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Abstract

Climate change is increasingly impacting power system operations, not only through more frequent

extreme weather events but also through shifts in routine weather patterns. Factors such as in-

creased temperatures, droughts, changing wind patterns, and solar irradiance shifts can impact

both power system production and transmission and electric load. The current power system was

not designed to be resilient towards future climates. In this work, we aim to co-optimize power

generation, storage, and transmission expansion in order to develop a climate-resilient system that

is able to reliably meet future demands.

We analyze the impact of climate change on power systems via an adaptation of a capacity

expansion planning model that seeks to minimize costs while ensuring power system resilience

under a changing climate. We model the problem as a stochastic mixed-integer program, which

we implement in Pyomo and solve using the stochastic programming library, mpi-sppy, along with

Gurobi. We extend a synthetic but realistic, high-resolution, test case for California, the California

Test System (CATS), to include parameters required for our capacity expansion planning problem

and climate scenarios. Leveraging climate data from the U.S. Department of Energy’s Energy

Exascale Earth System Model (E3SM), we map climate projections onto power system parameters,

focusing on changes in temperature, wind speed, solar irradiance, and streamflow which affect

both load and wind, solar, and hydro generator availability, respectively. We compare investment

decisions based on present-day climate with future-climate and find that accounting for future
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climate scenarios significantly impacts generation, storage, and transmission investment decisions.

Keywords: OR in energy, stochastic programming, large scale optimization, power grid capacity

expansion, climate resilience

1. Introduction

Climate change is increasingly impacting the electricity generation and transmission system

not only through extreme weather events but also through routine weather patterns that are more

frequently in the tail end of normal. In California, the negative impact of a more extreme climate on

the grid can be observed in the recent adoption of public safety power shutoffs to mitigate potential

wildfires in dry, windy conditions; wildfires caused by grid ignitions in the case when mitigation

options fail or are not imposed; and forced outages, both planned and unplanned, on extreme heat

days. California has also experienced ongoing drought for many years, impacting the availability

of hydroelectric power, one of the few dispatchable, emissions-free resources. Furthermore, both

hot and cold temperatures cause batteries, a necessary resource to satisfy ambitious clean energy

goals, to lose efficiency.

More extreme climate conditions can simultaneously increase load while negatively impacting

the availability and efficiency of generators, storage units, and transmission lines. Both public

safety power shut-offs and unplanned outages often occur on the hottest days when people most

need power for cooling. The current power system is not equipped to handle the more extreme

climates observed in recent years, and operational mitigations are insufficient to support system

reliability. To create a power system that is reliable and resilient to future climates, climate change

must be accounted for in the power system planning stage.

The power system capacity expansion planning (CEP) problem identifies the most cost-effective

combination of transmission, generation, and storage investments to simultaneously meet forecasted

demand and renewable targets. By modeling this problem as a two-stage mixed-integer stochastic

program with climate-informed parameters, we can plan a power system that is resilient across a

wide range of climate scenarios. In this work, we seek to address the problem of power system

reliability and resilience under a changing climate in the system planning stage by extending an

existing stochastic capacity expansion model to account for climate impacts and solving for a large,

realistic test case of California with operational scenarios based on high-resolution climate data.
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1.1. Literature Review

Annually since 2022, the California Independent System Operator (CAISO), in partnership with

the California Public Utilities Commission and the California Energy Commission, has released

a 20-year transmission expansion plan [4]. This plan identifies the need for significant power

system expansion to satisfy increasing electrification, renewable energy targets, and changes in

demand due to climate change in California. However, the plan only gives recommendations for

the transmission system at a high level and relies on assumptions about where future generation

resources will be built. In general, although the CEP problem has been well-studied in the literature

[20, 24, 27], it is common to separate the transmission, generation, and storage planning problems

due to the computational challenge of solving all three systems simultaneously. The problem of

transmission expansion planning (TEP) is already NP-hard due to the combinatorial nature of

the decision set, i.e. how to optimally connect buses in a power network, and adding long-term

climate-related uncertainty further complicates the problem. Several papers have tackled TEP

with climate uncertainty via stochastic or robust optimization [39, 19]. The related problem of

generation expansion planning (GEP) is also well-studied in the literature [33], including variations

that account for long-term uncertainty due to climate change, fuel prices, interest rates, load growth,

nuclear accident risk, and policy changes [28, 31, 46, 48].

With improvements in computational techniques for solving large mixed-integer programs (MIPs),

there has been growing interest in solving power system investment models that co-optimize trans-

mission, generation, and storage [27]. These co-optimized CEP models have been shown to signif-

icantly outperform GEP and TEP models in terms of system cost savings [25]. Additional work

has studied how various modeling choices and simplifications, such as including a power flow rep-

resentation or transmission line losses [64, 42], modeling short- and long-term storage [64, 35], and

including generator ramping constraints [70], affect CEP results. However, most of these models

have only been tested on small networks on the order of 100 buses and/or ignore uncertainty.

Furthermore, even in models that consider transmission and generation simultaneously, storage is

often neglected due to the added complexity of inter-connecting periods.

Even without consideration of climate-dependent uncertainties, stochastic optimization has been

shown to have significant economic benefits for CEP relative to deterministic optimization and

heuristic scenario planning [39]. However, solving stochastic CEP models across sufficiently many

scenarios to adequately characterize the uncertainty of non-dispatchable resources and load poses

additional computational challenges. In [40], the authors propose a scalable method that decom-
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poses the stochastic CEP model by hour and run experiments on 8,760 one-hour scenarios that are

reduced to 100-500 scenarios after clustering. Other techniques have also been developed to reduce

the scenario set to a tractable size for expansion planning [36, 44, 65].

The growing impact of extreme climates on the power grid amplifies the need to consider

uncertainty in long-term planning. Climate-informed CEP studies using historical reanalysis data

exist [6]; however, historical data is unlikely to be sufficient for CEP, due to the long-term dynamics

of climate change [21]. Other studies use future climate data or scenarios to inform CEP [2, 29, 38,

45] but at too low of a spatial representation to adequately capture climate impacts on the power

grid. For example, a commonly used case-study is the 240-bus system developed in [68], which

has a total of 240 buses representing the Western Electricity Coordinating Council, a reduction of

two orders of magnitude from the actual system size [52]. The Electric Grid Test Cases developed

at Texas A&M [51] is another set of commonly used case studies. Although this repository does

contain a 10,000-bus synthetic system spanning the western United States [5], these test cases are

not based on actual grid data and are not accurate representations of the power grid in the regions

modeled. Although there is value in having such data sets available for research purposes, they

are insufficient when location data is required to perform actual power system planning studies,

especially when decisions depend on local climate conditions. The California Test System (CATS)

[50] is a realistic representation of the California power grid designed for research studies that

require accurate location data for power system components (see Section 3.1 for more details).

Complementarily, recent advances in global circulation models combined with downscaling methods

[69] allow for climate model projections with sufficient spatial and temporal resolution to be used

in CEP. High-resolution weather data from these climate projections can be combined with load

prediction [49, 66] and generator availability models [7] to yield input data for a CEP model.

In this paper, we extend an existing CEP model to include climate-impacted power system

parameters and solve for an extension of CATS in which we add the necessary data for the climate-

informed CEP model, including technoeconomic data for possible investments and load and gen-

eration availability data based on high-resolution future climate projections. To the best of our

knowledge, this is the first study to solve the CEP problem on a realistically-sized system with ac-

tual substation locations and stochastic parameters based on climate forecasts for these locations.

1.2. Contributions

The contributions of this work are fourfold:
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1. We extend a nodal CEP model to include climate impacts.

2. We develop a high-resolution test case, augmenting CATS with CEP data and climate sce-

narios representing both present day and future operating conditions.

3. We solve the stochastic program across a set of representative scenarios for the test case

developed, which is a much higher-resolution instance of CEP than has previously been solved.

4. We release the data for use by the broader community.

The remainder of this paper is outlined as follows: in Section 2 we present the complete model

formulation, in Section 3 we introduce the high-resolution California test case and climate data, in

Section 4 we present the computational setup and results, and in Section 5 we discuss our findings.

2. Capacity Expansion Model

We build on the stochastic capacity expansion planning model from [25], making the following

modifications to the model to better represent climate-impacts on capacity expansion planning:

• Modeled multiple storage types with capacity limits rather than general, unlimited storage

potential. We fix the power conversion to energy capacity ratio for each storage type.

• Added transmission losses.

• Constrained generation and storage construction at each bus based on resource availability

and land-use restrictions. For buses where there are no restrictions, this constraint is excluded.

• Modified the renewable portfolio standard constraint to be by scenario.1

• Added a location-specific and scenario-dependent availability factor for generation resources.

• Added an inter-temporal constraint on hydropower availability by bus.

We also added variable O&M costs for storage discharge and clarified some notational ambiguity

in the generator and storage capacity and efficiency definitions in [25]. We exclude the disjunctive

1The renewable portfolio standard constraint in [25] is an expectation constraint across scenarios, which cannot be

directly implemented in a decomposition of the problem via the Progressive Hedging Algorithm. While it is true that

expectation constraints can be handled in a scenario decomposition methodology through dualization via Lagrangian

multipliers [40], this approach can pose further challenges of parameter tuning and handling spurious losses [63]. We

consider that work out of the scope of this paper and instead implement a soft constraint satisfied by scenario.
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constraints that disallow simultaneous charging and discharging since they were determined to have

minimal impact in [25].

The complete model formulation is presented below. Note that in the model presented here,

we represent all generator types as discrete, but in the implementation, we relax some generator

types to be continuous and fix some others. The actual generator construction variable types that

are used in our problem instance are given in Table 4 in Section 3.2.

2.1. Nomenclature

The index sets and maps used in the model are given in Table 1.

Table 1: Index sets used in the model.

Set Definition

B buses

G generator types

GR renewable generator types (GR ⊆ G)

L all possible transmission lines, both existing and candidate

L0 existing transmission lines

L+ candidate transmission lines

S storage types

T consecutive set of time periods used for power flow decisions (T := {1, . . . , T})

Ω joint load and generation availability scenarios

o(ℓ) origin bus of line ℓ

d(ℓ) destination bus of line ℓ

δ+(b) lines originating at bus b, both existing and candidate

δ−(b) lines terminating at bus b, both existing and candidate

The parameters used in the model are given in Table 2. Values in parentheses at the end of the

parameter descriptions indicate the units. Where no value is given, the parameter is unitless.

Table 2: Parameters used in the model.

Param. Definition

τ length of each time period in the representative time horizon (h)
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T rep number of times the magnitude of the representative time horizon occurs in a year. For

example, if T is 24, and τ is 1 hour, T rep will be 365. (y−1)

Bℓ susceptance of line ℓ (p.u.)

CG-cap
g capital cost for generator type g, amortized over the generator lifetime ($/MWy)

CL-cap
ℓ capital cost for a transmission line ℓ, amortized over the line lifetime ($/y)

CS-cap
s capital cost for power storage type s, amortized over the lifetime of a storage unit ($/MWy

of power conversion (PC) capacity)

CS−
s discharge cost for storage type s ($/MWh)

CG-fuel
g fuel cost for generator type g (0 if not applicable) ($/MWh)

CFOM
g fixed operations and maintenance cost for generator or storage type g ($/MWy)

CVOM
g variable operations and maintenance cost for generator or storage type g ($/MWh)

CRPS cost per unit of renewable portfolio standard violation ($/MWh)

Cshed load shedding cost ($/MWh)

Db,t,ω demand at bus b in time t and scenario ω (MW)

Hmax
b,ω maximum allowed energy output from conventional hydroelectric generation at bus b in

scenario ω (MWh)

P G
g capacity per unit of generator type g (MW)

PL
ℓ real power flow capacity for line ℓ (MW)

Pmax
b,g maximum possible capacity at bus b of generator or storage type g (MW)

λs hours of storage capacity for storage type s (h)

ηGb,g,t,ω fraction of generation capacity that is available for generator type g at bus b, time t,

scenario ω

ηS+s efficiency when charging storage type s

ηS−s efficiency when discharging storage type s

ηLℓ transmission efficiency for line ℓ

ρRPS renewable portfolio standard, i.e. fraction of power output that must be from renewables

ρω probability of scenario ω

Xb,g existing capacity for generator or storage type g at bus b (MW)

Note that fixed (capital and O&M) costs are given by year in order to make them on the same

scale as the production cost, which we scale to a year. The capital costs are annualized using

the lifetime of the plant in pre-processing. We assume generator capacities and costs are all after
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generation losses. Parameters related to storage capacity are for power conversion capacity.

The variables used in the model are given in Table 3, with units indicated in parentheses.

Table 3: Decision variables used in the model.

Variable Definition

pGb,g,t,ω power output of generation type g at bus b at time t of scenario ω (MW)

pL+ℓ,t,ω power flow on line ℓ at time t of scenario ω, in the same direction as the nominal

orientation of line ℓ (MW)

pL−ℓ,t,ω power flow on line ℓ at time t of scenario ω, in the opposite direction as the nominal

orientation of line ℓ (MW)

pRPS
ω renewable portfolio standard violation in scenario ω (MW)

pshedb,t,ω load shed at bus b at time t of scenario ω (MW)

pSb,s,t,ω energy storage level of type s at the end of time t at bus b in scenario ω (MWh)

pS+b,s,t,ω power input to storage type s at bus b before losses at time t of scenario ω (MW)

pS−b,s,t,ω power output from storage type s at bus b before losses at time t of scenario ω (MW)

θb,t,ω phase angle at bus b at time t of scenario ω (radians)

xGb,g number of new generation units of type g at bus b

xLℓ binary variable indicating if transmission line ℓ ∈ L+ is constructed

xSb,s new power conversion capacity of storage type s installed at bus b (MW)

2.2. Objective

We seek to minimize the annual capacity expansion and operations cost,

min
∑
b∈B

∑
g∈G

P G
g (C

G-cap
g +

∑
g∈G

CFOM
g )xGb,g +

∑
s∈S

(CS-cap
s + CFOM

s )xSb,s +
∑

g∈G∪S
CFOM
g Xb,g


+

∑
ℓ∈L+

CL-cap
ℓ xLℓ + T repτ

∑
ω∈Ω

ρω

∑
t∈T

∑
b∈B

Cshedpshedb,t,ω +
∑
g∈G

(CVOM
g + CG-fuel

g )pGb,g,t,ω

+
∑
s∈S

(CVOM
s + CS−

s )pS−b,s,t,ω

)
+ CRPSpRPS

ω

)
(1)

The first sum over buses gives the generation and storage costs that depend on capacity, specif-

ically capital and fixed operations and maintenance (O&M) costs. Note that we only have to pay

O&M costs, not capital costs, for existing generators and storage units. We could remove the O&M

costs for existing systems without affecting the solution since they are fixed. However, we include
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them so that the objective function represents the total annualized cost. We assume O&M costs

for branches are negligible, so the sum over the capital costs of branches gives the total line cost.

The sum across scenarios gives the expected cost of power output, scaled to a year. This cost is

broken down into load shed, generation (variable O&M and fuel), storage discharge, and renewable

portfolio standard (RPS) violation costs.

2.3. Constraints

This section defines the constraints used in the model.

2.3.1. Generation Constraints

The power generated at each bus cannot exceed the installed capacity, adjusted by the fraction

of capacity that is available for the given scenario and time period,

pGb,g,t,ω ≤ ηGb,g,t,ω(P
G
g x

G
b,g +Xb,g) ∀ b ∈ B, g ∈ G, t ∈ T , ω ∈ Ω (2)

For variable resources, such as wind and solar power, ηGb,g,t,ω varies by time depending on resource

availability. For dispatchable resources, ηGb,g,t,ω is 1 unless there is a generator outage in the given

scenario.

Conventional hydropower is unique in that water resources are governed by downstream water

demand and safety regulations in addition to power generation needs [53]. Furthermore, although

it is renewable, and the availability depends on the rainfall, streamflow, etc. in a given scenario,

the reservoir level also depends on how much was consumed in previous periods. Thus, we assume

that ηGb,hydro,t,ω = 1, unless there is a generator outage, but the total output for each scenario is

limited by water resource needs and availability, as given in the following constraint,

τ
∑
t∈T

pGb,hydro,t,ω ≤ Hmax
b,ω ∀ b ∈ B,ω ∈ Ω, (3)

where hydro represents conventional hydroelectric generators.

We limit the maximum potential generation capacity that can be installed of each type at each

bus based on resource availability and land-use restrictions,

P G
g x

G
b,g +Xb,g ≤ Pmax

b,g ∀ b ∈ B, g ∈ G (4)

2.3.2. Storage Constraints

The energy storage level cannot exceed the installed capacity,

pSb,s,t,ω ≤ λs(x
S
b,s +Xb,s) ∀ s ∈ S, t ∈ T , ω ∈ Ω (5)
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The change in storage in a time period is limited by power conversion capacity,

pS+b,s,t,ω ≤ xSb,s +Xb,s ∀ b ∈ B, s ∈ S, t ∈ T , ω ∈ Ω (6)

pS−b,s,t,ω ≤ xSb,s +Xb,s ∀ b ∈ B, s ∈ S, t ∈ T , ω ∈ Ω (7)

The energy storage level changes according to the power input and output,

pSb,s,t,ω = pSb,s,t−1,ω + τ(ηS+s pS+b,s,t,ω − pS−b,s,t,ω) ∀ b ∈ B, s ∈ S, t ∈ {2, . . . , T}, ω ∈ Ω (8)

For the first period of a scenario we use the energy state of the last period of the scenario as the

starting state,

pSb,s,1,ω = pSb,s,T,ω + τ(ηS+s pS+b,s,1,ω − pS−b,s,1,ω) ∀ b ∈ B, s ∈ S, ω ∈ Ω (9)

Similarly to generation, for each storage type at each bus, the installed storage capacity cannot

exceed the maximum allowed capacity,

xSb,s +Xb,s ≤ Pmax
b,s ∀ b ∈ B, s ∈ S (10)

2.3.3. Power Flow Constraints

The total power flow in either direction cannot exceed line capacity,

pL+ℓ,t,ω + pL−ℓ,t,ω ≤ PL
ℓ ∀ ℓ ∈ L0, t ∈ T , ω ∈ Ω (11)

pL+ℓ,t,ω + pL−ℓ,t,ω ≤ PL
ℓ xLℓ ∀ ℓ ∈ L+, t ∈ T , ω ∈ Ω (12)

Power balance must be satisfied. Specifically, the flow into each bus plus generation and storage

discharge must equal the flow out of that bus plus storage charge and demand minus load shed,∑
ℓ∈δ−(b)

ηLℓ p
L+
ℓ,t,ω +

∑
ℓ∈δ+(b)

ηLℓ p
L−
ℓ,t,ω +

∑
g∈G

pGb,g,t,ω +
∑
s∈S

ηS−s pS−b,s,t,ω

=
∑

ℓ∈δ+(b)

pL+ℓ,t,ω +
∑

ℓ∈δ−(b)

pL−ℓ,t,ω +
∑
s∈S

pS+b,s,t,ω +Db,t,ω − pshedb,t,ω ∀ b ∈ B, t ∈ T , ω ∈ Ω (13)

Note that we include transmission and storage losses when considering the power input to the bus.

The DC optimal power flow phase angle constraints must be satisfied for all existing lines,

pL+ℓ,t,ω − pL−ℓ,t,ω = Bℓ(θo(ℓ),t,ω − θd(ℓ),t,ω) ∀ ℓ ∈ L0, t ∈ T , ω ∈ Ω (14)

For candidate lines, we only enforce the constraint if the line is actually built,

Bℓ(θo(ℓ),t,ω − θd(ℓ),t,ω)− 2π|Bℓ|(1− xLℓ ) ≤ pL+ℓ,t,ω − pL−ℓ,t,ω ≤ Bℓ(θo(ℓ),t,ω − θd(ℓ),t,ω)

+ 2π|Bℓ|(1− xLℓ )∀ ℓ ∈ L+, t ∈ T , ω ∈ Ω (15)
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Note that π is the constant ∼ 3.14 here. If the line is constructed, xLℓ is 1, so Constraint 15 reduces

to pLℓ,t,ω = Bℓ(θo(ℓ),t,ω − θd(ℓ),t,ω). Otherwise, pLℓ,t,ω will be 0 due to the line capacity constraints,

and the constraint reduces to, −2π|Bℓ| ≤ Bℓ(θo(ℓ),t,ω − θd(ℓ),t,ω) ≤ 2π|Bℓ|. We restrict the phase

angles to be between −π and π,

−π ≤ θb,t,ω ≤ π ∀ b ∈ B, t ∈ T , ω ∈ Ω, (16)

so −2π ≤ θo(ℓ),t,ω − θd(ℓ),t,ω ≤ 2π, which makes Constraint (15) valid.

2.3.4. Load Shed

Load shed cannot exceed demand,

pshedb,t,ω ≤ Db,t,ω ∀ b ∈ B, t ∈ T , ω ∈ Ω (17)

2.3.5. Renewable Portfolio Standards

The renewable portfolio standards must be met or a penalty paid for violations,

∑
b∈B

∑
g∈GR

∑
t∈T

pGb,g,t,ω + pRPS
ω ≥ ρRPS

∑
b∈B

∑
g∈G

∑
t∈T

pGb,g,t,ω ∀ ω ∈ Ω (18)

2.3.6. Variable Bounds and Type Constraints

All of the operational variables are continuous, and all except the phase angles, which are

bounded in Constraints 16, are restricted to be non-negative,

pGb,g,t,ω ≥ 0 ∀ b ∈ B, g ∈ G, t ∈ T , ω ∈ Ω (19)

pL+ℓ,t,ω, p
L−
ℓ,t,ω ≥ 0 ∀ ℓ ∈ L, t ∈ T , ω ∈ Ω (20)

pshedb,t,ω ≥ 0 ∀ b ∈ B, t ∈ T , ω ∈ Ω (21)

pSb,s,t,ω, p
S+
b,s,t,ω, p

S−
b,s,t,ω ≥ 0 ∀ b ∈ B, s ∈ S, t ∈ T , ω ∈ Ω (22)

Capacity expansions decisions must be non-negative. Storage investments are assumed to be

continuous. Individual transmission lines are considered, so transmission expansion decision vari-

ables are binary. In the model presented here, we restrict generator investments to be integer, but

in our implementation, we relax this variable to be continuous for generator types with a sufficiently

small unit capacity. Additionally, generator types that we do not allow to increase (due to policy
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or other restrictions) are fixed in the implementation (see Table 4).

xGb,g ∈ Z+ ∀ g ∈ G (23)

xSb,s ≥ 0 ∀ b ∈ B, s ∈ S (24)

xLℓ ∈ {0, 1} ∀ ℓ ∈ L (25)

3. A Realistic California Test Case

We test our model on a realistically-sized test case for California with climate-informed scenarios

for wind, solar, and hydro generation availability and load.

3.1. Initial System Data

The initial system data is based on the California Test System (CATS) developed in [50]2. CATS

includes actual generators, substations, and transmission lines in California and their locations,

based on the U.S. Energy Information Administration’s (EIA) Form EIA-860 [61] for 2019, and

simulates data for parameters that are not publicly available. The original CATS data contains

8,870 buses, 3,171 of which are substations, 10,823 transmission branches, and 2,092 generators,

representing the largest connected component of the California electric transmission system. In

order to capture all existing generation in California, we add the generators from Form EIA-860

for 2019 that were missing from CATS to the closest substations within CATS. Additionally, we

reassign solar thermal (concentrated solar power) and solar photovoltaic generator locations to be

consistent with Form EIA-860 and remove generators that are out of service and not expected to

return within the next year. We also remove the 3 coal generators in the system since California

is moving away from coal generation. This process gives a total of 2,541 generators in the initial

system data.

CATS does not distinguish storage from generation. We relabel all CATS “generators” with

FuelType “Batteries” or “Hydroelectric Pumped Storage” as storage. We consider two types of

batteries: 2 hour batteries and 4 hour batteries, based on Table 1 of the EIA’s report addendum [57].

For pumped hydro storage, we assume 10 hours of storage capacity based on [41]. For batteries, we

determine which battery type the battery in the initial system is most similar to by taking the ratio

2The CATS data can be downloaded from https://github.com/WISPO-POP/CATS-CaliforniaTestSystem. The

authors directly received an update to CATS with some small corrections to the import generators, which, as of

December 12, 2024, has not yet been posted to Github.
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of the “Nameplate Energy Capacity (MWh)” and “Maximum Charge Rate (MW)” in the energy

storage spreadsheet from Form EIA-860 [61] for 2019. We use pmax from the modified CATS data

for the power conversion capacity and determine the energy capacity by assuming a fixed ratio of

power conversion to energy capacity (1:10 for pumped hydro, 1:2 for 2 hour batteries, and 1:4 for

4 hours batteries). Figure 1 shows a map of the initial system data after these modifications.

(a) (b) (c)

Figure 1: Existing (a) generator, (b) storage, and (c) transmission line locations. The area of the circular markers is

proportional to each location’s installed capacity.

3.2. Expansion Data

We only allow new generators to be built at existing substations. We combine the generator

types “Other Waste Biomass” and “Municipal Solid Waste” with “Landfill Gas” and combine

“Other Gases” and “Other Natural Gas” with “Natural Gas Internal Combustion Engine” since

our cost data is not sufficiently refined to include all of these categories. We determine whether

generators are renewable or thermal and whether to model the expansion decisions as continuous,

integer, or fixed based on our best judgment and the unit capacity. The average pmax value across

existing generators of a given type in the modified CATS initial system data is used as the unit

capacity for new generators. The generator types and categorizations used in our test case are

shown in Table 4.

As mentioned in Section 3.1, the storage types considered are 2 hour batteries, 4 hour batteries,

and hydroelectric pumped storage. All storage expansion decisions are assumed to be continuous.

We assume a round-trip efficiency of 82% for batteries and 79% for hydroelectric pumped storage,

based on [59] and take the square root of this value to get the charging and discharging efficiencies.
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Table 4: Generator types, along with their renewable portfolio standard categories and variable types, that are

considered in the model. Table also shows the abbreviations used in the results figures.

Generator Type Abbreviation RPS Category Variable Type

Conventional Hydroelectric Hydro Renewable Fixed

Petroleum Liquids Oil Thermal Fixed

Natural Gas Fired Combustion Turbine NGT Thermal Integer

Natural Gas Internal Combustion Engine NGICE Thermal Continuous

Natural Gas Fired Combined Cycle NGCC Thermal Integer

Natural Gas Steam Turbine NGST Thermal Integer

Landfill Gas Landfill Renewable Continuous

Geothermal Geoth Renewable Integer

Nuclear Nu Thermal Integer

Onshore Wind Turbine Wind Renewable Continuous

Wood/Wood Waste Biomass Biomass Renewable Continuous

Solar Photovoltaic - Utility Scale Solar PV Renewable Continuous

Concentrated Solar Power CSP Renewable Continuous

All Other Other Thermal Fixed

Petroleum Coke Coke Thermal Fixed

Import Import Thermal Fixed

We assume that one new transmission branch, with same origin and destination, can be built

everywhere where there was a transmission branch in the existing system. The same reactance,

resistance, and rating as the corresponding initial system branch are used.

3.2.1. System Costs

The capital costs for each generator type are derived from the values for CAISO in Table 3

of [57]. To get the annual capital cost, amortized over the lifetime of the plant, we divide by the

capital recovery factor calculated over the lifetime of the plant, as given in [58], assuming a 3%

discount rate, as given in [23]. Table 1 of [57] is used to calculate the FOM and VOM costs. FOM

costs are already on an annual basis and don’t need to be amortized over the lifetime of the plant.

Since the generator type “All Other” is not included in [57], we use fuel cells as a proxy because the
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nominal capacity for fuel cells was the closest to the average capacity of “All Other” in the CATS

data. We assume 0 capital and FOM costs for imports since these costs are external to the system

boundary (also note that since import generators are fixed, the capital and FOM costs won’t affect

the solution). We take the ceiling of the maximum of the VOM cost across all other generator

types for the VOM cost for imports, so the model will prioritize in-state generation over imports.

Fuel prices for natural gas and distillate fuel oil (used as a proxy for “All Other”) are derived

from [60]. Landfill gas is derived from [34]. All other resources (including imports) are derived

from EIA’s Open Data - API Query Browser [56]. These values were all given in $/million BTU.

The heat rate from Table 1 of [57] was used to convert to $/kWh.

For the capital costs for candidate transmission branches, we use data from the PG&E trans-

mission line cost calculator [43]. For lines, we use the values for “Double Circuit, Strung on both

sides, Lattice Tower” under “Reconductor/Upgrade Transmission Line” since we only allow lines

to be built where there is an existing transmission corridor. Costs for each line are then calculated

based on the voltage and length of the line. We apply the line-length-based adjustment factors

given in [43] but not those that depend on terrain and population density. For transformers, we use

the costs for 3-1 Phase and 1-3 Phase “Transformer Banks” under “New Substation Equipment” in

the cost calculator. If the specified transformer step does not exist, we achieve it by combining two

transformers together. Similarly to generators, we amortize transmission costs over the expected

lifetime of the branch, which we take to be 50 years.

Generation costs are converted to 2022 US dollars using Bureau of Labor Statistics data [54].

The transmission costs are already in 2022 USD, so no inflation adjustments are needed. We impose

an RPS of 70% with a $100/MWh non-compliance cost and a $30,000/MWh load shed cost [9].

3.2.2. Maximum potential capacity

We only allow new generation capacity to be built at existing substations. Generator types

labeled as “Fixed” in Table 4 are not allowed to increase from their initial system capacities due

either to resource limitations (e.g. for conventional hydroelectric), policy restrictions (e.g. for

petroleum liquids and petroleum coke), or being outside of the model boundary (e.g. for all other

and import). Natural gas and nuclear resources are allowed to increase, although California policy

discourages the expansion of these resources, because we want to allow the model to determine if

expansion of these resources is necessary to balance variability in supply from renewable resources.

Their use will be limited by the RPS constraint. For both natural gas and nuclear, we leave the
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maximum potential capacity unconstrained at any substation for which new generation construction

is allowed for wind or solar but fix the maximum to the initial system capacity wherever there are

land-use restrictions (restricting the maximum potential capacity to the initial system values) on

both of these resources.

To calculate the maximum potential capacity by bus for the remaining six generator types, we

begin by imposing a grid over (a shapefile of) California [11], with a cell size of 0.04◦ by 0.04◦. Grid

cells are then divided into “catchment areas” using the Voronoi algorithm [3] using the centroids of

grid cells containing at least one substation as poles. In the case in which a grid cell covers multiple

substations, the maximum potential generation capacity within the corresponding catchment area

is apportioned equally across all substations within the cell.

The U.S. Environmental Protection Agency provides a list of landfills in the United States along

with data on the amount of gas generated by each landfill [62]. Any landfill with an existing landfill

gas collection system (for flaring) in place is deemed a potential site for landfill gas generation.

For geothermal power, we use a shapefile containing data on the resource potential of each

geothermal field [14]. Many geothermal fields do not fall completely within a single substation’s

catchment region, so the fields’ maximum potential capacity is pro-rated proportionally to each

catchment region based on the proportion of the geothermal field that overlaps with the region.

Any portion of a geothermal field that is not in a geothermal protected exclusion zone [15] is

considered a potential site for new geothermal power generation.

Wood/wood waste biomass has relatively low energy density, so fuel transportation is relatively

expensive for this resource. To reflect this fact, we only allow biomass generators to be sited where

there is already biomass available in the form of dead trees [10]. The maximum generation for a

given bus is based on the number of dead trees in that substation’s catchment region.

Onshore wind, solar photovoltaic (utility-scale), and concentrated solar power have the fewest

siting restrictions. By default, we allow each cell to devote up to 20% of its area to each of these

three generation types. We then assign each cell a Rural-Urban Commuting Area Code (RUCA)

using the 2020 census blocks [55]. Any cell that does not have a valid RUCA code is given a RUCA

code based on the cell’s zip code [22]. Any remaining cells without valid RUCA codes are assumed

to have 0 potential capacity. In this study, only utility-scale solar and wind generation expansion

is considered, so any cells that fall into a metropolitan or micropolitan areas (i.e. with a RUCA

code of 1 – 6) are assumed to have 0 potential capacity. Cells that fall into a small town or rural

areas (RUCA codes 7 or higher) form the basis of where new Onshore Wind, Solar Photovoltaic
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(utility-scale only), and concentrated solar power can be built. Each cell is then checked against

the solar [12] and wind [16] Protected Area Exclusion Zones, to identify cells in which new solar

and wind generation is not allowed.

For wind, solar, and biomass resources, each cell is checked against a critical habitat map [13]

as well as maps of areas of conservation interest [26]. Any cell that falls within a critical habitat is

assumed to have 0 potential capacity. For the remaining cells, the maximum land use is decreased

proportionally to the Area of Conservation Emphasis (ACE) score from [26], where the cells with

the highest local or global ACE scores are reduced to 0% land use allowed. All other cells are

eligible locations for power generation construction.

Once the maximum potential generation capacities by cell have been determined, each cell is

assigned to a substation (or substations) based on the substation catchment areas. The maximum

potential capacity at each substation is given by the sum of the maximum potential across cells in

the substation’s catchment area, for each generator type. If this value is higher than the existing

capacity at the substation for a given generator type, it becomes the new maximum, otherwise the

maximum potential generation capacity at the given substation is equal to the existing capacity.

Lithium-ion batteries have relatively few siting restrictions [8] due to their flexible sizing and

high energy densities. Thus, we do not constrain their maximum potential capacities at any bus.

California has a few hydroelectric pumped storage projects in various stages of completion. We

consider three that have at least preliminary filings: (1) the Eagle Mountain Pumped Storage

Project [18], (2) the Fort Ross Storage Project [30], and (3) the San Vicente Energy Storage

Facility [47]. The proposed capacity for these projects is used as the maximum potential capacity

and assigned to the closest substation to their respective proposed locations.

3.3. Climate Scenarios

Wind and solar availability (ηGb,g,t,ω) are obtained by performing renewable power simulations

using the National Renewable Energy Laboratory’s System Advisor Model (SAM) [7]. As input

to SAM, hourly weather observations for 2019 and 2045 are taken from climate simulations of the

SSP5-8.5 emissions scenario from the Energy Exascale Earth System Model (E3SM) California

Regionally Refined Model (CARRM) [69], which features 3.25 km horizontal resolution over Cali-

fornia. Using the default wind and solar models, PySAM.Windpower.default("WindPowerNone")

and PySAM.Pvsamv1.default("FlatPlatePVNone"), we run simulations in SAM to obtain hourly

power output for a simulated power plant at each substation location, after physical losses. Gen-
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eration availability is then calculated by dividing these values by the nameplate capacity.

Hydropower availability is obtained from [67], which presents a water system model that intakes

precipitation from climate model projections and returns projected monthly hydropower generation

availability. Hydropower locations from [67] are mapped to substations in the modified CATS

system based on the Form EIA-860 Name and Plant Code. For hydropower generators in the

modified CATS system that are missing from [67], we use the data from the closest hydropower

generator in [67], scaled by the ratio of the nameplate capacities. Monthly data from [67] is

converted to daily availability by dividing by the number of days in a given month.

Load data is obtained from a multiple linear regression model based on hourly temperature

[37]. We train the model on historical hourly demand from Form EIA-930 and hourly temperatures

from the ERA5 reanalysis for 2018-2022. The model predicts hourly load with 5.6% error on out of

sample (2023) data. For physical consistency with renewable power simulations described above, we

use hourly temperatures from both historical (2019) and mid-century (2045) CARRM to generate

climate-informed hourly load projections. In order to account for future changes to load from

increased electrification and other policy changes, we add demand modifiers from the California

Energy Commission’s 2021 Integrated Energy Policy Report Mid-Mid Case.

3.4. Bus Collapsing

Initial tests indicated that very small reactance and resistance values were creating numerical

instability for the test instance. In order to improve the numerical stability, we create a variation

of the network in which short transmission lines and nearby buses are collapsed. To create the

collapsed network, we first collapse short branches that are connected to leaf buses, i.e. buses with

degree 1, based on the collapsing distance dbr ≥ 0. We then collapse the remaining short branches

that may be connected to buses with degree greater than 1, based on dbr. For each pair of buses

that we merge, we define one bus to be the primary bus and the other to be the secondary bus.

The new merged bus adopts the physical properties of the primary bus, and adjacent branches

are treated as connecting to the primary bus (see Figure 2 for an example). We do not collapse

branches that correspond to transformers.

The original CATS network has 8,870 buses and 10,162 branches, and our collapsed network

has 3,972 buses and 4,757 branches for our choice of dbr = 1 km. While the original network

has line resistance and reactance values as low as 6e-8 and 1e-6 p.u. respectively, the collapsed

network has line resistance and reactance values on the order of 1e-5 and 1e-4 p.u. Due to
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Figure 2: A simple example of a collapsed power network. The original 4-bus network is on the left. When we

collapse buses 1 and 2 taking bus 1 to be the primary bus, we obtain the collapsed network on the right.

improved numerical stability in the collapsed CATS variation, we also observed faster convergence

to the optimal solution for the collapsed network compared to the original network. Preliminary

analysis indicates that the CEP model solved for the collapsed version of the system produces

similar expansion solutions and an objective function within 0.25% of the full resolution results,

with a reduction in solve time between 30-85% for the set of examined scenarios.

4. Computational Study

We implement our model in Pyomo and solve with Gurobi. We leverage the recently-developed

Pyomo package mpi-sppy [32] to efficiently solve the stochastic program in a parallel computing

environment. Additional details on the computational settings and adjustments made to improve

model runtimes can be found in [63]. For the results presented here, Constraints (14) – (16) were

relaxed, yielding a transportation approximation of the power flow model, and transmission was

assumed to be lossless. We are working to develop improved solution strategies to enable the

solution of the problem with a more realistic power flow representation. However, even with these

simplifications, and the bus collapsing described in Section 3.4, we are still solving a much more

detailed power system representation than any other capacity expansion study we are aware of.

We compare the capacity expansion solutions under present-day climate conditions, represented

by climate scenarios for 2019, to the system expansion decisions under future forecasted climate

conditions, represented by climate scenarios for 2045. Note that 2019 was chosen to represent

present-day operations because the original CATS system is based on 2019 EIA data. Although

the present-day grid should theoretically be sufficient to support present day operations, we have

seen that in recent years, extreme heat events and wildfire risk have caused blackouts and public

safety power shut-offs in California [1, 17]. Additionally, the RPS constraint can cause additional
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capacity to be built if the variability in wind, solar, and hydro availability leads to additional

capacity requirements in order to satisfy this constraint.

We start with scenarios representing hourly load, hourly wind and solar generation availability,

and daily hydro for each day in 2019 and 2045 and use k-means clustering to select a subset of

20 scenarios for each year. We also compare the results from the deterministic model run for

one representative day each season to the results from the stochastic program solved for the future

climate case to demonstrate the importance of using stochastic programming in solving the problem.

4.1. Present Day to Future Climate Comparison

We present results for the stochastic program solved with 20 scenarios each for the 2019 and 2045

cases. Figure 3 shows the total capacity expansion for generation (a) and storage (b). Expansion is

seen only in renewable resources and storage in both the 2019 and 2045 cases with more generation

and storage construction required for the 2045 climate than for the 2019 climate, as expected.

(a) (b)

Figure 3: Comparison of total generation (a) and storage (b) capacity expansion for 2019 and 2045.

Figure 4 shows the locations of new generators, storage units, and transmission lines for the

2019 case (a – c) compared to the 2045 case (d – f). We see that only sustainable generator types

are built with solar and landfill gas built throughout California in both cases, although solar PV

buildout is greater for 2045 than for 2019. Additionally, biomass buildout is prolific in the 2045

case. There is much more storage built for 2045 than 2019, and similarly for transmission buildout.

Figure 5 shows the expected energy output (a) and energy storage (b) across scenarios for 2019

and 2045. The expected energy output from solar PV is noticeably higher in 2045 than in 2019.

Expected wind energy is also slightly higher in 2045 than 2019. The increased variability that comes
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(a) (b) (c)

(d) (e) (f)

Figure 4: Comparison of new generator, storage, and transmission line locations for 2019 (a – c) and 2045 (d – f).

The area of the circular markers is proportional to capacity.

with higher reliance on these generation types is balanced by increased natural gas and biomass

production. Additionally, all types of storage are higher for 2045 than for 2019. CSP, hydro, and

geothermal are slightly higher in 2019 than 2045, but less so than the difference in solar PV. Note

that for both the 2019 and 2045 cases, an RPS target of 70% is assumed, which drives the increase

in renewable capacity and energy output. However, in 2045, there is also an increase in load, which

necessitates the increased production from dispatchable resources such as natural gas and biomass.

An example of operations for a day in June, 2045 is shown in Figure 6. A duck curve is observed

in Figure 6a, as expected. For this representative day, solar PV is so high in the middle of the day

that nuclear production is stopped. In reality, conventional nuclear reactors have long ramp times

that would not allow this behavior. Ramp-up and down constraints were excluded from our model

because they would increase the model complexity by connecting many time periods and adding

binary variables. However, since nuclear production represents a small fraction of the total and
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(a) (b)

Figure 5: Comparison of expected energy output (a) and energy stored (b) for 2019 and 2045.

the other resources that balance solar production can be more quickly ramped, adding ramping

constraints is unlikely to affect the expansion solution significantly. More detailed power system

operations studies could be performed separately given the expansion solution.

(a) (b)

Figure 6: Energy output (a) and storage operations (b) for a representative day in June, 2045. Positive values indicate

charging and negative values indicate discharging in the storage plot.

Storage operations, normalized by installed storage capacity, are shown in Figure 6b. Storage

operations are similar across the three types with charging during the day and discharging during

the peak load hour, as expected. Looking across scenarios, we find that the power conversion

capacity for batteries is governed by storage charging rather than discharging needs. In other

words, the size of the inverters attached to the batteries is driven not by how much discharge is

needed at the peak demand hour but by how much solar we need to take in at peak solar hour.
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4.2. Deterministic to Stochastic Comparison

We compare the results from the stochastic model, solved across the 20 scenarios in 2045, to

the deterministic model solved for one day in each season. Figure 7 shows the resulting total (a)

generation and (b) storage capacity expansion. We see substantial differences in the expansion

decisions for the stochastic case when compared to the individual scenario results, especially in

solar PV and storage, emphasizing the importance of solving the problem as a stochastic program

across a sufficiently representative set of scenarios.

(a) (b)

Figure 7: Comparison of total (a) generation and (b) storage capacity expansion between stochastic and deterministic

model for 2045.

5. Discussion and Conclusion

We extend an existing capacity expansion planning model to include climate-impacted parame-

ters, specifically wind, solar, and hydroelectric generation availability and load. We solve our model

for a realistic representation of California of much higher resolution than has previously been solved.

This research is enabled by recent advances both on the climate-data side, specifically the E3SM

regionally refined model [69], and the stochastic programming side, specifically mpi-sppy [32] and

our adjustments made to this library presented in earlier work [63]. To the best of our knowledge,

this is the first study to co-optimize power generation, storage, and transmission at a high enough

spatial and temporal resolution to make climate-informed decisions for a realistic power system.

We solve our model for a representative set of 20 generation availability and load scenarios

derived from high-resolution climate forecasts representing both the present day (2019) and future
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(2045). We find that the differences in climate between the present day and future cases significantly

impact generation, storage, and transmission buildout. Furthermore, the expansion decisions from

the stochastic program solved across 20 scenarios representing future climate conditions are signifi-

cantly different from the decisions made by the deterministic model solved for individual scenarios

under the same climate conditions, emphasizing the importance of using stochastic programming

to solve the problem.

Realistic systems are often not well behaved, and this problem instance is no exception. In

order to solve this large, realistic instance, the team had to overcome numerous numerical stability

issues, which were addressed by setting values below a certain threshold to 0 and clustering buses

within close proximity to each other. We are currently working to solve the problem across a larger

set of scenarios spanning multiple years with more realistic power flow representations.
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