
Multi-Stage Selection under Bounded Variation

Christoph Buchheim and Maja Hügging

Department of Mathematics, TU Dortmund University

January 16, 2026

Abstract

We investigate a multi-stage version of the selection problem where the variation
between solutions in consecutive stages is either penalized in the objective function
or bounded by hard constraints. While the former problem turns out to be tractable,
the complexity of the latter problem depends on the type of bounds imposed: When
bounding the number of changes of a single item over all stages, the problem turns
out to be strongly NP-hard in general, even if we may select only one item per stage
and each item may change only twice over all stages. In contrast, when the number
of changes at each stage is bounded over all items, the problem can be efficiently
solved by reducing it to a minimum-cost flow problem.

1 Introduction

Many combinatorial optimization problems arising in practical applications do not only
require to take decisions over a long planning horizon but also to deal with problem pa-
rameters changing over time. At the same time, it is often desired that the overall change
in the decisions is not too large. The latter may be due to technical reasons, as frequent
modifications may require the transport of goods or material from one place to another or
lead to the wear and tear of equipment.

In this paper, we will study the well-known Selection problem in a multi-stage setting.
The classical, single-stage Selection problem takes as input a number of items n, a
number K ∈ {0, . . . , n}, and item costs c1, . . . , cn ∈ R; the aim is to select the k cheapest
items, i.e., to minimize c>x over all x ∈ {0, 1}n with

∑n
i=1 xi = K. The Selection problem

itself can be solved very efficiently, but its simple structure makes it an ideal candidate
for study in combination with additional constraints. This has established the Selection
problem as a prominent subject in robust optimization; see, e.g., Chapter 6 in the recent
textbook [17] and the references therein.

In the multi-stage setting, we consider a discrete time horizon {1, . . . , T}, where at each
point t in time, a feasible solution x(t) of a given Selection instance has to be chosen. The

1

objective is a linear function in the incidence vectors x(t) of the chosen items. In addition,
we impose an upper bound S on the variation in the sequence x(1), . . . , x(T). We call this
problem Multi-Stage Selection under Bounded Variation. Such problems arise
in production planning, where for each time point t ∈ {1, . . . , T} the decision maker has
to activate exactly K out of n available units, but the change in the selected units may
not be too large so as not to decrease the longevity of the technical parts.

1.1 Related literature

In multi-stage optimization, the input is given by a combinatorial optimization problem
and a sequence of objective functions, where each of the latter corresponds to one time
step. If the solution of the underlying combinatorial problem changes over time, additional
costs arise in the objective function, or alternatively, a reward is collected if the solutions do
not change. The inclusion of such rewards or penalties often renders a multi-stage problem
NP-hard, even if the underlying combinatorial problem is tractable. For example, the multi-
stage version of Spanning Tree is NP-hard [18] and the multi-stage version of Bipartite
Perfect Matching is n1−ε-inapproximable even for T = 2, unless P = NP [3]. Bampis et
al. [5] study the multi-stage version of Knapsack. They present a PTAS and prove that
an FPTAS cannot exist, unless P = NP, even for T = 2 and uniform transition costs or re-
wards. The authors claim to have found the first approximation scheme for a combinatorial
multi-stage problem so far, contrasting the inapproximability results for other combina-
torial problems from the literature. Furthermore, they prove the problem to be pseudo-
polynomial for a fixed number T of stages but strongly NP-hard in the general case, even
for uniform transition costs or rewards. Chimani et al. investigate a multistage variant of
Perfect Matching, where the aim is to minimize the variation, presenting NP-hardness
results and approximation algorithms [11], and of Shortest Path, where they evaluate
different solution approaches experimentally [10]. More general approaches based on lin-
ear programming [2] and on a rounding scheme [1] have also been proposed, leading to
new approximation results for several combinatorial multistage problems; another general
framework for subgraph problems is given in [12]. Moreover, Bampis et al. [4] investigate
an online version of multistage optimization for a large class of optimization problems in-
cluding Selection. The opposite objective is considered by Kellerhals et al. [20], who aim
at diverse solutions rather than similar ones. They present parameterized algorithms for a
variety of underlying problems, including Perfect Matching and s-t-Path.

In this paper, we study the multi-stage version of Selection with transition costs and
show that this problem can, in fact, be solved efficiently via linear programming; see Sec-
tion 2. However, our focus is on a more restrictive variant of Multi-Stage Selection:
instead of considering transition costs or rewards in the objective function, we introduce
hard bounds on the variation, i.e., the change in the sequence of solutions. More precisely,
we propose two possible definitions of the variation: we will consider a time-wise variation
that bounds the symmetric difference of each two consecutive solutions and a switch-wise
variation that, for each component, bounds the total number of times the respective com-

2

ponent may change over time. While research concerning switch-wise variation is very rare,
hard constraints on the time-wise variation have also been considered in the multi-stage
literature. Fluschnik et al. study a variety of optimization problems in this framework.
The input is an instance varying over time, given by temporal layers, and the objective
is to find a feasible solution for each layer while ensuring that two solutions of consec-
utive layers do not differ too much in their symmetric difference. Fluschnik et al. show
that this problem is NP-hard even under strong restrictions on the number of layers or
the allowed number of changes, for 2-SAT [13], 2-Coloring [14], Vertex Cover [15],
and s-t-Path [16], while also investigating fixed-parameter tractability. Similar results are
obtained for a committee election problem by Bredereck et al. [8].

A related research area are reconfiguration problems, which are based on combinatorial
or graph-theoretical problems. Given two solutions X, Y to the underlying problem, the
respective reconfiguration problem then asks whether there exists a sequence of feasible
solutions X = X0, X1 . . . , XT = Y that sequentially transforms X into Y under the con-
straint that solution Xi+1 can be obtained from Xi by certain reconfiguration operations.
As an example, Lokshtanov and Mouawad [22] study Stable Set Reconfiguration.
Among others, they consider the variant where each Xi must be a stable set of size at
least k in a given graph and only a single vertex per step may be exchanged; the resulting
decision problem is NP-complete. This can be interpreted as a very restricted case of our
time-wise variation model with at most two changes per time-step and an objective func-
tion that is only used to fix the first and last solution. However, the optimization version
is already NP-hard for T = 1 in case of the Stable Set problem. At the same time, the
corresponding reconfiguration problem for Selection is trivial.

Lendl et al. [21] consider a generalization of Multi-Stage Selection under Bounded
Variation where feasible solutions are bases of an arbitrary matroid; however, their study
is restricted to very few stages. More precisely, they consider T = 2 stages and a time-wise
variation that is bounded from below or above, or must be matched exactly. The authors
prove that all three variants are tractable. They briefly discuss an extension to more than
two stages and show that their extension to a constraint that bounds the cardinality of
the intersection of all solutions is polynomially solvable for an upper bound only, while the
other two versions become NP-hard.

1.2 Problem formulation and contribution

Despite the connections to existing literature discussed above, we are not aware of any
results for Multi-Stage Selection (as a special case of Multi-Stage Knapsack) or
for Multi-Stage Selection under Bounded Variation. This paper aims to close
this gap. We will not only study the less restrictive multi-stage variant of Selection with
transition cost, but also show that the definition of the variation has an immense impact
on the complexity of the hard-constrained problem variant. For the following, we introduce
the shorthand notation [k] := {1, . . . , k} and [k]0 := {0, . . . , k} for k ∈ N0.

3

To formalize the problem, we consider a discrete time horizon t ∈ [T]. For each stage t, one
must choose a feasible solution x(t) from a given feasible set X(t) ⊆ {0, 1}n. The variation
is measured by a function Var :

ŚT
t=1 X

(t) → N`
0, where N0 denotes the natural numbers

including zero and ` depends on the type of variation, as discussed below. Moreover, we
define

ŚT
t=1X

(t) := X(1)× · · · ×X(T). We are either given a penalty parameter κ ∈ R`, or
an upper bound S ∈ R`.

For the problem variant Multi-Stage Selection with transition costs κ, we consider

min
T∑
t=1

c(t)>x(t) + κ>Var(x(1), . . . , x(T))

s.t. x(t) ∈ X(t) ∀t ∈ [T] ,

(PEN)

while the problem Multi-Stage Selection under Bounded Variation is defined as

min
T∑
t=1

c(t)>x(t)

s.t. Var
(
x(1), . . . , x(T)

)
≤ S

x(t) ∈ X(t) ∀t ∈ [T] .

(BND)

In both cases, the vector c(t) ∈ Rn defines the objective function at stage t ∈ [T].

For each component i ∈ [n], we can interpret the binary sequence (x
(1)
i , . . . , x

(T)
i) as a switch

that can either be “on” at stage t (if x
(t)
i = 1) or “off” (if x

(t)
i = 0). In this interpretation,

the problems PEN and BND consist in operating n parallel switches, which we imagine as
horizontal, that are connected to each other through vertical constraints for each stage.

A special case of PEN and BND has been investigated in [9]. It corresponds to the
case with only one switch (and therefore without vertical constraints), i.e., where n = 1
and X(t) = {0, 1} for all t ∈ [T]. In this special case, the resulting problem turned out to
be polynomially solvable, either with a dynamic programming approach or a much faster
merging-algorithm. In [9], the variation measure is defined as

Var(x
(1)
1 , . . . , x

(T)
1) :=

T−1∑
t=1

|x(t+1)
1 − x(t)

1 | .

In the single switch setting, this is the only natural definition, and the same is true for PEN.
However, since our setting allows for more than one switch, we now have more than one
reasonable possibility to measure the variation in BND. In this paper, we will discuss
the following two types of variation: If we speak of switch-wise variation, we refer to
Problem BND with the variation function

Varsw :
T

ą

t=1

X(t) −→ Nn
0 , Varsw

(
x(1), . . . , x(T)

)
i

:=
T−1∑
t=1

|x(t+1)
i − x(t)

i | ∀i ∈ [n] .

4

In other words, each switch i has an individual upper bound Si on the number of its
changes. If we instead speak of time-wise variation, we consider the variation function

Vartw :
T

ą

t=1

X(t) −→ NT−1
0 , Vartw

(
x(1), . . . , x(T)

)
t

:=
n∑
i=1

|x(t+1)
i − x(t)

i | ∀t ∈ [T − 1]

upper bounding the changes at each stage t by St.

As in [9], we will also consider a variant of BND where all switches start being “off”. In
this case, we formally include the fictitious time point t = 0 along with the constraint

x
(0)
i = 0 ∀i ∈ [n] .

This can be considered a special case of BND on the time horizon {0, 1, . . . , T}, where the
fixing to zero can be achieved by either choosing the objective coefficients c(0) large enough
(in case 0 ∈ X(0)) or by defining X(0) := {0}. We will denote the respective problem
as (BND0). This variant can be interpreted as modeling a “start-up variation” for the
combinatorial structure that must be built in the first stage t = 1.

The motivation of this paper is to study the complexity of Problems PEN and BND for
both presented measures of variation. From the results in [9], it easily follows that the
case X(t) = {0, 1}n for all t ∈ [T] is tractable for switch-wise variation, while the same
result can be shown for time-wise variation by means of a totally unimodular extended
formulation. However, it is not obvious how the complexity of the multiple-switch problem
is influenced by the introduction of additional constraints on the stage-wise feasible sets, in
particular if the latter are easy in the sense that linear optimization over each combinatorial
setX(t) can be performed in polynomial time. As mentioned above, we will restrict ourselves
to a selection type constraint for each point in time:

X(t) :=
{
x ∈ {0, 1}n :

n∑
i=1

xi = K(t)
}
∀t ∈ [T] . (SEL)

This is arguably the second-simplest combinatorial structure one can think of, and it is
an interesting question whether the combination of such a simple vertical constraint and
another simple horizontal constraint (the bound on the variation) remains polynomial-time
solvable or not. In fact, we will show that the complexity of the respective problem highly
depends on the chosen type of variation measure: while bounding the switch-wise variation
renders the problem strongly NP-hard in general, as discussed in Section 3.1, time-wise
variation can be handled efficiently; see Section 3.2.

2 Multi-Stage Selection with transition cost

In the absence of vertical constraints, the problem with a hard bound on the variation
is significantly more involved than the corresponding problem with penalized variation,

5

although both versions of the problem are tractable [9]. Motivated by this, we will first
study the penalty version PEN with a selection constraint as in SEL. We will show the
problem to be polynomial-time solvable by linear programming.

First, note that the two types of variation defined above agree in this setting, since only
the total number of switchings is relevant in the penalty version of the problem. In both
cases, the problem can be written as

min
T∑
t=1

c(t)>x(t) + κ

n∑
i=1

T−1∑
t=1

|x(t+1)
i − x(t)

i |

s.t.
n∑
i=1

x
(t)
i = K(t) ∀t ∈ [T]

x(t) ∈ {0, 1}n ∀t ∈ [T]

with κ > 0. To show that this problem can be solved efficiently, we first rewrite it as follows:
we introduce new variables u

(t−1,t)
i and d

(t−1,t)
i for all i ∈ [n] and t ∈ {2, . . . , T} that are

forced to take a value of at least one if the switch i is turned “on” or “off” at time t,
respectively. These auxiliary variables can be weighted with κ in the objective function.
In the following, we consider a more general problem formulation where not only every
switching may incur a different penalty, but even switching “on” and “off” can lead to
different penalties. Using penalty parameters µ

(t−1,t)
i , λ

(t−1,t)
i > 0, we arrive at

min
T∑
t=1

c(t)>x
(t)
i +

T∑
t=2

n∑
i=1

(
µ

(t−1,t)
i u

(t−1,t)
i + λ

(t−1,t)
i d

(t−1,t)
i

)
s.t.

n∑
i=1

x
(t)
i = K(t) ∀t ∈ [T] (1)

− x(t−1)
i + x

(t)
i − u

(t−1,t)
i ≤ 0 ∀t ∈ {2, . . . , T}, i ∈ [n] (2)

+ x
(t−1)
i − x(t)

i − d
(t−1,t)
i ≤ 0 ∀t ∈ {2, . . . , T}, i ∈ [n] (3)

u
(t−1,t)
i , d

(t−1,t)
i ≥ 0 ∀t ∈ {2, . . . , T}, i ∈ [n]

x(t) ∈ {0, 1}n ∀t ∈ [T]

(PENsel)

The central result of this section will be that the constraint matrix corresponding to the
constraints (1), (2), and (3) is totally unimodular, implying that Problem PENsel can be
solved efficiently. For the definition of total unimodularity and a comprehensive discussion
of its consequences, we refer the reader to [23, Chapter 19].

Lemma 2.1. The constraint matrix M corresponding to the constraints (1), (2), and (3)
is totally unimodular.

Proof. Let M be the matrix that models the constraints (1), (2), and (3). We will prove by
induction over T that, for any subset R of rows in M , there exists a partition R = R1 ∪̇R2

that satisfies:

6

(i)
∑

r∈R1
mrj −

∑
r∈R2

mrj ∈ {−1, 0, 1} for all columns j of M

(ii) if R contains a row r1 of constraint (2) for some i1 ∈ [n] and t ∈ {2, . . . , T} and a
row r2 of constraint (3) for some i2 ∈ [n] and the same t such that i1 6= i2, then r1

and r2 belong to different parts of the partition.

We first claim that it suffices to show this for all sets R satisfying the following condition:

The set R does not contain both the row of constraint (2) and

the row of constraint (3) for the same pair (i, t) of indices.
(?)

Indeed, the same statement then follows for all row sets R: for all pairs (i, t) as in ?, assign
both corresponding rows to the same part, say, R1. Clearly, the resulting partition still
satisfies (i) and (ii) then.

We briefly remark that the base case T = 1 is obvious, since M only consists of the single
constraint (1) for t = 1 and we assign it to the set R1, while R2 = ∅. Then, (i) is trivially
satisfied. Note that (ii) holds as well, since constraints (2) and (3) do not exist.

Now, let R̃ refer to the subset of rows in R that correspond to the constraints (1), (2),
and (3) for i ∈ [n] and t ∈ [T − 1]. Let M̃ denote the restriction of M to the rows in R̃.
Since assumption (?) holds for R, it also holds for the subset R̃. Then, according to our
induction hypothesis, there exists a partition R̃ = R̃1 ∪̇ R̃2 that satisfies (i), (ii) and (?).

For the induction step, we extend the partition R̃1 ∪̇ R̃2 of R̃ to a partition R1 ∪̇R2 of R.
We define R1 := R̃1 and R2 := R̃2 and it remains to assign the rows R\ R̃, which represent
the constraints (1), (2), and (3) for i ∈ [n] and t = T . By our induction hypothesis (ii),
we know that all rows that correspond to constraints (2) for t = T − 1 are assigned to
one partition set, say R1, and all rows corresponding to constraints (3) for t = T − 1 are
assigned to the other set R2. We assign the rows in R \ R̃ to the partition sets R1 and R2

as follows:

• If R contains the row r̃ of constraint (1) for t = T − 1, then r̃ is assigned to R2, as
anything else would generate a conflict between (i) and (?). Then, we assign all the
rows in R \ R̃ of constraints (2) to R2, all rows in R \ R̃ of constraints (3) to R1 and
the row of constraint (1) in R \ R̃ to R1.

• Otherwise, we assign all rows in R \ R̃ of constraints (2) to R1, all rows in R \ R̃ of
constraints (3) to R2 and the row of constraint (1) in R \ R̃ to R2.

In both cases, the resulting partition R1 ∪̇R2 satisfies (i), (ii), and (?): Indeed,(?) is ensured
by assumption, while the fact that (ii) is satisfied follows immediately from the definition
of R1 and R2. It remains to show that (i) is satisfied, too. For sake of brevity and readability,
let row(k),t for all k ∈ {1, 2, 3} and all t ∈ [T] (or t ∈ {2, . . . , T}, respectively) refer to the
row of M that models the constraint (k) for stage t.

7

In order to show that (i) is satisfied in both cases, we describe a case distinction depending
on what rows are contained in R. More precisely, we compute the values of

∑
r∈R1

mrj

and
∑

r∈R2
mrj and show that they differ by at most one.

Observe that it suffices to show that (i) is satisfied for the columns corresponding to

variables x
(t)
1 , . . . , x

(t)
n for t ∈ {T − 1, T}, since the induction hypothesis ensures that (i)

is satisfied for all other columns. To argue that (i) is satisfied in the first case, let j be a

column corresponding to a variable x
(T−1)
i for some i ∈ [n].

1. If R contains both row(2),T−1 and row(3),T , then by definition of R1,
∑

r∈R1
mrj = 2.

Note that (?) implies that R neither contains row(3),T−1 nor row(2),T . Thus, the
definition of R2 yields

∑
r∈R2

mrj = 1.

2. If R contains row(2),T−1 but not row(3),T (or vice versa), then
∑

r∈R1
mrj = 1 by

definition of the partition. Moreover, (?) implies that R cannot contain row(3),T−1

(or row(2),T for the reverse case). Then, the definition of the partition yields ei-
ther

∑
r∈R2

mrj = 0 if R contains row(2),T (or row(3),T−1 for the reverse case) or∑
r∈R2

mrj = 1 if R does not contain row(2),T (or row(3),T−1 for the reverse case).

3. If R neither contains row(2),T−1 nor row(3),T , then
∑

r∈R1
mrj = 0 by definition of R1.

Because of (?), R neither contains row(3),T−1 nor row(2),T . By definition of the par-
tition, the sum

∑
r∈R2

mrj equals 1 if R neither contains row(3),T−1 nor row(2),T , it
equals 0 if R contains exactly one of the two rows, and, finally, it equals −1 if it
contains both rows simultaneously.

Clearly, the difference between the two sums
∑

r∈R1
mrj and

∑
r∈R2

mrj is an element
of {−1, 0, 1} in all of the above cases. It thus remains to verify that (i) is satisfied for

any column j that corresponds to a variable x
(T)
i for some i ∈ [n], too. To this end, the

definition of the partition yields the following:

∑
r∈R1

mrj =


0, if R contains either both row(1),T and row(3),T or neither one,

1, if R contains row(1),T but not row(3),T ,

−1, if R contains row(3),T but not row(1),T ,

and ∑
r∈R2

mrj =

{
0, if R does not contain row(2),T ,

1, if R contains row(2),T .

Since assumption (?) prevents the simultaneous containment of both row(2),T and row(3),T

in R, the above shows that the difference
∑

r∈R1
mrj −

∑
r∈R2

mrj yields an element
of {−1, 0, 1}. Now, we consider the definition of the partition for the second case and
show that (i) is satisfied using the same logic. First, for any column j corresponding to a

variable x
(T−1)
i for some i ∈ [n], we distinguish the following cases:

8

1. If R contains both row(2),T−1 and row(2),T , then
∑

r∈R1
mrj = 0 by definition of the

partition. Moreover, (?) implies that R contains neither row(3),T−1 nor row(3),T . By
definition of R2, it follows that

∑
r∈R2

mrj = 0.

2. If R contains row(2),T−1 but not row(2),T (or vice versa), then (?) yields that R does
not contain row(3),T−1 (or row(3),T for the reverse case) and the definition of the par-
tition implies

∑
r∈R1

mrj = 1 (or −1 for the reverse case). Then, the definition of R2

yields
∑

r∈R2
mrj = 1 (or −1 for the reverse case) if R contains row(3),T (or row(3),T−1

for the reverse case) or zero if row(3),T (or row(3),T−1 for the reverse case) is not con-
tained.

3. If R contains neither row(2),T−1 nor row(2),T , then
∑

r∈R1
mrj = 0 by definition of

the partition. Furthermore,
∑

r∈R2
mrj equals −1 if R contains row(3),T−1 but not

row(3),T , it equals −1 if it is the other way around and, finally, it equals zero if
neither of these two rows are contained.

Once again, the difference between the two sums
∑

r∈R1
mrj and

∑
r∈R2

mrj is an element
of {−1, 0, 1} in all of the above cases. It thus remains to verify that (i) is satisfied for

any column j that corresponds to a variable x
(T)
i for some i ∈ [n], too. For any of these

remaining columns, the definition of the partition yields∑
r∈R1

mrj =

{
1, if R contains row(2),T ,

0, otherwise

and

∑
r∈R2

mrj =


0, if R contains row(1),T and row(3),T ,

1, if R contains row(1),T but not row(3),T ,

−1, if R contains row(3),T but not row(1),T ,

0, if R contains neither row(1),T nor row(3),T .

Since (?) prevents the simultaneous containment of row(2),T and row(3),T , the difference
between the above two sums is once again an element of {−1, 0, 1}.
This concludes our proof, since condition (i) implies total unimodularity by the Ghouila-
Houri criterion [6].

Since the right-hand side of PENsel is integer and all constraints in PENsel other than (1)
to (3) impose only upper or lower bounds, we may relax the binarity constraint for x. We
obtain the following result as an immediate consequence:

Theorem 2.2. Problem PENsel can be solved in polynomial time using linear programming.

To conclude this section, we mention that the tractability of variants of the selection
problem is often shown by total unimodularity arguments similar to the one used above;
see [19] for a similar result.

9

3 Multi-Stage Selection under Bounded Variation

The integer linear program PENsel can easily be adapted to the case where variation is
bounded rather than penalized. Indeed, in the time-wise case, we could add the constraints

n∑
i=1

(
u

(t−1,t)
i + d

(t−1,t)
i

)
≤ St−1 ∀t ∈ {2, . . . , T} .

However, in this model, total unimodularity is lost. While this does not necessarily mean
that integrality is lost as well, the following tiny example shows that we cannot omit
integrality constraints any more: Let n = 2, T = 2, S = 1, and K = 1. Define c

(t)
i = −1

if i = t and c
(t)
i = 0 otherwise. It is easily verified that all optimal integer solutions have

value −1 then, while setting x
(1)
1 = x

(2)
1 = 1

2
, x

(1)
2 = 0, and x

(2)
2 = 1 is feasible for the LP

relaxation and yields a better objective value of −3
2
.

For switch-wise variation, the LP relaxation of the corresponding integer program can also
have fractional optimal solutions, even in the case of a single switch (where the selection
constraint is redundant); see [9, Ex. 4.2].

As we will see in the next section, the penalty version of our problem is in fact strictly
easier than the version with a bound on the switch-wise variation, unless P = NP, while the
problem version with a bound on the time-wise variation remains polynomial-time solvable,
as shown in Section 3.2.

3.1 Switch-wise variation

This section is dedicated to Problem BND with switch-wise variation and a selection
constraint as in SEL. The resulting problem then reads

min
T∑
t=1

c(t)>x(t)

s.t.
T−1∑
t=1

|x(t+1)
i − x(t)

i | ≤ Si ∀i ∈ [n]

n∑
i=1

x
(t)
i = K(t) ∀t ∈ [T]

x(t) ∈ {0, 1}n ∀t ∈ [T]

(BNDsel
sw)

We refer to the variant with fixation to zero at time t = 0 as BNDsel
0,sw. First, we state a

simple observation:

Remark. Without the vertical constraint, Problem BNDsel
sw decomposes into n disjoint

single-switch problems as in [9] and is therefore polynomially solvable.

10

However, in the presence of selection constraints, we have a stark contrast to the previous
remark, as we will prove that the inclusion of such constraints renders Problem BNDsel

sw

strongly NP-hard, even if K(t) = 1 for all t ∈ [T] and Si = 2 for all i ∈ [n], i.e., if at any
time at most one switch may be turned on and every switch may change at most twice. We
show this statement by a reduction from the following decision problem discussed in [7]:

Problem 3.1 (Interval Selection). Consider a scheduling problem with m machines
and n jobs. A job consists of m open intervals on the real line, each of the intervals is
associated with exactly one machine, and each machine has exactly one interval per job.
To schedule a job, exactly one of its intervals must be selected. To schedule several jobs, no
two selected intervals on the same machine must intersect.

Question: Is it possible to schedule all jobs?

With a reduction from (≤ 3, 3)-SAT – which is a special case of the satisfiability problem
in which every clause is restricted to have no more than three literals and each variable
appears in the formula at most three times, once as a negative literal and at most twice as
a positive literal – the authors of [7] prove the following result:

Theorem 3.2. Interval Selection is NP-complete, even if the number of machines is
fixed to three and all intervals have the same length.

Through sharp observation of the proof presented in [7], it becomes apparent that the
transformation of an instance of (≤ 3, 3)-SAT to an instance of Interval Selection
produces unit intervals of length two and a time horizon large enough to contain 2s + 1
of these intervals that do not intersect. Here, s denotes the number of Boolean variables
in the (≤ 3, 3)-SAT instance. Consequently, a time horizon of length T ∗ := (2s + 1) · 2 is
sufficient. As a result, it is possible to strengthen the statement above as follows:

Theorem 3.3. Interval Selection is NP-complete, even if the number of machines is
fixed to three, all intervals have integer endpoints, and each interval has length two.

With the help of this result, we are now able to prove NP-hardness of BNDsel
sw.

Theorem 3.4. Problem BNDsel
sw is strongly NP-hard, even if K(t) = 1 for all t ∈ [T]

and Si = 2 for all i ∈ [n].

Proof. Let an instance of Interval Selection as in Theorem 3.3 be given, consisting
of n jobs, m = 3 machines, and intervals Iij having length two and integer endpoints for
each job i ∈ [n] and each machine j = 1, 2, 3. Let T ∗ denote the smallest length of the time
horizon on the real line containing all these intervals. We divide this time horizon into T ∗

segments of length one and point out that T ∗ is bounded by 6n without loss of generality,
as each interval has length two. The intervals Iij can thus be interpreted as subsets of [T ∗].

We now define an instance of Problem BNDsel
sw. Let this instance have 3(T ∗ + 1) stages.

This can be understood as concatenating m = 3 copies of the time horizon obtained from

11

Interval Scheduling horizontally and inserting an additional stage before each of the
copies. The idea behind this is that the scheduling decisions on the respective machines
are modeled within the respective copies of the discrete time horizon.

We define a switch i for each job i ∈ [n] as well as T dummy switches i ∈ {n+ 1, ..., n+T}
and restrict their variation to two, i.e., Si := 2 for i ∈ [n + T]. For i ∈ [n], the objective

coefficients c
(t)
i will serve to model the intervals Iij. More precisely, for i ∈ [n] we define

c
(t)
i =

{
−1, if t ∈

⋃
j=1,2,3 Īij

3 otherwise,

where Īij := Iij + (j − 1)(T ∗ + 1) + 1 is the interval Iij shifted to the jth block. For the

dummy switches, all objective coefficients are defined as zero, i.e., c
(t)
i = 0 for all t ∈ [T]

and i = n + 1, ..., n + T . Finally, we set the selection bounds to one, i.e., K(t) := 1 for
all t ∈ [T].

Observe that the dummy switches ensure that the instance of Problem BNDsel
sw has an

optimal value of at most zero. Indeed, the solution in which the first n switches are “off”
over all periods and each dummy switch n + t for t ∈ [T] is only “on” at stage t is
feasible with objective value zero. Moreover, any partial solution on the first n switches
that satisfies the variation constraints but leaves a slack in the selection constraint at some
stage t can uniquely be extended without increasing the objective value by defining dummy
switch n + t to be “on” at stage t only. As a result, the definition of c

(t)
i , i = 1 ∈ [n],

together with Si = 2 implies that in an optimum solution of BNDsel
sw each switch can only

be active within at most one of these three intervals Īij, j = 1, 2, 3. Consequently, we derive
a lower bound of −2n for the optimum value of Problem BNDsel

sw.

We now claim that the original instance of Interval Scheduling is a yes-instance if and
only if the optimum value of the constructed instance of Problem BNDsel

sw is exactly −2n,
i.e., it reaches this lower bound. The construction and the idea behind the definition of the
objective c is illustrated in Figure 1, where the dummy switches are omitted.

Given a yes-instance of Interval Scheduling, let Iiji be the selected interval for job i.

We then set set x
(t)
i = 1 for i ∈ [n] if and only if t ∈ Īiji and extend this partial solution by

defining the dummy switch n+t to only be “on” at stage t if the selection constraint at this
stage is not already satisfied by the partial solution over the first n switches. Otherwise,
we define the dummy switch n + t as “off” over all stages. By definition of the objective,
this extension does not change the objective value.

This solution for Problem BNDsel
sw is feasible, since each switch switches at most twice.

Moreover, since the selected intervals are conflict-free and by definition of the states of the
dummy switches, the solution satisfies the selection constraint at each point in time. The
objective value is −2n and thus agrees with the lower bound.

Now, assume that this lower bound is achieved. Then, as argued above, each of the first n
switches must contribute exactly −2 to the objective value, therefore each switch i is “on”
for exactly two consecutive stages, namely those in Īiji for some ji ∈ {1, 2, 3}. We then

12

interval scheduling time horizon of length T ∗

1 2 T ∗

job 1, 2, 3

machine 1
machine 2
machine 3

(a) An instance of Interval Selection with three jobs.

−1−1 −1−1 −1−13 3

−1−1 −1−1 −1−13 3

−1−1 −1−1 −1−13 3

job 1

job 2

job 3

(b) Illustration of the objective of the instance of BNDsel
sw.

Figure 1: Illustration of the reduction in the proof of Theorem 3.4.

define a feasible solution for Interval Scheduling by scheduling job i on the respective
machine ji. Since the selection constraint is satisfied at each point in time, no two intervals
corresponding to jobs scheduled on the same machine can intersect. Hence, the instance of
Interval Scheduling is a yes-instance.

The construction in the proof of Theorem 3.4 can be used to also work for K(0) = 0
and K(t) = 1, t > 0. In other words, it can be adapted to also show the strong NP-
hardness of the special case BNDsel

0,sw in which all switches are fixed to zero in the first
stage.

We point out that in the context of Theorem 3.4, the size of each feasible set X(t) is given
by n. Theorem 3.4 thus shows that we cannot expect polynomial-time algorithms for BNDsel

sw

even for small values of S and for polynomially large sets X(t). We will now investigate
the cases of a small number of switches n or a small number of stages T . For this, we will
devise a dynamic programming scheme; see [8, Theorem 5] for a similar approach.

In the following description, we introduce the vector σ ∈
Śn

i=1[Si]0, where Si is the i-th
component of S ∈ Nn

0 that gives the upper bounds on the variation of switch i. The vec-
tor σ represents an adjusted upper bound on the variation for all switches. Moreover, we
use a vector b ∈ {0, 1}n that represents the states of the switches in the stage t̄ currently
considered. We use the shorthand notation |x−y| := (|x1−y1|, . . . , |xn−yn|)> for two vec-
tors x, y of the same dimension. Now, in our dynamic programming scheme, we recursively

13

compute the optimum values of the following subproblems:

c∗(t̄, σ, b) := min
t̄∑
t=1

c(t)>x(t)

s.t.
t̄−1∑
t=1

|x(t+1)
i − x(t)

i | ≤ σi ∀i ∈ [n]

x(t) ∈ X(t) ∀t ∈ [t̄]

x(t̄) = b

We define the initial values as follows:

c∗(1, σ, b) :=

{
c(1)>b if σ ∈

Śn
i=1[Si]0, b ∈ X(1)

∞ otherwise.

Then, for t̄ = 2, . . . , T , we recursively compute

c∗(t̄, σ, b) := min
x∈X(t̄−1)

|x−b|≤σ

c∗(t̄− 1, σ − |x− b|, x) +
n∑
i=1

c
(t̄)
i bi

for all σ ∈
Śn

i=1{0, 1, . . . , Si} and b ∈ X(t̄), where |x − b| ≤ σ is meant componentwise.
The optimum value of Problem BNDsel

sw is then given by

min
x∈X(T)

c∗(T, S, x) .

We now analyze the running time of this algorithm. For fixed t̄ and σ and for polynomial-
sized sets X(t), we can compute the values c∗(t̄, σ, b) for all b ∈ X(t̄) by enumeration of all
elements in X(t̄−1) and X(t̄). However, we have to compute up to |

Śn
i=1[Si]0| such values.

In summary, we can roughly estimate the running time of the scheme by

O
((

max
t∈[T]
|X(t)|

)2 ·
(

max
i∈[n]

Si + 1
)n · T) .

Since Si ≤ T − 1 without loss of generality, we can also bound the running time by

O
((

max
t∈[T]
|X(t)|

)2 · T n+1
)
.

In particular, we obtain the following result:

Theorem 3.5. If n is constant, then Problem BNDsel
sw is polynomially solvable.

We emphasize another advantage of this dynamic programming scheme:

14

Remark. The dynamic programming scheme presented above works independently of the
combinatorial constraints given by the sets X(t). Moreover, it can also be adapted to the
special case BNDsel

0,sw. For this, it suffices to substitute the definition of the initial values
for t̄ = 0 in the dynamic programming scheme by

c∗(0, σ, 0n) := 0 for all σ ∈
Śn

i=1[Si]0, and

c∗(0, σ, x) :=∞ for all σ ∈
Śn

i=1[Si]0, x ∈ X(0) \ {0n} .

The remaining values can be computed using the same recursion formula for t ∈ [T].

Next, we describe a second dynamic programming scheme that leads to polynomial-time
solvability if the length of the time horizon T is fixed. Our algorithm is inspired by the
approach used in [5] for the multi-stage knapsack problem for a fixed number of stages.

For a single switch i ∈ [n], let Si ⊆ {0, 1}T be the set of its feasible switching patterns,

i.e., (x
(1)
i , . . . , x

(T)
i) ∈ Si if and only if

∑T−1
i=1 |x

(t+1)
i − x(t)

i | ≤ Si. Note that this set can be
obtained by enumeration in constant time, if T is fixed.

Now for values k(t) ∈ [K(t)]0, t ∈ [T], and j ∈ [n] define

c∗(k(1), . . . , k(T), j) = min

j∑
i=1

T∑
t=1

c
(t)
i x

(t)
i

s.t.
T−1∑
t=1

|x(t+1)
i − x(t)

i | ≤ Si ∀i ∈ [j]

j∑
i=1

x
(t)
i =k(t) ∀t ∈ [T]

x
(t)
i ∈ {0, 1} ∀i ∈ [j], t ∈ [T]

In the above problem, we consider only the first j switches and at each stage t, there is
a selection constraint with selection bound k(t). We define initial values for j = 1 and for
all
(
k(1), . . . , k(T)

)
∈

ŚT
t=1[K(t)]0 through

c∗(k(1), . . . , k(T), 1) := min
{ T∑

t=1

c
(t)
1 x

(t)
1 : (x

(1)
1 , . . . , x

(T)
1) ∈ S1, x

(t)
1 =k(t) ∀t ∈ [T]

}
.

Now, for j = 2, . . . , n, we compute the optimal values with the help of the following
recursion formula for all (k(1), . . . , k(T)) ∈

ŚT
t=1[K(t)]0:

c∗(k(1), . . . , k(T), j) = min
(x

(1)
j ,...,x

(T)
j)∈Sj

c∗(k(1) − x(1)
j , . . . , k(T) − x(T)

j , j − 1) +
T∑
t=1

c
(t)
j x

(t)
j

The optimal value of Problem BNDsel
sw is then given by c∗(K(1), . . . , K(T), n).

15

Theorem 3.6. If T is constant, then both Problem BNDsel
sw and Problem BNDsel

0,sw can be
solved in polynomial time.

Proof. We analyze the running time of the dynamic programming scheme described above.
The minimum in the recursion formula can be computed by enumerating all feasible switch-
ing patterns, their number is bounded by maxi∈[n] |Si| ≤ 2T . However, this minimum must

be computed for all (k(1), . . . , k(T)) ∈
ŚT

t=1[K(t)]0, whose number can be bounded by
(maxt∈[T] K

(t) + 1)T . In total, we can estimate the running time by

O
(
n
(

max
i∈[n]
|Si|
)(

max
t∈[T]

K(t) + 1
)T)

.

Since K(t) ≤ n for all t, this shows the claim for BNDsel
sw.

For BNDsel
0,sw, it suffices to replace the definition of Si so that (x

(1)
i , . . . , x

(T)
i) ∈ Si if and

only if
∑T−1

t=0 |x
(t+1)
i − x(t)

i | ≤ Si and x
(0)
i = 0, and to include the constraint x

(0)
i = 0 in all

subproblems. The estimation of the required running time is still valid.

As we have seen above, both variants BNDsel
sw and BNDsel

0,sw are NP-hard in the strong

sense, even for Si = 2 for all i ∈ [n] and K(t) = 1 for all t ∈ [T]. This raises the question
whether the complexity of the respective problems changes if Si = 1 for all i ∈ [n]. We
first consider an easy special case, namely the Problem BNDsel

0,sw with Si = 1 for all i ∈ [n]

and K(t) = K for all t ∈ [T]. Indeed, the combination of uniform selection bounds together
with a switch-wise variation of one for each switch immediately makes the problem BNDsel

0,sw

collapse to a classical selection problem over {1, ..., n} with Ci :=
∑T

t=1 c
(t)
i , i ∈ [n]. Now,

consider BNDsel
0,sw with Si = 1 for all i ∈ [n] with non-uniform selection bounds. Since each

switch is required to be inactive in the beginning, i.e., x
(0)
i = 0 for all i ∈ [n], a bound

of Si = 1 implies that each switch either has no variation at all, or that it is activated
exactly once and then remains “on” until the last stage. The best possible value that any
switch i can achieve is thus given by:

val(i) := max
t̄=0,...,T

{
T∑
t=t̄

c
(t)
i , 0

}
.

However, this observation does not help, since a switch i that is selected in an optimal
solution may not achieve its individual optimum value val(i), as the example below shows.

Example 3.7. Consider the instance of BNDsel
0,sw with n = 2, T = 2, and

c =

(
0 −3 0
0 −1 −1

)
,

16

where row i = 1, 2 and column t = 0, 1, 2 contains c
(t)
i . Moreover, let S1 = S2 = 1 and

set K(1) = 1, K(2) = 2. We obtain the following (unique) optimal solution:

x∗ =

(
0 1 1
0 0 1

)
However, we have val(2) = −2, achieved for (x

(0)
2 , x

(1)
2 , x

(2)
2) = (0, 1, 1).

Nevertheless, we show that BNDsel
0,sw can still be solved in this situation, although the

solution is a little more involved.

Theorem 3.8. Problem BNDsel
0,sw with Si = 1 for all i ∈ [n] polynomially reduces to a

minimum-cost flow problem and, hence, can be solved efficiently.

Proof. Given an instance of BNDsel
0,sw with Si = 1 for all i ∈ [n], we construct a network as

follows: We define a source α and a sink ω and introduce nodes S̄i for i ∈ [n] and nodes s
(t)
i

for i ∈ [n] and t ∈ [T]0. Each node S̄i is connected with the source a through arc (α, S̄i)

and with each node s
(t)
i for t ∈ [T]0 through arc (S̄i, s

(t)
i). A positive flow on the arc (α, S̄i)

will correspond to switch i being switched “on” at some point in time; a positive flow on
the arc (S̄i, s

(t)
i) will correspond to the switch i being activated in stage t.

For each t ∈ [T]0, we add a node v(t) and introduce arcs (s
(t)
i , v

(t)) for i ∈ [n]. We connect
the nodes v(t) to each other via arcs (v(t), v(t+1)), t ∈ [T − 1]0. Finally, the vertex v(T) is
connected to the sink ω through arc (v(T), ω). To sum up, we obtain the set of vertices

V := {S̄i : i ∈ [n]} ∪ {s(t)
i : i ∈ [n], t ∈ [T]0} ∪ {v(t) : t ∈ [T]0}

and the set of arcs

A :={(α, S̄i) : i ∈ [n]} ∪ {(S̄i, s(t)
i), (s

(t)
i , v

(t)) : i ∈ [n], t ∈ [T]0}
∪ {(v(t), v(t+1)) : t ∈ [T − 1]0} ∪ {(v(T), ω)}

The costs c of the arcs are defined as zero except for

c(S̄i, s
(t)
i) :=

T∑
j=t

c
(j)
i ∀i ∈ [n], t ∈ [T]0 .

The capacities u of all arcs are defined to be one, except for

u(v(t), v(t+1)) := K(t) ∀t ∈ [T − 1]0, u(v(T), ω) := K(T) ;

while the lower capacity bound is defined as K(t) for the arcs (v(t), v(t+1)) and zero for all
other arcs. Finally, we define the supply bα = K(T) and the demand bω = −K(T), while all
other nodes in the network have zero demand. See Figure 2 for an illustration.

17

s
(0)
1

s
(0)
2

s
(0)
3

v(0)

1|0

K(0)|0

s
(1)
1

s
(1)
2

s
(1)
3

v(1)

1|0

K(1)|0

s
(2)
1

s
(2)
2

s
(2)
3

v(2)

1|0

K(2)|0

s
(3)
1

s
(3)
2

s
(3)
3

v(3)

1|0

K(3)|0

α bα = K(3)

S̄1

1|0

S̄2
1|0

S̄3

1|0

ω bω = −K(3)

1|C(0)
1 1|C(1)

1 1|C(2)
1 1|C(3)

1

1|C(0)
2 1|C(1)

2 1|C(2)
2 1|C(3)

2

1|C(0)
3 1|C(1)

3 1|C(2)
3 1|C(3)

3

Figure 2: Sketch of the network constructed in the proof of Theorem 3.8, for n = 3
and T = 3. All edges are labeled by capacity and cost, where C

(t)
i :=

∑T
j=t c

(j)
i ∀t.

Due to the definition of the capacities in our network, any feasible integer flow f must
satisfy the following constraints:

f(α,S̄i) = f
(S̄i,s

(t)
i)

= f
(s

(t)
i ,v(t))

∈ {0, 1} ∀i ∈ [n], t ∈ [T]

f(v(t),v(t+1)) =
t∑

j=1

n∑
i=1

f
(s

(j)
i ,v(j))

=K(t) ∀t ∈ [T]

f(v(T),ω) =
T∑
j=1

n∑
i=1

f
(s

(j)
i ,v(j))

=
n∑
i=1

f(a,S̄i)=K
(T)

Therefore, a feasible solution x of BNDsel
0,sw can be transformed into a feasible integer flow f

and vice versa using the following equivalence:

f
(S̄i,s

(t)
i)

= 1 ⇐⇒ x
(t−1)
i = 0, x

(t)
i = 1 .

By definition of the costs c, both solutions yield the same objective value. Since all capac-
ities u are integer, there always exists an optimal integer flow f ∗, hence Problem BNDsel

0,sw

polynomially reduces to the constructed minimum-cost flow problem.

The next question that arises is whether the fixing to zero at the beginning of the time
horizon is the reason for which Problem BNDsel

0,sw can be solved efficiently. In fact, for
Problem BNDsel

sw the reduction to a minimum-cost flow problem does no longer work, as
now each switch can also be “on” at the beginning and then be switched off. However, the

18

problem is still tractable. For the proof of this claim, we need the following variant of the
matching problem:

Definition 3.9. Let G = (V,E) be an undirected graph with edge weights w : E → R.
The Cardinality-constrained minimum weight matching problem (CMWM) is
given as

min
∑
e∈M

w(e)

s.t. M ⊆ E is a matching in G (CMWM)

|M | = k .

Here, a matching in G = (V,E) is a subset M ⊆ E such that each vertex of G is adjacent
to at most one edge in M . It follows from [24, Cor. 18.10a] that CMWM can be solved in
polynomial time using linear programming.

As will be shown soon, BNDsel
sw with Si = 1 for all i ∈ [n] polynomially reduces to CMWM,

which implies the tractability of BNDsel
sw. Since this reduction gets less intricate for instances

of BNDsel
sw with a uniform selection bound, the reduction is delayed until after the next

lemma.

Lemma 3.10. The problem BNDsel
sw polynomially reduces to an instance of BNDsel

sw with
uniform selection bounds. As a result, the selection bounds in BNDsel

sw may be assumed to
be uniform without loss of generality.

Proof. The proof incrementally reduces a general instance of BNDsel
sw to the case of a uni-

form K. As long as there exists an index ` ∈ [T −1] with K(`) 6= K(`+1), we define a new in-
stance of BNDsel

sw by adding another switch n+1. The remainder of the construction depends

on the sign of K(`)−K(`+1). For both cases, let C be large, e.g., C :=
∑n

i=1

∑T
t=1 |c

(t)
i |+ 1.

If K(`+1) −K(`) > 0, we define c
(t)
n+1 := −C for t ≤ ` and c

(t)
n+1 := C for t > `. Moreover,

we define new selection bounds K̃(t) := K(t) + 1 for t ≤ ` and K̃(t) := K(t) for t > `. The
construction guarantees that any optimal solution for the new instance satisfies x

(t)
n+1 = 1 if

and only if t ≤ `, so that for the original n switches we obtain our original selection bounds.
This shows that the two instances are equivalent, up to a constant −`C in the objective
value. For K(`+1) − K(`) < 0, the construction is symmetric; we then define c

(t)
n+1 := C

for t ≤ ` and c
(t)
n+1 := −C for t > `, set K̃(t) := K(t) for t ≤ ` and K̃(t) := K(t) + 1 for t > `,

and argue analogously.

In both cases, the number
∑T−1

t=1 |K(t+1) −K(t)| has decreased by one in our construction.
This implies that after at most n2 steps, we obtain a uniform selection bound.

Theorem 3.11. Problem BNDsel
sw with Si = 1 for all i ∈ [n] can be solved in polynomial

time.

19

Proof. We reduce the problem to CMWM. Due to Lemma 3.10, it suffices to prove that
an instance of BNDsel

sw with Si = 1 for all i ∈ [n] and K := K(t) for all t ∈ [T] can be
polynomially reduced to an instance of CMWM. Thus, given such an instance of BNDsel

sw,
we define a graph G = (V,E) by

V := {v1, . . . , vn} ∪ {u1, . . . , un} ,
E := {(vi, vj) : i, j ∈ [n], i 6= j} ∪ {(vi, ui) : i ∈ [n]} .

Furthermore, we define weights w : E → R for the edges as follows:

w(vi, vj) := min
p∈[T−1]

{ p∑
t=1

c
(t)
i +

T∑
t=p+1

c
(t)
j ,

p∑
t=1

c
(t)
j +

T∑
t=p+1

c
(t)
i

}
w(vi, ui) :=

T∑
t=1

c
(t)
i .

Finally, we define k := K. The weight w(vi, vj) is the optimal value that can be obtained
by the two switches i and j if they do not overlap, while w(vi, ui) is the value that can be
obtained by the switch i alone being “on” over all stages.

Let x be a feasible solution of BNDsel
sw. Since Si = 1 for all i ∈ [n], there must exist pairs of

non-overlapping switches D2 ⊆ [n]2 and other switches D1 ⊆ [n] such that |D1|+ |D2| = K
and all remaining switches are zero throughout the time horizon; here we assume K ≤ n.
In Figure 3a, the pairs in D2 are illustrated by a common color, while the switches in D1

have their own color; the number of colors is K = 4. We now construct a solution M
of CMWM as follows: for (i, j) ∈ D2, we add edge (vi, vj) to M , while for i ∈ D1, we add
edge (vi, ui); see Figure 3b. This is a matching in G with |M | = k and its total weight is
at most the objective value of x in BNDsel

sw, by definition of w.

Conversely, every solution M of the constructed instance of (CMWM) yields a set of
pairs D2 and a set of switches D1 with |D1| + |D2| = K. By choosing optimal non-
overlapping switching patterns for each pair in D2 and choosing all switches in D1 to
be “on” over all stages, we obtain a solution for BNDsel

sw with objective value w(M).

We finally show that the uniform selection bound can be relaxed without losing tractability.

Theorem 3.12. The Problem BNDsel
sw with Si = 1 for all i ∈ [n] can be solved in polynomial

time.

We summarize the complexity results we have obtained so far in Table 1.

20

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

t∗

x1 =

x2 =

x3 =

x4 =

x5 =

x6 =

x7 =

1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1

1 1 1 10 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

(a) Solution x and colored sets D1, D2.

v1

u1

v2

u2

v3 u3

v4

u4

v5

u5

v6u6

v7

u7

(b) Corresponding matching in G.

Figure 3: Sketch of the reduction of Theorem 3.11 with n = 7, T = 8, K = 4.

S = 2, K = 1 S = 1 n constant T constant
strongly NP-hard polynomial polynomial polynomial

(Theorem 3.4) (Theorem 3.12) (Theorem 3.5) (Theorem 3.6)

Table 1: Summary of complexity results for BNDsel
sw and BNDsel

0,sw.

3.2 Time-wise variation

Next, we investigate a second type of variation, namely the so-called time-wise variation.
The resulting problem reads as follows:

min
T∑
t=1

c(t)>x(t)

s.t.
n∑
i=1

|x(t+1)
i − x(t)

i | ≤ St ∀t ∈ [T − 1]

n∑
i=1

x
(t)
i = K(t) ∀t ∈ [T]

x(t) ∈ {0, 1}n ∀t ∈ [T]

(BNDsel
tw)

As before, let BNDsel
0,tw refer to the special case with fixation to zero at time t = 0.

We will show that the above problem reduces to a minimum-cost flow problem and as such
it can be solved in polynomial time. For simplicity, we first show the result for the case that
all selection bounds K(t) agree and then explain how to adapt the approach to instances

21

with different bounds.

Consider an instance of BNDsel
tw where the selection bounds are assumed to be uniform,

say K. Then, this selection constraint enforces that the number of switches that are “on”
must be equal to K for each stage and, more importantly, it enforces that between two
consecutive stages the number of deactivated switches must equal the number of activated
switches. Note that, as a result, the time-wise variation between two consecutive stages
will always be even. Therefore, in order to ensure that the time-wise variation between
two consecutive stages t− 1 and t does not exceed the given bound St, it actually suffices
to impose an upper bound of bSt/2c on the number of deactivations or the number of
activations. The next result shows the tractability of this special case and serves as an
auxiliary lemma to derive the tractability of the general case thereafter.

Lemma 3.13. Problem BNDsel
tw with K(t) = K for all t ∈ [T] can be solved in polynomial

time.

Proof. We describe a reduction of BNDsel
tw to the minimum-cost flow problem. For this, let

an instance I = (c, (S1, . . . , ST−1), K) of BNDsel
tw be given. We then construct a directed

network (V,A) as follows.

We first introduce a source q with supply bq := K and a sink r with demand −br = K; all
other nodes will have zero demand or supply. For each switch i ∈ [n] and each time t ∈ [T],

we add a node v
(t)
i and a copy node v̄

(t)
i which are connected through an arc (v

(t)
i , v̄

(t)
i); if

the flow travels along such an arc, we interpret the respective switch as being turned on
at time t.

The source q is connected with each node v
(1)
i while each copy v̄

(T)
i is connected with the

sink r, for i ∈ [n]. We incorporate the variation bound with the help of arcs (α(t), β(t)) for

t ∈ [T − 1] that have a capacity bSt/2c. We connect all copies v̄
(t)
i with α(t) as well as β(t)

with all nodes v
(t+1)
i of the next stage.

Our goal is to model Problem BNDsel
tw as a (q, r)-flow of value K in the resulting network.

To summarize, the network is defined by the node set

V :={v(t)
i , v̄

(t)
i : i ∈ [n], t ∈ [T]} ∪ {αt, βt : t ∈ [T − 1]} ∪ {q, r} ,

the arc set

A :={(v(t)
i , v̄

(t)
i) : i ∈ [n], t ∈ [T]}

∪ {(v̄(t)
i , α

(t)), (β(t), v
(t+1)
i) : i ∈ [n], t ∈ [T − 1]}

∪ {(α(t), β(t)) : t ∈ [T − 1]}
∪ {(q, v(1)

i), (v̄
(T)
i , r) : i ∈ [n]} ,

22

and capacities u : A→ N as follows:

u(a) :=


1 if a = (v

(t)
i , v̄

(t)
i)

bSt/2c if a = (α(t), β(t))

K otherwise.

As a final step, we define the costs c : A→ R of the arcs by

c(a) :=

{
c

(t)
i if a = (v

(t)
i , v̄

(t)
i)

0 otherwise.

This construction is clearly polynomial; an illustration for an instance with n = 3 and T = 3
can be found in Figure 4.

q

bq = K

r

br = −K

v
(1)
1

1
v̄

(1)
1

v
(1)
2

1
v̄

(1)
2

v
(1)
3

1
v̄

(1)
3

v
(2)
1

1
v̄

(2)
1

v
(2)
2

1
v̄

(2)
2

v
(2)
3

1
v̄

(2)
3

v
(3)
1

1
v̄

(3)
1

v
(3)
2

1
v̄

(3)
2

v
(3)
3

1
v̄

(3)
3

α(1) β(1) α(2) β(2)

bS1/2c bS2/2c

Figure 4: Sketch of the network for n = 3, T = 3 with arc capacities u different from K.

Since all capacities u in the constructed network are integer, it now suffices to show that
the feasible integer flows correspond bijectively to feasible solutions for the given instance
of BNDsel

tw, and that the bijection preserves the objective value. Indeed, given a feasible
solution x of BNDsel

tw, we can define an integer feasible flow f in (V,A) as follows:

f
(v

(t)
i ,v̄

(t)
i)

:= x
(t)
i , ∀i ∈ [n], t ∈ [T] , (1)

f(α(t),β(t)) :=
n∑
i=1

|x(t)
i − x

(t+1)
i |, ∀t ∈ [T − 1] .

Using flow conservation, it is easy to verify that this defines a unique feasible flow f in (V,A)
with cost

n∑
i=1

T∑
t=1

c(v
(t)
i , v̄

(t)
i)f

(v
(t)
i ,v̄

(t)
i)

=
T∑
t=1

c(t)>x(t) .

Conversely, given a feasible integer flow f in the constructed network, we can use 1 to
define a vector x ∈ {0, 1}nT . It is easy to see that x is then feasible for the given instance
of BNDsel

tw and that its objective value agrees with the objective value of f .

23

We now show that the restriction to uniform selection bounds can be relaxed.

Theorem 3.14. Problem BNDsel
tw can be solved in polynomial time.

Proof. We reduce the general case to the uniform one addressed in Lemma 3.13 by intro-
ducing additional switches that are fixed by the objective function and consume some of
the selection capacity. More specifically, for a given instance of BNDsel

tw, let

K+ = max
t∈[T]

K(t), K− = min
t∈[T]

K(t) .

We introduce n′ := K+−K− auxiliary switches n+ 1, . . . , n+ n′ and define K := K+. By
setting

c
(t)
n+i :=

{
−C if i ≤ K+ −K(t)

C otherwise

for i ∈ [n′], where C is again large enough, we ensure that at time t exactly K+ − K(t)

auxiliary switches are “on”, so the remaining capacity is K(t). Finally, by increasing the
value of St by the number of switchings that are enforced on the auxiliary switches, i.e.,
by |K(t+1)−K(t)|, we obtain an instance of BNDsel

tw with uniform selection bound K+ that
is equivalent to the original general instance.

To conclude this section, we note that Problem BNDsel
0,tw can also be solved efficiently. For

this, it suffices to set K(0) := 0.

4 Conclusion and future research

This paper presented a detailed study of three Multi-Stage Selection variants. While
the problem version with transition cost can be solved by linear programming, the bounded
problem versions turned out to be more involved. In particular, we showed that the defini-
tion of the variation greatly impacts the complexity of the problem. With time-wise vari-
ation, the resulting problem polynomially reduces to a minimum-cost flow problem and,
hence, can be solved efficiently. As a by-product, we obtain an extended LP-formulation via
a network flow model. In contrast, for switch-wise variation, the problem already becomes
strongly NP-hard in a very restrictive setting. Nevertheless, we presented various special
cases in which we can show the problem to be efficiently solvable by exploring different
methods such as network flows, matchings, and a reduction to classical selection.

An interesting question for future research concerns the complexity of BND in case the se-
lection constraint is an inequality, i.e., the number of selected items is only upper bounded.
Except for one, all our results can be transferred to this modified setting with only little
extra effort. In essence, we only need to replace the equality in the selection constraint by
an upper bound, delete the dummy switches in the proof of Theorem 3.4, and modify the
flow network in the proof of Theorem 3.8 by adding an extra arc (α, ω) with capacity K(T)

24

and no cost while removing the lower capacity bounds for the (v(t), v(t+1)) arcs. However,
the reduction proving the polynomial solvability of the problem BNDsel

tw with time-wise
variation bounds fails for an upper bound in the selection constraint and there seems to
be no obvious way to adapt it to this situation.

Further research could study the complexity of the bounded problem version for other types
of variation. For example, one could consider the total variation, in which the number of
changes over all items and stages is bounded. It is not difficult to develop an efficient
dynamic programming scheme for the case that K is not part of the input. If instead the
number of stages T is not part of the input, we can solve the problem by enumerating
all possibilities to partition the total number of allowed changes to the stages and use
the tractability of the time-wise problem version. However, the complexity of the problem
is unknown if none of the parameters is fixed. Beyond that, it might be interesting to
consider the natural problem variant where cost functions of future stages are uncertain,
and address this via robust or stochastic optimization.

References

[1] Evripidis Bampis, Dimitris Christou, Bruno Escoffier, Alexander Kononov, and
Kim Thang Nguyen. A simple rounding scheme for multistage optimization. The-
oretical Computer Science, 907:1–10, 2022.

[2] Evripidis Bampis, Bruno Escoffier, and Alexander Kononov. LP-based algorithms for
multistage minimization problems. In Approximation and Online Algorithms (WAOA
2020), pages 1–15, 2021.

[3] Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th. Paschos. Mul-
tistage matchings. In 16th Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT 2018), pages 7:1–7:13, 2018.

[4] Evripidis Bampis, Bruno Escoffier, Kevin Schewior, and Alexandre Teiller. Online
multistage subset maximization problems. Algorithmica, 83(8):2374–2399, 2021.

[5] Evripidis Bampis, Bruno Escoffier, and Alexandre Teiller. Multistage knapsack. Jour-
nal of Computer and System Sciences, 126:106–118, 2022.

[6] Claude Berge and Alain Ghouila-Houri. Programmes, jeux et réseaux de transport.
Dunod, Paris, 1962.

[7] Kateřina Böhmová, Yann Disser, Matúš Mihalák, and Peter Widmayer. Interval se-
lection with machine-dependent intervals. In Frank Dehne, Roberto Solis-Oba, and
Jörg-Rüdiger Sack, editors, Algorithms and Data Structures, pages 170–181, Berlin,
Heidelberg, 2013. Springer.

25

[8] Robert Bredereck, Till Fluschnik, and Andrzej Kaczmarczyk. When votes change
and committees should (not). In 31st International Joint Conference on Artificial
Intelligence (IJCAI 2022), pages 144–150, 2022.

[9] Christoph Buchheim and Maja Hügging. The polytope of binary sequences with
bounded variation. Discrete Optimization, 48:100776, 2023.

[10] Markus Chimani and Niklas Troost. Multistage shortest path: Instances and practical
evaluation. In 2nd Symposium on Algorithmic Foundations of Dynamic Networks
(SAND 2023), pages 14:1–14:19, 2023.

[11] Markus Chimani, Niklas Troost, and Tilo Wiedera. Approximating multistage match-
ing problems. Algorithmica, 84(8):2135–2153, 2022.

[12] Markus Chimani, Niklas Troost, and Tilo Wiedera. A general approximation for
multistage subgraph problems. Procedia Computer Science, 223:334–342, 2023.

[13] Till Fluschnik. A multistage view on 2-satisfiability. In Algorithms and Complexity
(CIAC 2021), pages 231–244, 2021.

[14] Till Fluschnik and Pascal Kunz. Bipartite temporal graphs and the parameterized
complexity of multistage 2-coloring. In 1st Symposium on Algorithmic Foundations of
Dynamic Networks (SAND 2022), pages 16:1–16:18, 2022.

[15] Till Fluschnik, Rolf Niedermeier, Valentin Rohm, and Philipp Zschoche. Multistage
vertex cover. Theory of Computing Systems, 66(2):454–483, 2022.

[16] Till Fluschnik, Rolf Niedermeier, Carsten Schubert, and Philipp Zschoche. Multistage
s–t path: Confronting similarity with dissimilarity. Algorithmica, 85(7):2028–2064,
2023.

[17] Marc Goerigk and Michael Hartisch. An Introduction to Robust Combinatorial Opti-
mization: Concepts, Models and Algorithms for Decision Making under Uncertainty.
Springer Nature Switzerland, 2024.

[18] Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing bases: Multistage opti-
mization for matroids and matchings. In Javier Esparza, Pierre Fraigniaud, Thore
Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming
(ICALP 2014), pages 563–575, 2014.

[19] Adam Kasperski and Pawe l Zieliński. Robust recoverable and two-stage selection
problems. Discrete Applied Mathematics, 233:52–64, December 2017.

[20] Leon Kellerhals, Malte Renken, and Philipp Zschoche. Parameterized algorithms for
diverse multistage problems. In 29th Annual European Symposium on Algorithms
(ESA 2021), pages 55:1–55:17, 2021.

26

[21] Stefan Lendl, Britta Peis, and Veerle Timmermans. Matroid bases with cardinality
constraints on the intersection. Mathematical Programming, 194:661–684, 2022.

[22] Daniel Lokshtanov and Amer E. Mouawad. The complexity of independent set recon-
figuration on bipartite graphs. ACM Transactions on Algorithms (TALG), 15(1):1–19,
2018.

[23] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester,
1986.

[24] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer,
Berlin, Heidelberg, 2003.

27

	Introduction
	Multi-Stage Selection with transition cost
	Multi-Stage Selection under Bounded Variation
	Conclusion and future research

