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We present a two-stage stochastic integer program for assigning Certified Registered Nurse Anesthetists
(CRNAs) to Operating Rooms (ORs) under surgery duration uncertainty. The proposed model captures the
trade-offs between CRNA staffing levels, CRNA handovers and under-staffing in the ORs. Since the stochastic
program includes binary variables in both stages, we present an Integer L-shaped Algorithm to solve the
model that incorporates LP Benders Cuts in addition to the standard mo-good cuts. To further accelerate
convergence, we strengthen these LP Benders Cuts by tightening the second-stage formulation. To this end,
we derive valid inequalities for the second-stage problem and show that they describe the convex hull of a
binary set defined by a subset of the second-stage constraints. An extensive computational study, based on
the data from our partner institution, reveals that our proposed solution approach efficiently solves realistic
problem instances to 0.01-optimality, underscoring the effectiveness of the proposed valid inequalities.
Additionally, through sensitivity analysis, we provide insights into the trade-offs between CRNA staffing levels,
CRNA handovers and under-staffing.
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1. Introduction

Medical errors are detrimental to patients’ health and cost healthcare providers millions
of dollars in punitive charges and litigation. A significant portion of these errors stems
from communication failures (Kazemian et al. 2014). Transfer of care from one provider
to another, also known as handovers, is a major source of such failures and lower clinical

quality, as critical details can be lost in the transition (Boet et al. 2020, Saager et al. 2014).
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In this paper, we focus on intraoperative handovers between Certified Registered Nurse
Anesthetists (CRNAs) that involve transferring the responsibility for a patient’s anesthesia
care from one provider to another during a surgery.

A handover between CRNAs occurs because of shift changes or scheduling constraints.
This process involves communicating vital information about the patient’s status, anes-
thetic plan, medications administered, airway management, fluid balance, surgical progress,
and any intraoperative events or complications that may arise. Ideally, this exchange should
be structured and comprehensive to ensure continuity of care. However, handovers fre-
quently occur under time pressure and in noisy, high-stress environments like the operating
rooms (ORs), increasing the risk of incomplete or inaccurate communication. Even small
omissions, such as neglecting to mention an allergy or a drug dosage, can lead to serious
patient harm, including adverse drug reactions or delayed recognition of complications.

Although intraoperative CRNA handovers may be unavoidable for long surgeries due to
shift length limits, they should be avoided whenever possible to reduce the likelihood of
communication breakdowns and maintain the continuity of care. This can be achieved, for
example, if CRNAs work overtime. However, as daily shifts of CRNAs usually exceed 8 hours,
working overtime may increase fatigue and lack of concentration, which can eventually
increase the risk of medical errors (Bae 2021, Bae and Fabry 2014). In practice, overtime
hours of CRNAs are limited by regulatory guidelines or union rules (Bae and Yoon 2014,
Mobasher et al. 2011). Scheduling CRNAs on overlapping shifts with different start and end
times might be another strategy for reducing handovers and under-staffing in the ORs. We
address this decision problem through novel modeling and methodological approaches.

We propose a two-stage stochastic integer program (SIP) for assigning CRNAs to ORs,
and demonstrate its application using data from a tertiary medical center in the eastern
United States. The proposed model, referred to as Stochastic CRNA Scheduling with Han-
dovers (SCSH), captures the trade-offs between staffing and handovers while accounting for
uncertainty in surgery durations. Specifically, given the daily surgery schedules in ORs, the
first-stage decisions determine the number of CRNAs to be called for a set of (overlapping)
shifts with different start and end times. In the second stage, CRNAs are assigned to ORs
over the time periods in their shifts. The objective function minimizes the total cost of
CRNA staffing along with the expected costs associated with CRNA handovers and under-

staffing. The majority of existing nurse scheduling models in the literature focus on using
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overtime to mitigate workload uncertainty without accounting for handovers. A limited set
of studies that consider handovers typically do so in deterministic settings or assume that
handovers have no impact on the quality of care. Our model explicitly minimizes handovers
in ORs under uncertain surgery durations, and can be easily extended to consider overtime.

SCSH includes binary variables in both stages, and can be optimized using the Integer
L-shaped Algorithm (Laporte and Louveaux 1993). The feasibility and optimality cuts
generated in the Integer L-shaped Algorithm tend to be weak, resulting in slow con-
vergence. Therefore, they are usually augmented with LP Benders Cuts (Angulo et al.
2016). The performance of the Integer L-shaped Algorithm can be further improved by
tightening the formulation of the second-stage problem.

We derive a set of valid inequalities for the second stage of SCSH. These inequalities define
the convex hull of the nurse assignment and handover constraints. Our computational
results show that they substantially accelerate the convergence of the Integer L-shaped
Algorithm. The proposed valid inequalities are broadly applicable to re-scheduling prob-
lems that explicitly consider service (or job) transfers between servers due to limited
resource availability or failures. Such problems arise in the preemptive variant of the
resource-constrained scheduling problem where activities are interrupted and executed
on a different resource when they are at risk of becoming tardy (Kirti et al. 2024), or
resumed later to improve the makespan of a project to which they belong (Salvadori and
Agnetis 2025, Buddhakulsomsiri and Kim 2006). The proposed valid inequalities can also
strengthen the formulations used to design routing-based reactive scheduling policies for
machine failures in job shops, where affected jobs are rerouted to alternative machines
when their primary machines fail (Kutanoglu and Sabuncuoglu 2001, Zhang et al. 2021).
None of these studies in the literature proposed valid inequalities.

The remainder of the paper is organized as follows. Section 2 provides a review of the
relevant literature. Section 3 introduces the formulation of SCSH, and Section 4 outlines our
solution methodology. Section 5 details the proposed valid inequalities. Section 6 presents

the computational experiments and managerial insights. Section 7 concludes the paper.

2. Literature Review

This paper involves both modeling and methodological advancements. Section 2.1 reviews
the literature on nurse scheduling and handover processes, while Section 2.2 examines
existing approaches for solving two-stage SIPs. Finally, Section 2.3 summarizes our main

contributions.
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2.1. Nurse Scheduling and Handovers

The literature on nurse scheduling in ORs can generally be divided into two main cate-
gories; studies that integrate nurse scheduling with surgery scheduling (Breuer et al. 2020,
Guo et al. 2016, Latorre-Nunez et al. 2016, Xiang et al. 2015) and those that concentrate
exclusively on nurse scheduling for a given surgery schedule (Di Martinelly and Meskens
2017, Lim et al. 2016, Guo et al. 2014, Mobasher et al. 2011). Among these, some consider
the uncertainty in surgery durations (Breuer et al. 2020, Guo et al. 2014, Latorre-Nufiez
et al. 2016) while others solve a deterministic problem. Additionally, Rath et al. (2017)
and Tsang et al. (2025) present models that integrate surgery and anesthesiologist schedul-
ing under surgery duration uncertainty. These papers do not consider handovers between
providers and those that consider uncertainty in surgery durations allow providers to work
overtime to mitigate the impact of uncertainty. We focus on the allocation of CRNAs to ORs
for a given surgery-to-OR allocations and start times. We take into account uncertainty in
surgery durations and consider handovers at the end of CRNA shifts instead of overtime.
However, the proposed model can be easily adapted to consider overtime.

The existing literature on handovers in scheduling problems within healthcare deliv-
ery systems is limited. Kazemian et al. (2014) propose an integer programming approach
for designing work shift schedules of medical trainees with the objective of minimizing
patient handovers while Smalley et al. (2015) present a mixed-integer programming model
for physician scheduling that seeks to reduce patient handovers between physicians. How-
ever, both of these papers address deterministic problems in non-surgical settings. Sun
et al. (2023) tackle a medium-term, tactical-level anesthesiologist scheduling problem span-
ning multiple weeks. They develop optimization models for designing shifts and assigning
anesthesiologists to these shifts while accounting for uncertainties in clinical demand. In
contrast, we address the operational level CRNA scheduling problem for a given set of shifts.
In their models, Sun et al. (2023) permit handovers between anesthesiologists but assumes
that such transitions do not affect the quality of care. Consequently, unlike our paper, their

approach does not aim to reduce or control the number of handovers.

2.2. Solution Methods for Two-Stage SIPs
A substantial body of research exists on solving two-stage SIPs with integer variables in
both stages (Kiiciikkyavuz and Sen 2017). The existing literature can be broadly catego-

rized into two main groups. The first group focuses on extending the L-shaped Algorithm
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to solve SIPs with integer second-stage variables. This is typically achieved by convexify-
ing the second-stage problem through the addition of valid inequalities, either iteratively
(Gade et al. 2014, Zhang and Kucukyavuz 2014, Sen and Higle 2005) or in a single step
(Bansal et al. 2018, Kim and Mehrotra 2015). These methods enable the use of L-shaped
Algorithm for solving such problems, though the convexification process may be com-
putationally intensive and challenging. The second category addresses SIPs with binary
first-stage variables using the Integer L-shaped Algorithm (Laporte and Louveaux 1993,
Angulo et al. 2016). This approach follows a Benders-style decomposition framework, where
no-good type feasibility and optimality cuts are iteratively added to the Master Problem.
In this paper, we integrate the strengths of both approaches. Specifically, we propose an
Integer L-shaped Algorithm for SCSH that, in addition to the traditional no-good cuts,

incorporates stronger LP Benders Cuts derived from a tighter second-stage formulation.

2.3. Contributions
The main contributions of this paper are as follows:

i. We formulate SCSH, a two-stage SIP, for assigning CRNAs to ORs across overlapping
shifts. The proposed model captures the trade-offs between CRNA staffing and handover
costs under uncertainty in surgery durations. It is broadly applicable to shift-based multi-
period scheduling environments in which handovers and under-staffing arise, conditions
that are common across many medical institutions and in several other industries. Addi-
tionally, the proposed formulation can be readily extended to incorporate overtime.

ii. We tighten the formulation of the second-stage problem in SCSH by a set of valid
inequalities. We demonstrate that the proposed valid inequalities define the convex hull
of the nurse assignment and handover constraints. These inequalities have a general scope
and can be applied to multi-period scheduling problems that involve the preemptive or
reactive transfer of tasks (jobs) across resources.

iii. We present an Integer L-shaped Algorithm for SCSH, in which we augment the
traditional no-good cuts with stronger LP Benders Cuts derived from the second-stage
problem after incorporating the proposed valid inequalities. Our computational experi-
ments show that these strengthened LP Benders Cuts substantially improve the conver-
gence of the Integer L-shaped Algorithm.

iv. We demonstrate the applicability of SCSH using historical data from a large tertiary

care hospital in the eastern United States. The computational results indicate that SCSH
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can support anesthesiology departments in determining appropriate CRNA staffing levels by
balancing trade-offs among staffing costs, handovers, and under-staffing, while accounting
for uncertainty in surgery durations. When handover costs are relatively low compared to
staffing costs, the optimal solution recommends calling more CRNAs with shorter shifts,
which are then assigned to ORs in a manner that results in more handovers but fewer
under-staffed periods. In contrast, when handover costs are relatively high, the model
recommends calling more CRNAs with longer shifts, resulting in fewer handovers but more

under-staffed periods.

3. Model Formulation

Each CRNA works on a single shift, and there are multiple shifts with different start and end
times. These shifts may overlap in the time periods they cover. The first-stage problem
selects CRNAs to be called for each shift. This decision can be made in advance of the
surgery day as soon as the surgery schedule becomes available. The second-stage problem
assigns CRNAs to ORs over time periods in their shifts under different scenarios of surgery
time realizations. The objective of our model is to minimize the total cost of CRNA staffing
and the expected total cost of handovers and under-staffing.

Let S be the set of shifts, J the set of ORs, and T the set of time periods. Furthermore,
let I be the set of CRNAs and i4 ¢ I be the index for a “dummy” or float CRNA, which is
assigned to an OR when a regular CRNA is not available, representing under-staffing. Let
I, C I denote the set of CRNAs working shift s, satisfying I,, N I, =) for all s; # s, € .S and
UsesIs = 1. Let z, be a binary parameter which equals 1 if shift s covers period ¢, and 0
otherwise. Let ¢/ denote the cost of a CRNA on shift s, ¢ the cost of a handover, and ¢’ the
per-period cost of CRNA under-staffing in an OR.

Let Q be a finite set of scenarios representing the uncertainty in surgery durations, and
D the probability of scenario w € Q. Binary parameter a;;(w) equals 1 if there is an active
surgery in OR j in time period ¢ under scenario w and 0, otherwise. Lastly, let J;(w) C J be
the subset of ORs with an ongoing active surgery in periods ¢ and ¢+ 1 under scenario w.

The first-stage binary variable r; takes the value 1 if CRNA ¢ is called for duty and 0
otherwise. The second-stage binary variable x;;;(w) equals 1 if CRNA 7 is assigned to OR j in
time period ¢ under scenario w, and 0 otherwise. If x;,;;(w) =1, then CRNA under-staffing

occurs in OR j during time period ¢. The binary variable wy(w) is equal to 1 if there is a
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Table 1 Description of Notations

Sets and Parameters

1 set of CRNAs

I set of CRNAs working shift s

J set of ORs

T set of time periods

S set of CRNA shifts

Q set of all scenarios

ef cost of calling a CRNA for shift s

ch cost of a handover

ct per-period cost of CRNA under-staffing in an OR

Zst binary parameter equal to 1 if shift s covers period ¢, 0 otherwise

P probability of scenario w

Ji(w) subset of ORs with same surgery active in periods ¢ and ¢+ 1 under scenario w
ajt(w) 1 if there is an active surgery in OR j in time period ¢ under scenario w, 0 otherwise
Indices

7 index of CRNA, 1 € [

id index of the dummy CRNA, iq ¢ I

j index of OR, j € J

t index of time period, t €T

s index of shift, s€ .S

w index of scenario, w € Q)

First-stage decision variables

ri 1 if CRNA ¢ is called for duty, 0 otherwise

Second-stage decision variables

Zijt(w) 1 if CRNA 4 is allocated to OR j in time period ¢ under scenario w, 0 otherwise
wi(w) 1 if a handover occurs from regular CRNA i to any other CRNA at the end of time period ¢

under scenario w, 0 otherwise
Wit (w) 1 if a handover occurs from a dummy CRNA to regular CRNA i at the end of time period ¢
under scenario w, 0 otherwise

handover from CRNA ¢ at the end of time period ¢ under scenario w, and 0 otherwise. Finally,
binary variable w;(w) is equal to 1 if a handover occurs from dummy CRNA to a regular
CRNA 7 at the end of time period t under scenario w, and 0 otherwise. Table 1 summarizes
the notation. Note that the first-stage variable r; is defined for each CRNA because capturing
handovers in the second stage requires tracking whether the same CRNA is assigned to an
OR in periods t and ¢ + 1. This necessitates assigning individual CRNAs to ORs, and only
those CRNAs called for duty in the first-stage are available in the second-stage.

We use boldface lowercase letters to denote vectors and boldface uppercase letters to

represent matrices. The two-stage SIP is given by:

(SCSH) v* =Min Z Z clri+ Q(r) (la)

s€S 1€l

st >, Vse S, i1,i0 €l 11 <ty (1b)
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rc B (1c)

Constraint (1b) is a symmetry-breaking constraint that ensures CRNAs in each shift are
selected in increasing order of their indices. The objective function (1a) minimizes the CRNA

staffing cost along with the expected total cost of handovers and under-staffing Q(r) :=
E.Q(w,r) =) qp.Q(w,r) , where

(85:w) Q(w,r)=Min Z Z wy (w) + Z Z My (w) + Z Z i (w) (2a)

i€l teT i€l teT jEJ teT
s.t. inﬁ(w) <7iZst Viel,seS,tel, (2b)
jed
Wi (W) > 454 (w) — T4j41) (W) Viel,je Jy(w),teT\{|T|}, (2¢)
Wir(w) = @50 (W) + Tijrny (W) — 1 Viel,je i(w),teT\{|T[}, (2d)
Tt (w) + inﬁ(w) =i (w) VjeJteT, (2e)
iel
x(w) € BUHDXIIXIT () () € BIDXTID) (2f)

Constraint (2b) ensures that each CRNA is assigned to at most one OR in each time period.
This constraint also guarantees that CRNAs are assigned to an OR in time period ¢ only
if they are scheduled for duty and their shift covers that period, thereby accounting for
overlapping CRNA shifts. Constraint (2c¢) captures handovers from CRNA i at the end of
period t. In particular, if CRNA 7 is assigned to OR j € Jy(w) in period ¢ (x;;:(w) =1) but
is not assigned to that OR in ¢+ 1 (z;j41(w) =0), then w;(w) =1, indicating a handover
from CRNA 7 in period t under scenario w. There can be at most one handover from CRNA
i € I in a period because (2b) restricts each CRNA i to at most one OR in any period.

Constraint (2c) cannot capture handovers from the dummy CRNA because the dummy
CRNA may be assigned to multiple under-staffed ORs in the same period. As a result, applying
(2¢) to a dummy CRNA would underestimate the number of handovers from the dummy CRNA
to regular CRNAs at the end of each time period. Therefore, we capture these handovers
through (2d). Specifically, when the dummy CRNA is assigned to OR j in period ¢ (z;,+(w) =
1) under scenario w and a regular CRNA i € I is assigned to the same OR j in period ¢+ 1
(#ij(t4+1)(w) = 1), then a handover occurs from the dummy CRNA to regular CRNA i at the
end of time period ¢, which is recorded by setting w;;(w) =1 in (2d). Moreover, since each

regular CRNA i € [ is assigned to at most one OR per time period, wy(w) can be at most 1.
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Constraint (2e) ensures that a CRNA (regular or dummy) is assigned to ORs for every
time period with an active surgery. The objective function (2a) minimizes the total cost
of handover and CRNA under-staffing. Handovers from the dummy CRNA to a regular CRNA
involve transferring care from a float CRNA to a regular one; hence, it constitutes an actual
exchange in the responsibility of care and is therefore penalized in the objective function.
SCSH has complete recourse because calling no CRNAs for duty by setting r;, =0, 1 €[ in
the first stage and assigning the dummy CRNA to all ORs in all time periods in by setting
Tiyit(w) = aj(w) V5 € J, t €T in the second-stage is a feasible solution.

The proposed model captures the trade-offs between CRNA staffing and handover costs
under uncertainty in surgery durations. It accommodates nurse (worker) shifts and surgery
(job) schedules with heterogeneous start and end times, making it broadly applicable to
shift-based multi-period scheduling environments in which handovers and under-staffing
arise, conditions that are common across many medical institutions and in several other
industries. Although we assume each CRNA works on a single shift, that is, I, NI, =0 for
all s; # so € S—as is the case at our partner medical institution—the SCSH can be easily
modified to handle situations where a CRNA works multiple shifts. For example, if CRNA
1€ I, N1, we can replace ¢ with two distinct indices, ¢; and 45, where 4, € I, and 15 € I,,
and then add the constraint r;, +7;, <1 to the first-stage problem to prevent calling CRNA
for two different shifts. Lastly, we can extend SCSH to consider CRNA over time by tracking
the last time period in which CRNAs are allocated to an OR after their shift ends, as shown
in Appendix D. These extensions will not impact the methodological approaches that we

propose for the efficient solution of SCSH.

4. Integer L-shaped Algorithm for SCSH

The L-shaped Algorithm can be applied to solve SCSH after relaxing the integrality of
the second-stage binary variables. The algorithm generates LP Benders Cuts whenever
an integer first-stage solution is identified within a Branch-and-Bound framework (see
Appendix A for more details). The optimal objective value of the relaxed problem pro-
vides a lower bound for SCSH. Furthermore, the first-stage solution r obtained from the
L-shaped Algorithm can be used to evaluate Q(r) and derive an upper bound. However,

this approach does not ensure global optimality.
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The Integer L-shaped Algorithm (ILS) can be applied to obtain the global optimal
solution to SCSH. This method can also be also executed within a Branch-and-Bound

framework, where the algorithm is initialized with the following master problem:

(M) Min > > "clri+> pube (3a)

seS i€l =
st ry >, VseS, i1,ia €l i1 <is (3b)
6,>0 Yw e Q (3c)
r ¢ B (3d)

where 6, is an auxiliary variable representing the second-stage cost under scenario w.
Subsequently, for each integer solution (8,t) encountered during the Branch-and-Bound

algorithm, and for every scenario w where 6, < Q(w,T), the following Integer Optimality

Cut is added to M:

0,2 Q(,7) (Licso 1t — Ligsn i — 1SE)) +Qw,F), (4)

where S(¥) = {i € I|r; = 1}. This cut eliminates the solution (8,¥) if f,, < Q(w,T) for sce-
nario w. The right-hand side of (4) equals Q(w,T) at r =T, yielding the tightest possible
underestimation of 6, at r. However, if r # 7T, (4) becomes redundant since its right-hand
side takes on a non-positive value. As a result, Integer Optimality Cuts contribute little
to strengthening the lower bounds within the Branch-and-Bound algorithm, which in turn
slows the convergence of ILS. The performance can potentially be improved by generating
LP Benders Cuts in addition to the Integer Optimality Cuts. This approach, referred
to as ILS-L, first attempts to eliminate an integer solution using LP Benders Cuts gen-
erated based on the LP relaxation of the second-stage problems. If no LP Benders Cuts
are found, Integer Optimality Cuts are added to M as shown in the optimality cut
subroutine in Algorithm 1.

We apply ILS-L to solve SCSH. To accelerate the convergence, we derive valid inequalities
to tighten the formulation of second-stage problem S, , and strengthen the LP Benders
Cuts. We demonstrate that the proposed valid inequalities characterize the convex hull of
the assignment and handover constraints defined for each CRNA i € I, t € T'\ {|T'|} and ORs
in the set J,.
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Algorithm 1 Optimality Cut Subroutine

1: IHPUt: (I_‘7 [ew]weﬂ)
2: for we ) do
3: Obtain Q'(w,T), objective value of the LP relaxation of SS;,,

4: if Q'(w,T) >0, then

5: Add LP Benders Cut (13) to M. > Step 1
6: end if

7. end for

8: if No LP Benders Cuts are added in Step 1 then
S(r)«{i:r; =1}
10 for we ) do

©

11: Obtain Q(w,T)

12: if Q(w,T) >0, then

13: Add Integer Optimality Cut (4) to M > Step 2
14: end if

15: end for

16: end if

5. Valid Inequalities for SS;,,

In this section, we omit the scenario index w for clarity of the presentation. For a given
first-stage solution r, let P(r) be the set of feasible second-stage solutions. Proposition 1
presents a set of valid inequalities for P(r). Proofs of all the propositions are stated in

Appendix B.

PROPOSITION 1. Fori el andteT\{|T|}, the inequalities
Wit > )5 (zije — Tijes1)) VJ C J (5)

are valid for P(r).

Valid inequalities in (5) capture a handover from CRNA i at the end of time period ¢ if
that CRNA is assigned to an OR in J C J; during time period ¢ but not assigned an OR in
the same subset in period ¢+ 1. The summation over ORs on the right-hand side of (5) is
valid because CRNA i can be assigned to at most one OR in J in each period ¢ and ¢ + 1.

Thus, the term inside the sum can equal 1 for at most one OR in J C .J;, and (5) generalizes
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(2¢) by accounting for handovers within each subset of ORs. Example 1 demonstrates that
inequality (5) cut off fractional solutions that are feasible to (2c).

ExaMPLE 1. Consider an instance of SSy, with I ={1},\T ={1,2},r; =1,J =J, =
{1,2} and ay; = @9 = @12 = @y = 1. The solution wy; = 0.5,wy; = 0,111 = 0.5, 2191 =
0.5,2112 = 0,120 = 0, 2,11 = 0.5, 2,01 = 0.5, 2,12 = 1,2;,00 = 1 is feasible to the LP relax-
ation of SS,,, but violates the following valid inequality (5) for t =1 with J = J;:

11 2 T111 + T121 — 112 — T123 -

~~~ ~\~ ~\~
0.5 1 0

Foriel, teT\{|T|}, let Q; be a binary set given by:
Wit 2 Tijp — Tij(e41) Vj € Ji,

Qjt = Zjejt Tijt <1, ZjeJt Lij(t+1) <1, (6)
Wyt € {0, 1}7$z’jtaajij(t+1) € {0, 1} VJ c Jt

Constraints (6) restrict the assignment of CRNA i to at most one OR in J; during the periods ¢
and t+ 1, and determine whether a handover occurs from CRNA ¢ at the end of period t. This
constraint structure commonly appears in multi-period preemptive or reactive scheduling
problems, where the transfer of tasks across resources is tracked (Salvadori and Agnetis
2025, Buddhakulsomsiri and Kim 2006).

Let Q; denote the linear relaxation of Q,;. The main theoretical result of this paper
pertains to showing that adding valid inequalities (5) to Q,; characterizes the convex hull
of Q;, which is denoted by conv(Q;;). The proof is achieved in two steps. First, in Propo-
sition 2, we use a disjunctive programming technique to derive a polyhedron V;; in an
extended variable space whose projection onto the space of (wy, X;t, X;¢41)) variables gives
conv(Q;;). Then, in Proposition 3, we utilize Hoffman’s Circulation Theorem (Hoffman

1976) to show that the Proj V;; is characterized by Q;; and inequalities in (5),

Wit Xit ;X4 (t+1) )

where the projection operator is defined as Proj.,, X = {x: Jy such that (z,y) € X'}.
PROPOSITION 2. For a given i € I, t € T\ {|T|}, define the auziliary variables x;; and
.CCZ-lj(t+1) Vj € Ji. Furthermore, let Vi be the polyhedron given by
Tijt — Tijt+1) < xlljt - x}j(t-t,-l) < Wit Vj e Ji, (7a)

— 14wy + Z Lijt < Z i < Wi, (7b)

JjEJt JEJt
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— Lt wi+ > i <> Bl < Wi, (7c)
JEJt JjeJt

0< x}jt < Tt Vi€ Jy, (7d)

0 < @j001) < Tij(er) vje i (7e)

Then, conv(Qy) = Proj Vit

Wit Xit X4 (t41) )

Proposition 3 presents the projection of V;; onto (w;, X, X(41)) variable space.

PROPOSITION 3. Proj Vit 1s given by the following set of constraints:

Wit 7Xit7X¢(t+1))

=7 (Wi, Xit, Xie41)) € Qit,

it = =
Wiy > Zjej (ﬂﬁijt - iUij(tH)) VJ C i, |J|Z 2.

(8)

Using Propositions 2 and 3, we obtain the following corollary, which shows that adding
valid inequalities (5) to Q; yields conv(Qy).

COROLLARY 1. conv(Qy) = QF

Corollary 1 suggests that including valid inequalities (5) to S5, can lead to a tighter
formulation of SS, .. Therefore, generating LP Benders Cuts based on this formulation
can accelerate the convergence of ILS-L. For each i € I, t € T'\ |T'|, the number of valid

inequalities (5) are exponential in |J;|. The following proposition presents a polynomial

size reformulation for these valid inequalities.

PROPOSITION 4. Foriel, teT\{|T|}, valid inequalities (5) and wy >0 can be refor-

mulated as:

Wit > Z Bijt (9a)

JE€Jt
Bijt = Tije — Tij(t+1) Vj ey, (9b)
Bijt >0 Vje . (9c)

We implement valid inequalities (5) through (9) in our computational experiments. In the

following proposition, we present another family of valid inequalities for P(r).

PROPOSITION 5. For each i €1, t€ T\{|T|} and j' € J. The inequality

Wi > Lijr(t4+1) — 14 Z Lijt (10)
JEJ\J

is valid for P(r).
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The valid inequality (10) captures a handover at the end of period ¢ when CRNA i is
assigned to OR j’ € J in period ¢+ 1 and another OR in J; \ j' in period t. Proposition 6 shows
that this inequality is weakly dominated by (5). Nonetheless, including both valid inequal-

ities in S5, provides significant computational benefit as we illustrate in Section 6.1.

PROPOSITION 6. Valid inequality (10) is weakly dominated by (5).

6. Computational Experiments

Our computational experiments are based on data from a tertiary medical hospital in
the eastern United States. The dataset consists of 14,883 surgeries across 24 specialties,
spanning a period of 353 working days. For each specialty, Table 10 in Appendix C provides
the mean and standard deviation of surgery durations, along with the percentage share
of total surgeries attributed to each specialty. We assume that the surgery duration for
each specialty follows a log-normal distribution (Neyshabouri and Berg 2017). Table 10
presents the estimated mean and standard deviation of surgery durations. To make the
trade-offs between handovers and under-staffing more pronounced and to more precisely
evaluate the impact of handovers on staffing decisions, we generate instances with longer
surgery durations by scaling the mean and variance of surgery durations by 1.5.

While the parameter z in S'S; , permits CRNA shifts to begin and end any time, following
the scheduling practices at our partner institution, surgeries are scheduled to start at 7
a.m. in our computational experiments, and CRNAs work on one of four shifts lasting 8, 10,
12, or 14 hours. We consider a 14-hour planning horizon from 7 a.m. to 9 p.m., divided into
|T'|= 56 equal time intervals of 15 minutes each. We experiment with the surgery schedules
of three different days. Table 2 reports the total number of surgeries, the total number of
ORs, and the number of CRNAs during each of the four shifts across these days. More details
about each scheduled surgery, including its specialty, planned start time, and the assigned
OR, are provided in Appendix C.

Let ¢, denote the hourly cost of a CRNA. Assuming a linear relation, the costs of CRNAs
for shifts of 8 hours (¢! ), 10 hours (¢}), 12 hours (¢f), and 14 hours (cf) are 8¢,, 10¢,, 12¢,,
and 14c,, respectively. We use ¢, = 200 in our experiments. In computational experiments,
we simply ensure that (c¢/) increases with shift length. In practice, the costs of longer shifts

may scale non-linearly. The proposed model can readily accommodate such cases.
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Table 2 Surgery and Shift Data
Day 1 Day 2 Day 3
Number of surgeries 56 41 37
Number of open ORs 9 9 9
Number of available CRNAs:
Shift 1: 7 a.m.- 3 p.m.
Shift 2: 7 a.m.- 5 p.m.
Shift 3: 7 a.m.- 7 p.m.
Shift 4: 7 a.m.- 9 p.m.

N O Ot W
o= O
— W g w

While the hourly cost of CRNAs is relatively straightforward to estimate in practice,
estimating the costs of under-staffing and handovers is more challenging due to their down-
stream impacts on clinic operations and patient health outcomes. Consequently, we specify
these cost parameters relative to CRNA staffing cost, informed by our medical collabora-
tor’s acceptable levels of expected handovers and under-staffing in the resulting schedules.
Subsequently, we set handover cost (¢;,) and per-period CRNA under-staffing cost (¢;) using
the ratios v = ‘;—f, and y = (f—r We consider three values of ¢ = 30,40,50 and three values
of x =5,10,20. Note that extreme values of these parameters lead to trivial solutions. If
1 or x is set too high, placing excessive emphasis on avoiding handovers or under-staffing,
nearly all CRNAs would be called for duty. Conversely, if these parameters are too low, few
or no CRNAs would be scheduled, resulting in a large number of handovers or under-staffed
periods. We design a full factorial experiment over the values of ¥ and y, resulting in 9
different cases for each |Q2|. Furthermore, we generate three random instances for each of
the three days per case, that is, 9 different instances per case.

The remainder of this section is organized as follows: Section 6.1 assesses the strength of
the valid inequalities derived in Section 5, while Section 6.2 compares different algorithmic
approaches for solving SCSH. Section 6.3 examines the value of incorporating stochasticity
in surgery durations, and Section 6.4 provides a sensitivity analysis by varying the handover

and under-staffing costs to offer managerial insights.

6.1. Effectiveness of Valid Inequalities

To evaluate the effectiveness of the valid inequalities proposed in Section 5, we solve the
extensive formulation of SCSH with a single-scenario, both with and without the valid
inequalities. Specifically, for each instance, let Z represent the optimal objective value
when integrality is enforced in both stages of the single-scenario problem. Let Z! denote
the optimal objective value when the integrality is relaxed in the second-stage. Finally,

let Z¢ denote the optimal objective value when the second-stage is relaxed, and the valid
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Table 3  Average (max) optimality gaps (%) for ps 10}, p(5} and pgioy-
Case ¢—x ‘ P{5,10} P{5} p{10} ‘ IG
1 30—5 |100.00 (100.00) 96.62 (100.00) 9.34 (47.55) | 11.31 (25.19)
2 3010 | 98.52 (100.00) 95.59 (100.00) 5.54 (16.67) | 12.56 (20.61)
3 3020 | 97.88 (100.00) 96.27 (100.00) 7.69 (25.00) | 9.87 (17.18)
4 40—5 |100.00 (100.00) 96.30 (100.00) 12.30 (61.54) | 9.97 (23.44)
5 40—10| 98.18 (100.00) 94.98 (100.00) 4.75 (16.67) | 13.95 (24.65)
6 4020 | 97.78 (100.00) 95.81 (100.00) 6.82 (21.88) | 12.03 (21.28)
7 505 |100.00 (100.00) 95.24 (100.00) 20.78 (83.52) | 8.49 (21.42)
8 5010 | 99.61 (100.00) 97.87 (100.00) 6.44 (25.00) | 14.05 (27.44)
9  50—20 | 98.17 (100.00) 96.15 (100.00) 6.16 (18.75) | 13.35 (22.26)

inequalities C' € {{(5)},{(10)},{(5), (10)}} are included. Although we use the reformulation
(9) when implementing (5), for clarity of the exposition, we refer to these valid inequalities

using (5). We measure the percentage of the integrality gap (Z —z) closed by adding the

I I

Z—27t
using a 14-core Intel Xeon 2.60GHz processor with 128GB RAM, Python 3.9.12 and Gurobi

11.0.2. For each of the 9 cases defined by v, x and for each C', Table 3 reports the average

valid inequalities C using po = x 100. We set a solution time limit of 3600 seconds

(maximum) pc, and the average (maximum) integrality gap, IG = Z_—ZZI x 100. The table
demonstrates that the combination of valid inequalities {(5),(10)} closes a substantial
portion of integrality gap and, in several instances, fully eliminates it. Moreover, the values
of p(sy, and the difference between pys 101 and pysy indicate that although valid inequalities
(5) close a substantial portion of the integrality gap, valid inequalities (10) still provide a

significant contribution.

6.2. Computational Performance of Algorithms to Solve SCSH
In this section, we compare the performance of the following five methods to solve SCSH:
1. L-shaped Algorithm as detailed in Appendix A with no valid inequalities added to
S8 (LS-NoVI).
2. L-shaped Algorithm with valid inequalities (5) and (10) added to SS, . (LS-VI).
3. ILS-L with no valid inequalities added to SS;, (ILS-L-NoVI).
4. ILS-L with valid inequalities (5) and (10) added to SS;., (ILS-L-VI).
5. Extensive Form solved using Gurobi 11.0.2 (ExF).
For all instances, each method is run with a time limit of 3600 seconds and a target opti-
mality gap of 1%. In the computational results, the execution time of ILS-L-NoVI and

ILS-L-VI may exceed the 3600-second limit on certain instances. This occurs because if

the algorithm enters the optimality cut subroutine near the time limit, it is allowed to
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Table 4  Average (max) optimality gap (%), |2|= 500 scenarios.

Case ¢ — x| LS-NoVI LS-VI | ILS-L-NoVI ILS-L-VI | ExF
1 30—5 |10.46 (13.02) 0.88 (1.72) | 0.25 (0.84) 0.35 (0.93) | 92.94 (95.27)
2 30—10 | 11.56 (12.52) 0.69 (1.17) | 0.32 (0.80) 0.45 (1.00) | 92.78 (95.41)
3 30—20| 9.28 (10.87) 0.32 (0.61) | 0.32 (0.88) 0.40 (0.95) | 92.75 (95.65)
4 40—5 | 9.82(12.73) 0.91 (1.71) | 0.00 (0.00) 0.47 (1.00) | 93.92 (96.03)
5  40—10 | 12.83 (14.09) 0.86 (1.45) | 0.52 (3.03) 0.43 (0.99) | 93.48 (95.95)
6  40—20 | 11.42 (13.30) 0.50 (0.91) | 1.13 (4.30) 0.53 (1.00) | 92.45 (95.95)
7 50—5 | 8.60 (11.13) 0.91 (1.69) | 0.32 (0.94) 0.34 (1.00) | 95.22 (101.36)
8  50—10 | 13.37 (14.89) 0.96 (1.61) | 0.11 (1.00) 0.49 (1.00) | 92.88 (96.38)
9 5020 | 12.83 (14.66) 0.69 (1.24) | 0.51 (0.97) 0.53 (1.00) | 93.57 (96.21)

finish that subroutine before termination, resulting in the total runtime exceeding 3600
seconds. For each of the 9 cases defined by ¢ and y, Tables 4 and 6 present the average
(maximum) % optimality gaps for the five algorithms with |2|= 500 and 1000 scenarios,
respectively, assuming equal probability for each scenario. Tables 5 and 7 report the corre-
sponding average (maximum) computational times (in seconds) for |€2|= 500, 1000, respec-
tively. Lastly, Table 8 shows the percentage of instances yielding 0.01-optimal solutions
for |©2|= 500, 1000.

As shown in these tables, both LS-VI and ILS-L-VI consistently outperform LS-NoVI,
ILS-L-NoVI and ExF across all three performance metrics for both |Q2|]= 500 and 1000.
This indicates that the inclusion of valid inequalities (5) and (10) substantially strength-
ens the LP Benders Cuts in both the L-shaped Algorithm and ILS-L, and significantly
improves the convergence of the latter. For example, when |Q2|]= 500, ILS-L-VI obtains
0.01-optimal solutions for all instances. ILS-L-NoVI also reaches 0.01-optimal solu-
tions for most instances but requires significantly more computational time. Similarly,
LS-VI—though not an exact method for solving SCSH—achieves near-optimal solutions,
obtaining 0.01-optimal solutions for more than half of the instances in most cases, while
LS-NoVI fails to reach such solutions for any case. A similar trend is observed for |{2|= 1000
scenarios, with a notable distinction: ILS-L-NoVI fails to find 0.01-optimal solutions
for many instances within 3600 seconds, whereas ILS-L-VI can still find 0.01-optimal
solutions for the vast majority of the instances. Comparing LS-VI and ILS-L-VI, we find
that both exhibit similar average computational performance due to the impact of valid
inequalities (5) and (10). However, unlike LS-VI, ILS-L-VI—being an exact algorithm for

SCSH—successfully achieves 0.01-optimal solutions for nearly all instances.



Sinha et al.: Two-stage Stochastic Program for CRNA Scheduling
Article submitted to ; manuscript no.

Table 5 Average (max) run time, |©2|]= 500 scenarios.

Case 1 — x | LS-NoVI LS-VI | ILS-L-NoVI  ILS-L-VI | ExF
1 30—5 | 550 (764) 850 (1007) | 2557 (3384) 1231 (2136) | 3602 (3604)
2 30—10 | 434 (549) 829 (1013) | 2071 (2780) 1202 (1884) | 3603 (3607)
3 3020|410 (543) 696 (947) | 1827 (2280) 1075 (1997) | 3602 (3605)
4 40—5 | 547 (755) 992 (1174) | 2254 (3276) 1130 (2115) | 3602 (3604)
5 40—10 | 454 (569) 905 (1233) | 2574 (3665) 1295 (2427) | 3602 (3604)
6 40—20 | 402 (505) 772 (1004) | 2499 (3725) 1287 (2463) | 3610 (3670)
7 50—5 | 515 (741) 894 (1174) | 1487 (2272) 1277 (2103) | 3602 (3605)
8 50—10 | 454 (556) 895 (1133) | 1898 (3194) 1069 (1923) | 3602 (3605)
9 5020 | 449 (547) 788 (954) | 2196 (3549) 1245 (2136) | 3602 (3605)
Table 6  Average (max) optimality gap (%), |€2|= 1000 scenarios.
Case ¢ — x| LS-NoVI LS-VI | ILS-L-NoVI ILS-L-VI | ExF
1 30—5 |10.42 (12.89) 0.91 (1.72) | 4.19 (7.38) 0.54 (0.97) | 93.73 (101.90)
2 30—10 | 11.58 (12.54) 0.70 (1.10) | 4.12 (7.60) 0.64 (1.00) | 95.23 (109.79)
3 30—20 | 9.31 (10.89) 0.31 (0.55) | 0.89 (7.44) 1.53 (7.60) | 95.93 (107.52)
4 40—5 | 9.75 (12.65) 0.94 (1.71) | 3.54 (9.48) 0.54 (1.00) | 93.93 (96.01)
5 4010 |12.81 (14.01) 0.88 (1.38) | 7.04 (12.49) 0.51 (1.00) | 94.89 (108.52)
6 40—20 | 11.45 (13.31) 0.50 (0.85) | 2.97 (10.04) 0.56 (1.00) | 94.94 (111.56)
7 50—5 | 852 (11.14) 0.97 (1.95) | 1.48 (4.46) 0.53 (0.94) | 94.66 (96.56)
8 5010 | 13.32 (14.78) 0.96 (1.55) | 7.54 (13.91) 0.46 (1.00) | 94.05 (96.36)
9 50—20 | 12.85 (14.68) 0.70 (1.16) | 8.59 (37.91) 0.59 (1.15) | 93.57 (96.19)
Table 7 Average (max) run time, |Q2|= 1000 scenarios.
Case ¢ — x| LS-NoVI LS-VI | ILS-L-NoVI  ILS-L-VI | ExF
1 30—5 | 955 (1306) 1628 (1919) | 3385 (4180) 2164 (4157) | 3606 (3623)
2 30—10 | 811 (945) 1550 (2059) | 3413 (4474) 1966 (2909) | 3607 (3618)
3 30—20 | 734 (962) 1269 (1691) | 2513 (3691) 2340 (4613) | 3604 (3606)
4 40—5 | 952 (1369) 1703 (2268) | 3216 (4164) 2270 (4056) | 3605 (3622)
5 4010 | 863 (1052) 1521 (1879) | 3344 (3969) 2067 (2847) | 3605 (3610)
6 4020 | 784 (916) 1370 (1698) | 3108 (4469) 2366 (4356) | 3606 (3610)
7 50—5 |947 (1215) 1645 (2123) | 3043 (3755) 2268 (3567) | 3603 (3606)
8 5010 | 847 (947) 1535 (2150) | 3452 (4097) 1850 (3320) | 3604 (3609)
9  50—20 | 844 (1008) 1375 (1745) | 3485 (4446) 2915 (5242) | 3604 (3610)

Table 8 % of 9 instances yielding 0.01-optimal solutions in each case.

No. of Scenarios |Q2] 500 1000 | 500 1000 | 500 1000 | 500 1000 | 500 1000

Case ¥ —x | LS-NoVI | LS-VI |ILS-L-NoVI | ILS-L-VI | ExF
1 30—5 0 0 67 56 | 100 33 100 100 0 0
2 30—10 0 0 |67 67 |100 33 [100 100 | O 0
3 30—20 0 0 100 100 | 100 89 100 89 0 0
4 40—5 0 0 |33 33 |100 44 [100 100 | © 0
5 40—10 0 0 56 44 89 33 100 100 0 0
6 40—20 0 0 100 100 | 100 67 100 100 0 0
7 50—>5 0 0 33 33 | 100 67 100 100 0 0
8 50—10 0 0 33 33 78 33 100 100 0 0
9 50—20 0 0 67 67 | 100 33 100 89 0 0
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Table 9 Comparison of Stochastic Solution and Mean Value Solution (|Q2|=500).

Case 19—y ‘VSS‘ KHo Kus ‘ Ksc ‘ Ksy Ksy Kss  Ksg

—_

30—5 | 2.71 | -12.69 9.58 |-2.07 | 38.89 -34.44 0.00 0.00
30—10 | 4.93 | 2.84 10.43]|-2.33|44.44 -40.00 0.00 0.00
30—20 | 6.26 | 10.09 8.92 |-2.54 | 55.56 -51.11 0.00 0.00

40—5 | 2.45|-13.85 8.19 |-2.33 | 44.44 -40.00 0.00 0.00
40—10 | 4.76 | -2.45 10.66 | -2.33 | 44.44 -40.00 0.00 0.00
40—20| 6.44 | 8.63 9.30 |-2.54 | 55.56 -51.11 0.00 0.00

50—5 | 2.36 | -7.91 7.06 |-2.07 | 38.89 -34.44 0.00 0.00
50—10 | 4.52 | -6.43 10.27 | -2.33 | 44.44 -40.00 0.00 0.00
50—20 | 6.48 | 5.66 10.75 | -4.39 | 33.33 -40.00 0.00 0.00

© 00 S T | W N

6.3. Comparison with the Mean Value Solution
To assess the impact of modeling uncertainty in surgery durations, Table 9 compares the
best solution obtained from ILS-L-VI (Stochastic Solution) in Section 6.2 with the
Mean Value Solution (Birge and Louveaux 2011) for |2|= 500. Column 3 of Table 9
reports the average Value of the Stochastic Solution (VSS), computed as %‘VUB x 100,
where UB and MV denote the objective value evaluated at the Stochastic Solution and
Mean Value Solution, respectively. Columns 4-9 present the average percentage reduc-
tion in [ when using Stochastic Solution relative to Mean Value Solution, denoted
by Kk = %, where [, and lgg are the values of [ under Mean Value Solution
and Stochastic Solution, respectively. Thus, x; > 0 indicates that the value of [ under
Stochastic Solution is lower than under Mean Value Solution, whereas x; < 0 indi-
cates the opposite. In Columns 4 and 5, [ corresponds to the expected number of handovers
(HO) and under-staffing (US), respectively. In Column 6, [ denotes the first-stage staffing
cost (SC). Finally, in Columns 7-10, [ represents the number of shift k£ CRNAs called for duty
(Sx) where k=1,2,3,4 (see Table 2). Results for |2|= 1000 are presented in Appendix E.
As shown in Column 3 of Table 9, incorporating uncertainty in surgery durations leads
to a substantial reduction in the objective value. These savings are primarily driven by
lower expected under-staffing and/or handovers under Stochastic Solution relative to
Mean Value Solution, as observed in Columns 4 and 5. This effect arises because, as
shown in Columns 6 and 7, Stochastic Solution tends to replace Shift 1 CRNAs in the
Mean Value Solution with longer Shift 2 CRNAs. This substitution increases coverage and
reduces under-staffed periods and/or handovers, and the resulting expected cost savings

outweigh the higher staffing costs observed in Column 6. Moreover, this preference for

Shift 2 over Shift 1 CRNAs becomes more pronounced at higher values of the under-staffing
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cost parameter y, leading to significant reductions in both expected under-staffed periods

and handovers. These observations remain consistent when |Q|=1000.

6.4. Sensitivity Analysis

In this section, we examine how the expected number of handovers, the expected number of
under-staffed time periods, and the number of CRNAs assigned to each shift vary in response
to changes in handover cost and under-staffing costs. The results also verify that SCSH
captures the trade-offs between staffing cost, handovers, and under-staffing as intended. To
better understand these trade-offs, we allow up to 10 CRNAs per shift and consider six values
of the handover cost parameter, ¢ € {20,30,40,50,60,70}, along with six values of the
per-period under-staffing cost parameter, x € {2.5,5,10,20,30,40}. For these parameter
settings, we consider the best solution obtained from LS-VI and ILS-L-VI. Results are
averaged over three randomly generated instances of the SCSH corresponding to the Day 3
surgery schedule with |Q2|=500. As in Section 6.2, LS-VI and ILS-L-VI are solved with a
3600-second time limit, and ILS-L-VI is run with a target optimality gap of 1%.

Figure 1a, for y =10, shows the variation in the expected number of handovers and the
expected number of under-staffed time periods as the handover cost parameter ¢ increases
from 20 to 70. Similarly, Figure 1b depicts, for the same value of x and increasing 1, the
changes in the number of CRNAs assigned per shift and the total cost of CRNAs. Figure 2a and
Figure 2b present the same variations for 1) =40 and increasing per-period under-staffing
cost parameter y from 2.5 to 40.

In Figure 1b, the number of CRNAs called for each shift remains the same as v increases
from 20 to 40. However, we observe in Figure la that the average number of handovers
decreases while the average number of under-staffed time periods increases as expected.
Thus, at a higher handover cost, some surgeries are not assigned any CRNAs because the
shifts of all the available CRNAs end during these surgeries, and incurring under-staffing
instead of handover is more cost-effective. However, as 1) increases to 50, a Shift 3 CRNA
is called in-place of a Shift 2 CRNA. As Shift 3 CRNA can cover a larger number of time
periods, both the average number of handovers and the average number of under-staffed
time periods decrease at the expense of increased staffing cost.

In Figure 2a, the expected number of handovers increases while the expected number
of under-staffed time periods decreases as the per-period under-staffing cost parameter x

increases from 2.5 to 20. This is because both handovers and additional CRNA coverage are
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Figure 1 Analysis of the trade-off between handovers and CRNA staffing.

used to reduce under-staffing. Additionally, as illustrated in Figure 2b, the total cost of
CRNAs increases as Y increases from 2.5 to 20. For example, as x increases from 5 to 10,
Shift 2 and Shift 4 CRNAs are called in-place of Shift 1 and Shift 3 CRNAs. The model favors
calling more nurses on longer shifts to cover surgeries scheduled later in the day, where the
effects of accumulated duration uncertainty are most pronounced. Lastly, when y increases
to 40, calling an additional Shift 1 CRNA becomes cost-effective, providing sufficient CRNA

coverage to reduce both the number of handovers and under-staffed time periods.

7. Conclusion
We propose SCSH, a two-stage stochastic program to staff CRNA shifts. Specifically, SCSH cap-

tures the trade-offs between staffing cost, handovers, and under-staffing while accounting
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Figure 2 Analysis of the trade-off between under-staffing and CRNA staffing.

for uncertainty in surgery durations. Given the daily surgery schedules in ORs, it deter-

mines, in the first stage, the number of CRNAs to be called for each shift. In the second stage,

on-duty CRNAs are assigned to ORs over the time periods within their shifts. The proposed

model captures the trade-offs between CRNA staffing and handover costs under uncertainty

in surgery durations. It is broadly applicable to shift-based multi-period scheduling envi-

ronments in which handovers and under-staffing arise, conditions that are common across

many medical institutions and in several other industries. Additionally, our formulation

can be extended to incorporate overtime without affecting the proposed solution approach.

We present an Integer L-shaped Algorithm for solving SCSH that incorporates LP

Benders Cuts in addition to the standard no-good cuts. To further accelerate convergence,
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we strengthen these LP Benders Cuts by tightening the second-stage formulation. To this
end, we derive valid inequalities for the second-stage problem We demonstrate that the
proposed valid inequalities define the convex hull of the nurse assignment and handover
constraints. These inequalities are broadly applicable to multi-period scheduling problems
that involve preemptive or reactive transfer of tasks across resources. Our computational
experiments demonstrate that the proposed valid inequalities are highly effective, leading
to substantial improvements in the convergence of the Integer L-shaped Algorithm.
They also enhance the performance of the L-shaped Algorithm, enabling it to obtain
0.01-optimal-optimal solutions for a large fraction of the test instances.

This paper demonstrates that explicitly incorporating uncertainty in surgery durations
while optimizing the mix of CRNAs across shifts yields meaningful performance improve-
ments over mean-value solutions, without significantly increasing CRNA costs. The resulting
stochastic solutions reduce one or both cost components associated with handovers and
under-staffing, depending on the trade-offs implied by their relative costs. From an oper-
ational perspective, the model reveals how uncertainty compounds over the course of the
day, increasing the likelihood of coverage gaps and handovers in later periods. Mitigating
these downstream effects may require increasing CRNA hours or opening additional ORs.
Overall, the proposed framework provides a principled basis for evaluating and compar-
ing alternative mitigation strategies. These insights and proposed methods are broadly
applicable to multi-period scheduling problems involving service transfers across resources.
Future research could extend SCSH to jointly optimize both surgery schedules and CRNA
assignments. Another promising direction is to incorporate add-on surgeries, which are

added to the OR schedule at the last minute, into the modeling framework.
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Appendix A: Details of the L-shaped Algorithm

The L-shaped Algorithm to solve SCSH involves relaxing the integrality of the second-stage
binary variables and solving the resulting relaxation. Let v' be the optimal objective func-
tion value of the relaxed problem where v' < v*. Let T be the first-stage solution obtained at

the termination of the L-shaped Algorithm, then v* =3 _ >, ,;clri+> op.Qw,T)

¥ —!
;U’LL

given an upper bound on v*. If <€, then the L-shaped Algorithm yields an e-optimal
solution.

We implement L-shaped Algorithm for SCSH on a single Branch-and-Bound tree.
We initialize the algorithm by solving the following master problem using the

Branch-and-Bound algorithm:

(M5) Min D) “elri+ ) pube (11a)

ses i€l weQ
s.t. 1, >, VseS, i1,ia€ly: i1 <ig (11b)
6,>0 Yw € €2, (11c)
r e Bl (11d)

For each integer feasible solution (¥,0) encountered within any node of the

Branch-and-Bound tree, we solve the following subproblem for each scenario w € €2:

Q' (w, ") = Min Z Z wi (W) + Z Z c'xi e (w) + Z Z "y (W) (12a)

i€l teT jeJ teT i€l teT
st (i) Win(w) > 2450(W) = 241 (W) Viel,je Jiw),teT\{T|}, (12b)
(u50)  Wit(w) 2> @igju(w) + Tijern (W) =1 Viel,jeJyw),te T\{[T[}, (12c)
(12,) Z Tije(w) < Trzg Viel,seS,teT, (12d)
jedJ
(13) D mie(w) + @i (w) = aje(w) VjieJteT, (12e)
i€l
(1) wir(w) <1 viel,teT\{|T}, (12f

)
(ug)  wi(w) <1 viel,t e T\{|Tl}, (12g)
(1) wj(w) <1 viel,jeJteT, (12h)

)
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The notation for the optimal dual solution is stated in parentheses before the constraints.
For each w € €, if Q'(w,t*) > 0*(w), the following optimality cut is added to M¥* to exclude
the solution (¥, 8):

Oo>— D wht D> phrizat Y phap(w)

i€l jedi(w), iel, jeJteT

teT\{|T|} seS,teT (13)
+ Z M?t + Z M?t + Z Nth-

eLteT\{|T|} elLteT\{|T|} ieJ,jedteT

Appendix B: Proof of Propositions
Proof of Proposition 1: Assume that for some (x*, w*, w*) € P(r), there exists an i € I,

te T\ {|T|}, and J C J, such that:

wy, < Z (ﬁjt - x%(t-ﬁ-l)) (14)

jeJ

Then, from (2b) and (2f), it must be that w}, = 0 and 3j; € J such that z7; , =1, T3 (t41) =

0.
In that case, however, (2c¢) enforces w}, > 1, which is a contradiction. [
Proof of Proposition 2: For the ease of presentation, we use x;; to represent x;j;, ;5 in

place of z;;;41), and w for wy,. We represent Q;; as the union of two disjoint sets as P, U P,

where

4

le—xjg—wg(), VjGJt, LL‘jl—IjQ—’UJSO, ‘v’jEJt,
le?jlﬁl, Z%‘lﬁla

JjeJt jEeJt

Plz ijQSl’ P2: Z$]2§17

JEJ: JjeJt

Tj1,Tj2 € {0, 1} VJ e J;, Tj1,Tj2 € {0, 1} \V/j e J;,
w=1. w=0.
\ \

Let P, and P, be the linear programming relaxations of P, and P, respectively. As the con-
straint matrices for the variables x;1, 2,0 Vj € J; are totally unimodular (TU), conv(P;) =
P, and conv(Py) = P,. Consequently, as P, and P, are bounded, conv(Qy) = conv(f’l U ]52)
(Conforti et al. 2014). Furthermore, conv(P, U P,) is given by the projection of the following
polyhedron onto the (x1,x2,w) variable space (Conforti et al. 2014).

wjy —ajy —w' <0, a? —ad, —w? <0, vjed, (15a)
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—w), Tj =T
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> al <A D at <N (15b)
j€R j€R
Zwb <\ Zw?Q <\ (15c¢)
jed J€S
wh =\, w? =0, (15d)
acjl-l, 33]1-2 >0, x?l, 33]2-2 >0, Vg e Jy, (15e)
Ty + x5 =2, Vi e Jy, (15f)
T+ x?z = T2, vjedi, (15g)
w' +w® = w, (15h)
M =1, (15i)
0< AL A<, (15j)

From (15d), (15f), (15¢), (15h) and (15i), we get the equalities w! = w, w? =0, \' = w,

11, and a3y = 155 — xj,. Substituting these equalities in the

inequalities of (15) we obtain:

Tj—xjp <xp —Ljy <w Vi e, (16a)

—l+w+ Y zp <Yz <w, (16b)
Jj€Jt JeJt

—1+w+2xj2§2x]1-2§w, (16c)
JEJ: JEJ:

0<aj <zj Vi€ Ji, (16d)

0<zj, <z Vj e J;. (16e)

Substituting x;1 = ¢, Tj2o = Tyj41), and w = wy in (16), we get V. O
Next, we state the Hoffman’s Circulation Theorem (Hoffman 1976), which is a key com-

ponent required for the proof of Proposition 3. 1

LEMMA 1. Hoffman Circulation Theorem (1976): Let G = (V,E) be a directed graph.
Let {,u: E—RU{£o00} denote the lower and upper bounds of flow on arc e. Assume that
l(e) <wu(e) for every e € E. Then, there exists a feasible flow o : E'+— R that satisfies (i)
l(e) <o(e) <ule) for every e € E, and (ii) 32, pepo(ab) =>4 pepo(b,a) for alla eV,
if and only if

(17)
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where 0~ (X):={(a,b) e E:a¢ X,be X} and 6" (X):={(a,b) e E:a e X,b¢ X }.

A feasible flow o that satisfies conditions (i) and (i) specified in Lemma 1 is referred to
as a circulation.

Proof of Proposition 3: For the ease of presentation, we use x;; to represent x;j:, o
in place of x;j(;+1), and w for wy. Consider the directed graph G(V,E) shown in Figure 3
with o(a,b) representing the flow along the arc (a,b) € E, and £(a,b) and u(a,b) denote
the lower and upper bounds, respectively, for o(a,b). In G(V,E), V = {d;,da,q} U{p;,j €
i}, E={(di,p;),Vj € J,} U{(p),q),Yj € J:} U{(pj,d2),Vj € J;} U{(q,ds), (d2,d;)}. Denote
o(dy,p;) by xj, Vj € Jy, 0(pj,q) by zj, Vj € J;, and let

0 a:dl,b:pj VjGJt ( .
Tj1 Cl:dl,b:pj VieJ,
Ti1—T; a=p;,b=dy Vje€J
o 72 ! 2 ' w  a=pjb=dy VjeJ,
0 a=pj,b=q VjeJ
#(a,b) = ! " uab) =Sz, a=p,b=qVje],
—1—|—w+2xj2 a=q,b=dy
e, w a=q,b=ds
—1—|—w—|—2x31 a:dg,b:dl k’U) a:dg,b:dl
\ JEJt

Applying the two conditions in Lemma 1 to G(V, E), we obtain:

0 S U(dl,pj) = 33;1 S Zj1 \V/j c Jt (18&)
Ile—.I‘jQSO'(pj,dQ) Sw VjEJt (]_Sb)
0<0o(pj,q) = acjl-2 <zj Ve J; (18c)
—1+w+Zm]~2§a(q,d2)§w (18d)
JEJt
—1—|—w+2xﬂ§0(d2,d1)§w (186)
JjeJt
o(pj,dy) = — 2} i VjeJ; (18f)
q7d2 ZxJQ (18g)
JjeJt
o(dz,d) Zfﬂﬂ (18h)
JjeJt

In particular, (18a)-(18e) and (18f)-(18h) are obtained by applying (i) and (i7), respec-
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Eje]t 5531‘1

Nodes Vj € J;

Figure 3  G(V,E) for the Proof of Proposition 3. The labels on the arcs indicate the flow variables.

tively. Using the equalities in (18f), (18g) and (18h) in (18b), (18d) and (18e), respectively,
we get the constraint set (16) that define V;;. Thus, a circulation exists on G(V, E) if and
only if V;; # 0.
Next, we apply (17) to G(V, E) to derive another condition for the existence of a circu-
lation. Let J C {p;:j € Ji}. Note that J can be empty. Consider the following cases:
Case 1. X = {di, [pj]es}: For this case, §*(X) = {{(p,q) Vi€ J}U{(pj,ds) Vj€J}U
{(drpy) Vi€ JA\T} 6-(X) = {(doydh)}. (17) =

> Upa)+ D lpjida)+ Y Udi,p;) < u(da,dy)

jeJ jed JEINT
= (@n—wp)<w (19)
JjeJ
Case 2. X = {[pj];es}: For this case, 0*(X) = {(pj,q) Vj € J} U{(p;,do) Vj € J},
0~ (X)={(d,p;) Vi€ J}. (17) =

D Upj )+ Upjrds) <D uldy,p;)

jeJ jeJ je

<
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= (zpn—wp) <)z
jedJ jed
jeJ

Case 3. X = {[p;];cj,q}: For this case, §7(X) = {(p;,d2) Vj € J} U (q,ds), 6~ (X) =
{(di,pj) Vie J}U{(pj.q) Vi€ J\J}. (17) =

D Upjida) + (g, da) <Y uldi,py) + Y u(p;,q)

jeJ jeJ J\J
:>Z(33j1 —Tj2) — 1+w+zﬂlj2 Szﬂfjl-i—ziﬂjz
jeJ JeJt jeJ J\J
= w<l (21)

Case 4. X = {[p;];jes,d2}: For this case, §7(X) = {(p;,q) Vj € J} U (do,d1), 6 (X) =
{(d1,p;) Vi€ J}U{(pj da) Vi€ J\JT}U(q do). (17) =

> Upjq) +(daydi) <Y uldi,p) + Y ulps,de) +ulq, do)

jeJ jeJ JETNT
:>—1+w—|—ij1§Zxﬂ+ Z w+w
JEJt jeJ JETN\T
= > ap < |\ Jw+1 (22)
jEJt\j

Case 5. X = {di, [p;]jcj,d2} : For this case, §7(X) = {(p;,q) Vj € J}U{(d1,p;) Vj €
J\J}, 07 (X) ={(ps,d2) Vj€ S\ J}U(q,dz). (17) =

D tpj )+ Y Udip) < Y ulp,da) +ulg, da)
jeJ JETNT JEJN\T
=0< Z w+w

jEJt\j

=w>0 (23)

Case 6. X = {[p;];cs,q,d2} : For this case, 0% (X) = (ds,dy), 67 (X) = {(pj,d2) Vj €
J\JYUL(ps,0) Vi€ T\ JHU{(di,p;) Vi€ T} (17) =

U(dy,dy) < Z u(pj,da) + Z U(Pj7Q)+ZU(d1,Pj)

jeEJN\JT jeETN\JT jeJ
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Jj€Jt jEJt\j jGJt\j ]Gj
= Y (wp—zp) < (N J|-Dw+1 (24)
jEJt\j

Case 7. X = {d1, [p;];cs,q} : For this case, 67(X) = {(pj,d2) Vj € J} U{(d1,p;) Vj €
Je\J}U(g,d2), 07 (X) = (d2, ) U{(pj,0) ¥j €S\ J}. (17) =

> lpjida)+ > Uy, py) + (g, do) < Z_u(pj,q)—l—u(dz,dl)

jeJ JETN\T JEJNT
:Z(Ijl—wjg)—1+w+2mj2§ Z xj2+w
jeJ JEJt jeJN\J
=Yz <1 (25)
jeJ

Case 8. X = {dy, [p;];c7.q,do} : For this case, 67 (X)={(d1,p;) Vi€ J\J}, 6 (X)=
{(pj-q) Vi€ J\JYU{(p;,d2) Vi€ L\ J}. (17) =

> Udup) < Y ulpy o)+ Y ulpg,da)

JETN\T JETN\T JETN\T
= ) Tpt ) w0 (26)
jeJ\J jeJ\J

Cases 1-8 cover all possible X C V since J can be empty. Non-dominated constraints among

(19)-(26) are:

Jjl1—+52) = =Y

Z(w 1—Zj2) <w VJ C J, (27a)
jeJ

d zp <L 0<w<l, 2, >0. (27b)
jEJt

By definition, #(a,b) < u(a,b) V(a,b) € E. From this condition, we obtain:

Z.legl, ZSCjQSl, (28&)

JjeJt JjEJt

Tj1 Z O, Zj2 2 0 VJ € Jt. (28b)

From Lemma 1, there exists a circulation on G(V, E) if and only if (27)-(28) are feasible.
Therefore, V;; # 0 if and only if both (27) and (28) are feasible. Combining (27)-(28) and
substituting z;1 = @5, Tj2 = Tij+1), and w = w;, we obtain

Z(!L‘ijf; — Tij(t41)) < Wi VJ C Jy, (29a)

jeJ
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injt <1, inj(tJrl) <1, (29b)

JEJt JEJt

Tijt > 0, Tijev1) 20, 0<w; <1 (29c¢)

which coincides exactly with the constraint set defining th Thus, for every
(wit7X¢t>Xi(t+1)) € QlLt, as Vi # 0, H(X}t,X?(tH)) such that (witvxitaXi(t+1),xz‘1t7xf?(t+1)) € Vi
As a result, QL = Proj V. O

Proof of Proposition 4: For some i€ I, t€T\{|T|}, consider the inequalities (5):

Wit,Xit 7X¢(t+1))

Wiy > Z (zijt — Tijes1)) VJ C J, (30a)
jeJ
= Wi = I%%fz (Cﬁijt — wij(tﬂ)) (30b)
jeT
= Wit > Nit = Max Z (mijt - ZCz’j(t+1)) Yj (30c)
JjEJt

Here, y; > 0 due to w; > 0. Dualizing the LP defining 7;; we get:

i = min Z Bijt (31a)
JE€J:

s.t. Bije 2 Tije — Tiju+) Vj e Ji, (31b)

Bijt >0 Vi€ J;. (31c)

Combining (30c), (30d) and (31), we get (9). O

Proof of Proposition 5: Assume that for some (x*, w*, w*) € P(r), there exists an i € I,
teT\{|T|}, and j' € J such that:

Wiy < Ty — 1+ Z T3 (32)
JISEAVE

Following (2b), (2f) and (32), wj; =0 and ;) + > c s\ 21 = 2. This implies, due to
(2b), that @7, ,,, =1 and Jjo € J; \ j’ such that zj;,, = 1. From (2c) for 4, ja,1, it follows
that w}, > 1, which is a contradiction. [

Proof of Proposition 6: For some i €I, t €T \{|T|} and j’ € J valid inequality (5) for
i,t and J=J,\ j' is stated as:

Wiy > Z Tije — Z Tij(t+1) = Tijrgr1) — L+ Z Tijt
JjeJi\j’ jeJi\s’ JjeJ\5’

where the last inequality is due to (2b). O
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Appendix C: Surgery Data

Table 10 Summary of 353-Day surgery data
Duration Duration standard  Case
Specialty average (min)  deviation (min)  mix (%)
Dentistry 131 39 1.77
Gastroenterology 71 47 0.28
General 67 39 1.16
Gynecology 87 53 5.22
Gynecology Oncology 52 0 0.01
Interventional Radiology 52 4 0.01
Neurology 44 8 0.14
Obstetrics 53 17 0.01
Ophthalmology 47 32 23.42
Oral Surgery 100 46 0.05
Orthopedics 98 51 14.59
Otolaryngology 109 77 13.05
Pain 61 35 1.53
Pediatric Gastroenterology 50 1 0.01
Pediatric General 93 30 0.05
Pediatric Ophthalmology 65 25 3.82
Pediatric Orthopedics 94 35 0.17
Pediatric Urology 60 33 1.06
Plastics 88 58 1.84
Podiatry 104 69 1.48
Pediatric ENT 72 58 3.95
Pediatric Neurology 42 25 0.07
Surgical Oncology 99 56 2.90
Urology 51 34 23.40
Table 11  Surgery Scheduling Details - Day 1
Specialty (OR, starting time period)
Type No of Surgeries
Ophthalmology 20 (7, 1), (4, 1), (4, 3), (7,4), (7, 7), (4, 8), (4, 9), (7, 10), (7, 13), (7, 16), (7, 19),
(4, 21, (7, 22), (7, 25), (4, 27), (7, 28), (4, 30), (7, 31), (4, 33), (7, 34)
Orthopedics 11 (5, 1),(2, 1), (6, 1), (2, 4), ( 8), (2, 8), (2, 14), (2, 17), (5, 19), (5, 26), (5, 32)
Otolaryngology 4 (3, 1) (3,4), (1, 11), (3, 15)
Pediatric ENT 6 (1, 1), (1, 4), (1, 6), (1, 21), (1, 27), (1, 33)
Urology 15 9, 2), (9, 6), (8, 7), (9, 11), (8, 11)7 (8, 14), (9, 15), (8, 16), (8, 18), (9, 19),
(8, 24), (9, 27), (8, 29), (9, 33), (9, 39)
Table 12 Surgery Scheduling Details - Day 2
Specialty (OR, starting time period)
Type No of Surgeries
Gynecology 7 (2, 1), (2, 10), (2, 16), (2, 20), (2, 24), (2, 28), (2, 33)
Ophthalmology (7, 5), (7,7, (7, 11), (7, 16), (7, 20), (7, 23), (7, 27), (5, 28), (7,31)
Oral Surgery (3, 33)
Orthopedics (6, 1), (4, 1), (5, 1), (4, 10), (6, 12), (5, 18), (4, 19), (6, 25), (6, 31)
Otolaryngology (3, 1), (3, 14)

Pediatric Urology
Pediatric ENT
Urology

N W WN O~ O

(8,6), (8,12), (8, 18)
(1, 1), (1, 16), (1, 24)

9, 1), (9, 7), (9, 13), (9, 19), (9, 25), (9, 31), (9, 35)
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Table 13 Surgery Scheduling Details - Day 3
Specialty (OR, starting time period)
Type No of Surgeries
Ophthalmology 12 (7, 1), (4, 1), (7, 3), (7, 6), (4, 8), (7,9), (7, 12), (4, 14), (7, 15), (4, 20),
(4, 26), (4, 31)
Orthopedics 7 (5, 1), (6, 1), (6, 4), (6,9), (6, 14), (5, 21), (1, 33)

Otolaryngology 4 (3,1), (1, 1), (3,9), (1, 12)

Pediatric Ophthalmology 3 (7, 18),(7, 24), (7, 29)
Surgical Oncology 5 (2, 1), (2, 8), (2, 16), (2, 23), (2, 31)
Urology 6 (9, 9), (6, 23), (9, 25), (8, 27), (6, 30), (9, 3)

Appendix D: SS;, with overtime
Let ¢° be the per-period cost of CRNA overtime and T; = {1,2,3,...,|T;|} be the set of time
periods covered by the shift of CRNA 4. Let (;;(w) be a binary variable that equals 1 if time

period t is the last period after the shift end in which CRNA ¢ is assigned to an OR under

scenario w, and 0 otherwise. Using these notations, S5, ., with CRNA overtime is given by:

Min Z Z cM"wy (w) + Z Z "y (w) + Z Z 'z (W) + Z Z Z (t—|Ti])cCir(w) (33a)

i€l teT i€l teT JjEJ teT i€l jeJ teT\T;

s.t. (2c),(2d), (2e)

> wie(w) <7 Viel,teT, (33b)
jeJ

T

D Gir(w) = @i (w) Viel,jeJteT\T,, (33¢c)
T=t

C(w) c B(|ID><\T\TH , (33d)
x(w) € BUIHDXITIXITI w(w), W(w) € BUINx(TI-1) (33¢)

(33b) ensures that CRNAs are allocated to ORs only if they are called while (33c) tracks
the last time period in which CRNAs are allocated to an OR after their shift ends. Lastly,

the first three terms of the objective function (33a) are same as (2a) while the last term

models the total overtime cost.

Appendix E: Comparison of Stochastic Solution and Mean Value

Solution for |©2|=1000

Table 14  Comparison of Stochastic Solution and Mean Value Solution for |{2]=1000.

Case Y—y ‘VSS‘ KHo

Kus ‘ Ksc ‘ Ksy Ky KRss  Ksy

1 30—5 | 2,90 | -11.58 10.17 | -2.33 | 44.44 -40.00 0.00 0.00
2 30—101|5.12 | 410 10.43]|-2.33|44.44 -40.00 0.00 0.00
3 30—2015.56 | 10.82 890 |-5.26 | 33.33 -62.22 0.00 0.00
4 40—5 | 2.58 | -12.36 8.01 |-2.07 | 38.89 -34.44 0.00 0.00
5 40—10|4.98 | -1.72 10.82 | -2.33 | 44.44 -40.00 0.00 0.00
6 40—20|6.59 | 9.64 9.25 |-2.54|55.56 -51.11 0.00 0.00
7 50—5 | 251 | -9.90 7.34 |-2.07 | 38.89 -34.44 0.00 0.00
8 50—101|4.75| -5.90 10.48|-2.33 | 44.44 -40.00 0.00 0.00
9 50—20|6.61| 6.80 10.34|-3.57|50.00 -51.11 0.00 0.00




