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Abstract

This study addresses the bilevel discrete network design problem (DNDP) with con-

gestion, with special emphasis on fairness. The upper-level decision-maker (the network

designer) selects a set of arcs to add to an existing transportation network, while the lower-

level decision-makers (drivers) respond by choosing routes that minimize their individual

travel times, resulting in user equilibrium. Most existing works in the literature primarily fo-

cus on minimizing the total travel time of all drivers and extending their solution approaches

to other metrics remains a major research challenge. In this paper, we consider objectives

related to individual travel times and fairness. To optimize such metrics, we propose a novel

single-level reformulation of the DNDP based on strong duality of the lower-level problem.

To evaluate the performance of our method, we conduct numerical experiments on aca-

demic DNDP instances. We further demonstrate the practical relevance of our method

through a case study on electric vehicle (EV) charging station capacity expansion. In this

context, we introduce a fairness-based metric, the cost of sustainability, to quantify the

inefficiency caused by EV adoption relative to a scenario where no charging is required.

We then optimize expansion decisions to improve this metric. Experiments on a real-world

road network in Quebec, incorporating existing public charging infrastructure, highlight the

effectiveness and flexibility of our approach.
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Research and Development Grant CRDPJ 536757 - 19, and the FRQ-IVADO Research

Chair in Data Science for Combinatorial Game Theory.

Keywords: Network design, Bilevel programming, User equilibrium, Fairness



1 Introduction

The network design problem (NDP) is a fundamental challenge in transportation and infrastruc-

ture planning, with widespread applications in urban mobility and logistics. In this problem, a

network designer first determines how to modify an existing transportation network, after which

drivers respond by selecting routes that minimize their individual travel times, leading to the

so-called Wardrop user equilibrium. The effect of congestion is modeled by using arc travel time

functions that depend on their traffic volumes. Under certain conditions on the travel functions,

the equilibrium computation can be formulated as a convex optimization problem (Beckmann

et al. [1955]). Exploiting this formulation, the NDP can be seen as a bilevel programming prob-

lem where the leader represents the network designer and the follower represents the drivers

using the transportation network. In most existing literature, the leader aims to minimize the

total travel time of all drivers, disregarding other metrics such as fairness or individual travel

times.

The NDP is typically classified into three categories: the discrete network design problem

(DNDP), which involves binary decisions, such as the addition of new arcs; the continuous

network design problem (CNDP), which involves continuous decisions, such as the capacity

expansion of arcs; and the mixed network design problem (MNDP), which combines both the

CNDP and the DNDP [Magnanti and Wong, 1984]. In this work, we focus on the DNDP.

Various solution methods for the DNDP have been studied over the past decades. However,

most studies assume that the objective of the upper-level problem is the total travel time, and

the developed solution methods are specifically tailored to this objective function. In some

contexts, other metrics beyond total travel time may be of interest to the network designer.

One such metric is fairness. Consider a road network where all drivers use conventional cars of

the same specifications. The user equilibrium can be considered fair because, at equilibrium, two

drivers with the same origin and destination experience the same travel time (Patriksson [2015]).

However, when comparing different setups, drivers may perceive some degree of unfairness. For

example, if there is no congestion on the road (e.g., during an off-peak period), drivers can travel

in a shorter time. This difference is referred to as free-flow unfairness by Jahn et al. [2005].

We can also consider the discrepancy between different modes of transportation. As an

example, suppose we are given a road network with electric vehicles (EVs) and conventional cars.

Typically, an EV requires a non-negligible amount of time to charge the battery. Furthermore,

often charging stations are scarce and EV drivers need to deviate from their preferred routes to

visit a charging station. Therefore, EV drivers may spend extra time visiting and using charging

stations along their trips, which would not be necessary if they used conventional cars. This

extra time spent by EV drivers can be seen as a metric to indicate the inconvenience/inefficiency

experienced by the EV drivers. The charging station operator may be interested in finding the

charging station locations accounting for such a metric.

A significant challenge arises when incorporating alternative objectives, such as fairness, into
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existing exact solution methods for the DNDP [Farvaresh and Sepehri, 2013, Rey and Levin,

2025]. For example, as we will demonstrate in this study, the aforementioned fairness metrics are

nonconvex (with respect to the flow variables, the variables used in the exact solution methods

in the literature). As a result, the formulation becomes a nonconvex mixed-integer nonlinear

program (MINLP), which is challenging to solve to global optimality.

Contributions. In this paper, we develop a novel modeling framework for the DNDP that

facilitates the incorporation of a broad class of objective functions. The proposed framework

relies on a single-level reformulation of the DNDP derived via strong duality. In particular,

we leverage the duality theory of monotropic programming, originally developed by Rockafellar

Rockafellar [1981]. To the best of our knowledge, this is the first study in the bilevel program-

ming literature to employ monotropic programming duality. The resulting model is a convex

mixed-integer nonlinear programming (MINLP) formulation of the DNDP and is amenable to

solution techniques developed for convex MINLPs. Furthermore, the proposed reformulation

is sufficiently flexible to accommodate alternative objective criteria beyond total travel time,

including measures such as free-flow unfairness.

To showcase the use of our approach, we consider an application of the DNDP for the

capacity expansion problem of EV charging stations. As concerns over climate change grow, the

transportation sector faces increasing pressure to enhance its environmental sustainability. This

pressure is particularly acute given the sector’s substantial share of greenhouse gas emissions. For

instance, recent figures show it is responsible for 28% of total emissions in the United States [U.S.

Environmental Protection Agency, 2024], approximately 25% in the European Union [European

Environment Agency, 2024], and 28% in Canada [Statistics Canada, 2023]. EVs are expected

to play a key role in the transition toward sustainability. To promote EV adoption, it is crucial

to ensure reliable access to public fast-charging stations through effective deployment, a priority

reflected, for example, in the Government of Canada’s commitment to help fund over 84,500

new charging stations by 2029 [Natural Resources Canada, 2024]. Henceforth, we will refer

to fast-charging stations, also known as level 3 charging stations, simply as charging stations.

The DNDP provides a framework for modeling the optimal sizing and placement of charging

stations by considering the behaviors and interactions of EV drivers. We apply our formulation

to optimize the total travel time and other inefficiency metrics (formally defined later) related to

EV usage. We provide a case study using the transportation network of the province of Quebec.

Our computational results showcase the sensitivity of the solution to the objective, highlighting

the importance of appropriately choosing the objective for the upper-level problem.

Paper Structure. The paper is organized as follows. Section 2 provides a literature review.

In Section 3, we outline formulations of the traffic assignment problem, the lower-level problem

of the DNDP. Section 4 presents the DNDP and our single-level reformulation. We provide

numerical experiments using test instances of the DNDP in Section 5. In Section 6, the capacity
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expansion problem of EV charging stations is formulated as the DNDP, and we provide numerical

experiments based on the Quebec road network. We conclude the paper in Section 7.

2 Literature Review

The NDP involves the modification or installation of transportation network components, such as

arcs. In this work, we primarily focus on the DNDP, the NDP with discrete decisions. Below, we

first review related solution methods for the DNDP. We then review the studies that incorporate

fairness metrics into the DNDP. We conclude this section by examining models related to the

siting and sizing of EV charging stations that inform the context of our case study.

Network Design Problem: Solution Methods. Methods for solving the NDP can be

classified into three main categories: branch-and-bound algorithms, single-level reformulations,

and linear approximation methods.

The first category, branch-and-bound algorithms, represents one of the most commonly used

exact approaches for solving the DNDP. Leblanc [1975] pointed out that the high-point relaxation

(HPR) can be used to compute a dual bound. By relaxing the upper-level budget constraint, a

further relaxation of the HPR was obtained, enabling faster computation of the dual bound. The

relaxation was used within a branch-and-bound algorithm to solve the DNDP exactly. To solve

the HPR efficiently, Farvaresh and Sepehri [2013] employed an outer-approximation method,

while Bagloee et al. [2017] applied Benders’ decomposition. More recently, Rey and Levin [2025]

proposed a hybrid approach that combines outer-approximation with column generation.

Another approach is to transform the bilevel DNDP into a single-level formulation. Gao

et al. [2005] proposed an approach to transform the bilevel DNDP into a single-level problem

using the support function. Later, Farvaresh and Sepehri [2013] identified a flaw in the approach

and demonstrated that it may yield suboptimal solutions. Luathep et al. [2011] formulated the

MNDP as a single-level problem by enforcing user equilibrium through a variational inequality.

The resulting formulation is a nonconvex MINLP, where nonlinear terms were approximated

using piecewise-linear functions. Wang et al. [2015] developed an outer-approximation method

to handle the variational inequality and achieve a globally optimal solution. Their approach was

tested only on the instance presented by Gao et al. [2005]. The value function of the lower-level

problem can be used to derive a single-level reformulation as well. For instance, Meng et al.

[2001] used the value function to derive a nonconvex single-level formulation of the CDNP and

developed a locally convergent algorithm based on the augmented Lagrangian method. The

value function was also used by Rey and Levin [2025] to derive a valid inequality.

Several linear approximation methods have also been proposed. To solve the DNDP approxi-

mately, Farvaresh and Sepehri [2011] replaced the lower-level problem with the Karush–Kuhn–Tucker

(KKT) conditions. This single-level reformulation yields a non-convex MINLP, and they lin-

earized the nonlinear terms, transforming the problem into a single-level mixed-integer linear
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programming (MILP) formulation. Fontaine and Minner [2014a] linearized the travel time func-

tions and approximated the lower-level problem using linear programming, which was then refor-

mulated as a single-level MILP. They solved the resulting problem using Benders’ decomposition.

While these methods are not exact due to the piecewise-linear approximations, numerical ex-

periments suggest they can produce high-quality solutions. For a computational study of linear

approximation methods, see Rey [2020]. We also note that similar linearization approaches have

been applied to the CNDP. For example, Wang and Lo [2010] addressed the CNDP by replacing

the lower-level problem with the KKT conditions and linearizing the nonlinear terms.

In the general bilevel programming literature, a common approach for problems with a linear

lower-level program is to derive a single-level reformulation using strong duality (Dempe [2002]).

Within the NDP literature, the only known application of this approach is due to Fontaine

and Minner [2014b], who first linearized the nonlinear terms in the lower-level problem and

approximated it by a linear program. In contrast, the present work applies strong duality directly

to the lower-level problem without resorting to linearization, thereby avoiding approximation

error and yielding a reformulation equivalent to the original DNDP. This is achieved by leveraging

the duality theory of monotropic programming, developed by Rockafellar [1981]. To the best

of our knowledge, this represents the first use of monotropic programming duality within the

bilevel programming literature.

Network Design Problem: Models based on Fairness. All of the methods reviewed

above assume that the objective is to minimize total travel time. However, in many real-

world applications, alternative performance metrics, such as fairness, are essential for producing

socially acceptable solutions.

More broadly, there is a growing body of work in operations research that incorporates

fairness considerations into optimization models. For example, Liu and Salari [2024] studied

a facility location problem (FLP) with congestion, which can be viewed as a special case of

the NDP on a bipartite network, and proposed a model that minimizes the worst expected

total travel time experienced by users. Aboolian et al. [2022] examined a related variant in

which cost-effective facility locations are sought subject to an upper bound on the worst user

travel time. Digehsara et al. [2025] analyzed a fair FLP in which users follow a rank-based

choice model without congestion under demand uncertainty, while Ljubić et al. [2024] developed

decomposition algorithms for optimizing fairness-related metrics in the FLP.

In contrast, fairness considerations remain relatively limited in the NDP literature. Early

work by Friesz et al. [1993] investigated a multiobjective version of the NDP that simultaneously

minimized total user transportation costs, travel distance, construction costs, and residential dis-

placement due to new infrastructure. Similarly, Meng and Yang [2002] studied a multiobjective

NDP accounting for changes in individual travel times induced by network expansions. Both

studies aggregated multiple objectives using weighted-sum formulations and applied simulated

annealing to solve the resulting problems. Unlike these approaches, the present work develops
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an exact solution approach capable of accommodating fairness-related objectives.

Sizing and Placement of EV Charging Stations. Initially, the literature on EV (or al-

ternative fuel vehicle) infrastructure planning focused on simple models that did not consider

congestion. One of the most influential models in this literature is the Flow Refueling Loca-

tion Problem (FRLP), introduced by Kuby and Lim [2005]. In their model, each demand is

associated with an origin, a destination, and a flow volume, and is considered served if there

are enough charging stations to enable drivers to complete their journeys without running out

of battery. In the FRLP, drivers are assumed to follow the shortest path, which is determined

based on travel time without considering congestion. Later, Kim and Kuby [2012] extended the

model to allow drivers to deviate from the shortest paths. More specifically, given a predeter-

mined deviation threshold, a driver is considered served if they can travel from their origin to

their destination along a path whose length does not exceed their shortest path by more than

the allowed deviation. Arslan et al. [2019] and Göpfert and Bock [2019] independently proposed

branch-and-cut algorithms to solve this variant of the FRLP. Again, this model is based on

travel distance or travel time, without accounting for congestion.

Recently, there has been growing interest in modeling EV charging station infrastructure

planning while considering congestion and user interaction. Typically, such models are for-

mulated as bilevel programming problems, where the upper-level problem corresponds to the

charging station operator and the lower-level problem models the behavior of EV drivers. The

upper-level problem seeks to minimize costs, emissions, or travel times, while the lower-level

problem captures driver behavior, including route choices, waiting times at charging stations,

and vehicle range constraints. For example, Kınay et al. [2023] used logic-based Benders decom-

position to minimize the installation costs of charging stations. Zhang et al. [2023] considered a

bilevel programming problem in which the upper level is a multi-objective optimization problem

aimed at minimizing both total costs and total service time. However, both Kınay et al. [2023]

and Zhang et al. [2023] assumed that drivers do not take congestion into account when choosing

their routes.

Zheng et al. [2017], Bao and Xie [2021], and Tran et al. [2021] employed the DNDP to model

EV infrastructure planning. In these studies, the upper-level decision-maker determines the

locations of charging stations, while the lower-level problem is formulated as a user equilibrium

model that accounts for road congestion. Jing et al. [2017] formulated a bilevel DNDP prob-

lem in which the lower-level models drivers’ behavior as a stochastic user equilibrium. These

studies focus on road congestion rather than congestion at charging stations and use heuristics

to find feasible solutions efficiently. Mirheli and Hajibabai [2023] developed a model to jointly

optimize charging station locations and pricing. In their model, drivers choose routes based on

travel time and cost, but congestion effects are not considered. He et al. [2018] considered a

user equilibrium model that includes both travel time and charging time, where the latter is

defined as a function of the required energy. However, congestion or waiting time at charging
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stations is not considered. In our case study, we explicitly model congestion at charging stations,

optimize various metrics, including those related to fairness, by expanding stations’ capacities,

and develop a convex MINLP formulation.

3 User Equilibrium

In this section, we review various concepts related to the user equilibria, which we will use to

define the DNDP in Section 4. First, in Section 3.1, we define some notations and assumptions.

Then, in Section 3.2, we present the user equilibrium models. Lastly, in Section 3.3, we discuss

the free-flow unfairness, which will be used as an objective of the DNDP in Section 4. A table

of notation can be found in Appendix A.

3.1 Notation and Assumption

Let G = (V,A) be a directed graph. The set A contains all the existing arcs as well as candidate

arcs that can be built. For each arc a ∈ A, we associate a binary variable xa to indicate its

availability : The value of xa is 1 if arc a is available and 0 otherwise. We write the set of feasible

values of x as X ⊂ {0, 1}A. For example, X can model a budget constraint. If arc a ∈ A already

exists, we have xa = 1 for any x ∈ X.

Denote by K the index set of the origin-destination (OD) pairs of nodes in the network. For

each k ∈ K, we denote its origin, destination and demand volume by ok, dk and ek, respectively.

Furthermore, for each a ∈ A, let θa be the travel time function, the function that maps the link

flow on a (total traffic volume on a) to its travel time.

Throughout this paper, we assume the following:

Assumption 1. a) For each demand k ∈ K, there is a path from ok to dk that only uses

existing arcs.

b) For each arc a ∈ A, the travel time function is given by

θa(s) = fa + gas
p, (1)

where fa ≥ 0 and ga ≥ 0 are non-negative constants, and p ≥ 1 is a positive integer. The

function is defined to be zero for s < 0, i.e., θa(s) = 0 when s < 0.

These assumptions are not restrictive. If the road network is already well-connected, all the

OD pairs are traversable even without building any new arcs. We also note that the collection

of travel time functions modeled by (1) includes the Bureau of Public Roads (BPR) function

(Patriksson [2015]) as well as a constant travel time. All the test instances we use in our

numerical experiments (Sections 5 and 6) satisfy Assumption 1.

Many formulations of the bilevel DNDP (see, for example, Farvaresh and Sepehri [2013],

Wang et al. [2013]) model the flow of each demand k ∈ K along each arc a ∈ A. We use
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y ∈ RK×A to denote the variable representing individual flows. When the underlying graph is

large, the flow vector y involves a large number of variables. Interestingly, the bilevel DNDP can

be modeled using aggregated flow variables, which are obtained by summing the flows of all OD

pairs that share the same origin. This aggregation does not affect the set of feasible flows in the

sense that there is a one-to-one mapping between the set of feasible flows and the set of feasible

aggregated flows. The aggregation reduces the number of variables, at the cost of a weaker

formulation of the bilevel DNDP. In particular, the continuous relaxation of the reformulation

provides a weaker dual bound when the flow aggregation is used. As a result, whether this

aggregation leads to a computational speed-up depends on the specific instance. This technique

is well known in the (single-level) multicommodity flow literature; see the discussion in Chouman

et al. [2017] and references therein. To the best of our knowledge, however, flow aggregation

has not been exploited in the literature on the bilevel DNDP under user equilibrium. Our

preliminary experiments showed that aggregating the flow variables reduced solution times (see

Appendix B). Therefore, in this paper, we consider formulations where the flow variables are

aggregated. To this end, let O = {v ∈ V : ∃k ∈ K, ok = v} denote the set of all origins. For each

o ∈ O, define Ko = {k ∈ K : ok = o} as the set of demands originating from o. We define the

aggregated flow over each arc a and origin o as zoa =
∑
k∈Ko

yka. In the remainder of the paper,

we primarily use the aggregated flow variable z, except in a few cases where the disaggregated

flow y is necessary. Adapting the arguments to use the disaggregated flow y is straightforward.

3.2 Wardrop Equilibrium Conditions

In this section, we assume x ∈ X is given and present how user equilibrium is modeled. Let

G(x) = (V,A(x)) be the subgraph of G only containing available arcs: A(x) = {a ∈ A : xa = 1}.
To describe a set of feasible flows, define for each k ∈ K and v ∈ V

e′kv =


−ek, if v = ok,

ek, if v = dk,

0, otherwise,

and the aggregated variant for each o ∈ O and v ∈ V by eov =
∑
k∈Ko

e′kv. Then, a feasible flow

must satisfy the flow conservation constraint∑
a∈A+

v (x)

zoa −
∑

a∈A−
v (x)

zoa = eov, ∀o ∈ O, v ∈ V,

where A+
v (x) and A−

v (x) are subsets of A(x) corresponding to incoming and outgoing arcs of v.

We also assume each driver is self-driven and chooses the route so that their travel time is

minimized. This is referred to as Wardrop’s second principle. It is shown by Beckmann et al.
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[1955] that the user equilibrium is given as the optimal solution to the following problem:

ϕ(x) = min
z

∑
a∈A(x)

∫ ∑
o∈O zoa

0
θa(s)ds (2a)

s.t.
∑

a∈A+
v (x)

zoa −
∑

a∈A−
v (x)

zoa = eov, ∀o ∈ O, v ∈ V, (2b)

z ≥ 0. (2c)

We use Z(x) to denote the optimal solution set of (2). The KKT conditions of (2) are given by∑
a∈A+

v (x)

zoa −
∑

a∈A−
v (x)

zoa = eov, ∀o ∈ O, v ∈ V, (3a)

θa

(∑
o∈O

zoa

)
− πoh + πot ≥ 0, ∀o ∈ O, a = (t, h) ∈ A(x), (3b)(

θa

(∑
o∈O

zoa

)
− πoh + πot

)
zoa = 0, ∀o ∈ O, a = (t, h) ∈ A(x), (3c)

z ≥ 0. (3d)

The next proposition states the dual of (2). See Appendix C for the proof.

Proposition 1. Suppose Assumption 1 holds. Then, the Lagrangian dual of (2) is given by

max
π,η

∑
k∈K

ek(πokdk − πokok)−
∑

a∈A(x)

p

g
1/p
a (p+ 1)

η
p+1
p

a (4)

s.t. ηa ≥ πoh − πot − fa, ∀o ∈ O, a = (t, h) ∈ A(x),

ηa = 0, ∀a ∈ A(x) : ga = 0,

η ≥ 0,

where ga = ga if ga > 0 and otherwise ga = 1.

This dual formulation is exploited in the literature. For example, Fukushima [1984] develops

a solution method based on this dual formulation. We denote the set of optimal values of π for

formulation (4) by Π(x).

Formulations (2) and (4) exhibit a special structure: all constraints are linear, and the ob-

jective function is separable and convex. Such problems are known as monotropic programming

problems and have been extensively studied by Rockafellar [1981]. Due to this special structure,

monotropic programming enjoys favorable duality properties under milder conditions than those

required in general convex programming.

Proposition 2. Suppose Assumption 1 holds.
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a) For any x ∈ X, both the primal problem (2) and the dual problem (4) are feasible;

b) strong duality holds; and

c) the primal and dual variables are optimal if and only if they satisfy the KKT conditions (3).

See Rockafellar [1981] for the proofs.

3.3 Free-Flow Unfairness

In this section, we briefly review the concept called free-flow unfairness. We will use this to

define fairness-oriented objective of the DNDP in Section 4.

For each OD pair, at equilibrium, drivers may use multiple paths. However, the travel time

of each used path must be the same. If we use the disaggregated flow variable y, it is given by

∑
a∈A

yka θa

(∑
k∈K

yka

)
/ek.

Note that the numerator is the total travel time experienced by drivers of OD pair k. This travel

time must be larger than the shortest travel time drivers would experience, assuming there is no

congestion on the roads. This difference is called the free-flow unfairness by Jahn et al. [2005].

To be more specific, let y be the equilibrium flow. The free-flow unfairness of OD pair k ∈ K is

ζk =

(∑
a∈A

yka θa

(∑
k∈K

yka

)
/ek − νk

)
/νk, (5)

where νk is the shortest travel time on the graph with only the existing arcs, assuming no

congestion on roads. Note that in general the right-hand side of (5) is nonconvex in y.

Interestingly, there is a “dual” representation of this quantity. As discussed by Patriksson

[2015], for any x ∈ X, k ∈ K and π ∈ Π(x), πokdk − πokok is the travel time experienced by each

individual of OD pair k to travel from ok to dk under the congestion at the user equilibrium.

Therefore, the free-flow unfairness can be written as

ζk = (πokdk − πokok − νk)/νk. (6)

In this work, we focus on free-flow unfairness as a running example. However, the argument

can be easily adapted to accommodate any metric that is linear in individual travel time. For

instance, Meng and Yang [2002] considered improvements in individual travel time, which can

be modeled by replacing νk in (6) with the travel time at equilibrium in the current network.

4 Methodology

In this section, we present the DNDP and our single-level reformulation. In Section 4.1, we

introduce the bilevel formulation of the DNDP under the typical objective of minimizing total
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travel time, as commonly considered in the literature. Next, in Section 4.2, we present an

approach based on the value function and discuss its limitations when applied to objectives

such as free-flow fairness. Finally, Section 4.3 introduces our single-level reformulation, which is

derived using strong duality, and highlights its flexibility to integrate fairness objectives.

4.1 Bilevel formulation of DNDP

This section presents the bilevel formulation of the DNDP under the objective of minimizing

total travel time, a common setting in the literature (see, e.g., Leblanc [1975] and Farvaresh

and Sepehri [2013]). Recall that X denotes the set of feasible upper-level decisions x, and Z(x)

represents the set of equilibrium flows given x. The DNDP with total travel time as the objective

can be formulated as

min
x,z

∑
a∈A

(∑
o∈O

zoa

)
θa

(∑
o∈O

zoa

)
(7a)

s.t. x ∈ X, z ∈ Z(x). (7b)

Objective (7a) minimizes the total travel time, while constraint (7b) ensures that the arc con-

struction decision x is feasible and that z corresponds to an equilibrium flow.

As discussed in Section 3.2, the equilibrium set Z(x) can be characterized as the solution

set of an optimization problem. Therefore, formulation (7) is a bilevel program. In particular,

it corresponds to the optimistic variant of the bilevel model (see Carvalho et al. [2025]). If

multiple user equilibria exist, the optimistic formulation assumes that the most favorable one

(i.e., the equilibrium with the smallest total travel time) is realized. In contrast, the pessimistic

formulation assumes that the least favorable one (i.e., the equilibrium with the highest total

travel time) will occur. To the best of our knowledge, the distinction between optimistic and

pessimistic variants of the DNDP has not been explicitly discussed in the literature, and all

existing works adopt the optimistic formulation (7). However, as shown by Roughgarden and

Tardos [2000], in the case of multiple user equilibria, all equilibria result in the same total travel

time. We provide the proof for completeness.

Proposition 3. Suppose Assumption 1 holds. For any x ∈ X and z, z′ ∈ Z(x), we have

∑
a∈A

(∑
o∈O

zoa

)
θa

(∑
o∈O

zoa

)
=
∑
a∈A

(∑
o∈O

z′oa

)
θa

(∑
o∈O

z′oa

)
.

Proof. Pick any x ∈ X and π ∈ Π(x). For any o ∈ O and z ∈ Z(x), by summing (3c) for all
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a ∈ A(x), we obtain:

∑
a∈A(x)

zoaθa

(∑
o′∈O

zo′a

)
=
∑
v∈V

 ∑
a∈A+

v (x)

zoa −
∑

a∈A−
v (x)

zoa

πov =
∑
v∈V

eovπov.

Therefore, for any z ∈ Z(x), the total travel time is

∑
a∈A

(∑
o∈O

zoa

)
θa

(∑
o∈O

zoa

)
=

∑
a∈A(x)

(∑
o∈O

zoa

)
θa

(∑
o∈O

zoa

)
=
∑
o∈O

∑
v∈V

eovπov.

This implies the desired result.

In particular, under Assumption 1, there is no distinction between the optimistic and pes-

simistic formulations of the bilevel DNDP. As shown in Section 4.3.1, this property extends to

any objective function that depends on individual travel times.

4.2 Single Level Reformulation based on Value Function

One of the most popular approaches for problem (7) is reformulating it to a single-level problem

using the value function of the lower-level problem. For example, see Meng et al. [2001]. Using

ϕ(x), the optimal objective value of (2), we obtain a single-level reformulation of (7) as

min
x,z

∑
a∈A

(∑
o∈O

zoa

)
θa

(∑
o∈O

zoa

)
(8a)

s.t.
∑
a∈A

∫ ∑
o∈O zoa

0
θa(s)ds ≤ ϕ(x), (8b)∑

a∈A+
v

zoa −
∑
a∈A−

v

zoa = eov, ∀o ∈ O, v ∈ V, (8c)

zoa ≤
∑
k∈Ko

ekxa, ∀o ∈ O, a ∈ A, (8d)

z ≥ 0, x ∈ X. (8e)

Objective (8a) seeks to minimize total travel time. Constraint (8b) ensures that z is optimal

with respect to the lower-level objective, while constraints (8c)–(8e) ensure that z is a feasible

flow. Leblanc [1975] showed that the value function ϕ(x) is non-increasing in x. As a result, the
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constraint involving the value function can be linearized as:

min
x,z

∑
a∈A

(∑
o∈O

zoa

)
θa

(∑
o∈O

zoa

)
(9a)

s.t.
∑
a∈A

∫ ∑
o∈O zoa

0
θa(s)ds ≤ ϕ(x′) + ϕ̂(x′)

∑
a∈A

x′a(1− xa), ∀x′ ∈ X, (9b)

(8c)− (8e).

where ϕ̂(x′) = (ϕ(0)− ϕ(x′)) for each x′ ∈ X. Rey and Levin [2025] used a closely related cut.

Objective (9a) is convex (see Sheffi [1985]). Moreover, the left-hand side of constraint (9b)

is the objective of the lower-level problem, which is convex in z. Therefore, formulation (9) is

a convex MINLP, for which various solution methods have been proposed (see Bonami et al.

[2012] for a survey). In our implementation, we adopt an outer-approximation method, as

described in Appendix D. Note that formulation (9) contains a large number of constraints (9b).

Nevertheless, as we demonstrate in our computational experiments in Section 5, these constraints

can be handled lazily, allowing the formulation to be solved efficiently. In particular, only a small

subset of elements in X (i.e., constraints (9b)) was required to determine the optimal solution.

One of the limitations of formulation (9) is its lack of flexibility. For instance, suppose we

aim to minimize the sum of free-flow unfairness. As shown in (5), this can be expressed as

min
∑
k∈K

(∑
a∈A

ykaθa

(∑
k′∈K

yk′a

)
/ek − νk

)
/νk

s.t. x ∈ X, y ∈ Y (x),

where Y (x) denotes the set of disaggregated equilibrium flows for each x ∈ X. It is possible to

replace the constraint y ∈ Y (x) with an equivalent convex representation, as in (9). However,

in this case, the objective function is nonconvex. As a result, the corresponding formulation

becomes a nonconvex MINLP, which, unlike convex MINLPs, is significantly more challenging

to solve to global optimality.

4.3 Single Level Reformulation based on Strong Duality

In this section, we propose our single-level reformulation of problem (7) based on strong duality.

The resulting formulation is a convex MINLP and thus solvable by existing optimization tech-

niques. By Proposition 1, Z(x) is given as the projection of Z ′(x) and we obtain the following
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formulation of the DNDP:

min
x,z,π,η

∑
a∈A

(∑
o∈O

zoa

)
θa

(∑
o∈O

zoa

)
(10a)

s.t.
∑
a∈A

∫ ∑
o∈O zoa

0
θa(s)ds

≤
∑
k∈K

ek(πokdk − πokok)−
∑
a∈A

p

g
1/p
a (p+ 1)

η
p+1
p

a , (10b)∑
a∈A+

v

zoa −
∑
a∈A−

v

zoa = eov, ∀o ∈ O, v ∈ V, (10c)

zoa ≤
∑
k∈Ko

ekxa, ∀o ∈ O, a ∈ A, (10d)

ηa ≥ πoh − πot − fa −Moa(1− xa), ∀o ∈ O, a = (t, h) ∈ A, (10e)

ηa = 0, ∀a ∈ A : ga = 0, (10f)

z ≥ 0, η ≥ 0, x ∈ X, (10g)

where M ∈ RO×A is a constant such that for any x ∈ X there exists (π, η) ∈ Π(x) satisfying

πoh − πot − fa ≤ Moa, ∀o ∈ O, a = (t, h) ∈ A \A(x).

We examine approaches to compute valid values of M in Section 4.3.2. Constraint (10b) enforces

strong duality, ensuring that the primal and dual variables are optimal for their respective lower-

level problems. Constraints (10c), (10d) and (10g) ensure that z is feasible for the lower-level

primal problem, while constraints (10e) - (10g) ensure that the feasibility of π and η to the

lower-level dual problem. According to Sheffi [1985], the objective and the left-hand side of

constraint (10b) are convex in z. Moreover, it is straightforward to verify that the right-hand

side of constraint (10b) is concave in π and η. Thus, formulation (10) is a convex MINLP, which

can be solved with an outer-approximation method (see Appendix D).

4.3.1 Optimization of Other Objectives

Formulation (10) contains more variables than formulation (9). These extra variables can be

used to model different objective functions or constraints. For example, in light of (6), we can

modify the DNDP (10) to optimize the total free-flow unfairness as

min
x,z,π,η

∑
k∈K

(πokdk − πokok − νk)/νk (11)

s.t. (10b)− (10g),
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and the worst free-flow unfairness as

min
x,z,π,η,ξ

ξ (12)

s.t. ξ ≥ (πokdk − πokok − νk)/νk, ∀k ∈ K,

(10b)− (10g).

We note that formulations (11) and (12) are convex MINLP.

Theorem 2.5 in Patriksson [2015] states that at equilibrium, individual travel times are

unique. As a result, both the total free-flow unfairness and the worst-case free-flow unfairness

are the same across all user equilibria. As in Section 4.1, we conclude that there is no distinction

between the optimistic and pessimistic formulations of problems (11) and (12).

4.3.2 Computing Big-M

This subsection presents our approach to compute a valid value of big-M . This can be done by

bounding the difference of optimal dual values in Π(x). The following proposition gives a bound

for a specific x ∈ X, k ∈ K and a pair of nodes (t, h).

Proposition 4. Let x ∈ X, o ∈ O, t, h ∈ V and δ > 0. Let z ≥ 0 be such that for each o′ ∈ O

and v ∈ V , we have

∑
a∈A+

v (x)

zo′a −
∑

a∈A−
v (x)

zo′a =


eo′v − δ, if o′ = o and v = t,

eo′v + δ, if o′ = o and v = h,

eo′v, otherwise,

Then, under Assumption 1, for any π ∈ Π(x), we have

πoh − πot ≤
1

δ

 ∑
a∈A(x)

∫ ∑
o′∈O zo′a

0
θa(s)ds− ϕ(x)

 .

Proof. Let L be the Lagrangian of (2) (Appendix C). By strong duality, for any π ∈ Π(x),

ϕ(x) = min
z′≥0

L(z′, π)

≤ L(z, π)

=
∑

a∈A(x)

∫ ∑
o′∈O zo′a

0
θa(s)ds−

∑
o′∈O

∑
v∈V

πo′v

 ∑
a∈A+

v (x)

zo′a −
∑

a∈A−
v (x)

zo′a − eo′v


=

∑
a∈A(x)

∫ ∑
o′∈O zo′a

0
θa(s)ds− δ (πoh − πot) .
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By rearranging the terms, we obtain the desired result.

Let G = (V,A) be the graph consisting of the existing arcs, i.e., A = ∩x∈XA(x). A flow in

Zδ above can be obtained by combining a flow on G satisfying the demand and a δ-unit of flow

on G from t to h, in the sense described in the next proposition.

Proposition 5. Let t, h ∈ V and δ > 0. Let z ≥ 0 be any flow on graph G satisfying:∑
a∈A+

v

zoa −
∑
a∈A−

v

zoa = eov, ∀o ∈ O, v ∈ V.

Furthermore, let z′ ≥ 0 be any flow on graph G such that for each v ∈ V

∑
a∈A+

v

z′a −
∑
a∈A−

v

z′a =


−δ, if v= t,

δ, if v= h,

0, otherwise.

Then, under Assumption 1, for any x ∈ X, o ∈ O and π ∈ Π(x), we have

πoh − πot ≤
1

δ

∑
a∈A

∫ z′a+
∑

o′∈O zo′a

0
θa(s)ds− ϕ

 ,

where ϕ = min
x∈X

ϕ(x).

Proof. Fix x ∈ X, o ∈ O and define for each o′ ∈ O, a ∈ A

ẑo′a =

zo′a, if o′ ̸= o,

z′a + zo′a, if o′ = o.

Flow ẑ satisfies the condition in Proposition 4 and is feasible on G(x). Thus, for any π ∈ Π(x),

we obtain

πoh − πot ≤
1

δ

 ∑
a∈A(x)

∫ ∑
o′∈O ẑo′a

0
θa(s)ds− ϕ(x)


≤ 1

δ

∑
a∈A

∫ z′a+
∑

o′∈O z′
o′a

0
θa(s)ds− ϕ

 ,

as required.

This proposition is useful since one can obtain a bound valid for multiple graphs. In our

implementation, we compute the values of big-M as follows. First, we solve the traffic assign-

ment (2) on G (i.e., the graph with all the existing and candidate arcs) to obtain a lower bound
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on ϕ: In light of the monotonicity of ϕ, ϕ ≤ ϕ(x) for any x ∈ X. Then, we solve the traffic assign-

ment (2) on G to obtain a flow z as well as travel times of the arcs under the congestion. Lastly,

for each pair t, h ∈ V , we obtain the shortest path on G under the congestion induced by z. We

consider δ unit of flow along the shortest path and use it as z′. Then, we invoke Proposition 5

with these z and z′. We choose the value of δ by grid search (δ ∈ {10−2, 10−1, 100, 101, 102}).

5 Computational Performance

In this section, we study the performance of our single-level reformulation, formulation SD (10).

We use formulation VF (9) as a baseline. We use two instances generated by Rey and Levin

[2025]: SiouxFalls and Easter Massachusetts. Their statistics are shown in Table 1. For each

transportation network, there are 10 test instances with different sets of candidate arcs. Let A1

and A2 be the sets of existing and candidate arcs, respectively. Then, set X is defined by

X =

x :
∑
a∈A2

caxa ≤ b, xa′ = 1, ∀a′ ∈ A1, xa′ ∈ {0, 1}, ∀a′ ∈ A2

 , (13)

where ca is the construction cost of arc a ∈ A2 and b is the budget. For more details on the

instance generation, see Rey and Levin [2025]. All the methods are implemented in Python 3.9

using Gurobi 12.0, and run in single-thread mode. To compute the user equilibria, we use the

column generation technique as described by Leventhal et al. [1973].

Table 1: Statistics of the test instances

Network Nodes Arcs Candidate Arcs Budget (%) OD pairs

SiouxFalls 24 76 10 50 528
Easter Massachusetts 74 258 10 50 1113

5.1 DNDP to Optimize Fairness

We first evaluate the capability of formulation SD to optimize various metrics, as discussed in

Section 4.3.1. To be more specific, we solve the DNDP to optimize the total travel time (10a),

the total free-flow unfairness (11) and the DNDP to optimize the worst free-flow unfairness (12).

Here, we do not consider the formulation based on the value function, since it cannot handle

the objectives based on fairness. The comparison of the two formulations when the objective is

the total travel time is given in Section 5.2.

Table 2 shows the number of test instances solved within the one-hour time limit (Solved),

the average computational time in seconds (Time) and the average number of branch-and-

bound nodes (# B&B Nodes). Compared to the optimization of the total travel time (10), the
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optimization of the total free-flow unfairness (11) tends to require more time on SiouxFalls, and

more branch-and-bound nodes on both transportation networks. The optimization of the worst

free-flow unfairness (12) requires even more computational time and branch-and-bound nodes

than the optimization of the total free-flow unfairness (11) on average. There is one test instance

for which the optimal solution was not found within one hour when the objective is the total

free-flow unfairness, and four instances when the objective is the worst free-flow unfairness.

Table 2: Performance of formulation SD to optimize the total travel time (10), the total free-flow
unfairness (11) and the worst free-flow unfairness (12)

Network Objective Solved Time # B&B Nodes

SiouxFalls
Travel time 10 248.2 294.5
Total free-flow unfairness 10 337.4 640.5
Worst free-flow unfairness 10 569.9 705.3

Easter Massachusetts
Travel time 10 1,646.1 166.5
Total free-flow unfairness 9 1,987.5 472.4
Worst free-flow unfairness 6 2,812.5 537.0

We speculate that the reason why optimizing unfairness seems harder than optimizing travel

time is as follows: intuitively, we observe that the total travel time, the objective value of

formulation (10), is similar to the objective value of the lower-level formulation (2). In fact,

when there is no congestion (ga = 0 for all a ∈ A), the two objective values coincide for any

feasible flow. In this setup, constraints (10b), (10e) and (10f), along with dual variables π and

η, are redundant in the sense that the optimal solution of formulation (10) does not change

even if they are removed. Thus, these constraints are only necessary when congestion affects

the system, and the “effective” formulation size might be smaller. These observations do not

hold for the other objective functions used in formulations (11) and (12), as the upper- and

lower-level objectives are no longer closely aligned, thereby accentuating the problem’s bilevel

nature and, consequently, its difficulty.

5.2 DNDP to Minimize the Total Travel Time

As we have seen in Section 5.1, the formulation based on strong duality is flexible, and it

becomes particularly valuable when the objective is based on fairness. However, when the

objective is the total travel time, the typical objective in the literature, the formulation based

on the value function can be used to solve the DNDP too. Below, we observe the computational

performance of formulation SD (10) and formulation VF (9) in this setting. In formulation

VF (9), constraints (9b) are generated lazily: every time an integer solution is found, we compute

the corresponding traffic assignment and check whether constraint (9b) is satisfied, adding it if

necessary.

Table 3 shows the number of test instances solved within the one-hour time limit (Solved),
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the average computational time in seconds (Time), and the average number of branch-and-bound

nodes (# B&B Nodes). For the test instances that are not solved within the time limit, the time

is set to one hour, and the number of branch-and-bound nodes computed within this one-hour

time limit are used. In the column labeled “Formulation”, SD (standing for strong duality) and

VF (value function) refer to formulations SD (10) and VF (9), respectively. In this experiment,

all the test instances are solved within the one-hour time limit. Formulation SD (10) has a shorter

average solution time on SiouxFalls, but on Easter Massachusetts, formulation VF (9) tends to

be faster on average. Formulation VF (9) requires less branch-and-bound nodes than formulation

SD (10), especially on Easter Massachusetts. Interestingly, both formulations require on average

fewer branch-and-bound nodes on Easter Massachusetts, a larger transportation network.

Table 3: Performance of formulations SD (10) and VF (9) to solve the DNDP to minimize the
total travel time

Network Formulation Solved Time # B&B Nodes

SiouxFalls
SD 10 248.2 294.5
VF 10 614.2 252.6

Easter Massachusetts
SD 10 1,646.1 166.5
VF 10 864.8 111.3

Especially on large test instances, formulation VF tends to be faster. For further analysis on

the scalability of the two formulations, see Appendix E. Nonetheless, as we saw in Section 5.1,

formulation SD (10) preserves convexity even when the objective involves fairness-related met-

rics, such as the free-flow unfairness. In contrast, modifying formulation VF (9) to optimize

a fairness objective results in nonconvex MINLPs, for which proving global optimality is sig-

nificantly more challenging. In this regard, the ability of the SD formulation to accommodate

fairness objectives within a convex optimization framework constitutes a valuable contribution.

6 Case Study: EV Charging Station Capacity Expansion

In this section, we formulate the capacity expansion problem for EV charging stations as the

DNDP. This formulation enables us to optimize charging station capacity expansion decisions

while considering congestion at charging stations. The objective is to minimize either the total

travel time or a specific fairness metric related to EV drivers.

In Section 6.1, we describe the setup of the problem. In this section, we also present the ap-

proach for modeling the behavior (i.e., the routing decision) of EV drivers as a traffic assignment

problem, as well as a metric quantifying the inefficiency experienced by EV drivers. Section 6.2

presents the results of the numerical experiments using the Quebec road network.
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6.1 Problem Setup

Suppose we have a highway road network with charging stations installed at some of the nodes.

We are interested in EV drivers who travel long distances through this road network, represented

as OD pairs. Specifically, we focus on the drivers who need to charge their EVs along their trips

in order to reach their destinations. These EV drivers consider the time required to charge

their vehicles and choose their routes in a way that minimizes their total travel time. Given the

current road network with charging stations and their associated demands, our goal is to select

a subset of charging stations for capacity expansion to improve a specified metric, such as the

total travel time of EV drivers. We make the following assumptions:

Assumption 2.

a) All EVs have the same vehicle range.

b) Each OD pair is traversable, assuming the battery is fully charged at the origin and that

intermediate charging at existing stations along the route is allowed.

c) The travel time on a road does not depend on the number of EV drivers using that road.

d) The time required to charge an EV at a charging station (including waiting time) can be

modeled as in equation (1).

The first assumption is standard in the literature (e.g., Kınay et al. [2023]). The assumption

that travel time is independent of the number of EV drivers can be justified when the ratio of

EVs to conventional vehicles is small. For instance, in 2023, EVs accounted for 4.4% of the

total light vehicles in circulation in Quebec, highlighting that they are still relatively rare on

the roads [Institut de la statistique du Québec, 2023]. When the share of EV drivers is not

negligible, we can use the multi-class network equilibrium as developed by Chen et al. [2016].

Regarding the final assumption, there are situations in which alternative waiting-time functions,

such as those obtained from queueing models, may be more appropriate. Under mild conditions,

our strong duality approach extends to these more general functions. For clarity of exposition,

however, we adopt the assumption stated above.

Traffic assignment with electric vehicles (EVs) is more complex than conventional traffic

assignment due to the presence of charging requirements. In particular, a shortest path for

a conventional vehicle may be infeasible for an EV because of its limited driving range, or

suboptimal due to congestion and waiting times at charging stations. However, by employing

the network transformation technique proposed by MirHassani and Ebrazi [2013], the EV traffic

assignment problem can be converted into a standard user-equilibrium formulation, as described

in Section 3, and the associated capacity expansion problem can be reduced to the conventional

NDP. A detailed description of this transformation is provided in Appendix F.

To quantify the inefficiency introduced by the adoption of EVs, we define a fairness-based

metric, termed the cost of sustainability, as the difference between the travel times experienced

by EV drivers and conventional vehicle drivers. EV drivers may incur additional delays due
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to detours to charging stations and waiting times at these facilities, both of which depend

on congestion levels at charging stations. The optimization of the total and worst-case cost of

sustainability can be carried out by replacing νk with the travel time experienced by conventional

vehicle drivers in (11) and (12).

6.2 Numerical Experiments with Quebec Road Network

Experimental Setup. To illustrate the applicability of our method, we run experiments on

the road network in Quebec, including public EV charging stations. We use the 2021 Statistics

Canada census data1 to determine population centers. We consider the 20 population centers

with the largest populations. We assume the vehicle range of an EV is 200 km and remove OD

pairs whose distances are less than this vehicle range, resulting in 92 OD pairs. The demand

volumes of the OD pairs are computed using the gravity model (Hodgson [1990]). We consider

two demand scenarios: a low-demand scenario and a high-demand scenario, where the demand

volume of each OD pair is increased by 50% from that of the low-demand scenario. The histogram

of the OD demand volumes is presented in Appendix G.

The location data of charging stations is obtained from Circuit électric2. We use Open-

StreetMap (OpenStreetMap contributors [2024]) with OSMnx (Boeing [2024]) to compute the

distances between charging stations and population centers using the highway network in Que-

bec. Based on the computed distances, we construct the transformed network as discussed in

Section 6.1. We consider 370 level-3 charging stations. The resulting network has a large number

of arcs. To make the instance size moderate, we run the traffic assignment and compute the

user equilibrium using the existing charging stations. We then remove the arcs with zero flows

at equilibrium since they are unlikely to be used after capacity expansion. The statistics of the

resulting graphs are shown in Table 4.

Table 4: Statistics of the graph before and after filtering arcs

Network Nodes Arcs Candidate arcs OD pairs

Original 924 65,888 370 92
Low Demand 924 354 87 92
Hight Demand 924 421 108 92

The time to charge an EV at a charging station (including waiting time) is modeled as

1/2 + (s/c)4/100, where s is the amount of demand served at this charging station and c is the

number of outlets of this charging station.

We consider the capacity expansion of each charging station by 1 unit (e.g., if we have a

charging station of capacity c = 2, we may expand it to capacity c = 3). For each charging

1
https://www12.statcan.gc.ca/census-recensement/2021/dp-pd/prof/

2
https://lecircuitelectrique.com/en/
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station (candidate arc a), we sample the cost of the capacity expansion (the construction cost

ca of the candidate arc) from a uniform distribution between 0.5 and 1.5. We use X as defined

in equation (13).

We propose a simple greedy heuristic as a baseline. The method works as follows: We

first evaluate the user equilibrium with the current set of charging stations in place. Next, we

compute the “utility” of each charging station. This is defined as the ratio of the total demand

served by the station to its capacity. We then sort the charging stations in decreasing order

of their utility, from the most to the least used. Starting from the highest utility, we choose

the stations until we reach a budget limit. After selecting the stations, we perform another

traffic assignment to evaluate the objective value (e.g., total travel time). Thus, this greedy

method requires two traffic assignment computations: one for evaluating the user equilibrium

and another for evaluating the objective after selecting the charging stations.

Results and Discussion. First, we use formulations (11) and (12) to optimize the total and

worst cost of sustainability, as described in Section 6.1. Recall that the cost of sustainability is

defined as the extra travel time EV drivers experience compared to the drivers of conventional

cars. Tables 5 and 6 show the upper bound3 (UB), the improvement of the upper bound relative

to the greedy method (Rel.), the lower bound (LB), the gap between upper and lower bound

(Gap), and the number of branch-and-bound nodes (# B&B Nodes). We set the time limit to

one hour. We observe that increasing demand makes the problem harder: the optimality gap

tends to get worse and fewer branch-and-bound nodes are explored. The budget seems to have

little impact on the performance of the method.

Next, we present the performances of formulations (10) and (9) to seek the capacity expansion

decisions that minimize the total travel time of EV drivers. Table 7 shows the upper and lower

bounds obtained after the one-hour time limit, among other statistics. The definition of each

column is the same as in Table 5. In all the setups, formulations SD (10) and VF (9) provide

tighter upper bounds (better solutions) than the greedy method. Formulation VF (9) tends

to give tighter bounds than formulation SD (10), and the optimality gap is smaller in all the

setups. For each formulation, when we use the high-demand scenario, the optimality gap tends

to worsen, and the number of branch-and-bound nodes decreases. There are no clear trends in

terms of methodologies’ performance regarding budget variations. As long as the objective is the

total travel time, formulation VF (9) seems to be more competitive than formulation SD (10)

and the greedy method. Additional results can be found in Appendix G.

It is interesting to note that the worst cost of sustainability is harder to optimize than the

total cost of sustainability, which is harder than the total travel time. On any setup, we explore

the fewest branch-and-bound nodes and tend to have the worst optimality gap when optimizing

the worst cost of sustainability. This behavior is consistent with the results obtained on the

3The best incumbent value.
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Table 5: Performance of formulation SD (11) to solve the DNDP to minimize the total cost of
sustainability

Budget Demand Formulation UB (Rel.) LB Gap # B&B Nodes

5
Low

Greedy 173.37 - - -
SD 169.77 (-2.08 %) 142.90 18.80 % 3074

High
Greedy 462.55 - - -
SD 453.59 (-1.94 %) 339.59 33.57 % 1755

10
Low

Greedy 163.79 - - -
SD 157.51 (-3.83 %) 130.24 20.94 % 2720

High
Greedy 426.30 - - -
SD 404.35 (-5.15 %) 298.91 35.27 % 1618

20
Low

Greedy 145.36 - - -
SD 144.08 (-0.88 %) 119.33 20.75 % 2897

High
Greedy 370.35 - - -
SD 360.21 (-2.74 %) 261.76 37.61 % 1881

Table 6: Performance of formulation SD (12) to solve the DNDP to minimize the worst cost of
sustainability

Budget Demand Formulation UB (Rel.) LB Gap # B&B Nodes

5
Low

Greedy 0.56 - - -
SD 0.55 (-1.85 %) 0.44 26.44 % 840

High
Greedy 1.02 - - -
SD 1.02 (-0.36 %) 0.73 38.95 % 729

10
Low

Greedy 0.56 - - -
SD 0.51 (-8.95 %) 0.40 28.14 % 889

High
Greedy 0.98 - - -
SD 0.91 (-6.93 %) 0.64 43.54 % 668

20
Low

Greedy 0.50 - - -
SD 0.50 (0.00 %) 0.36 38.48 % 833

High
Greedy 0.90 - - -
SD 0.86 (-4.07 %) 0.53 62.79 % 736
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Table 7: Performance of formulations SD (10) and VF (9) to solve the DNDP to minimize the
total travel time

Budget Demand Formulation UB (Rel.) LB Gap # B&B Nodes

5

Low
Greedy 1,424.72 - - -
SD 1,414.09 (-0.75 %) 1,376.14 2.76 % 1713
VF 1,406.94 (-1.25 %) 1,376.25 2.23 % 3724

High
Greedy 2,657.46 - - -
SD 2,605.22 (-1.97 %) 2,528.32 3.04 % 987
VF 2,581.72 (-2.85 %) 2,529.71 2.06 % 2776

10

Low
Greedy 1,399.55 - - -
SD 1,385.52 (-1.00 %) 1,350.34 2.60 % 1576
VF 1,379.23 (-1.45 %) 1,350.28 2.14 % 4300

High
Greedy 2,563.26 - - -
SD 2,515.46 (-1.86 %) 2,431.67 3.45 % 1053
VF 2,486.97 (-2.98 %) 2,432.16 2.25 % 3050

20

Low
Greedy 1,351.52 - - -
SD 1,348.91 (-0.19 %) 1,319.55 2.22 % 1771
VF 1,344.84 (-0.49 %) 1,319.57 1.91 % 3743

High
Greedy 2,416.45 - - -
SD 2,398.83 (-0.73 %) 2,313.38 3.69 % 1198
VF 2,371.61 (-1.86 %) 2,313.93 2.49 % 2756
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academic instances, which showed that incorporating fairness objectives strengthens the bilevel

structure of the problem and increases computational difficulty.

Final remarks and insights. We emphasize the importance of formulations SD (11) and (12).

The total travel time experienced by all EV drivers is one metric to measure the quality of service

provided by the charging station operator. However, from each user’s perspective, arguably, they

are more interested in the time they personally experience, rather than the total travel time

experienced by all EV drivers. In this regard, our formulations (11) and (12) optimize metrics

relevant to each driver’s experience. Furthermore, while we focused on the cost of sustainability

in this experiment (i.e., the difference between an EV driver and a conventional car driver with

the same origin and destination), it is straightforward to modify the formulation to consider the

absolute (rather than relative to conventional car drivers) time or improvement of travel time

experienced by EV drivers (see Section 3.3).

The greedy heuristic is computationally inexpensive and yields reasonable solutions, but it

does not provide any guarantee of optimality. The proposed formulations, while requiring more

computational effort, allow for rigorous assessment of solution quality through optimality gaps.

Although exact optimality is harder to achieve for fairness objectives, our SD formulations still

provide better solutions and help quantify trade-offs between efficiency and equity in network

design. Indeed, as shown in the supplementary analyses in Appendix G, especially under small

budgets, the topology of the solutions obtained when optimizing total travel time, total cost of

sustainability, and worst cost of sustainability, can be fundamentally different from the solution

for one of the objectives distanciating from the value obtained by others. This provides further

insight into how decision-makers can use the proposed methods to develop prioritization strate-

gies. For instance, Table 6 shows that improvements in the worst cost of sustainability tend

to saturate after adding a small number of charging stations. Therefore, allocating a modest

portion of the budget (approximately 10 stations) to improve this equity-focused metric may

be sufficient. The remaining budget can then be directed toward minimizing total travel time,

allowing decision-makers to balance equity and efficiency more effectively.

7 Conclusions and Future work

In this paper, we studied a single-level reformulation of the DNDP. Our approach was based

on strong duality of the traffic assignment problem that characterizes user equilibrium. We

also presented an alternative single-level reformulation using the value function, a widely used

technique in the DNDP literature. Assuming the upper-level objective is the total travel time,

both approaches lead to convex MINLPs, for which various solution methods exist.

To illustrate the utility of our reformulation, we applied it to fairness-driven objectives, specif-

ically total and worst-case free-flow unfairness. We showed that the value function approach

becomes difficult to adapt in these cases, as it results in nonconvex MINLPs. In contrast, our
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reformulation based on strong duality extends naturally to these objectives while preserving con-

vexity. Through numerical experiments on benchmark transportation networks, we evaluated

the performance of our approach. On smaller instances, our method outperformed the value

function formulation in terms of runtime, whereas the latter demonstrated better scalability on

larger instances. However, our method could also handle a broader class of fairness metrics,

demonstrating its flexibility.

We further demonstrated the applicability of our reformulation to a real-world case study

involving capacity expansion for EV charging stations. Modeling the problem as a DNDP,

we compared our solution with that of a greedy heuristic and observed improvements in the

objectives, including total travel time and the cost of sustainability, i.e., the inefficiency caused

by EV adoption.

The reformulation based on strong duality assumes that the travel time function follows the

BRP function. It also assumes that the OD pairs are connected, even in the absence of candidate

arcs. It would be valuable to extend our method to handle more general instances with relaxed

assumptions. Furthermore, in our case study on charging stations, we focused primarily on

capacity expansion decisions. The siting of new charging stations can be modeled either with

an SOS1 constraint or by extending the logic to compute a valid value of big-M, which is left

as future research. Additionally, developing a faster, decomposition-based solution method to

solve our reformulation more efficiently is of interest.
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Online supplement

Fair network design problem: an application to

EV charging station capacity expansion

A Notation

Table 8 lists the symbols used in this paper.

Table 8: Symbols and their description

Symbol Description

V Set of nodes indexed by v
A Set of arcs indexed by a

A(x) Set of available arcs
A+

v (x) Set of available incoming arcs of v
A−

v (x) Set of available outgoing arcs of v
G Graph (V,A)
K Set of OD pairs indexed by k
X Set of feasible network design decisions x
O Set of nodes that are origins
Ko Set of OD pairs whose origins are o
Y (x) Set of user equilibrium flow given x
Π(x) Optimal solution set of the dual lower-level problem given x
Y ′(x) Set of pairs of user equilibrium flow and dual values given x, Y (x)×Π(x)
ok Origin of k
dk Destination of k
ek Demand volume of k
νk Shortest travel time of k on the graph with only the existing arcs, without congestion on roads
ϕ Value function of the lower-level problem
θa Travel time function of a, defined as θa(s) = fa + gas

p

xa Binary variable that is 1 if and only if we build a
yka Disaggregated flow on a corresponding to k
zoa Aggregated flow on a corresponding to demands with o
π, η Variables in the dual lower-level problem
ζk Free-flow unfairness of k



B Comparison of Aggregated and Disaggregated Models

In this section, we compare the performance of the disaggregated model (formulation with

disaggregated flow variable y) and the aggregated model (10) (formulation with aggregated flow

variable z).

The arguments in Sections 3 and 4 can be extended to use disaggregated flow variable y.

For example, we obtain a formulation of the NDP corresponding to formulation (10) but with

disaggregated flow variable y as follows:

min
x,y,π,η

∑
a∈A

(∑
k∈K

yka

)
θa

(∑
k∈K

yka

)
(14)

s.t.
∑
a∈A

∫ ∑
k∈K yka

0
θa(s)ds

≤
∑
k∈K

ek(πkdk − πkok)−
∑
a∈A

p

g
1/p
a (p+ 1)

η
p+1
p

a ,∑
a∈A+

v

yka −
∑
a∈A−

v

yka = e′kv, ∀k ∈ K, v ∈ V,

yka ≤ ekxa, ∀k ∈ K, a ∈ A,

ηa ≥ πkha − πkta − fa −M ′
ka(1− xa), ∀k ∈ K, a = (t, h) ∈ A,

ηa = 0, a ∈ A : ga = 0,

y ≥ 0, η ≥ 0, x ∈ X,

where M ′ is a sufficiently large constant, which can be computed using a routine similar to

Proposition 5. Analogously, we can modify formulation (9) to use disaggregated flow variable y

as

min
x,y

∑
a∈A

(∑
k∈K

yka

)
θa

(∑
k∈K

yka

)
(15)

s.t.
∑
a∈A

∫ ∑
k∈K yka

0
θa(s)ds ≤ ϕ(x′) + ϕ̂(x′)

∑
a∈A

x′a(1− xa), ∀x′ ∈ X,∑
a∈A+

v

yka −
∑
a∈A−

v

yka = e′kv, ∀k ∈ K, v ∈ V,

yka ≤ ekxa, ∀k ∈ K, a ∈ A,

y ≥ 0, x ∈ X.

For each of the 10 test instances using SiouxFalls transportation network, we measure the

performances of the four formulations (10), (14), (9) and (15). Table 9 shows the number of

test instances solved within the two-hour time limit and the average computational time. The
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disaggregated formulations are always worse than the aggregated correspondents on average, in

terms of the number of instances solved within the timelimit and the average computational

time.

Table 9: Performances of disaggregated and aggregated models

Formulation Aggregation Equation Solved Time

SD
No (14) 1 3,428.6
Yes (10) 10 217.0

VF
No (15) 6 2,305.8
Yes (9) 10 558.8

C Dual of Traffic Assignment Problem

In this section, we derive the dual traffic assignment problem (4). We start with a lemma.

Lemma 1. Let p ≥ 1, a ≥ 0 and b ∈ Rn. For z ∈ Rn
+, define

f(z) =
a

p+ 1

(
n∑

i=1

zi

)p+1

−
n∑

i=1

bizi.

1. If a > 0, then

min
z∈Rn

+

f(z) = − p

a1/p(p+ 1)

(
[max {bi : i = 1, . . . , n}]+

)(p+1)/p
,

where [x]+ = max{x, 0}.
2. If a = 0, then

min
z∈Rn

+

f(z) =

0, if bi ≤ a for all i = 1, . . . , n,

−∞, otherwise.

In particular, Lemma 1 implies that

min
z≥0

f(z) =


max
η≥0

{
− p

ā1/p(p+ 1)
η(p+1)/p : η ≥ bi, ∀i = 1, . . . , n

}
, if a > 0,

max
η≥0

{
− p

ā1/p(p+ 1)
η(p+1)/p : η = 0, η ≥ bi, ∀i = 1, . . . , n

}
, otherwise,

(16)

where ā = a if a > 0 and otherwise ā = 1.

Proof. It is straightforward to show the case when a = 0. In the following, we assume a > 0.

3



Pick i′ such that bi′ ≥ bi for any i = 1, . . . , n. For every z ∈ Rn
+, we have f(z) ≥ f(z′), where

z′i =


n∑

j=1

zj , i = i′,

0, i ̸= i′.

It follows that

min
z∈Rn

+

f(z) = min
u∈R+

g(u),

where

g(u) =
a

p+ 1
up+1 − bi′u.

By computing the derivative of g, we can obtain the minimizer as

min
u∈R+

g(u) = g

((
[bi′ ]+
a

)1/p
)

= − p

a1/p(p+ 1)

(
[bi′ ]+

)(p+1)/p
.

Now, we derive the dual of problem (2).

Proof of Proposition 1. Fix x ∈ X. Let π be the dual variable corresponding to constraint (2b).

Then, the Lagrangian is

L(z, π) =
∑

a∈A(x)

∫ ∑
o∈O zoa

0
θa(s)ds−

∑
o∈O

∑
v∈V

πov

 ∑
a∈A+

v (x)

zoa −
∑

a∈A−
v (x)

zoa − eov


=

∑
a∈A(x)

fa

(∑
o∈O

zoa

)
+

ga
p+ 1

(∑
o∈O

zoa

)p+1


−
∑
o∈O

∑
a=(t,h)∈A(x)

(πoh − πot)zoa +
∑
k∈K

ek(πokdk − πokok)

=
∑

a=(t,h)∈A(x)

 ga
p+ 1

(∑
o∈O

zoa

)p+1

−
∑
o∈O

(πoh − πot − fa)zoa

+
∑
k∈K

ek(πokdk − πokok)

=
∑

a∈A(x)

La(za, πa) +
∑
k∈K

ek(πokdk − πokok),

where

La(za, πa) =
ga

p+ 1

(∑
o∈O

zoa

)p+1

−
∑
o∈O

(πoh − πot − fa)zoa.
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The Lagrangian dual problem is

max
π

min
z≥0

L(z, π) =max
π

 ∑
a∈A(x)

min
z≥0

La(za, πa) +
∑
k∈K

ek(πokdk − πokok)

 .

In light of Lemma 1 and equation (16), this problem is equivalent to problem (4).

D Outer-approximation methods

In this section, we present the outer-approximation method used to solve formulation (9). The

method to solve formulation (10) is similar.

Using the definition of the travel cost function (1), we can rewrite formulation (9) as

min
x,z,θ

∑
a∈A

fa

(∑
o∈O

zoa

)
+ gaθa

s.t.
∑
a∈A

fa

(∑
o∈O

zoa

)
+

ga
p+ 1

θa ≤ ϕ(x′) + ϕ̂(x′)
∑
a∈A

x′a(1− xa), ∀x′ ∈ X,∑
a∈A+

v

zoa −
∑
a∈A−

v

zoa = eov, ∀o ∈ O, v ∈ V,

zoa ≤
∑
k∈Ko

ekxa, ∀o ∈ O, a ∈ A,

θa ≥

(∑
o∈O

zoa

)p+1

z ≥ 0, x ∈ X.

Let us define

u(X ′, I ′) = min
x,z,u

∑
a∈A

fa

(∑
o∈O

zoa

)
+ gaθa

s.t.
∑
a∈A

fa

(∑
o∈O

zoa

)
+

ga
p+ 1

θa ≤ ϕ(x′) + ϕ̂(x′)
∑
a∈A

x′a(1− xa), ∀x′ ∈ X ′,∑
a∈A+

v

zoa −
∑
a∈A−

v

zoa = eov, ∀o ∈ O, v ∈ V,

zoa ≤
∑
k∈Ko

ekxa, ∀o ∈ O, a ∈ A,

θa ≥ αp+1 + (p+ 1)αp

(∑
o∈O

zoa − α

)
, ∀a ∈ A,α ∈ I ′a,

z ≥ 0, x ∈ X.

5



Problem u(X ′, I ′) is equivalent to problem (9) if X ′ = X and I ′a = R for all a ∈ A. However, if

X ′ ⊊ X or I ′a ̸= R for some a ∈ A, u(X ′, I ′) is a relaxation of problem (9). In our implementation,

we let X ′ = I ′a = ∅ for all a ∈ A and pass u(X ′, I ′) to Gurobi. Every time Gurobi solves a

branch-and-bound node or finds a candidate integer solution, we search for a violated constraint

(up to a tolerance of 10−6), and add it as a lazy constraint.

E Additional Analyses for Section 5

In this section, we conduct an additional experiment to evaluate the scalability of the proposed

methods. The experiment is based on a grid-shaped transportation network in which nodes are

arranged in a 4 × 4 grid, and each pair of adjacent nodes is connected by an edge. The travel

time on each edge is defined as θ(s) = 1 + αs4, where α is sampled uniformly from the interval

[1, 2]. The number of candidate arcs, denoted by n, is varied from 8 to 20. For each instance,

n existing arcs are selected at random, and for each selected arc, a parallel arc is added to the

network as a candidate arc. The travel time of each candidate arc is defined as θ(s) = 1 + s4.

Demand is generated by randomly sampling twenty OD pairs of nodes. For each value of n, we

generate 20 independent instances.

Table 10 reports the average computational time, the number of instances solved within

the two-hour time limit, the dual bound at the root node (expressed as a percentage gap from

the optimal objective value), the average number of branch-and-bound nodes, and the average

ratio of computational time to the number of branch-and-bound nodes. When the number of

candidate arcs is small, formulation SD is generally faster than formulation VF. However, as the

number of candidate arcs increases, formulation VF becomes more competitive. When n = 20,

formulation VF solves all 20 instances, whereas formulation SD fails to solve 4 instances within

the time limit.

Interestingly, formulation SD tends to provide tighter dual bounds than formulation VF

on average, and this difference becomes more pronounced as the number of candidate arcs

increases. Nevertheless, both the number of branch-and-bound nodes and the average time

required to solve the LP relaxation at each node increase with the number of candidate arcs.

This increase is substantially sharper for formulation SD than for formulation VF, resulting in

superior scalability of formulation VF compared to formulation SD.

F Detailed Explanation on Electric Vehicle Traffic Assignment

In this section, we review the network transformation to model the traffic assignment of EVs.

Let G′ = (V ′, A′) be a road network. Let O,D ⊂ V ′ denote the sets of nodes used as origins

and destinations, respectively, and let C ⊂ V ′ represent the set of nodes with charging stations.

By duplicating nodes if necessary, we assume that O,D, and C are mutually disjoint.

6



Table 10: Performance of formulations SD (10) and VF (9) to solve the DNDP to minimize the
total travel time

# Candidates Formulation Time Solved Root Bound (%) # B&B Nodes Time per Node

8
SD 6.66 20 29.74 60.15 0.11
VF 13.00 20 30.34 48.80 0.27

9
SD 16.32 20 32.69 101.50 0.16
VF 29.41 20 36.34 85.00 0.34

10
SD 37.12 20 36.45 157.15 0.23
VF 72.92 20 35.78 135.70 0.51

11
SD 67.25 20 35.93 246.10 0.25
VF 153.80 20 40.60 218.05 0.69

12
SD 261.59 20 39.64 443.60 0.53
VF 288.59 20 44.01 328.75 0.80

13
SD 570.50 20 38.54 579.35 0.81
VF 531.92 20 44.05 506.40 1.02

14
SD 616.22 20 38.38 695.00 0.86
VF 535.93 20 46.51 603.00 0.92

15
SD 886.94 20 43.00 869.55 0.92
VF 575.34 20 48.97 684.40 0.85

16
SD 1,026.87 20 40.98 911.70 1.08
VF 639.62 20 50.53 748.05 0.89

17
SD 2,668.80 18 41.22 1,273.80 1.71
VF 661.33 20 54.53 925.30 0.75

18
SD 2,266.75 19 45.31 1,256.55 1.52
VF 595.28 20 51.55 824.40 0.72

19
SD 2,637.27 18 43.39 1,368.50 1.65
VF 616.91 20 60.39 884.40 0.70

20
SD 3,856.50 16 45.12 1,720.35 1.93
VF 864.45 20 57.03 1,094.40 0.74
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An EV driver must choose a path that can be completed without running out of battery.

For example, consider graph G1 in Figure 1. A filled node indicates the presence of a charging

station, while an open node denotes the absence of one. Given that the vehicle range is 200 km,

path (1, 4, 5, 3, 8) is not feasible, as it is not possible to travel from node 1 to node 3 (nodes 4

and 5 do not have charging stations).

MirHassani and Ebrazi [2013] proposed a technique to transform the road network to facili-

tate handling the vehicle range. The transformed graph G = (V,A) has V = O∪D∪C, and for

each (o, d) ∈ O ×D, a path from o to d in graph G corresponds to a path in road network G′

that respects the vehicle range (and vice versa). The construction of A is straightforward: for

each t, h ∈ V , we have (t, h) ∈ A if and only if the distance from t to h is less than or equal to

the vehicle range of an EV, and (t, h) ∈ O × C, C × C, or C ×D. For example, consider again

road network G1 shown in Figure 1. If there is a single OD pair (i.e., K = {1}) from node 1

to node 8, and the vehicle range of an EV is 200 km, we obtain G2 after this transformation.

Path p1 = (1, 2, 6, 8) in graph G2 corresponds to path p′1 = (1, 4, 2, 4, 6, 7, 8) in graph G1. The

intermediate nodes 2 and 6 in path p1 correspond to the nodes to charge an EV.

We note that the cost (travel time) of a path in the transformed network consists of both

arc costs (time spent on the road) and node costs (time spent at the charging stations). By

introducing auxiliary nodes and arcs, the node costs can be represented as costs associated with

the auxiliary arcs. For example, if the time to charge an EV at a charging station is given by

1/2 + s4, graph G2 can be further transformed into graph G3.

G Additional Analyses for Section 6

In this section, we provide additional analyses on the experiments in Section 6.

G.1 Histogram of Demands

Figure 2 shows the histogram of demand volumes. The histogram uses the low-demand scenario.

However, the demand volumes for the high-demand scenario are obtained by scaling the low-

demand volumes by 50%. Thus, the shape of the histogram for the high-demand scenario remains

the same.

G.2 Comparison of Equilibria

Figures 3 and 4 show the total travel time and the total/worst costs of sustainability of the

equilibria computed by formulation SD to optimize the total travel time (10), the total cost of

sustainability (11) and the worst cost of sustainability (12). The color and shading pattern of

each marker indicate the metric being optimized, while the shape of the marker corresponds to

the budget: a square, triangle, and circle represents a budget of 5, 10, and 20, respectively.
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Figure 1: Graphs illustrating network transformation: Road network G1 is transformed into
the extended graph G2, which is further converted into G3, where the node costs in G2 are
represented as arc costs.
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Figure 2: Histogram of the demand volumes in the low-demand scenario
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For larger budgets, optimizing for one objective tends to yield near-optimal values for the

other objectives as a byproduct. However, for smaller budgets, differences start to emerge,

highlighting the need for decision-makers in these cases to carefully choose their priorities.
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Figure 3: Total travel time and total cost of sustainability of the user equilibria computed at
various equilibria

G.3 Comparison of Charging Station Locations for Capacity Expansion

Figures 5 and 6 show the selected charging stations for capacity expansion in the two demand

scenarios, with a budget of 5. These figures are generated using the outputs of formulation

SD, which optimizes the total travel time (10). The outputs differ between demand scenarios,

indicating the sensitivity of the results to the demand data.
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Figure 4: Total travel time and worst cost of sustainability of the user equilibria computed at
various equilibria
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Figure 5: Selected charging stations in the low-demand scenario with a budget of 5
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Figure 6: Selected charging stations in the high-demand scenario with a budget of 5
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