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Abstract

This paper proposes a universal algorithm for convex minimization problems of the composite
form go(x) + h(g1(x), ..., gm(x)) +u(x). We allow each g; to independently range from being
nonsmooth Lipschitz to smooth, from convex to strongly convex, described by notions of Holder
continuous gradients and uniform convexity. Note that, although the objective is built from
a heterogeneous combination of such structured components, it does not necessarily possess
smoothness, Lipschitzness, or any favorable structure overall other than convexity. Regardless,
we provide a universal optimal method in terms of oracle access to (sub)gradients of each
g;. The key insight enabling our optimal universal analysis and a core technical contribution
is the construction of two new constants, the Approximate Dualized Aggregate smoothness
and strong convexity, which combine the benefits of each heterogeneous structure into single
quantities amenable to analysis. As a key application, fixing h as the nonpositive indicator
function, this model readily captures functionally constrained minimization go(z) + u(x) subject
to gj(x) < 0. In particular, our algorithm and analysis are directly inspired by the smooth
constrained minimization method of Zhang and Lan and consequently recover and generalize
their accelerated guarantees.

1 Introduction

This paper considers the design of scalable first-order methods for the following quite general
class of convex optimization problems. Given closed, convex functions g;, u: X - RU {400} for
j=0,...,m, a closed, convex, component-wise nondecreasing function h: R™ — R U {+o0}, and a
closed, convex constraint set X C R", we consider the convex composite optimization problem

DPx = g}rg}(l F(x) :=go(x) + h(g1(z),...,gm(x)) + u(x) . (1.1)
We are particularly interested in heterogeneous settings where the components g; forming the
overall objective F' vary in their individual smoothness (or lack thereof) and convexity. The convex
composite model (1.1) is well-studied and captures a range of standard optimization models:

e Minimization of Finite Summations. As perhaps the most basic composite setup, minimization
of finite sums h(z) = 3 z;, where each z; = g;(z) is one component of the objective, is
widespread in machine learning and data science applications. The optimization of objective
functions built from heterogeneous sums of smooth and nonsmooth components was recently
considered by the fine-grained theory of [10] and the bundle method theory of [26]. Universal,
optimal guarantees for the minimization of any sum of heterogeneously smooth components
via Nesterov’s universal fast gradient method [30] were given by [15].
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o Functionally Constrained Optimization. Considering the composing function as the indicator
function h(z) = t.<o(2) for z; = gj(x), this model recovers the standard notion of functionally
constrained optimization. This setting has been studied significantly, with the recent smooth
constrained optimization work of [42] being a particular motivation for this work. Constrained
optimization handles a large class of problems with applications to machine learning, statistics,
and signal processing [3, 20, 22, 32].

o Minimization of Finite Maximums. Our model also captures minimizing finite maximums:
h(z) = max; z; of several component functions z; = g;(x) [32]. For example, such objectives
arise as a fundamental model in game theory, in robust optimization seeking good performance
across many objectives [6], and in the radial optimization framework of [16, 17].

e Smoothed Finite Mazimum and Constrained Optimization Finally, we provide two convex
composite examples that address the previous two models in a smoothed setting. First, for
applications minimizing the maximum of several functions gj(a:), one can instead minimize an
n-smoothing of the max function [5]: for some 7 > 0, consider h,(2) = nlog(3_7L; exp(z;/n)).
As 7 tends to zero, this converges to max; z; but becomes less smooth. Second, consider
hy(z) = 327 max{z; /7, 0}2, providing a smooth penalty for any constraint function violating
nonpositivity.

Here we address convex composite problems (1.1), assuming u, h, and X" are reasonably simple
(i.e., have a computable proximal/projection operator). Note that this captures all four of the above
application settings. We allow g; to vary significantly in structure (i.e., ranging from nonsmooth
Lipschitz to having Lipschitz gradients and from simple convexity to strong convexity). Section 4
and Section 5 present the considered heterogeneous models of Holder smoothness and uniform
convexity formally, but we give the following definitions here. We say that f is (L, p)-Holder smooth
for p € [0, 1] if its gradient is Holder continuous:

IVf(x) = Vil < Lz —yl” Va,y € dom(f) . (1.2)

As an immediate consequence of the fundamental theorem of calculus,

F0) < £(@) + (T f@)y =)+ =y =P Vg € dom() (13

Conversely, we say that f is (u, ¢)-uniformly convex for ¢ > 1 if

F) > @)+ (Vi) =) + Ly =2l Yoy € dom() (14)

We note that allowing each g; to satisfy these conditions with their own (Lj, p;) and (u;,q;) does
not guarantee F' possesses any of these favorable structures besides being simply convex. Despite
this lack of centralized structure, this work presents a simple first-order method attaining optimal
convergence guarantees, combining and leveraging whatever structure is present in each component.
Algorithms that can be applied optimally across a range of structurally different problem settings
are known as universal methods. Universality is a key property for developing practical algorithms
capable of being widely deployed in blackbox fashion. For the case of minimizing a single function
f ranging in its Holder smoothness, optimal universal methods were first pioneered by Lan [14, 21]
and Nesterov [13, 30]. Further work on universal methods allowing for convex hybrid composite
models [18, 26], heterogeneous summations [15, 38], varied growth structures [19, 31], constrained
optimization [8, 20, 42], and stochastic optimization [2, 35] has followed since. To varying degrees,



the above works developed algorithms that are “mostly” parameter-free, potentially relying on a
target accuracy €, an upper bound on the diameter of X', or similar universal problem constants.
Without additional parameters, stopping criteria indicating when a target accuracy is reached
are often unavailable. Hence, although the above methods apply universally, they vary in how
parameter-free they are.

As a concrete example of a universal method, the Universal Fast Gradient Method (UFGM) [30]
can optimally minimize F' = go+wu, with the structure of gg ranging from smooth to nonsmooth. This
setup is modeled by supposing go is convex with (L, p)-Holder continuous gradient, corresponding
to Lipschitz gradients when p = 1 and Lipschitz functions value when p = 0. The UFGM, given
target accuracy € > 0 as an input, produces a point with at most € objective gap in either of these
settings and in every intermediate one, using at most
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(sub)gradient oracle evaluations for gp. The matching lower bounds cited in [28, page 26] establish
that this rate is optimal for every p € [0, 1]. Given additional structure, like (u, ¢)-uniform convexity
of go, a universal restarting scheme like [33] can be applied to achieve the optimal, faster rates of
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(sub)gradient oracle evaluations with respect to g, up to logarithmic factors.

This work aims to develop a universal method for the composite setting (1.1), allowing hetero-
geneity in the Holder smoothness and uniform convexity of each g;, capturing and generalizing
the settings of the above universal methods. Our proposed Universal Fast Composite Method
(UFCM) is formally defined in Algorithm 1. When restarting is included, we denote it by R-UFCM,
defined in Algorithm 2. Our method is not parameter-free, depending on the following three
main parameters: a target accuracy € > 0, an Approximate Dualized Aggregate smoothness LQ?TA
capturing the combined effect of any upper bounding curvature present among the composition, and
finally, an Approximate Dualized Aggregate convexity uiP* capturing the combined effect of any
lower bounding curvature. The invention of these unifying constants, abstracting and simplifying
any complex dependence on individual components’ Hoélder smoothness and uniform convexity
constants and exponents, is key to our algorithm’s success. We formally define the latter parameters
in (4.2) and (5.1).

We note that one may tradeoff knowledge of LQ‘I}A for knowledge of bounds on the initial
distances to optimal, D, and D), without affecting big-O oracle complexities. Further discussion
is presented in Remark 4.6. The design of entirely parameter-free methods, avoiding knowledge
of these aggregate constants and distance bounds, is left as an important future direction. The
parameter-free techniques of [25, 30, 44] may be useful to this extent.

Measuring the convergence of a method requires a suitable notion of solution quality. Often,
iterative methods seek to produce a solution z! with a bounded objective gap:

Kyc(e, L,p, p1,q) = (1.6)

F(z")—p.<e. (1.7)

However, for general composite problems (1.1), since F' is allowed to take infinite value arbitrarily near
a minimizer (an important attribute for modeling constrained optimization as discussed above), our
iterative schemes for minimizing F' do not directly provide a solution z! with bounded suboptimality.



Instead, we identify (e, r)-optimal 2! defined as there existing § € R™ and a subgradient Ae Oh(g)
satisfying
go(z") +h(g) + (A g(a") — §) +u(a') —p. <e,
ty _ 4 (1.8)
rllg(z") — gl <e.

Here, § informally serves as a perturbed projection of g(z') onto the domain of dh and r is a
hyperparameter that one can fix proportional to \/¢ to obtain simply an “c-optimal” solution where
lg(zt) — §||* < & (Lemma 3.2 introduces r and discusses its meaning as a radius for dual multipliers).

This condition states x! nearly attains the optimal objective value when the outer composition
function h is linearized via a subgradient \ taken at a nearby §. For example, in the context
of constrained minimization where h is an indicator function for the nonpositive orthant, A is
precisely a nonnegative vector of Lagrange multipliers, making the above conditions correspond to
the approximate attainment of the KKT conditions. In this case, § is a perturbed projection of
g(z*) onto the nonpositive orthant. By construction, \ and g are orthogonal, and the conditions for
an (e, r)-optimal solution correspond to

go@) + (A, g(@")) +ua’) —p. <e,
rlg(at) - 3l <e,

The first condition states that x! approximately minimizes the Lagrangian at A Approximate
primal feasibility follows from the second and third conditions establishing dist(g(z), R™) < &/r.
Dual feasibility follows from the nonnegativity of A Finally, approximate complementary slackness
follows from the orthogonality of A and § as [(, g(z!))] = [(\, g(z) — g)| < ||\]|e/r.

As a second example, when h is a linear function (e.g. when directly minimizing a sum of
component functions), one has h(g(z")) = h(9) + (A, g(z') — §) and so (1.8) reduces to the classic
bounded suboptimality measure (1.7). In this case, § = g(z*). Further discussion on the roles and
values of § and M is in Section 3.1

Note in our developed algorithms, both § and \ are not explicitly constructed, and are generally
inaccessible computationally. Hence, although our analysis guarantees such values exist certifying
approximate optimality, we cannot certify at runtime when the iterate becomes (e, r)-optimal.
This limitation cannot be improved: When h is linear, our optimality condition (1.8) reduces to
suboptimality F'(zt) — px < €, which cannot be certified without knowledge of p, or additional global
structure.

1.1 Owur Contributions

This work develops a universal primal-dual method for heterogeneous compositions (1.1) with
optimal first-order complexity with respect to components g;. Our proposed UFCM and its restarted
variant R-UFCM leverage the sliding technique of [23] and the “Q-analysis” technique of [42],
originally designed for smooth constrained optimization. As a key contribution to this end, we
propose new notions of the Approximate Dualized Aggregate smoothness constant L‘;?TA and the
Approximate Dualized Aggregate convexity constant pfPA. These two constants provide a new
unifying technical tool for the analysis of heterogeneous optimization that may be of independent
interest. From these, we prove the oracle complexities outlined in Table 1. For example, in the
simple setting of minimizing go(z) + u(x), these rates recover the optimal suboptimality convergence

rates of (1.5) and (1.6).
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Table 1: Oracle complexities in terms of universal parameters LQ?TA and pAP*, proven in Theorem 5.5,

up to constants and additive logarithmic terms in €. Here, D, and D) denote bounds on the initial
primal and dual distances to optimality, and M denotes a local Lipschitz constant.

For ease of exposition, we develop our convergence theory incrementally through three main theorems:
~Theorem 3.4 establishes a O(1/4/¢) rate towards e-optimality when each g; is smooth and convex.
Hence, smooth composite optimization is nearly as easy as unconstrained smooth optimization.
~Theorem 4.3 generalizes this analysis to establish optimal rates when each g; is convex with varying
Holder continuous gradient (1.2), recovering (1.5) as a special case.

—Theorem 5.5 finally leverages standard restarting techniques to establish optimal rates when the
components additionally possess varying uniform convexity (1.4), recovering (1.6) as a special case.

Remark 1.1. Note that these rates are only optimal for the first-order complexity with respect
to the components gj, not necessarily the proximal oracle complexity. The work of [37] shows the
latter can be improved to O (1/e) when gy is nonsmooth and Lipschitz whereas our method requires
O (1/€?) prozimal evaluations in such nonsmooth settings.

ADA

1.2 Example of our Universal Constants L' and

Convergence Rates.

and an Application of

Our ability to provide universal guarantees across heterogeneous problem settings is primarily
enabled by the design of our Approximate Dualized Aggregate smoothness LQBﬂA and strong convexity
utPh constants. Although we defer formal definitions of these to (4.2) and (5.1), here we briefly
discuss their essential properties and consequences. These constants are “approximate” in that
they depend on the target accuracy €, “dualized” in that they depend on associated optimal
dual multipliers A}, and “aggregate” in that they combine these dependencies and every problem

parameter (Lj,p;), (1j,q;), etc. into a single constant. From these constants, we find that the

ADA 2 ADA
traditional smooth and smooth, strongly convex rates O (\/ LE’;DI) and O <,/ ijﬁz log (i)) hold

for generic heterogeneous composite settings.

These unifying constants are graceful in their dependence on dual multipliers /\J*-: the dependence
on the jth component’s (L, p;) and (45, g;) vanishes as A} tends to zero. In constrained optimization,
)\;f = 0 corresponds to the constraint being inactive at the optimal solution. Hence, inactive
constraints play a vanishing role in our convergence rates (as one would hope). As a more concrete




example, consider minimizing a finite maximum h(g;(x), g2(x)) with h = max{z;, 22} of an L-
smooth function g; and an M-Lipschitz nonsmooth function g». Here, the optimal dual multiplier
A* € [0, 1] describes the activity of each component at the minimizer, \* = 0 if the problem reduces
to minimizing the smooth component, A* = 1 if the problem reduces to minimizing the Lipschitz
component, and A\* € (0, 1) if both are active. Corollary 4.5 shows that our gradient complexity
guarantees for such problems simply decompose into the sum of each component’s complexity
separately, weighted by its dual multiplier plus r,

1= X +7r)LD2  ((\*+7)M)?D?
o ¢< FLDE | (074 M) DL

Selecting 7 = O(e%*), this bound transitions from the optimal accelerated smooth rate O(1/+/€)to
the optimal nonsmooth rate O(1/€?) gracefully as A* € [0, 1] varies.

This recovery of the optimal rates (1.5) when there is a single active component establishes near
optimality of our guarantees with respect to first-order oracle evaluations of the component functions

. : L | LA D2 Lo 1
g;- Any improvement in our dependencies in O - and O s log (E) beyond a log

term would violate the lower bounds stated by [28].

Outline. Section 2 introduces preliminaries as well as the sliding technique and “Q-analysis”

discussed in [42] for solving constrained optimization. Section 3 extends this method to smooth
composite optimization, proving optimal guarantees. Section 4 generalizes to functions with Holder
continuous gradient. Finally, Section 5 generalizes to allow heterogeneous levels of uniform convexity.

2 Preliminaries

We define our notation to align with [42]’s prior work in constrained optimization. First, without loss
of generality we set go(z) = 0 as one can consider instead minimizing 0 + h(go(z), ... gm(z)) + u(z)
with h(zo, 21, .-2m) = 20 + h(z1, ... zm). Hence, it suffices to consider problems of the form

min F(2) = h(g1(2), .. gm(2)) + u(z) (2.1)

defined by a closed, convex set X C R™ and the following closed, convex functions: regularizing
function u: X — R U {400}, composing function h: R™ — RU {400}, and component functions
gj: X — R. Below, we describe the additional structures assumed on each function.

Assumed Structure of Objective Components g, h,u. We assume each g; is locally Lipschitz
with some form of bounds on its curvature. We take each g; to be Lj-smooth (i.e., Vg; is L;-
Lipschitz) in Section 3 to set up the algorithmic framework and convergence results. In Sections 4
and 5, we allow the components to have varying levels of smoothness and varying levels of convexity,
as defined in (1.2) and (1.4). Whatever structure is present in these components only arises in our
convergence theory through the unifying parameters LQ?TA and pAP* which aggregate any structures

available, enabling our universal method and analysis. We assume X, u, and h are sufficiently
simple that their proximal operators can be evaluated, defined for any parameter 7 > 0 as

. T
prox, - (x) i= argminu(y) + - |ly - %, (2.2)
yeX
. T
prox;,  (x) := argmin h(y) + — ||y — z| (2.3)
yeRm 2



respectively.

The algorithms designed herein are primal-dual, leveraging the convex (Fenchel) conjugates [11]
of h and each g;. For any convex function f: R™ — R U {400}, we denote its conjugate as

f(s) = sup {(s,z) — f(x)} - (2.4)
rER™

Note Moreau’s decomposition [3, Theorem 6.45] shows prox,. .(z) = & — prox, 1-(72)/7 and so
the assumed oracle access to prox; via (2.3) further provides access to proxy.

Finally, we assume h is component-wise nondecreasing, which suffices to ensure the overall
objective F' is convex. The following pair of standard lemmas formalize the resulting structures.

Lemma 2.1. [34, Theorem 5.1] If h: R™ — RU{+4o00} is convex and component-wise nondecreasing
and g: R" — R™ is component-wise convex, then c(x) := h(g(z)): R™ — R is conver.

Lemma 2.2. If h: R™ — RU{+o0} is convex and component-wise nondecreasing, then dom(h*) C
RT.
Proof. Since h is component-wise nondecreasing and convex, at any = € dom(h),

W (z;—e;) <0, Vj < sup (s,—e;) <0, Vj < Vs€dh(z), s>0 < Oh(z) CRY .
s€0h(x)

Then, for any s € ri(dom(h*)), there exists € Oh*(s), and thus s € Oh(xz) C R} O

Lagrangian Reformulations. We can now define a Lagrangian function essential to our algorithm
and its analysis. Recalling f = f** for any closed, convex, and proper function [34, Corollary 12.2.1],
one has that

h(g(z)) = sup (A, g(x)) — h*(N), where A :=dom(h") .

AEA
The Standard Lagrangian reformulation follows as
inf h(g(z)) + u(z) = inf sup {(A, g(x)) — A" (A) + u(x)} . (2.5)
reX TEX NcA

Furthermore, since each A € R’ (see Lemma 2.2), one can dualize each component function g;,
obtaining the equivalent Fatended Lagrangian reformulation, which our analysis will utilize
inf h(g(x)) +u(x) = inf  sup {L(z;\,v) = (\ve—g"(v))—h*"(\) +ulx)} , (2.6)
zEX TEX (\1)eAxV
where V := dom(g*). Note that £(z;\,v) is convex in = and block-wise concave in A and v.
Define Z := X x A x V for primal variables z € X, dual variables A € A = dom(h*) C R, and
conjugate variables v € V' = dom(g*) C R™*™ . Let Z* denote the set of saddle points of (2.6),
which we assume throughout is nonempty. In the case where h is linear, this assumption is equivalent
to the existence of a minimizer. In the case where h = 1<¢, the functionally constrained setting, this
assumption is equivalent to strong duality holding with primal and dual attainment. Note any such
z* € Z* must have 0 € 9\ L(z*; \*,v*) and consequently A* € dh(g(x*)).
As a common generalization of the Euclidean distance, for any convex reference function
g: X — R, we define the associated Bregman divergence as

Ug(x;2) := g(z) — 9(2) — (¢'(2),2 — &) (2.7)

for some ¢'(2) € dg(&). If g is vector-valued, we extend the definition above by g = (g1, ..., gm)
and Uy, = (U, ...,Uy,,). That is, Uy is vector-valued with each component being the Bregman
divergence of the corresponding component of g.



2.1 Key Techniques from Prior Works

Our results rely on four technical tools developed over the last decade that we bring together to
handle various facets of the general problem (1.1). We introduce these formally below. In short,
Lan’s sliding technique [23] allows us to decompose the complexity concerning proximal steps on
u and h from that of gradient calls to g; the Q function analysis of [42] provides the primal-dual
framework from which UFCM is built; the technique to universally analyze Holder smooth functions
from [30] allows our results to generalize beyond smooth optimization; restarted methods allow us
to generalize our results further to benefit from any uniform convexity present among its components.

Sliding Gradient Methods. The sliding technique introduced by Lan [23, 24] iteratively and approxi-
mately solves subproblems associated with accelerated proximal gradient methods. This approach
was first developed to handle objectives gy + u, with gy smooth and u nonsmooth but with readily
available subgradients. The sliding gradient method allows the number of first-order oracle calls to
go and u to be decomposed, often significantly reducing the number of calls needed to gg. In the
context of our considered method, a central step of our method requires a proximal step on a certain
minimax optimization subproblem involving v and h*. Sliding performs this step approximately,
decomposing computations related to Vg, prox,, ., and proxs« ..

Q Function Framework for Constrained Optimization. The novel work of [42] considered the problem
of minimizing gg + u subject to inequality constraints g;(z) < 0, corresponding in our model to
minimizing F' = go(x) + t2<0(g1,--.,9m) + u(z). The key step therein is designing algorithms
generating iterates 2! driving an associated “gap function” providing a measure of optimality on the
extended Lagrangian reformulation to zero!:

Q(zt,z) = ‘C(xt7 )\71/7 7T) - ‘C(w;)‘tvytﬂrt) .

Their proposed accelerated method for smooth constrained optimization works by optimizing the
Q function separately with each block of variables. Their updates concerning = and v amount to
computing gradients of go and g;. Their updates for x and A correspond to solving a quadratic
program, which a sliding technique is able to decompose.

Our theory recovers these results of Zhang and Lan, improving their guarantees in settings with
strongly convex constraints, enabling it to apply universally to compositions (not just constrained
optimization) and to problems with Holder smooth and/or uniformly convex components. Section 3.1
formally develops our generalization of their Q function framework. After developing our convergence
theory, Section 5.6 provides a detailed comparison of results.

Universal Methods for Minimization with Hélder Continuous Gradient.

Nesterov’s universal fast gradient method [30] provided a generalization of Nesterov’s classic fast
gradient method [29] capable of minimizing any (L, p)-Holder smooth objective. The key technical
insight originating from [9] that enables this method is a lemma establishing an approximate
smoothness result for any such function, meaning the standard quadratic upper bound derived
for functions with Lipschitz gradient holds for functions with Holder gradient up to an additive
constant. A variant of this lemma showcasing a standard cocoercivity inequality also generalizes at
the cost of an additive constant, derived by [25].

'Here 7 is dual multiplier corresponding to the function go, always equal to 7* := Vgo(z'). We omit this variable
from the formulation considered throughout this work as without loss of generality, we set go = 0.



Lemma 2.3 (Lemma 1, Nesterov [30]). For any tolerance § > 0 and (L, p)-Hélder smooth function

e,
f: X =R with Ls > [}%H TP [T

F5) < F2)+ (VF @)y =)+ 2y~ all? + 3, Y,y € dom(f) (23)

Lemma 2.4 (Lemma 1, Li and Lan [25]). In the same setting as Lemma 2.3,

£0) = £(@) + (Vf@)y —2) + 5 |94@) = VWP - 5. Yoy € dom() . (29)

These lemmas facilitate our generalization in Section 4 from smooth components to heteroge-
neously Holder smooth components. Our Approximate Dualized Aggregate smoothness constant
LQPTA is a further generalization of the approximate smoothness constants Ls seen above. Namely,
LQPTA further aggregates the Holder smoothness of each component g;, weighted approximately by
the corresponding optimal dual multiplier Aj.

Restarting Gradient Methods. Algorithmic restarting, dating back to at least [28], can be shown
to accelerate the convergence rate of first-order methods. The more recent works [33, 36, 39]
established improved convergence guarantees given strong or uniform convexity or any general
Holderian growth. The analysis of such schemes tends to rely on ensuring a reduction, often a
contraction, in the distance to optimal occurs at each restart. Such schemes have found particular
success in primal-dual algorithm design for linear and quadratic programming [1, 27].

In our analysis, two distances to optimal are traced based on the distance from primal iterates
2! to 2* and the distance from the dual iterates A\! to A*. Given any uniform convexity among the
components g, our Approximate Dualized Aggregate convexity p2P* describes the improvement in
convergence gained from restarting the primal iterate sequence. Given any smoothness Ly in the
composing function h, improved convergence follows from restarting the dual iterate sequence. The

relative sizes of u2P* and Lj, determine our various rates previously claimed in Table 1.

3 Minimization of Compositions with Smooth Components

For ease of exposition, in this section, we first develop our main algorithm UFCM, assuming each
component function g; is L;-smooth and convex. The following two sections provide extensions to
benefit from any Holder smoothness and uniform convexity present in each g; and any smoothness
present in h. Section 3.1 formalizes the Q analysis framework for our composite optimization context,
and Section 3.2 introduces our unifying Approximate Dualized Aggregate smoothness parameter
LQPTA. Then, Section 3.3 presents our first convergence guarantee, only requiring the Approximate
Dualized Aggregate smoothness LEABP (or any upper bound) as input. Finally, Section 3.4 provides the
key steps in our analysis, deferring any reasoning directly generalizing the constrained optimization

analysis of [42] to the appendix.

3.1 (@ Function Framework for Composite Optimization

We can now introduce our generalization of the Q analysis framework of [42] that drives this paper.
Based on the extended Lagrangian (2.6), we define an analogous gap function.

Definition 3.1. Given functions g, h,u defining an instance of (2.1), the gap function is defined as
Q(z,2) := L(x; N\, D) — L(Z:\,v) . (3.1)



Fixing h(-) as the indicator for the nonpositive orthant recovers their definition.

For the sake of our analysis, we fix an arbitrary saddle point z* := (z*; \*,v*) with v* :=
Vg(z*). Note L(z*; A\, v) < L(z*; X, v*) < L(z; A", v*). Hence, Q(z,2*) > 0 for all z € Z, making
convergence of Q(z!,2*) a potential measure of solution quality. Our analysis considers a slight
modification, allowing perturbations of A* and v*, giving a condition that implies 2! is an (e, r)-
optimal solution (1.8) for our original composite problem. To this end, we restrict to considering A
within a fixed distance r of A* and in the dual domain A = dom(h*), denoted

A =B\ r)NA, (3.2)

where B(A*,r) is the closed ball of radius r centered at A\*.
Given a candidate primal solution 2!, for analysis sake only, we define the following perturbed
component function value

€ argmin hlw) + (X", w) +rllw - ga')], 33)
wedom(h) ’

which exists as the objective has compact level sets. In particular, h(w) — (\*,w) > —h*(\*), by
the Fenchel-Young inequality. It then holds that for any z € R,

{w eR™ : h(w) + (=N, w) +rllw — g(a)|| < 2} € {w €R™ : =h*(\) + rllw — g(a")|| < 2}

where the larger set is bounded. From this, for analysis sake only, we define the following associated
perturbed dual variables as

>

g(z")-g  ~ t
AN g 97 9@
A+ 1r¢ otherwise.

where ¢ € B(0, 1) is an appropriate perturbation such that \* + r{ € 90h(g), which is guaranteed
by first-order optimality conditions. Note that A € Oh(g), implying A € A (since g € Oh*(N)), so
A € A,.. The following lemma relates (g, r)-optimality to the evaluation of Q at z! with respect to
(z*, A, Vg(z)).

Lemma 3.2. For any z' = (A, 0') € Z and e > 0, if Q(2', (z*,\, Vg(z'))) < e, then z' is
(e,r)-optimal (1.8).

Proof. Let 0 = Vg(xz!). Since A € Oh(9) N Ay, the first condition for the (g, 7)-optimality of 2! holds

as

~

19 + (A g(a") = §) +u@")| = Fe*) < [h(@) + (A g(a") = §) + ula")] = L5 N0
(

>
=
H@b
N
|
>=
*
P
N~—
_l’_
<
—
8
o~
|
oy
&
— .*
>
t@b

where the first inequality simply bounds F(x*) below by £(x*; X!, ') and the following two equalities
apply the Fenchel-Young inequality, holding with equality since \ € Oh(g) and © = Vg(at).

To show the second condition for (g, r)-optimality holds, if § = g(z') then this result is trivial.
Otherwise, we note that since (z*, \*) is a saddle point to (2.5),

0< (X% g(at)) = () + ula®) = [(N, 9@™) = B (N) + u(a?)] (3.4)
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Consequently,

lg(=*) = gll”
= [(Xg(@)) = h*(\) + u(a*)]

= (Ag(a") - <’"(g(”5t) ~9 g> — (V90 (N 9) = BT OV) + ()

rllgla®) - gl < <W)‘g> gla') - 9> +(Mogla)) = () + ue)

lg(at) — gl
= [(X (@) = B* () + u(a*)]

where the first inequality follows from (3.4), and the second and third apply Fenchel-Young. O

3.2 An Approximate Dualized Aggregate Smoothness Constant

If one knew the optimal dual multipliers A*, the convex composite optimization problem (2.1) could
be rewritten as the simpler minimization problem of

min Z Ajgj(w) +u(x) , (3.5)
zeX =

which can be addressed by accelerated (regularized) smooth optimization methods like FISTA [4].
In this simplified problem, > AJg; (z) is > AjLj-smooth, aggregating the individual smoothness
constants weighted by the optimal dual multiplier. Without knowing A*, we aim to approximate
this aggregate dualized constant. Our theory instead depends on the slightly larger constant given
by considering all A in the neighborhood of A\* given by A,. Given each g; is L;-smooth, we denote
this “Approximate Dualized Aggregate” smoothness constant by

LY =N "N+ 1)L . (3.6)
j=1

As r tends to zero, LQ’DTA converges to the idealized value > A7L;. Note this only depends on the
target accuracy r > 0, not € > 0. We include this dependence in our notation as the appropriate gen-
eralization to Holder smooth settings given in equation (4.2) will depend on both. Further generality
will be introduced when the components possess uniform convexity in equation (5.2). The special
case of constrained optimization minimizing go(x) 4+ u(z) subject to g;(z) < 0 provides a particularly
nice application to understand Lé?,,A. There, h(zo,...,2m) = 20 + tz<0(21,-- -, 2m), S0 Aj = 1 while

15+ A, are the optimal dual multipliers for each constraint. With L25* = Lo + Y7L, (Xf +7) Ly,
the smoothness of the objective always plays a role while only the smoothness of active constraints
at the minimizer can nontrivially affect the convergence rate (that is, complementary slackness
ensures that \¥ = 0 for each inactive constraint).

3.3 The Universal Fast Composite Gradient Method

UFCM works primarily by splitting and optimizing Q(z!,2) on its primal, dual, and conjugate
variables separately. This process formalized below is directly analogous to the algorithm design of the

11



ACGD-S method for smooth constrained optimization of [42], extended to allow a general proximal
step on A* and the usage of our new LQ?TA constant. With these established, parameter choices

only need slight modifications. Hence, UFCM generalizes ACGD-S to heterogeneous and composite
settings. We define these three components such that Q(z%, 2) = Q, (2%, 2) + Q. (2%, 2) + Q(2%, 2) as

Q.2 2) = L'\ v) — L2\ ) = <)\, vat — g*(l/)> - <)\, vzt — g*(ut)> ,

Qu (2%, 2) = L(z" N vt — Lz A vt = <i A§V§,xt> +u(z?) |- <i )\j-y;f,a?> —u(z) ,

j=1 j=1

Qx(2',2) = L(z" M) — L(ah N0t = </\, Vit — g*(vt)> —h*(\)|— [<)\t, vigt — g*(l/t)> — h*()\t)}

Each boxed term above corresponds to the component depending on the next iterate vt, 2f, \Xt. We
aim to minimize each subproblem with respect to z%; thus, we minimize each boxed value. Informally,
UFCM proceeds by first computing a momentum step in z, denoted by ! = 2!=1 4 g, (2!~ — 2!=2),
and then computing (potentially many) proximal operator-type steps in each of v, z, A corresponding
to

t ~t * -1
vj < argmax <Vj,:v > —g; (V) — 7Ug: (Vv ),
v; €V

(x', \") «— argmin max <)\, vie — g*(yt)> +u(z) = h*(A) + ||z — 12
zeX AEA

In the above, 6; parametrizes the momentum step and the nonnegative parameters 7, and 7,
are stepsizes for the proximal steps. Recall Ug; is the Bregman divergence generated by g;. Note

that solving v utilizes a Bregman divergence instead of the standard Euclidean distance, as it can
be shown recursively that this is identical to a gradient evaluation of g; at a particular averaged
point [41, Lemma 2].

Solving the second subproblem is not as simple. We utilize the sliding technique to take alternating
proximal steps with respect to x and A\, without addition to the gradient oracle complexity. We
further employ two more nonnegative parameters, 3 and v, respectively handling the proximal
steps on v and A* for the inner loop iterates.

Formally, UFCM defined in Algorithm 1 proceeds by iteratively applying a momentum update
and the above update to v in the outer loop. The inner loop using the sliding technique to apply
several proximal steps to compute the above update to (z,A) without requiring any additional

first-order evaluations of g. As computational notes, Line 11 saves previous iterates y(()t+1), )\gﬂ),

and )\(_tlﬂ) for use in the next inner loop. The subtle change from v to v*~! in the two cases defined
in Line 7 is common for sequential dual type algorithms using the sliding technique [40, 42, 43].

3.4 Guarantees for Composite Optimization with Smooth Components

We begin this section by introducing the two oracle complexities we bound with respect to finding
an (e, r)-optimal solution. We denote the gradient complexity of UFCM by N, if for any T' > N,
77 is guaranteed to be an (e, r)-optimal point. Likewise, we denote the proximal complexity of
UFCM by P, if at most [P, | proximal evaluations of u and h are guaranteed to be performed in
the first [N, | outer loop iterations of UFCM.

12



Algorithm 1 Universal Fast Composite Method (UFCM)

Input 2’ € X x A, outer loop iteration count 7', and smoothness constant Lg?;“
Initialize z=! = 20 = yél) =2 € X, )\(_1% = )\(()1) = A0 € A, and parameters {0;}, {n:}, {7}, {w:} as

a function of

ADA
La,r

1: Set ¥ = Vg(z?).

2: fort=1, 2, 3,

3: Set 2 < (ma'~! + 3% /(1 + ) where 3 = 2!~ + 0;(2!~! — 2172)
4. Set v + Vg(zt)
5: Calculate inner loop iteration limit Sy, parameters ), v®) and p(*)
6: for s=1,2,...,5; do
(t) Y .
. Set s — § W TA +p“@tU:O M) ifs=1
HTAY )T, - Ag_g) otherwise
8: Solve ys +— argm1n< ,y> + u(y) —|— A Hy Ys
yeX
(
9: Solve A" + argmax </\, Vy® -zt + g(z )> —h*(\) — H/\ )\(t) AP
AEA
10: end for1 , .
t )\ (t t t t
B Set AL S0 A A0 e
12: Set ot = Zst 1 yst)/S and X = Z )\gt)/St
13: end for

14: return (27, \T) :=

, T do

Et 1wt (x /\t) / (Zthl Wt)

@
1

the selection of its parameters. For each outer loop t > 1, we require that

where ()

t

Wit < We—17—1
wery < wp—1 (-1 + 1)
M—17e > 0, LY with 6, = w1 /wy
nr(rr +1) > L22
®) g > ik
oM BE) > Gt+1) glt+1)
W~ 0) > 1) (1)

’Y(t)ﬁ( ( ) Hyt71H2 with p(t+1) _ w(t)/w(t+1)

:= wy /Sy denotes the aggregate weights.

To ensure that UFCM converges to an (e, r)-optimal solution, we place several requirements on

© 0

—_

w (aw]
—_ Y — T T N

— = = =
\V]

~~ N T/~
IS

Although our algorithm converges for any selection satisfying these requirements, optimized

performance follows from particular choices. In particular, our main convergence guarantee below
requires knowledge of an upper bound on LEA?,,A to set parameters. Some of our convergence guarantee
corollaries additionally assume knowledge of positive bounds on the initial distances to a saddle

point D, > ||2° —

|| and Dy > [|A% — 2*|.
As a first result, we establish that a careful setting of stepsizes ensures that the primal iterates

13



are always bounded and that the dual iterates are bounded if h is Lj-smooth?. The parameters of
Algorithm 1 below are further parameterized by the choice of two balancing parameters C' and A.

Proposition 3.3. Consider any problem of the form (2.1) and constants A,C,e,r > 0, and suppose
Algorithm 1 is run with outer loop stepsizes set as
t—1 LQDTA Tt

T = , — ) , 9 — —, w :t’ 3.15
! 2 n Ti41 a1 ( )

and inner loop stepsizes set as
P(t) = ~t/Mt—la BY = CM, Y e (3.16)

with Mt == ||Vt||, St == (MtAt], Mt == i Then

1
lz* — 2*||* <

1
ADA 0 P 2 0 _\x 2
< gz | (/A4 2L~ + g~V (3.17)

Furthermore, if h is Lp-smooth, then for averaged iterates At computed each loop,
- 1
I3 = N < Lu(MA +1) [(C/A +2L80)]a® — 2P+ I = XP| . 1)

where M is an upper bound for ||Vg(x)| in the neighborhood outlined above (3.17).

Moreover, under such choices, the following theorem explicitly bounds the number of gradient
and proximal oracle calls required to reach any target (e, r)-optimality.

Theorem 3.4. Consider any problem of the form (2.1) with each g; being L;-smooth, and constants
A,Cie,r > 0. Then Algorithm 1 with stepsizes (3.15) and (3.16) must find an (e,r)-optimal
solution (1.8) with complexity bounds

, Py =[Ne,|+ [Nep1?AM, (3.19)

er —

\/ (C/A+ 204 D2 +2/(CA)(D? + 12)
g

where M is an upper bound for ||Vg(x)|| in the neighborhood outlined in (3.17)

The following corollaries simplify the above bounds by considering particular choices of A, C,
and r. The first corollary presents an upper bound in terms of a primal-dual distance while avoiding
reliance on knowledge of any upper bounds on initial distances to optimality. The second corollary
provides an improved gradient complexity bound depending only on primal distances at the cost of
requiring knowledge of upper bounds on the initial primal and dual distances to a saddle point. Our
extended theory in Section 4 and Section 5 will focus on generalizing this second, stronger result.
The remainder of this section is dedicated to proving these results.

Corollary 3.5. For any e > 0, setting C = /2/2, A = M% and r = /e, Algorithm 1 with stepsizes
(3.15) and (3.16) must find an e-optimal solution with complexity bounds

LADA D2 + D2 + LADA D2 + D2 + 2 2
Ng,r - O (\/ - ( . A 8) ) PE,T - O = ( z A €> + M(Dx + D/\ * E)
e £ 9

where M is an upper bound on |Vg(z)|| for all x € B(x*,/2(D2 + D3))

*We will abuse notation in the setting of general, nonsmooth h, saying h is Ly = co-smooth in this limiting case.
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Corollary 3.6. For any 0 < ¢ < min{1,12L2*D2}, setting C = D\/D,, A = C/2L*, and

e,r >’

r = Dy+/e, Algorithm 1 with stepsizes (3.15) and (3.16) must find an e-optimal solution with
complexity bounds

1202 [LesD:  ap.D
Ne,r:0< ’E )7 Pa,r:O( 78 + - A )

where M is an upper bound on ||Vg(z)|| for all x € B(z*,/3D2).

3.5 Analysis of UFCM for Compositions with Smooth Components

Our theory primarily follows from a sequence of three lemmas, which directly extend equivalent
results developed for the case of smooth constrained optimization by [42]. In our analysis, note that
we select g, our analytical proxy for g(x!), differently than the projection choice used by Zhang
and Lan. Throughout, we let Lj, € (0, c0] denote the smoothness constant of h, set to be oo if h is
nonsmooth, as occurs in the special case of constrained optimization. For each result, we refer to
the paralleled proof in their special case. For results requiring generalization, we defer the proofs
to Appendix A.1. Our results show that the analysis technique of Zhang and Lan is quite robust,
generalizing to compositions, managing new h* terms, and benefiting from any smoothness in h.

The first lemma provides a useful smoothness bound on the Lagrangian from our Approximate
Dualized Aggregate smoothness constant.

Lemma 3.7 (Lemma 2, Zhang and Lan [42]). If each g; is Lj-smooth, then

2
SN —0)|| . VAEA,, Vv, €{Vg(z):z € X} .

J=1

1
(AN, Ug=(v50)) >
g 2 LA

Next, we provide a general convergence bound on the @, and @) functions associated with the
primal and dual variables, extending the result of [42, Equation (4.19)] and proven in Appendix A.1.
When h is nonsmooth (i.e., L, = +00), the quantity 1/Lj; below should be interpreted at zero.

Lemma 3.8. Suppose the stepsizes satisfy (3.7)-(3.14), and let 2t := (z'; X, !) denote the iterates
of Algorithm 1. Then 2' satisfies the following for any z = (x;\,v) € X x A, x V,

T T St
w.
S wilQa(2h 2) + Qa2 2)] + ZZ HA(”—AH2+Z Ot — 2t 2
t=1 t=1 S 2L t=1 2

o
wrnr T 2 Wil 2 o (1) 2 @y, _ 2
+ 5 2t =l = R e — 2l < S (YOI = AP+ 8V s - 2]?)

Lastly, we provide a general convergence bound on the (), function associated with the conjugate
variables v, which requires only mild modifications from the analysis of Zhang and Lan [42,
Proposition 2], proven in Appendix A.1.

Lemma 3.9. Suppose the stepsizes satisfy (3.7)-(3.14). Then 2 satisfies the following for any

15



z=(z;\,v) € X X A, XV,

T m
>_wi {Q”(Zt’z)} < — wr(rr +1) (Z)‘ Uy (V)3 v ) —wr <Z)‘j(uj—V;‘T),xT—xT—1>]
t=1

-y lw (i AUs; (5 VJ“)) — w1 <i NN Gl >>]

=2 =1
+ w1 <)\, Ug* (V, V0)> .

Combining these three lemmas gives a single convergence result for the entire gap function Q.
This result looks nearly identical in form to Proposition 2 from [42] and is proven in Appendix A.1.
From this proposition, we then prove our claimed compactness and convergence guarantees in
Proposition 3.3 and Theorem 3.4.

Proposition 3.10. Consider any problem of the form (2.1) with stepsizes satisfying (3.7)-(3.14).
Then for any z = (z;\,v) € X x A, XV,

T St
2, wWrnr, 2
> @)+ 33 I A+ T )
w +w oDA(
<—f8 U120 — g2 4 7 S0 A2 i (A Uy D))

- 2

Proof of Proposition 3.3. First, we claim the proposed stepsizes in (3.15) and (3.16) satisfy the
necessary conditions (3.7)-(3.14) for the preceding proposition and lemmas to apply. Each of these
conditions can be directly checked: See [42, Theorem 5] for equivalent verifications in the simplified
setting of constrained optimization, only differing in that we consider a generic C rather than fixing
C = H‘J»‘/\O Ht” in our choice of B(t) = CM,.

Note that from Proposition 3.10, the assumption that Ly € (0, c0], and the fact that 71 = 0,

- (1) g(1) (1) (1)
Zthz 2) T”T||xT—x||2gwnxo—xnuw 27 A2, (3.20)

Furthermore, since this holds for all z € X x A, x V', we consider the saddle point z*. As a saddle
point, Q(z%,2*) > 0. Using the stepsize conditions (3.15) and (3.16),
CS 4y M} S

L= (3.21)

B 1
wi=1, oW =g, m=20 8Y==7 W= =55

Sl ) e,r
gives the claimed bound on z”. Therefore, for t > 1, each & lies in the desired bounded neighborhood
around x*. Note that z! € conv(z?,...,2'"1), so 2! is in the same neighborhood. As a result,
M; = ||Vg(z!)| is bounded uniformly by M.

For the dual iterates, Proposition 3.10 and the nonnegative of Q(z!; 2*) and the norm ensures

T S (1) g(1) (1)~ @)
SO oY - e < R0 e E 0 e
oS

For any s,t > 1, one can bound

2L3,5; |@WBM + wim 12° — 22 + ol )7(

A9 - ¥ < 5

IN® = X2
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Utilizing the values in (3.21), bounding M; above by M, S;/w; above by MA + 1 for ¢t > 1, and
noting A lies in the convex hull of {)\gt)} yields the claimed bound on A.

Proof of Theorem 3.4. Let 27 = (z7; AT, ") where

T T T T 0 e Nt
_ - B Vg,(z?) if AX =0 for all ¢
_ T _ t T J ’
=Y ww/ Y e A=Y WS w, o = {ZT Xt/ ST otherwi
(3.22)
Consequently,

T T
Zwtﬁ(a:; ML vt = Zwt {u(m) + </~\t, vie — g*(ut)> - h*(j\t)}
t=1

;1 T m T
= > wu(@) + 3w Y NV 2) — g ) — D wih (V)
t=1 t=1 j=1 t=1
T m
< (Z wt> u(z) + <Z wt> [Z 5\;[ (<uj ,m> - gJ*(DJT)) — h*(\T)
t=1 t=1 j=1
T
— (Z wt> o\ oty
t=1

where the inequality follows from Jensen’s inequality. Similarly, Jensen’s inequality ensures that

T T
(Zwt> £z N v) Z (5N, v) .
t=1 t=1

Therefore, we have for all z € Z

T
(Z Wt) Q(z",2) = <Zwt> (@A) = L@ AT, 7T
t=1

(3.23)

Utilizing the above inequality, the bound demonstrated in (3.20), the nonnegatnnty of the norm,
our distance bounds, as well as the triangle inequality,

»(1 g1
(Z wt> (5N v)) < wDi +oMy(D} 472, forall \e A,, veV .

Finally, we bound Y7, w; by T2/2 and substitute the values from (3.21) into the above
expression. Considering Lemma 3.2, it suffices to bound the above by . Since each outer loop of
UFCM computes only one gradient of g;, N, =T where T" > 0 solves

(C/A+ 2L D2 + 2/(CA) (D3 + r?)
12 -
resulting in the complexity bound for IV, ,. Noting that each inner loop performs only one proximal
step on u and h*,

|—N5,r-| ’—N8»7‘-‘

[Ne,rl
< Z S = Z [MtAﬂ < Z (1+MAt) < (’— 57"~| +[ er—‘ZMA) (3’24)
t=1

t=1 t=1
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4 Compositions with Heterogeneously Holder Smooth Components

Our convergence theory for problems with smooth components developed so far extends to instances
where each g; has Holder continuous gradient with individual exponents. Recall, we say a function
f is (L, p)-Holder smooth with L > 0 and p € [0, 1] if the function satisfies

IVf(z) =Vl < Liz —yl?, Yo,y € dom(f) .

When p = 1, we recover standard L-smoothness, and when p = 0, the function f is Lipschitz.
Therefore, Hélder smoothness lets one interpolate between smooth and nonsmooth functions.

4.1 A Universal Definition of the Approximate Dualized Aggregate Smoothness

The key result facilitating the design of methods universally applicable to Holder smooth problems
is proven by [30, Lemma 1], previously introduced here as Lemma 2.3. We further utilize the
subsequent cocoercive extension, introduced here as Lemma 2.4, which was proven by [25, Lemma 1].
-p
These results show, for any fixed tolerance § > 0, there exists a constant Ls = H;—g%} e Lﬁ such
that the standard quadratic upper bound inequality or cocoercivity inequality of smooth convex
functions hold (up to 6) for any (L, p)-Holder smooth function. Supposing each g; is (L;, p;)-Holder
smooth, define a general smoothness constant for fixed tolerance § > 0 as

lfpj
1— pi m 1+p; 2 :
2] ™ o) (&)

m

Ls, = Z

Jj=1

Noting each A;g; is (A;L;, pj)-Holder smooth, this constant is large enough to ensure that Lemmas 2.3
and 2.4 apply to each component with tolerance §/m. Summing these m components, the ideal
dualized problem (3.5) arising if one knew the optimal dual multipliers is approximated within
tolerance 6. We utilize this general constant to motivate our unifying theory.

Our universal definition for the Approximate Dualized Aggregate smoothness constant LQPT,A,
generalizing the smooth case previously defined in (3.6), then follows from careful selection of this §
tolerance. To achieve optimal convergence guarantees, we require the following implicit choice for
the definition of . Given an initialization D, > ||z — 2*|| and choices of €,7 > 0, we define the
Approximate Dualized Aggregate smoothness constant as the unique positive root to the following
equation

1—pj

L |1—p; myLAPA 2\/6Dx]””j 2

LADA = LADA >0: LADA — .
e,r ]231 1 ery 3 \/g

We note that this value is precisely Ls, (4.1) with specialized § = ¢//24L24D2/e. As each p;

tends to one, the associated coefficient tends to one, becoming independent on . As all p; tend to
one, the above sum defining L2* tends to >i=1(A; + 1) Lj, recovering our previous definition (3.6)
as a special case.

Lemma 4.1. The Approximate Dualized Aggregate smoothness constant ngﬁ as defined in (4.2) is
nonincreasing with respect to €.
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Proof. Consider ¢’ > € > 0. Rearranging the definitions of L2* and L% ensure that

m _ 1+3p]' 73—31)‘7- m _ 1+3p]- 73—31)]-
S0 Cy (L) I 1S oy T (¢ 1
j=1 i=1
1=p; 2 _ 3-3p;
with C; = “_T_ij : 2\/6me} Py [()\J* + T)Lj] 75 Since each p; € [0, 1], it follows that (¢/) 271 <
J

_373p5
() *™i  and for the above sums to equal 1, it must hold that the positive solution Lg?ﬁ < LQ?TA. O

4.2 Guarantees for Composite Optimization with Heterogeneous Components

Importantly, note that we are not making any modifications to UFCM in this section. The algorithm
does not require knowledge of the implicitly defined § value or any (L;,p;) pairs. They are for
analysis only. Instead, the UFCM algorithm only relies on an estimate of Lﬁ?}, which could be
guessed via a geometric parameter schedule without attempting to approximate § or any of the
(Lj,pj) pairs. (See Remark 4.6.)

Next, we present our convergence theory, further justifying the choice of the implicit constant
definition (4.2). Our theory provides guarantees for any choice of ¢ and approximate smoothness
constant Ls,. However, this choice LQPTA optimizes the strength of our guarantee over all 4. We first
generalize Proposition 3.3, ensuring the iterates of UFCM stay bounded in this heterogeneously
smooth setting, accounting for a slightly larger radius due to the additive error term. We defer the
proof to Appendix A.2.

Proposition 4.2. Consider any problem of the form (2.1) and constants A,C,e,r > 0, and suppose
Algorithm 1 is run with outer loop stepsizes (3.15) and inner loop stepsizes (3.16), then for all

/24 LAPA 2
t S 5€,r xT ,

1
{(C/A + 50L°M) D2 + CADi] : (4.3)

lz* — 2| <
D ADA

Furthermore, if h is Lp-smooth, then for averaged iterates X computed each loop,
1

INF = N2 < Lp(MA +1) [(C/A +50L°4) D2 + CADi] : (4.4)

where M is an upper bound for ||Vg(x)| in the neighborhood outlined above (4.3).
Theorem 4.3. Consider any problem of the form (2.1) with each g; being (Lj, p;)-Holder smooth,

and constants A,C,e,r > 0. Then Algorithm 1 with stepsizes (3.15) and (3.16) must find an
(e,r)-optimal solution (1.8) with complexity bounds

’ Ps,r = |VN5,7“-| + [Ns,r—|2AMa (45)

er =

\/ (2C/A + 4LRA)D2 + 4/(CA)(D? + 12)
&

where M is an upper bound for ||Vg(z)| in the neighborhood outlined in (4.3).
For target accuracy 0 < e < min{1, 24L2PTAD?C} with r = Dx/g, and setting C = Dy/D, and
A = C/(2LY), these bounds simplify to

24 APA )2 [24LAPAD2 4SSN D..D
Nsﬂ“ = %7 PEJ“ = ZT = + c et + 1 3 (46)

where M is an upper bound on |[Vg(z)|| for all x € B(z*,\/27D2).
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The preceding theorem demonstrates how the complicated nature of heterogeneous optimization
can be simplified to look analogous to the standard accelerated rate of unconstrained smooth
optimization. Of course, in general, this rate is not O(1/4/¢) as LADA may be non-constant in e.
The aggregating parameter LA provides the key mechanism to prov1de a single unifying, universal
guarantee.

Further, LQPTA serves as a universal tool to recover optimal rates in terms of gradient oracle
complexity for known problem classes. First note that Theorem 4.3 recovers the optimal rates from
smooth compositions from Section 3 within a factor of two as our more general definition of L2*
reduces to the previous definition (3.6) when p; = 1. The following corollaries demonstrate Lﬁgﬁ’
ability to recover optimal results in terms of gradient oracle complexity from the literature for
minimizing a single Hoélder smooth function [28], rates for a heterogeneous sum of Holder smooth
terms [15], and rates for smooth constrained optimizations [42].

Corollary 4.4. Consider minimizing go(x) + u(x) where go is (L, p)-Hélder smooth with initial dis-
tance bound D, > ||2° — z*||, initialization \° = 1, and target accuracy 0 < ¢ < min{1,2v/6LD.*P}.
Then Algorithm 1 finds an e-optimal solution with complexity bounds

_2
oo (57 55%)
€

Proof. For minimizing a single function, h(z) = z, and A\’ = A* = 1. Therefore, Dy and 7 can be

arbitrarily small, as well as A = D, /D,. Recall S; = [ M;At], so we set S; = 1 for all ¢, and each

inner loop of UFCM only computes a single proximal step on w and h*. Therefore, N, , = P, ,.
We now focus on the gradient oracle complexity. It is straightforward to check that our

1-p
hypothesis enforces ¢ < 2¢/6LD.TP < L (1+p> * (2V6D,)'P < 24L2PA D2, which allows us to
apply Theorem 4.3. Considering our Approximate Dualized Aggregate constant yields

€

2-2p

_ 1+3
1-p 2\fD] P

LADA 1+r1+3
( ) 1+p eve

We then conclude

g, c 6\/5 - .

where the first equality considers (4.6), the second substitutes LA’ and the third simplifies to

e,r

recover (1.5). O

Corollary 4.5. In the setting of Theorem 4.3, Algorithm 1 finds an e-optimal solution with
complezity bounds N, and P, = [N:,] 4+ [Nzy]2MA for N, :=T > 0 which solves the following

m (()\*+r) )H—p] D2 _ 143p;

> e S T T =1, (4.7)
=1 et
1-p;
with ¢; = 24 L;ﬁj m} ey Consequently, the convergence rate is at most the sum of the rates of
individual terms (1.5), weighted by the appropriate multiplier,
m
N.,=0 (Z Ksn(e, (A] +1)Lj, pj, Dw)) : (4.8)
j=1
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Proof. Considering the gradient oracle complexity bound N, = ,/24LAD2 /e, we substitute
L' = N2, - ¢/(24D2) into the definition (4.2) giving

l—pj

Trp;
T2¢ _ i 1 —DPj . 2\[m\/ 24D2 Pj ((}\* N 'r') )1+2pj
24D% 1 + pj e3/2

Rearranging the expression above yields (4.7), which is nonincreasing in 7. Therefore, to prove (4.8),
it suffices to bound each summand of (4.7) by 1/m. We then consider solving

* 1+p] 2 143p;
(()\ * T) ) D B 1+ij
c; — T] =
c 1+pj

3|

for Tj. The result recovers (1.5) component-wise

2 242p;
Ao+ 7))L\ 13p

5
Bounding 7' < max; T < >0 T}, yields (4.8). O

Fixing h(z) = 3771, zj, each A} = 1, and this second corollary recovers the results for hetero-
geneous sums of Holder smooth terms of [15, Theorem 1.1 and 1.3] when we initialize )\0 = 1.
For constrained optimization, with A as the nonpositive indicator function and when each gj is
(Lj,p)-Holder smooth with common exponent, this second corollary recovers the O(1 €2/ (1+3p))
results of [8, Corollary 2.3] as a special case.

Remark 4.6. We note that one may tradeoff knowledge of LQPTA for knowledge of distance bounds
D, and Dy. Considering the sequence Ly, = 2°,2',22 ..., as well as the setting of Theorem 4.3 one

may run UFCM for N = 4/ % outer loop iterations. Qur theory then guarantees that once
ADA )2
k = max{[logy(L25*)],0}, an e-optimal solution has been constructed, taking at most O < LE’TD")

3

gradient oracle calls total. Note that neither UFCM nor this modified scheme possesses stopping
criteria certifying that an e-optimal solution has been found without additional problem knowledge.
So these guarantees are theoretical.

4.3 Analysis of UFCM for Compositions with Heterogeneous Components

The same process of analysis presented in Section 3 extends to provide guarantees for UFCM
given any heterogeneously Holder smooth components by carefully accounting for the additive
errors incurred by using Nesterov-style inequalities. Lemma 3.7, Lemma 3.9, and Proposition 3.10
generalize to this setting as follows. For many of these results, the proof is redundant with prior
work except for tracking an additional constant term through the developed inequalities. Below, we
present these key results with proofs of Lemmas 4.7 and 4.8 deferred to Appendix A.2 for the sake
of completeness.

Lemma 4.7. If each g; is (Lj, pj)-Hélder smooth, then for any fized § > 0,

2
m

2N

=1

(A, Ug=(v; D)) , VA€ A, Y, e{Vyg(zx):x € X}.

2L5r
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The following results utilize the general smoothness constant Ls, in both the analysis and the
appropriate parameters for completeness. However, we recall that the Approximate Aggregate
Smoothness constant L25* used in Theorem 4.3 is specialized with § = ¢/, /24LAAD2 /e.

Lemma 4.8. Suppose the stepsizes satisfy (3.7)-(3.14), and let 2t := (z'; X!, !) denote the iterates
of Algorithm 1. Then 2! satisfy the following for any z = (x;\,v) € X x A, x V and any fived § > 0

zw Q9] < e g _groryp Y el ey
i =20 +1) = 2T

+wiT <)\, Ug+(v; VO)> + g

T
wr(rr + 1) —i—Ztht] , V(A v) e X x A x V.
=2

The following proposition is the direct analog of Proposition 3.10 in the heterogeneously smooth
setting. The proof is analogous, applying the above two lemmas instead of Lemmas 3.7 and 3.9,
noting the small additive dependence on tolerance d.

Proposition 4.9. Consider any problem of the form (2.1) with stepsizes satisfying (3.7)-(3.14).
Then for any z = (z;\,v) € X x A, x V and any fized § > 0,

wrnr
zwtcz Ly e I AP+ T —

t=1s=1

w +w oM~ 1)
<uux0—x|ﬁ TN - AP e (AU (7))

- 2
T
0
—|—§ wT(TT—l—l)—l—Ztht] , Yy Av) e X X A x V.
t=2
Proof of Theorem 4.3. We first note that as wy = t, v = 21, we can rewrite
T3 +3T2+2T & T(T +
[wT (rr +1) Ztht] =% Zwt ) .

Then for all A € A, and v € V, considering Proposition 4.9, Jensen’s inequality (3.23), and the
particular stepsizes (3.21), we can bound

(C/A +2Ls,)l|2" = a*|2 +2/(CA)(IN" = N[ +7%)  4(T +2)

QL (z*;\v)) < T(T + 1) 6

(4.9)

Recall that Ls, depends on the value d, so we optimize the above bound with respect J to achieve a
universally optimal rate. We fix T, e > 0.

Setting 0 = =, and bounding 7'+ 2 < 3T, we obtain the following inequality derived from (4.9)
C/A 4 2L, )||2° — 2*||? + 2/(CA)(|]A° — X*||? + 2

Our choices of C, A, and r = Dy+/e simplify the expression as for any T' > N, , = ,/24LAAD2 /e

one has Q(z7, (z*;\,v)) < e over all A € A, and v € V. Applying Lemma 3.2, this ensures
(e, 7)-optimality. Furthermore, when 7" = N, ,, then L, /N....r Drecisely recovers the definition of
LADA (4 2)
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The claimed proximal step complexity follows from the general formula (3.24). Since ¢ <
24LQ3AD326, it holds that N., > 1. Therefore, we bound [N, | < N, +1 < 2N, ,, which results in

24LA°AD2  48M D, D
Pep = [Neg] + [NeyPAM < | =2 4 =2 4 1

where we recall A = Dy/(2D,L!").

5 Growth Bounds and Restarting

We utilize a simple restarting scheme given initial distance bounds. Primal-dual algorithms have
exhibited great success from restarting when the respective gap function possesses certain growth
conditions [1, 12, 27]. This algorithm, denoted R-UFCM can then achieve linear convergence in
terms of gradient oracle calls when the components are smooth and strongly convex, and the
proximal step complexity can achieve linear convergence rates when h is sufficiently smooth. Recall
from (1.4) that a function f is (u, g)-uniformly convex if

f) = f@) +(Vf(x),y >+—||y x|, Va,y € dom(f) .

When g = 1, we recover the notion of u-strong convexity. As g — oo, these functions are simply
convex. Similarly to Holder smoothness, we can interpolate between the level of convexity. If g; is
also (Lj, p;)-Holder smooth, then the following symmetric, two-sided bound holds

|Pj+1 )

9;(x) +(Vyg;(z),y — ) + ly — (|9 < g;(y) < gj(x)+ (Vgj(x),y — =)+ ly — |

J+1 J+1

5.1 Growth Structure

The uniform convexity of each g; can be combined together to ensure a growth condition on the gap
function. This perspective plays a central role in our analysis, as it does in most restarted analyses.

Definition 5.1. Given monotone nondecreasing, convex functions G5, Gx: Ry — Ry, we say that
the gap function possesses (Gg, G)-growth if for any z = (x; \,v) and 2 = (2*; \*, Vg(z))

Ge(llz —2™[)) + GA(IA = M) < Q(%, 2) -

As additional structure, the growth functions considered herein will always have G,(0) = 0,
G (0) = 0, and both G, and G, differentiable. The following lemma gives the explicit growth
condition when the component functions g; exhibit varying uniform convexity and h is Lj-smooth.

Lemma 5.2. Suppose component functions g; are (14, q;)-uniformly convex and h is Ly-smooth.
Then the gap function possesses Gy, Gy growth where Go(t) = YT, Ny [t %D and Gy(t) =

Jq;+1
Qi, t2. Therefore, for any z = (x,\,v) and 2 = (z*, \*, Vg(z))

*1q;+1 A —\* 2 .
2 3 gl = I g A X
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Proof. From the optimality of z*, < u(z*) + 32721 AjVg;(a), z — a:*> > 0. Note that since h is
Lp-smooth, h* is 1/Ly-strongly convex. Thus,

Q(z,2) = L(z; X", Vg(x)) — L(x™; N, vF) + L(a5 X%, 07) = L(z";\,v)
> u(x) + (A, g(x)) — h*(V) = [u(z”) + (A%, g(2")) — h*(A")]
+ Wt =gt () = B = [\ vat — g7 (v)) — BT(A)]

<Vu —i—Z)\*Vg] "), x —x*>

> [u(z) —u(z*) — (Vu(a™),z — z*)] +

s

I
R

N lg(x) = g(a*) = (Vg(a™), @ — 27)]

+h5A) = AT (A7) = (A = X%, g(27))

2> %

=1

1
T — * q;+1 )\ _ )\* 2
L L LA o LY i
where the first equality expands the gap function, the following inequality applies Fenchel-Young
and subtracts the nonnegative inner product outlined above, the next inequality regroups terms
and applies Fenchel-Young once again, and the final inequality comes directly from the convexity of
u, the uniform convexity of g;, and the strong convexity of h*. O

5.2 An Approximate Dualized Aggregate Convexity piP*

We now have the necessary tools to define the lower bounding curvature for the composite problem
into a single value p2P*, generalizing the growth bound strong convexity yields. For (u;, g;)-uniformly
convex components g; and target accuracy € > 0, we define the Approximate Dualized Aggregate
convexity constant implicitly as the unique positive solution to the following equation

ADA

m
u 1 41
plPh = LA > 0 = E A — I (e/uPP?) 72 : (5.1)
2 q; +1

Note when ¢; = 1, the coefficient becomes independent of e. If all ¢; = 1, the p2P* simply totals the
AZ-weighted strong convexity constants. More generally, ADA agoregates the lower curvature of each
component, weighted by the appropriate dual multiplier. ThlS quantity can further be viewed as an
approximation of strong convexity as shown in Lemma 5.4 below.

Lemma 5.3. The Approzimate Dualized Aggregate convexity constant u*™ as defined in (5.1) is
nondecreasing with respect to €.

Proof. Consider ¢’ > & > 0. Rearranging the definitions of p2* and p2P* ensure that
q;+1 q;—1 m . gq;+1 q;—1
SN M S 3Nt )
] 1 QJ + ]:1 QJ +

Since each ¢; > 1, it follows that (5’)(‘11*1)/2 > (e )(qﬂ‘*l)/Q, and for the above sums to equal one, it
must hold that the positive solution pP* > 1/APA, O

Lemma 5.4. Suppose the components g; are ({5, q;)-uniformly convex and h is Lp-smooth. Then
for any z = (z,\,v) and 2 = (2%, \*,Vg(z)),

| &

5 Mg * |2 1 * (12
Q > — — A= _ <
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Proof. Considering the result of Lemma 5.2, it suffices to bound

(1A c
Gl — ) 2 P e~ 22— 5, e
Note that p*P* = ¢/(G;'(g/2))?. Since G.(t) is differentiable and positive for all ¢ > 0 and p*P* is
nondecreasing in €, it follows that

oo (Go'(e/2)) — Gl , o
9 (G2l (2/2)) 2 0= GGz (e/2) 2 r 7 (/2) = PG (e/2) -

Therefore, by the monotonicity and nonnegativity of G, for any ¢ > G;'(¢/2), it holds that
G (t) > ptPM.

We first consider the case where G;(||z — 2*||) > €/2. We again note that by monotonicity and
nonegativity of G, it holds that for any z € X,

— le—atl Gl e
Gm(Hx—:U*H):/ Gx(t)dtz/ . tdt+/ G (t)ds
0 0

Gz'(e/2)
Gz'(e/2) Gz '(e/2)
piPAtdt — / piPAtdt + / Gl (t)dt
0 0

/le |
*HZ )

ADA
_ He

2

|z —x

Now we consider the case where G (||z — z*||) < /2. Since uP* = ¢/(G,'(c/2))?, we note that

ADA

Ms * 12 € * (|2 €
T2\ =l x| < o,
which implies that
,LLADA €
Galllw =) 2 0> 2l — |~ £ . =

5.3 A Further Universalized Approximate Dualized Aggregate Smoothness

Recall that the previous definition in (4.2) for the Approximate Dualized Aggregate smoothness
constant ngf* depended on ¢ and distance bound D,. In order to recover (1.5) through Theorem 4.3,
this dependence was a necessity. When the components possess uniform convexity in addition to
Hélder smoothness, one can further leverage the Approximate Dualized Aggregate Convexity AP,
In its full generality, we define L25* to be the unique positive solution to the following equation

m
1—p; myLAPA 26D, 46 lﬂw L
LAPA . J pADA o (. [ADA _ J . . mi z X L. tPi
g,r Z 1+ pj c min \E /NQDA [( J + T‘) ]}

j=1

(5.2)

We note that for small enough pAP* the above value recovers (4.2) exactly. Further note that even
with this generalization, LADA remains nonincreasing with respect to e.
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Algorithm 2 Restarted Universal Fast Composite Method (R-UFCM)
Input 2’ € X x A, distance bounds D, and D,, target accuracy ¢ > 0, constants
and UFCM execution count K

1. Set Dg(co), Dgo) and {T}} according to (5.3)

2: for k=0,1,..., K —1do

3: Run UFCM(2*, [T}], L2*) returning output (zTek \Tkok)

*Tk, [oK—k ADA ;¢ ADA ~ 2
Set ( k+1 D(k‘i‘l)) {( 2 5/:“’ ) if He™ = 4€/D:c

D,) otherwise

L(I;\DA and MADA

o

(2"
5. Set (AM+1, D{FFD) = (NTik \/2K=FeLy) if \/2K—FeLy, < Dy
: , D\ ; |
(A, D) otherwise
)

6: Set 2h+1 — (z k1 \h+
7. end for

5.4 Guarantees for Fully Heterogeneous Compositions

Finally, we present our universal theory when each component g; possesses its own (L;, p;)-Holder
smoothness and (5, ¢;)-uniform convexity. Algorithmic restarting, as discussed in Section 2.1, is
the key to enabling this final improvement in our theory.

Our proposed restarted variant, denoted R-UFCM, sequentially runs K executions of UFCM, each
for T}, iterations, restarted at a sequence of initializations z* = (2*, AF) with distance bounds D;(Bk)
and D( ) Using the produced outputs Z'+* and A7+* the next initialization 2L = (g1 \RFL)
is determined The next primal initialization is z7k* if ptPh > 4e /D2 else 20 is reused. Similarly,
the next dual initialization is ATF if 2K=*[, < D2 /e else A0 is reused Algorithm 2 formalizes
this process with the following initializations

96.L L2} /2K+1s> ADA ~ de
(\/T, DA 1f,u > D2
) _ JoK+1
(T, D TIEID? D"’ = min {DA, 2 5Lh} (5.3)
<\/I Dx> otherwise,

Note that when p2P* > 4¢ /D2 T}, is independent of k.

The following theorem, proven in Section 5.5, establishes our universal convergence theory.
We denote the gradient complexity of this restarted method by N, , := Z [ :] as R-UFCM
computes [T} | gradients of each g; in execution k of UFCM. Likewise, we denote the proximal

complexity by P, = Z [PE( ,n)] where [P:, r)i bounds the number of proximal evaluations of u
and h used in the kth execution of UFCM.
Furthermore, we restrict € € (0, 1] sufficiently small such that

farepz - [o6LERS -
e 7 e

These restrictions must hold for sufficiently small € as lim._,o+ L2 /e = +o0, which holds from

Lemma 4.1. Secondly, lim._,o+ L2*/p2P* > max {hrn‘E o+ LADA/ (2R lim, o+ L2OY/ ,u’l‘DA} > 1,
where the first inequality utilizes Lemmas 4.1 and 5.3, and the second notes that when p; = ¢; =1
for all j, then LAP* and ;fP* are constant with respect to e, so L4 > 2P4 while if any p; < 1 or
g; > 1 then the first or second limit diverge to infinity respectively.

26



For notational ease, we let 28 = (2F; \*¥ Vg(2¥)), extending each initialization z¥ = (zF, \F)

to include the conjugate variables. In particular 2° = (2% A%, Vg(2?)).  We also let 20 =
(2%; X%, Vg(2)), extending the optimal primal-dual pair to include the conjugate variable at the
initialization.
Theorem 5.5. Consider any problem of the form (2.1) with each g; being (L;, pj)-Hélder smooth
and (pj,q;)-uniformly convex, target accuracy € > 0 sufficiently small, with r = Dy+/e. Setting
ck) = Dg\k)/D;gk) and AF) = C’(k)/(QL?BaA), if K > [logQ (%)—‘ , Algorithm 2 with stepsizes
(3.15) and (3.16) must find an (g,7)-optimal solution (1.8). If K is within a constant factor of
[logQ (%ﬂ, this achieves the complexity bounds outlined in Table 1.

ADA is nondecreasing with e, this bound can be

Remark 5.6. Since L2} is nonincreasing with e and p
tightened by considering our Approximate Dualized Aggregate constants specialized to the target accu-
racy sought by each application of UFCM. For each loop, one could run UFCM (¥, [T}], LS%A_k_IE )

with outer loop iteration count

— \l 96LADA, \/24Lg9<A_k_1€,ng
k= 1Imin s y

ADA —k—
Mok —k—1, 2K -k-1¢

instead updating Dy
V2E=ke Ly, whenever L, < D3/(2K=*¢). Consequently, one can derive guarantees

D with 2K ke sk | whenever piRt, > 2K"F+2¢/D2 and DE\HI) with

ADA — ADA
LQK k—1g K-l (LQK k— 1ar+M2Lh)
Ney =0 Z —mr | Par=0( ) 0
Mok —k—1, n—0 Mok —k—1,

which avoids additional multiplicative log terms if the sums above total up geometrically.

Corollary 5.7. Consider minimizing F(x) = go(x) + u(z) where go is (L, p)-Hélder smooth and

(1, q)-uniformly convex function with Dy > ||2° — 2*||, initialization \° = 1, and any target accuracy
2(q+1)

1+
0<e< min{l,Q\[LDH'p, 12_1’:(1 (%) ! ,4 (1J2rq)3q+l LBarDA+p) } Then Algorithm 2 recovers
(1.6):

2
Lita (1+3p)(1+a) .
O((Ml-&-pgq—zﬂ) ! ! ) qu>pa

Ne,r:Pe,r:KUC(evL’p’M’q): EE=TgEw)
0 ((%) T |6 (F(Z’(’g—F)) ifqg=rp

up to logarithmic factors>.

Proof. By hypothesis, ¢ is sufficiently small to apply Theorem 5.5. Noting our Approximate Dualized
Aggregate constants equal

_2
Lgf)TA = (1 + T)ﬁ 71 —Pr, 4\/> ] L1+3p and MADA ( 2p ) 1+q 6%

L+p e\/ptbh 1+4¢

3Using the modification discussed in Remark 5.6, one can recover the optimal rate without incurring log factors.
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we conclude

_ LADA 5 (E\/@)—%Lﬁ N Li+a (1+3p§(1+q)
N, =0 M?DA =0 \/p@ =0 7;;1*?5‘1*? )

where the first equality considers Theorem 5.5, the second equality substitutes LQDTA, and the last
equality then substitutes AP and simplifies to recover (1.6).

Since \” = \*, we can make A arbitrarily small, so S; = 1 for each ¢. Therefore, the resulting
proximal complexity equals the gradient oracle complexity. ]

Corollary 5.8. For any problem of the form (2.1), target accuracy € > 0 sufficiently small, with
r = Dyx+\/e, suppose each g; is (Lj,pj)-smooth and (uj,q;)-uniformly convex. Algorithm 2, with
stepsizes (3.15) and (3.16), with choices of C*) = Dg\k)/D:g«k) and A®) = C(k)/(2L§?rA) must find an
(e,7)-optimal solution with oracle complexity bound

= (Z KUC’ )Ljvpﬁ:ugDAvl))

Proof. Since e < D212 /4, it holds that after rearrangement of the definition in (5.2), L2* is the
unique positive root to

—Pj
1+p] 2

(O + 7Ly =1,

14+3p,

i LADA 2(1+pj) L—pj 4v/6m

RN

Similar to proving Corollary 4.5, we can bound /L% <377, /LAPA where LAPA solves component-

wise as the unique positive root to the following equation

143p,;
(LA2A )_2<1++72> 1-p; 4v6m 1+p] {()\* —H")L']%pj _ 1
JHE,T 1 +p] 6\/@ J J m :
We can then conclude
1-p;
2 . 1+3p 2
TR —Pj 4\/> ‘| J * T+3p,
/LADA < m, 157 . (X5 4+7)L; i (5.4)
e,r 2; 1 +pj 8\/@ [ J J}
Finally, it holds that
% % 2 (1+13p')
e () o s ) o oo\

NE,T = O Z \/@ Z ADA 1+pJ€ —D; )

j=1 j=1

where the first equality considers the result from Theorem 5.5 and substitutes the upper bound on
LADA (5.4), and the second equality simplifies to yield the desired result. O

Fixing h(z) = > jL1 24, each A7 =1, and bounding uAPA by only considering a single component
in its sum recovers the results for heterogeneous sums of Holder smooth terms of [15, Theorem 1.2].
When each g; is smooth and h is a nonpositive indicator function, this second corollary recovers
the results of [42, Theorem 6] by lower bounding p* by the po-strong convexity of go (see the
concluding Section 5.6 for further consideration of this special case).
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5.5 Analysis of R-UFCM (Proof of Theorem 5.5)

Recall our analysis only depends on the (L;, p;)-Ho6lder smooth and (g, gj)-uniformly convex of g;
through our analysis through the universal constants L25* and p2** defined in (5.2) and (5.1). Let
A€ A, and v € V. Below, we inductively prove that in all four of the cases in Table 1 (determined
by whether pfP* < 4¢/ D2 and whether L, > D3 /¢) the following are maintained at each outer
iteration of the restarted method £ =0,1,..., K — 1

DI > [l — o], DY Z N =M, QU@ NTHR, BTk, (2554, ) < 29 e
where we recall (z7+F; \Tk* 5Tk:k) from our averaging scheme (3.22). By definition and application

of Lemma 5.4, DY > |2° — 2*|| and Dg\o) > |IA° — A\*|| both hold at k = 0, regardless of the relative
sizes of u*P* and Lj,. Our inductive proof proceeds by first establishing that

DP > |loF —z*|, DI > |\ = 2| = Q@R ATR 5Tk, (a0 v)) < 2K TR e (5.5)

for each k. The key result to this end is that Q((zTkF; \Tk* pThk) (2% \ v)) < 2K—F—1¢ if

N 241404(D{M)2
S e

by Theorem 4.3. Hence, we just need to verify our choice of T}, satisfies this inequality in each case.
Then, to complete the induction, we establish

Q((:ET;C,.R:;S\Tfk,lc?ﬂTk,k)7 ($*;>\, l/)) < oK—k—1_ __ D;]H—l) > ka—f—l _ m*Ha Dg\k—H) > H)\k—H _ )\*H ]
(5.6)
The key result to this end is the growth condition from Lemma 5.2, which guarantees that

Go (28 —a*[)) + GAIATHY = M) < Q@™ MR, TE), (2% A%, Vg(zThF))) < 287+ Te

The remainder of this proof verifies the implications (5.5) and (5.6) and calculates the total gradient
and proximal complexity in each case of Table 1. Finally, we deduce that

Q@M AL Wb R i LRt (g7 8, V(v i) < e

and apply Lemma 3.2 to conclude that z75-15~1 is (¢, r)-optimal.

Case 1: Suppose pPh < 4¢/D2. Observe the first needed implication for our induction (5.5) is

immediate from Theorem 4.3 as
T 24LEAB:"D%
k= \ oK—k—1g -

The gradient complexity follows from geometrically summing this quantity and bounding K < oo,

SO
K-1 K-1
24 ADA D2 24 LA D2 (144 + 96+/2) LAPA D2
(msz_ﬁﬂ/%“ ;)\/ e \/ . + K

Next, we verify the second needed implication (5.6). The primal bound is vacuously the case since

the primal initialization is constant, so z* = :L'O for each k=0,...,K —1and
DY = D, > ||2° — 2*|| = [|=* — 2*|| .

To derive the dual distance bound, we consider the two cases of dual restarting.
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Case la: Suppose Ly > D?\ /€. In this setting, the dual variable does not reinitialize each
iteration and Dg\k) = Dy > |[A° = X*|| = ||\¥ — M\*||, completing the proof of (5.6). Observe
that since A®) = D,/ (2D, L5) as neither variable reinitializes, the number of proximal steps
on u and h taken each iteration k of R-UFCM is

[240224D2  24MD, D MDY

k) 2 k e,r xT TN\ by
PR = [T4] + [T 12PAWM < 1+ SRt ke T I (5.7)

e,r x

[24L8AD2 94N D, D MD
=1+ K—a}:—l -+ K—kfl 2+ ADA s
2 € 2 € LD,

where M bounds ||Vg(z)|| for z € B(z*,1/27D2), and we use the facts [T}] < Tp + 1 and
[T},]% < 2T, ,3 + 2. The total proximal complexity is then at most

144 4+ 96+/2)LAPAD2  ASMD..D MD
( f) e,r :c_|_ T )\+K 1+ A

K-1 \/
Pk <
20 e e 99D,

Case 1b: Suppose Lj, < D% /e. To verify (5.6), we note that for the primary executions of
UFCM where Dg\ < 2K=k+loL,  our initializations maintain Df\k) = Dy and \* = X%, So

ng) > ||AF — X*||. For the subsequent executions, observe that Lemma 5.2 ensures
GAINH = X)) < QT NIk, BTR), (a7, X%, Vg(TF))) < 28+ 1e
where A¥+1 « \Tw* by line 5 of Algorithm 2. We then utilize the growth bound to yield

H)\k—i-l o )\*H < G;1(2K—k—16) _ /2K,k8Lh _ Dg\kJrl) 7

completing our induction in this case.

From the proximal complexity for application k of UFCM (5.7), we note that

P < 4y 2ALEPDE | 24M D, 2K R eLy, - MDy
T — 2K—k—-1¢ 9K —k—1g L?B«ADx

1 \/(48L§3A +1152M2L,)D2 MDD,
- 2K —k-1g LAD,

since Dg\k) < min{Dy,/2K-k+le[;} for each k. The total proximal complexity is then

bounded by
K-1
6 + 4v/2)(48LAPA + 1152M2L;) D2
ZPE(I? < ( + \f)( g,r + h) x+K 1+ M D
k:O ’

Case 2: Now suppose ufP* > 4¢/D2. Observe that the first step of our induction (5.5) holds
immediately after noting Dg(ck) = /2K -k+1lg [ ADA and applying Theorem 4.3 as

2
oL | 9612 (DiY)
T = [ADA~ oK—k+1z  °
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Hence, the total gradient complexity is bounded by

K-1
96 LADA
Z[TﬂgK(H Lo |

k=0

where we bound [Ty | by Tx + 1. Note when K is within a constant factor of [logQ (M)—‘,

then the gradient complexity is O ( ADA log ( ))

Next, we verify the second needed implication (5.6), noting that the dual distance bounds

Dg\k) > |[[A¥ — A\*|| have already been shown to hold. Thus, we only need to consider the primal
distance bounds. For k& = 0, our initializations and Lemma 5.4 ensure

K+1 50 20
D(O):\/2 5>\/2(Q(z 20 +¢) > 1a® — 2|

T ADA ADA
He He

For k > 1, Lemma 5.2 ensures that

Gz(ka'H ) < Q(( ko \Tiok Tk,k)’ (2%; )\*,Vg(i’Tk’k))) < oK—k-1,

where 2#+1 « 7% by line 4 of Algorithm 2. This bound implies

21 — o) < G (2K e) = (2K ke utRh | < \f2K ket = DU,

where the first equality comes from the characterization that pfP* = ¢/(G;1(g/2))? and the last
inequality holds as p2P* is a nondecreasing function of €. Next, we consider the proximal operator
complexity.

Case 2a: Suppose L, > D? 1/€. In this case, D( ) = = D). The number of proximal steps
performed each execution of UFCM is

96LADA 192M D,
oK —k+1 ADA6

PR = T3] + [T1]12PAP M < 1+

where the first equality uses (3.24), and the inequality substitutes A®) = D,/ (2L22§Dg(ck))

with D) = | [2K~k+1¢ /MDA further noting that since AP% < 96LEY, [Ty] < Tp +1 < 2Ty
Therefore, the total proximal complexity is bounded by

K-1
96 L A0
- p < 152+ 786v/2) M D), +K<1 . E,T)

ADA ADA
V/uEPRe pt

Case 2b: Suppose Ly < D3/e. Now ng) < V/2K—k+lcL, in which case

1 96LADA n 192M+/L <14 192LADA + 73728 M2L,,
er = MEADA W = £(2DA :

The total proximal complexity is then bounded by

K-1
192LAPA + 73728 M2 L,
k e,r
kz PE(J) < K(l —|—\/ o .
=0

He
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5.6 Application to Functionally Constrained Optimization

We conclude this section considering functionally constrained optimization with strongly convex
and smooth components, recovering the linear convergence in terms of first-order oracle calls to
g and sublinear convergence in terms of proximal operations analogous to [42]. In this setting,
h(zo,...,2m) = 20 + tz<o0(21,...,2m) with each g; being p;-strongly convex results in constant
piPh — g + Z;”zl NS R (Note that our method and theory also apply more generally, given only
Holder smoothness and uniform convexity, but for the sake of this comparison, we restrict ourselves
to considering only smooth and strongly convex constraints.)

Since h is nonsmooth, i.e. Ly = 0o, each restarted application of UFCM uses the fixed dual

initialization \°. However, for small enough ¢, the primal variables and distance bounds will update,
with DI = \/2K—k+1g /1 ADA  Therefore, Algorithm 2 reaches an e-optimal solution with complexity

bounds
LADA Q(2°,29) D\M
N, =0 ( o log 6 y Pep =0 Ny + 7#2]”5

In contrast, the ACGD-S method of [42, Corollary 4] has oracle complexities

_of JEA) o, (VEA)mD: _ d(A)M
o0 ([ g (VRTDEN) (4 20

where L(A;) = maxyea, {2°721 AjL;} and d(Ay) = [[A*]| + 7. In the case where only go is strongly
convex, our rate recovers theirs as (2™ = o+ 371 A0 = p1o. ITmportantly, our method additionally
benefits from strong convexity in the components as uéDA > pop whenever any active constraint is

strongly convex (or even just, uniformly convex).
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Proof of Lemma 3.8. First we establish a convergence bound on the inner loop for each phase.
Fix ¢t > 1. Since u(y) + nt|ly — 271||?/2 has strong convexity with modulus 7, the proximal step
for y in line 8 of Algorithm 1 satisfies the three point inequality (see [22, Lemma 3.5])
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In particular, line 7 of Algorithm 1 ensures that for s > 2
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Observe the third term is bounded by Young’s inequality (ab < % + b;—a for all £ > 0) with
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for s > 2 and s = 1 respectively. Moreover, note that when summing over s = 1, ..., S,
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where the first equality holds by definition, the second holds from telescoping the norm squared
terms, and the inequality holds from requirement (3.11). Furthermore, the inner product terms
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telescope as well since
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where the substitutions /\(Hl) )‘E?tt)’ )\(_tlﬂ) = /\g?_l, y(()tﬂ) = ygt) hold by line 11 of Algorithm 1.
We then sum (A.1) over s = 1,...,5;. After plugging in (A.2) and (A.3), applying the above
equalities and inequalities, and considering requirement (3.11), we bound

s t xz
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+Pt)< —va oy §_1> <yst—9”7z A, =28 1J)Vt> (A.5)
7j=1

(t) t—1)2 1
v p)?|lv
é§:;3w91—&%W+‘§%w’nA AR = 3 [801E) - 2l - Bl 217,

since the terms Hyét) - y@lH2 cancel as (A.1) and (A.4) have the same coefficients.
t)

Next we leverage this inner loop bound to derive bounds on the )\g
mapping in Line 9 of Algorithm 1 applies a proximal step to

p(N) = (L (0 = ) + g(2h)) = (N -

terms. The proximal

From the Fenchel-Young inequality, <)\, Vtygt) — g*(ut)> = (\ vyl — 2') + g(z')). Therefore, the
proximal mapping in line 9, the three point inequality of [22, Lemma 3.5], and Lj-smoothness of h
imply the following is nonpositive

). .10 oy, T ()12 1) _ \® 2 (t) Lo g2
L2 = L0 A0 + 2o (I = AP 4 1AL =X = 3= A g IO =
Taking the sum over s = 1,...,S; and combining with (A.5),
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noting that the ||\ — )\gt)H2 terms telescope and ~®) /235, ||)\g(:_)1 - A§?2||2 cancels, leaving only
'y(t)/2||)\gt) — As,—1]|?. Since E(ygt);)\,yt) and Hygt) — x||? are convex in ygt) and L(a:;)\gt),yt) is
concave in )\gt), multiplying by @® = w, /Sy and considering the averaging scheme in line 14 of
Algorithm 1, one can apply Jensen’s inequality to derive a bound with respect to ! and A\! of

)12
¥ n, _ wWel|A — As
w(a&mw>zmmmﬂ+;QWﬂ1W+wtmwu MU>+Z wdr =2
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7j=1
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< S (I =217 = Ix = A1 = IAS) = A8 1P)
~(t)( B2 ,t—1]12 ~(t) 3(t)
et L N RO I R A (t) 2 () 2
agm I = I = = [l = o = t” — )] (A.6)
Next, we note that
Q.24 2) + Qa (2%, 2) = L(ab N\ vh) — L(x; N, v,
ST |07 — )2 — WWWM«—MP<§:MW(Ht 2l = [l - 2?)

2 t=1

where the first equality comes from definition and the inequality comes from telescoping along with
requirement (3.7). Then by telescoping, we produce the following bounds
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where the first two inequalities apply (3.12) and (3.13) respectively, while the following bound
applies requirement (3.14), line 11 of Algorithm 1, and uses (3.13) to telescope.
Finally for ¢ > 2, by line 11 of Algorithm 1 and the second condition of (3.14),
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(1)

Since A\ = A} by initialization summing the inner product terms over ¢t = 1,...,T results
in —o <y N _ g DIy ( ST j )‘59?—1 J)I/JT> Rearranging, applying Young’s inequality, using
requirement (3.11), and combining with the bounds outlined above results in

T St
Wt w _
Zwt Qa: 2 Z)‘i‘Q)\ 2t Z 22—7"/\ /\(t H2_|_Z tnt [ 1H2
t=1 =1s 1S =1 2

wrnr HxT _ tz _winm

(1)
0_ 2% W@ _ 2 (W, _ 2
+5 5 la” =l < == (YO IN" = AP + 8V —al?) -

Proof of Lemma 3.9. Recall that 3! = 2'=! + 0,(2!~1 — 2!72). Thus,
<1/J~ - 1/5, (' — l‘t)> = — <1/j - 1/§ (2t — 2t~ )> + 0t< 1/; (et — a:t_2)>
+0; <V]t-_1 N € mt72)> .

Using [22, Lemma 3.5] and that g; is strongly convex with modulus 1 with respect to the Bregman
divergence Ug;, the proximal mapping

1/; ¢+ argmax <I/j,£i't> — g5 (v;) — Uy (v;'7Y VYie{l,...,m},
v;eV; J

which is equivalent to line 4 of Algorithm 1, satisfies j € {1,...,m}

(vj —vhat)+ (v = b3 = a') + g (v)) = g} ()
< Uy (vy; ; Y= (e + 1)U, (V], ]) TiUyg ( i

Summing over t = 1,...,T with weights w; yields
T
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Wi [TtUg;-‘(Vj;Vjt-fl) —(n+ 1)Ug;‘(’/j§ V;) - TtUg;(’/t" Vt'fl)} :

)
I

Applying requirements (3.8) and (3.9), one can conclude that
T
Zwt [<1/j — y;,xt> + g}*(yj) g}‘(y])} < - {wT(TT + l)Ug;(yj; I/]T) —wr <1/j I/]T,.TUT xT_1>}

T
— [Z thtUg; (V;i; 1/;-71) — W1 <V;71 — V]t-, (2871 — :Ut_2)>] + wlTlUg;(l/j, I/]Q) .

Taking the sum over j = 1,...,m with weights \; yields the desired result.
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Proof of Proposition 3.10. From Lemma 3.7, any v € V satisfies

Therefore, by Lemma 3.9 and requirement (3.9),

z t S T T T-1 wr(mr +1) |1 T 2
Zwt {Q,,(z,z)} < |wr Z)\j(yj—l/j),:c - 17 Z)‘j(l/j—yj)
t=1 = : j=1
2
T m - B B Wi 1Ty m AT
+Z Wi—1 <Z>‘j(y; ' _V;')’(xt f—at 2)> 90, [,ADA Z/\j(y -V (A7)
=2 j=1 tHer |lj=1
m
—+ w11 Z ]* I/J, ] .
Applying Young’s inequality to the inner product yields
wrLft r rlip = wilea LY
Zwt e L 1D ke el il +ewnm (N Uy (v,14))
(A.8)

Utilizing the stepsize conditions (3.9) and (3.10), combining with Lemma 3.8, and the fact that
y(()l) =2 and )\(()1) = A%, achieves the desired bound.

A.2 Proofs Deferred for Heterogeneously Smooth Composite Analysis

Proof of Proposition 4.2. Similar to the proof of Proposition 3.3, we note the bound from
Proposition 4.9. Considering 71 = 0 and the nonnegativity of Ly, the associated norm, and Q(z%, 2*),
it holds for all T > 1,

~(1) g(1) (1)~(1) T
wT277T||xT_x*H2 < w\HB 2+W1771Hx0_x*”2 w ’7 H)\O )\*||2+g [WT(TT+1)+ZWtTt‘| )

t=2

24LMA D2
€

Using the stepsize conditions (3.15) and (3.16) and our distance bounds, and letting N, =
then

1 1 12LEAD2 (73 4 372 4 o
7" =" = 5 e l(C/A +2AOND2 4 DF VT,

ca T TS 6

where we bounded [UJT(TT +1)+ ZtTZQ tht} < w with specialized § = ¢/N.. Finally

considering particular iterate ¢ > 1, we can further bound the rightmost product by 48L§?TAD% for
any t < [N;].
The remainder of the proof follows analogously to the proof of Proposition 3.3.
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Proof of Lemma 4.7. Let A € A, and g(z) = 377" \jg;. Moreover, consider any § > 0 and
ﬂ 2 2

L—pj m| "™ o Ty

1+p; ¢ 7 T

Since Vg(y) = 3721 A\;jVg;(y) for all y € X, letting v = Vg(x) and = Vg(Z), one has that

m m 5

Ui (19)) = Y0V lo5185) = 320U, 812 = Uytaia) 2 5l 3wty =2 = 5

j=1 A =1

‘ -

where the second equality follows from [7, Appendix A.2] and the inequality from using the
cocoercivity condition in Lemma 2.4. Noting in (4.1), Ls, > Ly for all A € A, gives the desired
bound.

Proof of Lemma 4.8. This result follows analogously to deriving (A.7) in the proof of Proposi-
tion 3.10, with the modification of noting that by Lemma 4.7, for any v € V and § > 0,

2

2 WU viv) 2 g Ml =] =5
J=1 7lg=1
By Lemma 3.9 and requirement (3.9), with the above substitution
T |: :| 6 m 2]
Yowr |Quzh2)| Swr(tr +1) |5 — 57— |[D_ Ny -
Pt 2 2Ly, |5
m T 5 1 2
Ty T _  T—-1 t—1
+wT<jz::1/\j(l/j—Vj),£L' —x >+tZJwﬂt 5 2o, ;)\ 1/ — v )

Fus <Z A =), @ )N e (Z AiUg; () ) |
j=1

J=1

Rearranging and applying Young’s inequality (analogous to (A.8)) concludes the proof.
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