
A Universally Optimal Primal-Dual Method
for Minimizing Heterogeneous Compositions

Aaron Zoll∗ Benjamin Grimmer†

Abstract
This paper proposes a universal algorithm for convex minimization problems of the composite

form g0(x) + h(g1(x), . . . , gm(x)) + u(x). We allow each gj to independently range from being
nonsmooth Lipschitz to smooth, from convex to strongly convex, described by notions of Hölder
continuous gradients and uniform convexity. Note that, although the objective is built from
a heterogeneous combination of such structured components, it does not necessarily possess
smoothness, Lipschitzness, or any favorable structure overall other than convexity. Regardless,
we provide a universal optimal method in terms of oracle access to (sub)gradients of each
gj . The key insight enabling our optimal universal analysis and a core technical contribution
is the construction of two new constants, the Approximate Dualized Aggregate smoothness
and strong convexity, which combine the benefits of each heterogeneous structure into single
quantities amenable to analysis. As a key application, fixing h as the nonpositive indicator
function, this model readily captures functionally constrained minimization g0(x) + u(x) subject
to gj(x) ≤ 0. In particular, our algorithm and analysis are directly inspired by the smooth
constrained minimization method of Zhang and Lan and consequently recover and generalize
their accelerated guarantees.

1 Introduction
This paper considers the design of scalable first-order methods for the following quite general
class of convex optimization problems. Given closed, convex functions gj , u : X → R ∪ {+∞} for
j = 0, . . . , m, a closed, convex, component-wise nondecreasing function h : Rm → R ∪ {+∞}, and a
closed, convex constraint set X ⊆ Rn, we consider the convex composite optimization problem

p⋆ = min
x∈X

F (x) := g0(x) + h(g1(x), . . . , gm(x)) + u(x) . (1.1)

We are particularly interested in heterogeneous settings where the components gj forming the
overall objective F vary in their individual smoothness (or lack thereof) and convexity. The convex
composite model (1.1) is well-studied and captures a range of standard optimization models:

• Minimization of Finite Summations. As perhaps the most basic composite setup, minimization
of finite sums h(z) = ∑

zj , where each zj = gj(x) is one component of the objective, is
widespread in machine learning and data science applications. The optimization of objective
functions built from heterogeneous sums of smooth and nonsmooth components was recently
considered by the fine-grained theory of [10] and the bundle method theory of [26]. Universal,
optimal guarantees for the minimization of any sum of heterogeneously smooth components
via Nesterov’s universal fast gradient method [30] were given by [15].

∗Johns Hopkins University, Department of Applied Mathematics and Statistics, azoll1@jhu.edu
†Johns Hopkins University, Department of Applied Mathematics and Statistics, grimmer@jhu.edu

1

azoll1@jhu.edu
grimmer@jhu.edu

• Functionally Constrained Optimization. Considering the composing function as the indicator
function h(z) = ιz≤0(z) for zj = gj(x), this model recovers the standard notion of functionally
constrained optimization. This setting has been studied significantly, with the recent smooth
constrained optimization work of [42] being a particular motivation for this work. Constrained
optimization handles a large class of problems with applications to machine learning, statistics,
and signal processing [3, 20, 22, 32].

• Minimization of Finite Maximums. Our model also captures minimizing finite maximums:
h(z) = maxj zj of several component functions zj = gj(x) [32]. For example, such objectives
arise as a fundamental model in game theory, in robust optimization seeking good performance
across many objectives [6], and in the radial optimization framework of [16, 17].

• Smoothed Finite Maximum and Constrained Optimization Finally, we provide two convex
composite examples that address the previous two models in a smoothed setting. First, for
applications minimizing the maximum of several functions gj(x), one can instead minimize an
η-smoothing of the max function [5]: for some η > 0, consider hη(z) = η log(∑m

j=1 exp(zj/η)).
As η tends to zero, this converges to maxj zj but becomes less smooth. Second, consider
hη(z) = ∑m

j=1 max{zj/η, 0}2, providing a smooth penalty for any constraint function violating
nonpositivity.

Here we address convex composite problems (1.1), assuming u, h, and X are reasonably simple
(i.e., have a computable proximal/projection operator). Note that this captures all four of the above
application settings. We allow gj to vary significantly in structure (i.e., ranging from nonsmooth
Lipschitz to having Lipschitz gradients and from simple convexity to strong convexity). Section 4
and Section 5 present the considered heterogeneous models of Hölder smoothness and uniform
convexity formally, but we give the following definitions here. We say that f is (L, p)-Hölder smooth
for p ∈ [0, 1] if its gradient is Hölder continuous:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥p ∀x, y ∈ dom(f) . (1.2)

As an immediate consequence of the fundamental theorem of calculus,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

p + 1∥y − x∥p+1 ∀x, y ∈ dom(f) . (1.3)

Conversely, we say that f is (µ, q)-uniformly convex for q ≥ 1 if

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

q + 1∥y − x∥q+1 ∀x, y ∈ dom(f) . (1.4)

We note that allowing each gj to satisfy these conditions with their own (Lj , pj) and (µj , qj) does
not guarantee F possesses any of these favorable structures besides being simply convex. Despite
this lack of centralized structure, this work presents a simple first-order method attaining optimal
convergence guarantees, combining and leveraging whatever structure is present in each component.

Algorithms that can be applied optimally across a range of structurally different problem settings
are known as universal methods. Universality is a key property for developing practical algorithms
capable of being widely deployed in blackbox fashion. For the case of minimizing a single function
f ranging in its Hölder smoothness, optimal universal methods were first pioneered by Lan [14, 21]
and Nesterov [13, 30]. Further work on universal methods allowing for convex hybrid composite
models [18, 26], heterogeneous summations [15, 38], varied growth structures [19, 31], constrained
optimization [8, 20, 42], and stochastic optimization [2, 35] has followed since. To varying degrees,

2

the above works developed algorithms that are “mostly” parameter-free, potentially relying on a
target accuracy ε, an upper bound on the diameter of X , or similar universal problem constants.
Without additional parameters, stopping criteria indicating when a target accuracy is reached
are often unavailable. Hence, although the above methods apply universally, they vary in how
parameter-free they are.

As a concrete example of a universal method, the Universal Fast Gradient Method (UFGM) [30]
can optimally minimize F = g0+u, with the structure of g0 ranging from smooth to nonsmooth. This
setup is modeled by supposing g0 is convex with (L, p)-Hölder continuous gradient, corresponding
to Lipschitz gradients when p = 1 and Lipschitz functions value when p = 0. The UFGM, given
target accuracy ε > 0 as an input, produces a point with at most ε objective gap in either of these
settings and in every intermediate one, using at most

KSM (ε, L, p, ∥x0 − x⋆∥) = O
((

L

ε

) 2
1+3p

∥x0 − x⋆∥
2+2p
1+3p

)
(1.5)

(sub)gradient oracle evaluations for g0. The matching lower bounds cited in [28, page 26] establish
that this rate is optimal for every p ∈ [0, 1]. Given additional structure, like (µ, q)-uniform convexity
of g0, a universal restarting scheme like [33] can be applied to achieve the optimal, faster rates of

KUC(ε, L, p, µ, q) =


O
((

L1+q

µ1+pεq−p

) 2
(1+3p)(1+q)

)
if q > p

O
((

L1+q

µ1+p

) 2
(1+3p)(1+q) log

(
F (x0)−F (x⋆)

ε

))
if q = p

(1.6)

(sub)gradient oracle evaluations with respect to g0, up to logarithmic factors.
This work aims to develop a universal method for the composite setting (1.1), allowing hetero-

geneity in the Hölder smoothness and uniform convexity of each gj , capturing and generalizing
the settings of the above universal methods. Our proposed Universal Fast Composite Method
(UFCM) is formally defined in Algorithm 1. When restarting is included, we denote it by R-UFCM,
defined in Algorithm 2. Our method is not parameter-free, depending on the following three
main parameters: a target accuracy ε > 0, an Approximate Dualized Aggregate smoothness LADA

ε,r

capturing the combined effect of any upper bounding curvature present among the composition, and
finally, an Approximate Dualized Aggregate convexity µADA

ε capturing the combined effect of any
lower bounding curvature. The invention of these unifying constants, abstracting and simplifying
any complex dependence on individual components’ Hölder smoothness and uniform convexity
constants and exponents, is key to our algorithm’s success. We formally define the latter parameters
in (4.2) and (5.1).

We note that one may tradeoff knowledge of LADA
ε,r for knowledge of bounds on the initial

distances to optimal, Dx and Dλ, without affecting big-O oracle complexities. Further discussion
is presented in Remark 4.6. The design of entirely parameter-free methods, avoiding knowledge
of these aggregate constants and distance bounds, is left as an important future direction. The
parameter-free techniques of [25, 30, 44] may be useful to this extent.

Measuring the convergence of a method requires a suitable notion of solution quality. Often,
iterative methods seek to produce a solution xt with a bounded objective gap:

F (xt)− p⋆ ≤ ε . (1.7)

However, for general composite problems (1.1), since F is allowed to take infinite value arbitrarily near
a minimizer (an important attribute for modeling constrained optimization as discussed above), our
iterative schemes for minimizing F do not directly provide a solution xt with bounded suboptimality.

3

Instead, we identify (ε, r)-optimal xt defined as there existing ĝ ∈ Rm and a subgradient λ̂ ∈ ∂h(ĝ)
satisfying {

g0(xt) + h(ĝ) + ⟨λ̂, g(xt)− ĝ⟩+ u(xt)− p⋆ ≤ ε ,

r∥g(xt)− ĝ∥ ≤ ε .
(1.8)

Here, ĝ informally serves as a perturbed projection of g(xt) onto the domain of ∂h and r is a
hyperparameter that one can fix proportional to

√
ε to obtain simply an “ε-optimal” solution where

∥g(xt)− ĝ∥2 ≲ ε (Lemma 3.2 introduces r and discusses its meaning as a radius for dual multipliers).
This condition states xt nearly attains the optimal objective value when the outer composition

function h is linearized via a subgradient λ̂ taken at a nearby ĝ. For example, in the context
of constrained minimization where h is an indicator function for the nonpositive orthant, λ̂ is
precisely a nonnegative vector of Lagrange multipliers, making the above conditions correspond to
the approximate attainment of the KKT conditions. In this case, ĝ is a perturbed projection of
g(xt) onto the nonpositive orthant. By construction, λ̂ and ĝ are orthogonal, and the conditions for
an (ε, r)-optimal solution correspond to

g0(xt) +
〈
λ̂, g(xt)

〉
+ u(xt)− p⋆ ≤ ε ,

r∥g(xt)− ĝ∥ ≤ ε ,

ĝ ≤ 0, λ̂ ≥ 0 .

The first condition states that xt approximately minimizes the Lagrangian at λ̂. Approximate
primal feasibility follows from the second and third conditions establishing dist(g(xt),Rm

−) ≤ ε/r.
Dual feasibility follows from the nonnegativity of λ̂. Finally, approximate complementary slackness
follows from the orthogonality of λ̂ and ĝ as |⟨λ̂, g(xt)⟩| = |⟨λ̂, g(xt)− ĝ⟩| ≤ ∥λ̂∥ε/r.

As a second example, when h is a linear function (e.g. when directly minimizing a sum of
component functions), one has h(g(xt)) = h(ĝ) + ⟨λ̂, g(xt)− ĝ⟩ and so (1.8) reduces to the classic
bounded suboptimality measure (1.7). In this case, ĝ = g(xt). Further discussion on the roles and
values of ĝ and λ̂ is in Section 3.1

Note in our developed algorithms, both ĝ and λ̂ are not explicitly constructed, and are generally
inaccessible computationally. Hence, although our analysis guarantees such values exist certifying
approximate optimality, we cannot certify at runtime when the iterate becomes (ε, r)-optimal.
This limitation cannot be improved: When h is linear, our optimality condition (1.8) reduces to
suboptimality F (xt)−p⋆ ≤ ϵ, which cannot be certified without knowledge of p⋆ or additional global
structure.

1.1 Our Contributions

This work develops a universal primal-dual method for heterogeneous compositions (1.1) with
optimal first-order complexity with respect to components gj . Our proposed UFCM and its restarted
variant R-UFCM leverage the sliding technique of [23] and the “Q-analysis” technique of [42],
originally designed for smooth constrained optimization. As a key contribution to this end, we
propose new notions of the Approximate Dualized Aggregate smoothness constant LADA

ε,r and the
Approximate Dualized Aggregate convexity constant µADA

ε . These two constants provide a new
unifying technical tool for the analysis of heterogeneous optimization that may be of independent
interest. From these, we prove the oracle complexities outlined in Table 1. For example, in the
simple setting of minimizing g0(x) + u(x), these rates recover the optimal suboptimality convergence
rates of (1.5) and (1.6).

4

First-Order
Oracle Calls

to
Components g

Proximal Oracle Calls to h and u

Lh > D2
λ/ε Lh ≤ D2

λ/ε

µADA
ε < ε/D2

x

√
LADA

ε,r D2
x

ε

√
LADA

ε,r D2
x

ε
+ MDxDλ

ε

√
(LADA

ε,r + M2Lh)D2
x

ε

µADA
ε ≥ ε/D2

x

√
LADA

ε,r

µADA
ε

log
(1

ε

) √
LADA

ε,r

µADA
ε

log
(1

ε

)
+ MDλ√

µADA
ε ε

√
LADA

ε,r + M2Lh

µADA
ε

log
(1

ε

)

Table 1: Oracle complexities in terms of universal parameters LADA
ε,r and µADA

ε , proven in Theorem 5.5,
up to constants and additive logarithmic terms in ε. Here, Dx and Dλ denote bounds on the initial
primal and dual distances to optimality, and M denotes a local Lipschitz constant.

For ease of exposition, we develop our convergence theory incrementally through three main theorems:
–Theorem 3.4 establishes a O(1/

√
ε) rate towards ε-optimality when each gj is smooth and convex.

Hence, smooth composite optimization is nearly as easy as unconstrained smooth optimization.
–Theorem 4.3 generalizes this analysis to establish optimal rates when each gj is convex with varying
Hölder continuous gradient (1.2), recovering (1.5) as a special case.
–Theorem 5.5 finally leverages standard restarting techniques to establish optimal rates when the
components additionally possess varying uniform convexity (1.4), recovering (1.6) as a special case.

Remark 1.1. Note that these rates are only optimal for the first-order complexity with respect
to the components gj, not necessarily the proximal oracle complexity. The work of [37] shows the
latter can be improved to O (1/ε) when g0 is nonsmooth and Lipschitz whereas our method requires
O
(
1/ε2) proximal evaluations in such nonsmooth settings.

1.2 Example of our Universal Constants LADA
ε,r and µADA

ε and an Application of
Convergence Rates.

Our ability to provide universal guarantees across heterogeneous problem settings is primarily
enabled by the design of our Approximate Dualized Aggregate smoothness LADA

ε,r and strong convexity
µADA

ε constants. Although we defer formal definitions of these to (4.2) and (5.1), here we briefly
discuss their essential properties and consequences. These constants are “approximate” in that
they depend on the target accuracy ϵ, “dualized” in that they depend on associated optimal
dual multipliers λ⋆

j , and “aggregate” in that they combine these dependencies and every problem
parameter (Lj , pj), (µj , qj), etc. into a single constant. From these constants, we find that the

traditional smooth and smooth, strongly convex rates O
(√

LADA
ε,rD2

x

ε

)
and O

(√
LADA

ε,r

µADA
ε

log
(

1
ε

))
hold

for generic heterogeneous composite settings.
These unifying constants are graceful in their dependence on dual multipliers λ⋆

j : the dependence
on the jth component’s (Lj , pj) and (µj , qj) vanishes as λ⋆

j tends to zero. In constrained optimization,
λ⋆

j = 0 corresponds to the constraint being inactive at the optimal solution. Hence, inactive
constraints play a vanishing role in our convergence rates (as one would hope). As a more concrete

5

example, consider minimizing a finite maximum h(g1(x), g2(x)) with h = max{z1, z2} of an L-
smooth function g1 and an M -Lipschitz nonsmooth function g2. Here, the optimal dual multiplier
λ⋆ ∈ [0, 1] describes the activity of each component at the minimizer, λ⋆ = 0 if the problem reduces
to minimizing the smooth component, λ⋆ = 1 if the problem reduces to minimizing the Lipschitz
component, and λ⋆ ∈ (0, 1) if both are active. Corollary 4.5 shows that our gradient complexity
guarantees for such problems simply decompose into the sum of each component’s complexity
separately, weighted by its dual multiplier plus r,

O

√(1− λ⋆ + r)LD2
x

ε
+ ((λ⋆ + r)M)2D2

x

ε2

 .

Selecting r = O(ϵ3/4), this bound transitions from the optimal accelerated smooth rate O(1/
√

ϵ)to
the optimal nonsmooth rate O(1/ϵ2) gracefully as λ⋆ ∈ [0, 1] varies.

This recovery of the optimal rates (1.5) when there is a single active component establishes near
optimality of our guarantees with respect to first-order oracle evaluations of the component functions

gj . Any improvement in our dependencies in O
(√

LADA
ε,rD2

x

ε

)
and O

(√
LADA

ε,r

µADA
ε

log
(

1
ε

))
beyond a log

term would violate the lower bounds stated by [28].

Outline. Section 2 introduces preliminaries as well as the sliding technique and “Q-analysis”
discussed in [42] for solving constrained optimization. Section 3 extends this method to smooth
composite optimization, proving optimal guarantees. Section 4 generalizes to functions with Hölder
continuous gradient. Finally, Section 5 generalizes to allow heterogeneous levels of uniform convexity.

2 Preliminaries

We define our notation to align with [42]’s prior work in constrained optimization. First, without loss
of generality we set g0(x) = 0 as one can consider instead minimizing 0 + ĥ(g0(x), . . . gm(x)) + u(x)
with ĥ(z0, z1, . . . zm) = z0 + h(z1, . . . zm). Hence, it suffices to consider problems of the form

min
x∈X

F (x) := h(g1(x), . . . , gm(x)) + u(x) , (2.1)

defined by a closed, convex set X ⊆ Rn and the following closed, convex functions: regularizing
function u : X → R ∪ {+∞}, composing function h : Rm → R ∪ {+∞}, and component functions
gj : X → R. Below, we describe the additional structures assumed on each function.

Assumed Structure of Objective Components g, h, u. We assume each gj is locally Lipschitz
with some form of bounds on its curvature. We take each gj to be Lj-smooth (i.e., ∇gj is Lj-
Lipschitz) in Section 3 to set up the algorithmic framework and convergence results. In Sections 4
and 5, we allow the components to have varying levels of smoothness and varying levels of convexity,
as defined in (1.2) and (1.4). Whatever structure is present in these components only arises in our
convergence theory through the unifying parameters LADA

ε,r and µADA
ε , which aggregate any structures

available, enabling our universal method and analysis. We assume X , u, and h are sufficiently
simple that their proximal operators can be evaluated, defined for any parameter τ > 0 as

proxu,τ (x) := argmin
y∈X

u(y) + τ

2∥y − x∥2, (2.2)

proxh,τ (x) := argmin
y∈Rm

h(y) + τ

2∥y − x∥2 (2.3)

6

respectively.
The algorithms designed herein are primal-dual, leveraging the convex (Fenchel) conjugates [11]

of h and each gj . For any convex function f : Rn → R ∪ {+∞}, we denote its conjugate as

f∗(s) = sup
x∈Rn
{⟨s, x⟩ − f(x)} . (2.4)

Note Moreau’s decomposition [3, Theorem 6.45] shows proxh∗,τ (x) = x − proxh,1/τ (τx)/τ and so
the assumed oracle access to proxh via (2.3) further provides access to proxh∗ .

Finally, we assume h is component-wise nondecreasing, which suffices to ensure the overall
objective F is convex. The following pair of standard lemmas formalize the resulting structures.

Lemma 2.1. [34, Theorem 5.1] If h : Rm → R∪{+∞} is convex and component-wise nondecreasing
and g : Rn → Rm is component-wise convex, then c(x) := h(g(x)) : Rn → R is convex.

Lemma 2.2. If h : Rm → R∪ {+∞} is convex and component-wise nondecreasing, then dom(h∗) ⊆
Rm

+ .

Proof. Since h is component-wise nondecreasing and convex, at any x ∈ dom(h),

h′(x;−ej) ≤ 0, ∀j ⇐⇒ sup
s∈∂h(x)

⟨s,−ej⟩ ≤ 0, ∀j ⇐⇒ ∀s ∈ ∂h(x), s ≥ 0 ⇐⇒ ∂h(x) ⊆ Rm
+ .

Then, for any s ∈ ri(dom(h∗)), there exists x ∈ ∂h∗(s), and thus s ∈ ∂h(x) ⊆ Rm
+ .

Lagrangian Reformulations. We can now define a Lagrangian function essential to our algorithm
and its analysis. Recalling f = f∗∗ for any closed, convex, and proper function [34, Corollary 12.2.1],
one has that

h(g(x)) = sup
λ∈Λ
⟨λ, g(x)⟩ − h∗(λ), where Λ := dom(h∗) .

The Standard Lagrangian reformulation follows as

inf
x∈X

h(g(x)) + u(x) = inf
x∈X

sup
λ∈Λ
{⟨λ, g(x)⟩ − h∗(λ) + u(x)} . (2.5)

Furthermore, since each λ ∈ Rm
+ (see Lemma 2.2), one can dualize each component function gj ,

obtaining the equivalent Extended Lagrangian reformulation, which our analysis will utilize

inf
x∈X

h(g(x)) + u(x) = inf
x∈X

sup
(λ,ν)∈Λ×V

{L(x; λ, ν) := ⟨λ, νx− g∗(ν)⟩ − h∗(λ) + u(x)} , (2.6)

where V := dom(g∗). Note that L(x; λ, ν) is convex in x and block-wise concave in λ and ν.
Define Z := X × Λ× V for primal variables x ∈ X , dual variables λ ∈ Λ = dom(h∗) ⊆ Rm

+ , and
conjugate variables ν ∈ V = dom(g∗) ⊆ Rm×n . Let Z⋆ denote the set of saddle points of (2.6),
which we assume throughout is nonempty. In the case where h is linear, this assumption is equivalent
to the existence of a minimizer. In the case where h = ι≤0, the functionally constrained setting, this
assumption is equivalent to strong duality holding with primal and dual attainment. Note any such
z⋆ ∈ Z⋆ must have 0 ∈ ∂λL(x⋆; λ⋆, ν⋆) and consequently λ⋆ ∈ ∂h(g(x⋆)).

As a common generalization of the Euclidean distance, for any convex reference function
g : X → R, we define the associated Bregman divergence as

Ug(x; x̂) := g(x)− g(x̂)−
〈
g′(x̂), x− x̂

〉
(2.7)

for some g′(x̂) ∈ ∂g(x̂). If g is vector-valued, we extend the definition above by g = (g1, ..., gm)
and Ug = (Ug1 , ..., Ugm). That is, Ug is vector-valued with each component being the Bregman
divergence of the corresponding component of g.

7

2.1 Key Techniques from Prior Works

Our results rely on four technical tools developed over the last decade that we bring together to
handle various facets of the general problem (1.1). We introduce these formally below. In short,
Lan’s sliding technique [23] allows us to decompose the complexity concerning proximal steps on
u and h from that of gradient calls to g; the Q function analysis of [42] provides the primal-dual
framework from which UFCM is built; the technique to universally analyze Hölder smooth functions
from [30] allows our results to generalize beyond smooth optimization; restarted methods allow us
to generalize our results further to benefit from any uniform convexity present among its components.

Sliding Gradient Methods. The sliding technique introduced by Lan [23, 24] iteratively and approxi-
mately solves subproblems associated with accelerated proximal gradient methods. This approach
was first developed to handle objectives g0 + u, with g0 smooth and u nonsmooth but with readily
available subgradients. The sliding gradient method allows the number of first-order oracle calls to
g0 and u to be decomposed, often significantly reducing the number of calls needed to g0. In the
context of our considered method, a central step of our method requires a proximal step on a certain
minimax optimization subproblem involving u and h∗. Sliding performs this step approximately,
decomposing computations related to ∇g, proxu,τ , and proxh∗,τ .

Q Function Framework for Constrained Optimization. The novel work of [42] considered the problem
of minimizing g0 + u subject to inequality constraints gj(x) ≤ 0, corresponding in our model to
minimizing F = g0(x) + ιz≤0(g1, . . . , gm) + u(x). The key step therein is designing algorithms
generating iterates zt driving an associated “gap function” providing a measure of optimality on the
extended Lagrangian reformulation to zero1:

Q(zt, z) := L(xt; λ, ν, π)− L(x; λt, νt, πt) .

Their proposed accelerated method for smooth constrained optimization works by optimizing the
Q function separately with each block of variables. Their updates concerning π and ν amount to
computing gradients of g0 and gj . Their updates for x and λ correspond to solving a quadratic
program, which a sliding technique is able to decompose.

Our theory recovers these results of Zhang and Lan, improving their guarantees in settings with
strongly convex constraints, enabling it to apply universally to compositions (not just constrained
optimization) and to problems with Hölder smooth and/or uniformly convex components. Section 3.1
formally develops our generalization of their Q function framework. After developing our convergence
theory, Section 5.6 provides a detailed comparison of results.

Universal Methods for Minimization with Hölder Continuous Gradient.
Nesterov’s universal fast gradient method [30] provided a generalization of Nesterov’s classic fast

gradient method [29] capable of minimizing any (L, p)-Hölder smooth objective. The key technical
insight originating from [9] that enables this method is a lemma establishing an approximate
smoothness result for any such function, meaning the standard quadratic upper bound derived
for functions with Lipschitz gradient holds for functions with Hölder gradient up to an additive
constant. A variant of this lemma showcasing a standard cocoercivity inequality also generalizes at
the cost of an additive constant, derived by [25].

1Here π is dual multiplier corresponding to the function g0, always equal to πt := ∇g0(xt). We omit this variable
from the formulation considered throughout this work as without loss of generality, we set g0 = 0.

8

Lemma 2.3 (Lemma 1, Nesterov [30]). For any tolerance δ > 0 and (L, p)-Hölder smooth function

f : X → R with Lδ ≥
[

1−p
1+p

1
δ

] 1−p
1+p L

2
1+p ,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ Lδ

2 ∥y − x∥2 + δ

2 , ∀x, y ∈ dom(f) . (2.8)

Lemma 2.4 (Lemma 1, Li and Lan [25]). In the same setting as Lemma 2.3,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ 1
2Lδ
∥∇f(x)−∇f(y)∥2 − δ

2 , ∀x, y ∈ dom(f) . (2.9)

These lemmas facilitate our generalization in Section 4 from smooth components to heteroge-
neously Hölder smooth components. Our Approximate Dualized Aggregate smoothness constant
LADA

ε,r is a further generalization of the approximate smoothness constants Lδ seen above. Namely,
LADA

ε,r further aggregates the Hölder smoothness of each component gj , weighted approximately by
the corresponding optimal dual multiplier λ⋆

j .

Restarting Gradient Methods. Algorithmic restarting, dating back to at least [28], can be shown
to accelerate the convergence rate of first-order methods. The more recent works [33, 36, 39]
established improved convergence guarantees given strong or uniform convexity or any general
Hölderian growth. The analysis of such schemes tends to rely on ensuring a reduction, often a
contraction, in the distance to optimal occurs at each restart. Such schemes have found particular
success in primal-dual algorithm design for linear and quadratic programming [1, 27].

In our analysis, two distances to optimal are traced based on the distance from primal iterates
xt to x⋆ and the distance from the dual iterates λt to λ⋆. Given any uniform convexity among the
components gj , our Approximate Dualized Aggregate convexity µADA

ε describes the improvement in
convergence gained from restarting the primal iterate sequence. Given any smoothness Lh in the
composing function h, improved convergence follows from restarting the dual iterate sequence. The
relative sizes of µADA

ε and Lh determine our various rates previously claimed in Table 1.

3 Minimization of Compositions with Smooth Components
For ease of exposition, in this section, we first develop our main algorithm UFCM, assuming each
component function gj is Lj-smooth and convex. The following two sections provide extensions to
benefit from any Hölder smoothness and uniform convexity present in each gj and any smoothness
present in h. Section 3.1 formalizes the Q analysis framework for our composite optimization context,
and Section 3.2 introduces our unifying Approximate Dualized Aggregate smoothness parameter
LADA

ε,r . Then, Section 3.3 presents our first convergence guarantee, only requiring the Approximate
Dualized Aggregate smoothness LADA

ε,r (or any upper bound) as input. Finally, Section 3.4 provides the
key steps in our analysis, deferring any reasoning directly generalizing the constrained optimization
analysis of [42] to the appendix.

3.1 Q Function Framework for Composite Optimization

We can now introduce our generalization of the Q analysis framework of [42] that drives this paper.
Based on the extended Lagrangian (2.6), we define an analogous gap function.

Definition 3.1. Given functions g, h, u defining an instance of (2.1), the gap function is defined as

Q(z, ẑ) := L(x; λ̂, ν̂)− L(x̂; λ, ν) . (3.1)

9

Fixing h(·) as the indicator for the nonpositive orthant recovers their definition.
For the sake of our analysis, we fix an arbitrary saddle point z⋆ := (x⋆; λ⋆, ν⋆) with ν⋆ :=

∇g(x⋆). Note L(x⋆; λ, ν) ≤ L(x⋆; λ⋆, ν⋆) ≤ L(x; λ⋆, ν⋆). Hence, Q(z, z⋆) ≥ 0 for all z ∈ Z, making
convergence of Q(zt, z⋆) a potential measure of solution quality. Our analysis considers a slight
modification, allowing perturbations of λ⋆ and ν⋆, giving a condition that implies zt is an (ε, r)-
optimal solution (1.8) for our original composite problem. To this end, we restrict to considering λ
within a fixed distance r of λ⋆ and in the dual domain Λ = dom(h∗), denoted

Λr := B(λ⋆, r) ∩ Λ , (3.2)

where B(λ⋆, r) is the closed ball of radius r centered at λ⋆.
Given a candidate primal solution xt, for analysis sake only, we define the following perturbed

component function value

ĝ ∈ argmin
w∈dom(h)

h(w) + ⟨−λ⋆, w⟩+ r∥w − g(xt)∥, (3.3)

which exists as the objective has compact level sets. In particular, h(w)− ⟨λ⋆, w⟩ ≥ −h∗(λ⋆), by
the Fenchel-Young inequality. It then holds that for any z ∈ R,

{w ∈ Rm : h(w) + ⟨−λ⋆, w⟩+ r∥w − g(xt)∥ ≤ z} ⊆ {w ∈ Rm : −h∗(λ⋆) + r∥w − g(xt)∥ ≤ z}

where the larger set is bounded. From this, for analysis sake only, we define the following associated
perturbed dual variables as

λ̂ :=

λ⋆ + r g(xt)−ĝ
∥g(xt)−ĝ∥ ĝ ̸= g(xt)

λ⋆ + rζ otherwise.
,

where ζ ∈ B(0, 1) is an appropriate perturbation such that λ⋆ + rζ ∈ ∂h(ĝ), which is guaranteed
by first-order optimality conditions. Note that λ̂ ∈ ∂h(ĝ), implying λ̂ ∈ Λ (since ĝ ∈ ∂h∗(λ̂)), so
λ̂ ∈ Λr. The following lemma relates (ε, r)-optimality to the evaluation of Q at zt with respect to
(x⋆, λ̂,∇g(xt)).

Lemma 3.2. For any zt = (xt; λt, νt) ∈ Z and ε > 0, if Q(zt, (x⋆, λ̂,∇g(xt))) ≤ ε, then xt is
(ε, r)-optimal (1.8).

Proof. Let ν̂ = ∇g(xt). Since λ̂ ∈ ∂h(ĝ)∩Λr, the first condition for the (ε, r)-optimality of xt holds
as [

h(ĝ) +
〈
λ̂, g(xt)− ĝ

〉
+ u(xt)

]
− F (x⋆) ≤

[
h(ĝ) +

〈
λ̂, g(xt)− ĝ

〉
+ u(xt)

]
− L(x⋆; λt, νt)

=
[〈

λ̂, g(xt)
〉
− h∗(λ̂) + u(xt)

]
− L(x⋆; λt, νt)

=
[〈

λ̂, ν̂xt − g∗(ν̂)
〉
− h∗(λ̂) + u(xt)

]
− L(x⋆; λt, νt)

= Q(zt, (x⋆; λ̂, ν̂)) ≤ ε ,

where the first inequality simply bounds F (x⋆) below by L(x⋆; λt, νt) and the following two equalities
apply the Fenchel-Young inequality, holding with equality since λ̂ ∈ ∂h(ĝ) and ν̂ = ∇g(xt).

To show the second condition for (ε, r)-optimality holds, if ĝ = g(xt) then this result is trivial.
Otherwise, we note that since (x⋆, λ⋆) is a saddle point to (2.5),

0 ≤
〈
λ⋆, g(xt)

〉
− h∗(λ⋆) + u(xt)−

[〈
λt, g(x⋆)

〉
− h∗(λt) + u(x⋆)

]
. (3.4)

10

Consequently,

r∥g(xt)− ĝ∥ ≤
〈

r(g(xt)− ĝ)
∥g(xt)− ĝ∥

, g(xt)− ĝ

〉
+
〈
λ⋆, g(xt)

〉
− h∗(λ⋆) + u(xt)

−
[〈

λt, g(x⋆)
〉
− h∗(λt) + u(x⋆)

]
=
〈
λ̂, g(xt)

〉
−
〈

r(g(xt)− ĝ)
∥g(xt)− ĝ∥

, ĝ

〉
− ⟨λ⋆, ĝ⟩+ ⟨λ⋆, ĝ⟩ − h∗(λ⋆) + u(xt)

−
[〈

λt, g(x⋆)
〉
− h∗(λt) + u(x⋆)

]
≤
〈
λ̂, g(xt)

〉
−
〈
λ̂, ĝ

〉
+ h(ĝ) + u(xt)−

[〈
λt, g(x⋆)

〉
− h∗(λt) + u(x⋆)

]
≤ Q(zt, (x⋆, λ̂, ν̂)) ≤ ε

where the first inequality follows from (3.4), and the second and third apply Fenchel-Young.

3.2 An Approximate Dualized Aggregate Smoothness Constant

If one knew the optimal dual multipliers λ⋆, the convex composite optimization problem (2.1) could
be rewritten as the simpler minimization problem of

min
x∈X

m∑
j=1

λ⋆
jgj(x) + u(x) , (3.5)

which can be addressed by accelerated (regularized) smooth optimization methods like FISTA [4].
In this simplified problem, ∑λ⋆

jgj(x) is ∑λ⋆
jLj-smooth, aggregating the individual smoothness

constants weighted by the optimal dual multiplier. Without knowing λ⋆, we aim to approximate
this aggregate dualized constant. Our theory instead depends on the slightly larger constant given
by considering all λ in the neighborhood of λ⋆ given by Λr. Given each gj is Lj-smooth, we denote
this “Approximate Dualized Aggregate” smoothness constant by

LADA
ε,r :=

m∑
j=1

(λ⋆
j + r)Lj . (3.6)

As r tends to zero, LADA
ε,r converges to the idealized value ∑λ⋆

jLj . Note this only depends on the
target accuracy r > 0, not ϵ > 0. We include this dependence in our notation as the appropriate gen-
eralization to Hölder smooth settings given in equation (4.2) will depend on both. Further generality
will be introduced when the components possess uniform convexity in equation (5.2). The special
case of constrained optimization minimizing g0(x)+u(x) subject to gj(x) ≤ 0 provides a particularly
nice application to understand LADA

ε,r . There, h(z0, . . . , zm) = z0 + ιz≤0(z1, . . . , zm), so λ⋆
0 = 1 while

λ⋆
1, . . . , λ⋆

m are the optimal dual multipliers for each constraint. With LADA
ε,r = L0 +∑m

j=1(λ⋆
j + r)Lj ,

the smoothness of the objective always plays a role while only the smoothness of active constraints
at the minimizer can nontrivially affect the convergence rate (that is, complementary slackness
ensures that λ⋆

j = 0 for each inactive constraint).

3.3 The Universal Fast Composite Gradient Method

UFCM works primarily by splitting and optimizing Q(zt, z) on its primal, dual, and conjugate
variables separately. This process formalized below is directly analogous to the algorithm design of the

11

ACGD-S method for smooth constrained optimization of [42], extended to allow a general proximal
step on h∗ and the usage of our new LADA

ε,r constant. With these established, parameter choices
only need slight modifications. Hence, UFCM generalizes ACGD-S to heterogeneous and composite
settings. We define these three components such that Q(zt, z) = Qν(zt, z) + Qx(zt, z) + Qλ(zt, z) as

Qν(zt, z) = L(xt; λ, ν)− L(xt; λ, νt) =
〈
λ, νxt − g∗(ν)

〉
−
〈
λ, νtxt − g∗(νt)

〉
,

Qx(zt, z) = L(xt; λt, νt)− L(x; λt, νt) =
〈

m∑
j=1

λt
jνt

j , xt

〉
+ u(xt) −

〈
m∑

j=1
λt

jνt
j , x

〉
− u(x) ,

Qλ(zt, z) = L(xt; λ, νt)− L(xt; λt, νt) =
〈
λ, νtxt − g∗(νt)

〉
− h∗(λ) −

[〈
λt, νtxt − g∗(νt)

〉
− h∗(λt)

]
.

Each boxed term above corresponds to the component depending on the next iterate νt, xt, λt. We
aim to minimize each subproblem with respect to zt; thus, we minimize each boxed value. Informally,
UFCM proceeds by first computing a momentum step in x, denoted by x̃t = xt−1 + θt(xt−1 − xt−2),
and then computing (potentially many) proximal operator-type steps in each of ν, x, λ corresponding
to

νt
j ← argmax

νj∈Vj

〈
νj , x̃t

〉
− g∗

j (νj)− τtUg∗
j
(νj ; νt−1

j),

(xt, λt)← argmin
x∈X

max
λ∈Λ

〈
λ, νtx− g∗(νt)

〉
+ u(x)− h∗(λ) + ηt

2 ∥x− xt−1∥2

In the above, θt parametrizes the momentum step and the nonnegative parameters τt and ηt

are stepsizes for the proximal steps. Recall Ug∗
j

is the Bregman divergence generated by g∗
j . Note

that solving νt utilizes a Bregman divergence instead of the standard Euclidean distance, as it can
be shown recursively that this is identical to a gradient evaluation of gj at a particular averaged
point [41, Lemma 2].

Solving the second subproblem is not as simple. We utilize the sliding technique to take alternating
proximal steps with respect to x and λ, without addition to the gradient oracle complexity. We
further employ two more nonnegative parameters, β(t) and γ(t), respectively handling the proximal
steps on u and h∗ for the inner loop iterates.

Formally, UFCM defined in Algorithm 1 proceeds by iteratively applying a momentum update
and the above update to ν in the outer loop. The inner loop using the sliding technique to apply
several proximal steps to compute the above update to (x, λ) without requiring any additional
first-order evaluations of g. As computational notes, Line 11 saves previous iterates y

(t+1)
0 , λ

(t+1)
0 ,

and λ
(t+1)
−1 for use in the next inner loop. The subtle change from νt to νt−1 in the two cases defined

in Line 7 is common for sequential dual type algorithms using the sliding technique [40, 42, 43].

3.4 Guarantees for Composite Optimization with Smooth Components

We begin this section by introducing the two oracle complexities we bound with respect to finding
an (ε, r)-optimal solution. We denote the gradient complexity of UFCM by Nε,r if for any T ≥ Nε,r,
x̄T is guaranteed to be an (ε, r)-optimal point. Likewise, we denote the proximal complexity of
UFCM by Pε,r if at most ⌈Pε,r⌉ proximal evaluations of u and h are guaranteed to be performed in
the first ⌈Nε,r⌉ outer loop iterations of UFCM.

12

Algorithm 1 Universal Fast Composite Method (UFCM)
Input z0 ∈ X × Λ, outer loop iteration count T , and smoothness constant LADA

ε,r

Initialize x−1 = x0 = y
(1)
0 = x0 ∈ X , λ

(1)
−1 = λ

(1)
0 = λ0 ∈ Λ, and parameters {θt}, {ηt}, {τt}, {ωt} as

a function of LADA
ε,r

1: Set ν0 = ∇g(x0).
2: for t = 1, 2, 3, ..., T do
3: Set xt ← (τtx

t−1 + x̃t)/(1 + τt) where x̃t = xt−1 + θt(xt−1 − xt−2)
4: Set νt ← ∇g(xt)
5: Calculate inner loop iteration limit St, parameters β(t), γ(t), and ρ(t)

6: for s = 1, 2, ..., St do

7: Set h̃(t),s =

(νt)⊤λ
(t)
0 + ρ(t)(νt−1)⊤(λ(t)

0 − λ
(t)
−1) if s = 1,

(νt)⊤λ
(t)
s−1 + (νt)⊤(λ(t)

s−1 − λ
(t)
s−2) otherwise

8: Solve y
(t)
s ← argmin

y∈X

〈
h̃(t),s, y

〉
+ u(y) + ηt

2 ∥y − xt−1∥2 + β(t)

2 ∥y − y
(t)
s−1∥

2

9: Solve λ
(t)
s ← argmax

λ∈Λ

〈
λ, νt(y(t)

s − xt) + g(xt)
〉
− h∗(λ)− γ(t)

2 ∥λ− λ
(t)
s−1∥

2

10: end for
11: Set λ

(t+1)
0 = λ

(t)
St

, λ
(t+1)
−1 = λ

(t)
St−1, y

(t+1)
0 = y

(t)
St

12: Set xt = ∑St
s=1 y

(t)
s /St and λ̃t = ∑St

s=1 λ
(t)
s /St

13: end for
14: return (x̄T , λ̄T) := ∑T

t=1 ωt

(
xt, λ̃t

)
/
(∑T

t=1 ωt

)

To ensure that UFCM converges to an (ϵ, r)-optimal solution, we place several requirements on
the selection of its parameters. For each outer loop t ≥ 1, we require that

ωtηt ≤ ωt−1ηt−1 (3.7)
ωtτt ≤ ωt−1(τt−1 + 1) (3.8)
ηt−1τt ≥ θtL

ADA
ε,r with θt = ωt−1/ωt (3.9)

ηT (τT + 1) ≥ LADA
ε,r (3.10)

γ(t)β(t) ≥ ∥νt∥2 (3.11)
ω̃(t)β(t) ≥ ω̃(t+1)β(t+1) (3.12)
ω̃(t)γ(t) ≥ ω̃(t+1)γ(t+1) (3.13)
γ(t)β(t) ≥ (ρ(t))2∥νt−1∥2 with ρ(t+1) = ω̃(t)/ω̃(t+1) (3.14)

where ω̃(t) := ωt/St denotes the aggregate weights.

Although our algorithm converges for any selection satisfying these requirements, optimized
performance follows from particular choices. In particular, our main convergence guarantee below
requires knowledge of an upper bound on LADA

ε,r to set parameters. Some of our convergence guarantee
corollaries additionally assume knowledge of positive bounds on the initial distances to a saddle
point Dx ≥ ∥x0 − x⋆∥ and Dλ ≥ ∥λ0 − λ⋆∥.

As a first result, we establish that a careful setting of stepsizes ensures that the primal iterates

13

are always bounded and that the dual iterates are bounded if h is Lh-smooth2. The parameters of
Algorithm 1 below are further parameterized by the choice of two balancing parameters C and ∆.

Proposition 3.3. Consider any problem of the form (2.1) and constants ∆, C, ϵ, r > 0, and suppose
Algorithm 1 is run with outer loop stepsizes set as

τt = t− 1
2 , ηt =

LADA
ε,r

τt+1
, θt = τt

τt−1 + 1 , ωt = t , (3.15)

and inner loop stepsizes set as

ρ(t) = M̃t/M̃t−1, β(t) = CM̃t, γ(t) = M̃2
t

β(t) = M̃t

C
, (3.16)

with Mt = ∥νt∥, St = ⌈Mt∆t⌉, M̃t = St
∆t . Then

∥xt − x⋆∥2 ≤ 1
2LADA

ε,r

[
(C/∆ + 2LADA

ε,r)∥x0 − x⋆∥2 + 1
C∆∥λ

0 − λ⋆∥2
]

. (3.17)

Furthermore, if h is Lh-smooth, then for averaged iterates λ̃t computed each loop,

∥λ̃t − λ⋆∥2 ≤ Lh(M∆ + 1)
[
(C/∆ + 2LADA

ε,r)∥x0 − x⋆∥2 + 1
C∆∥λ

0 − λ⋆∥2
]

. (3.18)

where M is an upper bound for ∥∇g(x)∥ in the neighborhood outlined above (3.17).

Moreover, under such choices, the following theorem explicitly bounds the number of gradient
and proximal oracle calls required to reach any target (ϵ, r)-optimality.

Theorem 3.4. Consider any problem of the form (2.1) with each gj being Lj-smooth, and constants
∆, C, ϵ, r > 0. Then Algorithm 1 with stepsizes (3.15) and (3.16) must find an (ε, r)-optimal
solution (1.8) with complexity bounds

Nε,r =

√
(C/∆ + 2LADA

ε,r)D2
x + 2/(C∆)(D2

λ + r2)
ε

, Pε,r = ⌈Nε,r⌉+ ⌈Nε,r⌉2∆M, (3.19)

where M is an upper bound for ∥∇g(x)∥ in the neighborhood outlined in (3.17)

The following corollaries simplify the above bounds by considering particular choices of ∆, C,
and r. The first corollary presents an upper bound in terms of a primal-dual distance while avoiding
reliance on knowledge of any upper bounds on initial distances to optimality. The second corollary
provides an improved gradient complexity bound depending only on primal distances at the cost of
requiring knowledge of upper bounds on the initial primal and dual distances to a saddle point. Our
extended theory in Section 4 and Section 5 will focus on generalizing this second, stronger result.
The remainder of this section is dedicated to proving these results.

Corollary 3.5. For any ϵ > 0, setting C =
√

2/2, ∆ =
√

2
4LADA

ε,r
and r =

√
ε, Algorithm 1 with stepsizes

(3.15) and (3.16) must find an ε-optimal solution with complexity bounds

Nε,r = O

√LADA
ε,r (D2

x + D2
λ + ε)

ε

 , Pε,r = O

√LADA
ε,r (D2

x + D2
λ + ε)

ε
+ M(D2

x + D2
λ + ε)

ε


where M is an upper bound on ∥∇g(x)∥ for all x ∈ B(x⋆,

√
2(D2

x + D2
λ))

2We will abuse notation in the setting of general, nonsmooth h, saying h is Lh = ∞-smooth in this limiting case.

14

Corollary 3.6. For any 0 < ϵ ≤ min{1, 12LADA
ε,r D2

x}, setting C = Dλ/Dx, ∆ = C/2LADA
ε,r , and

r = Dλ
√

ε, Algorithm 1 with stepsizes (3.15) and (3.16) must find an ε-optimal solution with
complexity bounds

Nε,r = O

√LADA
ε,r D2

x

ε

 , Pε,r = O

√LADA
ε,r D2

x

ε
+ MDxDλ

ε

 ,

where M is an upper bound on ∥∇g(x)∥ for all x ∈ B(x⋆,
√

3D2
x).

3.5 Analysis of UFCM for Compositions with Smooth Components

Our theory primarily follows from a sequence of three lemmas, which directly extend equivalent
results developed for the case of smooth constrained optimization by [42]. In our analysis, note that
we select ĝ, our analytical proxy for g(xt), differently than the projection choice used by Zhang
and Lan. Throughout, we let Lh ∈ (0,∞] denote the smoothness constant of h, set to be ∞ if h is
nonsmooth, as occurs in the special case of constrained optimization. For each result, we refer to
the paralleled proof in their special case. For results requiring generalization, we defer the proofs
to Appendix A.1. Our results show that the analysis technique of Zhang and Lan is quite robust,
generalizing to compositions, managing new h∗ terms, and benefiting from any smoothness in h.

The first lemma provides a useful smoothness bound on the Lagrangian from our Approximate
Dualized Aggregate smoothness constant.

Lemma 3.7 (Lemma 2, Zhang and Lan [42]). If each gj is Lj-smooth, then

⟨λ, Ug∗(ν; ν̂)⟩ ≥ 1
2LADA

ε,r

∥∥∥∥∥∥
m∑

j=1
λj(νj − ν̂j)

∥∥∥∥∥∥
2

, ∀λ ∈ Λr, ∀ν, ν̂ ∈ {∇g(x) : x ∈ X} .

Next, we provide a general convergence bound on the Qx and Qλ functions associated with the
primal and dual variables, extending the result of [42, Equation (4.19)] and proven in Appendix A.1.
When h is nonsmooth (i.e., Lh = +∞), the quantity 1/Lh below should be interpreted at zero.

Lemma 3.8. Suppose the stepsizes satisfy (3.7)-(3.14), and let zt := (xt; λ̃t, νt) denote the iterates
of Algorithm 1. Then zt satisfies the following for any z = (x; λ, ν) ∈ X × Λr × V ,

T∑
t=1

ωt[Qx(zt, z) + Qλ(zt, z)] +
T∑

t=1

St∑
s=1

ωt

St

1
2Lh
∥λ(t)

s − λ∥2 +
T∑

t=1

ωtηt

2 ∥x
t − xt−1∥2

+ ωT ηT

2 ∥xT − x∥2 − ω1η1
2 ∥x0 − x∥2 ≤ ω̃(1)

2
(
γ(1)∥λ(1)

0 − λ∥2 + β(1)∥y(1)
0 − x∥2

)
.

Lastly, we provide a general convergence bound on the Qν function associated with the conjugate
variables ν, which requires only mild modifications from the analysis of Zhang and Lan [42,
Proposition 2], proven in Appendix A.1.

Lemma 3.9. Suppose the stepsizes satisfy (3.7)-(3.14). Then zt satisfies the following for any

15

z = (x; λ, ν) ∈ X × Λr × V ,

T∑
t=1

ωt

[
Qν(zt, z)

]
≤ −

ωT (τT + 1)

 m∑
j=1

λjUg∗
j
(νj ; νT

j)

− ωT

〈
m∑

j=1
λj(νj − νT

j), xT − xT −1
〉

−
T∑

t=2

ωtτt

 m∑
j=1

λjUg∗
j
(νt

j ; νt−1
j)

− ωt−1

〈
m∑

j=1
λj(νt−1

j − νt
j), (xt−1 − xt−2)

〉
+ ω1τ1

〈
λ, Ug∗(ν, ν0)

〉
.

Combining these three lemmas gives a single convergence result for the entire gap function Q.
This result looks nearly identical in form to Proposition 2 from [42] and is proven in Appendix A.1.
From this proposition, we then prove our claimed compactness and convergence guarantees in
Proposition 3.3 and Theorem 3.4.

Proposition 3.10. Consider any problem of the form (2.1) with stepsizes satisfying (3.7)-(3.14).
Then for any z = (x; λ, ν) ∈ X × Λr × V ,

T∑
t=1

ωtQ(zt, z) +
T∑

t=1

St∑
s=1

ωt

St

1
2Lh
∥λ(t)

s − λ∥2 + ωT ηT

2 ∥xT − x∥2

≤ ω̃(1)β(1) + ω1η1
2 ∥x0 − x∥2 + ω̃(1)γ(1)

2 ∥λ0 − λ∥2 + ω1τ1
〈
λ, Ug∗(ν, ν0)

〉
.

Proof of Proposition 3.3. First, we claim the proposed stepsizes in (3.15) and (3.16) satisfy the
necessary conditions (3.7)-(3.14) for the preceding proposition and lemmas to apply. Each of these
conditions can be directly checked: See [42, Theorem 5] for equivalent verifications in the simplified
setting of constrained optimization, only differing in that we consider a generic C rather than fixing
C = ∥λ⋆∥+r

∥x0−x⋆∥ in our choice of β(t) = CM̃t.
Note that from Proposition 3.10, the assumption that Lh ∈ (0,∞], and the fact that τ1 = 0,

T∑
t=1

ωtQ(zt, z) + ωT ηT

2 ∥xT − x∥2 ≤ ω̃(1)β(1) + ω1η1
2 ∥x0 − x∥2 + ω̃(1)γ(1)

2 ∥λ0 − λ∥2 . (3.20)

Furthermore, since this holds for all z ∈ X × Λr × V , we consider the saddle point z⋆. As a saddle
point, Q(zt, z⋆) ≥ 0. Using the stepsize conditions (3.15) and (3.16),

ω1 = 1, ω̃(1) = 1
S1

, η1 = 2LADA
ε,r , β(1) = CS1

∆ , γ(1) = M̃2
1

β(1) = S1
C∆ , (3.21)

gives the claimed bound on xT . Therefore, for t ≥ 1, each xt lies in the desired bounded neighborhood
around x⋆. Note that xt ∈ conv(x0, . . . , xt−1), so xt is in the same neighborhood. As a result,
Mt = ∥∇g(xt)∥ is bounded uniformly by M .

For the dual iterates, Proposition 3.10 and the nonnegative of Q(zt; z⋆) and the norm ensures

T∑
t=1

St∑
s=1

ωt

St

1
2Lh
∥λ(t)

s − λ⋆∥2 ≤ ω̃(1)β(1) + ω1η1
2 ∥x0 − x⋆∥2 + ω̃(1)γ(1)

2 ∥λ0 − λ⋆∥2 .

For any s, t ≥ 1, one can bound

∥λ(t)
s − λ⋆∥2 ≤ 2LhSt

ωt

[
ω̃(1)β(1) + ω1η1

2 ∥x0 − x⋆∥2 + ω̃(1)γ(1)

2 ∥λ0 − λ⋆∥2
]

.

16

Utilizing the values in (3.21), bounding Mt above by M , St/ωt above by M∆ + 1 for t ≥ 1, and
noting λ̃t lies in the convex hull of {λ(t)

s } yields the claimed bound on λt.

Proof of Theorem 3.4. Let z̄T = (x̄T ; λ̄T , ν̄T) where

x̄T =
T∑

t=1
ωtxt/

T∑
t=1

ωt λ̄T =
T∑

t=1
ωtλ̃

t/
T∑

t=1
ωt, ν̄T

j =
{
∇gj(x0) if λ̃t

j = 0 for all t,∑T
t=1 ωtλ̃

t
jνt

j/
∑T

t=1 ωtλ̃
t
j otherwise.

(3.22)
Consequently,

T∑
t=1

ωtL(x; λ̃t, νt) =
T∑

t=1
ωt

[
u(x) +

〈
λ̃t, νtx− g∗(νt)

〉
− h∗(λ̃t)

]

=
T∑

t=1
ωtu(x) +

T∑
t=1

ωt

m∑
j=1

λ̃t
j(
〈
νt

j , x
〉
− g∗

j (νt
j))−

T∑
t=1

ωth
∗(λ̃t)

≤
(

T∑
t=1

ωt

)
u(x) +

(
T∑

t=1
ωt

) m∑
j=1

λ̄T
j

(〈
ν̄T

j , x
〉
− g∗

j (ν̄T
j)
)
− h∗(λ̄T)


=
(

T∑
t=1

ωt

)
L(x; λ̄T , ν̄T) ,

where the inequality follows from Jensen’s inequality. Similarly, Jensen’s inequality ensures that(
T∑

t=1
ωt

)
L(x̄T ; λ, ν) ≤

T∑
t=1

ωtL(xt; λ, ν) .

Therefore, we have for all z ∈ Z(
T∑

t=1
ωt

)
Q(z̄T , z) =

(
T∑

t=1
ωt

)[
L(x̄T ; λ, ν)− L(x; λ̄T , ν̄T)

]

≤
T∑

t=1
ωt

[
L(xt; λ, ν)− L(x; λ̃t, νt)

]
=

T∑
t=1

ωtQ(zt, z) .

(3.23)

Utilizing the above inequality, the bound demonstrated in (3.20), the nonnegativity of the norm,
our distance bounds, as well as the triangle inequality,

(
T∑

t=1
ωt

)
Q(z̄T , (x⋆; λ, ν)) ≤ ω̃(1)β(1) + ω1η1

2 D2
x + ω̃(1)γ(1)(D2

λ + r2), for all λ ∈ Λr, ν ∈ V .

Finally, we bound ∑T
t=1 ωt by T 2/2 and substitute the values from (3.21) into the above

expression. Considering Lemma 3.2, it suffices to bound the above by ε. Since each outer loop of
UFCM computes only one gradient of gj , Nε,r = T where T > 0 solves

(C/∆ + 2LADA
ε,r)D2

x + 2/(C∆)(D2
λ + r2)

T 2 = ε ,

resulting in the complexity bound for Nε,r. Noting that each inner loop performs only one proximal
step on u and h∗,

Pε,r ≤
⌈Nε,r⌉∑

t=1
St =

⌈Nε,r⌉∑
t=1
⌈Mt∆t⌉ ≤

⌈Nε,r⌉∑
t=1

(1 + M∆t) ≤ (⌈Nε,r⌉+ ⌈Nε,r⌉2M∆) . (3.24)

17

4 Compositions with Heterogeneously Hölder Smooth Components
Our convergence theory for problems with smooth components developed so far extends to instances
where each gj has Hölder continuous gradient with individual exponents. Recall, we say a function
f is (L, p)-Hölder smooth with L ≥ 0 and p ∈ [0, 1] if the function satisfies

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥p, ∀x, y ∈ dom(f) .

When p = 1, we recover standard L-smoothness, and when p = 0, the function f is Lipschitz.
Therefore, Hölder smoothness lets one interpolate between smooth and nonsmooth functions.

4.1 A Universal Definition of the Approximate Dualized Aggregate Smoothness

The key result facilitating the design of methods universally applicable to Hölder smooth problems
is proven by [30, Lemma 1], previously introduced here as Lemma 2.3. We further utilize the
subsequent cocoercive extension, introduced here as Lemma 2.4, which was proven by [25, Lemma 1].

These results show, for any fixed tolerance δ > 0, there exists a constant Lδ =
[

1−p
1+p

1
δ

] 1−p
1+p L

2
1+p such

that the standard quadratic upper bound inequality or cocoercivity inequality of smooth convex
functions hold (up to δ) for any (L, p)-Hölder smooth function. Supposing each gj is (Lj , pj)-Hölder
smooth, define a general smoothness constant for fixed tolerance δ > 0 as

Lδ,r :=
m∑

j=1

[1− pj

1 + pj
· m

δ

] 1−pj
1+pj [

(λ⋆
j + r) · Lj

] 2
1+pj

 . (4.1)

Noting each λjgj is (λjLj , pj)-Hölder smooth, this constant is large enough to ensure that Lemmas 2.3
and 2.4 apply to each component with tolerance δ/m. Summing these m components, the ideal
dualized problem (3.5) arising if one knew the optimal dual multipliers is approximated within
tolerance δ. We utilize this general constant to motivate our unifying theory.

Our universal definition for the Approximate Dualized Aggregate smoothness constant LADA
ε,r ,

generalizing the smooth case previously defined in (3.6), then follows from careful selection of this δ
tolerance. To achieve optimal convergence guarantees, we require the following implicit choice for
the definition of δ. Given an initialization Dx ≥ ∥x0 − x⋆∥ and choices of ϵ, r > 0, we define the
Approximate Dualized Aggregate smoothness constant as the unique positive root to the following
equation

LADA
ε,r :=

LADA > 0 : LADA =
m∑

j=1

[
1− pj

1 + pj
· m
√

LADA

ε
· 2
√

6Dx√
ε

] 1−pj
1+pj [

(λ⋆
j + r)Lj

] 2
1+pj

 . (4.2)

We note that this value is precisely Lδ,r (4.1) with specialized δ = ε/
√

24LADA
ε,r D2

x/ε. As each pj

tends to one, the associated coefficient tends to one, becoming independent on ε. As all pj tend to
one, the above sum defining LADA

ε,r tends to ∑m
j=1(λ⋆

j + r)Lj , recovering our previous definition (3.6)
as a special case.

Lemma 4.1. The Approximate Dualized Aggregate smoothness constant LADA
ε,r as defined in (4.2) is

nonincreasing with respect to ε.

18

Proof. Consider ε′ ≥ ε > 0. Rearranging the definitions of LADA
ε,r and LADA

ε′,r ensure that
m∑

j=1
Cj(LADA

ε,r)−
1+3pj

2(1+pj) ε
−

3−3pj
2+2pj = 1,

m∑
j=1

Cj(LADA
ε′,r)−

1+3pj
2(1+pj) (ε′)−

3−3pj
2+2pj = 1 ,

with Cj =
[

1−pj

1+pj
· 2
√

6mDx

] 1−pj
1+pj

[
(λ⋆

j + r)Lj

] 2
1+pj . Since each pj ∈ [0, 1], it follows that (ε′)−

3−3pj
2+2pj ≤

(ε)−
3−3pj
2+2pj , and for the above sums to equal 1, it must hold that the positive solution LADA

ε′,r ≤ LADA
ε,r .

4.2 Guarantees for Composite Optimization with Heterogeneous Components

Importantly, note that we are not making any modifications to UFCM in this section. The algorithm
does not require knowledge of the implicitly defined δ value or any (Lj , pj) pairs. They are for
analysis only. Instead, the UFCM algorithm only relies on an estimate of LADA

ε,r , which could be
guessed via a geometric parameter schedule without attempting to approximate δ or any of the
(Lj , pj) pairs. (See Remark 4.6.)

Next, we present our convergence theory, further justifying the choice of the implicit constant
definition (4.2). Our theory provides guarantees for any choice of δ and approximate smoothness
constant Lδ,r. However, this choice LADA

ε,r optimizes the strength of our guarantee over all δ. We first
generalize Proposition 3.3, ensuring the iterates of UFCM stay bounded in this heterogeneously
smooth setting, accounting for a slightly larger radius due to the additive error term. We defer the
proof to Appendix A.2.

Proposition 4.2. Consider any problem of the form (2.1) and constants ∆, C, ϵ, r > 0, and suppose
Algorithm 1 is run with outer loop stepsizes (3.15) and inner loop stepsizes (3.16), then for all
t ≤

√
24LADA

ε,rD2
x

ε ,

∥xt − x⋆∥2 ≤ 1
2LADA

ε,r

[
(C/∆ + 50LADA

ε,r)D2
x + 1

C∆D2
λ

]
. (4.3)

Furthermore, if h is Lh-smooth, then for averaged iterates λ̃t computed each loop,

∥λ̃t − λ⋆∥2 ≤ Lh(M∆ + 1)
[
(C/∆ + 50LADA

ε,r)D2
x + 1

C∆D2
λ

]
. (4.4)

where M is an upper bound for ∥∇g(x)∥ in the neighborhood outlined above (4.3).

Theorem 4.3. Consider any problem of the form (2.1) with each gj being (Lj , pj)-Hölder smooth,
and constants ∆, C, ϵ, r > 0. Then Algorithm 1 with stepsizes (3.15) and (3.16) must find an
(ε, r)-optimal solution (1.8) with complexity bounds

Nε,r =

√
(2C/∆ + 4LADA

ε,r)D2
x + 4/(C∆)(D2

λ + r2)
ε

, Pε,r = ⌈Nε,r⌉+ ⌈Nε,r⌉2∆M, (4.5)

where M is an upper bound for ∥∇g(x)∥ in the neighborhood outlined in (4.3).
For target accuracy 0 < ε ≤ min{1, 24LADA

ε,r D2
x} with r = Dλ

√
ε, and setting C = Dλ/Dx and

∆ = C/(2LADA
ε,r), these bounds simplify to

Nε,r =

√
24LADA

ε,r D2
x

ε
, Pε,r =

√
24LADA

ε,r D2
x

ε
+ 48MDxDλ

ε
+ 1 , (4.6)

where M is an upper bound on ∥∇g(x)∥ for all x ∈ B(x⋆,
√

27D2
x).

19

The preceding theorem demonstrates how the complicated nature of heterogeneous optimization
can be simplified to look analogous to the standard accelerated rate of unconstrained smooth
optimization. Of course, in general, this rate is not O(1/

√
ε) as LADA

ε,r may be non-constant in ε.
The aggregating parameter LADA

ε,r provides the key mechanism to provide a single unifying, universal
guarantee.

Further, LADA
ε,r serves as a universal tool to recover optimal rates in terms of gradient oracle

complexity for known problem classes. First note that Theorem 4.3 recovers the optimal rates from
smooth compositions from Section 3 within a factor of two as our more general definition of LADA

ε,r

reduces to the previous definition (3.6) when pj = 1. The following corollaries demonstrate LADA
ε,r ’s

ability to recover optimal results in terms of gradient oracle complexity from the literature for
minimizing a single Hölder smooth function [28], rates for a heterogeneous sum of Hölder smooth
terms [15], and rates for smooth constrained optimizations [42].
Corollary 4.4. Consider minimizing g0(x) + u(x) where g0 is (L, p)-Hölder smooth with initial dis-
tance bound Dx ≥ ∥x0 − x⋆∥, initialization λ0 = 1, and target accuracy 0 < ε ≤ min{1, 2

√
6LD1+p

x }.
Then Algorithm 1 finds an ε-optimal solution with complexity bounds

Nε,r = Pε,r = O
((

L

ε

) 2
1+3p

D
2+2p
1+3p
x

)
.

Proof. For minimizing a single function, h(z) = z, and λ0 = λ⋆ = 1. Therefore, Dλ and r can be
arbitrarily small, as well as ∆ = Dλ/Dx. Recall St = ⌈Mt∆t⌉, so we set St = 1 for all t, and each
inner loop of UFCM only computes a single proximal step on u and h∗. Therefore, Nε,r = Pε,r.

We now focus on the gradient oracle complexity. It is straightforward to check that our
hypothesis enforces ε ≤ 2

√
6LD1+p

x ≤ L
(

1−p
1+p

) 1−p
2 (2

√
6Dx)1+p ≤ 24LADA

ε,r D2
x, which allows us to

apply Theorem 4.3. Considering our Approximate Dualized Aggregate constant yields

LADA
ε,r = (1 + r)

4
1+3p

[
1− p

1 + p
· 2
√

6Dx

ε
√

ε

] 2−2p
1+3p

L
4

1+3p .

We then conclude

Nε,r = O

√LADA
ε,r D2

x

ε

 = O


√√√√(Dx

ε
√

ε

) 2−2p
1+3p L

4
1+3p D2

x

ε

 = O
((

L

ε

) 2
1+3p

D
2+2p
1+3p
x

)

where the first equality considers (4.6), the second substitutes LADA
ε,r , and the third simplifies to

recover (1.5).

Corollary 4.5. In the setting of Theorem 4.3, Algorithm 1 finds an ε-optimal solution with
complexity bounds Nε,r and Pε,r = ⌈Nε,r⌉+ ⌈Nε,r⌉2M∆ for Nε,r := T > 0 which solves the following

m∑
j=1

cj

((λ⋆
j + r)Lj)

2
1+pj D2

x

ε
2

1+pj

T
−

1+3pj
1+pj = 1 , (4.7)

with cj = 24
[

1−pj

1+pj
m
] 1−pj

1+pj . Consequently, the convergence rate is at most the sum of the rates of
individual terms (1.5), weighted by the appropriate multiplier,

Nε,r = O

 m∑
j=1

KSM (ε, (λ⋆
j + r)Lj , pj , Dx)

 . (4.8)

20

Proof. Considering the gradient oracle complexity bound Nε,r =
√

24LADA
ε,r D2

x/ε, we substitute
LADA

ε,r = N2
ε,r · ε/(24D2

x) into the definition (4.2) giving

T 2ε

24D2
x

=
m∑

j=1

1− pj

1 + pj
·

2
√

6m
√

T 2ε
24D2

x
D2

x

ε3/2


1−pj
1+pj (

(λ⋆
j + r)Lj

) 2
1+pj .

Rearranging the expression above yields (4.7), which is nonincreasing in T . Therefore, to prove (4.8),
it suffices to bound each summand of (4.7) by 1/m. We then consider solving

cj

(
(λ⋆

j + r)Lj

) 2
1+pj D2

x

ε
2

1+pj

T
−

1+3pj
1+pj

j = 1
m

for Tj . The result recovers (1.5) component-wise

Tj = O

((λ⋆
j + r)Lj

ε

) 2
1+3pj

D

2+2pj
1+3pj
x

 = O
(
KSM (ε, (λ⋆

j + r)Lj , pj , Dx)
)

.

Bounding T ≤ maxj Tj ≤
∑m

j=1 Tj , yields (4.8).

Fixing h(z) = ∑m
j=1 zj , each λ⋆

j = 1, and this second corollary recovers the results for hetero-
geneous sums of Hölder smooth terms of [15, Theorem 1.1 and 1.3] when we initialize λ0

j = 1.
For constrained optimization, with h as the nonpositive indicator function and when each gj is
(Lj , p)-Hölder smooth with common exponent, this second corollary recovers the O(1/ε2/(1+3p))
results of [8, Corollary 2.3] as a special case.

Remark 4.6. We note that one may tradeoff knowledge of LADA
ε,r for knowledge of distance bounds

Dx and Dλ. Considering the sequence Lk = 20, 21, 22, ..., as well as the setting of Theorem 4.3 one
may run UFCM for Nk =

√
24LkD2

x
ε outer loop iterations. Our theory then guarantees that once

k = max{⌈log2(LADA
ε,r)⌉, 0}, an ε-optimal solution has been constructed, taking at most O

(√
LADA

ε,rD2
x

ε

)
gradient oracle calls total. Note that neither UFCM nor this modified scheme possesses stopping
criteria certifying that an ϵ-optimal solution has been found without additional problem knowledge.
So these guarantees are theoretical.

4.3 Analysis of UFCM for Compositions with Heterogeneous Components

The same process of analysis presented in Section 3 extends to provide guarantees for UFCM
given any heterogeneously Hölder smooth components by carefully accounting for the additive
errors incurred by using Nesterov-style inequalities. Lemma 3.7, Lemma 3.9, and Proposition 3.10
generalize to this setting as follows. For many of these results, the proof is redundant with prior
work except for tracking an additional constant term through the developed inequalities. Below, we
present these key results with proofs of Lemmas 4.7 and 4.8 deferred to Appendix A.2 for the sake
of completeness.

Lemma 4.7. If each gj is (Lj , pj)-Hölder smooth, then for any fixed δ > 0,

⟨λ, Ug∗(ν; ν̂)⟩ ≥ 1
2Lδ,r

∥∥∥∥∥∥
m∑

j=1
λj(νj − ν̂j)

∥∥∥∥∥∥
2

− δ

2 , ∀λ ∈ Λr, ∀ν, ν̂ ∈ {∇g(x) : x ∈ X} .

21

The following results utilize the general smoothness constant Lδ,r in both the analysis and the
appropriate parameters for completeness. However, we recall that the Approximate Aggregate
Smoothness constant LADA

ε,r used in Theorem 4.3 is specialized with δ = ε/
√

24LADA
ε,r D2

x/ε.

Lemma 4.8. Suppose the stepsizes satisfy (3.7)-(3.14), and let zt := (xt; λ̃t, νt) denote the iterates
of Algorithm 1. Then zt satisfy the following for any z = (x; λ, ν) ∈ X ×Λr × V and any fixed δ > 0

T∑
t=1

ωt

[
Qν(zt, z)

]
≤ ωT Lδ,r

2(τT + 1)∥x
T − xT −1∥2 +

T −1∑
t=1

ωtθt+1Lδ,r

2τt+1
∥xt − xt−1∥2

+ ω1τ1
〈
λ, Ug∗(ν; ν0)

〉
+ δ

2

[
ωT (τT + 1) +

T∑
t=2

ωtτt

]
, ∀(x; λ, ν) ∈ X × Λr × V .

The following proposition is the direct analog of Proposition 3.10 in the heterogeneously smooth
setting. The proof is analogous, applying the above two lemmas instead of Lemmas 3.7 and 3.9,
noting the small additive dependence on tolerance δ.

Proposition 4.9. Consider any problem of the form (2.1) with stepsizes satisfying (3.7)-(3.14).
Then for any z = (x; λ, ν) ∈ X × Λr × V and any fixed δ > 0,

T∑
t=1

ωtQ(zt, z)+
T∑

t=1

St∑
s=1

ωt

St

1
2Lh
∥λ(t)

s − λ∥2 + ωT ηT

2 ∥xT − x∥2

≤ ω̃(1)β(1) + ω1η1
2 ∥x0 − x∥2 + ω̃(1)γ(1)

2 ∥λ0 − λ∥2 + ω1τ1
〈
λ, Ug∗(ν; ν0)

〉
+ δ

2

[
ωT (τT + 1) +

T∑
t=2

ωtτt

]
, ∀(x; λ, ν) ∈ X × Λr × V .

Proof of Theorem 4.3. We first note that as ωt = t, τt = t−1
2 , we can rewrite[

ωT (τT + 1) +
T∑

t=2
ωtτt

]
= T 3 + 3T 2 + 2T

6 ,
T∑

t=1
ωt = T (T + 1)

2 .

Then for all λ ∈ Λr and ν ∈ V , considering Proposition 4.9, Jensen’s inequality (3.23), and the
particular stepsizes (3.21), we can bound

Q(z̄T , (x⋆; λ, ν)) ≤ (C/∆ + 2Lδ,r)∥x0 − x⋆∥2 + 2/(C∆)(∥λ0 − λ⋆∥2 + r2)
T (T + 1) + δ(T + 2)

6 . (4.9)

Recall that Lδ,r depends on the value δ, so we optimize the above bound with respect δ to achieve a
universally optimal rate. We fix T, ε > 0.

Setting δ = ε
T , and bounding T + 2 ≤ 3T , we obtain the following inequality derived from (4.9)

Q(z̄T , (x⋆; λ, ν)) ≤
(C/∆ + 2Lε/T,r)∥x0 − x⋆∥2 + 2/(C∆)(∥λ0 − λ⋆∥2 + r2)

T 2 + ε

2 . (4.10)

Our choices of C, ∆, and r = Dλ
√

ε simplify the expression as for any T ≥ Nε,r =
√

24LADA
ε,r D2

x/ε

one has Q(z̄T , (x⋆; λ, ν)) ≤ ε over all λ ∈ Λr and ν ∈ V . Applying Lemma 3.2, this ensures
(ϵ, r)-optimality. Furthermore, when T = Nε,r, then Lε/Nε,r,r precisely recovers the definition of
LADA

ε,r in (4.2).

22

The claimed proximal step complexity follows from the general formula (3.24). Since ε ≤
24LADA

ε,r D2
x, it holds that Nε,r ≥ 1. Therefore, we bound ⌈Nε,r⌉ ≤ Nε,r + 1 ≤ 2Nε,r, which results in

Pε,r = ⌈Nε,r⌉+ ⌈Nε,r⌉2∆M ≤

√
24LADA

ε,r D2
x

ε
+ 48MDxDλ

ε
+ 1 ,

where we recall ∆ = Dλ/(2DxLADA
ε,r).

5 Growth Bounds and Restarting
We utilize a simple restarting scheme given initial distance bounds. Primal-dual algorithms have
exhibited great success from restarting when the respective gap function possesses certain growth
conditions [1, 12, 27]. This algorithm, denoted R-UFCM can then achieve linear convergence in
terms of gradient oracle calls when the components are smooth and strongly convex, and the
proximal step complexity can achieve linear convergence rates when h is sufficiently smooth. Recall
from (1.4) that a function f is (µ, q)-uniformly convex if

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

q + 1∥y − x∥q+1, ∀x, y ∈ dom(f) .

When q = 1, we recover the notion of µ-strong convexity. As q →∞, these functions are simply
convex. Similarly to Hölder smoothness, we can interpolate between the level of convexity. If gj is
also (Lj , pj)-Hölder smooth, then the following symmetric, two-sided bound holds

gj(x) + ⟨∇gj(x), y − x⟩+ µj

qj + 1∥y−x∥qj+1 ≤ gj(y) ≤ gj(x) + ⟨∇gj(x), y − x⟩+ Lj

pj + 1∥y−x∥pj+1 .

5.1 Growth Structure

The uniform convexity of each gj can be combined together to ensure a growth condition on the gap
function. This perspective plays a central role in our analysis, as it does in most restarted analyses.

Definition 5.1. Given monotone nondecreasing, convex functions Gx, Gλ : R+ → R+, we say that
the gap function possesses (Gx, Gλ)-growth if for any z = (x; λ, ν) and ẑ = (x⋆; λ⋆,∇g(x))

Gx(∥x− x⋆∥) + Gλ(∥λ− λ⋆∥) ≤ Q(z, ẑ) .

As additional structure, the growth functions considered herein will always have Gx(0) = 0,
Gλ(0) = 0, and both Gx and Gλ differentiable. The following lemma gives the explicit growth
condition when the component functions gj exhibit varying uniform convexity and h is Lh-smooth.

Lemma 5.2. Suppose component functions gj are (µj , qj)-uniformly convex and h is Lh-smooth.
Then the gap function possesses Gx, Gλ growth where Gx(t) = ∑m

j=1 λ⋆
j

µj

qj+1 |t|
(qj+1) and Gλ(t) =

1
2Lh

t2. Therefore, for any z = (x, λ, ν) and ẑ = (x⋆, λ⋆,∇g(x))

Q(z, ẑ) ≥
m∑

j=1
λ⋆

j

µj

qj + 1∥x− x⋆∥qj+1 + 1
2Lh
∥λ− λ⋆∥2 .

23

Proof. From the optimality of x⋆,
〈
∇u(x⋆) +∑m

j=1 λ⋆
j∇gj(x⋆), x− x⋆

〉
≥ 0. Note that since h is

Lh-smooth, h∗ is 1/Lh-strongly convex. Thus,

Q(z, ẑ) = L(x; λ⋆,∇g(x))− L(x⋆; λ⋆, ν⋆) + L(x⋆; λ⋆, ν⋆)− L(x⋆; λ, ν)
≥ u(x) + ⟨λ⋆, g(x)⟩ − h∗(λ⋆)− [u(x⋆) + ⟨λ⋆, g(x⋆)⟩ − h∗(λ⋆)]

+ ⟨λ⋆, ν⋆x⋆ − g∗(ν⋆)⟩ − h∗(λ⋆)− [⟨λ, νx⋆ − g∗(ν)⟩ − h∗(λ)]

−
〈
∇u(x⋆) +

m∑
j=1

λ⋆
j∇gj(x⋆), x− x⋆

〉

≥ [u(x)− u(x⋆)− ⟨∇u(x⋆), x− x⋆⟩] +
m∑

j=1
λ⋆

j [g(x)− g(x⋆)− ⟨∇g(x⋆), x− x⋆⟩]

+ h∗(λ)− h∗(λ⋆)− ⟨λ− λ⋆, g(x⋆)⟩

≥
m∑

j=1
λ⋆

j

µj

qj + 1∥x− x⋆∥qj+1 + 1
2Lh
∥λ− λ⋆∥2 ,

where the first equality expands the gap function, the following inequality applies Fenchel-Young
and subtracts the nonnegative inner product outlined above, the next inequality regroups terms
and applies Fenchel-Young once again, and the final inequality comes directly from the convexity of
u, the uniform convexity of gj , and the strong convexity of h∗.

5.2 An Approximate Dualized Aggregate Convexity µADA
ε

We now have the necessary tools to define the lower bounding curvature for the composite problem
into a single value µADA

ε , generalizing the growth bound strong convexity yields. For (µj , qj)-uniformly
convex components gj and target accuracy ε > 0, we define the Approximate Dualized Aggregate
convexity constant implicitly as the unique positive solution to the following equation

µADA
ε :=

µADA > 0 : µADA

2 =
m∑

j=1
λ⋆

j

µj

qj + 1(ε/µADA)
qj −1

2

 . (5.1)

Note when qj = 1, the coefficient becomes independent of ε. If all qj = 1, the µADA
ε simply totals the

λ⋆
j -weighted strong convexity constants. More generally, µADA

ε aggregates the lower curvature of each
component, weighted by the appropriate dual multiplier. This quantity can further be viewed as an
approximation of strong convexity as shown in Lemma 5.4 below.
Lemma 5.3. The Approximate Dualized Aggregate convexity constant µADA

ε as defined in (5.1) is
nondecreasing with respect to ε.

Proof. Consider ε′ ≥ ε > 0. Rearranging the definitions of µADA
ε and µADA

ε′ ensure that
m∑

j=1
λ⋆

j

µj

qj + 1(µADA
ε)−

qj +1
2 ε

qj −1
2 = 1,

m∑
j=1

λ⋆
j

µj

qj + 1(µADA
ε′)−

qj +1
2 (ε′)

qj −1
2 = 1 .

Since each qj ≥ 1, it follows that (ε′)(qj−1)/2 ≥ (ε)(qj−1)/2, and for the above sums to equal one, it
must hold that the positive solution µADA

ε′ ≥ µADA
ε .

Lemma 5.4. Suppose the components gj are (µj , qj)-uniformly convex and h is Lh-smooth. Then
for any z = (x, λ, ν) and ẑ = (x⋆, λ⋆,∇g(x)),

Q(z, ẑ) ≥ µADA
ε

2 ∥x− x⋆∥2 + 1
2Lh
∥λ− λ⋆∥2 − ε

2 .

24

Proof. Considering the result of Lemma 5.2, it suffices to bound

Gx(∥x− x⋆∥) ≥ µADA
ε

2 ∥x− x⋆∥2 − ε

2 , ∀x ∈ X .

Note that µADA
ε = ε/(G−1

x (ε/2))2. Since Gx(t) is differentiable and positive for all t > 0 and µADA
ε is

nondecreasing in ε, it follows that

∂µADA
ε

∂ε
=

(G−1
x (ε/2))2 − εG−1

x (ε/2)
G′

x(G−1
x (ε/2))

(G−1
x (ε/2))4 ≥ 0 =⇒ G′

x(G−1
x (ε/2)) ≥ ε

G−1
x (ε/2)

= µADA
ε G−1

x (ε/2) .

Therefore, by the monotonicity and nonnegativity of Gx, for any t ≥ G−1
x (ε/2), it holds that

G′
x(t) ≥ µADA

ε t.
We first consider the case where Gx(∥x− x⋆∥) ≥ ε/2. We again note that by monotonicity and

nonegativity of Gx, it holds that for any x ∈ X ,

Gx(∥x− x∗∥) =
∫ ∥x−x⋆∥

0
G′

x(t)dt ≥
∫ ∥x−x⋆∥

G−1
x (ε/2)

µADA
ε tdt +

∫ G−1
x (ε/2)

0
G′

x(t)dt

=
∫ ∥x−x⋆∥

0
µADA

ε tdt−
∫ G−1

x (ε/2)

0
µADA

ε tdt +
∫ G−1

x (ε/2)

0
G′

x(t)dt

= µADA
ε

2 ∥x− x⋆∥2 .

Now we consider the case where Gx(∥x− x⋆∥) < ε/2. Since µADA
ε = ε/(G−1

x (ε/2))2, we note that

µADA
ε

2 ∥x− x⋆∥2 = ε

2(G−1
x (ε/2))2 ∥x− x⋆∥2 <

ε

2 ,

which implies that

Gx(∥x− x⋆∥) ≥ 0 >
µADA

ε

2 ∥x− x⋆∥2 − ε

2 .

5.3 A Further Universalized Approximate Dualized Aggregate Smoothness

Recall that the previous definition in (4.2) for the Approximate Dualized Aggregate smoothness
constant LADA

ε,r depended on ε and distance bound Dx. In order to recover (1.5) through Theorem 4.3,
this dependence was a necessity. When the components possess uniform convexity in addition to
Hölder smoothness, one can further leverage the Approximate Dualized Aggregate Convexity µADA

ε .
In its full generality, we define LADA

ε,r to be the unique positive solution to the following equation

LADA
ε,r :=

LADA > 0 : LADA =
m∑

j=1

[
1− pj

1 + pj
· m
√

LADA

ε
·min

{
2
√

6Dx√
ε

,
4
√

6√
µADA

ε

}] 1−pj
1+pj [

(λ⋆
j + r)Lj

] 2
1+pj

 .

(5.2)
We note that for small enough µADA

ε , the above value recovers (4.2) exactly. Further note that even
with this generalization, LADA

ε,r remains nonincreasing with respect to ε.

25

Algorithm 2 Restarted Universal Fast Composite Method (R-UFCM)
Input z0 ∈ X × Λ, distance bounds Dx and Dλ, target accuracy ε > 0, constants LADA

ε,r and µADA
ε ,

and UFCM execution count K

1: Set D
(0)
x , D

(0)
λ and {Tk} according to (5.3)

2: for k = 0, 1, . . . , K − 1 do
3: Run UFCM(zk, ⌈Tk⌉, LADA

ε,r) returning output (x̄Tk,k, λ̄Tk,k)

4: Set (xk+1, D
(k+1)
x) =

(x̄Tk,k,
√

2K−kε/µADA
ε) if µADA

ε ≥ 4ε/D2
x

(x0, Dx) otherwise

5: Set (λk+1, D
(k+1)
λ) =

{
(λ̄Tk,k,

√
2K−kεLh) if

√
2K−kεLh ≤ Dλ

(λ0, Dλ) otherwise
6: Set zk+1 = (xk+1, λk+1)
7: end for

5.4 Guarantees for Fully Heterogeneous Compositions

Finally, we present our universal theory when each component gj possesses its own (Lj , pj)-Hölder
smoothness and (µj , qj)-uniform convexity. Algorithmic restarting, as discussed in Section 2.1, is
the key to enabling this final improvement in our theory.

Our proposed restarted variant, denoted R-UFCM, sequentially runs K executions of UFCM, each
for Tk iterations, restarted at a sequence of initializations zk = (xk, λk) with distance bounds D

(k)
x

and D
(k)
λ . Using the produced outputs x̄Tk,k and λ̄Tk,k, the next initialization zk+1 = (xk+1, λk+1)

is determined. The next primal initialization is x̄Tk,k if µADA
ε ≥ 4ε/D2

x, else x0 is reused. Similarly,
the next dual initialization is λ̄Tk,k if 2K−kLh ≤ D2

λ/ε, else λ0 is reused. Algorithm 2 formalizes
this process with the following initializations

(Tk, D(0)
x) =


(√

96LADA
ε,r

µADA
ε

,
√

2K+1ε
µADA

ε

)
if µADA

ε ≥ 4ε
D2

x
,(√

24LADA
ε,rD2

x

2K−k−1ε
, Dx

)
otherwise,

D
(0)
λ = min

{
Dλ,

√
2K+1εLh

}
(5.3)

Note that when µADA
ε ≥ 4ε/D2

x, Tk is independent of k.
The following theorem, proven in Section 5.5, establishes our universal convergence theory.

We denote the gradient complexity of this restarted method by Nε,r := ∑K−1
k=0 ⌈Tk⌉ as R-UFCM

computes ⌈Tk⌉ gradients of each gj in execution k of UFCM. Likewise, we denote the proximal
complexity by Pε,r := ∑K−1

k=0 ⌈P
(k)
ε,r ⌉ where ⌈P (k)

ε,r ⌉ bounds the number of proximal evaluations of u
and h used in the kth execution of UFCM.

Furthermore, we restrict ε ∈ (0, 1] sufficiently small such that√
24LADA

ε,r D2
x

ε
≥ 1,

√
96LADA

ε,r

µADA
ε

≥ 1.

These restrictions must hold for sufficiently small ε as limε→0+ LADA
ε,r /ε = +∞, which holds from

Lemma 4.1. Secondly, limε→0+ LADA
ε,r /µADA

ε ≥ max
{

limε→0+ LADA
1,r /µADA

ε , limε→0+ LADA
ε,r /µADA

1

}
≥ 1,

where the first inequality utilizes Lemmas 4.1 and 5.3, and the second notes that when pj = qj = 1
for all j, then LADA

ε,r and µADA
ε are constant with respect to ε, so LADA

ε,r ≥ µADA
ε , while if any pj < 1 or

qj > 1 then the first or second limit diverge to infinity respectively.

26

For notational ease, we let z̃k = (xk; λk,∇g(xk)), extending each initialization zk = (xk, λk)
to include the conjugate variables. In particular z̃0 = (x0; λ0,∇g(x0)). We also let ẑ0 =
(x⋆; λ⋆,∇g(x0)), extending the optimal primal-dual pair to include the conjugate variable at the
initialization.

Theorem 5.5. Consider any problem of the form (2.1) with each gj being (Lj , pj)-Hölder smooth
and (µj , qj)-uniformly convex, target accuracy ε > 0 sufficiently small, with r = Dλ

√
ε. Setting

C(k) = D
(k)
λ /D

(k)
x and ∆(k) = C(k)/(2LADA

ε,r), if K ≥
⌈
log2

(
Q(z̃0,ẑ0)+ε

ε

)⌉
, Algorithm 2 with stepsizes

(3.15) and (3.16) must find an (ε, r)-optimal solution (1.8). If K is within a constant factor of⌈
log2

(
Q(z̃0,ẑ0)+ε

ε

)⌉
, this achieves the complexity bounds outlined in Table 1.

Remark 5.6. Since LADA
ε,r is nonincreasing with ε and µADA

ε is nondecreasing with ε, this bound can be
tightened by considering our Approximate Dualized Aggregate constants specialized to the target accu-
racy sought by each application of UFCM. For each loop, one could run UFCM(zk, ⌈Tk⌉, LADA

2K−k−1ε,r
)

with outer loop iteration count

Tk = min


√√√√96LADA

2K−k−1ε,r

µADA
2K−k−1ε

,

√
24LADA

2K−k−1ε,r
D2

x

2K−k−1ε

 ,

instead updating D
(k+1)
x with

√
2K−kε/µADA

2K−kε
whenever µADA

2K−kε
≥ 2K−k+2ε/D2

x and D
(k+1)
λ with√

2K−kεLh whenever Lh ≤ D2
λ/(2K−kε). Consequently, one can derive guarantees

Nε,r = O

K−1∑
n=0

√√√√LADA
2K−k−1ε,r

µADA
2K−k−1ε

 , Pε,r = O

K−1∑
n=0

√√√√(LADA
2K−k−1ε,r

+ M2Lh)
µADA

2K−k−1ε


which avoids additional multiplicative log terms if the sums above total up geometrically.

Corollary 5.7. Consider minimizing F (x) = g0(x) + u(x) where g0 is (L, p)-Hölder smooth and
(µ, q)-uniformly convex function with Dx ≥ ∥x0− x⋆∥, initialization λ0 = 1, and any target accuracy

0 < ε ≤ min
{

1, 2
√

6LD1+p
x , 2µ

1+q

(
Dx
2

)1+q
, 4
(

1+q
2

) 2
3q+1 L

2(q+1)
(3q+1)(1+p)

}
. Then Algorithm 2 recovers

(1.6):

Nε,r = Pε,r = KUC(ε, L, p, µ, q) =


O
((

L1+q

µ1+pεq−p

) 2
(1+3p)(1+q)

)
if q > p ,

O
((

L1+q

µ1+p

) 2
(1+3p)(1+q) log

(
F (x0)−F ⋆

ε

))
if q = p

up to logarithmic factors3.

Proof. By hypothesis, ε is sufficiently small to apply Theorem 5.5. Noting our Approximate Dualized
Aggregate constants equal

LADA
ε,r = (1 + r)

4
1+3p

[
1− p

1 + p
· 4
√

6
ε
√

µADA
ε

] 2−2p
1+3p

L
4

1+3p and µADA
ε =

(2µ

1 + q

) 2
1+q

ε
q−1
q+1 ,

3Using the modification discussed in Remark 5.6, one can recover the optimal rate without incurring log factors.

27

we conclude

Nε,r = Õ

√LADA
ε,r

µADA
ε

 = Õ

(ε
√

µADA
ε)− 1−p

1+3p L
2

1+3p√
µADA

ε

 = Õ

(L1+q

µ1+pεq−p

) 2
(1+3p)(1+q)

 ,

where the first equality considers Theorem 5.5, the second equality substitutes LADA
ε,r , and the last

equality then substitutes µADA
ε and simplifies to recover (1.6).

Since λ0 = λ⋆, we can make ∆ arbitrarily small, so St = 1 for each t. Therefore, the resulting
proximal complexity equals the gradient oracle complexity.

Corollary 5.8. For any problem of the form (2.1), target accuracy ε > 0 sufficiently small, with
r = Dλ

√
ε, suppose each gj is (Lj , pj)-smooth and (µj , qj)-uniformly convex. Algorithm 2, with

stepsizes (3.15) and (3.16), with choices of C(k) = D
(k)
λ /D

(k)
x and ∆(k) = C(k)/(2LADA

ε,r) must find an
(ε, r)-optimal solution with oracle complexity bound

Nε,r = Õ

 m∑
j=1

KUC(ε, (λ⋆
j + r)Lj , pj , µADA

ε , 1)

 .

Proof. Since ε ≤ D2
xµADA

ε /4, it holds that after rearrangement of the definition in (5.2), LADA
ε,r is the

unique positive root to

m∑
j=1

(LADA
ε,r)−

1+3pj
2(1+pj)

[
1− pj

1 + pj
· 4
√

6m

ε
√

µADA
ε

] 1−pj
1+pj [

(λ⋆
j + r)Lj

] 2
1+pj = 1 .

Similar to proving Corollary 4.5, we can bound
√

LADA
ε,r ≤

∑m
j=1

√
LADA

j,ε,r where LADA
j,ε,r solves component-

wise as the unique positive root to the following equation

(LADA
j,ε,r)−

1+3pj
2(1+pj)

[
1− pj

1 + pj
· 4
√

6m

ε
√

µADA
ε

] 1−pj
1+pj [

(λ⋆
j + r)Lj

] 2
1+pj = 1

m
.

We can then conclude

√
LADA

ε,r ≤
m∑

j=1
m

2
1+3pj

[
1− pj

1 + pj
· 4
√

6
ε
√

µADA
ε

] 1−pj
1+3pj [

(λ⋆
j + r)Lj

] 2
1+3pj . (5.4)

Finally, it holds that

Nε,r = Õ

 m∑
j=1

(
ε
√

µADA
ε

)−
1−pj

1+3pj

[
(λ⋆

j + r)Lj

] 2
1+3pj√

µADA
ε

 = Õ

 m∑
j=1


[
(λ⋆

j + r)Lj

]2
(µADA

ε)1+pj ε1−pj


1

(1+3pj)
 ,

where the first equality considers the result from Theorem 5.5 and substitutes the upper bound on
LADA

ε,r in (5.4), and the second equality simplifies to yield the desired result.

Fixing h(z) = ∑m
j=1 zj , each λ⋆

j = 1, and bounding µADA
ε by only considering a single component

in its sum recovers the results for heterogeneous sums of Hölder smooth terms of [15, Theorem 1.2].
When each gj is smooth and h is a nonpositive indicator function, this second corollary recovers
the results of [42, Theorem 6] by lower bounding µADA

ε by the µ0-strong convexity of g0 (see the
concluding Section 5.6 for further consideration of this special case).

28

5.5 Analysis of R-UFCM (Proof of Theorem 5.5)

Recall our analysis only depends on the (Lj , pj)-Hölder smooth and (µj , qj)-uniformly convex of gj

through our analysis through the universal constants LADA
ε,r and µADA

ε defined in (5.2) and (5.1). Let
λ ∈ Λr and ν ∈ V . Below, we inductively prove that in all four of the cases in Table 1 (determined
by whether µADA

ε < 4ε/D2
x and whether Lh > D2

λ/ε) the following are maintained at each outer
iteration of the restarted method k = 0, 1, . . . , K − 1

D(k)
x ≥ ∥xk − x⋆∥, D

(k)
λ ≥ ∥λk − λ⋆∥, Q((x̄Tk,k; λ̄Tk,k, ν̄Tk,k), (x⋆; λ, ν)) ≤ 2K−k−1ε ,

where we recall (x̄Tk,k; λ̄Tk,k, ν̄Tk,k) from our averaging scheme (3.22). By definition and application
of Lemma 5.4, D

(0)
x ≥ ∥x0 − x⋆∥ and D

(0)
λ ≥ ∥λ0 − λ⋆∥ both hold at k = 0, regardless of the relative

sizes of µADA
ε and Lh. Our inductive proof proceeds by first establishing that

D(k)
x ≥ ∥xk − x⋆∥, D

(k)
λ ≥ ∥λk − λ⋆∥ =⇒ Q((x̄Tk,k; λ̄Tk,k, ν̄Tk,k), (x⋆; λ, ν)) ≤ 2K−k−1ε (5.5)

for each k. The key result to this end is that Q((x̄Tk,k; λ̄Tk,k, ν̄Tk,k), (x⋆; λ, ν)) ≤ 2K−k−1ε if

Tk ≥

√
24LADA

ε,r (D(k)
x)2

2K−k−1ε

by Theorem 4.3. Hence, we just need to verify our choice of Tk satisfies this inequality in each case.
Then, to complete the induction, we establish

Q((x̄Tk,k; λ̄Tk,k, ν̄Tk,k), (x⋆; λ, ν)) ≤ 2K−k−1ε =⇒ D(k+1)
x ≥ ∥xk+1 − x⋆∥, D

(k+1)
λ ≥ ∥λk+1 − λ⋆∥ .

(5.6)
The key result to this end is the growth condition from Lemma 5.2, which guarantees that

Gx(∥x̄Tk,k − x⋆∥) + Gλ(∥λ̄Tk,k − λ⋆∥) ≤ Q((x̄Tk,k; λ̄Tk,k, ν̄Tk,k), (x⋆; λ⋆,∇g(x̄Tk,k))) ≤ 2K−k−1ε .

The remainder of this proof verifies the implications (5.5) and (5.6) and calculates the total gradient
and proximal complexity in each case of Table 1. Finally, we deduce that

Q((x̄TK−1,K−1; λ̄TK−1,K−1, ν̄TK−1,K−1), (x⋆, λ̂,∇g(x̄TK−1,K−1))) ≤ ε

and apply Lemma 3.2 to conclude that x̄TK−1,K−1 is (ε, r)-optimal.

Case 1: Suppose µADA
ε < 4ε/D2

x. Observe the first needed implication for our induction (5.5) is
immediate from Theorem 4.3 as

Tk =

√
24LADA

ε,r D2
x

2K−k−1ε
.

The gradient complexity follows from geometrically summing this quantity and bounding K <∞,
so

K−1∑
k=0
⌈Tk⌉ ≤

K−1∑
k=0

1 +

√
24LADA

ε,r D2
x

2K−k−1ε
≤ K +

∞∑
j=0

√
24LADA

ε,r D2
x

2jε
=

√
(144 + 96

√
2)LADA

ε,r D2
x

ε
+ K .

Next, we verify the second needed implication (5.6). The primal bound is vacuously the case since
the primal initialization is constant, so xk = x0 for each k = 0, . . . , K − 1 and

D(k)
x = Dx ≥ ∥x0 − x⋆∥ = ∥xk − x⋆∥ .

To derive the dual distance bound, we consider the two cases of dual restarting.

29

Case 1a: Suppose Lh > D2
λ/ε. In this setting, the dual variable does not reinitialize each

iteration and D
(k)
λ = Dλ ≥ ∥λ0 − λ⋆∥ = ∥λk − λ⋆∥, completing the proof of (5.6). Observe

that since ∆(k) = Dλ/(2DxLADA
ε,r) as neither variable reinitializes, the number of proximal steps

on u and h taken each iteration k of R-UFCM is

P (k)
ε,r = ⌈Tk⌉+ ⌈Tk⌉2∆(k)M ≤ 1 +

√
24LADA

ε,r D2
x

2K−k−1ε
+ 24MDxD

(k)
λ

2K−k−1ε
+ MD

(k)
λ

LADA
ε,r Dx

, (5.7)

= 1 +

√
24LADA

ε,r D2
x

2K−k−1ε
+ 24MDxDλ

2K−k−1ε
+ MDλ

LADA
ε,r Dx

where M bounds ∥∇g(x)∥ for x ∈ B(x⋆,
√

27D2
x), and we use the facts ⌈Tk⌉ ≤ Tk + 1 and

⌈Tk⌉2 ≤ 2T 2
k + 2. The total proximal complexity is then at most

K−1∑
k=0

P (k)
ε,r ≤

√
(144 + 96

√
2)LADA

ε,r D2
x

ε
+ 48MDxDλ

ε
+ K

(
1 + MDλ

LADA
ε,r Dx

)
.

Case 1b: Suppose Lh ≤ D2
λ/ε. To verify (5.6), we note that for the primary executions of

UFCM where D2
λ < 2K−k+1εLh, our initializations maintain D

(k)
λ = Dλ and λk = λ0. So

D
(k)
λ ≥ ∥λk − λ⋆∥. For the subsequent executions, observe that Lemma 5.2 ensures

Gλ(∥λk+1 − λ⋆∥) ≤ Q((x̄Tk,k; λ̄Tk,k, ν̄Tk,k), (x⋆; λ⋆,∇g(x̄Tk,k))) ≤ 2K−k−1ε ,

where λk+1 ← λ̄Tk,k by line 5 of Algorithm 2. We then utilize the growth bound to yield

∥λk+1 − λ⋆∥ ≤ G−1
λ (2K−k−1ε) =

√
2K−kεLh = D

(k+1)
λ ,

completing our induction in this case.
From the proximal complexity for application k of UFCM (5.7), we note that

P (k)
ε,r ≤ 1 +

√
24LADA

ε,r D2
x

2K−k−1ε
+ 24MDx

√
2K−k+1εLh

2K−k−1ε
+ MDλ

LADA
ε,r Dx

≤ 1 +

√
(48LADA

ε,r + 1152M2Lh)D2
x

2K−k−1ε
+ MDλ

LADA
ε,r Dx

,

since D
(k)
λ ≤ min{Dλ,

√
2K−k+1εLh} for each k. The total proximal complexity is then

bounded by

K−1∑
k=0

P (k)
ε,r ≤

√
(6 + 4

√
2)(48LADA

ε,r + 1152M2Lh)D2
x

ε
+ K

(
1 + MDλ

LADA
ε,r Dx

)
.

Case 2: Now suppose µADA
ε ≥ 4ε/D2

x. Observe that the first step of our induction (5.5) holds
immediately after noting D

(k)
x =

√
2K−k+1ε/µADA

ε and applying Theorem 4.3 as

Tk =
√

96LADA
ε,r

µADA
ε

=

√√√√96LADA
ε,r

(
D

(k)
x

)2

2K−k+1ε
.

30

Hence, the total gradient complexity is bounded by

K−1∑
k=0
⌈Tk⌉ ≤ K

1 +
√

96LADA
ε,r

µADA
ε

 ,

where we bound ⌈Tk⌉ by Tk + 1. Note when K is within a constant factor of
⌈
log2

(
Q(z̃0,ẑ0)+ε

ε

)⌉
,

then the gradient complexity is O
(√

LADA
ε,r

µADA
ε

log
(

1
ε

))
.

Next, we verify the second needed implication (5.6), noting that the dual distance bounds
D

(k)
λ ≥ ∥λk − λ⋆∥ have already been shown to hold. Thus, we only need to consider the primal

distance bounds. For k = 0, our initializations and Lemma 5.4 ensure

D(0)
x =

√
2K+1ε

µADA
ε

≥
√

2(Q(z̃0, ẑ0) + ε)
µADA

ε

≥ ∥x0 − x⋆∥ .

For k ≥ 1, Lemma 5.2 ensures that

Gx(∥xk+1 − x⋆∥) ≤ Q((x̄Tk,k; λ̄Tk,k, ν̄Tk,k), (x⋆; λ⋆,∇g(x̄Tk,k))) ≤ 2K−k−1ε ,

where xk+1 ← x̄Tk,k by line 4 of Algorithm 2. This bound implies

∥xk+1 − x⋆∥ ≤ G−1
x (2K−k−1ε) =

√
2K−kε/µADA

2K−kε
≤
√

2K−kε/µADA
ε = D(k+1)

x ,

where the first equality comes from the characterization that µADA
ε = ε/(G−1

x (ε/2))2 and the last
inequality holds as µADA

ε is a nondecreasing function of ε. Next, we consider the proximal operator
complexity.

Case 2a: Suppose Lh > D2
λ/ε. In this case, D

(k)
λ = Dλ. The number of proximal steps

performed each execution of UFCM is

P (k)
ε,r = ⌈Tk⌉+ ⌈Tk⌉2∆(k)M ≤ 1 +

√
96LADA

ε,r

µADA
ε

+ 192MDλ√
2K−k+1µADA

ε ε
,

where the first equality uses (3.24), and the inequality substitutes ∆(k) = Dλ/(2LADA
ε,r D

(k)
x)

with D
(k)
x =

√
2K−k+1ε/µADA

ε , further noting that since µADA
ε ≤ 96LADA

ε,r , ⌈Tk⌉ ≤ Tk + 1 ≤ 2Tk.
Therefore, the total proximal complexity is bounded by

K−1∑
k=0

P (k)
ε,r ≤

(1152 + 786
√

2)MDλ√
µADA

ε ε
+ K

1 +
√

96LADA
ε,r

µADA
ε

 .

Case 2b: Suppose Lh ≤ D2
λ/ε. Now D

(k)
λ ≤

√
2K−k+1εLh, in which case

P (k)
ε,r ≤ 1 +

√
96LADA

ε,r

µADA
ε

+ 192M
√

Lh√
µADA

ε

≤ 1 +
√

192LADA
ε,r + 73728M2Lh

µADA
ε

.

The total proximal complexity is then bounded by

K−1∑
k=0

P (k)
ε,r ≤ K

1 +
√

192LADA
ε,r + 73728M2Lh

µADA
ε

 .

31

5.6 Application to Functionally Constrained Optimization

We conclude this section considering functionally constrained optimization with strongly convex
and smooth components, recovering the linear convergence in terms of first-order oracle calls to
g and sublinear convergence in terms of proximal operations analogous to [42]. In this setting,
h(z0, . . . , zm) = z0 + ιz≤0(z1, . . . , zm) with each gj being µj-strongly convex results in constant
µADA

ε = µ0 +∑m
j=1 λ⋆

jµj . (Note that our method and theory also apply more generally, given only
Hölder smoothness and uniform convexity, but for the sake of this comparison, we restrict ourselves
to considering only smooth and strongly convex constraints.)

Since h is nonsmooth, i.e. Lh = ∞, each restarted application of UFCM uses the fixed dual
initialization λ0. However, for small enough ε, the primal variables and distance bounds will update,
with D

(k)
x =

√
2K−k+1ε/µADA

ε . Therefore, Algorithm 2 reaches an ε-optimal solution with complexity
bounds

Nε,r = O

√LADA
ε,r

µADA
ε

log
(

Q(z̃0, ẑ0)
ε

) , Pε,r = O
(

Nε,r + DλM√
µADA

ε ε

)

In contrast, the ACGD-S method of [42, Corollary 4] has oracle complexities

Nε,r = O
(√

L(Λr)
µ0

log
(√

L(Λr)µ0D2
x

ε

))
, Pε,r = O

(
Nε,r + d(Λr)M

√
µ0ε

)
,

where L(Λr) = maxλ∈Λr{
∑m

j=1 λjLj} and d(Λr) = ∥λ⋆∥+ r. In the case where only g0 is strongly
convex, our rate recovers theirs as µADA

ε = µ0 +∑m
j=1 λ⋆

j 0 = µ0. Importantly, our method additionally
benefits from strong convexity in the components as µADA

ε > µ0 whenever any active constraint is
strongly convex (or even just, uniformly convex).

Funding
This work was supported in part by the Air Force Office of Scientific Research under award number
FA9550-23-1-0531. Benjamin Grimmer was additionally supported as a fellow of the Alfred P. Sloan
Foundation

References

[1] Applegate, D., Hinder, O. & Lu, H. et al. (2023) Faster first-order primal-dual methods for
linear programming using restarts and sharpness. Math. Program., 201, 133–184. Available at:
https://doi.org/10.1007/s10107-022-01901-9

[2] Aybat, N. S., Fallah, A., Gurbuzbalaban, M. & Ozdaglar, A. (2019) A universally
optimal multistage accelerated stochastic gradient method. Adv. Neural Inf. Process.
Syst., 32. Available at: https://proceedings.neurips.cc/paper_files/paper/2019/file/
d630553e32ae21fb1a6df39c702d2c5c-Paper.pdf

[3] Beck, A. (2017) First-order methods in optimization. Philadelphia, PA: Society for Industrial and
Applied Mathematics (SIAM). Available at: https://epubs.siam.org/doi/abs/10.1137/1.
9781611974997

32

https://doi.org/10.1007/s10107-022-01901-9
https://proceedings.neurips.cc/paper_files/paper/2019/file/d630553e32ae21fb1a6df39c702d2c5c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d630553e32ae21fb1a6df39c702d2c5c-Paper.pdf
https://epubs.siam.org/doi/abs/10.1137/1.9781611974997
https://epubs.siam.org/doi/abs/10.1137/1.9781611974997

[4] Beck, A. & Teboulle, M. (2009) A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging Sci., 2, 183–202. Available at: https://doi.org/10.1137/
080716542

[5] Beck, A. & Teboulle, M. (2012) Smoothing and first order methods: a unified framework. SIAM
J. Optim., 22, 557–580. Available at: https://doi.org/10.1137/100818327

[6] Ben-Tal, A., El Ghaoui, L. & Nemirovski, A. (2009) Robust optimization. Princeton, NJ:
Princeton University Press. Available at: https://doi.org/10.1515/9781400831050

[7] Brekelmans, R., Masrani, V., Wood, F., Ver Steeg, G., & Galstyan, A. In Thirty-seventh Inter-
national Conference on Machine Learning (ICML 2020). Available at: https://proceedings.
icml.cc/static/paper_files/icml/2020/2826-Paper.pdf

[8] Deng, Q., Lan, G. & Lin, Z. (2024) Uniformly optimal and parameter-free first-order methods
for convex and function-constrained optimization. arXiv preprint, arXiv:2412.06319. Available
at: https://arxiv.org/abs/2412.06319

[9] Devolder, O., Glineur, F. & Nesterov, Y. (2014). First-order methods of smooth convex
optimization with inexact oracle. Math. Program. 146, 37–75. Available at: https://doi.org/
10.1007/s10107-013-0677-5

[10] Diakonikolas, J. & Guzmán, C. (2024) Optimization on a finer scale: bounded local subgradient
variation perspective. arXiv preprint, arXiv:2403.16317. Available at: https://arxiv.org/
abs/2403.16317

[11] Fenchel, W. (1949) On conjugate convex functions. Canad. J. Math., 1, 73–77. Available at:
https://doi.org/10.4153/CJM-1949-007-x

[12] Fercoq, O. (2023) Quadratic error bound of the smoothed gap and the restarted averaged
primal-dual hybrid gradient. Open J. Math. Optim., 4, 1–34. Available at: https://ojmo.
centre-mersenne.org/articles/10.5802/ojmo.26/

[13] Gasnikov, A. V. & Nesterov, Y. (2018) Universal method for stochastic composite optimization
problems. Comput. Math. Math. Phys., 58, 48–64. Available at: https://doi.org/10.1134/
S0965542518010050

[14] Ghadimi, S., Lan, G. & Zhang, H. (2019) Generalized uniformly optimal methods for nonlinear
programming. J. Sci. Comput., 79, 1854–1881. Available at: https://doi.org/10.1007/
s10915-019-00915-4

[15] Grimmer, B.(2023). On optimal universal first-order methods for minimizing heteroge-
neous sums. Optim Lett 18, 427–445 (2024). Available at: https://doi.org/10.1007/
s11590-023-02060-2

[16] Grimmer, B. (2024) Radial duality part I: foundations. Math. Program., 205, 33–68. Available
at: https://doi.org/10.1007/s10107-023-02006-7

[17] Grimmer, B. (2024) Radial duality part II: applications and algorithms. Math. Program., 205,
69–105. Available at: https://doi.org/10.1007/s10107-023-01974-0

[18] Guigues, V., Liang, J., & Monteiro, R. D. C. (2025) Universal subgradient and proximal
bundle methods for convex and strongly convex hybrid composite optimization arXiv preprint,
arXiv:2407.10073 https://arxiv.org/abs/2407.10073

33

https://doi.org/10.1137/080716542
https://doi.org/10.1137/080716542
https://doi.org/10.1137/100818327
https://doi.org/10.1515/9781400831050
https://proceedings.icml.cc/static/paper_files/icml/2020/2826-Paper.pdf
https://proceedings.icml.cc/static/paper_files/icml/2020/2826-Paper.pdf
https://arxiv.org/abs/2412.06319
https://doi.org/10.1007/s10107-013-0677-5
https://doi.org/10.1007/s10107-013-0677-5
https://arxiv.org/abs/2403.16317
https://arxiv.org/abs/2403.16317
https://doi.org/10.4153/CJM-1949-007-x
https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.26/
https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.26/
https://doi.org/10.1134/S0965542518010050
https://doi.org/10.1134/S0965542518010050
https://doi.org/10.1007/s10915-019-00915-4
https://doi.org/10.1007/s10915-019-00915-4
https://doi.org/10.1007/s11590-023-02060-2
https://doi.org/10.1007/s11590-023-02060-2
https://doi.org/10.1007/s10107-023-02006-7
https://doi.org/10.1007/s10107-023-01974-0
https://arxiv.org/abs/2407.10073

[19] Ito, M., Lu, Z. & He, C. (2023) A parameter-free conditional gradient method for composite
minimization under Hölder condition. J. Mach. Learn. Res., 24, 1–34. Available at: http:
//jmlr.org/papers/v24/22-0983.html

[20] Kavis, A., Levy, K. Y., Bach, F. & Cevher, V. (2019) UniXGrad: A universal, adaptive
algorithm with optimal guarantees for constrained optimization. Advances in Neural Informa-
tion Processing Systems 32. Available at: https://proceedings.neurips.cc/paper_files/
paper/2019/file/88855547570f7ff053fff7c54e5148cc-Paper.pdf

[21] Lan, G. (2015) Bundle-level type methods uniformly optimal for smooth and nonsmooth
convex optimization. Math. Program., 149, 1–45. Available at: https://doi.org/10.1007/
s10107-013-0737-x

[22] Lan, G. (2020) First-order and stochastic optimization methods for machine learning. New
York, NY: Springer. Available at: https://doi.org/10.1007/978-3-030-39568-1

[23] Lan, G. (2016) Gradient sliding for composite optimization. Math. Program., 159, 201–235.
Available at: https://doi.org/10.1007/s10107-015-0955-5

[24] Lan, G. & Zhou, Y. (2016) Conditional gradient sliding for convex optimization. SIAM J.
Optim., 26, 1379–1409. Available at: https://doi.org/10.1137/140992382

[25] Li, T., Lan, G. (2025). A simple uniformly optimal method without line search for convex
optimization. Math. Program. Available at: https://doi.org/10.1007/s10107-025-02250-z

[26] Liang, J. & Monteiro, R. D. C. (2023) A unified analysis of a class of proximal bundle methods
for solving hybrid convex composite optimization problems. Math. Oper. Res., 49, 832–855.
Available at: https://doi.org/10.1287/moor.2023.1372

[27] Lu, H., Yang, J.(2025). A Practical and Optimal First-Order Method for Large-Scale Con-
vex Quadratic Programming. Math. Program. Available at: https://doi.org/10.1007/
s10107-025-02241-0

[28] Nemirovski, A. S. & Nesterov, Y. E. (1985) Optimal methods of smooth convex minimization.
USSR Comput. Math. Math. Phys., 25, 21–30. Available at: https://doi.org/10.1016/
0041-5553(85)90100-4

[29] Nesterov, Y. (1983) A method for solving the convex programming problem with convergence
rate O(1/k2). Dokl. Akad. Nauk SSSR, 269, 543. Available at: https://cir.nii.ac.jp/crid/
1370862715914709505

[30] Nesterov, Y. (2014) Universal gradient methods for convex optimization problems. Math.
Program., 152, 381–404. Available at: https://doi.org/10.1007/s10107-014-0790-0

[31] Park, J. (2022) Fast gradient methods for uniformly convex and weakly smooth problems. Adv.
Comput. Math., 48. Available at: https://doi.org/10.1007/s10444-022-09943-5

[32] Polak, E. (1997) Finite min-max and constrained optimization. In Optimization: algorithms
and consistent approximations, pp. 167–367. Springer, New York. Available at: https://doi.
org/10.1007/978-1-4612-0663-7_2

[33] Renegar, J. & Grimmer, B. (2022) A simple nearly optimal restart scheme for speeding up
first-order methods. Found. Comput. Math., 22, 211–256. Available at: https://doi.org/10.
1007/s10208-021-09502-2

34

http://jmlr.org/papers/v24/22-0983.html
http://jmlr.org/papers/v24/22-0983.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/88855547570f7ff053fff7c54e5148cc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/88855547570f7ff053fff7c54e5148cc-Paper.pdf
https://doi.org/10.1007/s10107-013-0737-x
https://doi.org/10.1007/s10107-013-0737-x
https://doi.org/10.1007/978-3-030-39568-1
https://doi.org/10.1007/s10107-015-0955-5
https://doi.org/10.1137/140992382
https://doi.org/10.1007/s10107-025-02250-z
https://doi.org/10.1287/moor.2023.1372
https://doi.org/10.1007/s10107-025-02241-0
https://doi.org/10.1007/s10107-025-02241-0
https://doi.org/10.1016/0041-5553(85)90100-4
https://doi.org/10.1016/0041-5553(85)90100-4
https://cir.nii.ac.jp/crid/1370862715914709505
https://cir.nii.ac.jp/crid/1370862715914709505
https://doi.org/10.1007/s10107-014-0790-0
https://doi.org/10.1007/s10444-022-09943-5
https://doi.org/10.1007/978-1-4612-0663-7_2
https://doi.org/10.1007/978-1-4612-0663-7_2
https://doi.org/10.1007/s10208-021-09502-2
https://doi.org/10.1007/s10208-021-09502-2

[34] Rockafellar, R. T. (1996) Convex analysis. Princeton, NJ: Princeton University Press. Available
at: https://doi.org/10.1137/1013042

[35] Rodomanov, A., Kavis, A., Wu, Y., Antonakopoulos, K., & Cevher, V. Universal Gradient
Methods for Stochastic Convex Optimization. arXiv preprint, arXiv:2402.03210. Available at:
https://arxiv.org/abs/2402.03210

[36] Roulet, V. & d’Aspremont, A. (2020) Sharpness, restart, and acceleration. SIAM J. Optim.,
30, 262–289. Available at: https://doi.org/10.1137/18M1224568

[37] Thekumparampil, K., Jain, P., Netrapalli, P., & Oh, S. Projection Efficient Subgradient Method
and Optimal Nonsmooth Frank-Wolfe Method. Advances in Neural Information Processing
Systems. Available at: https://proceedings.neurips.cc/paper_files/paper/2020/file/
8f468c873a32bb0619eaeb2050ba45d1-Paper.pdf.

[38] Wang, N. & Zhang, S. (2024) A gradient complexity analysis for minimizing the sum of strongly
convex functions with varying condition numbers. SIAM J. Optim., 34, 1374–1401. Available
at: https://doi.org/10.1137/22M1503646

[39] Yang, T. & Lin, Q. (2018) RSG: Beating subgradient method without smoothness and strong
convexity. J. Mach. Learn. Res., 19, 1–33. Available at: http://jmlr.org/papers/v19/
17-016.html

[40] Zhang, Z., Ahmed, S. & Lan, G. (2021) Efficient algorithms for distributionally robust stochastic
optimization with discrete scenario support. SIAM J. Optim., 31, 1690–1721. Available at:
https://doi.org/10.1137/19M1290115

[41] Zhang, Z. & Lan, G. (2022a) Optimal algorithms for convex nested stochastic composite
optimization. arXiv preprint, arXiv:2011.10076. Available at: https://arxiv.org/abs/2011.
10076

[42] Zhang, Z. & Lan, G. (2022b) Solving convex smooth function constrained optimization is almost
as easy as unconstrained optimization. arXiv preprint, arXiv:2210.05807, version 3. Available
at: https://arxiv.org/abs/2210.05807

[43] Zhang, Z. & Lan, G. (2023) Optimal methods for convex risk-averse distributed optimization.
SIAM J. Optim., 33, 1518–1557. Available at: https://doi.org/10.1137/22M1485309

[44] Zhou, D., Ma, S., & Yang, J. (2025) AdaBB: Adaptive Barzilai-Borwein Method for Convex Op-
timization. Mathematics of Operations Research. Available at: https://pubsonline.informs.
org/doi/abs/10.1287/moor.2024.0510

A Deferred Proofs

A.1 Deferred Proofs for Smooth Composite Analysis

Proof of Lemma 3.8. First we establish a convergence bound on the inner loop for each phase.
Fix t ≥ 1. Since u(y) + ηt∥y − xt−1∥2/2 has strong convexity with modulus ηt, the proximal step
for y in line 8 of Algorithm 1 satisfies the three point inequality (see [22, Lemma 3.5])

35

https://doi.org/10.1137/1013042
https://arxiv.org/abs/2402.03210
https://doi.org/10.1137/18M1224568
https://proceedings.neurips.cc/paper_files/paper/2020/file/8f468c873a32bb0619eaeb2050ba45d1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/8f468c873a32bb0619eaeb2050ba45d1-Paper.pdf
https://doi.org/10.1137/22M1503646
http://jmlr.org/papers/v19/17-016.html
http://jmlr.org/papers/v19/17-016.html
https://doi.org/10.1137/19M1290115
https://arxiv.org/abs/2011.10076
https://arxiv.org/abs/2011.10076
https://arxiv.org/abs/2210.05807
https://doi.org/10.1137/22M1485309
https://pubsonline.informs.org/doi/abs/10.1287/moor.2024.0510
https://pubsonline.informs.org/doi/abs/10.1287/moor.2024.0510

〈
y(t)

s − x, h̃(t),s
〉

+ u(y(t)
s)− u(x) + ηt

2
(
∥y(t)

s − xt−1∥2 − ∥x− xt−1∥2
)

+ 1
2
[
(β(t) + ηt)∥x− y(t)

s ∥2 + β(t)∥y(t)
s − y

(t)
s−1∥

2 − β(t)∥y(t)
s−1 − x∥2

]
≤ 0 .

(A.1)

Recall that

h̃(t),s =

(νt)⊤λ
(t)
0 + ρ(t)(νt−1)⊤(λ(t)

0 − λ
(t)
−1) if s = 1,

(νt)⊤λ
(t)
s−1 + (νt)⊤(λ(t)

s−1 − λ
(t)
s−2) otherwise.

In particular, line 7 of Algorithm 1 ensures that for s ≥ 2

〈
y(t)

s − x, h̃(t),s
〉

=
〈

y(t)
s − x,

m∑
j=1

λ
(t)
s,jνt

j

〉
−
〈

y(t)
s − x,

m∑
j=1

(λ(t)
s,j − λ

(t)
s−1,j)νt

j

〉
(A.2)

+
〈

y(t)
s − y

(t)
s−1,

m∑
j=1

(λ(t)
s−1,j − λ

(t)
s−2,j)νt

j

〉
+
〈

y
(t)
s−1 − x,

m∑
j=1

(λ(t)
s−1,j − λ

(t)
s−2,j)νt

j

〉
,

and for s = 1〈
y

(t)
1 − x, h̃(t),1

〉
=
〈

y
(t)
1 − x,

m∑
j=1

λ
(t)
1,jνt

j

〉
−
〈

y
(t)
1 − x,

m∑
j=1

(λ(t)
1,j − λ

(t)
0,j)νt

j

〉
(A.3)

+ ρ(t)
〈

y
(t)
1 − y

(t)
0 ,

m∑
j=1

(λ(t)
0,j − λ

(t)
−1,j)νt−1

j

〉
+ ρ(t)

〈
y

(t)
0 − x,

m∑
j=1

(λ(t)
0,j − λ

(t)
−1,j)νt−1

j

〉
.

Observe the third term is bounded by Young’s inequality (ab ≤ a2

2ε + b2ε
2 for all ε > 0) with〈

y(t)
s − y

(t)
s−1,

m∑
j=1

(λ(t)
s−1,j − λ

(t)
s−2,j)νt

j

〉
≤

β(t)∥y(t)
s − y

(t)
s−1∥2

2 +
∥λ(t)

s−1 − λ
(t)
s−2∥2∥νt∥2

2β(t) ,

〈
y

(t)
1 − y

(t)
0 ,

m∑
j=1

(λ(t)
0,j − λ

(t)
−1,j)νt−1

j

〉
≤ β(t)∥y(t)

1 − y
(t)
0 ∥2

2ρ(t) +
ρ(t)∥λ(t)

0 − λ
(t)
−1∥2∥νt−1∥2

2β(t) ,

(A.4)

for s ≥ 2 and s = 1 respectively. Moreover, note that when summing over s = 1, ..., St,

St∑
s=1
L(y(t)

s ; λ(t)
s , νt)− L(x; λ(t)

s , νt) =
St∑

s=1

〈
y(t)

s − x,
m∑

j=1
λ

(t)
s,jνt

j

〉
+ u(y(t)

s)− u(x),

β(t)

2
(
∥y(t)

St
− x∥2 − ∥y(t)

0 − x∥2
)

=
St∑

s=1

β(t)

2
(
∥x− y(t)

s ∥2 − ∥y
(t)
s−1 − x∥2

)
,

St∑
s=2

∥λ(t)
s−1 − λ

(t)
s−2∥2∥νt∥2

2β(t) ≤
St∑

s=2

γ(t)

2 ∥λ
(t)
s−1 − λ

(t)
s−2∥

2,

where the first equality holds by definition, the second holds from telescoping the norm squared
terms, and the inequality holds from requirement (3.11). Furthermore, the inner product terms

36

telescope as well since

ρ(t)
〈

y
(t)
0 − x,

m∑
j=1

(λ(t)
0,j − λ

(t)
−1,j)νt−1

j

〉
−
〈

y
(t)
St
− x,

m∑
j=1

(λ(t)
St,j − λ

(t)
St−1,j)νt

j

〉

=
St∑

s=2

〈
y

(t)
s−1 − x,

m∑
j=1

(λ(t)
s−1,j − λ

(t)
s−2,j)νt

j

〉
−
〈

y(t)
s − x,

m∑
j=1

(λ(t)
s,j − λ

(t)
s−1,j)νt

j

〉

+ ρ(t)
〈

y
(t)
0 − x,

m∑
j=1

(λ(t)
0,j − λ

(t)
−1,j)νt−1

j

〉
−
〈

y
(t)
1 − x,

m∑
j=1

(λ(t)
1,j − λ

(t)
0,j)νt

j

〉
,

where the substitutions λ
(t+1)
0 = λ

(t)
St

, λ
(t+1)
−1 = λ

(t)
St−1, y

(t+1)
0 = y

(t)
St

hold by line 11 of Algorithm 1.
We then sum (A.1) over s = 1, . . . , St. After plugging in (A.2) and (A.3), applying the above

equalities and inequalities, and considering requirement (3.11), we bound

St∑
s=1

(
L(y(t)

s ; λ(t)
s , νt)− L(x; λ(t)

s , νt) + ηt∥y(t)
s − xt−1∥2 + ηt∥y(t)

s − x∥2 − ηt∥x− xt−1∥2

2

)

+ ρ(t)
〈

y
(t)
0 − x,

m∑
j=1

(λ(t)
0,j − λ

(t)
−1,j)νt−1

j

〉
−
〈

y
(t)
St
− x,

m∑
j=1

(λ(t)
St,j − λ

(t)
St−1,j)νt

j

〉
(A.5)

≤
St∑

s=2

γ(t)

2 ∥λ
(t)
s−1 − λ

(t)
s−2∥

2 + (ρ(t))2∥νt−1∥2

2β(t) ∥λ(t)
0 − λ

(t)
−1∥

2 − 1
2
[
β(t)∥y(t)

St
− x∥2 − β(t)∥y(t)

0 − x∥2
]

,

since the terms ∥y(t)
s − y

(t)
s−1∥2 cancel as (A.1) and (A.4) have the same coefficients.

Next we leverage this inner loop bound to derive bounds on the λ
(t)
s terms. The proximal

mapping in Line 9 of Algorithm 1 applies a proximal step to

p(λ) :=
〈
λ, νt(y(t)

s − xt) + g(xt)
〉
− h∗(λ) .

From the Fenchel-Young inequality,
〈
λ, νty

(t)
s − g∗(νt)

〉
=
〈
λ, νt(yt

s − xt) + g(xt)
〉
. Therefore, the

proximal mapping in line 9, the three point inequality of [22, Lemma 3.5], and Lh-smoothness of h
imply the following is nonpositive

L(y(t)
s ; λ, νt)−L(y(t)

s ; λ(t)
s , νt)+ γ(t)

2
[
∥λ− λ(t)

s ∥2 + ∥λ(t)
s − λ

(t)
s−1∥

2 − ∥λ− λ
(t)
s−1∥

2
]
+ 1

2Lh
∥λ(t)

s −λ∥2 .

Taking the sum over s = 1, . . . , St and combining with (A.5),

St∑
s=1

(
L(y(t)

s ; λ, νt)− L(x; λ(t)
s , νt) + ηt∥y(t)

s − xt−1∥2 + ηt∥y(t)
s − x∥2 − ηt∥x− xt−1∥2

2

)

+
St∑

s=1

1
2Lh
∥λ(t)

s − λ∥2 + ρ(t)
〈

y
(t)
0 − x,

m∑
j=1

(λ(t)
0,j − λ

(t)
−1,j)νt−1

j

〉
−
〈

y
(t)
St
− x,

m∑
j=1

(λ(t)
St,j − λ

(t)
St−1,j)νt

j

〉

≤ γ(t)

2 ∥λ− λ
(t)
0 ∥

2 − γ(t)

2
[
∥λ− λ

(t)
St
∥2 + ∥λ(t)

St
− λ

(t)
St−1∥

2
]

+ (ρ(t))2∥νt−1∥2

2β(t) ∥λ(t)
0 − λ

(t)
−1∥

2

− β(t)

2
[
∥y(t)

St
− x∥2 − ∥y(t)

0 − x∥2
]

,

37

noting that the ∥λ − λ
(t)
s ∥2 terms telescope and γ(t)/2∑St

s=2 ∥λ
(t)
s−1 − λ

(t)
s−2∥2 cancels, leaving only

γ(t)/2∥λ(t)
St
− λSt−1∥2. Since L(y(t)

s ; λ, νt) and ∥y(t)
s − x∥2 are convex in y

(t)
s and L(x; λ

(t)
s , νt) is

concave in λ
(t)
s , multiplying by ω̃(t) = ωt/St and considering the averaging scheme in line 14 of

Algorithm 1, one can apply Jensen’s inequality to derive a bound with respect to xt and λ̃t of

ωt

(
L(xt; λ, νt)− L(x; λ̃t, νt) + ηt

2
(
∥xt − xt−1∥2 + ∥xt − x∥2 − ∥xt−1 − x∥2

))
+

St∑
s=1

ωt∥λ− λ
(t)
s ∥2

2LhSt

+ ω̃(t)ρ(t)
〈

y
(t)
0 − x,

m∑
j=1

(λ(t)
0,j − λ

(t)
−1,j)νt−1

j

〉
− ω̃(t)

〈
y

(t)
St
− x,

m∑
j=1

(λ(t)
St,j − λ

(t)
St−1,j)νt

j

〉

≤ ω̃(t)γ(t)

2
(
∥λ− λ

(t)
0 ∥

2 − ∥λ− λ
(t)
St
∥2 − ∥λ(t)

St
− λ

(t)
St−1∥

2
)

+ ω̃(t)(ρ(t))2∥νt−1∥2

2β(t) ∥λ(t)
0 − λ

(t)
−1∥

2 − ω̃(t)β(t)

2
[
∥y(t)

St
− x∥2 − ∥y(t)

0 − x∥2
]

. (A.6)

Next, we note that

Qx(zt, z) + Qλ(zt, z) = L(xt; λ, νt)− L(x; λ̃t, νt),

ωT ηT

2 ∥xT − x∥2 − ω1η1
2 ∥x0 − x∥2 ≤

T∑
t=1

ωtηt

2
(
∥xt − x∥2 − ∥xt−1 − x∥2

)
where the first equality comes from definition and the inequality comes from telescoping along with
requirement (3.7). Then by telescoping, we produce the following bounds

T∑
t=1

ω̃(t)β(t)

2
(
∥y(t)

0 − x∥2 − ∥y(t)
St
− x∥2

)
≤ ω̃(1)β(1)

2 ∥y(1)
0 − x∥2 − ω̃(T)β(T)

2 ∥y(T)
ST
− x∥2

T∑
t=1

ω̃(t)γ(t)

2
(
∥λ− λ

(t)
0 ∥

2 − ∥λ− λ
(t)
St
∥2
)
≤ ω̃(1)γ(1)

2 ∥λ− λ
(1)
0 ∥

2 − ω̃(T)γ(T)

2 ∥λ− λ
(T)
ST
∥2

T∑
t=1
− ω̃(t)γ(t)

2 ∥λ(t)
St
− λ

(t)
St−1∥

2 + ω̃(t)(ρ(t))2∥νt−1∥2

2β(t) ∥λ(t)
0 − λ

(t)
−1∥

2

≤
T∑

t=1

ω̃(t)γ(t)

2
(
∥λ(t)

0 − λ
(t)
−1∥

2 − ∥λ(t)
St
− λ

(t)
St−1∥

2
)

≤ ω̃(1)γ(1)

2 ∥λ(1)
0 − λ

(1)
−1∥

2 − ω̃(T)γ(T)

2 ∥λ(T)
ST
− λ

(T)
ST −1∥

2

where the first two inequalities apply (3.12) and (3.13) respectively, while the following bound
applies requirement (3.14), line 11 of Algorithm 1, and uses (3.13) to telescope.

Finally for t ≥ 2, by line 11 of Algorithm 1 and the second condition of (3.14),

ω̃(t)ρ(t)
〈

y
(t)
0 − x,

m∑
j=1

(λ(t)
0,j − λ

(t)
−1,j)νt−1

j

〉
− ω̃(t)

〈
y

(t)
St
− x,

m∑
j=1

(λ(t)
St,j − λ

(t)
St−1,j)νt

j

〉
=

ω̃(t−1)
〈

y
(t−1)
St−1

− x,
m∑

j=1
(λ(t−1)

St−1,j − λ
(t−1)
St−1−1,j)νt−1

j

〉
− ω̃(t)

〈
y

(t)
St
− x,

m∑
j=1

(λ(t)
St,j − λ

(t)
St−1,j)νt

j

〉
.

38

Since λ
(1)
−1 = λ1

0 by initialization, summing the inner product terms over t = 1, ..., T results
in −ω̃(T)

〈
y

(T)
ST
− x,

∑m
j=1(λ(T)

ST ,j − λ
(T)
ST −1,j)νT

j

〉
. Rearranging, applying Young’s inequality, using

requirement (3.11), and combining with the bounds outlined above results in

T∑
t=1

ωt[Qx(zt, z) + Qλ(zt, z)] +
T∑

t=1

St∑
s=1

ωt

St

1
2Lh
∥λ− λ(t)

s ∥2 +
T∑

t=1

ωtηt

2 ∥x
t − xt−1∥2

+ ωT ηT

2 ∥xT − x∥2 − ω1η1
2 ∥x0 − x∥2 ≤ ω̃(1)

2
(
γ(1)∥λ(1)

0 − λ∥2 + β(1)∥y(1)
0 − x∥2

)
.

Proof of Lemma 3.9. Recall that x̃t = xt−1 + θt(xt−1 − xt−2). Thus,〈
νj − νt

j , (x̃t − xt)
〉

= −
〈
νj − νt

j , (xt − xt−1)
〉

+ θt

〈
νj − νt−1

j , (xt−1 − xt−2)
〉

+ θt

〈
νt−1

j − νt
j , (xt−1 − xt−2)

〉
.

Using [22, Lemma 3.5] and that g∗
j is strongly convex with modulus 1 with respect to the Bregman

divergence Ug∗
j
, the proximal mapping

νt
j ← argmax

νj∈Vj

〈
νj , x̃t

〉
− g∗

j (νj)− τtUg∗
j
(ν; νt−1) ∀j ∈ {1, . . . , m} ,

which is equivalent to line 4 of Algorithm 1, satisfies j ∈ {1, . . . , m}〈
νj − νt

j , xt
〉

+
〈
νj − νt

j , x̃t − xt
〉

+ g∗
j (νt

j)− g∗
j (νj)

≤ τtUg∗
j
(νj ; νt−1

j)− (τt + 1)Ug∗
j
(νj ; νt

j)− τtUg∗
j
(νt

j ; νt−1
j) .

Summing over t = 1, . . . , T with weights ωt yields

T∑
t=1

ωt

[〈
νj − νt

j , xt
〉

+ g∗
j (νt

j)− g∗
j (νj)

]

+
T∑

t=1
−ωt

〈
νj − νt

j , (xt − xt−1)
〉

+
T∑

t=1
ωtθt

〈
νj − νt−1

j , (xt−1 − xt−2)
〉

+
T∑

t=1
ωtθt

〈
νt−1

j − νt
j , (xt−1 − xt−2)

〉

≤
T∑

t=1
ωt

[
τtUg∗

j
(νj ; νt−1

j)− (τt + 1)Ug∗
j
(νj ; νt

j)− τtUg∗
j
(νt

j ; νt−1
j)

]
.

Applying requirements (3.8) and (3.9), one can conclude that

T∑
t=1

ωt

[〈
νj − νt

j , xt
〉

+ g∗
j (νt

j)− g∗
j (νj)

]
≤ −

[
ωT (τT + 1)Ug∗

j
(νj ; νT

j)− ωT

〈
νj − νT

j , xT − xT −1
〉]

−
[

T∑
t=1

ωtτtUg∗
j
(νt

j ; νt−1
j)− ωt−1

〈
νt−1

j − νt
j , (xt−1 − xt−2)

〉]
+ ω1τ1Ug∗

j
(νj , ν0

j) .

Taking the sum over j = 1, . . . , m with weights λj yields the desired result.

39

Proof of Proposition 3.10. From Lemma 3.7, any ν ∈ V satisfies

m∑
j=1

λjUg∗
j
(ν; νT

j) ≥ 1
2LADA

ε,r

∥∥∥∥∥∥
m∑

j=1
λj(νj − νT

j)

∥∥∥∥∥∥
2

.

Therefore, by Lemma 3.9 and requirement (3.9),

T∑
t=1

ωt

[
Qν(zt, z)

]
≤

ωT

〈
m∑

j=1
λj(νj − νT

j), xT − xT −1
〉
− ωT (τT + 1)

2LADA
ε,r

∥∥∥∥∥∥
m∑

j=1
λj(νj − νT

j)

∥∥∥∥∥∥
2


+
T∑

t=2

ωt−1

〈
m∑

j=1
λj(νt−1

j − νt
j), (xt−1 − xt−2)

〉
− ωt−1τt

2θtLADA
ε,r

∥∥∥∥∥∥
m∑

j=1
λj(νt

j − νt−1
j)

∥∥∥∥∥∥
2


+ ω1τ1

 m∑
j=1

λjUg∗
j
(νj , ν0

j)

 .

(A.7)

Applying Young’s inequality to the inner product yields

T∑
t=1

ωt

[
Qν(zt, z)

]
≤

ωT LADA
ε,r

2(τT + 1)∥x
T − xT −1∥2 +

T −1∑
t=1

ωtθt+1LADA
ε,r

2τt+1
∥xt − xt−1∥2 + ω1τ1

〈
λ, Ug∗(νj , ν0

j)
〉

.

(A.8)

Utilizing the stepsize conditions (3.9) and (3.10), combining with Lemma 3.8, and the fact that
y

(1)
0 = x0 and λ

(1)
0 = λ0, achieves the desired bound.

A.2 Proofs Deferred for Heterogeneously Smooth Composite Analysis

Proof of Proposition 4.2. Similar to the proof of Proposition 3.3, we note the bound from
Proposition 4.9. Considering τ1 = 0 and the nonnegativity of Lh, the associated norm, and Q(zt, z⋆),
it holds for all T ≥ 1,

ωT ηT

2 ∥xT − x⋆∥2 ≤ ω̃(1)β(1) + ω1η1
2 ∥x0 − x⋆∥2 + ω̃(1)γ(1)

2 ∥λ0 − λ⋆∥2 + δ

2

[
ωT (τT + 1) +

T∑
t=2

ωtτt

]
.

Using the stepsize conditions (3.15) and (3.16) and our distance bounds, and letting Nε =
√

24LADA
ε,rD2

x

ε
then

∥xT − x⋆∥2 ≤ 1
2LADA

ε,r

[
(C/∆ + 2LADA

ε,r)D2
x + 1

C∆D2
λ +

12LADA
ε,r D2

x

N3
ε

(
T 3 + 3T 2 + 2T

6

)]
, ∀T ≥ 1,

where we bounded
[
ωT (τT + 1) +∑T

t=2 ωtτt

]
≤ T 3+3T 2+2T

6 with specialized δ = ε/Nε. Finally
considering particular iterate t ≥ 1, we can further bound the rightmost product by 48LADA

ε,r D2
x for

any t ≤ ⌈Nε⌉.
The remainder of the proof follows analogously to the proof of Proposition 3.3.

40

Proof of Lemma 4.7. Let λ ∈ Λr and ḡ(x) = ∑m
j=1 λjgj . Moreover, consider any δ > 0 and

Lλ ≥
m∑

j=1

[1− pj

1 + pj
· m

δ

] 1−pj
1+pj

λ
2

1+pj

j L
2

1+pj

j

 .

Since ∇ḡ(y) = ∑m
j=1 λj∇gj(y) for all y ∈ X, letting ν = ∇g(x) and ν̂ = ∇g(x̂), one has that

⟨λ, Ug∗(ν; ν̂)⟩ =
m∑

j=1
λjUg∗

j
(νj ; ν̂j) =

m∑
j=1

λjUgj (x̂; x) = Uḡ(x̂; x) ≥ 1
2Lλ
∥

m∑
j=1

λj(νj − ν̂j)∥2 − δ

2

where the second equality follows from [7, Appendix A.2] and the inequality from using the
cocoercivity condition in Lemma 2.4. Noting in (4.1), Lδ,r ≥ Lλ for all λ ∈ Λr gives the desired
bound.

Proof of Lemma 4.8. This result follows analogously to deriving (A.7) in the proof of Proposi-
tion 3.10, with the modification of noting that by Lemma 4.7, for any ν ∈ V and δ > 0,

m∑
j=1

λjUg∗
j
(ν; νT

j) ≥ 1
2Lδ,r

∥∥∥∥∥∥
m∑

j=1
λj(νj − νT

j)

∥∥∥∥∥∥
2

− δ

2 .

By Lemma 3.9 and requirement (3.9), with the above substitution

T∑
t=1

ωt

[
Qν(zt, z)

]
≤ ωT (τT + 1)

δ

2 −
1

2Lδ,r

∥∥∥∥∥∥
m∑

j=1
λj(νj − νT

j)

∥∥∥∥∥∥
2


+ ωT

〈
m∑

j=1
λj(νj − νT

j), xT − xT −1
〉

+
T∑

t=2

[
ωtτt

δ

2 −
1

2Lδ,r

∥∥∥∥∥∥
m∑

j=1
λj(νt

j − νt−1
j)

∥∥∥∥∥∥
2


+ ωt−1

〈
m∑

j=1
λj(νt−1

j − νt
j), (xt−1 − xt−2)

〉]
+ ω1τ1

 m∑
j=1

λjUg∗
j
(νj , ν0

j)

 .

Rearranging and applying Young’s inequality (analogous to (A.8)) concludes the proof.

41

	Introduction
	Our Contributions
	Example of our Universal Constants L,rADA and ADA and an Application of Convergence Rates.

	Preliminaries
	Key Techniques from Prior Works

	Minimization of Compositions with Smooth Components
	Lg Function Framework for Composite Optimization
	An Approximate Dualized Aggregate Smoothness Constant
	The Universal Fast Composite Gradient Method
	Guarantees for Composite Optimization with Smooth Components
	Analysis of UFCM for Compositions with Smooth Components

	Compositions with Heterogeneously Hölder Smooth Components
	A Universal Definition of the Approximate Dualized Aggregate Smoothness
	Guarantees for Composite Optimization with Heterogeneous Components
	Analysis of UFCM for Compositions with Heterogeneous Components

	Growth Bounds and Restarting
	Growth Structure
	An Approximate Dualized Aggregate Convexity Lg
	A Further Universalized Approximate Dualized Aggregate Smoothness
	Guarantees for Fully Heterogeneous Compositions
	Analysis of R-UFCM (Proof of thm:fully-heteogeneous-component-guarantees)
	Application to Functionally Constrained Optimization

	Deferred Proofs
	Deferred Proofs for Smooth Composite Analysis
	Proofs Deferred for Heterogeneously Smooth Composite Analysis

