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We present a two-stage stochastic integer program for assigning Certified Registered Nurse Anesthetists

(CRNAs) to Operating Rooms (ORs) under surgery duration uncertainty. The proposed model captures the

trade-offs between CRNA staffing levels, CRNA handovers and under-staffing in the ORs. Since the stochastic

program includes binary variables in both stages, we present an Integer L-shaped Algorithm to solve the

model that incorporates LP Benders Cuts in addition to the standard no-good cuts. To further accelerate

convergence, we strengthen these LP Benders Cuts by tightening the second-stage formulation. To this end,

we derive valid inequalities for the second-stage problem and show that they describe the convex hull of a

binary set defined by a subset of the second-stage constraints. An extensive computational study, based on

the data from our partner institution, reveals that our proposed solution approach efficiently solves realistic

problem instances to 0.01-optimality, underscoring the effectiveness of the proposed valid inequalities.

Additionally, through sensitivity analysis, we provide insights into the trade-offs between CRNA staffing levels,

CRNA handovers and under-staffing.
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1. Introduction

Medical errors are detrimental to patients’ health and cost healthcare providers millions

of dollars in punitive charges and litigation. A significant portion of these errors stems

from communication failures (Kazemian et al. 2014). Transfer of care from one provider

to another, also known as handovers, is a major source of such failures and lower clinical

quality, as critical details can be lost in the transition (Boet et al. 2020, Saager et al. 2014).
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In this paper, we focus on intraoperative handovers between Certified Registered Nurse

Anesthetists (CRNAs) that involve transferring the responsibility for a patient’s anesthesia

care from one provider to another during a surgery.

A handover between CRNAs occurs because of shift changes or scheduling constraints.

This process involves communicating vital information about the patient’s status, anes-

thetic plan, medications administered, airway management, fluid balance, surgical progress,

and any intraoperative events or complications that may arise. Ideally, this exchange should

be structured and comprehensive to ensure continuity of care. However, handovers fre-

quently occur under time pressure and in noisy, high-stress environments like the operating

rooms (ORs), increasing the risk of incomplete or inaccurate communication. Even small

omissions, such as neglecting to mention an allergy or a drug dosage, can lead to serious

patient harm, including adverse drug reactions or delayed recognition of complications.

Although intraoperative CRNA handovers may be unavoidable for long surgeries due to

shift length limits, they should be avoided whenever possible to reduce the likelihood of

communication breakdowns and maintain the continuity of care. This can be achieved, for

example, if CRNAs work overtime. However, as daily shifts of CRNAs usually exceed 8 hours,

working overtime may increase fatigue and lack of concentration, which can eventually

increase the risk of medical errors (Bae 2021, Bae and Fabry 2014). In practice, overtime

hours of CRNAs are limited by regulatory guidelines or union rules (Bae and Yoon 2014,

Mobasher et al. 2011). Scheduling CRNAs on overlapping shifts with different start and end

times might be another strategy for reducing handovers and under-staffing in the ORs. We

address this decision problem through novel modeling and methodological approaches.

We propose a two-stage stochastic integer program (SIP) for assigning CRNAs to ORs,

and demonstrate its application using data from a tertiary medical center in the eastern

United States. The proposed model, referred to as Stochastic CRNA Scheduling with Han-

dovers (SCSH), captures the trade-offs between staffing and handovers while accounting for

uncertainty in surgery durations. Specifically, given the daily surgery schedules in ORs, the

first-stage decisions determine the number of CRNAs to be called for a set of (overlapping)

shifts with different start and end times. In the second stage, CRNAs are assigned to ORs

over the time periods in their shifts. The objective function minimizes the total cost of

CRNA staffing along with the expected costs associated with CRNA handovers and under-

staffing. The majority of existing nurse scheduling models in the literature focus on using
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overtime to mitigate workload uncertainty without accounting for handovers. A limited set

of studies that consider handovers typically do so in deterministic settings or assume that

handovers have no impact on the quality of care. Our model explicitly minimizes handovers

in ORs under uncertain surgery durations, and can be easily extended to consider overtime.

SCSH includes binary variables in both stages, and can be optimized using the Integer

L-shaped Algorithm (Laporte and Louveaux 1993). The feasibility and optimality cuts

generated in the Integer L-shaped Algorithm tend to be weak, resulting in slow con-

vergence. Therefore, they are usually augmented with LP Benders Cuts (Angulo et al.

2016). The performance of the Integer L-shaped Algorithm can be further improved by

tightening the formulation of the second-stage problem.

We derive a set of valid inequalities for the second stage of SCSH. These inequalities define

the convex hull of the nurse assignment and handover constraints. Our computational

results show that they substantially accelerate the convergence of the Integer L-shaped

Algorithm. The proposed valid inequalities are broadly applicable to re-scheduling prob-

lems that explicitly consider service (or job) transfers between servers due to limited

resource availability or failures. Such problems arise in the preemptive variant of the

resource-constrained scheduling problem where activities are interrupted and executed

on a different resource when they are at risk of becoming tardy (Kirti et al. 2024), or

resumed later to improve the makespan of a project to which they belong (Salvadori and

Agnetis 2025, Buddhakulsomsiri and Kim 2006). The proposed valid inequalities can also

strengthen the formulations used to design routing-based reactive scheduling policies for

machine failures in job shops, where affected jobs are rerouted to alternative machines

when their primary machines fail (Kutanoglu and Sabuncuoglu 2001, Zhang et al. 2021).

None of these studies in the literature proposed valid inequalities.

The remainder of the paper is organized as follows. Section 2 provides a review of the

relevant literature. Section 3 introduces the formulation of SCSH, and Section 4 outlines our

solution methodology. Section 5 details the proposed valid inequalities. Section 6 presents

the computational experiments and managerial insights. Section 7 concludes the paper.

2. Literature Review

This paper involves both modeling and methodological advancements. Section 2.1 reviews

the literature on nurse scheduling and handover processes, while Section 2.2 examines

existing approaches for solving two-stage SIPs. Finally, Section 2.3 summarizes our main

contributions.
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2.1. Nurse Scheduling and Handovers

The literature on nurse scheduling in ORs can generally be divided into two main cate-

gories; studies that integrate nurse scheduling with surgery scheduling (Breuer et al. 2020,

Guo et al. 2016, Latorre-Núñez et al. 2016, Xiang et al. 2015) and those that concentrate

exclusively on nurse scheduling for a given surgery schedule (Di Martinelly and Meskens

2017, Lim et al. 2016, Guo et al. 2014, Mobasher et al. 2011). Among these, some consider

the uncertainty in surgery durations (Breuer et al. 2020, Guo et al. 2014, Latorre-Núñez

et al. 2016) while others solve a deterministic problem. Additionally, Rath et al. (2017)

and Tsang et al. (2025) present models that integrate surgery and anesthesiologist schedul-

ing under surgery duration uncertainty. These papers do not consider handovers between

providers and those that consider uncertainty in surgery durations allow providers to work

overtime to mitigate the impact of uncertainty. We focus on the allocation of CRNAs to ORs

for a given surgery-to-OR allocations and start times. We take into account uncertainty in

surgery durations and consider handovers at the end of CRNA shifts instead of overtime.

However, the proposed model can be easily adapted to consider overtime.

The existing literature on handovers in scheduling problems within healthcare deliv-

ery systems is limited. Kazemian et al. (2014) propose an integer programming approach

for designing work shift schedules of medical trainees with the objective of minimizing

patient handovers while Smalley et al. (2015) present a mixed-integer programming model

for physician scheduling that seeks to reduce patient handovers between physicians. How-

ever, both of these papers address deterministic problems in non-surgical settings. Sun

et al. (2023) tackle a medium-term, tactical-level anesthesiologist scheduling problem span-

ning multiple weeks. They develop optimization models for designing shifts and assigning

anesthesiologists to these shifts while accounting for uncertainties in clinical demand. In

contrast, we address the operational level CRNA scheduling problem for a given set of shifts.

In their models, Sun et al. (2023) permit handovers between anesthesiologists but assumes

that such transitions do not affect the quality of care. Consequently, unlike our paper, their

approach does not aim to reduce or control the number of handovers.

2.2. Solution Methods for Two-Stage SIPs

A substantial body of research exists on solving two-stage SIPs with integer variables in

both stages (Küçükyavuz and Sen 2017). The existing literature can be broadly catego-

rized into two main groups. The first group focuses on extending the L-shaped Algorithm
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to solve SIPs with integer second-stage variables. This is typically achieved by convexify-

ing the second-stage problem through the addition of valid inequalities, either iteratively

(Gade et al. 2014, Zhang and Kucukyavuz 2014, Sen and Higle 2005) or in a single step

(Bansal et al. 2018, Kim and Mehrotra 2015). These methods enable the use of L-shaped

Algorithm for solving such problems, though the convexification process may be com-

putationally intensive and challenging. The second category addresses SIPs with binary

first-stage variables using the Integer L-shaped Algorithm (Laporte and Louveaux 1993,

Angulo et al. 2016). This approach follows a Benders-style decomposition framework, where

no-good type feasibility and optimality cuts are iteratively added to the Master Problem.

In this paper, we integrate the strengths of both approaches. Specifically, we propose an

Integer L-shaped Algorithm for SCSH that, in addition to the traditional no-good cuts,

incorporates stronger LP Benders Cuts derived from a tighter second-stage formulation.

2.3. Contributions

The main contributions of this paper are as follows:

i. We formulate SCSH, a two-stage SIP, for assigning CRNAs to ORs across overlapping

shifts. The proposed model captures the trade-offs between CRNA staffing and handover

costs under uncertainty in surgery durations. It is broadly applicable to shift-based multi-

period scheduling environments in which handovers and under-staffing arise, conditions

that are common across many medical institutions and in several other industries. Addi-

tionally, the proposed formulation can be readily extended to incorporate overtime.

ii. We tighten the formulation of the second-stage problem in SCSH by a set of valid

inequalities. We demonstrate that the proposed valid inequalities define the convex hull

of the nurse assignment and handover constraints. These inequalities have a general scope

and can be applied to multi-period scheduling problems that involve the preemptive or

reactive transfer of tasks (jobs) across resources.

iii. We present an Integer L-shaped Algorithm for SCSH, in which we augment the

traditional no-good cuts with stronger LP Benders Cuts derived from the second-stage

problem after incorporating the proposed valid inequalities. Our computational experi-

ments show that these strengthened LP Benders Cuts substantially improve the conver-

gence of the Integer L-shaped Algorithm.

iv. We demonstrate the applicability of SCSH using historical data from a large tertiary

care hospital in the eastern United States. The computational results indicate that SCSH
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can support anesthesiology departments in determining appropriate CRNA staffing levels by

balancing trade-offs among staffing costs, handovers, and under-staffing, while accounting

for uncertainty in surgery durations. When handover costs are relatively low compared to

staffing costs, the optimal solution recommends calling more CRNAs with shorter shifts,

which are then assigned to ORs in a manner that results in more handovers but fewer

under-staffed periods. In contrast, when handover costs are relatively high, the model

recommends calling more CRNAs with longer shifts, resulting in fewer handovers but more

under-staffed periods.

3. Model Formulation

Each CRNA works on a single shift, and there are multiple shifts with different start and end

times. These shifts may overlap in the time periods they cover. The first-stage problem

selects CRNAs to be called for each shift. This decision can be made in advance of the

surgery day as soon as the surgery schedule becomes available. The second-stage problem

assigns CRNAs to ORs over time periods in their shifts under different scenarios of surgery

time realizations. The objective of our model is to minimize the total cost of CRNA staffing

and the expected total cost of handovers and under-staffing.

Let S be the set of shifts, J the set of ORs, and T the set of time periods. Furthermore,

let I be the set of CRNAs and id /∈ I be the index for a “dummy” or float CRNA, which is

assigned to an OR when a regular CRNA is not available, representing under-staffing. Let

Is ⊆ I denote the set of CRNAs working shift s, satisfying Is1 ∩ Is2 = ∅ for all s1 ̸= s2 ∈ S and

∪s∈SIs = I. Let zst be a binary parameter which equals 1 if shift s covers period t, and 0

otherwise. Let cfs denote the cost of a CRNA on shift s, ch the cost of a handover, and ci the

per-period cost of CRNA under-staffing in an OR.

Let Ω be a finite set of scenarios representing the uncertainty in surgery durations, and

pω the probability of scenario ω ∈Ω. Binary parameter αjt(ω) equals 1 if there is an active

surgery in OR j in time period t under scenario ω and 0, otherwise. Lastly, let Jt(ω)⊆ J be

the subset of ORs with an ongoing active surgery in periods t and t+1 under scenario ω.

The first-stage binary variable ri takes the value 1 if CRNA i is called for duty and 0

otherwise. The second-stage binary variable xijt(ω) equals 1 if CRNA i is assigned to OR j in

time period t under scenario ω, and 0 otherwise. If xidjt(ω) = 1, then CRNA under-staffing

occurs in OR j during time period t. The binary variable wit(ω) is equal to 1 if there is a
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Table 1 Description of Notations

Sets and Parameters

I set of CRNAs

Is set of CRNAs working shift s

J set of ORs

T set of time periods

S set of CRNA shifts

Ω set of all scenarios

cfs cost of calling a CRNA for shift s

ch cost of a handover

ci per-period cost of CRNA under-staffing in an OR

zst binary parameter equal to 1 if shift s covers period t, 0 otherwise

pω probability of scenario ω

Jt(ω) subset of ORs with same surgery active in periods t and t+1 under scenario ω

αjt(ω) 1 if there is an active surgery in OR j in time period t under scenario ω, 0 otherwise

Indices

i index of CRNA, i∈ I
id index of the dummy CRNA, id /∈ I
j index of OR, j ∈ J
t index of time period, t∈ T
s index of shift, s∈ S
ω index of scenario, ω ∈Ω

First-stage decision variables

ri 1 if CRNA i is called for duty, 0 otherwise

Second-stage decision variables

xijt(ω) 1 if CRNA i is allocated to OR j in time period t under scenario ω, 0 otherwise

wit(ω) 1 if a handover occurs from regular CRNA i to any other CRNA at the end of time period t

under scenario ω, 0 otherwise

w̄it(ω) 1 if a handover occurs from a dummy CRNA to regular CRNA i at the end of time period t

under scenario ω, 0 otherwise

handover from CRNA i at the end of time period t under scenario ω, and 0 otherwise. Finally,

binary variable w̄it(ω) is equal to 1 if a handover occurs from dummy CRNA to a regular

CRNA i at the end of time period t under scenario ω, and 0 otherwise. Table 1 summarizes

the notation. Note that the first-stage variable ri is defined for each CRNA because capturing

handovers in the second stage requires tracking whether the same CRNA is assigned to an

OR in periods t and t+ 1. This necessitates assigning individual CRNAs to ORs, and only

those CRNAs called for duty in the first-stage are available in the second-stage.

We use boldface lowercase letters to denote vectors and boldface uppercase letters to

represent matrices. The two-stage SIP is given by:

(SCSH) v∗ =Min
∑
s∈S

∑
i∈Is

cfsri +Q(r) (1a)

s.t. ri1 ≥ ri2 ∀s∈ S, i1, i2 ∈ Is : i1 < i2 (1b)
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r∈ B|I|. (1c)

Constraint (1b) is a symmetry-breaking constraint that ensures CRNAs in each shift are

selected in increasing order of their indices. The objective function (1a) minimizes the CRNA

staffing cost along with the expected total cost of handovers and under-staffing Q(r) :=
EωQ(ω,r) =

∑
ω∈Ω pωQ(ω,r) , where

(SSr,ω) Q(ω,r) =Min
∑
i∈I

∑
t∈T

chwit(ω)+
∑
i∈I

∑
t∈T

chw̄it(ω)+
∑
j∈J

∑
t∈T

cixidjt(ω) (2a)

s.t.
∑
j∈J

xijt(ω)≤ rizst ∀i∈ Is, s∈ S, t∈ T, (2b)

wit(ω)≥ xijt(ω)−xij(t+1)(ω) ∀i∈ I, j ∈ Jt(ω), t∈ T \ {|T |}, (2c)

w̄it(ω)≥ xidjt(ω)+xij(t+1)(ω)− 1 ∀i∈ I, j ∈ Jt(ω), t∈ T \ {|T |}, (2d)

xidjt(ω)+
∑
i∈I

xijt(ω) = αjt(ω) ∀j ∈ J, t∈ T, (2e)

x(ω)∈ B(|I|+1)×|J |×|T |, w(ω), w̄(ω)∈ B(|I|)×(|T |−1) . (2f)

Constraint (2b) ensures that each CRNA is assigned to at most one OR in each time period.

This constraint also guarantees that CRNAs are assigned to an OR in time period t only

if they are scheduled for duty and their shift covers that period, thereby accounting for

overlapping CRNA shifts. Constraint (2c) captures handovers from CRNA i at the end of

period t. In particular, if CRNA i is assigned to OR j ∈ Jt(ω) in period t (xijt(ω) = 1) but

is not assigned to that OR in t+1 (xij,t+1(ω) = 0), then wit(ω) = 1, indicating a handover

from CRNA i in period t under scenario ω. There can be at most one handover from CRNA

i∈ I in a period because (2b) restricts each CRNA i to at most one OR in any period.

Constraint (2c) cannot capture handovers from the dummy CRNA because the dummy

CRNAmay be assigned to multiple under-staffed ORs in the same period. As a result, applying

(2c) to a dummy CRNA would underestimate the number of handovers from the dummy CRNA

to regular CRNAs at the end of each time period. Therefore, we capture these handovers

through (2d). Specifically, when the dummy CRNA is assigned to OR j in period t (xidjt(ω) =

1) under scenario ω and a regular CRNA i ∈ I is assigned to the same OR j in period t+1

(xij(t+1)(ω) = 1), then a handover occurs from the dummy CRNA to regular CRNA i at the

end of time period t, which is recorded by setting w̄it(ω) = 1 in (2d). Moreover, since each

regular CRNA i∈ I is assigned to at most one OR per time period, w̄it(ω) can be at most 1.
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Constraint (2e) ensures that a CRNA (regular or dummy) is assigned to ORs for every

time period with an active surgery. The objective function (2a) minimizes the total cost

of handover and CRNA under-staffing. Handovers from the dummy CRNA to a regular CRNA

involve transferring care from a float CRNA to a regular one; hence, it constitutes an actual

exchange in the responsibility of care and is therefore penalized in the objective function.

SCSH has complete recourse because calling no CRNAs for duty by setting ri = 0, i ∈ I in

the first stage and assigning the dummy CRNA to all ORs in all time periods in by setting

xidjt(ω) = αjt(ω) ∀j ∈ J, t∈ T in the second-stage is a feasible solution.

The proposed model captures the trade-offs between CRNA staffing and handover costs

under uncertainty in surgery durations. It accommodates nurse (worker) shifts and surgery

(job) schedules with heterogeneous start and end times, making it broadly applicable to

shift-based multi-period scheduling environments in which handovers and under-staffing

arise, conditions that are common across many medical institutions and in several other

industries. Although we assume each CRNA works on a single shift, that is, Is1 ∩ Is2 = ∅ for

all s1 ̸= s2 ∈ S—as is the case at our partner medical institution—the SCSH can be easily

modified to handle situations where a CRNA works multiple shifts. For example, if CRNA

i∈ Is1 ∩ Is2, we can replace i with two distinct indices, i1 and i2, where i1 ∈ Is1 and i2 ∈ Is2,

and then add the constraint ri1 +ri2 ≤ 1 to the first-stage problem to prevent calling CRNA i

for two different shifts. Lastly, we can extend SCSH to consider CRNA over time by tracking

the last time period in which CRNAs are allocated to an OR after their shift ends, as shown

in Appendix D. These extensions will not impact the methodological approaches that we

propose for the efficient solution of SCSH.

4. Integer L-shaped Algorithm for SCSH

The L-shaped Algorithm can be applied to solve SCSH after relaxing the integrality of

the second-stage binary variables. The algorithm generates LP Benders Cuts whenever

an integer first-stage solution is identified within a Branch-and-Bound framework (see

Appendix A for more details). The optimal objective value of the relaxed problem pro-

vides a lower bound for SCSH. Furthermore, the first-stage solution r obtained from the

L-shaped Algorithm can be used to evaluate Q(r) and derive an upper bound. However,

this approach does not ensure global optimality.



Sinha et al.: Two-stage Stochastic Program for CRNA Scheduling
10 Article submitted to ; manuscript no.

The Integer L-shaped Algorithm (ILS) can be applied to obtain the global optimal

solution to SCSH. This method can also be also executed within a Branch-and-Bound

framework, where the algorithm is initialized with the following master problem:

(M) Min
∑
s∈S

∑
i∈Is

cfsri +
∑
ω∈Ω

pωθω (3a)

s.t. ri1 ≥ ri2 ∀s∈ S, i1, i2 ∈ Is : i1 < i2 (3b)

θω ≥ 0 ∀ω ∈Ω (3c)

r∈ B|I| (3d)

where θω is an auxiliary variable representing the second-stage cost under scenario ω.

Subsequently, for each integer solution (θ̄, r̄) encountered during the Branch-and-Bound

algorithm, and for every scenario ω where θ̄ω <Q(ω, r̄), the following Integer Optimality

Cut is added toM:

θω ≥Q(ω, r̄)
(∑

i∈S(r̄) ri−
∑

i/∈S(r̄) ri− |S(r̄)|
)
+Q(ω, r̄), (4)

where S(r̄) = {i ∈ I|r̄i = 1}. This cut eliminates the solution (θ̄, r̄) if θ̄ω <Q(ω, r̄) for sce-

nario ω. The right-hand side of (4) equals Q(ω, r̄) at r= r̄, yielding the tightest possible

underestimation of θω at r̄. However, if r ̸= r̄, (4) becomes redundant since its right-hand

side takes on a non-positive value. As a result, Integer Optimality Cuts contribute little

to strengthening the lower bounds within the Branch-and-Bound algorithm, which in turn

slows the convergence of ILS. The performance can potentially be improved by generating

LP Benders Cuts in addition to the Integer Optimality Cuts. This approach, referred

to as ILS-L, first attempts to eliminate an integer solution using LP Benders Cuts gen-

erated based on the LP relaxation of the second-stage problems. If no LP Benders Cuts

are found, Integer Optimality Cuts are added to M as shown in the optimality cut

subroutine in Algorithm 1.

We apply ILS-L to solve SCSH. To accelerate the convergence, we derive valid inequalities

to tighten the formulation of second-stage problem SSr,ω and strengthen the LP Benders

Cuts. We demonstrate that the proposed valid inequalities characterize the convex hull of

the assignment and handover constraints defined for each CRNA i∈ I, t∈ T \ {|T |} and ORs

in the set Jt.
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Algorithm 1 Optimality Cut Subroutine

1: Input: (r̄, [θ̄ω]ω∈Ω)

2: for ω ∈Ω do

3: Obtain Ql(ω, r̄), objective value of the LP relaxation of SSr,ω

4: if Ql(ω, r̄)> θ̄ω then

5: Add LP Benders Cut (13) toM. ▷ Step 1

6: end if

7: end for

8: if No LP Benders Cuts are added in Step 1 then

9: S(r̄)←{i : r̄i = 1}

10: for ω ∈Ω do

11: Obtain Q(ω, r̄)

12: if Q(ω, r̄)> θ̄ω then

13: Add Integer Optimality Cut (4) toM ▷ Step 2

14: end if

15: end for

16: end if

5. Valid Inequalities for SSr,ω

In this section, we omit the scenario index ω for clarity of the presentation. For a given

first-stage solution r, let P(r) be the set of feasible second-stage solutions. Proposition 1

presents a set of valid inequalities for P(r). Proofs of all the propositions are stated in

Appendix B.

Proposition 1. For i∈ I and t∈ T \ {|T |}, the inequalities

wit ≥
∑

j∈J̄
(
xijt−xij(t+1)

)
∀J̄ ⊆ Jt (5)

are valid for P(r).

Valid inequalities in (5) capture a handover from CRNA i at the end of time period t if

that CRNA is assigned to an OR in J̄ ⊆ Jt during time period t but not assigned an OR in

the same subset in period t+1. The summation over ORs on the right-hand side of (5) is

valid because CRNA i can be assigned to at most one OR in J̄ in each period t and t+ 1.

Thus, the term inside the sum can equal 1 for at most one OR in J̄ ⊆ Jt, and (5) generalizes
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(2c) by accounting for handovers within each subset of ORs. Example 1 demonstrates that

inequality (5) cut off fractional solutions that are feasible to (2c).

Example 1. Consider an instance of SSr,ω with I = {1}, T = {1,2}, r1 = 1, J = J1 =

{1,2} and α11 = α21 = α12 = α22 = 1. The solution w11 = 0.5, w̄11 = 0, x111 = 0.5, x121 =

0.5, x112 = 0, x122 = 0, xid11 = 0.5, xid21 = 0.5, xid12 = 1, xid22 = 1 is feasible to the LP relax-

ation of SSr,ω but violates the following valid inequality (5) for t= 1 with J̄ = Jt:

w11︸︷︷︸
0.5

≥ x111+x121︸ ︷︷ ︸
1

−x112−x122︸ ︷︷ ︸
0

.

For i∈ I, t∈ T \ {|T |}, let Qit be a binary set given by:

Qit =


wit ≥ xijt−xij(t+1) ∀j ∈ Jt,∑

j∈Jt xijt ≤ 1,
∑

j∈Jt xij(t+1) ≤ 1,

wit ∈ {0,1}, xijt, xij(t+1) ∈ {0,1} ∀j ∈ Jt

(6)

Constraints (6) restrict the assignment of CRNA i to at most one OR in Jt during the periods t

and t+1, and determine whether a handover occurs from CRNA i at the end of period t. This

constraint structure commonly appears in multi-period preemptive or reactive scheduling

problems, where the transfer of tasks across resources is tracked (Salvadori and Agnetis

2025, Buddhakulsomsiri and Kim 2006).

Let Q̃it denote the linear relaxation of Qit. The main theoretical result of this paper

pertains to showing that adding valid inequalities (5) to Q̃it characterizes the convex hull

of Qit, which is denoted by conv(Qit). The proof is achieved in two steps. First, in Propo-

sition 2, we use a disjunctive programming technique to derive a polyhedron Vit in an

extended variable space whose projection onto the space of (wit,xit,xi(t+1)) variables gives

conv(Qit). Then, in Proposition 3, we utilize Hoffman’s Circulation Theorem (Hoffman

1976) to show that the Proj(wit,xit,xi(t+1))
Vit is characterized by Q̃it and inequalities in (5),

where the projection operator is defined as Proj(x)X = {x : ∃y such that (x, y)∈X }.

Proposition 2. For a given i ∈ I, t ∈ T \ {|T |}, define the auxiliary variables x1ijt and

x1ij(t+1) ∀j ∈ Jt. Furthermore, let Vit be the polyhedron given by

xijt−xij(t+1) ≤ x1ijt−x1ij(t+1) ≤wit ∀j ∈ Jt, (7a)

− 1+wit +
∑
j∈Jt

xijt ≤
∑
j∈Jt

x1ijt ≤wit, (7b)
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− 1+wit +
∑
j∈Jt

xij(t+1) ≤
∑
j∈Jt

x1ij(t+1) ≤wit, (7c)

0≤ x1ijt ≤ xijt ∀j ∈ Jt, (7d)

0≤ x1ij(t+1) ≤ xij(t+1) ∀j ∈ Jt. (7e)

Then, conv(Qit) = Proj(wit,xit,xi(t+1))
Vit.

Proposition 3 presents the projection of Vit onto (wit,xit,xi(t+1)) variable space.

Proposition 3. Proj(wit,xit,xi(t+1))
Vit is given by the following set of constraints:

Q̃L
it =

 (wit,xit,xi(t+1))∈ Q̃it,

wit ≥
∑

j∈J̄
(
xijt−xij(t+1)

)
∀J̄ ⊆ Jt, |J̄ |≥ 2.

(8)

Using Propositions 2 and 3, we obtain the following corollary, which shows that adding

valid inequalities (5) to Q̃it yields conv(Qit).

Corollary 1. conv(Qit) = Q̃L
it

Corollary 1 suggests that including valid inequalities (5) to SSr,ω can lead to a tighter

formulation of SSr,ω. Therefore, generating LP Benders Cuts based on this formulation

can accelerate the convergence of ILS-L. For each i ∈ I, t ∈ T \ |T |, the number of valid

inequalities (5) are exponential in |Jt|. The following proposition presents a polynomial

size reformulation for these valid inequalities.

Proposition 4. For i∈ I, t∈ T \ {|T |}, valid inequalities (5) and wit ≥ 0 can be refor-

mulated as:

wit ≥
∑
j∈Jt

βijt (9a)

βijt ≥ xijt−xij(t+1) ∀j ∈ Jt, (9b)

βijt ≥ 0 ∀j ∈ Jt. (9c)

We implement valid inequalities (5) through (9) in our computational experiments. In the

following proposition, we present another family of valid inequalities for P(r).

Proposition 5. For each i∈ I, t∈ T \ {|T |} and j′ ∈ J . The inequality

wit ≥ xij′(t+1)− 1+
∑

j∈Jt\j′
xijt (10)

is valid for P(r).
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The valid inequality (10) captures a handover at the end of period t when CRNA i is

assigned to OR j′ ∈ J in period t+1 and another OR in Jt\j′ in period t. Proposition 6 shows

that this inequality is weakly dominated by (5). Nonetheless, including both valid inequal-

ities in SSr,ω provides significant computational benefit as we illustrate in Section 6.1.

Proposition 6. Valid inequality (10) is weakly dominated by (5).

6. Computational Experiments

Our computational experiments are based on data from a tertiary medical hospital in

the eastern United States. The dataset consists of 14,883 surgeries across 24 specialties,

spanning a period of 353 working days. For each specialty, Table 10 in Appendix C provides

the mean and standard deviation of surgery durations, along with the percentage share

of total surgeries attributed to each specialty. We assume that the surgery duration for

each specialty follows a log-normal distribution (Neyshabouri and Berg 2017). Table 10

presents the estimated mean and standard deviation of surgery durations. To make the

trade-offs between handovers and under-staffing more pronounced and to more precisely

evaluate the impact of handovers on staffing decisions, we generate instances with longer

surgery durations by scaling the mean and variance of surgery durations by 1.5.

While the parameter zst in SSr,ω permits CRNA shifts to begin and end any time, following

the scheduling practices at our partner institution, surgeries are scheduled to start at 7

a.m. in our computational experiments, and CRNAs work on one of four shifts lasting 8, 10,

12, or 14 hours. We consider a 14-hour planning horizon from 7 a.m. to 9 p.m., divided into

|T |= 56 equal time intervals of 15 minutes each. We experiment with the surgery schedules

of three different days. Table 2 reports the total number of surgeries, the total number of

ORs, and the number of CRNAs during each of the four shifts across these days. More details

about each scheduled surgery, including its specialty, planned start time, and the assigned

OR, are provided in Appendix C.

Let cr denote the hourly cost of a CRNA. Assuming a linear relation, the costs of CRNAs

for shifts of 8 hours (cf1), 10 hours (cf2), 12 hours (cf3), and 14 hours (cf4) are 8cr, 10cr, 12cr,

and 14cr, respectively. We use cr = 200 in our experiments. In computational experiments,

we simply ensure that (cfs ) increases with shift length. In practice, the costs of longer shifts

may scale non-linearly. The proposed model can readily accommodate such cases.
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Table 2 Surgery and Shift Data

Day 1 Day 2 Day 3

Number of surgeries 56 41 37
Number of open ORs 9 9 9

Number of available CRNAs:
Shift 1: 7 a.m.- 3 p.m. 3 7 3
Shift 2: 7 a.m.- 5 p.m. 5 6 7
Shift 3: 7 a.m.- 7 p.m. 5 1 3
Shift 4: 7 a.m.- 9 p.m. 2 0 1

While the hourly cost of CRNAs is relatively straightforward to estimate in practice,

estimating the costs of under-staffing and handovers is more challenging due to their down-

stream impacts on clinic operations and patient health outcomes. Consequently, we specify

these cost parameters relative to CRNA staffing cost, informed by our medical collabora-

tor’s acceptable levels of expected handovers and under-staffing in the resulting schedules.

Subsequently, we set handover cost (ch) and per-period CRNA under-staffing cost (ci) using

the ratios ψ = ch
cr
, and χ= ci

cr
. We consider three values of ψ = 30,40,50 and three values

of χ= 5,10,20. Note that extreme values of these parameters lead to trivial solutions. If

ψ or χ is set too high, placing excessive emphasis on avoiding handovers or under-staffing,

nearly all CRNAs would be called for duty. Conversely, if these parameters are too low, few

or no CRNAs would be scheduled, resulting in a large number of handovers or under-staffed

periods. We design a full factorial experiment over the values of ψ and χ, resulting in 9

different cases for each |Ω|. Furthermore, we generate three random instances for each of

the three days per case, that is, 9 different instances per case.

The remainder of this section is organized as follows: Section 6.1 assesses the strength of

the valid inequalities derived in Section 5, while Section 6.2 compares different algorithmic

approaches for solving SCSH. Section 6.3 examines the value of incorporating stochasticity

in surgery durations, and Section 6.4 provides a sensitivity analysis by varying the handover

and under-staffing costs to offer managerial insights.

6.1. Effectiveness of Valid Inequalities

To evaluate the effectiveness of the valid inequalities proposed in Section 5, we solve the

extensive formulation of SCSH with a single-scenario, both with and without the valid

inequalities. Specifically, for each instance, let Z represent the optimal objective value

when integrality is enforced in both stages of the single-scenario problem. Let ZI denote

the optimal objective value when the integrality is relaxed in the second-stage. Finally,

let ZIC denote the optimal objective value when the second-stage is relaxed, and the valid
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Table 3 Average (max) optimality gaps (%) for ρ{5,10}, ρ{5} and ρ{10}.

Case ψ—χ ρ{5,10} ρ{5} ρ{10} IG

1 30—5 100.00 (100.00) 96.62 (100.00) 9.34 (47.55) 11.31 (25.19)
2 30—10 98.52 (100.00) 95.59 (100.00) 5.54 (16.67) 12.56 (20.61)
3 30—20 97.88 (100.00) 96.27 (100.00) 7.69 (25.00) 9.87 (17.18)

4 40—5 100.00 (100.00) 96.30 (100.00) 12.30 (61.54) 9.97 (23.44)
5 40—10 98.18 (100.00) 94.98 (100.00) 4.75 (16.67) 13.95 (24.65)
6 40—20 97.78 (100.00) 95.81 (100.00) 6.82 (21.88) 12.03 (21.28)

7 50—5 100.00 (100.00) 95.24 (100.00) 20.78 (83.52) 8.49 (21.42)
8 50—10 99.61 (100.00) 97.87 (100.00) 6.44 (25.00) 14.05 (27.44)
9 50—20 98.17 (100.00) 96.15 (100.00) 6.16 (18.75) 13.35 (22.26)

inequalities C ∈ {{(5)},{(10)},{(5), (10)}} are included. Although we use the reformulation

(9) when implementing (5), for clarity of the exposition, we refer to these valid inequalities

using (5). We measure the percentage of the integrality gap (Z− ZI) closed by adding the

valid inequalities C using ρC =
ZIC− ZI

Z− ZI
× 100. We set a solution time limit of 3600 seconds

using a 14-core Intel Xeon 2.60GHz processor with 128GB RAM, Python 3.9.12 and Gurobi

11.0.2. For each of the 9 cases defined by ψ, χ and for each C, Table 3 reports the average

(maximum) ρC , and the average (maximum) integrality gap, IG = Z−ZI

Z
× 100. The table

demonstrates that the combination of valid inequalities {(5), (10)} closes a substantial

portion of integrality gap and, in several instances, fully eliminates it. Moreover, the values

of ρ{5}, and the difference between ρ{5,10} and ρ{5} indicate that although valid inequalities

(5) close a substantial portion of the integrality gap, valid inequalities (10) still provide a

significant contribution.

6.2. Computational Performance of Algorithms to Solve SCSH

In this section, we compare the performance of the following five methods to solve SCSH:

1. L-shaped Algorithm as detailed in Appendix A with no valid inequalities added to

SSr,ω (LS-NoVI).

2. L-shaped Algorithm with valid inequalities (5) and (10) added to SSr,ω (LS-VI).

3. ILS-L with no valid inequalities added to SSr,ω (ILS-L-NoVI).

4. ILS-L with valid inequalities (5) and (10) added to SSr,ω (ILS-L-VI).

5. Extensive Form solved using Gurobi 11.0.2 (ExF).

For all instances, each method is run with a time limit of 3600 seconds and a target opti-

mality gap of 1%. In the computational results, the execution time of ILS-L-NoVI and

ILS-L-VI may exceed the 3600-second limit on certain instances. This occurs because if

the algorithm enters the optimality cut subroutine near the time limit, it is allowed to
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Table 4 Average (max) optimality gap (%), |Ω|= 500 scenarios.

Case ψ — χ LS-NoVI LS-VI ILS-L-NoVI ILS-L-VI ExF

1 30—5 10.46 (13.02) 0.88 (1.72) 0.25 (0.84) 0.35 (0.93) 92.94 (95.27)
2 30—10 11.56 (12.52) 0.69 (1.17) 0.32 (0.80) 0.45 (1.00) 92.78 (95.41)
3 30—20 9.28 (10.87) 0.32 (0.61) 0.32 (0.88) 0.40 (0.95) 92.75 (95.65)

4 40—5 9.82 (12.73) 0.91 (1.71) 0.00 (0.00) 0.47 (1.00) 93.92 (96.03)
5 40—10 12.83 (14.09) 0.86 (1.45) 0.52 (3.03) 0.43 (0.99) 93.48 (95.95)
6 40—20 11.42 (13.30) 0.50 (0.91) 1.13 (4.30) 0.53 (1.00) 92.45 (95.95)

7 50—5 8.60 (11.13) 0.91 (1.69) 0.32 (0.94) 0.34 (1.00) 95.22 (101.36)
8 50—10 13.37 (14.89) 0.96 (1.61) 0.11 (1.00) 0.49 (1.00) 92.88 (96.38)
9 50—20 12.83 (14.66) 0.69 (1.24) 0.51 (0.97) 0.53 (1.00) 93.57 (96.21)

finish that subroutine before termination, resulting in the total runtime exceeding 3600

seconds. For each of the 9 cases defined by ψ and χ, Tables 4 and 6 present the average

(maximum) % optimality gaps for the five algorithms with |Ω|= 500 and 1000 scenarios,

respectively, assuming equal probability for each scenario. Tables 5 and 7 report the corre-

sponding average (maximum) computational times (in seconds) for |Ω|= 500,1000, respec-

tively. Lastly, Table 8 shows the percentage of instances yielding 0.01-optimal solutions

for |Ω|= 500,1000.

As shown in these tables, both LS-VI and ILS-L-VI consistently outperform LS-NoVI,

ILS-L-NoVI and ExF across all three performance metrics for both |Ω|= 500 and 1000.

This indicates that the inclusion of valid inequalities (5) and (10) substantially strength-

ens the LP Benders Cuts in both the L-shaped Algorithm and ILS-L, and significantly

improves the convergence of the latter. For example, when |Ω|= 500, ILS-L-VI obtains

0.01-optimal solutions for all instances. ILS-L-NoVI also reaches 0.01-optimal solu-

tions for most instances but requires significantly more computational time. Similarly,

LS-VI—though not an exact method for solving SCSH—achieves near-optimal solutions,

obtaining 0.01-optimal solutions for more than half of the instances in most cases, while

LS-NoVI fails to reach such solutions for any case. A similar trend is observed for |Ω|= 1000

scenarios, with a notable distinction: ILS-L-NoVI fails to find 0.01-optimal solutions

for many instances within 3600 seconds, whereas ILS-L-VI can still find 0.01-optimal

solutions for the vast majority of the instances. Comparing LS-VI and ILS-L-VI, we find

that both exhibit similar average computational performance due to the impact of valid

inequalities (5) and (10). However, unlike LS-VI, ILS-L-VI—being an exact algorithm for

SCSH—successfully achieves 0.01-optimal solutions for nearly all instances.
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Table 5 Average (max) run time, |Ω|= 500 scenarios.

Case ψ — χ LS-NoVI LS-VI ILS-L-NoVI ILS-L-VI ExF

1 30—5 550 (764) 850 (1007) 2557 (3384) 1231 (2136) 3602 (3604)
2 30—10 434 (549) 829 (1013) 2071 (2780) 1202 (1884) 3603 (3607)
3 30—20 410 (543) 696 (947) 1827 (2280) 1075 (1997) 3602 (3605)

4 40—5 547 (755) 992 (1174) 2254 (3276) 1130 (2115) 3602 (3604)
5 40—10 454 (569) 905 (1233) 2574 (3665) 1295 (2427) 3602 (3604)
6 40—20 402 (505) 772 (1004) 2499 (3725) 1287 (2463) 3610 (3670)

7 50—5 515 (741) 894 (1174) 1487 (2272) 1277 (2103) 3602 (3605)
8 50—10 454 (556) 895 (1133) 1898 (3194) 1069 (1923) 3602 (3605)
9 50—20 449 (547) 788 (954) 2196 (3549) 1245 (2136) 3602 (3605)

Table 6 Average (max) optimality gap (%), |Ω|= 1000 scenarios.

Case ψ — χ LS-NoVI LS-VI ILS-L-NoVI ILS-L-VI ExF

1 30—5 10.42 (12.89) 0.91 (1.72) 4.19 (7.38) 0.54 (0.97) 93.73 (101.90)
2 30—10 11.58 (12.54) 0.70 (1.10) 4.12 (7.60) 0.64 (1.00) 95.23 (109.79)
3 30—20 9.31 (10.89) 0.31 (0.55) 0.89 (7.44) 1.53 (7.60) 95.93 (107.52)

4 40—5 9.75 (12.65) 0.94 (1.71) 3.54 (9.48) 0.54 (1.00) 93.93 (96.01)
5 40—10 12.81 (14.01) 0.88 (1.38) 7.04 (12.49) 0.51 (1.00) 94.89 (108.52)
6 40—20 11.45 (13.31) 0.50 (0.85) 2.97 (10.04) 0.56 (1.00) 94.94 (111.56)

7 50—5 8.52 (11.14) 0.97 (1.95) 1.48 (4.46) 0.53 (0.94) 94.66 (96.56)
8 50—10 13.32 (14.78) 0.96 (1.55) 7.54 (13.91) 0.46 (1.00) 94.05 (96.36)
9 50—20 12.85 (14.68) 0.70 (1.16) 8.59 (37.91) 0.59 (1.15) 93.57 (96.19)

Table 7 Average (max) run time, |Ω|= 1000 scenarios.

Case ψ — χ LS-NoVI LS-VI ILS-L-NoVI ILS-L-VI ExF

1 30—5 955 (1306) 1628 (1919) 3385 (4180) 2164 (4157) 3606 (3623)
2 30—10 811 (945) 1550 (2059) 3413 (4474) 1966 (2909) 3607 (3618)
3 30—20 734 (962) 1269 (1691) 2513 (3691) 2340 (4613) 3604 (3606)

4 40—5 952 (1369) 1703 (2268) 3216 (4164) 2270 (4056) 3605 (3622)
5 40—10 863 (1052) 1521 (1879) 3344 (3969) 2067 (2847) 3605 (3610)
6 40—20 784 (916) 1370 (1698) 3108 (4469) 2366 (4356) 3606 (3610)

7 50—5 947 (1215) 1645 (2123) 3043 (3755) 2268 (3567) 3603 (3606)
8 50—10 847 (947) 1535 (2150) 3452 (4097) 1850 (3320) 3604 (3609)
9 50—20 844 (1008) 1375 (1745) 3485 (4446) 2915 (5242) 3604 (3610)

Table 8 % of 9 instances yielding 0.01-optimal solutions in each case.

No. of Scenarios |Ω| 500 1000 500 1000 500 1000 500 1000 500 1000

Case ψ — χ LS-NoVI LS-VI ILS-L-NoVI ILS-L-VI ExF

1 30—5 0 0 67 56 100 33 100 100 0 0
2 30—10 0 0 67 67 100 33 100 100 0 0
3 30—20 0 0 100 100 100 89 100 89 0 0

4 40—5 0 0 33 33 100 44 100 100 0 0
5 40—10 0 0 56 44 89 33 100 100 0 0
6 40—20 0 0 100 100 100 67 100 100 0 0

7 50—5 0 0 33 33 100 67 100 100 0 0
8 50—10 0 0 33 33 78 33 100 100 0 0
9 50—20 0 0 67 67 100 33 100 89 0 0
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Table 9 Comparison of Stochastic Solution and Mean Value Solution (|Ω|= 500).

Case ψ—χ VSS κHO κUS κSC κS1 κS2 κS3 κS4

1 30—5 2.71 -12.69 9.58 -2.07 38.89 -34.44 0.00 0.00
2 30—10 4.93 2.84 10.43 -2.33 44.44 -40.00 0.00 0.00
3 30—20 6.26 10.09 8.92 -2.54 55.56 -51.11 0.00 0.00

4 40—5 2.45 -13.85 8.19 -2.33 44.44 -40.00 0.00 0.00
5 40—10 4.76 -2.45 10.66 -2.33 44.44 -40.00 0.00 0.00
6 40—20 6.44 8.63 9.30 -2.54 55.56 -51.11 0.00 0.00

7 50—5 2.36 -7.91 7.06 -2.07 38.89 -34.44 0.00 0.00
8 50—10 4.52 -6.43 10.27 -2.33 44.44 -40.00 0.00 0.00
9 50—20 6.48 5.66 10.75 -4.39 33.33 -40.00 0.00 0.00

6.3. Comparison with the Mean Value Solution

To assess the impact of modeling uncertainty in surgery durations, Table 9 compares the

best solution obtained from ILS-L-VI (Stochastic Solution) in Section 6.2 with the

Mean Value Solution (Birge and Louveaux 2011) for |Ω|= 500. Column 3 of Table 9

reports the average Value of the Stochastic Solution (VSS), computed as MV−UB
MV

× 100,

where UB andMV denote the objective value evaluated at the Stochastic Solution and

Mean Value Solution, respectively. Columns 4–9 present the average percentage reduc-

tion in l when using Stochastic Solution relative to Mean Value Solution, denoted

by κl =
lMV −lSS

lMV
, where lMV and lSS are the values of l under Mean Value Solution

and Stochastic Solution, respectively. Thus, κl > 0 indicates that the value of l under

Stochastic Solution is lower than under Mean Value Solution, whereas κl < 0 indi-

cates the opposite. In Columns 4 and 5, l corresponds to the expected number of handovers

(HO) and under-staffing (US), respectively. In Column 6, l denotes the first-stage staffing

cost (SC). Finally, in Columns 7–10, l represents the number of shift k CRNAs called for duty

(Sk) where k= 1,2,3,4 (see Table 2). Results for |Ω|= 1000 are presented in Appendix E.

As shown in Column 3 of Table 9, incorporating uncertainty in surgery durations leads

to a substantial reduction in the objective value. These savings are primarily driven by

lower expected under-staffing and/or handovers under Stochastic Solution relative to

Mean Value Solution, as observed in Columns 4 and 5. This effect arises because, as

shown in Columns 6 and 7, Stochastic Solution tends to replace Shift 1 CRNAs in the

Mean Value Solution with longer Shift 2 CRNAs. This substitution increases coverage and

reduces under-staffed periods and/or handovers, and the resulting expected cost savings

outweigh the higher staffing costs observed in Column 6. Moreover, this preference for

Shift 2 over Shift 1 CRNAs becomes more pronounced at higher values of the under-staffing



Sinha et al.: Two-stage Stochastic Program for CRNA Scheduling
20 Article submitted to ; manuscript no.

cost parameter χ, leading to significant reductions in both expected under-staffed periods

and handovers. These observations remain consistent when |Ω|= 1000.

6.4. Sensitivity Analysis

In this section, we examine how the expected number of handovers, the expected number of

under-staffed time periods, and the number of CRNAs assigned to each shift vary in response

to changes in handover cost and under-staffing costs. The results also verify that SCSH

captures the trade-offs between staffing cost, handovers, and under-staffing as intended. To

better understand these trade-offs, we allow up to 10 CRNAs per shift and consider six values

of the handover cost parameter, ψ ∈ {20,30,40,50,60,70}, along with six values of the

per-period under-staffing cost parameter, χ ∈ {2.5,5,10,20,30,40}. For these parameter

settings, we consider the best solution obtained from LS-VI and ILS-L-VI. Results are

averaged over three randomly generated instances of the SCSH corresponding to the Day 3

surgery schedule with |Ω|= 500. As in Section 6.2, LS-VI and ILS-L-VI are solved with a

3600-second time limit, and ILS-L-VI is run with a target optimality gap of 1%.

Figure 1a, for χ= 10, shows the variation in the expected number of handovers and the

expected number of under-staffed time periods as the handover cost parameter ψ increases

from 20 to 70. Similarly, Figure 1b depicts, for the same value of χ and increasing ψ, the

changes in the number of CRNAs assigned per shift and the total cost of CRNAs. Figure 2a and

Figure 2b present the same variations for ψ = 40 and increasing per-period under-staffing

cost parameter χ from 2.5 to 40.

In Figure 1b, the number of CRNAs called for each shift remains the same as ψ increases

from 20 to 40. However, we observe in Figure 1a that the average number of handovers

decreases while the average number of under-staffed time periods increases as expected.

Thus, at a higher handover cost, some surgeries are not assigned any CRNAs because the

shifts of all the available CRNAs end during these surgeries, and incurring under-staffing

instead of handover is more cost-effective. However, as ψ increases to 50, a Shift 3 CRNA

is called in-place of a Shift 2 CRNA. As Shift 3 CRNA can cover a larger number of time

periods, both the average number of handovers and the average number of under-staffed

time periods decrease at the expense of increased staffing cost.

In Figure 2a, the expected number of handovers increases while the expected number

of under-staffed time periods decreases as the per-period under-staffing cost parameter χ

increases from 2.5 to 20. This is because both handovers and additional CRNA coverage are
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Figure 1 Analysis of the trade-off between handovers and CRNA staffing.

used to reduce under-staffing. Additionally, as illustrated in Figure 2b, the total cost of

CRNAs increases as χ increases from 2.5 to 20. For example, as χ increases from 5 to 10,

Shift 2 and Shift 4 CRNAs are called in-place of Shift 1 and Shift 3 CRNAs. The model favors

calling more nurses on longer shifts to cover surgeries scheduled later in the day, where the

effects of accumulated duration uncertainty are most pronounced. Lastly, when χ increases

to 40, calling an additional Shift 1 CRNA becomes cost-effective, providing sufficient CRNA

coverage to reduce both the number of handovers and under-staffed time periods.

7. Conclusion

We propose SCSH, a two-stage stochastic program to staff CRNA shifts. Specifically, SCSH cap-

tures the trade-offs between staffing cost, handovers, and under-staffing while accounting
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Figure 2 Analysis of the trade-off between under-staffing and CRNA staffing.

for uncertainty in surgery durations. Given the daily surgery schedules in ORs, it deter-

mines, in the first stage, the number of CRNAs to be called for each shift. In the second stage,

on-duty CRNAs are assigned to ORs over the time periods within their shifts. The proposed

model captures the trade-offs between CRNA staffing and handover costs under uncertainty

in surgery durations. It is broadly applicable to shift-based multi-period scheduling envi-

ronments in which handovers and under-staffing arise, conditions that are common across

many medical institutions and in several other industries. Additionally, our formulation

can be extended to incorporate overtime without affecting the proposed solution approach.

We present an Integer L-shaped Algorithm for solving SCSH that incorporates LP

Benders Cuts in addition to the standard no-good cuts. To further accelerate convergence,
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we strengthen these LP Benders Cuts by tightening the second-stage formulation. To this

end, we derive valid inequalities for the second-stage problem We demonstrate that the

proposed valid inequalities define the convex hull of the nurse assignment and handover

constraints. These inequalities are broadly applicable to multi-period scheduling problems

that involve preemptive or reactive transfer of tasks across resources. Our computational

experiments demonstrate that the proposed valid inequalities are highly effective, leading

to substantial improvements in the convergence of the Integer L-shaped Algorithm.

They also enhance the performance of the L-shaped Algorithm, enabling it to obtain

0.01-optimal-optimal solutions for a large fraction of the test instances.

This paper demonstrates that explicitly incorporating uncertainty in surgery durations

while optimizing the mix of CRNAs across shifts yields meaningful performance improve-

ments over mean-value solutions, without significantly increasing CRNA costs. The resulting

stochastic solutions reduce one or both cost components associated with handovers and

under-staffing, depending on the trade-offs implied by their relative costs. From an oper-

ational perspective, the model reveals how uncertainty compounds over the course of the

day, increasing the likelihood of coverage gaps and handovers in later periods. Mitigating

these downstream effects may require increasing CRNA hours or opening additional ORs.

Overall, the proposed framework provides a principled basis for evaluating and compar-

ing alternative mitigation strategies. These insights and proposed methods are broadly

applicable to multi-period scheduling problems involving service transfers across resources.

Future research could extend SCSH to jointly optimize both surgery schedules and CRNA

assignments. Another promising direction is to incorporate add-on surgeries, which are

added to the OR schedule at the last minute, into the modeling framework.
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Appendix A: Details of the L-shaped Algorithm

The L-shaped Algorithm to solve SCSH involves relaxing the integrality of the second-stage

binary variables and solving the resulting relaxation. Let vl be the optimal objective func-

tion value of the relaxed problem where vl ≤ v∗. Let r̄ be the first-stage solution obtained at

the termination of the L-shaped Algorithm, then vu =
∑

s∈S
∑

i∈I c
f
s r̄i +

∑
ω∈Ω pωQ(ω, r̄)

given an upper bound on v∗. If vu−vl

vu
≤ ϵ, then the L-shaped Algorithm yields an ϵ-optimal

solution.

We implement L-shaped Algorithm for SCSH on a single Branch-and-Bound tree.

We initialize the algorithm by solving the following master problem using the

Branch-and-Bound algorithm:

(ML) Min
∑
s∈S

∑
i∈I

cfsri +
∑
ω∈Ω

pωθω (11a)

s.t. ri1 ≥ ri2 ∀s∈ S, i1, i2 ∈ Is : i1 < i2 (11b)

θω ≥ 0 ∀ω ∈Ω, (11c)

r∈ B|I|. (11d)

For each integer feasible solution (r̄, θ̄) encountered within any node of the

Branch-and-Bound tree, we solve the following subproblem for each scenario ω ∈Ω:

Ql(ω, r̄k) =Min
∑
i∈I

∑
t∈T

chwit(ω)+
∑
j∈J

∑
t∈T

cixidjt(ω)+
∑
i∈I

∑
t∈T

chw̄it(ω) (12a)

s.t. (µ1
ijt) wit(ω)≥ xijt(ω)−xij(t+1)(ω) ∀i∈ I, j ∈ Jt(ω), t∈ T \ {|T |}, (12b)

(µ2
ijt) w̄it(ω)≥ xidjt(ω)+xij(t+1)(ω)− 1 ∀i∈ I, j ∈ Jt(ω), t∈ T \ {|T |}, (12c)

(µ3
ist)

∑
j∈J

xijt(ω)≤ r̄tizst ∀i∈ I, s∈ S, t∈ T, (12d)

(µ4
jt)

∑
i∈I

xijt(ω)+xidjt(ω) = αjt(ω) ∀j ∈ J, t∈ T, (12e)

(µ5
it) wit(ω)≤ 1 ∀i∈ I, t∈ T \ {|T |}, (12f)

(µ6
it) w̄it(ω)≤ 1 ∀i∈ I, t∈ T \ {|T |}, (12g)

(µ7
ijt) xijt(ω)≤ 1 ∀i∈ I, j ∈ J, t∈ T, (12h)

w(ω), w̄(ω),x(ω)≥ 0 (12i)
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The notation for the optimal dual solution is stated in parentheses before the constraints.

For each ω ∈Ω, if Ql(ω, r̄k)> θ̄k(ω), the following optimality cut is added toML to exclude

the solution (r̄, θ̄):

θω ≥−
∑

i∈I,j∈Jt(ω),
t∈T\{|T |}

µ2
ijt+

∑
i∈I,

s∈S,t∈T

µ3
istrizst +

∑
j∈J,t∈T

µ4
jtαjt(ω)

+
∑

i∈I,t∈T\{|T |}

µ5
it+

∑
i∈I,t∈T\{|T |}

µ6
it+

∑
i∈J,j∈J,t∈T

µ7
ijt.

(13)

Appendix B: Proof of Propositions

Proof of Proposition 1: Assume that for some (x∗,w∗, w̄∗)∈P(r), there exists an i∈ I,

t∈ T \ {|T |}, and J̄ ⊆ Jt such that:

w∗
it <

∑
j∈J̄

(
x∗ijt−x∗ij(t+1)

)
(14)

Then, from (2b) and (2f), it must be that w∗
it = 0 and ∃j1 ∈ J̄ such that x∗ij1t = 1, x∗ij1(t+1) = 0.

In that case, however, (2c) enforces w∗
it ≥ 1, which is a contradiction. □

Proof of Proposition 2: For the ease of presentation, we use xj1 to represent xijt, xj2 in

place of xij(t+1), and w for wit. We represent Qit as the union of two disjoint sets as P1∪P2,

where

P1 =



xj1−xj2−w≤ 0, ∀j ∈ Jt,∑
j∈Jt

xj1 ≤ 1,

∑
j∈Jt

xj2 ≤ 1,

xj1, xj2 ∈ {0,1} ∀j ∈ Jt,

w= 1.

P2 =



xj1−xj2−w≤ 0, ∀j ∈ Jt,∑
j∈Jt

xj1 ≤ 1,

∑
j∈Jt

xj2 ≤ 1,

xj1, xj2 ∈ {0,1} ∀j ∈ Jt,

w= 0.

Let P̃1 and P̃2 be the linear programming relaxations of P1 and P2, respectively. As the con-

straint matrices for the variables xj1, xj2 ∀j ∈ Jt are totally unimodular (TU), conv(P1) =

P̃1 and conv(P2) = P̃1. Consequently, as P̃1 and P̃2 are bounded, conv(Qit) = conv(P̃1∪ P̃2)

(Conforti et al. 2014). Furthermore, conv(P̃1∪ P̃2) is given by the projection of the following

polyhedron onto the (x1,x2,w) variable space (Conforti et al. 2014).

x1j1−x1j2−w1 ≤ 0, x2j1−x2j2−w2 ≤ 0, ∀j ∈ Jt, (15a)
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j∈Jt

x1j1 ≤ λ1,
∑
j∈Jt

x2j1 ≤ λ2, (15b)

∑
j∈Jt

x1j2 ≤ λ1,
∑
j∈Jt

x2j2 ≤ λ2, (15c)

w1 = λ1, w2 = 0, (15d)

x1j1, x
1
j2 ≥ 0, x2j1, x

2
j2 ≥ 0, ∀j ∈ Jt, (15e)

x1j1+x2j1 = xj1, ∀j ∈ Jt, (15f)

x1j2+x2j2 = xj2, ∀j ∈ Jt, (15g)

w1+w2 =w, (15h)

λ1+λ2 = 1, (15i)

0≤ λ1, λ2 ≤ 1. (15j)

From (15d), (15f), (15g), (15h) and (15i), we get the equalities w1 = w, w2 = 0, λ1 = w,

λ2 = (1 − w), x2j1 = xj1 − x1j1, and x2j2 = xj2 − x1j2. Substituting these equalities in the

inequalities of (15) we obtain:

xj1−xj2 ≤ x1j1−x1j2 ≤w ∀j ∈ Jt, (16a)

− 1+w+
∑
j∈Jt

xj1 ≤
∑
j∈Jt

x1j1 ≤w, (16b)

− 1+w+
∑
j∈Jt

xj2 ≤
∑
j∈Jt

x1j2 ≤w, (16c)

0≤ x1j1 ≤ xj1 ∀j ∈ Jt, (16d)

0≤ x1j2 ≤ xj2 ∀j ∈ Jt. (16e)

Substituting xj1 = xijt, xj2 = xij(t+1), and w=wit in (16), we get Vit. □

Next, we state the Hoffman’s Circulation Theorem (Hoffman 1976), which is a key com-

ponent required for the proof of Proposition 3. l

Lemma 1. Hoffman Circulation Theorem (1976): Let G = (V,E) be a directed graph.

Let ℓ, u :E 7→ R∪{±∞} denote the lower and upper bounds of flow on arc e. Assume that

ℓ(e)≤ u(e) for every e ∈ E. Then, there exists a feasible flow σ : E 7→ R that satisfies (i)

ℓ(e)≤ σ(e)≤ u(e) for every e∈E, and (ii)
∑

(a,b)∈E σ(a, b) =
∑

(b,a)∈E σ(b, a) for all a∈ V ,

if and only if ∑
(a,b)∈δ+(X)

ℓ(a, b)≤
∑

(a,b)∈δ−(X)

u(a, b) ∀X ⊆ V (17)
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where δ−(X) := {(a, b)∈E : a /∈X,b∈X} and δ+(X) := {(a, b)∈E : a∈X,b /∈X}.

A feasible flow σ that satisfies conditions (i) and (ii) specified in Lemma 1 is referred to

as a circulation.

Proof of Proposition 3: For the ease of presentation, we use xj1 to represent xijt, xj2

in place of xij(t+1), and w for wit. Consider the directed graph G(V̄ , Ē) shown in Figure 3

with σ(a, b) representing the flow along the arc (a, b) ∈ Ē, and ℓ(a, b) and u(a, b) denote

the lower and upper bounds, respectively, for σ(a, b). In G(V̄ , Ē), V̄ = {d1, d2, q}∪ {pj, j ∈

Jt}, Ē = {(d1, pj),∀j ∈ Jt}∪{(pj, q),∀j ∈ Jt}∪{(pj, d2),∀j ∈ Jt}∪{(q, d2), (d2, d1)}. Denote

σ(d1, pj) by x
1
j1 ∀j ∈ Jt, σ(pj, q) by x1j2 ∀j ∈ Jt, and let

ℓ(a, b) =



0 a= d1, b= pj ∀j ∈ Jt

xj1−xj2 a= pj, b= d2 ∀j ∈ Jt

0 a= pj, b= q ∀j ∈ Jt

− 1+w+
∑
j∈Jt

xj2 a= q, b= d2

− 1+w+
∑
j∈Jt

xj1 a= d2, b= d1

u(a, b) =



xj1 a= d1, b= pj ∀j ∈ Jt

w a= pj, b= d2 ∀j ∈ Jt

xj2 a= pj, b= q ∀j ∈ Jt

w a= q, b= d2

w a= d2, b= d1

Applying the two conditions in Lemma 1 to G(V̄ , Ē), we obtain:

0≤ σ(d1, pj) = x1j1 ≤ xj1 ∀j ∈ Jt (18a)

xj1−xj2 ≤ σ(pj, d2)≤w ∀j ∈ Jt (18b)

0≤ σ(pj, q) = x1j2 ≤ xj2 ∀j ∈ Jt (18c)

− 1+w+
∑
j∈Jt

xj2 ≤ σ(q, d2)≤w (18d)

− 1+w+
∑
j∈Jt

xj1 ≤ σ(d2, d1)≤w (18e)

σ(pj, d2) = x1j1−x1j2 ∀j ∈ Jt (18f)

σ(q, d2) =
∑
j∈Jt

x1j2 (18g)

σ(d2, d1) =
∑
j∈Jt

x1j1 (18h)

In particular, (18a)-(18e) and (18f)-(18h) are obtained by applying (i) and (ii), respec-
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Figure 3 G(V̄ , Ē) for the Proof of Proposition 3. The labels on the arcs indicate the flow variables.

tively. Using the equalities in (18f), (18g) and (18h) in (18b), (18d) and (18e), respectively,

we get the constraint set (16) that define Vit. Thus, a circulation exists on G(V̄ , Ē) if and

only if Vit ̸= ∅.

Next, we apply (17) to G(V̄ , Ē) to derive another condition for the existence of a circu-

lation. Let J̄ ⊆ {pj : j ∈ Jt}. Note that J̄ can be empty. Consider the following cases:

Case 1. X = {d1, [pj]j∈J̄}: For this case, δ+(X) = {{(pj, q) ∀j ∈ J̄}∪ {(pj, d2) ∀j ∈ J̄}∪

{(d1, pj) ∀j ∈ Jt \ J̄}, δ−(X) = {(d2, d1)}. (17) ⇒∑
j∈J̄

ℓ(pj, q)+
∑
j∈J̄

ℓ(pj, d2)+
∑
j∈J\J̄

ℓ(d1, pj)≤ u(d2, d1)

⇒
∑
j∈J̄

(xj1−xj2)≤w (19)

Case 2. X = {[pj]j∈J̄}: For this case, δ+(X) = {(pj, q) ∀j ∈ J̄} ∪ {(pj, d2) ∀j ∈ J̄},

δ−(X) = {(d1, pj) ∀j ∈ J̄}. (17) ⇒∑
j∈J̄

ℓ(pj, q)+
∑
j∈J̄

ℓ(pj, d2)≤
∑
j∈J̄

u(d1, pj)
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⇒
∑
j∈J̄

(xj1−xj2)≤
∑
j∈J̄

xj1

⇒
∑
j∈J̄

xj2 ≥ 0 (20)

Case 3. X = {[pj]j∈J̄ , q}: For this case, δ+(X) = {(pj, d2) ∀j ∈ J̄} ∪ (q, d2), δ
−(X) =

{(d1, pj) ∀j ∈ J̄}∪ {(pj, q) ∀j ∈ Jt \ J̄}. (17) ⇒∑
j∈J̄

ℓ(pj, d2)+ ℓ(q, d2)≤
∑
j∈J̄

u(d1, pj)+
∑
Jt\J̄

u(pj, q)

⇒
∑
j∈J̄

(xj1−xj2)− 1+w+
∑
j∈Jt

xj2 ≤
∑
j∈J̄

xj1+
∑
Jt\J̄

xj2

⇒w≤ 1 (21)

Case 4. X = {[pj]j∈J̄ , d2}: For this case, δ+(X) = {(pj, q) ∀j ∈ J̄} ∪ (d2, d1), δ
−(X) =

{(d1, pj) ∀j ∈ J̄}∪ {(pj, d2) ∀j ∈ Jt \ J̄}∪ (q, d2). (17) ⇒∑
j∈J̄

ℓ(pj, q)+ ℓ(d2, d1)≤
∑
j∈J̄

u(d1, pj)+
∑

j∈Jt\J̄

u(pj, d2)+u(q, d2)

⇒−1+w+
∑
j∈Jt

xj1 ≤
∑
j∈J̄

xj1+
∑

j∈Jt\J̄

w+w

⇒
∑

j∈Jt\J̄

xj1 ≤ |Jt \ J̄ |w+1 (22)

Case 5. X = {d1, [pj]j∈J̄ , d2} : For this case, δ+(X) = {(pj, q) ∀j ∈ J̄} ∪ {(d1, pj) ∀j ∈

Jt \ J̄}, δ−(X) = {(pj, d2) ∀j ∈ Jt \ J̄}∪ (q, d2). (17) ⇒∑
j∈J̄

ℓ(pj, q)+
∑

j∈Jt\J̄

ℓ(d1, pj)≤
∑

j∈Jt\J̄

u(pj, d2)+u(q, d2)

⇒ 0≤
∑

j∈Jt\J̄

w+w

⇒w≥ 0 (23)

Case 6. X = {[pj]j∈J̄ , q, d2} : For this case, δ+(X) = (d2, d1), δ
−(X) = {(pj, d2) ∀j ∈

Jt \ J̄}∪ {(pj, q) ∀j ∈ Jt \ J̄}∪ {(d1, pj) ∀j ∈ J̄}. (17) ⇒

ℓ(d2, d1)≤
∑

j∈Jt\J̄

u(pj, d2)+
∑

j∈Jt\J̄

u(pj, q)+
∑
j∈J̄

u(d1, pj)
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⇒−1+w+
∑
j∈Jt

xj1 ≤
∑

j∈Jt\J̄

w+
∑

j∈Jt\J̄

xj2+
∑
j∈J̄

xj1

⇒
∑

j∈Jt\J̄

(xj1−xj2)≤ (|Jt \ J̄ |−1)w+1 (24)

Case 7. X = {d1, [pj]j∈J̄ , q} : For this case, δ+(X) = {(pj, d2) ∀j ∈ J̄} ∪ {(d1, pj) ∀j ∈
Jt \ J̄}∪ (q, d2), δ−(X) = (d2, d1)∪{(pj, q) ∀j ∈ Jt \ J̄}. (17) ⇒∑

j∈J̄

ℓ(pj, d2)+
∑

j∈Jt\J̄

ℓ(d1, pj)+ ℓ(q, d2)≤
∑

j∈Jt\J̄

u(pj, q)+u(d2, d1)

⇒
∑
j∈J̄

(xj1−xj2)− 1+w+
∑
j∈Jt

xj2 ≤
∑

j∈Jt\J̄

xj2+w

⇒
∑
j∈J̄

xj1 ≤ 1 (25)

Case 8. X = {d1, [pj]j∈J̄ , q, d2} : For this case, δ+(X) = {(d1, pj) ∀j ∈ Jt \ J̄}, δ−(X) =

{(pj, q) ∀j ∈ Jt \ J̄}∪ {(pj, d2) ∀j ∈ Jt \ J̄}. (17) ⇒∑
j∈Jt\J̄

ℓ(d1, pj)≤
∑

j∈Jt\J̄

u(pj, q)+
∑

j∈Jt\J̄

u(pj, d2)

⇒
∑

j∈Jt\J̄

xj2+
∑

j∈Jt\J̄

w≥ 0 (26)

Cases 1-8 cover all possibleX ⊆ V̄ since J̄ can be empty. Non-dominated constraints among

(19)-(26) are: ∑
j∈J̄

(xj1−xj2)≤w ∀J̄ ⊆ Jt, (27a)

∑
j∈Jt

xj1 ≤ 1, 0≤w≤ 1, xj2 ≥ 0. (27b)

By definition, ℓ(a, b)≤ u(a, b) ∀(a, b)∈ Ē. From this condition, we obtain:∑
j∈Jt

xj1 ≤ 1,
∑
j∈Jt

xj2 ≤ 1, (28a)

xj1 ≥ 0, xj2 ≥ 0 ∀j ∈ Jt. (28b)

From Lemma 1, there exists a circulation on G(V̄ , Ē) if and only if (27)-(28) are feasible.

Therefore, Vit ̸= ∅ if and only if both (27) and (28) are feasible. Combining (27)-(28) and

substituting xj1 = xijt, xj2 = xij(t+1), and w=wit, we obtain∑
j∈J̄

(xijt−xij(t+1))≤wit ∀J̄ ⊆ Jt, (29a)
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j∈Jt

xijt ≤ 1,
∑
j∈Jt

xij(t+1) ≤ 1, (29b)

xijt ≥ 0, xij(t+1) ≥ 0, 0≤wit ≤ 1 (29c)

which coincides exactly with the constraint set defining Q̃L
it. Thus, for every

(wit,xit,xi(t+1)) ∈ Q̃L
it, as Vit ̸= ∅, ∃(x1

it,x
2
i(t+1)) such that (wit,xit,xi(t+1),x

1
it,x

2
i(t+1)) ∈ Vit.

As a result, Q̃L
it =Proj(wit,xit,xi(t+1))

Vit. □

Proof of Proposition 4: For some i∈ I, t∈ T \ {|T |}, consider the inequalities (5):

wit ≥
∑
j∈J̄

(
xijt−xij(t+1)

)
∀J̄ ⊆ Jt (30a)

⇒wit ≥max
J̄⊆Jt

∑
j∈J̄

(
xijt−xij(t+1)

)
(30b)

⇒wit ≥ ηit =max
∑
j∈Jt

(
xijt−xij(t+1)

)
yj (30c)

s.t. 0≤ yj ≤ 1 ∀j ∈ Jt. (30d)

Here, yj ≥ 0 due to wit ≥ 0. Dualizing the LP defining ηit we get:

ηit =min
∑
j∈Jt

βijt (31a)

s.t. βijt ≥ xijt−xij(t+1) ∀j ∈ Jt, (31b)

βijt ≥ 0 ∀j ∈ Jt. (31c)

Combining (30c), (30d) and (31), we get (9). □

Proof of Proposition 5: Assume that for some (x∗,w∗, w̄∗)∈P(r), there exists an i∈ I,
t∈ T \ {|T |}, and j′ ∈ J such that:

w∗
it <x

∗
ij′(t+1)− 1+

∑
j∈Jt\j′

x∗ijt (32)

Following (2b), (2f) and (32), w∗
it = 0 and x∗ij′(t+1) +

∑
j∈Jt\j′ x

∗
ijt = 2. This implies, due to

(2b), that x∗ij′(t+1) = 1 and ∃j2 ∈ Jt \ j′ such that x∗ij2t = 1. From (2c) for i, j2, t, it follows

that w∗
it ≥ 1, which is a contradiction. □

Proof of Proposition 6: For some i ∈ I, t ∈ T \ {|T |} and j′ ∈ J valid inequality (5) for

i, t and J̄ = Jt \ j′ is stated as:

wit ≥
∑

j∈Jt\j′
xijt−

∑
j∈Jt\j′

xij(t+1) ≥ xij′(t+1)− 1+
∑

j∈Jt\j′
xijt

where the last inequality is due to (2b). □
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Appendix C: Surgery Data

Table 10 Summary of 353-Day surgery data

Duration Duration standard Case
Specialty average (min) deviation (min) mix (%)

Dentistry 131 39 1.77
Gastroenterology 71 47 0.28

General 67 39 1.16
Gynecology 87 53 5.22

Gynecology Oncology 52 0 0.01
Interventional Radiology 52 4 0.01

Neurology 44 8 0.14
Obstetrics 53 17 0.01

Ophthalmology 47 32 23.42
Oral Surgery 100 46 0.05
Orthopedics 98 51 14.59

Otolaryngology 109 77 13.05
Pain 61 35 1.53

Pediatric Gastroenterology 50 1 0.01
Pediatric General 93 30 0.05

Pediatric Ophthalmology 65 25 3.82
Pediatric Orthopedics 94 35 0.17
Pediatric Urology 60 33 1.06

Plastics 88 58 1.84
Podiatry 104 69 1.48

Pediatric ENT 72 58 3.95
Pediatric Neurology 42 25 0.07
Surgical Oncology 99 56 2.90

Urology 51 34 23.40

Table 11 Surgery Scheduling Details - Day 1

Specialty (OR, starting time period)

Type No of Surgeries

Ophthalmology 20 (7, 1), (4, 1), (4, 3), (7, 4), (7, 7), (4, 8), (4, 9), (7, 10), (7, 13), (7, 16), (7, 19),
(4, 21), (7, 22), (7, 25), (4, 27), (7, 28), (4, 30), (7, 31), (4, 33), (7, 34)

Orthopedics 11 (5, 1),(2, 1), (6, 1), (2, 4), (5, 8), (2, 8), (2, 14), (2, 17), (5, 19), (5, 26), (5, 32)
Otolaryngology 4 (3, 1), (3, 4), (1, 11), (3, 15)
Pediatric ENT 6 (1, 1), (1, 4), (1, 6), (1, 21), (1, 27), (1, 33)

Urology 15 (9, 2), (9, 6), (8, 7), (9, 11), (8, 11), (8, 14), (9, 15), (8, 16), (8, 18), (9, 19),
(8, 24), (9, 27), (8, 29), (9, 33), (9, 39)

Table 12 Surgery Scheduling Details - Day 2

Specialty (OR, starting time period)

Type No of Surgeries

Gynecology 7 (2, 1), (2, 10), (2, 16), (2, 20), (2, 24), (2, 28), (2, 33)
Ophthalmology 9 (7, 5), (7, 7), (7, 11), (7, 16), (7, 20), (7, 23), (7, 27), (5, 28), (7,31)
Oral Surgery 1 (3, 33)
Orthopedics 9 (6, 1), (4, 1), (5, 1), (4, 10), (6, 12), (5, 18), (4, 19), (6, 25), (6, 31)

Otolaryngology 2 (3, 1), (3, 14)
Pediatric Urology 3 (8, 6), (8, 12), (8, 18)
Pediatric ENT 3 (1, 1), (1, 16), (1, 24)

Urology 7 (9, 1), (9, 7), (9, 13), (9, 19), (9, 25), (9, 31), (9, 35)
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Table 13 Surgery Scheduling Details - Day 3

Specialty (OR, starting time period)

Type No of Surgeries

Ophthalmology 12 (7, 1), (4, 1), (7, 3), (7, 6), (4, 8), (7, 9), (7, 12), (4, 14), (7, 15), (4, 20),
(4, 26), (4, 31)

Orthopedics 7 (5, 1), (6, 1), (6, 4), (6, 9), (6, 14), (5, 21), (1, 33)
Otolaryngology 4 (3, 1), (1, 1), (3, 9), (1, 12)

Pediatric Ophthalmology 3 (7, 18),(7, 24), (7, 29)
Surgical Oncology 5 (2, 1), (2, 8), (2, 16), (2, 23), (2, 31)

Urology 6 (9, 9), (6, 23), (9, 25), (8, 27), (6, 30), (9, 3)

Appendix D: SSr,ω with overtime

Let co be the per-period cost of CRNA overtime and Ti = {1,2,3, . . . , |Ti|} be the set of time

periods covered by the shift of CRNA i. Let ζit(ω) be a binary variable that equals 1 if time

period t is the last period after the shift end in which CRNA i is assigned to an OR under

scenario ω, and 0 otherwise. Using these notations, SSr,ω with CRNA overtime is given by:

Min
∑
i∈I

∑
t∈T

chwit(ω)+
∑
i∈I

∑
t∈T

chw̄it(ω)+
∑
j∈J

∑
t∈T

cixidjt(ω)+
∑
i∈I

∑
j∈J

∑
t∈T\Ti

(t− |Ti|)coζit(ω) (33a)

s.t. (2c), (2d), (2e)∑
j∈J

xijt(ω)≤ ri ∀i∈ I, t∈ T, (33b)

|T |∑
τ=t

ζiτ (ω)≥ xijt(ω) ∀i∈ I, j ∈ J, t∈ T \Ti , (33c)

ζ(ω)∈ B(|I|)×|T\Ti| , (33d)

x(ω)∈ B(|I|+1)×|J|×|T |, w(ω), w̄(ω)∈ B(|I|)×(|T |−1) . (33e)

(33b) ensures that CRNAs are allocated to ORs only if they are called while (33c) tracks

the last time period in which CRNAs are allocated to an OR after their shift ends. Lastly,

the first three terms of the objective function (33a) are same as (2a) while the last term

models the total overtime cost.

Appendix E: Comparison of Stochastic Solution and Mean Value
Solution for |Ω|=1000

Table 14 Comparison of Stochastic Solution and Mean Value Solution for |Ω|= 1000.

Case ψ—χ VSS κHO κUS κSC κS1 κS2 κS3 κS4

1 30—5 2.90 -11.58 10.17 -2.33 44.44 -40.00 0.00 0.00
2 30—10 5.12 4.10 10.43 -2.33 44.44 -40.00 0.00 0.00
3 30—20 5.56 10.82 8.90 -5.26 33.33 -62.22 0.00 0.00

4 40—5 2.58 -12.36 8.01 -2.07 38.89 -34.44 0.00 0.00
5 40—10 4.98 -1.72 10.82 -2.33 44.44 -40.00 0.00 0.00
6 40—20 6.59 9.64 9.25 -2.54 55.56 -51.11 0.00 0.00

7 50—5 2.51 -9.90 7.34 -2.07 38.89 -34.44 0.00 0.00
8 50—10 4.75 -5.90 10.48 -2.33 44.44 -40.00 0.00 0.00
9 50—20 6.61 6.80 10.34 -3.57 50.00 -51.11 0.00 0.00


