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Abstract

This study addresses the bilevel discrete network design problem (DNDP) with con-
gestion, with special emphasis on fairness. The upper-level decision-maker (the network
designer) selects a set of arcs to add to an existing transportation network, while the lower-
level decision-makers (drivers) respond by choosing routes that minimize their individual
travel times, resulting in user equilibrium. Most existing works in the literature primarily fo-
cus on minimizing the total travel time of all drivers and extending their solution approaches
to other metrics remains a major research challenge. In this paper, we consider objectives
related to individual travel times and fairness. To optimize such metrics, we propose a novel
single-level reformulation of the DNDP based on strong duality of the lower-level problem.

To evaluate the performance of our method, we conduct numerical experiments on aca-
demic DNDP instances. We further demonstrate the practical relevance of our method
through a case study on electric vehicle (EV) charging station capacity expansion. In this
context, we introduce a fairness-based metric, the cost of sustainability, to quantify the
inefficiency caused by EV adoption relative to a scenario where no charging is required.
We then optimize expansion decisions to improve this metric. Experiments on a real-world
road network in Quebec, incorporating existing public charging infrastructure, highlight the

effectiveness and flexibility of our approach.
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1 Introduction

The network design problem (NDP) is a fundamental challenge in transportation and infrastruc-
ture planning, with widespread applications in urban mobility and logistics. In this problem, a
network designer first determines how to modify an existing transportation network, after which
drivers respond by selecting routes that minimize their individual travel times, leading to the
so-called Wardrop user equilibrium. The effect of congestion is modeled by using arc travel time
functions that depend on their traffic volumes. Under certain conditions on the travel functions,
the equilibrium computation can be formulated as a convex optimization problem (Beckmann
et al. [1955]). Exploiting this formulation, the NDP can be seen as a bilevel programming prob-
lem where the leader represents the network designer and the follower represents the drivers
using the transportation network. In most existing literature, the leader aims to minimize the
total travel time of all drivers, disregarding other metrics such as fairness or individual travel
times.

The NDP is typically classified into three categories: the discrete network design problem
(DNDP), which involves binary decisions, such as the addition of new arcs; the continuous
network design problem (CNDP), which involves continuous decisions, such as the capacity
expansion of arcs; and the mixed network design problem (MNDP), which combines both the
CNDP and the DNDP [Magnanti and Wong, 1984]. In this work, we focus on the DNDP.

Various solution methods for the DNDP have been studied over the past decades. However,
most studies assume that the objective of the upper-level problem is the total travel time, and
the developed solution methods are specifically tailored to this objective function. In some
contexts, other metrics beyond total travel time may be of interest to the network designer.
One such metric is fairness. Consider a road network where all drivers use conventional cars of
the same specifications. The user equilibrium can be considered fair because, at equilibrium, two
drivers with the same origin and destination experience the same travel time (Patriksson| [2015]).
However, when comparing different setups, drivers may perceive some degree of unfairness. For
example, if there is no congestion on the road (e.g., during an off-peak period), drivers can travel
in a shorter time. This difference is referred to as free-flow unfairness by Jahn et al.| [2005].

We can also consider the discrepancy between different modes of transportation. As an
example, suppose we are given a road network with electric vehicles (EVs) and conventional cars.
Typically, an EV requires a non-negligible amount of time to charge the battery. Furthermore,
often charging stations are scarce and EV drivers need to deviate from their preferred routes to
visit a charging station. Therefore, EV drivers may spend extra time visiting and using charging
stations along their trips, which would not be necessary if they used conventional cars. This
extra time spent by EV drivers can be seen as a metric to indicate the inconvenience/inefficiency
experienced by the EV drivers. The charging station operator may be interested in finding the
charging station locations accounting for such a metric.

A significant challenge arises when incorporating alternative objectives, such as fairness, into



existing exact solution methods for the DNDP [Farvaresh and Sepehri, 2013, Rey and Levin,
2025). For example, as we will demonstrate in this study, the aforementioned fairness metrics are
nonconvex (with respect to the flow variables, the variables used in the exact solution methods
in the literature). As a result, the formulation becomes a nonconvex mixed-integer nonlinear

program (MINLP), which is challenging to solve to global optimality.

Contributions. In this paper, we develop a novel modeling framework for the DNDP that
facilitates the incorporation of a broad class of objective functions. The proposed framework
relies on a single-level reformulation of the DNDP derived via strong duality. In particular,
we leverage the duality theory of monotropic programming, originally developed by Rockafellar
Rockafellar| [1981]. To the best of our knowledge, this is the first study in the bilevel program-
ming literature to employ monotropic programming duality. The resulting model is a convex
mixed-integer nonlinear programming (MINLP) formulation of the DNDP and is amenable to
solution techniques developed for convex MINLPs. Furthermore, the proposed reformulation
is sufficiently flexible to accommodate alternative objective criteria beyond total travel time,
including measures such as free-flow unfairness.

To showcase the use of our approach, we consider an application of the DNDP for the
capacity expansion problem of EV charging stations. As concerns over climate change grow, the
transportation sector faces increasing pressure to enhance its environmental sustainability. This
pressure is particularly acute given the sector’s substantial share of greenhouse gas emissions. For
instance, recent figures show it is responsible for 28% of total emissions in the United States [U.S.
Environmental Protection Agencyl, [2024], approximately 25% in the European Union [European
Environment Agencyl, [2024], and 28% in Canada [Statistics Canadal 2023]. EVs are expected
to play a key role in the transition toward sustainability. To promote EV adoption, it is crucial
to ensure reliable access to public fast-charging stations through effective deployment, a priority
reflected, for example, in the Government of Canada’s commitment to help fund over 84,500
new charging stations by 2029 [Natural Resources Canada, 2024]. Henceforth, we will refer
to fast-charging stations, also known as level 3 charging stations, simply as charging stations.
The DNDP provides a framework for modeling the optimal sizing and placement of charging
stations by considering the behaviors and interactions of EV drivers. We apply our formulation
to optimize the total travel time and other inefficiency metrics (formally defined later) related to
EV usage. We provide a case study using the transportation network of the province of Quebec.
Our computational results showcase the sensitivity of the solution to the objective, highlighting

the importance of appropriately choosing the objective for the upper-level problem.

Paper Structure. The paper is organized as follows. Section [2| provides a literature review.
In Section [3] we outline formulations of the traffic assignment problem, the lower-level problem
of the DNDP. Section [4] presents the DNDP and our single-level reformulation. We provide

numerical experiments using test instances of the DNDP in Section[5] In Section [6] the capacity



expansion problem of EV charging stations is formulated as the DNDP, and we provide numerical

experiments based on the Quebec road network. We conclude the paper in Section

2 Literature Review

The NDP involves the modification or installation of transportation network components, such as
arcs. In this work, we primarily focus on the DNDP, the NDP with discrete decisions. Below, we
first review related solution methods for the DNDP. We then review the studies that incorporate
fairness metrics into the DNDP. We conclude this section by examining models related to the

siting and sizing of EV charging stations that inform the context of our case study.

Network Design Problem: Solution Methods. Methods for solving the NDP can be
classified into three main categories: branch-and-bound algorithms, single-level reformulations,
and linear approximation methods.

The first category, branch-and-bound algorithms, represents one of the most commonly used
exact approaches for solving the DNDP. |Leblanc|[1975] pointed out that the high-point relaxation
(HPR) can be used to compute a dual bound. By relaxing the upper-level budget constraint, a
further relaxation of the HPR, was obtained, enabling faster computation of the dual bound. The
relaxation was used within a branch-and-bound algorithm to solve the DNDP exactly. To solve
the HPR efficiently, Farvaresh and Sepehri| [2013] employed an outer-approximation method,
while Bagloee et al. [2017] applied Benders’ decomposition. More recently, Rey and Levin| [2025]
proposed a hybrid approach that combines outer-approximation with column generation.

Another approach is to transform the bilevel DNDP into a single-level formulation. |Gao
et al.| |2005] proposed an approach to transform the bilevel DNDP into a single-level problem
using the support function. Later, Farvaresh and Sepehri|[2013] identified a flaw in the approach
and demonstrated that it may yield suboptimal solutions. Luathep et al.| [2011] formulated the
MNDP as a single-level problem by enforcing user equilibrium through a variational inequality.
The resulting formulation is a nonconvex MINLP, where nonlinear terms were approximated
using piecewise-linear functions. Wang et al.|[2015] developed an outer-approximation method
to handle the variational inequality and achieve a globally optimal solution. Their approach was
tested only on the instance presented by |Gao et al.[2005]. The value function of the lower-level
problem can be used to derive a single-level reformulation as well. For instance, Meng et al.
[2001] used the value function to derive a nonconvex single-level formulation of the CDNP and
developed a locally convergent algorithm based on the augmented Lagrangian method. The
value function was also used by Rey and Levin| [2025] to derive a valid inequality.

Several linear approximation methods have also been proposed. To solve the DNDP approxi-
mately, Farvaresh and Sepehri|[2011] replaced the lower-level problem with the Karush-Kuhn—Tucker
(KKT) conditions. This single-level reformulation yields a non-convex MINLP, and they lin-

earized the nonlinear terms, transforming the problem into a single-level mixed-integer linear



programming (MILP) formulation. Fontaine and Minner| [2014a] linearized the travel time func-
tions and approximated the lower-level problem using linear programming, which was then refor-
mulated as a single-level MILP. They solved the resulting problem using Benders’ decomposition.
While these methods are not exact due to the piecewise-linear approximations, numerical ex-
periments suggest they can produce high-quality solutions. For a computational study of linear
approximation methods, see Rey|[2020]. We also note that similar linearization approaches have
been applied to the CNDP. For example, [Wang and Lo [2010] addressed the CNDP by replacing
the lower-level problem with the KKT conditions and linearizing the nonlinear terms.

In the general bilevel programming literature, a common approach for problems with a linear
lower-level program is to derive a single-level reformulation using strong duality (Dempe [2002]).
Within the NDP literature, the only known application of this approach is due to [Fontaine
and Minner| [2014b|, who first linearized the nonlinear terms in the lower-level problem and
approximated it by a linear program. In contrast, the present work applies strong duality directly
to the lower-level problem without resorting to linearization, thereby avoiding approximation
error and yielding a reformulation equivalent to the original DNDP. This is achieved by leveraging
the duality theory of monotropic programming, developed by Rockafellar [1981]. To the best
of our knowledge, this represents the first use of monotropic programming duality within the

bilevel programming literature.

Network Design Problem: Models based on Fairness. All of the methods reviewed
above assume that the objective is to minimize total travel time. However, in many real-
world applications, alternative performance metrics, such as fairness, are essential for producing
socially acceptable solutions.

More broadly, there is a growing body of work in operations research that incorporates
fairness considerations into optimization models. For example, Liu and Salari [2024] studied
a facility location problem (FLP) with congestion, which can be viewed as a special case of
the NDP on a bipartite network, and proposed a model that minimizes the worst expected
total travel time experienced by users. [Aboolian et al. [2022] examined a related variant in
which cost-effective facility locations are sought subject to an upper bound on the worst user
travel time. Digehsara et al.| [2025] analyzed a fair FLP in which users follow a rank-based
choice model without congestion under demand uncertainty, while Ljubi¢ et al.| [2024] developed
decomposition algorithms for optimizing fairness-related metrics in the FLP.

In contrast, fairness considerations remain relatively limited in the NDP literature. Early
work by |[Friesz et al.|[1993] investigated a multiobjective version of the NDP that simultaneously
minimized total user transportation costs, travel distance, construction costs, and residential dis-
placement due to new infrastructure. Similarly, Meng and Yang| [2002] studied a multiobjective
NDP accounting for changes in individual travel times induced by network expansions. Both
studies aggregated multiple objectives using weighted-sum formulations and applied simulated

annealing to solve the resulting problems. Unlike these approaches, the present work develops



an exact solution approach capable of accommodating fairness-related objectives.

Sizing and Placement of EV Charging Stations. Initially, the literature on EV (or al-
ternative fuel vehicle) infrastructure planning focused on simple models that did not consider
congestion. One of the most influential models in this literature is the Flow Refueling Loca-
tion Problem (FRLP), introduced by Kuby and Lim [2005]. In their model, each demand is
associated with an origin, a destination, and a flow volume, and is considered served if there
are enough charging stations to enable drivers to complete their journeys without running out
of battery. In the FRLP, drivers are assumed to follow the shortest path, which is determined
based on travel time without considering congestion. Later, Kim and Kuby| [2012] extended the
model to allow drivers to deviate from the shortest paths. More specifically, given a predeter-
mined deviation threshold, a driver is considered served if they can travel from their origin to
their destination along a path whose length does not exceed their shortest path by more than
the allowed deviation. |Arslan et al.[[2019] and |Gopfert and Bock [2019] independently proposed
branch-and-cut algorithms to solve this variant of the FRLP. Again, this model is based on
travel distance or travel time, without accounting for congestion.

Recently, there has been growing interest in modeling EV charging station infrastructure
planning while considering congestion and user interaction. Typically, such models are for-
mulated as bilevel programming problems, where the upper-level problem corresponds to the
charging station operator and the lower-level problem models the behavior of EV drivers. The
upper-level problem seeks to minimize costs, emissions, or travel times, while the lower-level
problem captures driver behavior, including route choices, waiting times at charging stations,
and vehicle range constraints. For example, Kinay et al.| [2023] used logic-based Benders decom-
position to minimize the installation costs of charging stations. [Zhang et al. [2023] considered a
bilevel programming problem in which the upper level is a multi-objective optimization problem
aimed at minimizing both total costs and total service time. However, both [Kinay et al.| [2023]
and Zhang et al.|[2023] assumed that drivers do not take congestion into account when choosing
their routes.

Zheng et al|[2017], Bao and Xie [2021], and |Tran et al|[2021] employed the DNDP to model
EV infrastructure planning. In these studies, the upper-level decision-maker determines the
locations of charging stations, while the lower-level problem is formulated as a user equilibrium
model that accounts for road congestion. Jing et al.|[2017] formulated a bilevel DNDP prob-
lem in which the lower-level models drivers’ behavior as a stochastic user equilibrium. These
studies focus on road congestion rather than congestion at charging stations and use heuristics
to find feasible solutions efficiently. Mirheli and Hajibabai [2023] developed a model to jointly
optimize charging station locations and pricing. In their model, drivers choose routes based on
travel time and cost, but congestion effects are not considered. He et al. [2018] considered a
user equilibrium model that includes both travel time and charging time, where the latter is

defined as a function of the required energy. However, congestion or waiting time at charging



stations is not considered. In our case study, we explicitly model congestion at charging stations,
optimize various metrics, including those related to fairness, by expanding stations’ capacities,

and develop a convex MINLP formulation.

3 User Equilibrium

In this section, we review various concepts related to the user equilibria, which we will use to
define the DNDP in Section 4] First, in Section we define some notations and assumptions.
Then, in Section we present the user equilibrium models. Lastly, in Section we discuss
the free-flow unfairness, which will be used as an objective of the DNDP in Section [d A table
of notation can be found in Appendix [A]

3.1 Notation and Assumption

Let G = (V, A) be a directed graph. The set A contains all the ezisting arcs as well as candidate
arcs that can be built. For each arc a € A, we associate a binary variable z, to indicate its
availability: The value of x, is 1 if arc a is available and 0 otherwise. We write the set of feasible
values of z as X C {0, 1}A. For example, X can model a budget constraint. If arc a € A already
exists, we have z, = 1 for any z € X.

Denote by K the index set of the origin-destination (OD) pairs of nodes in the network. For
each k € K, we denote its origin, destination and demand volume by oy, dj, and ey, respectively.
Furthermore, for each a € A, let 0, be the travel time function, the function that maps the link
flow on a (total traffic volume on a) to its travel time.

Throughout this paper, we assume the following:

Assumption 1. a) For each demand k € K, there is a path from oy to dy that only uses
existing arcs.

b) For each arc a € A, the travel time function is given by

9(1(3) = fa + ga3p7 (1)

where fo > 0 and g, > 0 are non-negative constants, and p > 1 is a positive integer. The
function is defined to be zero for s <0, i.e., 0,(s) =0 when s < 0.

These assumptions are not restrictive. If the road network is already well-connected, all the
OD pairs are traversable even without building any new arcs. We also note that the collection
of travel time functions modeled by includes the Bureau of Public Roads (BPR) function
(Patriksson [2015]) as well as a constant travel time. All the test instances we use in our
numerical experiments (Sections [5| and @ satisfy Assumption

Many formulations of the bilevel DNDP (see, for example, Farvaresh and Sepehri [2013],
Wang et al| [2013]) model the flow of each demand k € K along each arc a € A. We use



y € RE *4 to denote the variable representing individual flows. When the underlying graph is
large, the flow vector y involves a large number of variables. Interestingly, the bilevel DNDP can
be modeled using aggregated flow variables, which are obtained by summing the flows of all OD
pairs that share the same origin. This aggregation does not affect the set of feasible flows in the
sense that there is a one-to-one mapping between the set of feasible flows and the set of feasible
aggregated flows. The aggregation reduces the number of variables, at the cost of a weaker
formulation of the bilevel DNDP. In particular, the continuous relaxation of the reformulation
provides a weaker dual bound when the flow aggregation is used. As a result, whether this
aggregation leads to a computational speed-up depends on the specific instance. This technique
is well known in the (single-level) multicommodity flow literature; see the discussion in|Chouman
et al.| [2017] and references therein. To the best of our knowledge, however, flow aggregation
has not been exploited in the literature on the bilevel DNDP under user equilibrium. Our
preliminary experiments showed that aggregating the flow variables reduced solution times (see
Appendix . Therefore, in this paper, we consider formulations where the flow variables are
aggregated. To this end, let O = {v € V : 3k € K, 0, = v} denote the set of all origins. For each
0 € O, define K, = {k € K : o, = 0o} as the set of demands originating from o. We define the

aggregated flow over each arc a and origin o as z,q = Z Yka- In the remainder of the paper,

ke K,
we primarily use the aggregated flow variable z, except in a few cases where the disaggregated

flow y is necessary. Adapting the arguments to use the disaggregated flow y is straightforward.

3.2 Wardrop Equilibrium Conditions

In this section, we assume z € X is given and present how user equilibrium is modeled. Let
G(z) = (V, A(x)) be the subgraph of G only containing available arcs: A(x) = {a € A: x, = 1}.
To describe a set of feasible flows, define for each k € K and v € V

—ey, if v = oy,

/

€y = ek, it v=dj,

0, otherwise,

and the aggregated variant for each o € O and v € V by ey, = Z €jp- Then, a feasible flow

keK,
must satisfy the flow conservation constraint

Z Zoa — Z Zoa = €ovs Vo€ O,v eV,

acAf (z) a€Ay (x)

where A} (r) and A, (x) are subsets of A(z) corresponding to incoming and outgoing arcs of v.
We also assume each driver is self-driven and chooses the route so that their travel time is

minimized. This is referred to as Wardrop’s second principle. It is shown by [Beckmann et al.



[1955] that the user equilibrium is given as the optimal solution to the following problem:

¢(x) = min Z /ZOEO - 0, (s)ds (2a)
F acA@) 0
s.t. Z Zoa — Z Zoa = €on, Yo € O,v €V, (2b)
a€AY (z) a€Ay (z)
z>0. (2c)

We use Z(z) to denote the optimal solution set of . The KKT conditions of are given by

Z Zoa — Z Zoa = €ou, Yoe O,veV, (3a)

acAf (x) a€A, (x)
0, (Z ) I, Yo € 0,a = (t,h) € A(a), (3h)
<10
(9a (Z zoa) — Toh + 7Tot> Zoa =0, Vo€ O,a=(t,h) € A(z), (3¢)
0€0
z>0. (3d)

The next proposition states the dual of . See Appendix |C]| for the proof.

Proposition 1. Suppose Assumption holds. Then, the Lagrangian dual of 18 given by

p+1

max g{ek(wokdk — Topor) — aezA(:x) Mﬁf (4)
8.1 Na = Toh — Mot — fa; Vo€ O,a = (t,h) € A(z),
Na =0, Va € A(z) : go = 0,
n=0,

where G, = gq if go > 0 and otherwise g, = 1.

This dual formulation is exploited in the literature. For example, [Fukushimal [1984] develops
a solution method based on this dual formulation. We denote the set of optimal values of « for
formulation (4)) by II(z).

Formulations and exhibit a special structure: all constraints are linear, and the ob-
jective function is separable and convex. Such problems are known as monotropic programming
problems and have been extensively studied by Rockafellar| [1981]. Due to this special structure,
monotropic programming enjoys favorable duality properties under milder conditions than those

required in general convex programming.

Proposition 2. Suppose Assumption [1] holds.



a) For any x € X, both the primal problem and the dual problem are feasible;
b) strong duality holds; and
¢) the primal and dual variables are optimal if and only if they satisfy the KK T conditions (3]).

See [Rockafellar| [1981] for the proofs.

3.3 Free-Flow Unfairness

In this section, we briefly review the concept called free-flow unfairness. We will use this to
define fairness-oriented objective of the DNDP in Section
For each OD pair, at equilibrium, drivers may use multiple paths. However, the travel time

of each used path must be the same. If we use the disaggregated flow variable y, it is given by

> Yka ba (Z yka> Jen.

acA keK
Note that the numerator is the total travel time experienced by drivers of OD pair k. This travel
time must be larger than the shortest travel time drivers would experience, assuming there is no
congestion on the roads. This difference is called the free-flow unfairness by Jahn et al.| [2005].

To be more specific, let y be the equilibrium flow. The free-flow unfairness of OD pair k € K is

Cp = (Z Yka Oa (Z yka> Jer — Vk) [V, (5)

a€A keK

where v is the shortest travel time on the graph with only the existing arcs, assuming no
congestion on roads. Note that in general the right-hand side of is nonconvex in y.
Interestingly, there is a “dual” representation of this quantity. As discussed by [Patriksson
[2015], for any z € X, k € K and 7 € II(z), 7y, 4, — o0, 1S the travel time experienced by each
individual of OD pair k to travel from o to di under the congestion at the user equilibrium.

Therefore, the free-flow unfairness can be written as

Gk = (T‘-Okdk — Topo, — Vk)/Vk- (6)

In this work, we focus on free-flow unfairness as a running example. However, the argument
can be easily adapted to accommodate any metric that is linear in individual travel time. For
instance, Meng and Yang [2002] considered improvements in individual travel time, which can

be modeled by replacing vy in @ with the travel time at equilibrium in the current network.

4 Methodology

In this section, we present the DNDP and our single-level reformulation. In Section [4.1] we

introduce the bilevel formulation of the DNDP under the typical objective of minimizing total

10



travel time, as commonly considered in the literature. Next, in Section [{.2] we present an
approach based on the value function and discuss its limitations when applied to objectives
such as free-flow fairness. Finally, Section [4.3|introduces our single-level reformulation, which is

derived using strong duality, and highlights its flexibility to integrate fairness objectives.

4.1 Bilevel formulation of DNDP

This section presents the bilevel formulation of the DNDP under the objective of minimizing
total travel time, a common setting in the literature (see, e.g., [Leblanc [1975] and [Farvaresh
and Sepehri [2013]). Recall that X denotes the set of feasible upper-level decisions x, and Z(x)
represents the set of equilibrium flows given x. The DNDP with total travel time as the objective

can be formulated as

win Y (Z ) 0 (Z ) (7a)

a€A \oeO 0e0

st.ze X,z e Z(x). (7b)

Objective minimizes the total travel time, while constraint ensures that the arc con-
struction decision x is feasible and that z corresponds to an equilibrium flow.

As discussed in Section the equilibrium set Z(x) can be characterized as the solution
set of an optimization problem. Therefore, formulation is a bilevel program. In particular,
it corresponds to the optimistic variant of the bilevel model (see |Carvalho et al|[2025]). If
multiple user equilibria exist, the optimistic formulation assumes that the most favorable one
(i.e., the equilibrium with the smallest total travel time) is realized. In contrast, the pessimistic
formulation assumes that the least favorable one (i.e., the equilibrium with the highest total
travel time) will occur. To the best of our knowledge, the distinction between optimistic and
pessimistic variants of the DNDP has not been explicitly discussed in the literature, and all
existing works adopt the optimistic formulation . However, as shown by [Roughgarden and
Tardos [2000], in the case of multiple user equilibria, all equilibria result in the same total travel

time. We provide the proof for completeness.

Proposition 3. Suppose Assumption holds. For any x € X and z,2' € Z(x), we have

3 (2 ) " (z) _y (Zz;a) " (z)

a€EA \o€eO 0€0 a€A \o€O [10)

Proof. Pick any z € X and « € II(z). For any o € O and z € Z(z), by summing for all

11



a € A(x), we obtain:
Z Zoaba (Z Zo’a) = Z Z Zoa — Z Zoa | Tov = Z €ovTov-
acA(z) o'€0 VeV \aeA{ (x) a€A; (x) veV
Therefore, for any z € Z(x), the total travel time is
Z <Z Zoa) 04 (Z Zoa) = Z (Z Zoa) Oa <Z Z0a> = Z Z CovTov-
acA \ocO 0€0 acA(z) \o€O 0e0 0€0 veV
This implies the desired result. ]

In particular, under Assumption [I} there is no distinction between the optimistic and pes-
simistic formulations of the bilevel DNDP. As shown in Section this property extends to

any objective function that depends on individual travel times.

4.2 Single Level Reformulation based on Value Function

One of the most popular approaches for problem is reformulating it to a single-level problem
using the value function of the lower-level problem. For example, see Meng et al.| [2001]. Using

¢(x), the optimal objective value of , we obtain a single-level reformulation of as

min 3 (z) 6 (z) (5a)

a€A \oeO 0€e0
ZOEO Zoa
sty / 04(s)ds < ¢(x), (8b)
acA”0
> Zoa— Y Zoa = €on, Yoc O,vev, (8¢)
acAf acAy
Zoa < Z exTa, Yo e O,a € A, (8d)
keK,
z>0,z € X. (8e)

Objective seeks to minimize total travel time. Constraint ensures that z is optimal
with respect to the lower-level objective, while constraints f ensure that z is a feasible

flow. [Leblanc| [1975] showed that the value function ¢(x) is non-increasing in x. As a result, the

12



constraint involving the value function can be linearized as:

min > (Z Zoa) 0a (Z Zoa) (9a)

a€A \o€O 0cO
o ozoa
5.t Z/ E s)ds < ¢(x )Y ah(1-xa), Va'€X, (9b)
acA acA

®J - @9

where ¢(2') = (¢(0) — ¢(z')) for each 2’ € X. Rey and Levin [2025] used a closely related cut.

Objective is convex (see Sheffi [1985]). Moreover, the left-hand side of constraint
is the objective of the lower-level problem, which is convex in z. Therefore, formulation @ is
a convex MINLP, for which various solution methods have been proposed (see Bonami et al.
[2012] for a survey). In our implementation, we adopt an outer-approximation method, as
described in Appendix@ Note that formulation @D contains a large number of constraints .
Nevertheless, as we demonstrate in our computational experiments in Section[5] these constraints
can be handled lazily, allowing the formulation to be solved efficiently. In particular, only a small
subset of elements in X (i.e., constraints ) was required to determine the optimal solution.

One of the limitations of formulation @D is its lack of flexibility. For instance, suppose we

alm to minimize the sum of free-flow unfairness. As shown in , this can be expressed as

min Y (Z Yraba (Z ym) Jex — uk> Jvi

keK \acA k€K
st.ze X,y € Y(x),

where Y (x) denotes the set of disaggregated equilibrium flows for each x € X. It is possible to
replace the constraint y € Y (z) with an equivalent convex representation, as in @ However,
in this case, the objective function is nonconvex. As a result, the corresponding formulation
becomes a nonconvex MINLP, which, unlike convex MINLPs, is significantly more challenging

to solve to global optimality.

4.3 Single Level Reformulation based on Strong Duality

In this section, we propose our single-level reformulation of problem based on strong duality.
The resulting formulation is a convex MINLP and thus solvable by existing optimization tech-

niques. By Proposition |1} Z(z) is given as the projection of Z’'(z) and we obtain the following
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formulation of the DNDP:

:EI,£1,17rI,117 Z (Z zoa> 0, (Z zoa> (10a)

a€A \oc€O 0eO
Zo O %oa
s.t. Z/ ) 0a(s)ds
acA 0
> al > (100)
S €k ﬂ—okdk - ﬂ-OkOk) - 1777(11J ) 10b
hex g+ 1)
> Zoa— Y Zoa = €ov, Vo€ O,0eV, (10c)
ac AT a€Ay
Zoa < Z €LTa, Yo € O,a € A, (10d)
keK,
nazﬂ-oh_ﬂ-ot_fa_Moa(l_ia)v Yo e O,a = (t,h) €A, (106)
Na =0, Vae A: g, =0, (10f)
z>0,n>0,z€ X, (10g)

where M € R4 is a constant such that for any z € X there exists (m,n) € II(x) satisfying
Toh — Tot — fa < Moa, Von,a:(t,h)EA\A(x).

We examine approaches to compute valid values of M in Section Constraint enforces
strong duality, ensuring that the primal and dual variables are optimal for their respective lower-
level problems. Constraints , and ensure that z is feasible for the lower-level
primal problem, while constraints - ensure that the feasibility of = and n to the
lower-level dual problem. According to [Sheffi| [1985], the objective and the left-hand side of
constraint ([10b]) are convex in z. Moreover, it is straightforward to verify that the right-hand
side of constraint is concave in 7 and 7. Thus, formulation is a convex MINLP, which

can be solved with an outer-approximation method (see Appendix @

4.3.1 Optimization of Other Objectives

Formulation contains more variables than formulation @ These extra variables can be
used to model different objective functions or constraints. For example, in light of @, we can
modify the DNDP to optimize the total free-flow unfairness as

min Z (ﬂ-okdk — Togor, — Vi) [ Vi (11)

T,2,T,
K keK

sit. (T08) — (08
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and the worst free-flow unfairness as

min ¢ (12)

®,2,m,1,§

s.t. &> (Topd, — Topop, — Vk)/Vk, Vk € K,

(10%) — ([10¢).

We note that formulations and are convex MINLP.

Theorem 2.5 in |Patriksson [2015] states that at equilibrium, individual travel times are
unique. As a result, both the total free-flow unfairness and the worst-case free-flow unfairness
are the same across all user equilibria. As in Section[4.1] we conclude that there is no distinction
between the optimistic and pessimistic formulations of problems and .

4.3.2 Computing Big-M

This subsection presents our approach to compute a valid value of big-M. This can be done by
bounding the difference of optimal dual values in II(z). The following proposition gives a bound
for a specific x € X, k € K and a pair of nodes (¢, h).

Proposition 4. Let 2 € X, 0€ O, t,h €V and 6 > 0. Let z > 0 be such that for each o' € O

and v € V, we have

oy — 0, if o =0 and v =t,

E Zola — E Zota = { €y + 60, if o =0 and v =h,

Af Ay .
acAy (@) acdy () €olvs otherwise,

Then, under Assumption |1, for any © € TI(x), we have

1 ZD’GO Zola
ron -t < [ 3 / bu(s)ds — ()

a€A(x)

Proof. Let L be the Lagrangian of (Appendix . By strong duality, for any = € II(x),

¢(z) = min L(2/, 7)

2'>0
< L(z,m)
2o Zo/a
= Z / < dS— Z Z’ﬂ'ov Z Zola — Z Zo'a — €o'v
acA(x) o'cOveV a€AY (x) acAy (z)
2o Zo’a
= Z / = a(8)ds — 6 (mon — Tot) -
ac€A(x)
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By rearranging the terms, we obtain the desired result. O

Let G = (V, A) be the graph consisting of the existing arcs, i.e., A = NgexA(z). A flow in
Zs above can be obtained by combining a flow on G satisfying the demand and a J-unit of flow

on G from t to h, in the sense described in the next proposition.
Proposition 5. Lett,h € V and § > 0. Let z > 0 be any flow on graph G satisfying:

Z Zoa — Z Zoa = €on, Yo € O,veV.

acAt a€Ay

—v

Furthermore, let 2 > 0 be any flow on graph G such that for each v € V

—5, lf U= t7
YD ST
A i
acA} a€d, 0, otherwise.

Then, under Assumption for any x € X, 0 € O and 7 € II(x), we have
]_ Z{1+Zo’eo 2o’ a
Toh — Tot < 5 Z/ Oa(s)ds — ¢ | ,
0
acA
h = mi .
where ¢ gg(l(ﬁ(x)

Proof. Fix z € X, 0o € O and define for each o' € O, a € A

. /
o Zo'a) if o 7é 0,
Ro'a = , e
Zg + 2ota, if 0 =o0.

Flow Z satisfies the condition in Proposition 4| and is feasible on G(z). Thus, for any 7 € II(x),

we obtain
1 ZO,GO 20’(1
D> /O 6u(s)ds — 6(x)
a€A(x)
1 2+ 0o z;,a
< 5 Z/o Oa(s)ds — o | ,
acA
as required. ]

This proposition is useful since one can obtain a bound valid for multiple graphs. In our
implementation, we compute the values of big-M as follows. First, we solve the traffic assign-

ment (2)) on G (i.e., the graph with all the existing and candidate arcs) to obtain a lower bound
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on ¢: In light of the monotonicity of ¢, ¢ < ¢(x) for any x € X. Then, we solve the traffic assign-
ment (2) on G to obtain a flow z as well as travel times of the arcs under the congestion. Lastly,
for each pair t,h € V, we obtain the shortest path on G under the congestion induced by z. We
consider ¢ unit of flow along the shortest path and use it as z’. Then, we invoke Proposition
with these 2z and 2. We choose the value of § by grid search (6 € {1072,107%,10°, 10", 10%}).

5 Computational Performance

In this section, we study the performance of our single-level reformulation, formulation SD .
We use formulation VF @ as a baseline. We use two instances generated by Rey and Levin
[2025]: SiouxFalls and Easter Massachusetts. Their statistics are shown in Table [I| For each
transportation network, there are 10 test instances with different sets of candidate arcs. Let A;

and Ao be the sets of existing and candidate arcs, respectively. Then, set X is defined by

X=<uz: Z CaTa < b, Ty =1, Va' € Ay, xy € {0,1}, Va' € Ay 3, (13)
a€As

where ¢, is the construction cost of arc a € As and b is the budget. For more details on the
instance generation, see |Rey and Levin| [2025]. All the methods are implemented in Python 3.9
using Gurobi 12.0, and run in single-thread mode. To compute the user equilibria, we use the

column generation technique as described by [Leventhal et al.| [1973].

Table 1: Statistics of the test instances

Network Nodes Arcs Candidate Arcs Budget (%) OD pairs

SiouxFalls 24 76 10 50 528
Easter Massachusetts 74 258 10 50 1113

5.1 DNDP to Optimize Fairness

We first evaluate the capability of formulation SD to optimize various metrics, as discussed in
Section To be more specific, we solve the DNDP to optimize the total travel time ,
the total free-flow unfairness and the DNDP to optimize the worst free-flow unfairness ((12)).
Here, we do not consider the formulation based on the value function, since it cannot handle
the objectives based on fairness. The comparison of the two formulations when the objective is
the total travel time is given in Section [5.2

Table |2 shows the number of test instances solved within the one-hour time limit (Solved),
the average computational time in seconds (Time) and the average number of branch-and-
bound nodes (# B&B Nodes). Compared to the optimization of the total travel time , the
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optimization of the total free-flow unfairness tends to require more time on SiouxFalls, and
more branch-and-bound nodes on both transportation networks. The optimization of the worst
free-flow unfairness requires even more computational time and branch-and-bound nodes
than the optimization of the total free-flow unfairness on average. There is one test instance
for which the optimal solution was not found within one hour when the objective is the total

free-flow unfairness, and four instances when the objective is the worst free-flow unfairness.

Table 2: Performance of formulation SD to optimize the total travel time , the total free-flow
unfairness and the worst free-flow unfairness

Network Objective Solved Time # B&B Nodes
Travel time 10 248.2 294.5
SiouxFalls Total free-flow unfairness 10 337.4 640.5
Worst free-flow unfairness 10 569.9 705.3
Travel time 10 1,646.1 166.5
Easter Massachusetts Total free-flow unfairness 9 1,987.5 472.4
Worst free-flow unfairness 6 2,812.5 537.0

We speculate that the reason why optimizing unfairness seems harder than optimizing travel
time is as follows: intuitively, we observe that the total travel time, the objective value of
formulation , is similar to the objective value of the lower-level formulation . In fact,
when there is no congestion (g, = 0 for all a € A), the two objective values coincide for any
feasible flow. In this setup, constraints , and , along with dual variables 7 and
7, are redundant in the sense that the optimal solution of formulation does not change
even if they are removed. Thus, these constraints are only necessary when congestion affects
the system, and the “effective” formulation size might be smaller. These observations do not
hold for the other objective functions used in formulations and , as the upper- and
lower-level objectives are no longer closely aligned, thereby accentuating the problem’s bilevel

nature and, consequently, its difficulty.

5.2 DNDP to Minimize the Total Travel Time

As we have seen in Section the formulation based on strong duality is flexible, and it
becomes particularly valuable when the objective is based on fairness. However, when the
objective is the total travel time, the typical objective in the literature, the formulation based
on the value function can be used to solve the DNDP too. Below, we observe the computational
performance of formulation SD ((10) and formulation VF @D in this setting. In formulation
VF @D, constraints are generated lazily: every time an integer solution is found, we compute
the corresponding traffic assignment and check whether constraint is satisfied, adding it if
necessary.

Table [3| shows the number of test instances solved within the one-hour time limit (Solved),
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the average computational time in seconds (Time), and the average number of branch-and-bound
nodes (# B&B Nodes). For the test instances that are not solved within the time limit, the time
is set to one hour, and the number of branch-and-bound nodes computed within this one-hour
time limit are used. In the column labeled “Formulation”, SD (standing for strong duality) and
VF (value function) refer to formulations SD and VF @D, respectively. In this experiment,
all the test instances are solved within the one-hour time limit. Formulation SD has a shorter
average solution time on SiouxFalls, but on Easter Massachusetts, formulation VF @D tends to
be faster on average. Formulation VF @D requires less branch-and-bound nodes than formulation
SD , especially on Easter Massachusetts. Interestingly, both formulations require on average

fewer branch-and-bound nodes on Easter Massachusetts, a larger transportation network.

Table 3: Performance of formulations SD and VF @ to solve the DNDP to minimize the
total travel time

Network Formulation Solved Time # B&B Nodes
. SD 10 248.2 294.5
SiouxFalls VF 10 614.2 252.6
SD 10 1,646.1 166.5

Easter Massachusetts VF 10 364.8 111.3

Especially on large test instances, formulation VF tends to be faster. For further analysis on
the scalability of the two formulations, see Appendix [E] Nonetheless, as we saw in Section [5.1
formulation SD preserves convexity even when the objective involves fairness-related met-
rics, such as the free-flow unfairness. In contrast, modifying formulation VF (@ to optimize
a fairness objective results in nonconvex MINLPs, for which proving global optimality is sig-
nificantly more challenging. In this regard, the ability of the SD formulation to accommodate

fairness objectives within a convex optimization framework constitutes a valuable contribution.

6 Case Study: EV Charging Station Capacity Expansion

In this section, we formulate the capacity expansion problem for EV charging stations as the
DNDP. This formulation enables us to optimize charging station capacity expansion decisions
while considering congestion at charging stations. The objective is to minimize either the total
travel time or a specific fairness metric related to EV drivers.

In Section [6.1] we describe the setup of the problem. In this section, we also present the ap-
proach for modeling the behavior (i.e., the routing decision) of EV drivers as a traffic assignment
problem, as well as a metric quantifying the inefficiency experienced by EV drivers. Section [6.2]

presents the results of the numerical experiments using the Quebec road network.
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6.1 Problem Setup

Suppose we have a highway road network with charging stations installed at some of the nodes.
We are interested in EV drivers who travel long distances through this road network, represented
as OD pairs. Specifically, we focus on the drivers who need to charge their EVs along their trips
in order to reach their destinations. These EV drivers consider the time required to charge
their vehicles and choose their routes in a way that minimizes their total travel time. Given the
current road network with charging stations and their associated demands, our goal is to select
a subset of charging stations for capacity expansion to improve a specified metric, such as the

total travel time of EV drivers. We make the following assumptions:
Assumption 2.

a) All EVs have the same vehicle range.

b) Each OD pair is traversable, assuming the battery is fully charged at the origin and that
intermediate charging at existing stations along the route is allowed.

¢) The travel time on a road does not depend on the number of EV drivers using that road.

d) The time required to charge an EV at a charging station (including waiting time) can be
modeled as in equation .

The first assumption is standard in the literature (e.g., Kinay et al. [2023]). The assumption
that travel time is independent of the number of EV drivers can be justified when the ratio of
EVs to conventional vehicles is small. For instance, in 2023, EVs accounted for 4.4% of the
total light vehicles in circulation in Quebec, highlighting that they are still relatively rare on
the roads [Institut de la statistique du Québec, [2023]. When the share of EV drivers is not
negligible, we can use the multi-class network equilibrium as developed by |Chen et al.| [2016].
Regarding the final assumption, there are situations in which alternative waiting-time functions,
such as those obtained from queueing models, may be more appropriate. Under mild conditions,
our strong duality approach extends to these more general functions. For clarity of exposition,
however, we adopt the assumption stated above.

Traffic assignment with electric vehicles (EVs) is more complex than conventional traffic
assignment due to the presence of charging requirements. In particular, a shortest path for
a conventional vehicle may be infeasible for an EV because of its limited driving range, or
suboptimal due to congestion and waiting times at charging stations. However, by employing
the network transformation technique proposed by [MirHassani and Ebrazi| [2013], the EV traffic
assignment problem can be converted into a standard user-equilibrium formulation, as described
in Section [3| and the associated capacity expansion problem can be reduced to the conventional
NDP. A detailed description of this transformation is provided in Appendix

To quantify the inefficiency introduced by the adoption of EVs, we define a fairness-based
metric, termed the cost of sustainability, as the difference between the travel times experienced

by EV drivers and conventional vehicle drivers. EV drivers may incur additional delays due
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to detours to charging stations and waiting times at these facilities, both of which depend
on congestion levels at charging stations. The optimization of the total and worst-case cost of

sustainability can be carried out by replacing v, with the travel time experienced by conventional

vehicle drivers in and .

6.2 Numerical Experiments with Quebec Road Network

Experimental Setup. To illustrate the applicability of our method, we run experiments on
the road network in Quebec, including public EV charging stations. We use the 2021 Statistics
Canada census datam to determine population centers. We consider the 20 population centers
with the largest populations. We assume the vehicle range of an EV is 200 km and remove OD
pairs whose distances are less than this vehicle range, resulting in 92 OD pairs. The demand
volumes of the OD pairs are computed using the gravity model (Hodgson, [1990]). We consider
two demand scenarios: a low-demand scenario and a high-demand scenario, where the demand
volume of each OD pair is increased by 50% from that of the low-demand scenario. The histogram
of the OD demand volumes is presented in Appendix [G]

The location data of charging stations is obtained from Clircuit électm’cﬂ We use Open-
StreetMap (OpenStreetMap contributors| [2024]) with OSMnx (Boeing [2024]) to compute the
distances between charging stations and population centers using the highway network in Que-
bec. Based on the computed distances, we construct the transformed network as discussed in
Section We consider 370 level-3 charging stations. The resulting network has a large number
of arcs. To make the instance size moderate, we run the traffic assignment and compute the
user equilibrium using the existing charging stations. We then remove the arcs with zero flows
at equilibrium since they are unlikely to be used after capacity expansion. The statistics of the

resulting graphs are shown in Table

Table 4: Statistics of the graph before and after filtering arcs

Network Nodes Arcs Candidate arcs OD pairs
Original 924 65,888 370 92
Low Demand 924 354 87 92
Hight Demand 924 421 108 92

The time to charge an EV at a charging station (including waiting time) is modeled as
1/2 4 (s/c)*/100, where s is the amount of demand served at this charging station and c is the
number of outlets of this charging station.

We consider the capacity expansion of each charging station by 1 unit (e.g., if we have a

charging station of capacity ¢ = 2, we may expand it to capacity ¢ = 3). For each charging

"https://wwwil2.statcan.gc.ca/census-recensement/2021/dp-pd/prof/
2https ://lecircuitelectrique.com/en/
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station (candidate arc a), we sample the cost of the capacity expansion (the construction cost
¢, of the candidate arc) from a uniform distribution between 0.5 and 1.5. We use X as defined
in equation .

We propose a simple greedy heuristic as a baseline. The method works as follows: We
first evaluate the user equilibrium with the current set of charging stations in place. Next, we
compute the “utility” of each charging station. This is defined as the ratio of the total demand
served by the station to its capacity. We then sort the charging stations in decreasing order
of their utility, from the most to the least used. Starting from the highest utility, we choose
the stations until we reach a budget limit. After selecting the stations, we perform another
traffic assignment to evaluate the objective value (e.g., total travel time). Thus, this greedy
method requires two traffic assignment computations: one for evaluating the user equilibrium

and another for evaluating the objective after selecting the charging stations.

Results and Discussion. First, we use formulations and to optimize the total and
worst cost of sustainability, as described in Section [6.1] Recall that the cost of sustainability is
defined as the extra travel time EV drivers experience compared to the drivers of conventional
cars. Tables|5[and @ show the upper boundE| (UB), the improvement of the upper bound relative
to the greedy method (Rel.), the lower bound (LB), the gap between upper and lower bound
(Gap), and the number of branch-and-bound nodes (# B&B Nodes). We set the time limit to
one hour. We observe that increasing demand makes the problem harder: the optimality gap
tends to get worse and fewer branch-and-bound nodes are explored. The budget seems to have
little impact on the performance of the method.

Next, we present the performances of formulations and @D to seek the capacity expansion
decisions that minimize the total travel time of EV drivers. Table [7] shows the upper and lower
bounds obtained after the one-hour time limit, among other statistics. The definition of each
column is the same as in Table |5 In all the setups, formulations SD and VF @D provide
tighter upper bounds (better solutions) than the greedy method. Formulation VF @ tends
to give tighter bounds than formulation SD , and the optimality gap is smaller in all the
setups. For each formulation, when we use the high-demand scenario, the optimality gap tends
to worsen, and the number of branch-and-bound nodes decreases. There are no clear trends in
terms of methodologies’ performance regarding budget variations. As long as the objective is the
total travel time, formulation VF @ seems to be more competitive than formulation SD (|10))
and the greedy method. Additional results can be found in Appendix [G]

It is interesting to note that the worst cost of sustainability is harder to optimize than the
total cost of sustainability, which is harder than the total travel time. On any setup, we explore
the fewest branch-and-bound nodes and tend to have the worst optimality gap when optimizing

the worst cost of sustainability. This behavior is consistent with the results obtained on the

3The best incumbent value.
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Table 5: Performance of formulation SD to solve the DNDP to minimize the total cost of
sustainability

Budget Demand Formulation  UB (Rel.) LB Gap # B&B Nodes
Lo Greedy 173.37 - - -

. W SD 169.77 (-2.08 %) 142.90 18.80 % 3074
Hich Greedy 462.55 - - -

& SD 453.59 (-1.94 %) 339.59 33.57 % 1755

Low Greedy 163.79 - - -

10 SD 15751 (-3.83 %) 130.24 20.94 % 2720
Hich Greedy 426.30 - - -

& SD 404.35 (-5.15%) 298.91 35.27 % 1618

Low Greedy 145.36 - - -

20 SD 144.08 (-0.88 %) 119.33 20.75 % 2897
Hich Greedy 370.35 - - -

& SD 360.21 (-2.74 %) 261.76 37.61 % 1881

Table 6: Performance of formulation SD to solve the DNDP to minimize the worst cost of
sustainability

Budget Demand Formulation UB (Rel.) LB Gap  # B&B Nodes

Low Greedy 0.56 - - -

. SD 0.55 (-1.85 %) 0.44 26.44 % 840
. Greedy 1.02 - - -

High SD 1.02 (-0.36 %) 0.73 38.95 % 729

Low Greedy 0.56 - - -

10 SD 0.51 (-8.95%) 0.40 28.14 % 889
High Greedy 0.98 - - _

SD 091 (-6.93 %) 0.64 43.54 % 668

Low Greedy 0.50 - - -

20 SD 0.50  (0.00 %) 0.36 38.48 % 833
High Greedy 0.90 - - -

SD 0.86 (-4.07 %) 0.53 62.79 % 736
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Table 7: Performance of formulations SD and VF @ to solve the DNDP to minimize the
total travel time

Budget Demand Formulation UB (Rel.) LB Gap  # B&B Nodes
Greedy 1,424.72 - - -

Low SD 1,414.09 (-0.75 %) 1,376.14 2.76 % 1713

. VF 1,406.94 (-1.25 %) 1,376.25 2.23 % 3724
Greedy 2,657.46 - - -

High SD 2,605.22 (-1.97 %) 2,528.32 3.04 % 987

VF 2,581.72  (-2.85 %) 2,529.71 2.06 % 2776

Greedy 1,399.55 - - -

Low SD 1,385.52  (-1.00 %) 1,350.34 2.60 % 1576

10 VF 1,379.23  (-1.45 %) 1,350.28 2.14 % 4300
Greedy 2,563.26 - - -

High SD 2,515.46 (-1.86 %) 2,431.67 3.45 % 1053

VF 2,486.97 (-2.98 %) 2,432.16 2.25 % 3050

Greedy 1,351.52 - - -

Low SD 1,348.91 (-0.19 %) 1,319.55 2.22 % 1771

20 VF 1,344.84 (-0.49 %) 1,319.57 1.91 % 3743
Greedy 2,416.45 - - -

High SD 2,398.83 (-0.73 %) 2,313.38 3.69 % 1198

VF 2,371.61 (-1.86 %) 2,313.93 2.49 % 2756
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academic instances, which showed that incorporating fairness objectives strengthens the bilevel

structure of the problem and increases computational difficulty.

Final remarks and insights. We emphasize the importance of formulations SD and .
The total travel time experienced by all EV drivers is one metric to measure the quality of service
provided by the charging station operator. However, from each user’s perspective, arguably, they
are more interested in the time they personally experience, rather than the total travel time
experienced by all EV drivers. In this regard, our formulations and optimize metrics
relevant to each driver’s experience. Furthermore, while we focused on the cost of sustainability
in this experiment (i.e., the difference between an EV driver and a conventional car driver with
the same origin and destination), it is straightforward to modify the formulation to consider the
absolute (rather than relative to conventional car drivers) time or improvement of travel time
experienced by EV drivers (see Section .

The greedy heuristic is computationally inexpensive and yields reasonable solutions, but it
does not provide any guarantee of optimality. The proposed formulations, while requiring more
computational effort, allow for rigorous assessment of solution quality through optimality gaps.
Although exact optimality is harder to achieve for fairness objectives, our SD formulations still
provide better solutions and help quantify trade-offs between efficiency and equity in network
design. Indeed, as shown in the supplementary analyses in Appendix [G] especially under small
budgets, the topology of the solutions obtained when optimizing total travel time, total cost of
sustainability, and worst cost of sustainability, can be fundamentally different from the solution
for one of the objectives distanciating from the value obtained by others. This provides further
insight into how decision-makers can use the proposed methods to develop prioritization strate-
gies. For instance, Table [6] shows that improvements in the worst cost of sustainability tend
to saturate after adding a small number of charging stations. Therefore, allocating a modest
portion of the budget (approximately 10 stations) to improve this equity-focused metric may
be sufficient. The remaining budget can then be directed toward minimizing total travel time,

allowing decision-makers to balance equity and efficiency more effectively.

7 Conclusions and Future work

In this paper, we studied a single-level reformulation of the DNDP. Our approach was based
on strong duality of the traffic assignment problem that characterizes user equilibrium. We
also presented an alternative single-level reformulation using the value function, a widely used
technique in the DNDP literature. Assuming the upper-level objective is the total travel time,
both approaches lead to convex MINLPs, for which various solution methods exist.

To illustrate the utility of our reformulation, we applied it to fairness-driven objectives, specif-
ically total and worst-case free-flow unfairness. We showed that the value function approach

becomes difficult to adapt in these cases, as it results in nonconvex MINLPs. In contrast, our
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reformulation based on strong duality extends naturally to these objectives while preserving con-
vexity. Through numerical experiments on benchmark transportation networks, we evaluated
the performance of our approach. On smaller instances, our method outperformed the value
function formulation in terms of runtime, whereas the latter demonstrated better scalability on
larger instances. However, our method could also handle a broader class of fairness metrics,
demonstrating its flexibility.

We further demonstrated the applicability of our reformulation to a real-world case study
involving capacity expansion for EV charging stations. Modeling the problem as a DNDP,
we compared our solution with that of a greedy heuristic and observed improvements in the
objectives, including total travel time and the cost of sustainability, i.e., the inefficiency caused
by EV adoption.

The reformulation based on strong duality assumes that the travel time function follows the
BRP function. It also assumes that the OD pairs are connected, even in the absence of candidate
arcs. It would be valuable to extend our method to handle more general instances with relaxed
assumptions. Furthermore, in our case study on charging stations, we focused primarily on
capacity expansion decisions. The siting of new charging stations can be modeled either with
an SOS1 constraint or by extending the logic to compute a valid value of big-M, which is left
as future research. Additionally, developing a faster, decomposition-based solution method to

solve our reformulation more efficiently is of interest.
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A Notation

Table [8] lists the symbols used in this paper.

Table 8: Symbols and their description

Symbol Description

% Set of nodes indexed by v
A Set of arcs indexed by a

A(xz)  Set of available arcs
At(z) Set of available incoming arcs of v
A, (z)  Set of available outgoing arcs of v

G Graph (V, A)

K Set of OD pairs indexed by k

X Set of feasible network design decisions x

0 Set of nodes that are origins

K, Set of OD pairs whose origins are o

()  Set of user equilibrium flow given x

()  Optimal solution set of the dual lower-level problem given x

Y'(x)  Set of pairs of user equilibrium flow and dual values given z, Y (z) x II(x)
Ok Origin of k
dp Destination of &

ek Demand volume of &

Vi Shortest travel time of k on the graph with only the existing arcs, without congestion on roads
10) Value function of the lower-level problem

0, Travel time function of a, defined as 6,(s) = fo + gas”

Zq Binary variable that is 1 if and only if we build a

Yka Disaggregated flow on a corresponding to k

Zoa Aggregated flow on a corresponding to demands with o
N Variables in the dual lower-level problem

Cx Free-flow unfairness of k




B Comparison of Aggregated and Disaggregated Models

In this section, we compare the performance of the disaggregated model (formulation with
disaggregated flow variable y) and the aggregated model (formulation with aggregated flow
variable z).

The arguments in Sections [3] and 4] can be extended to use disaggregated flow variable y.
For example, we obtain a formulation of the NDP corresponding to formulation but with

disaggregated flow variable y as follows:

Jmin > (Z yka> O <Z yka) (14)

Z,Y,m

a€A \keK keK
z:kEK’yka
st. Y / $)ds
a€A
> >
< er(Thd, — Thoyp) — 7 Na"
keK acA ga/p(p +1)
/
D Uka— D> UYka = € Vke K veV,
ac AT a€Ay
Yka < €LTq, Vke K,a € A,
naZwk‘ha_wk‘ta_fa_M]/ga(]-_xa)a VkGK,a:(t,h)eA,
N = 0, a€A:g,=0,

y>0,n>0,z € X,

where M’ is a sufficiently large constant, which can be computed using a routine similar to
Proposition |5, Analogously, we can modify formulation @D to use disaggregated flow variable y

as

min (Z yka) O (Z yka) (15)

a€A \keK keK
Zke[{ykza
s.t.Z/ s)ds < ¢(x Zw —x4), V2 €X,
acA a€A
S Yea— Y. Yra = o Vk e K,veV,
ac At acAy
Yka < €k, Vk € K,a € A,
y>0,z € X.

For each of the 10 test instances using SiouxFalls transportation network, we measure the

performances of the four formulations , , @ and . Table |§| shows the number of
test instances solved within the two-hour time limit and the average computational time. The



disaggregated formulations are always worse than the aggregated correspondents on average, in
terms of the number of instances solved within the timelimit and the average computational

time.

Table 9: Performances of disaggregated and aggregated models

Formulation Aggregation Equation Solved Time

D No (14) 1 3,428.6
Yes 10 217.0
VF No 6 2,305.8
Yes ©) 10 558.8

C Dual of Traffic Assignment Problem

In this section, we derive the dual traffic assignment problem . We start with a lemma.

Lemma 1. Let p>1,a >0 and b € R". For z € R}, define

n p+1 n
a
f Z) = Z — bizi.
() =33 ; ;
1. If a > 0, then

min f(z) = P

2ER _Cll/p(Z?H)<[maX{bi ri=1n}y

where [z]4+ = max{z,0}.
2. If a =0, then
0, ifb; <a foralli=1,...,n,
min f(z) = / d

n .
z€R% —00, otherwise.

In particular, Lemma |1} implies that

P oD )b i } -
max { ————— n>b;, Vi=1,...,np, if a >0,
min f(z) = 4 20 { al/r(p + 1)77 n = bi (16)
#20 max —_Ln(pﬂ)/p n=0,n>b;, Vi=1,....,np, otherwise,
n>0 al/r(p+1)

where @ = a if a > 0 and otherwise a = 1.

Proof. 1t is straightforward to show the case when a = 0. In the following, we assume a > 0.



Pick i’ such that by > b; for any i = 1,...,n. For every z € R", we have f(z) > f(2'), where

n
. ./
) E Zj, 1=1,
Zp =9 j=1
. ./
0, R

It follows that

min f(z) = Doin g9(u),

where

a
g(u) = }mup+1 — bi/u.

By computing the derivative of g, we can obtain the minimizer as

o =s(()") =y o) "

Now, we derive the dual of problem .

Proof of Proposition [l Fix x € X. Let m be the dual variable corresponding to constraint .
Then, the Lagrangian is

20c0 Zoa
L(z,m) = Z /0 0u(s)ds — Z Z Tov Z Zoa — Z Zoa — Cov

a€A(z) ocOveV acAf () a€Ay (z)
p+1
= >0 | fa X ) + T (e
p+1
acA(x) ocO ocO
- Z (77011 - 7"-ot)Zoa + Z ekz(ﬂ-okdk - 7Tokok)
0€0 a=(t,h)€A(x) keK
p+1

D S S S R AT A RS ST S

a=(t,h)€A(x) p o€O0 o€0 keK

= Z La(zaaﬂ'a) + Z ek?(ﬂ—okdk - ﬂ-okok)?

acA(x) keK

where

p+1
La(zaaﬂa) = p‘i(_l 1 (Z Z0a> - Z(Troh — Tlot — fa)zoa-

0€0 (0]



The Lagrangian dual problem is

max min L(z,7) =max Z m>1(r)1 La(zayﬂ—a) + Z ek(ﬂ-Okdk - 7r0k0k>
z

T 220 ™

a€A(x) keK
In light of Lemma [1| and equation , this problem is equivalent to problem . O

D Outer-approximation methods

In this section, we present the outer-approximation method used to solve formulation @]) The

method to solve formulation is similar.
Using the definition of the travel cost function (1)), we can rewrite formulation (9)) as

min Z fa (Z Zoa> + gaba
€A

z,z,0
0€0

s.t. Zfa (Z Oa) +1 Zm 1—x,), Vi'eX,

a€A 0eO acA

Zzoa_zzoa:eaw VOEO,UG‘/,

ac AT a€Ay

Zoa < Z €kZa, Yo € O,a € A,
keK,

p+1
0o > (Z Zoa)

0eO

z>0,x e X.

Let us define

wX',T') = grcnzl% Zf“ (Z zoa> + gaba

acA 0€O
s.t. Z fa (Z zoa> Ga < p(2) + é(x') Z (1 —m,), Va'e X',
acA 0€0 acA
Zzoa_zzoazeov, Yoe O,v eV,
acAF a€Ay,
Zoa < Z €kTa, Yo € O,a € A,
keK,
0, > oP + (p+ Do (Zzaa— ), Vae A, €I,
0€e0
z>0,x e X.



Problem u(X',I') is equivalent to problem (9) if X’ = X and I/, = R for all a € A. However, if
X' C Xorl), #Rforsomea € A, u(X',I') is arelaxation of problem (9)). In our implementation,
we let X' = I) = () for all @ € A and pass u(X',I') to Gurobi. Every time Gurobi solves a
branch-and-bound node or finds a candidate integer solution, we search for a violated constraint

(up to a tolerance of 107%), and add it as a lazy constraint.

E Additional Analyses for Section

In this section, we conduct an additional experiment to evaluate the scalability of the proposed
methods. The experiment is based on a grid-shaped transportation network in which nodes are
arranged in a 4 x 4 grid, and each pair of adjacent nodes is connected by an edge. The travel
time on each edge is defined as 6(s) = 1 + as*, where « is sampled uniformly from the interval
[1,2]. The number of candidate arcs, denoted by n, is varied from 8 to 20. For each instance,
n existing arcs are selected at random, and for each selected arc, a parallel arc is added to the
network as a candidate arc. The travel time of each candidate arc is defined as 6(s) = 1 + s*.
Demand is generated by randomly sampling twenty OD pairs of nodes. For each value of n, we
generate 20 independent instances.

Table reports the average computational time, the number of instances solved within
the two-hour time limit, the dual bound at the root node (expressed as a percentage gap from
the optimal objective value), the average number of branch-and-bound nodes, and the average
ratio of computational time to the number of branch-and-bound nodes. When the number of
candidate arcs is small, formulation SD is generally faster than formulation VF. However, as the
number of candidate arcs increases, formulation VF becomes more competitive. When n = 20,
formulation VF solves all 20 instances, whereas formulation SD fails to solve 4 instances within
the time limit.

Interestingly, formulation SD tends to provide tighter dual bounds than formulation VF
on average, and this difference becomes more pronounced as the number of candidate arcs
increases. Nevertheless, both the number of branch-and-bound nodes and the average time
required to solve the LP relaxation at each node increase with the number of candidate arcs.
This increase is substantially sharper for formulation SD than for formulation VF, resulting in

superior scalability of formulation VF compared to formulation SD.

F Detailed Explanation on Electric Vehicle Traffic Assignment

In this section, we review the network transformation to model the traffic assignment of EVs.
Let G' = (V', 4’) be a road network. Let O, D C V' denote the sets of nodes used as origins
and destinations, respectively, and let C' C V' represent the set of nodes with charging stations.

By duplicating nodes if necessary, we assume that O, D, and C' are mutually disjoint.



Table 10: Performance of formulations SD and VF @ to solve the DNDP to minimize the

total travel time

# Candidates Formulation Time Solved Root Bound (%) # B&B Nodes Time per Node
8 SD 6.66 20 29.74 60.15 0.11
VF 13.00 20 30.34 48.80 0.27
9 SD 16.32 20 32.69 101.50 0.16
VF 29.41 20 36.34 85.00 0.34
10 SD 37.12 20 36.45 157.15 0.23
VF 72.92 20 35.78 135.70 0.51
1 SD 67.25 20 35.93 246.10 0.25
VF 153.80 20 40.60 218.05 0.69
12 SD 261.59 20 39.64 443.60 0.53
VF 288.59 20 44.01 328.75 0.80
13 SD 570.50 20 38.54 579.35 0.81
VF 531.92 20 44.05 506.40 1.02
14 SD 616.22 20 38.38 695.00 0.86
VF 535.93 20 46.51 603.00 0.92
15 SD 886.94 20 43.00 869.55 0.92
VF 575.34 20 48.97 684.40 0.85
16 SD 1,026.87 20 40.98 911.70 1.08
VF 639.62 20 50.53 748.05 0.89
17 SD 2,668.80 18  41.22 1,273.80 1.71
VF 661.33 20 54.53 925.30 0.75
18 SD 2,266.75 19 45.31 1,256.55 1.52
VF 595.28 20 51.55 824.40 0.72
19 SD 2,637.27 18 43.39 1,368.50 1.65
VF 616.91 20 60.39 884.40 0.70
20 SD 3,856.50 16 45.12 1,720.35 1.93
VF 864.45 20 57.03 1,094.40 0.74




An EV driver must choose a path that can be completed without running out of battery.
For example, consider graph G in Figure [I} A filled node indicates the presence of a charging
station, while an open node denotes the absence of one. Given that the vehicle range is 200 km,
path (1,4,5,3,8) is not feasible, as it is not possible to travel from node 1 to node 3 (nodes 4
and 5 do not have charging stations).

MirHassani and Ebrazi| [2013] proposed a technique to transform the road network to facili-
tate handling the vehicle range. The transformed graph G = (V, A) has V. = OUDUC, and for
each (0,d) € O x D, a path from o to d in graph G corresponds to a path in road network G’
that respects the vehicle range (and vice versa). The construction of A is straightforward: for
each t,h € V| we have (t,h) € A if and only if the distance from ¢ to h is less than or equal to
the vehicle range of an EV, and (¢,h) € O x C, C x C, or C x D. For example, consider again
road network G shown in Figure |1} If there is a single OD pair (i.e., K = {1}) from node 1
to node 8, and the vehicle range of an EV is 200 km, we obtain G5 after this transformation.
Path p; = (1,2,6,8) in graph Go corresponds to path p| = (1,4,2,4,6,7,8) in graph G;. The
intermediate nodes 2 and 6 in path p; correspond to the nodes to charge an EV.

We note that the cost (travel time) of a path in the transformed network consists of both
arc costs (time spent on the road) and node costs (time spent at the charging stations). By
introducing auxiliary nodes and arcs, the node costs can be represented as costs associated with
the auxiliary arcs. For example, if the time to charge an EV at a charging station is given by

1/2 4+ s, graph G5 can be further transformed into graph Gs.

G Additional Analyses for Section [6]

In this section, we provide additional analyses on the experiments in Section [6]

G.1 Histogram of Demands

Figure [2| shows the histogram of demand volumes. The histogram uses the low-demand scenario.
However, the demand volumes for the high-demand scenario are obtained by scaling the low-
demand volumes by 50%. Thus, the shape of the histogram for the high-demand scenario remains

the same.

G.2 Comparison of Equilibria

Figures 3| and 4] show the total travel time and the total/worst costs of sustainability of the
equilibria computed by formulation SD to optimize the total travel time , the total cost of
sustainability and the worst cost of sustainability . The color and shading pattern of
each marker indicate the metric being optimized, while the shape of the marker corresponds to

the budget: a square, triangle, and circle represents a budget of 5, 10, and 20, respectively.
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the extended graph G, which is further converted into G35, where the node costs in Ga are

represented as arc costs.
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For larger budgets, optimizing for one objective tends to yield near-optimal values for the
other objectives as a byproduct. However, for smaller budgets, differences start to emerge,

highlighting the need for decision-makers in these cases to carefully choose their priorities.

Low-demand scenario High-demand scenario
mf—/———————"1""@] 460
70 @® Total Time ¢ Q ]
165 @  Total CoS 440 )

Worst CoS

% 160 420
° A
E A
5155 400

150 380

145 ' 360 [0

1360 1380 1400 2400 2500 2600
Travel Time Travel Time

Figure 3: Total travel time and total cost of sustainability of the user equilibria computed at
various equilibria

G.3 Comparison of Charging Station Locations for Capacity Expansion

Figures [f] and [6] show the selected charging stations for capacity expansion in the two demand
scenarios, with a budget of 5. These figures are generated using the outputs of formulation
SD, which optimizes the total travel time . The outputs differ between demand scenarios,

indicating the sensitivity of the results to the demand data.
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Figure 4: Total travel time and worst cost of sustainability of the user equilibria computed at
various equilibria
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Figure 5: Selected charging stations in the low-demand scenario with a budget of 5
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Figure 6: Selected charging stations in the high-demand scenario with a budget of 5
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