majority of industrial MIP applications, it may
be acceptable to work with solutions that are slightly suboptimal or slightly
infeasible. The wide-spread use of floating-point MIP solvers and the fact that
the general methodology of handling round-off errors in MIP solvers has not
changed substantially over many years of development rather suggests that in
the vast majority of cases, their answers may indeed be correct in an exact sense.

However, to the best of our knowledge, the literature holds no record of a
systematic computational investigation of this fundamental methodological ques-
tion: To what extent do approximate floating-point solvers provide numerically
exact answers? More specifically, to what extent is the reasoning of a floating-
point LP-based branch-and-bound solver, which is composed of a large number
of critical decisions during the search, correct in an exact sense? While stud-
ies exist that compare the final result of numeric and exact solvers, e.g., in [7],
we are not aware of any analysis that looks deeper at the branch-and-bound
process. This is particularly interesting for the large number of cases where the
final answer of a floating-point solver is correct: Is this due to the fact that all
individual decisions were correct, or because all incorrect decisions did not affect
or compromise the final result?

In this paper, we try to give empirical answers to these questions by per-
forming a first such a posteriori analysis of a pure LP-based branch-and-bound
process. To this end, we inspect all leaves of the branch-and-bound tree and
check if the leaf is pruned correctly because (a) its LP relaxation is infeasible,
(b) its dual bound proves that the leaf does not contain improving solutions, or
(c) the LP solution is primal feasible. To test the correctness of each decision,
we apply a hierarchy of techniques from the literature such as safe bounding by
directed rounding [17], rational reconstruction by continued fraction approxima-
tions [23,25,18,20], exact LU factorization of simplex bases, and, if necessary,
round-off-error-free LP solving [13,14]. We base our experiments on the open-
source MIP solver SCIP [3] and use two curated test sets from the literature
with and without numerical challenges [7]. Our code base is publicly available.3

3 https://github.com/alexhoen/bnbanalyzer

https://github.com/alexhoen/bnbanalyzer


Analyzing the numerical correctness of branch-and-bound decisions for MIP 3

The paper is organized as follows. In Section 2, we briefly introduce the gen-
eral concept of a branch-and-bound solver, provide a classification of numerical
errors, and survey the techniques to check the correctness of floating-point de-
cisions. In Section 3, we present the results of our experiments and analyze the
different errors encountered in the floating-point solver. In Section 4, we sum-
marize our results and give an outlook on their implications for future research.

2 Numerical Errors in LP-based Branch and Bound

A mixed integer program (MIP) is given in the form

min cTx

Ax ≥ b

ℓ ≤ x ≤ u

xi ∈ Z for all i ∈ I,

where we assume rational input data A ∈ Qm×n, c ∈ Qn, u, l ∈ (Q ∪ {±∞})n,
and b ∈ Qm. The index set I ⊆ {1, . . . , n} defines which decision variables are
required to be integer.

MIPs are typically solved by variants of LP-based branch and bound, which
dates back to [16] and still forms the backbone of today’s most competitive MIP
solvers.

In Section 2.1, we describe briefly the procedure of an LP-based branch-
and-bound algorithm. For a more detailed description please refer to [1]. In
Section 2.3, we give an overview of the techniques we use to obtain an exact
evaluation of a node that was solved in floating-point arithmetic. In Section 2.2,
we categorize how numerics can impact the critical branch-and-bound decisions
in a floating-point solver and how incorrect decisions affect the overall result.

2.1 Basics of the LP-based Branch-and-Bound Algorithm

The first step in an LP-based branch-and-bound algorithm is to relax the by
dropping all integrality constraints. The resulting LP relaxation can be solved
by an LP solver. If the LP solution is integer feasible, i.e., all integer variables
have an integer solution value, the problem is solved. If the LP relaxation is
detected to be infeasible, then also the original MIP is infeasible. Otherwise, the
algorithm branches: It chooses an integer variable xi with a fractional value x̂i in
the solution of the relaxed problem to create two new sub-problems by taking the
original problem and adding the constraint xi ≥ ⌈x̂i⌉ and xi ≤ ⌊x̂i⌋, respectively.
This ensures that the optimal solution is still preserved in at least one of the
two sub-problems and the current LP solution is no longer feasible in both sub-
problems. This process of LP solving and branching is iterated recursively.

If during this process an integer feasible solution is found its objective value
can be used to the primal bound, which is the objective value of the best known
solution encountered so far. This primal bound can be used to prune, i.e., remove



4 A. Hoen, A. Gleixner

from further consideration all open sub-problems with a greater or equal dual
bound, which is given by the objective value of the sub-problem’s LP relaxation.

This recursive procedures produces a search tree with sub-problems as nodes.
A node is called leaf if it is not further branched on because it is a) integer
feasible, b) LP infeasible, or c) it was pruned. Figure 1 presents an example of a
branch-and-bound tree for a minimization problem. The solution of the relaxed
LP at the node is displayed slightly above and to the right of the node, while its
objective value is positioned on the left side. The leaf N4 is integer feasible and
appears to be also optimal. The leaf N3 is infeasible and the node N1 is cut off
since branching on N1 does not improve the solution of N4 anymore.

root

N1 N2

N3 N4

x2 ≤ 0 x2 ≥ 1

x3 ≤ 0 x3 ≥ 1

1.5 {0; 12 ;1}

2.5 {1;0; 12} 1.5 {0;1; 12}

infeas 2 {0;1;1}

Fig. 1. An example for a branch-and-bound tree on a minimization problem.

Note that although the heuristic decision on which fractional variable to
branch may be affected by numerical calculations, any sequence of branching
decisions yields a correct branch-and-bound process. The same holds for the
heuristic decision in which order to process open sub-problems: any order yields
a correct branch-and-bound algorithm. By contrast, the decision of whether to
remove a sub-problem from consideration is both affected by numerics and can
critically affect the correctness of the final result. In the next section, we focus
on these critical decisions.

2.2 Types of Numerical Errors in LP-based Branch and Bound

In our analysis, we distinguish the following types of incorrect decision that can
be taken by a floating-point solver due to numerical errors. All of these errors
occur at a leaf of the branch-and-bound tree.

Solution errors. By design, a floating-point solver may produce approximate
solutions with slight violations of integrality and constraint feasibility. A simple
post-processing step is to first round the value of all integer variables to the
nearest integer and second, if continuous variables are present, compute rational



Analyzing the numerical correctness of branch-and-bound decisions for MIP 5

values for these such that all constraints are satisfied exactly. If this is certifiably
not possible, i.e., if the floating-point solver accepted an assignment for the
integer variables as feasible that cannot be completed to an exactly feasible
solution, we refer to this as a solution error.

We distinguish two types of solution errors. If the LP relaxation at this node
is infeasible in exact arithmetic, then no solution was discarded by removing
the current leaf. We refer to this error as a weak solution error. Otherwise, the
primal solution of the LP relaxation does not satisfy integer feasibility, but the
sub-problem below the current leaf node may still contain improving solutions.
In this case, only a lower bound can be derived and we refer to this situation as
a strong solution error.

Bound errors. If a floating-point solver uses a lower bound to prune a node, this
decision can often be verified a posteriori by computing a safe dual bound that
is valid in exact arithmetic, by techniques described in Section 2.3. If this safe
bound is greater than or equal to the current primal bound, then the decision
to prune the node was correct. Otherwise, if the exact objective value of the LP
relaxation is below the primal bound, we label this decision as a bound error.
Again, we distinguish two cases. If later during the solving process an exactly
feasible solution is found that improves the primal bound and in hindsight jus-
tifies pruning the leaf, we call the error a weak bound error, otherwise a strong
bound error.

Gap errors. For the last type of error, consider the situation that a floating-
point solver declares a node to be integer feasible and produces an approximate
solution that can be converted to an exactly feasible solution after rounding
the integer assignment. Although we record no solution error here, the decision
to terminate the search below this node may still be incorrect if the objective
value of the converted, exact solution does not match the dual bound derived
by solving the LP relaxation exactly. We refer to this error as a gap error, and
as above we distinguish between weak gap errors that are justified in hindsight
and strong gap errors.

Infeasibility errors. If the floating-point solver declares a leaf infeasible but there
exists a solution to the LP relaxation that is exactly feasible we refer to this
situation as an infeasibility error.

Even when some of the errors listed above occur, the overall result of the floating-
point solver may still be correct. Specifically, weak bound and weak gap errors
do not compromise the correctness of the final result since the corresponding
decisions are justified in hindsight. We still record these errors, because we are
interested not only in the correctness of the final result but in the correctness of
the floating-point solver’s reasoning that led to the result.

Also in the presence of strong bound or strong gap errors, the solution or
at least its objective value z∗ returned by the floating-point solver may still be



6 A. Hoen, A. Gleixner

optimal. Because our analysis produces a safe dual bound at all occurrences of
such errors, we can then take the minimum of all these dual bounds and derive a
global lower bound ẑ < z∗ for the true optimal objective value. This certifies that
the true optimal objective value must lie in the interval [ẑ, z∗]. If infeasibility
errors occur, i.e., if a leaf is removed although the LP relaxation is feasible in
exact arithmetic, we can use the exact objective value of the LP relaxation as a
valid dual bound.

Finally, note that in the presence of solution errors or gap errors, the floating-
point solver will work with an incorrect, usually too optimistic primal bound
during part of the search. When checking for bound errors, however, we always
take the perspective of the floating-point solver, i.e., we treat the primal bound
registered in the floating-point solver at that time as valid, and check whether
the pruning decision is justified with respect to this primal bound. This helps
us to separate more clearly and quantify more precisely the different types of
incorrect reasoning in our computational analysis later.

2.3 Checking Numerical Correctness of Floating-point Decisions

A straightforward way to evaluate whether and which of the errors described
above occurs at a leaf node is to solve the LP relaxation once again with an
exact LP solver and compare the results. For most but small instances, this
approach is prohibitively slow. Hence, we use a hierarchy of methods that may
be able to verify or refute the correctness of leaf decisions faster.

If the plain floating-point verification fails we apply the following steps:

Safe bounding. In [17], Neumaier and Shcherbina introduce safe bounding : We
assume we have an approximated dual solution {ŷ, r̂−, r̂+} with the error

ε = c−AT ŷ + Ir̂+ + Ir̂− . (1)

We replace

r−i := r̂−i +min{εi, 0} and r+i = r̂+i +max{εi, 0} (2)

for all variables i ∈ N and obtain a feasible dual solution {ŷ, r−, r+} bT ŷ −
lT r+ + uT r−. This transformation ensures feasibility at the cost of reducing the
objective value by lT (r+−r̂+)+uT (r̂−−r−) which can now serve as a valid lower
bound for the primal objective. Since the quality of this lower bound is impacted
by the variable bounds u, l these bounds have to be finite and, ideally, as tight
as possible to minimize their impact. Safe-bounding can be applied analogously
for validating the Farkas proof. This approach is also implemented for validating
floating-point LP solutions and explained in more detail in [21].

Rational reconstruction We apply continued fractions approximation computed
by the extended Euclidean algorithm to re-construct an approximated solution
to an exact solution. Specifically, it uses the continued fraction expansion of the



Analyzing the numerical correctness of branch-and-bound decisions for MIP 7

floating-point number to round it to a close rational with a limited denomina-
tor.This method is applied to both, the primal and the dual solution, as well
as to the Farkas proof. We rely on the implementation of SoPlex [13,14]. This
method has been introduced and improved by [23,25,18,20].

Factorization If available, we perform a rational LU factorization on the simplex
basis achieved from the floating-point LP solver. For this, we use the implemen-
tation in SoPlex [13,14]. This step is only skipped for infeasible nodes since no
basis can be obtained from the LP solver.

Exact LP solving The last and most time-expensive option to derive the most
accurate lower bound on the objective is to call a round-off-error-free LP solver.
The open-source solver SoPlex provides a configuration to perform such round-
off-error-free LP solver [13,14]. We refer to this configuration as Exact-SoPlex.
This is performed as the last option for all cases.

For obtaining a primal solution from an inaccurate floating-point solution, we
also can fix the integer variables to the values of the floating-point solution and
solve the LP over the continuous variables in rational arithmetic with Exact-
SoPlex. For each primal solution value, it is ensured to lie within its lower and
upper bounds.

3 Computational Study

The guiding questions for the design of our experiments were the following: As-
suming the final result produced by a floating-point branch-and-bound solver is
correct, can we also verify that the reasoning of the individual decisions of the
solver is correct? If not, how many of the critical decisions would require re-
evaluation, and which types of the errors defined in Section 2.2 occur at which
frequency? Furthermore, we are interested in the effectiveness of the different
post-processing techniques outlined in Section 2.3. Before evaluating our exper-
iments in Section 3.2, we first describe the setup and specify the software used
in Section 3.1.

3.1 Experimental Setup

As branch-and-bound framework, we use the open-source MIP solver SCIP 9.3
[1,3] (hash: b7906251d5) and configure SCIP via parameters such that it mim-
ics the behavior of the pure LP-based branch-and-bound algorithm described
in [6]. We use the open-source solver SoPlex 8.0 (hash: 7b9bd461) both as the
underlying floating-point LP solver in SCIP, and as an exact LP solver during
our a posteriori analysis.

Preprocessing. Before passing the instances to SCIP and starting the actual
branch-and-bound process, we apply simple presolving steps [2,4]. First, we per-
form some model cleanup, i.e., we delete already satisfied constraints and con-
vert singleton rows to variable bounds. Further, we apply a limited form of



8 A. Hoen, A. Gleixner

constraint propagation in rational arithmetic in order to reduce the number of
infinite bounds, which helps to increase the success rate of safe dual bounding.

Event system in SCIP. In order to track SCIP’s branch-and-bound process, we
register so-called events that inform us every time a leaf is reached. In detail, our
implementation uses the following events. Every time SCIP finds a solution, it
triggers the event BESTSOLUTION found. A NODEINFEASIBLE event is
triggered both when the LP relaxation at this leaf is deemed infeasible, or when
a node is pruned. The LP solving status can be accessed to differentiate whether
the relaxed LP is infeasible or feasible and eventually pruned. Note that when
SCIP creates new nodes it adds them to a queue and sets the local lower bound
to the objective value of the LP relaxation of its parent. After a new solution is
found, SCIP immediately removes all nodes from the queue whose lower bound
is worse than the objective of the newly found solution. Each of these removed
leaves triggers a NODEDELETE event. Finally, every integer-feasible node
triggers an NODEFEASIBLE event.

All node events come with a list of branching decisions. Additionally for
the NODEFEASIBLE and NODEINFEASIBLE events, also the primal and
dual LP solution, respectively the Farkas proof [11], and the simplex basis are
available. When the NODEDELETE event is triggered, we recompute the dual
LP solution by solving the LP again in floating-point arithmetic with SoPlex.
At the BESTSOLUTION event, SCIP only provides the primal solution.

Test sets. We consider two test sets curated in [6] for benchmarking an exact
MIP solver. The FPEasy test set consists of 57 instances that were found easy
by the floating-point solver SCIP. The NumDiff test set consists of 50 instances
and was compiled to be numerically challenging due to large coefficient ranges
or poor conditioning. For a detailed description we refer to [6], which also lists
on which instances the results of floating-point SCIP deviate from the exact
rational results.

To provide more stable results, we perform our experiments on each in-
stance twice: one time on the original instance and another time after permut-
ing the order of variables and constraints. For the NumDiff test set instance
normalized-aim-200-1 6-ye we use aim-200 as an abbreviation.

The code base used for our experiments is publicly available at https://
github.com/alexhoen/bnbanalyzer. All experiments were carried out on identical
machines with Intel(R) Xeon(R) CPU E7-8880 v4 @ 2.20 GHz with a time limit
of 10800 seconds for each instance, which includes both the solving time of the
floating-point solver SCIP as well as the evaluation of the leaves.

3.2 Evaluation of branch-and-bound decisions in SCIP

Table 1 provides a first overview of the results for the floating-point solver SCIP
on both test sets FPEasy andNumDiff, summarizing how many instances were
correctly solved and on how many SCIP returns an inexact solution or even an
incorrect status. The columns “correct” state the number of instances where no

https://github.com/alexhoen/bnbanalyzer
https://github.com/alexhoen/bnbanalyzer


Analyzing the numerical correctness of branch-and-bound decisions for MIP 9

errors occurred as defined in Section 2.2: All solutions are either exactly integer
feasible or convertible to such, all infeasible leaves are infeasible in rational arith-
metic, and any node pruning is also justified in exact arithmetic. By contrast,
the columns “fails” state the number of instances where at least one such error
occurred and solving finished within the time limit. The column “primal” re-
ports the number of instances with a solution error (see Section 2.2), the column
“dual” reports the number of instances with a bound, gap, or infeasibility error.

Note that for two instances (30:70:4 5:0 95:100 and npmv07) SCIP timed
out before reaching a leaf or producing a solution and therefore did not issue any
event. Since no wrong decision was made these instances are labeled as correct.

within time limit time out

test set instances correct fails primal dual correct fails

FPEasy original 57 49 2 0 2 6 0
permuted 57 49 2 0 2 6 0

NumDiff original 50 11 20 12 9 14 5
permuted 50 13 18 12 9 13 7

Table 1. Aggregate statistics on instances with/without incorrect decisions in floating-
point SCIP.

Regardless of the permutation, for 55 of the 57 instances of FPEasy, we
could verify that SCIP followed a fully correct solving process. On 49 instances
it terminated with an exact optimal solution, while on 6 instances SCIP hit the
time limit. Only for two instances, we encountered dual fails. On one instance
(vpm2) the results is still correct, on the other instance (dano3 4), the result
is slightly suboptimal. This can also be seen in Table 5, where we compare the
results of floating-point SCIP to the results of a numerically exact version of
SCIP [6,8,9], on the instances where SCIP made at least one wrong decisions.

As expected, verifying the results of the NumDiff test set leads to more
errors. Only on 25 (original) and 27 (permuted) of the 50 instances, respectively,
SCIP followed a fully correct solution process. On each seed, 14 of these instances
hit the time limit, so only for 11 respectively 13 instances SCIP terminated with
a verifiable exact optimal solution. Still, on both test sets, a notable amount of
the floating-point solves exhibits no errors.

For a more detailed analysis, Tables 2 to 4 include all instances labeled as
“fail” in Table 1 and those instances where SCIP produced a “correct” result but
made incorrect decisions during the solving process. All instances where SCIP
made a wrong decision on FPEasy are listed in Table 2. Instances of NumDiff
that encountered errors and are solved within the time limit are listed in Table 3.
A complete overview NumDiff instances with wrong decisions where SCIP
timed out are listed in Table 4. The column “leaves” lists the total number of
processed leaves of the tree; the remaining columns report the number of leaves



10 A. Hoen, A. Gleixner

with errors according to the definition in Section 2.2, where “W” and “S” stands
for weak and strong errors, respectively.

Sol Bound Gap

Instance Perm leaves W S W S W S

dano3-4
0 29 0 0 0 0 0 1
1 29 0 0 0 0 0 1

vpm2
0 688 018 0 0 5 34 0 0
1 649 085 0 0 11 167 0 0

Table 2.Analysis of number of leaves with incorrect decisions on the FPEasy instances
within the time limit.

Notably, only the instances ns1859355 and vpm2 show a correct result de-
spite wrong decisions during the solving process. On FPEasy the vast majority
of instances in Table 2 are solved without wrong decisions. SCIP incorrectly eval-
uated nodes on only two instances, affecting one node in dano3-4 and 39 of 178
nodes in vpm2, respectively. Though 39 or 178 wrong decisions on vpm2 seems
to be a notable amount of wrong decisions, compared to the overall evaluated
nodes on the entire FPEasy test set the wrong decisions on these two instances
make up a tiny portion.

As expected, on the numerical more challenging NumDiff test, more wrong
decisions are made. First, let us focus on the instances with dual fails. Besides the
instances alu16 8, tkatTV5, and tkat3TV, all instances show at most two
leaves with strong bound or gap errors. On the instances, tkat3*, ns1629327
and ns1859355, more weak and strong bound or gap errors appear, and alu10 9
produces 46 infeasibility errors. Nevertheless, these all make up only a small
fraction of the total number of evaluated nodes.

On the alu*-instances (except for alu16 1), and on the instances dfn6 load,
neos-1053591, neos-1062641, neos-1603965, ns1866531 the solutions gener-
ated by SCIP are slightly infeasible and can not be converted to exact solutions.
Especially the alu instances are numerical difficult: Either the instance is infea-
sible or there is a huge gap between the floating-point solution and the solution
of Exact-SCIP as can be seen in Table 5.

One natural attempt to reduce such solution errors is to call SCIP with a
tightened feasibility tolerance. Per default, the feasibility tolerance is 10−6. We
repeated our experiments but tightened the tolerance to 10−9. The results show
a significant reduction in solution errors. On the instances alu10 1, alu10 8,
alu10 9, bernd2, aim-200 and dfn6 load, SCIP finds an exactly integer-
feasible solution, or they can be converted to such, or SCIP times out, but on
the instances 16 7 or ns1859355, the floating-point solver still produces slightly
infeasible solutions. On the FPEasy instance dano3 4 also all gap errors were
removed, successfully closing the dual gap on this instance.



Analyzing the numerical correctness of branch-and-bound decisions for MIP 11

Sol Bound Gap Inf

Instance Perm leaves W S W S W S

alu10 1 0 883 2 0 0 0 0 0 0

alu10 7
0 811 0 1 0 0 0 0 0
1 734 0 3 0 0 0 0 0

alu10 8
0 4 254 0 3 0 0 0 0 0
1 4 486 1 3 0 0 0 0 0

alu10 9
0 6 665 1 3 0 0 0 0 0
1 7 675 1 5 0 0 0 0 0

alu16 1 0 958 643 0 0 0 0 0 0 46

alu16 7
0 694 0 3 0 0 0 0 0
1 1 307 0 4 1 1 0 0 0

alu16 8
0 TL 0 8 0 20 0 0 3
1 219 362 0 3 0 2 0 0 0

alu16 9
0 199 225 0 4 0 0 0 0 0
1 44 961 0 13 0 0 0 0 0

bernd2
0 31 081 0 4 0 0 0 0 0
1 23 144 0 5 0 0 0 0 0

dfn6 load
0 11 210 2 6 9 0 0 0 0
1 3 064 0 6 9 0 0 0 0

aim-200
0 7 414 0 0 0 0 0 0 1
1 9 534 0 0 0 0 0 0 1

neos-1053591
0 225 381 0 2 0 0 0 0 0
1 TL 1 1 0 0 0 0 0

neos-1062641
0 92 0 1 0 0 0 0 0
1 46 0 1 0 0 0 0 0

neos-1603965 0/1 1 0 1 0 0 0 0 0

ns1629327
0 9 985 0 0 0 0 0 2 0
1 11 788 0 0 0 2 0 2 0

ns1859355
0 12 581 0 0 0 0 1 0 0
1 6 434 0 0 0 0 2 0 0

ns1866531 0/1 1 0 1 0 0 0 0 0

prodplan2
0 3 0 0 0 1 1 1 0
1 27 0 0 3 0 2 1 0

tkat3K
0 4 367 0 0 11 1 0 0 0
1 8 335 0 0 5 2 0 0 0

tkat3T
0 14 604 0 0 27 1 0 0 0
1 5 219 0 0 4 4 0 0 0

tkat3TV
0 4 546 0 0 10 7 0 0 0
1 19 032 0 0 28 5 0 0 0

tkatTV5
0 8 459 0 0 15 26 0 0 0
1 18 999 0 0 1 17 0 0 0

Table 3. Analysis of number of leaves with incorrect decisions on the NumDiff in-
stances within the time limit.



12 A. Hoen, A. Gleixner

Sol Bound Gap Inf

Instance Perm leaves W S W S W S

alu16 5
0 1 342 439 0 0 0 0 0 0 11
1 280 574 0 0 0 0 0 0 875

dfn6fp load 1 585 0 2 3 4 0 0 0

ns2080781
0 701 865 7 3 156 72 0 0 0
1 52 258 0 4 0 0 0 0 0

ns1925218 1 22 556 0 0 0 0 0 0 1

prodplan1 0 36 0 0 0 1 0 0 0

ran14x18- 0 1 268 265 0 12 1 0 0 0 0
-disj-8 1 1 288 277 0 6 2 2 0 0 0

neos-799716 1 1 095 0 0 0 0 0 0 1

Table 4. Analysis of number of leaves with incorrect decisions on the NumDiff in-
stances with time out.

However, we also observe that the number of explored nodes is significantly
increased. This does not only lead to increased solving time, but can also cre-
ate more numerically challenging leaves, hence potentially increasing the abso-
lute number of incorrect decisions. An example of this behavior is the instance
blend2 where the result of SCIP can no longer be verified.

3.3 Analysis of different post-processing techniques

Finally, let us have a look at the effectiveness and success rate of the different
post-processing techniques described in Section 2.3. Table 6 aggregates over all
leaves of a complete run over each test set (column “leaves”) and categorizes
them based on the techniques that were successful for verification. The column
“floating-point” lists the percentage of leaves that are verified automatically or
through the use of safe bounding. The columns “Reconstruct”, “Factorize”, and
“Exact” likewise represent the percentage for the corresponding methods. The
row “unb” reports the numbers for all instances that contain variables with
unbounded domains.

Surprisingly, 93.76% (FPEasy) to 99.69% (NumDiff) of the leaf decisions
can be verified using floating-point arithmetic. Thus, the presented methods can
be implemented very efficiently. In relative terms, the percentage of erroneous
leaf decisions is small on all test sets.

Safe bounding requires bounded variables and can therefore more reliably be
applied to problems with bounded variables. As a result, unbounded problems,
listed in Table 6 in row “unb”, have a significantly higher percentage of expensive
Exact-SoPlex calls. On these unbounded problems, the success rate of the
floating-point arithmetic drops significantly to 65.18% on FPEasy and 94.89%



Analyzing the numerical correctness of branch-and-bound decisions for MIP 13

SCIP range of exact solution

Instance Seed 0 Seed 1

dano3 4 576.435224722083 576.435224722083 576.4352247072
vpm2 13.75 13.75 13.75

alu10 1 86 inf inf
alu10 7 83 83 [1243230.17385925,∞)
alu10 8 84 84 [169.4062227788,∞)
alu10 9 84 83 [1166.7499882579,3726773]
alu16 1 84 inf inf
alu16 7 79 79 [315.4000244141,∞)
alu16 8 x 79 [2256.0481863315,∞)
alu16 9 79 79 [3801.0189752579,∞)
bernd2 11209.0573895658 11209.0573899187 113091.469015879
dfn6 load 3.743842258432 3.743842258432 [3.7683622392,4.4007262645]
aim-200 inf inf 200
neos-1053591 -3662.9144 time limit -3662.9144
neos-1062641 0 0 0
neos-1603965 619244367.662956 619244367.662956 [619246130.539662,∞)
ns1629327 -10.9803191329325 -10.9803191329325 -10.9803191329
ns1866531 0 0 10
prodplan2 -239399.435140992 -239399.4351411 -239399.435141407
tkat3K 4772818.1 4772818.1 4772818.1
tkat3T 5564891.75 5564891.75 5564891.75
tkat3TV 8388398.65 8388398.65 8388398.65
tkatTV5 28117644.225 28117644.225 28117644.225

Table 5. Comparison of the results of floating-point SCIP and rational solutions. The
exact results were generated with Exact-SCIP (hash: c7bd4be7b9) and a time limit
of 18800 seconds

leaves floating-point Reconstruct Factorize exact error

FPEasy all 19952937 93.76% 2.93% 0.46% 2.85% 0.00020%
unb 424881 65.18% 0.15% 4.78% 29.89% 0.00024%

NumDiff all 8389838 99.69% 0.0% 0.04% 0.27% 0.00543515%
unb 71221 94.89% 0.02% 1.22% 3.86% 0.00140408%

Table 6. Distribution on the different verification methods over all leaves on seed 0.



14 A. Hoen, A. Gleixner

on NumDiff. This leads to an increase in more expensive techniques such as
the Exact-SoPlex calls which significantly increase from 2.85% to 29.89% on
FPEasy and from 0.06% to 3.86% on NumDiff.

4 Conclusion

Our experiments indicate that the overwhelming majority of the decisions made
by the floating-point solver SCIP on both the test set FPEasy and even on
the numerically more challenging test set NumDiff are correct even in rational
arithmetic. For feasible instances, only a small, typically single-digit, number of
nodes per instance can not be verified and would require further treatment to
generate a proof of correctness of the floating-point calculation. Notably, most
of the node decisions can be verified in fast floating-point arithmetic and do not
require techniques that rely on more expensive rational arithmetic.

However, we also observe that sub-problems that are infeasible in exact arith-
metic pose a special situation. Here, sometimes the floating-point solver can find
solutions with slight violations and use them to prune nodes which are incorrect
in terms of rational arithmetic. This is particularly troubling for instances that
are globally infeasible in exact arithmetic. Our results show that this issue can
only partially be addressed by tightening the feasibility tolerance of the solver.

Overall, these results are encouraging. On the one hand, they quantify the
widely accepted belief that floating-point MIP solvers are generally numerically
robust for well-behaved input data. On the other hand, they also suggest a path
forward to using floating-point solvers as a grey box in order to solve MIPs ex-
actly over the rational numbers. First, the experimental setup put forward in
this paper can be used to generate partial certificates of optimality, which can
even be verified for example in the VIPR format [5]. Second, these partial cer-
tificates can then be completed by continuing to explore sub-problems that were
incorrectly discarded, either recursively with increased precision or by calling an
exact MIP solver. For this to become competitive with the state of the art in
exact MIP solving, our a posteriori verification of LP-based branch-and-bound
needs to be extended to include more advanced techniques like presolving or
cutting plane separation.

Acknowledgements. The work for this article has been partly conducted within the
Research Campus MODAL funded by the German Federal Ministry of Education and
Research (BMBF grant number 05M14ZAM).

References

1. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis (01 2007). https:
//doi.org/10.14279/depositonce-1634

2. Achterberg, T., Bixby, R., Gu, Z., Rothberg, E., Weninger, D.: Presolve reductions
in mixed integer programming. INFORMS Journal on Computing 32 (11 2019).
https://doi.org/10.1287/ijoc.2018.0857

https://doi.org/10.14279/depositonce-1634
https://doi.org/10.14279/depositonce-1634
https://doi.org/10.1287/ijoc.2018.0857


Analyzing the numerical correctness of branch-and-bound decisions for MIP 15

3. Bolusani, S., Besançon, M., Bestuzheva, K., Chmiela, A., Diońısio, J., Donkiewicz,
T., van Doornmalen, J., Eifler, L., Ghannam, M., Gleixner, A., Graczyk, C., Hal-
big, K., Hedtke, I., Hoen, A., Hojny, C., van der Hulst, R., Kamp, D., Koch, T.,
Kofler, K., Lentz, J., Manns, J., Mexi, G., Mühmer, E., Pfetsch, M.E., Schlösser,
F., Serrano, F., Shinano, Y., Turner, M., Vigerske, S., Weninger, D., Xu, L.: The
scip optimization suite 9.0 (2024), https://arxiv.org/abs/2402.17702

4. Brearley, A.L., Mitra, G., Williams, H.P.: Analysis of mathematical program-
ming problems prior to applying the simplex algorithm. Math. Program. 8(1),
54–83 (Dec 1975). https://doi.org/10.1007/BF01580428, https://doi.org/10.1007/
BF01580428

5. Cheung, K.K.H., Gleixner, A., Steffy, D.: Verifying integer programming results. In:
F. Eisenbrand and J. Koenemann, eds., Integer Programming and Combinatorial
Optimization: 19th International Conference, IPCO 2017. vol. 10328, pp. 148 – 160
(2017). https://doi.org/10.1007/978-3-319-59250-3 13

6. Cook, W., Koch, T., Steffy, D.E., Wolter, K.: An exact rational mixed-integer
programming solver. In: Günlük, O., Woeginger, G.J. (eds.) Integer Programming
and Combinatoral Optimization. pp. 104–116. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

7. Cook, W., Koch, T., Steffy, D.E., Wolter, K.: A hybrid branch-and-bound approach
for exact rational mixed-integer programming. Mathematical Programming Com-
putation 5(3), 305–344 (2013). https://doi.org/10.1007/s12532-013-0055-6

8. Eifler, L., Gleixner, A.: A computational status update for exact rational mixed in-
teger programming. Mathematical Programming (2022). https://doi.org/10.1007/
s10107-021-01749-5

9. Eifler, L., Gleixner, A.: Safe and verified gomory mixed integer cuts in a rational
mip framework (2023), https://arxiv.org/abs/2303.12365

10. Eifler, L., Gleixner, A., Pulaj, J.: A safe computational framework for integer
programming applied to chvátal’s conjecture. ACM Transactions on Mathematical
Software 48(2) (2022). https://doi.org/10.1145/3485630

11. Farkas, J.: Theorie der einfachen ungleichungen. Journal für die reine und ange-
wandte Mathematik 124, 1–27 (1902), http://eudml.org/doc/149129

12. Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold,
T., Christophel, P.M., Jarck, K., Koch, T., Linderoth, J., Lübbecke, M., Mit-
telmann, H., Ozyurt, D., Ralphs, T., Salvagnin, D., Shinano, Y.: Miplib 2017:
Data-driven compilation of the 6th mixed-integer programming library. Mathe-
matical Programming Computation 13(3), 443 – 490 (2021). https://doi.org/10.
1007/s12532-020-00194-3

13. Gleixner, A., Steffy, D.E.: Linear programming using limited-precision oracles.
Mathematical Programming 183(1–2), 525–554 (Nov 2019). https://doi.org/10.
1007/s10107-019-01444-6, http://dx.doi.org/10.1007/s10107-019-01444-6

14. Gleixner, A.M., Steffy, D.E., Wolter, K.: Iterative refinement for linear program-
ming. INFORMS J. on Computing 28(3), 449–464 (Aug 2016)

15. Klotz, E.: Identification, assessment, and correction of ill-conditioning and nu-
merical instability in linear and integer programs. In: Newman, A., Leung, J.
(eds.) Bridging Data and Decisions, pp. 54–108. TutORials in Operations Research
(2014). https://doi.org/10.1287/educ.2014.0130

16. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming
problems. Econometrica 28(3), 497–520 (1960), http://www.jstor.org/stable/
1910129

https://arxiv.org/abs/2402.17702
https://doi.org/10.1007/BF01580428
https://doi.org/10.1007/BF01580428
https://doi.org/10.1007/BF01580428
https://doi.org/10.1007/978-3-319-59250-3_13
https://doi.org/10.1007/s12532-013-0055-6
https://doi.org/10.1007/s10107-021-01749-5
https://doi.org/10.1007/s10107-021-01749-5
https://arxiv.org/abs/2303.12365
https://doi.org/10.1145/3485630
http://eudml.org/doc/149129
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s10107-019-01444-6
https://doi.org/10.1007/s10107-019-01444-6
http://dx.doi.org/10.1007/s10107-019-01444-6
https://doi.org/10.1287/educ.2014.0130
http://www.jstor.org/stable/1910129
http://www.jstor.org/stable/1910129


16 A. Hoen, A. Gleixner

17. Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer linear pro-
gramming. Mathematical Programming 99, 283–296 (2004). https://doi.org/10.
1007/s10107-003-0433-3, https://doi.org/10.1007/s10107-003-0433-3

18. Pan, V.Y.: Nearly optimal solution of rational linear systems of equations
with symbolic lifting and numerical initialization. Computers & Mathemat-
ics with Applications 62(4), 1685–1706 (2011). https://doi.org/https://doi.org/
10.1016/j.camwa.2011.06.006, https://www.sciencedirect.com/science/article/pii/
S0898122111004743

19. Paxian, T., Biere, A.: Uncovering and classifying bugs in MaxSAT solvers through
fuzzing and delta debugging. In: Järvisalo, M., Le Berre, D. (eds.) Proceedings
of the 14th Internantional Workshop on Pragmatics of SAT Co-located with the
26th International Conference on Theory and Applicationas of Satisfiability Testing
(SAT 2003), Alghero, Italy, July, 4, 2023. CEUR Workshop Proceedings, vol. 3545,
pp. 59–71. CEUR-WS.org (2023), http://ceur-ws.org/Vol-3545/paper5.pdf

20. Saunders, B.D., Wood, D.H., Youse, B.S.: Numeric-symbolic exact rational linear
system solver. In: Proceedings of the 36th International Symposium on Symbolic
and Algebraic Computation. p. 305–312. ISSAC ’11, Association for Computing
Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1993886.1993932,
https://doi.org/10.1145/1993886.1993932

21. Steffy, D., Wolter, K.: Valid linear programming bounds for exact mixed-integer
programming. Tech. Rep. 11-08, ZIB, Takustr. 7, 14195 Berlin (2011)

22. Steffy, D.E.: Topics in exact precision mathematical programming. Ph.D. thesis,
Georgia Institute of Technology (2011), http://hdl.handle.net/1853/39639

23. Ursic, S., Patarra, C.: Exact solution of systems of linear equations with itera-
tive methods. SIAM Journal on Algebraic Discrete Methods 4(1), 111–115 (1983).
https://doi.org/10.1137/0604014, https://doi.org/10.1137/0604014

24. Vries, S., Vohra, R.: Combinatorial auctions: A survey. INFORMS Journal on
Computing 15, 284–309 (08 2003). https://doi.org/10.1287/ijoc.15.3.284.16077

25. Wan, Z.: An algorithm to solve integer linear systems exactly us-
ing numerical methods. Journal of Symbolic Computation 41(6), 621–632
(2006). https://doi.org/https://doi.org/10.1016/j.jsc.2005.11.001, https://www.
sciencedirect.com/science/article/pii/S0747717105001653

https://doi.org/10.1007/s10107-003-0433-3
https://doi.org/10.1007/s10107-003-0433-3
https://doi.org/10.1007/s10107-003-0433-3
https://doi.org/https://doi.org/10.1016/j.camwa.2011.06.006
https://doi.org/https://doi.org/10.1016/j.camwa.2011.06.006
https://www.sciencedirect.com/science/article/pii/S0898122111004743
https://www.sciencedirect.com/science/article/pii/S0898122111004743
http://ceur-ws.org/Vol-3545/paper5.pdf
https://doi.org/10.1145/1993886.1993932
https://doi.org/10.1145/1993886.1993932
http://hdl.handle.net/1853/39639
https://doi.org/10.1137/0604014
https://doi.org/10.1137/0604014
https://doi.org/10.1287/ijoc.15.3.284.16077
https://doi.org/https://doi.org/10.1016/j.jsc.2005.11.001
https://www.sciencedirect.com/science/article/pii/S0747717105001653
https://www.sciencedirect.com/science/article/pii/S0747717105001653

	Analyzing the numerical correctness of branch-and-bound decisions for mixed-integer programming

