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Abstract. We are concerned with contingent derivatives and their second-order
counterparts (introduced by Ngai et al.) of set-valued mappings. Special attention
is given to the development of new sum-rules for second-order contingent deriva-
tives. To be precise, we want to find conditions under which the second-order
contingent derivative of the sum of a smooth and a set-valued mapping coincides
with the sum of the derivatives. An application to the computation of tangents to
the solution set of a generalized equation is also included.
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1 Introduction

For a single-valued mapping F : Rn → Rm, and a set-valued mapping Γ : Rn ⇒ Rm,
we consider the generalized equation,

0 ∈ F(u)+Γ (u), (1)

and denote its solution set by Σ , i.e., Σ = {u ∈ Rn | 0 ∈ F(u) +Γ (u)}. Numerous
problems can be modeled by a generalized equation (1), including constrained systems
of equations, as well as more concrete problems in engineering and economics, see for
example [1,6,7,9,10] among others.

Two issues related to the generalized equation (1) are addressed in this note. In
Sects. 2–3 we deal with first- and second-order contingent derivatives of the set-valued
mapping F +Γ . The former contingent (or graphical) derivative is well studied [9,11],
but second-order contingent derivatives (which have their origin in [8]) have not re-
ceived much attention so far. We formulate new sum-rules in Sect. 3 for this deriva-
tive. To be specific, we prove under some assumptions that the second-order contingent
derivative of F +Γ can be written as the sum of the second-order contingent derivatives
of F and Γ . Besides sufficient smoothness of F , other additional assumptions, such as
full degeneracy of the first derivative of F , are used to establish the sum-rule, and we
will explain that these additional assumptions cannot generally be dropped without de-
stroying the sum-rule. At the end of this note, in Sect. 4, we use both a Lipschitzian and
a square-root error bound condition to express the (Bouligand) tangent cone to Σ as the
zeros of the derivatives of F +Γ . Recall in this respect from [1,9] that for some u∗ ∈ Σ ,
the aforementioned tangent cone is given as

TΣ (u∗) =
{

w ∈ Rn
∣∣∣ ∃tk ↘ 0,∃wk → w : u∗+ tkwk ∈ Σ∀k ∈ N

}
.
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Formulas that allow a simplified computation of the tangent cone are relevant in their
own right, but they are particularly important in mathematical optimization for the pur-
pose of detecting stationary points of a constrained optimization problem, cf. [1,5,10,11].

Notation: Throughout, u∗ ∈ Σ is an arbitrary but fixed solution of (1); ‖ · ‖ is the
Euclidean norm, and dist the Euclidean point-to-set distance; Bε(a) stands for the Eu-
clidean ball centered at a with radius ε; gphS, rgeS, domS are the graph, range, and
domain of a set-valued mapping S; int(A) is the (topological) interior of a set A; kerL is
the nullspace of a linear operator L, and imL is its range; tk ↘ 0 means that the sequence
{tk} converges to 0 with all its elements being positive.

2 Preliminaries

In this section we recall the definition of first- and second-order contingent derivatives
of a mapping from [8,11]. We will also discuss basic relations between these derivatives
and show how they are computed for some examples that will be of interest later.

Definition 1. Given a set-valued mapping S : Rn ⇒ Rm, and a point (u,y) ∈ gphS.

(a) The contingent derivative of S at (u,y) is defined for w ∈ Rn as

CS(u|y)(w) :=
{

x ∈ Rm
∣∣∣∃tk ↘ 0,∃(wk,xk)→ (w,x) : y+ tkxk ∈ S(u+ tkwk)∀k

}
.

(b) The second-order contingent derivative of S at (u,y) is defined for w ∈ Rn as

C2S(u|y)(w) :=
{

x ∈ Rm
∣∣∣∃tk ↘ 0,∃(wk,xk)→ (w,x) : y+ t2

k xk ∈ S(u+ tkwk)∀k
}
.

The following states a relation between the domain of the second-order contingent
derivative, and the zero set of the contingent derivative.

Lemma 1. For a set-valued mapping S : Rn ⇒ Rm, it holds for any (u,y) ∈ gphS that

dom
(
C2S(u|y)

)
⊂ {w ∈ Rn | 0 ∈CS(u|y)(w)} .

Proof. Pick w ∈ dom
(
C2S(u|y)

)
arbitrarily, and find x ∈ Rm, and tk ↘ 0, wk → w,

xk → x, so that y+ t2
k xk ∈ S(u+ tkwk) holds for all k ∈ N. We have vk := tkxk → 0, thus,

together with previous considerations, 0 ∈CS(u|y)(w) follows. ut

Now, we compute generalized derivatives of the set-valued indicator for a set Γ0 ⊂ Rn,

∆Γ0(u) :=
{
{0} if u ∈ Γ0,
∅ if u /∈ Γ0.

(2)

This mapping is known, e.g., from [7], and it can be used in particular for reformulating
generalized equations as constrained systems of equations (and vice versa), cf. [6].

Proposition 1. For a set Γ0 ⊂ Rn, it holds for any (u,w) ∈ Γ0 ×Rn that

C2
∆Γ0(u|0)(w) =C∆Γ0(u|0)(w) = ∆TΓ0 (u)

(w).

Proof. This follows from the definitions of the derivatives, the tangent cone, and the
indicator. ut
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To compute the second-order contingent derivative of the single-valued mapping F ,
we want to use a smoothness property introduced in [6], namely:

Definition 2. The mapping F has a semi-quadratic expansion at u∗ for a direction
w 6= 0, if F is differentiable at u∗, and the limit below exists in Rm:

E(u∗;w) := lim
t↘0
v→w

F(u∗+ tv)−F(u∗)− tF ′(u∗)v
0.5t2 .

A sufficient condition for the existence of a semi-quadratic expansion is as follows:

Lemma 2 (Lem. 6.12, [6]). If F is differentiable near u∗, and F ′ is semidifferentiable
at u∗ for w 6= 0, i.e., the following limit exists in Rm×n

F ′′(u∗;w) := lim
t↘0

w′→w

F ′(u∗+ tw′)−F ′(u∗)
t

,

then F has a semi-quadratic expansion at u∗ for w, satisfying E(u∗;w) = F ′′(u∗;w)w.

Note that semidifferentiability of F ′ is necessary for twice differentiability of F , but
it is not sufficient in general, as we will now illustrate.

Example 1. Let F(u) := max{0,u}2 and u∗ := 0. This F is continuously differentiable
with F ′(u) = 2max{0,u} for any u ∈R. Since F ′ is not differentiable at u∗, we find that
F can not be twice differentiable at u∗. At the same time, F ′ is semidifferentiable at u∗

with F ′′(u∗;w) = 2max{0,w} for any w ∈ R. In particular, by Lem. 2 we know that F
has a semi-quadratic expansion at u∗, given by E(u∗;w) = 2max{0,w}w for w 6= 0. ut

Finally, we want to compute the (second-order) contingent derivative of F .

Proposition 2. If F is differentiable at u∗, then

CF(u∗|F(u∗))(w) = F ′(u∗)w ∀w ∈ Rn. (3)

If F has a semi-quadratic expansion at u∗ for a direction w 6= 0, then

C2F(u∗|F(u∗))(w) =
{

0.5E(u∗;w)+ imF ′(u∗) if w ∈ kerF ′(u∗),
∅ if w /∈ kerF ′(u∗). (4)

Proof. The formula in (3) can be extracted from [9, Exerc. 9.25 (b)], while the one in
(4) follows from an application of [6, Ex. 6.15] with C0 = Rn. ut

The formula in (4) is a slight generalization of [8, Prop. 35], where a similar obser-
vation was made under the assumption that F is twice differentiable at u∗.



4 Mario Jelitte

3 Sum-Rules for (Second-Order) Contingent Derivatives

We present sum-rules for the two derivatives from Sect. 2. The one concerning contin-
gent derivatives (Prop. 3) is well known and serves as a prototype result. For illustration
purposes, we also specialize sum-rules to the case where the indicator (2) is involved.

Proposition 3 (Exerc. 10.43, [9]). If F is differentiable at u∗, then, for all w ∈ Rn,

C(F +Γ )(u∗|0)(w) =CF(u∗|F(u∗))(w)+CΓ (u∗|−F(u∗))(w)

= F ′(u∗)w+CΓ (u∗|−F(u∗))(w).

Corollary 1. For a nonempty closed set Γ0 ⊂ Rn, suppose Γ = ∆Γ0 holds, where the
mapping ∆Γ0 is defined according to (2). If F is differentiable at u∗, then

C(F +∆Γ0)(u
∗|0)(w) =CF(u∗|0)(w)+C∆Γ0(u

∗|0)(w) =
{

F ′(u∗)w if w ∈ TΓ0(u
∗),

∅ if w /∈ TΓ0(u
∗).

Proof. Here, we have Σ = F−1(0)∩Γ0, so the claim is due to Props. 1,3. ut
We give a counterpart to Prop. 3 with respect to second-order contingent derivatives

next. Unlike Prop. 3, additional assumptions (not only concerning smoothness of F)
come into play. One of these is the T–conicity of a set Γ0 ⊂ Rn at u∗ ∈ Γ0, a property
coined in [2], which requires that Γ0 and u∗+TΓ0(u

∗) coincide in a neighborhood of u∗.

Proposition 4. Suppose F has a semi-quadratic expansion at u∗ for w 6= 0, and one of
the following conditions is true:

(a) F ′(u∗) = 0.
(b) F(u∗) is isolated in rge(−Γ ), domΓ is T –conical at u∗, and w ∈ int(TdomΓ (u∗)).

Then, it holds that

C2(F +Γ )(u∗|0)(w) =C2F(u∗|F(u∗))(w)+C2
Γ (u∗|−F(u∗))(w). (5)

Proof. Put y∗ :=−F(u∗). Suppose (a) holds. Then, [6, Thm. 6.13 (a)] yields

C2(F +Γ )(u∗|0)(w) =
{

0.5E(u∗;w)+C2Γ (u∗|y∗)(w) if 0 ∈CΓ (u∗|y∗)(w),
∅ if 0 /∈CΓ (u∗|y∗)(w). (6)

From Lem. 1, we know C2Γ (u∗|y∗)(w) 6=∅ necessitates 0 ∈CΓ (u∗|y∗)(w), so (6) can
be written as C2(F +Γ )(u∗|0)(w) = 0.5E(u∗;w)+C2Γ (u∗|y∗)(w). Therefore, and be-
cause imF ′(u∗) = {0} and kerF ′(u∗) = Rn are valid, the formula in (5) follows by
Prop. 2. Under conditions in (b), in turn, we can apply [6, Thm. 6.13 (b)], which gives us
C2(F +Γ )(u∗|0)(w) = 0.5E(u∗;w)+ imF ′(u∗) for w ∈ kerF ′(u∗)∩CΓ (u∗|y∗)−1(0),
and C2(F +Γ )(u∗|0)(w) = ∅ otherwise. The imposed assumptions also imply {0} =
CΓ (u∗|y∗)(w) =C2Γ (u∗|y∗)(w), so (5) follows from considerations above, and Prop. 2.
(Note that although used in the proof, the T –conicity of Γ0 at u∗ was not mentioned in
the list of assumptions of [6, Thm. 6.13 (b)].) ut
Corollary 2. In the setting of Cor. 1, suppose F has a semi-quadratic expansion at u∗

for w 6= 0, and one of the following conditions is true:

(a) F ′(u∗) = 0.
(b) Γ0 is T –conical at u∗, and w ∈ int(TΓ0(u

∗)).
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Then, it holds that

C2(F +∆Γ0)(u
∗|0)(w) =C2F(u∗|0)(w)+C2

∆Γ0(u
∗|0)(w)

=

{
0.5E(u∗;w)+ imF ′(u∗) if w ∈ kerF ′(u∗)∩TΓ0(u

∗),
∅ if w /∈ kerF ′(u∗)∩TΓ0(u

∗).

Proof. Here, we have rgeΓ = {0} and domΓ = Γ0, so condition (b) of this corollary is
a specialization of condition (b) in Prop. 4 with Γ = ∆Γ0 . Thus, (a)–(b) are sufficient
for C2(F +∆Γ0)(u

∗|0)(w) = C2F(u∗|0)(w)+C2∆Γ0(u
∗|0)(w) to hold. (Note here that

u∗ ∈ Σ and Γ = ∆Γ0 together imply F(u∗) = 0.) Combining the latter equality with
Props. 1–2, and the definition of the indicator (2), then we get

C2(F +∆Γ0)(u
∗|0)(w) =

{
0.5E(u∗;w)+ imF ′(u∗) if w ∈ kerF ′(u∗),

∅ if w /∈ kerF ′(u∗)

+

{
{0} if w ∈ TΓ0(u

∗),
∅ if w /∈ TΓ0(u

∗)

=

{
0.5E(u∗;w)+ imF ′(u∗) if w ∈ kerF ′(u∗)∩TΓ0(u

∗),
∅ if w /∈ kerF ′(u∗)∩TΓ0(u

∗).

The proof of this corollary is complete. ut

The next example shows that the conclusion of the corollary does not necessarily
hold without the additional assumptions it makes, implying that a sum-rule for second-
order contingent derivatives (Prop. 4) cannot generally hold without such assumptions.

Example 2. Take F(u1,u2) = u1 + u2
2 and Γ0 = {0} ×R. For u∗ = (0,0), we have

F ′(u∗) = (1,0) 6= (0,0) and int(TΓ0(u
∗)) =∅. So, e.g., for w = (0,1), conditions (a)–(b)

in Cor. 2 do not hold. We have w ∈ kerF ′(u∗)∩TΓ0(u
∗), and 0.5E(u∗;w)+ imF ′(u∗) =

R, while for any small t > 0, and v = (0,µ) near w, we see that t2x = (tµ)2 can only
hold for x = µ2, which implies C2(F +∆Γ0)(u

∗|0)(w) ⊂ R+. Thus, the conclusion of
Cor. 2 may not hold when conditions (a) and (b) are both violated. ut

4 Error Bounds and the Computation of Tangents to Σ

The derivatives from Sect. 2 can be used to compute tangents to the solution set Σ of
the generalized equation (1) under appropriate error bound conditions:

Proposition 5 (Prop. 34, [8]). The following hold, if gph(F +Γ ) is closed near (u∗,0):

(a) The Lipschitzian error bound condition,

∃ε,c > 0 : dist [u,Σ ]≤ c ·dist [0,F(u)+Γ (u)] ∀u ∈ Bε(u∗), (7)

is sufficient for TΣ (u∗) = {w ∈ Rn |0 ∈C(F +Γ )(u∗|0)(w)}.
(b) The square-root error bound condition,

∃ε,c > 0 : dist [u,Σ ]≤ c ·
√

dist [0,F(u)+Γ (u)] ∀u ∈ Bε(u∗), (8)

is sufficient for TΣ (u∗) =
{

w ∈ Rn
∣∣0 ∈C2(F +Γ )(u∗|0)(w)

}
.
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Conditions guaranteeing error bound properties are not our concern in this note. The
reader interested in these things is referred to [1,2,5,6,8] and the works cited therein.

Specializations of the proposition for the case where Γ is the indicator can be easily
derived from the results in Sect. 3 – we omit details here for brevity. Instead, improving
on the outcome of [5, Rem. 3], we present a necessary condition for the error bound (7).

Corollary 3. In the setting of Prop. 5 with Γ ≡ {0}, suppose the error bound condition
(7) holds. If F has a semi-quadratic expansion at u∗ for all v ∈ kerF ′(u∗)\{0}, then

F ′(u∗)w = 0, w 6= 0 =⇒ E(u∗;w) ∈ imF ′(u∗). (9)

Proof. Clearly, error bound (7) implies (8). Thus, Prop. 5 applied with Γ ≡ {0} gives

TF−1(0)(u
∗) = {w ∈ Rn | 0 ∈CF(u∗|0)(w)}=

{
w ∈ Rn ∣∣ 0 ∈C2F(u∗|0)(w)

}
.

With regard to Prop. 2, we now find that 0 ∈ 0.5E(u∗;w)+ imF ′(u∗) is satisfied for all
w ∈ kerF ′(u∗) = TF−1(0)(u

∗). In other words, the condition in (9) holds true. ut

It is not true, in general, that (9) implies (7) when Γ ≡ {0}, just consider F(u) = u3.
Without (7), the conclusion of Cor. 3 does not necessarily hold, as can be illustrated by
Ex. 1. At the same time, we emphasize that the violation of (9) necessitates the absence
of the Lipschitzian error bound (7), and this is of interest for the considerations in [3,4].
Conclusion. We formulated new sum-rules for second-order contingent derivatives.
These derivatives were introduced in [8] without formulating important calculus rules
for them. Under an error bound condition, second-order contingent derivatives can help
to compute tangents to the level set of a mapping. We used this fact to get a new neces-
sary condition for Lipschitzian error bounds.
Acknowledgement. I am grateful to the referee for his/her useful comments.
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