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ABSTRACT. This paper introduces a regularized, structure-exploiting Powell-Symmetric-Broyden (RSE-PSB)
method under modified secant conditions for solving ill-posed inverse problems in both infinite dimensional
and finite dimensional settings. The approximation of the symmetric, yet potentially indefinite, second-order
term, which is neglected by standard Levenberg-Marquardt (LM) approaches, integrates regularization and
structure exploitation directly within the Quasi-Newton (QN) framework, leveraging the strengths of QN and
LM methods, Tikhonov-type regularization, and structure exploitation. We establish local Q-linear convergence
via the bounded deterioration principle and prove local Q-super-linear convergence under the assumption that
the initial error is a Hilbert-Schmidt operator. Furthermore, we present a globalization strategy in the discretized
setting based on the dynamic control of the regularization parameter. Hence, this approach stabilizes the ill-
posed problem while ensuring global convergence, addressing even the choice of an appropriate regularization
parameter. Finally, we discuss a numerical example based on a PDE-driven parameter identification problem
in piezoelectricity, relevant to industrial sensor and actuator applications.

1. INTRODUCTION

Inverse problems usually aim to determine an unknown cause that leads to a known effect or consequence.
They occur in numerous real-world applications. As the unknown cause often appears in a state space
system that serves as the underlying mathematical model, several types of inverse problems can be catego-
rized.

• Inverse source problems: The objective is to determine an unknown source term in a PDE based
on observational data. This kind of problem appears often in fields such as physics and biomed-
ical imaging, where identifying the origin of signals or forces is critical for understanding the
underlying phenomena.

• Inverse boundary value problems: The task is to determine unknown boundary conditions from
measurements or observations. Such problems often arise in geophysics and engineering where
characterization of boundary interactions is essential for modeling the behavior, such as in heat
transfer analysis in which surface temperatures and fluxes need to be identified.

• Parameter identification problems: The goal is to reconstruct unknown parameters within a math-
ematical model such that they best fit the observed or measured data. This type of problem fre-
quently arises in engineering and materials science, where, e.g., material parameters such as diffu-
sion coefficients must be estimated from experimental data.

Note that this categorization should not be understood too strictly, as combinations also often occur, e.g.,
one wants to identify a parameter and a source term. To tackle these types of problems, an associated, well-
posed forward problem is needed, i.e., a mathematical model that is uniquely solvable and stable, meaning
that small changes in the cause lead to small changes in the effect. In contrast, inverse problems are often
ill-posed, meaning that solutions may not exist, may not be unique, or may not depend continuously on
the observed data. As a result, inverse problems are highly sensitive to measurement errors and noise.
Therefore, regularization techniques are required to stabilize the problem and achieve well-posedness.
Specifically, inverse problems aim at solving an operator equation

(1.1) F (x) = yδ
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to determine x for given data yδ . These problems are in practice often approached via iterative regular-
ization methods that refine an approximate solution from an initial guess. For that purpose, they apply
regularization iteratively in order to stabilize the problem and to achieve a reduction of the effects of noise.
If we assume that we have access to the first derivative of the forward operator F , the Levenberg-Marquardt
method (LM), i.e.,

(F ′(xk)
∗F ′(xk) + αkI) sk = −F ′(xk)

∗ (F (xk)− yδ
)
,(1.2)

where

xk+1 := xk + sk,(1.3)

is a well-known example and widely used approach based on linearizing the operator equation to be solved
and iteratively applying Tikhonov regularization. Therein, αk > 0 for all k ∈ N denotes the regularization
parameter. In general, despite its effectiveness for a wide range of inverse problems, this method is sensitive
to the deviation of the initial guess, but can be globalized, see e.g., [6]. The LM method can also be viewed
as a QN method applied to

1

2

∥∥F (x)− yδ
∥∥2
Y
+

αk

2
∥x− xk∥2X ,(1.4)

where xk is the last obtained iterate or the linearization point, respectively. From this perspective, the
approximation of the Hessian in the LM method may be insufficiently accurate as the approximation error
is only small if F is linear or the residual is sufficiently small, i.e., we have a good approximation and a
good initial guess. In our setting F can also be non-linear. Additionally, in real-world applications ob-
taining a suitable initial guess can be challenging. Moreover, second-order derivatives can be interpreted
as measures of cross-sensitivity, providing valuable insight into the interactions between different com-
ponents of the object to be reconstructed. This information is particularly important in multi-parameter
identification problems. Since Newton-type methods utilize gradient information to efficiently approxi-
mate the Hessian, they typically exhibit fast and robust convergence while inherently capturing approxi-
mated cross-sensitivity information. Thus, we want to derive an approximation for the second order term
(F ′′(xk)(·))∗

(
F (xk)− yδ

)
, using Quasi-Newton (QN) methods. This can then be seen as a "corrected"

LM method or a regularized structure-exploiting (RSE) QN approach, respectively. Motivated by finite
dimensional Hilbert spaces, we assume that the second Fréchet derivative of the functional defined by (1.4)
is symmetric at the minimizer. Since the first-order term in the Hessian operator is symmetric, we obtain
that the second-order term must be symmetric at the minimizer, but not necessarily positive. Thus, we
need QN methods that converge without assuming positivity of the operators, while still forcing symmetry.
One method satisfying these requirements is the symmetric-rank-1 update, which needs a well-definedness
condition to prevent the denominator from being zero. Hence, this method can be numerically unstable.
To overcome this drawback, we want to focus on a rank-2 update, satisfying the restrictions, namely the
Powell-symmetric Broyden update. Furthermore, the key property for achieving a super-linear convergence
rate in infinite dimensional Hilbert spaces is to have a QN method that can be expressed as the solution to
a variational problem. Broyden’s method can be used according to [2], but it is not guaranteed to produce
symmetric operators. It was shown in [30] that the PSB method has this property as well, which again
motivates the choice of this method.

Related Work. QN methods for solving well-posed optimization problems have been extensively studied
over the last five decades. Among the most prominent examples are the Broyden-Fletcher-Goldfarb-Shanno
(BFGS), the symmetric rank-one (SR1), the Powell-symmetric Broyden (PSB) and the Davidon-Fletcher-
Powell (DFP) methods, which all belong to the class of symmetric secant updates considered, e.g., by
Dennis [9] in 1971. As a matter of fact, exploiting the structure of the problem and developing theory for
structured secant methods to construct a more efficient approximation to the Hessian can be traced back to
Dennis and Walker [11] in 1981 and has since evolved, see e.g., [10, 12, 21, 31].
A comprehensive study of structure-exploiting QN methods in finite dimensional spaces is given in [14].
In this paper, local and super-linear convergence of QN methods from the convex Broyden class is proved
with partially known Hessian matrices. Additionally, the application to least squares problems is addressed.
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In [20], the analysis of structure exploitation in finite dimensional least squares problems is further inves-
tigated in detail. Furthermore, in [7] structure exploitation of QN methods in the context of compact
representations, especially of BFGS, is discussed.
Regarding inverse problems, structure-exploiting QN methods have been applied to finite dimensional
settings, see e.g., [19], where an electromagnetic inverse problem was decomposed in a data discrepancy
term and a regularization term. Similarly, [26] extends this decomposition to infinite dimensional Hilbert
spaces using L-BFGS updates.
Unstructured QN methods for infinite dimensional problems have also been explored. For example, [30]
derives QN formulas such as BFGS, DFP, SR1, and PSB via variational frameworks, while [32, 33] analyze
their local convergence via bounded deterioration principles and discuss the application on well-posed
inverse problems. Further insights into Hilbert-space applications and convergence are given in [4, 5].
The publications that are closest to this article are [25] and [23]. Firstly, in [25] a Kantorovich theorem and
local convergence of a structured PSB method in Hilbert spaces are discussed. Secondly, in [23] a glob-
alization approach for unstructured bounded QN Hessian approximations in a finite dimensional setting is
presented as well as the compact representation of QN matrices, particularly the compact representation of
the PSB method is given. However, our setting differs slightly and has weaker assumptions for convergence
than in [25], and [23] does not consider possibly unbounded QN Hessian approximations. Additionally,
in [34], a hybrid Gauss–Newton structured BFGS scheme for non-linear least squares problems is pro-
posed, and global convergence of the resulting method is established. The approach combines curvature
information from the Gauss–Newton model with a BFGS-type update in order to better capture the struc-
ture inherent in least squares formulations. A comprehensive analysis of iterative regularization methods
for nonlinear ill-posed operator equations, including Broyden’s method, stability issues and regularization
aspects of quasi-Newton updates can be found in [22].

Contribution. Consequently, the first aim of this paper is to extend convergence results of Newton-type
methods in Hilbert spaces and to generalize the previous theory by introducing a Tikhonov-type regularizer.
The latter is used additively in the target functional. By deriving a modified secant equation in the Hilbert
space setting, we propose the regularized structure-exploiting PSB (RSE-PSB) method. A key aspect is
the specific choice of the PSB update, which allows maintaining symmetry of the approximation of the
second-order term (F ′′(xk)(·))∗(F (xk)− yδ) without requiring positive definiteness. Then, local conver-
gence results of [25] are extended to an adjusted framework, to weaker assumptions and to the inclusion
of regularization, yielding that the regularized structure-exploiting PSB method satisfies the Bounded De-
terioration Principle (BDP) and thus is locally Q-linear convergent in Hilbert spaces. Furthermore, under
the assumption that the initial error is a Hilbert-Schmidt operator and using the variational characterization
of the PSB update as the solution to a minimum norm problem in the Hilbert-Schmidt norm, we establish
local Q-super-linear convergence. Moreover, the relationship to the Levenberg-Marquardt (LM) method is
discussed, interpreting the proposed method as a "corrected" LM approach that captures cross-sensitivity
information.
The second aim of this paper is to address globalization of the proposed methods motivated by possibly
large deviations of the initial guess to the ground truth in the application of the proposed algorithm. There-
fore, we established a global convergence result for the regularized structure-exploiting PSB method by
controlling the regularization parameter within a trust-region-like framework. This globalization approach
is presented in the discretized setting and is based on the results of [23]. Finally, we demonstrate the effi-
ciency of the method using a discretize-then-optimize approach with Algorithmic Differentiation (AD) on
a parameter identification problem for a piezoelectric specimen.
To the best of our knowledge, this method has not been addressed in the literature so far. Previous studies
have primarily focused on finite dimensional cases or on structure exploitation via Hessian approximation
of the data discrepancy term without the specific regularized framework presented here.

Structure of the paper. The second section deals with Newton-type methods in a general Hilbert space
setting, providing the necessary preliminaries and auxiliary results for the PSB method, including the
Bounded Deterioration Principle. In the third section, the regularized structure-exploiting PSB (RSE-PSB)
method is introduced. Therein, the derivation of a modified secant equation is given. Subsequently, the
local RSE-PSB algorithm is analyzed, establishing both local Q-linear and Q-super-linear convergence to a
minimizer. In the fourth section, a globalization approach in a finite dimensional environment is provided
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to account for larger deviations of the initial estimate to the ground truth. Then, the Global Regularized
structure-exploiting algorithm (GRSE) is presented and analyzed with respect to its global convergence.
Numerical experiments, applied to a parameter identification problem in piezoelectricity, are shown in
the fifth section to validate both local and global performance. The final section briefly summarizes the
contributions of this paper.

2. NEWTON-TYPE METHODS IN HILBERT SPACES

Let X and Y be separable Hilbert spaces over R and let U ⊆ X be open and convex. Consider an objective
functional J : X → R, which has to be minimized. Hence, Newton’s method reads as

J ′′(xk)(xk+1 − xk) = −J ′(xk).

Here we used the Riesz isomorphism to identify the first Fréchet derivative J ′(xk) ∈ X and the second
Fréchet derivative or Hessian operator, respectively, J ′′(xk) ∈ L(X), where L(X) denotes the space of lin-
ear and bounded operators from X to X . As in general the second Fréchet derivatives are numerically very
costly to compute, approximations of the Hessian operator may be used. For this purpose, we introduce
the Newton-type method

(2.1) BJ
k sk = −J ′(xk)

with BJ
k ∈ L(X). If BJ

k is chosen such that it approximates J ′′(xk), then we obtain a Newton-type method
and if it equals J ′′(xk) then we obtain Newton’s method. To discuss convergence, we use the norm in X
to define

(2.2) µk := max{∥x∗ − xk∥, ∥x∗ − xk+1∥}.

Furthermore, if not indicated otherwise, the standard operator norm is used for operators in L(X) through-
out this paper. Motivated by Lemma 3.2 in [33] we state the local Q-linear convergence result.

Theorem 2.1 (Local Q-linear convergence of Newton-type methods). Let x∗ ∈ U be a minimizer of J and
let BJ

0 be boundedly invertible. Furthermore, suppose J ′′ is Lipschitz continuous with Lipschitz constant
LJ′′ > 0. Let ν ∈ (0, 1) be arbitrarily given and assume that BJ

0 and x0 satisfy

(2.3) ∥x0 − x∗∥ ≤ ξ, ∥BJ
0 − J ′′(x∗)∥ ≤ a,

where ξ = ξ(ν) and a = a(ν) are constants dependent on ν. If the operator sequence {BJ
k }k∈N is chosen

such that (2.1) and the bounded deterioration principle (BDP), i.e.,

(2.4) ∥BJ
k+1 − J ′′(x∗)∥ ≤ ∥BJ

k − J ′′(x∗)∥+ cµk,

are satisfied, where c > 0 is a constant, then the sequence {xk} is well-defined and converges Q-linearly
to x∗. Furthermore, the sequences {∥BJ

k ∥} and {∥(BJ
k )

−1∥} are uniformly bounded.

Proof. By assumption, there exists b > 0 such that

(2.5) ∥(BJ
0 )

−1∥ ≤ b.

Using induction we will show for all k ∈ N that BJ
k is boundedly invertible and that

(2.6) ∥BJ
k − J ′′(x∗)∥ ≤ a+

cξ(1− νk)

1− ν
.

Since U is open and convex, and x∗ ∈ U , for any ν ∈ (0, 1), one can choose ξ = ξ(ν) > 0 and
a = a(ν) > 0 satisfying the following inequalities

b

(
LJ′′ξ

2
+ a+

cξ

1− ν

)
< ν,(2.7)

2ab+
cξ

1− ν
b < 1.(2.8)

For the base case of the induction, we will now show that BJ
1 is boundedly invertible and that

∥BJ
1 − J ′′(x∗)∥ ≤ a+

cξ(1− ν1)

1− ν
= a+ cξ.
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Assumptions (2.3) and (2.4) yield

(2.9) ∥BJ
1 − J ′′(x∗)∥ ≤ a+ cµ0.

By the mean value theorem and the Lipschitz continuity of J ′′ we have that

∥x1 − x∗∥ = ∥x1 − x0 + x0 − x∗∥ = ∥ − (BJ
0 )

−1J ′(x0) + x0 − x∗∥
=
∥∥(BJ

0 )
−1
{
−[J ′(x0)− J ′(x∗)− J ′′(x∗)(x0 − x∗)] + [BJ

0 − J ′′(x∗)](x0 − x∗)
}∥∥

≤
∥∥(BJ

0 )
−1
∥∥{∥J ′(x0)− J ′(x∗)− J ′′(x∗)(x0 − x∗)∥+

∥∥[BJ
0 − J ′′(x∗)](x0 − x∗)

∥∥}
≤ b ∥J ′(x0)− J ′(x∗)− J ′′(x∗)(x0 − x∗)∥+ ab ∥x0 − x∗∥

≤ b

∥∥∥∥∫ 1

0

(J ′′(x∗ + τ(x0 − x∗))− J ′′(x∗))(x0 − x∗) dτ

∥∥∥∥+ ab ∥x0 − x∗∥

≤ b

(
LJ′′ξ

2
+ a

)
∥x0 − x∗∥ ≤ b

(
LJ′′ξ

2
+ a+

cξ

1− ν

)
∥x0 − x∗∥ < ν∥x0 − x∗∥.(2.10)

Hence, using inequality (2.9) we obtain

(2.11) ∥BJ
1 − J ′′(x∗)∥ ≤ a+ cξ.

This yields that

∥BJ
1 −BJ

0 ∥ ≤ ∥BJ
1 − J ′′(x∗)∥+ ∥BJ

0 − J ′′(x∗)∥ ≤ 2a+ cξ.

Consequently,∥∥I − (BJ
0 )

−1BJ
1

∥∥ ≤
∥∥(BJ

0 )
−1
∥∥∥BJ

1 −BJ
0 ∥ ≤ b(2a+ cξ) ≤ 2ab+

cξ

1− ν
b < 1.

Applying Neumann series theorem (Lemma 14.2 in [8]) yields that (BJ
0 )

−1BJ
1 is bijective. Since BJ

0

is boundedly invertible, BJ
1 is bijective. Using boundedness of BJ

1 and applying the Bounded Inverse
Theorem (Theorem 5.6 in [8]) yields that BJ

1 is boundedly invertible. For the induction hypothesis we
assume that BJ

k is boundedly invertible and that

(2.12) ∥BJ
k − J ′′(x∗)∥ ≤ a+

cξ(1− νk)

1− ν

for an arbitrarily fixed k ∈ N. Using (2.4) we have

(2.13) ∥BJ
k+1 − J ′′(x∗)∥ ≤ ∥BJ

k − J ′′(x∗)∥+ cµk ≤ a+ c

(
ξ(1− νk)

1− ν
+ µk

)
,

for this k. Similar to above, we obtain by the mean value theorem, the induction hypothesis and the
Lipschitz continuity of J ′′ that

∥xk+1 − x∗∥ ≤
∥∥(BJ

k )
−1
∥∥{∥J ′(xk)− J ′(x∗)− J ′′(x∗)(xk − x∗)∥+

∥∥[BJ
k − J ′′(x∗)](xk − x∗)

∥∥}
≤ b ∥J ′(xk)− J ′(x∗)− J ′′(x∗)(xk − x∗)∥+ b

(
a+

cξ(1− νk)

1− ν

)
∥xk − x∗∥

≤ b

{∥∥∥∥∫ 1

0

(J ′′(x∗ + τ(xk − x∗))− J ′′(x∗))(xk − x∗) dτ

∥∥∥∥+ (a+
cξ

1− ν

)
∥xk − x∗∥

}
≤ b

(
LJ′′ξ

2
+ a+

cξ

1− ν

)
∥xk − x∗∥ < ν∥xk − x∗∥.(2.14)

By the induction hypothesis and the Lipschitz continuity of J ′′ it follows by repeatedly using the mean
value theorem that

∥xk − x∗∥ < νk∥x0 − x∗∥ < νkξ(2.15)

and hence

∥xk+1 − x∗∥ < νk+1∥x0 − x∗∥ and µk < νkξ.(2.16)
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Using (2.13) we obtain

(2.17) ∥BJ
k+1 − J ′′(x∗)∥ ≤ a+ cξ

(
1− νk

1− ν
+ νk

)
= a+ cξ

k−1∑
i=0

νi + cνkξ = a+
cξ(1− νk+1)

1− ν

and

(2.18) ∥BJ
k+1∥ ≤ ∥J ′′(x∗)∥+ a+

cξ

1− ν
< b < ∞.

Therefore,

∥BJ
k+1 −BJ

0 ∥ ≤ ∥BJ
k+1 − J ′′(x∗)∥+ ∥BJ

0 − J ′′(x∗)∥ ≤ 2a+
cξ(1− νk+1)

1− ν
≤ 2a+

cξ

1− ν
.

Consequently,

q :=
∥∥I − (BJ

0 )
−1BJ

k+1

∥∥ ≤
∥∥(BJ

0 )
−1
∥∥∥BJ

k+1 −BJ
0 ∥ ≤ 2ab+

cξ

1− ν
b < 1.(2.19)

By the same argument as above it follows that BJ
k+1 is boundedly invertible. Using now the Neumann

series representation, we reformulate

BJ
k+1 = BJ

0

(
(BJ

0 )
−1BJ

k+1

)
= BJ

0

(
I − (I − (BJ

0 )
−1BJ

k+1)
)
.

Since q < 1, the Neumann series theorem yields(
(BJ

0 )
−1BJ

k+1

)−1
=

∞∑
m=0

(
I − (BJ

0 )
−1BJ

k+1

)m
.

Consequently,

(BJ
k+1)

−1 =
(
(BJ

0 )
−1BJ

k+1

)−1
(BJ

0 )
−1 =

( ∞∑
m=0

(
I − (BJ

0 )
−1BJ

k+1

)m)
(BJ

0 )
−1.

Taking norms and using the geometric series gives

∥(BJ
k+1)

−1∥ ≤ ∥(BJ
0 )

−1∥
∞∑

m=0

qm =
∥(BJ

0 )
−1∥

1− q
≤ b

1− q
.

Using the previously derived bound (2.19) we obtain

∥(BJ
k+1)

−1∥ ≤ b

1− 2ab− cξ
1−ν b

,

where 1 − 2ab − cξ
1−ν b > 0 due to inequality (2.8). Hence, {∥BJ

k ∥} and {∥(BJ
k )

−1∥} are uniformly
bounded. Therefore, {xk} ⊂ U converges Q-linearly to x∗, since ν ∈ (0, 1). □

To satisfy the conditions (2.7) and (2.8), the choice of ξ > 0 and a > 0 to can be done using the subsequent
Lemma 2.2 or Lemma 2.3.

Lemma 2.2. Let ν ∈ (0, 1), c > 0 and b > 0 be fixed arbitrarily and LJ′′ > 0 be given. Define

ξmax := ξmax(ν) = min

1− ν

bc
,

ν

b
(

LJ′′
2 + c

1−ν

)


and

amax := amax(ξ(ν)) = min

{
1

2

(
1

b
− cξ

1− ν

)
,
ν

b
− ξ

(
LJ′′

2
+

c

1− ν

)}
.

Then, for any ξ = ξ(ν) satisfying 0 < ξ < ξmax and any a = a(ξ(ν)) satisfying 0 < a < amax, the two
inequalities (2.7) and (2.8) hold.
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Proof. Since ν ∈ (0, 1) and b, c, LJ′′ > 0, we have that
1− ν

bc
> 0 and

ν

b
(

LJ′′
2 + c

1−ν

) > 0.

Hence, ξmax > 0. Let now ξ ∈ (0, ξmax) be fixed arbitrarily. By the definition of ξmax(ν), the two strict
inequalities

(2.20) ξ <
1− ν

bc
and ξ <

ν

b
(

LJ′′
2 + c

1−ν

)
hold. The first inequality in (2.20) is equivalent to

cξ

1− ν
<

1

b
,

and thus,

A(ξ) :=
1

2

(
1

b
− cξ

1− ν

)
> 0.

From the second inequality in (2.20), we directly have

ξ

(
LJ′′

2
+

c

1− ν

)
<

ν

b
⇐⇒ B(ξ) :=

ν

b
− ξ

(
LJ′′

2
+

c

1− ν

)
> 0.

Consequently,
amax = min{A(ξ), B(ξ)} > 0.

As a < A(ξ), we have

a <
1

2

(
1

b
− cξ

1− ν

)
⇐⇒ b

(
2a+

cξ

1− ν

)
< 1,

which is precisely inequality (2.8). Furthermore, since a < B(ξ), we obtain

ab < ν − b

(
LJ′′

2
ξ +

cξ

1− ν

)
⇐⇒ b

(
LJ′′

2
ξ + a+

cξ

1− ν

)
< ν.

This is exactly inequality (2.7). Thus, both (2.7) and (2.8) hold for any a ∈ (0, amax) and ξ ∈ (0, ξmax).
□

Lemma 2.3. Let ν ∈ (0, 1), c > 0 and b > 0 be fixed arbitrarily and LJ′′ > 0 be given. Define

amax := amax(ν) = min

{
1

2b
,
ν

b

}
and

ξmax := ξmax(a(ν)) = min

{
1− ν

bc

(
1− 2ab

)
,

ν
b − a

LJ′′
2 + c

1−ν

}
.

Then, for any a = a(ν) satisfying 0 < a < amax and any ξ = ξ(a(ν)) satisfying 0 < ξ < ξmax, the two
inequalities (2.7) and (2.8) hold.

Proof. Since ν ∈ (0, 1) and b > 0, we have that 0 < a < min{ 1
2b ,

ν
b }. Using ν ∈ (0, 1), c > 0, b >

0, LJ′′ > 0, we obtain with 2ab < 1 that both terms in the definition of ξmax(a) are positive. Now, let
0 < ξ < ξmax(a) be fixed arbitrarily. By definition of ξmax(a), we have the two strict inequalities

(2.21) ξ <
1− ν

bc
(1− 2ab) and ξ <

ν
b − a

LJ′′
2 + c

1−ν

.

From the first inequality in (2.21) we obtain by multiplying bc
1−ν and adding 2ab exactly inequality (2.8).

From the second inequality in (2.21) we obtain

ξ

(
LJ′′

2
+

c

1− ν

)
<

ν

b
− a ⇐⇒ b

(
LJ′′

2
ξ + a+

cξ

1− ν

)
< ν,

which is precisely inequality (2.7). Hence, both inequalities (2.7) and (2.8) hold for any ξ ∈ (0, ξmax(a(ν)))
and any a ∈ (0, amax(ν)). □
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Secant updates are often used to define QN methods. Hence, setting

ζk := J ′(xk+1)− J ′(xk),(2.22)

we introduce for J the secant condition

(2.23) BJ
k+1sk = ζk,

where BJ
k+1 has to be chosen such that it approximates J ′′(xk). Furthermore, QN methods frequently

require a suitable outer product, which in finite dimensional spaces is represented by the matrix xyT . In
infinite dimensional Hilbert spaces, we need the definition of the outer product, which can be achieved by
the dyadic product, see [5] or [25].

Definition 2.4 (Dyadic product). Let X and Y be Hilbert spaces. Then the dyadic product ⊗ : X × Y →
L(Y,X) is a rank-1 operator defined for x ∈ X , y ∈ Y by

(x⊗ y)z = ⟨y, z⟩Y x for all z ∈ Y.

We now recall some properties of this operator, see [5] or [25].

Proposition 2.5. Let X and Y be Hilbert spaces and x ∈ X and y ∈ Y . Denote by L(X,Y ) the space of
bounded linear operators T : X → Y and L(X) := L(X,X). Then it holds that:

• The operator ⊗ : X × Y → L(Y,X) is bilinear.
• ∥x⊗ y∥ = ∥x∥∥y∥.
• If Y = X , then for all selfadjoint operators A ∈ L(X) it holds that A◦(x⊗y)◦A = (Ax)⊗(Ay),

where ◦ denotes the concatenation of operators or functions.
• For all x1, x2, y1, y2 ∈ X , (x1 ⊗ y1) ◦ (x2 ⊗ y2) = ⟨y1, x2⟩(x1 ⊗ y2).
• P = I − s⊗s

⟨s,s⟩ is an orthogonal projector, i.e., ∥P∥ = 1 for X ̸= span(s).

Since we will use the PSB update,

(2.24) BJ
k+1 = BJ

k +
(ζk −BJ

k sk)⊗ sk + sk ⊗ (ζk −BJ
k sk)

⟨sk, sk⟩
− ⟨ζk −BJ

k sk, sk⟩sk ⊗ sk
⟨sk, sk⟩2

,

we now state the following auxiliary result motivated by [25].

Lemma 2.6 (BDP for the PSB method). Let x∗ ∈ U be a minimizer of J and J ′′ be Lipschitz continuous
with Lipschitz constant LJ′′ > 0. Then, the PSB method satisfies the BDP

(2.25)
∥∥BJ

k+1 − J ′′(x∗)
∥∥ ≤

∥∥BJ
k − J ′′(x∗)

∥∥+ c̃µk.

Proof. Similarly to Theorem 2.1 in [25] we use the orthogonal projector defined in Proposition 2.5 to
reformulate the distance between BJ

k+1 and J ′′(x∗). Due to Theorem 2.1 in [25], we have that

BJ
k+1 − J ′′(x∗) =BJ

k − J ′′(x∗) +
(ζk −BJ

k sk)⊗ sk + sk ⊗ (ζk −BJ
k sk)

⟨sk, sk⟩
− ⟨ζk −BJ

k sk, sk⟩sk ⊗ sk
⟨sk, sk⟩2

=P (BJ
k − J ′′(x∗))P − (sk ⊗ sk)J

′′(x∗) + J ′′(x∗)(sk ⊗ sk)

⟨sk, sk⟩

+
(sk ⊗ sk)J

′′(x∗)(sk ⊗ sk)

⟨sk, sk⟩2
+

(ζk ⊗ sk) + (sk ⊗ ζk)

⟨sk, sk⟩
− (sk ⊗ ζk)(sk ⊗ sk)

⟨sk, sk⟩2

=P (BJ
k − J ′′(x∗))P +

sk ⊗ (ζk − J ′′(x∗)sk)

⟨sk, sk⟩
P +

(ζk − J ′′(x∗)sk)⊗ sk
⟨sk, sk⟩

.(2.26)

Using the triangle inequality and Proposition 2.5 we have∥∥BJ
k+1 − J ′′(x∗)

∥∥ ≤
∥∥BJ

k − J ′′(x∗)
∥∥+ 2

∥ζk − J ′′(x∗)sk∥
∥sk∥

.(2.27)
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By the fundamental theorem of calculus in Banach spaces and the Lipschitz continuity of J ′′ on U we
obtain

∥ζk − J ′′(x∗)sk∥ = ∥J ′(xk+1)− J ′(xk)− J ′′(x∗)sk∥ =

∥∥∥∥∫ 1

0

(J ′′(xk + τsk)− J ′′(x∗))sk dτ

∥∥∥∥
≤ ∥sk∥

∫ 1

0

∥J ′′(xk + τsk)− J ′′(x∗)∥ dτ

≤ LJ′′∥sk∥
(∫ 1

0

τ∥xk+1 − x∗∥ dτ +

∫ 1

0

(1− τ)∥xk − x∗∥ dτ
)

≤ LJ′′∥sk∥µk.

With this, inequality (2.27) simplifies to∥∥BJ
k+1 − J ′′(x∗)

∥∥ ≤
∥∥BJ

k − J ′′(x∗)
∥∥+ 2LJ′′µk.(2.28)

Therefore, the PSB update satisfies the BDP. □

3. A REGULARIZED STRUCTURE-EXPLOITING PSB METHOD

For an operator F , we denote the adjoint with F ∗ and the dual space of X with X∗. Furthermore, we
assume that F ∈ C2(U, Y ) is well-defined. Let yδ be the data contaminated with noise up to a noise
level δ > 0, which might not be in the range of F and

∥∥y − yδ
∥∥ ≤ δ, where y is the possibly non-unique

projection, i.e., an element in the range of F with minimal distance to yδ. This noise level is frequently
dictated by the measurement process, which yields the assumption that δ > 0 is fixed arbitrarily. Since the
measurement data is contaminated with noise, the direct inversion of the forward operator is ineffective as
it tends to produce results that deviate significantly from the exact solution. Hence, we want to approach
the inverse problem via an optimization problem, where we define

(3.1) J : X → R, J(x) :=
1

2

∥∥F (x)− yδ
∥∥2
Y
,

and want to find the minimizer of the objective functional J . Computing the first Fréchet derivative yields
for all v ∈ U

(3.2) dJ(x)v = (F ′(x)v, F (x)− yδ)Y = (v, F ′(x)∗(F (x)− yδ))X ,

where we used the Hilbert space adjoint F ′(x)∗ ∈ L(Y,X), see Chapter 16 in [8]. Hence, we identify

J ′(x) = dJ(x) = F ′(x)∗(F (x)− yδ) ∈ X.

Computing the second Fréchet derivative yields for all v, w ∈ U

d(dJ(x)v)w = d(dJ(x)w)v = ((F ′′(x)w)v, F (x)− yδ)Y + (F ′(x)w,F ′(x)v)Y

= (v, (F ′′(x)w)∗(F (x)− yδ))X + (F ′(x)∗F ′(x)w, v)X

= (v, F ′(x)∗F ′(x)w + (F ′′(x)w)∗(F (x)− yδ))X .(3.3)

Thus,
d2J(x)w = F ′(x)∗F ′(x)w + (F ′′(x)w)∗(F (x)− yδ) ∈ X

and
J ′′(x) = d2J(x) ∈ L(X).

We assume that J ′′(x) is a compact operator for all x ∈ U . Compactness of the Hessian is a realistic
assumption for a large class of ill-posed inverse problems, e.g., PDE-based inverse problems or inverse
problems involving integral operators. In various inverse problems, requiring J ′′(x) to be a compact op-
erator is closely related to assuming that the forward operator F is "smoothing". Whenever F maps the
parameter space into a more regular space (typically through a PDE solution operator or an integral opera-
tor), the Fréchet derivative F ′(x) inherits this smoothing property. Since the second derivative of the data
misfit involves compositions of F ′(x) and F ′′(x), the same smoothing mechanism typically ensures that
J ′′(x) is compact. However, the assumption might be restrictive in some applications, e.g., tomographic
reconstruction problems or deblurring/inverse convolution problems with non-smoothing kernels. As we
want to use Newton-type methods, we consider the classic Newton method obtained by employing the
Taylor approximation

0 = J ′(xk) + J ′′(xk)(xk+1 − xk),
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yielding

(3.4) J ′′(xk)(xk+1 − xk) = −J ′(xk).

Since J ′′(x) is a compact operator for all x ∈ U and X,Y can be infinite dimensional, J ′′(x) might not be
continuously invertible. Therefore, we introduce the Tikhonov-type regularizer

Rαk
: X → R, x 7→ αk

2
∥x− xk∥2X(3.5)

with a suitable regularization parameter sequence {αk} ⊂ R+, where xk is the last obtained iterate or the
linearization point, respectively. Hence, we obtain the regularized target functional

(3.6) Jk : X → R, Jk(x) := J(x) +Rαk
(x).

Since R′
αk

(xk) = 0, i.e., J ′
k(xk) = J ′(xk), and R′′

αk
= αkI , applying Newton’s method to minimize Jk

defined in (3.6) yields

F ′(xk)
∗F ′(xk)sk + (F ′′(xk)sk)

∗ (F (xk)− yδ
)
+ αksk = −F ′(xk)

∗ (F (xk)− yδ
)
.(3.7)

In contrast, the LM method

(F ′(xk)
∗F ′(xk) + αkI) sk = −F ′(xk)

∗ (F (xk)− yδ
)

(3.8)

neglects the second order term (F ′′(xk)(·))∗
(
F (xk)− yδ

)
. Hence, the approximation of the Hessian by

the LM method may be too inaccurate as the approximation error is small only if F is linear or the residual
is sufficiently small, i.e., we have a good approximation and initial guess. Furthermore, if we assume that
we have access to the first derivative of the forward operator F , secant based QN updates to approximate
(F ′′(xk)(·))∗

(
F (xk)− yδ

)
are accessible as well. Additionally, there is no necessity to approximate the

full Hessian operator, but rather only the second order term involving F ′′. Thus, we want to derive an
approximation for (F ′′(xk)(·))∗

(
F (xk)− yδ

)
. For this purpose, we consider the Taylor approximation of

F given by

F (xk+1) = F (xk) + F ′(xk)sk +O(∥sk∥2)

⇔ F ′(xk)sk = F (xk+1)− F (xk) +O(∥sk∥2).(3.9)

By defining

rk := F (xk)− yδ,(3.10)

we conclude

F ′(xk)
∗(rk+1 − rk) = F ′(xk)

∗(F (xk+1)− yδ − F (xk) + yδ) = F ′(xk)
∗(F (xk+1)− F (xk))

= F ′(xk)
∗F ′(xk)sk +O(∥sk∥2).(3.11)

Then, exploiting the Taylor approximation of J ′, i.e.,

J ′(xk+1) = F ′(xk+1)
∗rk+1 = F ′(xk)

∗rk + (F ′′(xk)sk)
∗rk + F ′(xk)

∗F ′(xk)sk +O(∥sk∥2)

⇔ (F ′′(xk)sk)
∗rk = F ′(xk+1)

∗rk+1 − F ′(xk)
∗rk − F ′(xk)

∗F ′(xk)sk +O(∥sk∥2)

and using (3.11) yields

(F ′′(xk)sk)
∗rk = (F ′(xk+1)− F ′(xk))

∗rk+1 + F ′(xk)
∗(rk+1 − rk)− F ′(xk)

∗F ′(xk)sk +O(∥sk∥2)

⇔ (F ′′(xk)sk)
∗rk = (F ′(xk+1)− F ′(xk))

∗rk+1 +O(∥sk∥2).

Consequently, we will consider the secant equation

(F ′′(xk)sk)
∗rk = (F ′(xk+1)− F ′(xk))

∗rk+1.(3.12)

Hence, this equation defines the step sk to be taken. We now analyze the relationship between the standard
secant equation used for unstructured QN methods and the modified secant equation (3.12).
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Remark 3.1. Assume that the secant equation for J , i.e.,

(3.13) J ′′(xk)sk = J ′(xk+1)− J ′(xk)

is used to define sk. Hence,

J ′′(xk)sk = J ′(xk+1)− J ′(xk)

= F ′(xk+1)
∗ (F (xk+1)− yδ

)
− F ′(xk)

∗ (F (xk)− yδ
)

= (F ′(xk+1)− F ′(xk))
∗ (F (xk+1)− yδ

)
+ F ′(xk)

∗ (F (xk+1)− F (xk)) .

By the Taylor theorem in Banach spaces and the Lipschitz continuity of F ′ we know

F (xk+1)− F (xk) = F ′(xk)sk + Eksk with ∥Ek∥ ≤ LF ′∥sk∥ ≤ 2LF ′µk,(3.14)

which yields

J ′′(xk)sk = (F ′(xk+1)− F ′(xk))
∗ (F (xk+1)− yδ

)
+ F ′(xk)

∗F ′(xk)sk + F ′(xk)
∗Eksk

and thus

J ′′
k (xk)sk = (F ′(xk+1)− F ′(xk))

∗ (F (xk+1)− yδ
)
+ F ′(xk)

∗F ′(xk)sk + F ′(xk)
∗Eksk + αksk.

With identity (3.3) we obtain

(F ′′(xk)sk)
∗rk = (F ′(xk+1)− F ′(xk))

∗rk+1 + F ′(xk)
∗Eksk.(3.15)

Equation (3.15) describes the relation to the modified secant condition (3.12), as equation (3.15) consists of
the same components as equation (3.12) but with the additional error term F ′(xk)

∗Eksk on the right-hand
side.

Remark 3.2. Define for sk fulfilling (3.13)

yk := (F ′(xk+1)− F ′(xk))
∗rk+1(3.16)

and

C(x) := F ′(x)∗F ′(x).(3.17)

For ζk as defined in (2.22), we obtain due to Remark 3.1 that

(3.18) ζk = yk + C(xk)sk + F ′(xk)
∗Eksk.

Hence, equation (3.18) yields that BJ
k can be expressed as

(3.19) BJ
k = C(xk) +Ak + F ′(xk)

∗Ek,

where Ak ≈ (F ′′(xk−1)(·))∗rk−1 has to be determined such that

(3.20) Aksk−1 = yk−1

holds.

Since F is twice continuously Fréchet differentiable, J ′′(x∗) ∈ L(X) \ {0} is symmetric. Therefore,
F ′(x∗)∗F ′(x∗) is symmetric and (F ′′(x∗)(·))∗

(
F (x∗)− yδ

)
is symmetric but not necessarily positive.

The Powell-symmetric Broyden update forces symmetry, without assuming positivity of the operators,
while being numerically more stable than the symmetric-rank-1 update, as the PSB update does not need
a well-definedness condition to prevent the denominator from being zero. Consequently, we will use the
PSB update. For the derivation of our theory we will employ the following assumptions:

Assumptions 3.3.
A1 The operator F ′ is Lipschitz continuous with Lipschitz constant LF ′ > 0 and the operator C

defined in (3.17) is Lipschitz continuous with Lipschitz constant LC > 0.
A2 The operator J ′ : U ⊂ X → X is Lipschitz continuously Fréchet differentiable in U , i.e., J ′′ is

Lipschitz continuous with Lipschitz constant LJ′′ > 0.
A3 The operator F ′ is bounded on U by M > 0.
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Note that J ′ being Lipschitz continuously Fréchet differentiable implies that J ′
k is Lipschitz continuously

Fréchet differentiable for all k ∈ N since Rαk
∈ C∞(X,R) for all k ∈ N. Furthermore, if there exists a

minimizer x∗ of (3.6) in a convex and compact set D ⊂ U , there exists a projection y in the range of F with
minimal distance to yδ, due to F being continuous, i.e., F (D) is compact. Note, that in general this y might
not be unique. Using the operator C defined by (3.17) in Remark 3.2, the regularized structure-exploiting
PSB (RSE-PSB) update is given by

Bk := C(xk) +Ak + αkI,(3.21)

where Ak is updated with the PSB update rule, i.e.,

Ak+1 = Ak +
(yk −Aksk)⊗ sk + sk ⊗ (yk −Aksk)

⟨sk, sk⟩
− ⟨yk −Aksk, sk⟩sk ⊗ sk

⟨sk, sk⟩2
.(3.22)

Remark 3.4. From Remark 3.2 we deduce that for the secant condition (2.23) BJ
k is given by

(3.23) BJ
k = Bk + F ′(xk)

∗Ek − αkI.

Using our update (3.21) together with (3.22), we just approximate a part of the Hessian operator, namely
(F ′′(xk)(·))∗

(
F (xk)− yδ

)
using the PSB update with a modified secant condition.

Remark 3.5. To verify the BDP for the RSE-PSB update, we need an additional assumption on the regu-
larization parameter. Since F ′ is bounded by M > 0 and Ek is bounded by LF ′∥sk∥ for all k ∈ N due to
(3.14), we know

∥F ′(xk)
∗Ek∥ ≤ MLF ′∥sk∥.

We will now assume that there exists ĉ, c̃ > 0 such that the regularization parameters satisfies

(3.24)
{

|αk+1 − αk| ≤ ĉµk ∀k ∈ N
∥αk+1I − F ′(xk)

∗Ek∥ ≤ c̃µk ∀k ∈ N
with µk defined as in (2.2). A sufficient condition for the regularization parameter to satisfy the second
inequality in (3.24) is the assumption that there exists some c′ such that

(3.25) αk+1 ≤ c′µk ∀k ∈ N

and choosing c̃ = c′ + 2MLF ′ . The first inequality in (3.24) can be viewed as the necessity that the
regularization parameters form a converging sequence, where additionally the speed of convergence is
dictated by µk or the iteration step, since ∥sk∥ ≤ 2µk. Note that the sufficient condition (3.25) can be
verified a-priori.

Lemma 3.6 (BDP for the RSE-PSB method). Let x∗ ∈ U , Assumptions 3.3 hold and let the regularization
parameters satisfy condition (3.24). Then, the RSE-PSB method, i.e., Bk as in (3.21), where Ak is updated
according to (3.22) using (1.3) and (3.16), satisfies the following BDP

∥Bk+1 − J ′′(x∗)∥ ≤ ∥Bk − J ′′(x∗)∥+ cµk(3.26)

with c = 2LC + 2LJ′′ + ĉ+ 4MLF ′ > 0. Furthermore, B−1
k exists and {∥Bk∥} as well as {

∥∥B−1
k

∥∥} are
bounded.

Proof. Due to Remark 3.2 and Remark 3.4 we conclude that

ζk −BJ
k sk = yk −Aksk

and therefore

Bk+1 = C(xk+1) +Ak+1 + αk+1I

= C(xk+1) + αk+1I +Ak +
(yk −Aksk)⊗ sk + sk ⊗ (yk −Aksk)

⟨sk, sk⟩
− ⟨yk −Aksk, sk⟩sk ⊗ sk

⟨sk, sk⟩2

= C(xk+1)− C(xk) + αk+1I − F ′(xk)
∗Ek

+BJ
k +

(ζk −BJ
k sk)⊗ sk + sk ⊗ (ζk −BJ

k sk)

⟨sk, sk⟩
− ⟨ζk −BJ

k sk, sk⟩sk ⊗ sk
⟨sk, sk⟩2

= C(xk+1)− C(xk) + αk+1I − F ′(xk)
∗Ek +BJ

k+1,
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where the last equality is obtained using identity (2.24). Due to the Lipschitz continuity of C and condition
(3.24), we obtain ∥∥Bk+1 −BJ

k+1

∥∥ ≤ LC∥sk∥+ c̃µk.(3.27)

Now, using Lemma 2.6 and using specifically inequality (2.28) yields

∥Bk+1 − J ′′(x∗)∥ −
∥∥Bk+1 −BJ

k+1

∥∥ ≤
∥∥Bk+1 − J ′′(x∗)−Bk+1 +BJ

k+1

∥∥
=
∥∥BJ

k+1 − J ′′(x∗)
∥∥

≤
∥∥BJ

k − J ′′(x∗)
∥∥+ 2LJ′′µk.

By using identity (3.23), the condition(3.24) and the estimates (3.27) as well as (3.14), we obtain

∥Bk+1 − J ′′(x∗)∥ ≤
∥∥BJ

k − J ′′(x∗)
∥∥+ ∥∥Bk+1 −BJ

k+1

∥∥+ 2LJ′′µk

≤
∥∥BJ

k − J ′′(x∗)
∥∥+ (2LC + 2LJ′′ + c̃)µk

≤ ∥Bk − J ′′(x∗)∥+ ∥F ′(xk)
∗Ek − αk+1I∥+ |αk+1 − αk|+ (2LC + 2LJ′′ + c̃)µk

≤ ∥Bk − J ′′(x∗)∥+ (2LC + 2LJ′′ + ĉ+ 2c̃)µk.(3.28)

□

Motivated by Theorem 2.1, we now prove local Q-linear convergence of the regularized structure-exploiting
PSB method to a minimizer of (3.1).

Theorem 3.7 (Local Q-linear convergence of the RSE-PSB method). Let x∗ ∈ U be a minimizer of (3.1),
Assumptions 3.3 hold, {αk}k∈N ⊂ R+ satisfy the condition (3.24) for some ĉ > 0 and c̃ > 0. Let µk be
defined as in (2.2). Furthermore, let B0 be boundedly invertible with bound b > 0, ν ∈ (0, 1) be arbitrarily
given and assume that B0 as well as x0 satisfy

(3.29) ∥x0 − x∗∥ < ξmax, ∥B0 − J ′′(x∗)∥ < amax,

where ξmax and amax are chosen according to Lemma 2.2 or Lemma 2.3 and c = 2LC+2LJ′′+ĉ+2c̃ > 0.
Then, the sequence {xk} obtained by the RSE-PSB method, i.e., Bk as in (3.21), where Ak is updated
according to (3.22) using (1.3) and (3.16), is well-defined and converges Q-linearly to x∗. Furthermore,
the sequences {∥Bk∥} and {∥(Bk)

−1∥} are uniformly bounded.

Proof. For any ξ = ξ(ν) satisfying 0 < ξ < ξmax and any a = a(ν) satisfying 0 < a < amax, where
ξmax and amax are chosen according to Lemma 2.2 or Lemma 2.3, the two inequalities (2.7) and (2.8) hold.
Hence, we can use Lemma 3.6 to obtain the BDP

∥Bk+1 − J ′′(x∗)∥ ≤ ∥Bk − J ′′(x∗)∥+ cµk,(3.30)

where c = 2LC + 2LJ′′ + ĉ + 2c̃ > 0. The rest of the proof is analogous to the proof of Theorem 2.1,
keeping in mind that J ′

k(xk) = J ′(xk). □

We now prove local super-linear convergence of the regularized structure-exploiting PSB method. Prelim-
inarily, we define

(3.31) Z∗ := (F ′′(x∗)(·))∗(F (x∗)− yδ).

Theorem 3.8 (Local Q-super-linear convergence of the RSE-PSB method). Let the assumptions of Theo-
rem 3.7 be satisfied. Let F ′′ be Lipschitz continuous in the first component with respect to the Hilbert–Schmidt
norm, i.e., there exists LF ′′ > 0 such that for all x, x̃ ∈ Bξmax(x

∗) it holds that

∥F ′′(x)(·)− F ′′(x̃)(·)∥HS ≤ ξmaxLF ′′∥x− x̃∥.

Suppose that F is Lipschitz continuous with respect to the Hilbert–Schmidt norm as well and that

(3.32) A0 − Z∗

is a Hilbert–Schmidt operator. Then, the sequence {xk} obtained by the RSE-PSB method, i.e., Bk as
in (3.21), where Ak is updated according to (3.22) using (1.3) and (3.16), is well-defined and converges
Q-super-linearly to x∗. Furthermore, the sequences {∥Bk∥} and {∥(Bk)

−1∥} are uniformly bounded.
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Proof. First we apply Theorem 3.7 to obtain that the sequence {xk} converges Q-linearly to x∗. We want
to apply the Dennis–Moré condition for generalized equations in Banach spaces (see Theorem 3 in [13]) to
obtain super-linear convergence of {xk} to x∗. Using Remark 3.1, the fundamental theorem of calculus in
Banach spaces, the Lipschitz continuity of J ′′ on U and condition (3.24) yields

∥(Bk+1 − J ′′(x∗))sk∥ = ∥J ′(xk+1)− J ′(xk)− J ′′(x∗)sk + (αk+1I − F ′(xk+1)
∗Ek+1)sk∥

≤
∥∥∥∥∫ 1

0

(J ′′(xk + τsk)− J ′′(x∗))sk dτ

∥∥∥∥+ (c̃+ ĉ)µk+1∥sk∥

≤ ∥sk∥
∫ 1

0

∥J ′′(xk + τsk)− J ′′(x∗)∥ dτ + (c̃+ ĉ)µk+1∥sk∥

≤ LJ′′∥sk∥
(∫ 1

0

τ∥xk+1 − x∗∥ dτ +

∫ 1

0

(1− τ)∥xk − x∗∥ dτ
)

+ (c̃+ ĉ)µk+1∥sk∥
≤ LJ′′∥sk∥µk + (c̃+ ĉ)µk+1∥sk∥.

Therefore,

∥(Bk − J ′′(x∗))sk∥ ≤ ∥(Bk+1 −Bk)sk∥+ ∥(Bk+1 − J ′′(x∗))sk∥
≤ ∥Bk+1 −Bk∥∥sk∥+ (LJ′′µk + (c̃+ ĉ)µk+1)∥sk∥.(3.33)

Using the Lipschitz continuity of C and the condition (3.24) on the regularization parameter yields

lim
k→∞

∥(Bk+1 − J ′′(x∗))sk∥
∥sk∥

≤ lim
k→∞

(∥Bk+1 −Bk∥+ LJ′′µk + (c̃+ ĉ)µk+1)

≤ lim
k→∞

(∥Ak+1 −Ak∥+ LC∥sk∥+ LJ′′µk + ĉµk + (c̃+ ĉ)µk+1) .(3.34)

The last four terms tend to 0 as k increases to infinity. Due to Corollary 16.9 in [27] we know that the
operator norm is less than or equal to the Hilbert-Schmidt norm, i.e.,

∥Ak+1 −Ak∥ ≤ ∥Ak+1 −Ak∥HS .(3.35)

Therefore, we now prove that

lim
k→∞

∥Ak+1 −Ak∥HS = 0.(3.36)

Consider the convex set

Dk := {T ∈ L(X,Y ) | T is symmetric and Tsk = yk} .

From similar arguments as in the proof of Theorem 4.8 in [2], we observe that Dk is closed. By construc-
tion, the PSB update for approximating (F ′′(xk)(·))∗(F (xk)−yδ) satisfies the secant condition (3.20) and
thus Ak+1 ∈ Dk. Using Proposition 4.3 in [30], we have that the PSB update (2.24) is the solution to the
variational problem

(3.37) min
T∈Dk

∥T −Ak∥HS .

Arguing as in the proof of Theorem 4.8 in [2], we obtain that Ak+1 is the projection of Ak onto the closed
convex set Dk, which is firmly non-expansive, see Proposition 4.16 in [3], meaning that for every T ∈ Dk

one has

∥PDk
(Ak)− PDk

(T )∥2HS + ∥(I − PDk
)(Ak)− (I − PDk

)(T )∥2HS ≤ ∥Ak − T∥2HS ,

and therefore, for all T ∈ Dk,

(3.38) ∥Ak+1 − T∥2HS + ∥Ak+1 −Ak∥2HS ≤ ∥Ak − T∥2HS .

Define

(3.39) Tk :=

∫ 1

0

(F ′′(xk + tsk)(·))∗(F (xk+1)− yδ) dt .
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Since taking the adjoint is a linear and continuous operation, we obtain by applying the fundamental theo-
rem of calculus that

Tksk = (F ′(xk+1)− F ′(xk))
∗(F (xk+1)− yδ) = yk.(3.40)

Hence, there exists a K > 0 such that

∥Tk − Z∗∥HS ≤
∫ 1

0

∥(F ′′(xk + tsk)(·))∗(F (xk+1)− F (x∗))∥HSdt

+

∫ 1

0

∥(F ′′(xk + tsk)(·)− F ′′(x∗)(·))∗(F (x∗)− yδ)∥HSdt

≤ MF ′′∥F (xk+1)− F (x∗)∥HS + δHS

∫ 1

0

∥F ′′(xk + tsk)(·)− F ′′(x∗)(·)∥HSdt

≤ MF ′′∥xk+1 − x∗∥+ δHSξmaxLF ′′

2
(∥xk+1 − x∗∥+ ∥xk − x∗∥)

≤ Kµk,(3.41)

which implies that Tk ∈ Dk and ∥Tk −Z∗∥HS converges to zero, since xk converges to x∗. As A0−Z∗ is
a Hilbert–Schmidt operator, it follows inductively that Ak−Z∗ is a Hilbert–Schmidt operator for all k ∈ N,
as only a rank-2 operator is added to obtain Ak+1 − Z∗. Similarly to Lemma 3.6 we use the orthogonal
projector defined in Proposition 2.5 to reformulate the distance between Ak+1 and Z∗ and obtain

Ak+1 − Z∗ = P (Ak − Z∗)P +
sk ⊗ (yk − Z∗sk)

⟨sk, sk⟩
P +

(y − Z∗sk)⊗ sk
⟨sk, sk⟩

.

Using the triangle inequality in the Hilbert-Schmidt norm and Proposition 2.5 we have

∥Ak+1 − Z∗∥HS ≤ ∥Ak − Z∗∥HS + 2
∥yk − Z∗sk∥HS

∥sk∥
.(3.42)

By the fundamental theorem of calculus and the Lipschitz continuity of F ′′ on U we obtain similarly to
inequality (3.41)

∥yk − Z∗∥HS ≤ K∥sk∥µk.

Therefore,

(3.43) ∥Ak+1 − Z∗∥HS ≤ ∥Ak − Z∗∥HS + 2Kµk.

Due to the linear convergence of xk to x∗, we know

∥xk+1 − x∗∥ ≤ ν∥xk − x∗∥

for all k ∈ N, where ν ∈ (0, 1). Thus,

(3.44) ∥Ak+1 − Z∗∥HS ≤ ∥Ak − Z∗∥HS + 2K∥xk − x∗∥

yielding that for all m > n, we have

∥Am − Z∗∥HS ≤ ∥An − Z∗∥HS + 2K

m−1∑
k=n

∥xk − x∗∥ ≤ ∥An − Z∗∥HS + 2K

∞∑
k=n

νk∥x0 − x∗∥

≤ ∥An − Z∗∥HS + 2K
νn

1− ν
∥x0 − x∗∥.(3.45)

Consequently, ∥Ak − Z∗∥HS is a Cauchy sequence, and thus convergent. Furthermore, we know that Tk

defined in (3.39) converges to Z∗. Therefore, ∥Ak − Tk∥HS and ∥Ak+1 − Tk∥HS converge to the same
limit. Due to (3.38) we have that

lim
k→∞

∥Ak+1 −Ak∥2HS ≤ lim
k→∞

(
∥Ak − Tk∥2HS − ∥Ak+1 − Tk∥2HS

)
= 0

and hence,
lim
k→∞

∥Ak+1 −Ak∥HS = 0,

which concludes the proof. □
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As {∥Bk∥}k∈N is a bounded sequence, we know that

∥Ak∥ ≤ ∥Bk∥+ ∥C(xk)∥+ αk

yielding that {∥Ak∥}k∈N is a bounded sequence due to the boundedness of F ′ on D and condition (3.24).
Applying the regularized structure-exploiting PSB method can also be interpreted as applying a gradient
step to

(3.46) Ĵk(x) :=
1

2

∥∥F ′(xk)(x− xk) + F (xk)− yδ
∥∥2 + 1

2
⟨x− xk, Ak(x− xk)⟩+

αk

2
∥x− xk∥2.

The first term reflects the idea of Newton’s method, namely to linearize the non-linear operator equation
F (x) = yδ around an approximate solution xk, yielding the linearized equation

F ′∗(xk)(x− xk) = yδ − F (xk).

Note, that the linearized equation is still ill-posed. The second term of (3.46) is bounded due to {∥Ak∥}k∈N
being bounded and can therefore be interpreted as a term that controls the distance to the point around which
the linearization of the non-linear operator equation was performed. Lastly, the third term of (3.46) is the
standard iterated Tikhonov regularization term used for deriving the LM method. Furthermore, the LM
update can be obtained by applying a gradient step to

J̃k(x) :=
1

2

∥∥F ′∗(xk)(x− xk) + F (xk)− yδ
∥∥2 + αk

2
∥x− xk∥2.

For the sequence {xk}k∈N generated by the regularized structure-exploiting PSB method in Hilbert spaces,
i.e., Bk as in (3.21), where Ak is updated according to (3.22) using (1.3) and (3.16), one obtains

J(x∗) = lim
k→∞

Jk(xk+1) = lim
k→∞

Ĵk(xk+1) = lim
k→∞

J̃k(xk+1) +
1

2
⟨xk+1 − xk, Ak(xk+1 − xk)⟩.

4. A GLOBALIZATION APPROACH

In order to computationally solve the inverse problem, one can follow the optimize-then-discretize ap-
proach, meaning that we have to discretize the proposed methods after formulating them in function spaces.
On the other hand, one can use the discretize-then-optimize approach where we discretize the problem set-
ting, i.e., the forward operator and the corresponding spaces, first and optimize afterwards. In the latter
approach, easy access to the first derivative of the forward operator F is provided by Algorithmic Differ-
entiation (AD). Developed over the last few decades, this method offers an outstanding way to provide
derivative information for a given code segment [18]. The central concept is that the computation of a
discretized operator can be decomposed into a finite sequence of elementary operations such as addition,
multiplication, and elementary function calls. By calculating the derivatives with respect to the arguments
of these operations, which can be easily computed, one has the necessary tool to systematically apply the
chain rule in order to arrive at the derivatives of the entire sequence of operations with respect to the input
variables. An advantage of this method is that the derivative information provided is as accurate as possible
in a computationally measurable sense, i.e., to machine precision. Based on the starting point, a distinction
can be drawn between the forward mode and the reverse mode of AD. In our context, the forward mode is
similar to a sensitivity approach, while the reverse mode is a discrete analogue of the adjoint-based calcu-
lation of gradients. As any Newton-type method is highly dependent on the quality of the first derivative in
terms of consistency and high precision [17], we explicitly recommend using AD tools in the discretized
framework.
For the discretize-then-optimize approach we have X = Rn and Y = Rm, where m,n ∈ N. Consequently,
we are interested in regularized non-linear least-squares problems with the forward function F : Rn → Rm

being twice continuously differentiable. We define analogously to (3.12) the secant condition

(4.1) yk = (F ′(xk+1)− F ′(xk))
T rk+1

and

C(xk) := F ′(xk)
TF ′(xk)(4.2)

Z(xk) := F ′′(xk)
T
(
F (xk)− yδ

)
.(4.3)
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Next, we discuss the PSB update in the finite dimensional setting, which belongs to the general class of
symmetric secant updates for QN methods (cf. [14]) and can be represented by

(4.4) Ak+1 = Ak +
(yk −Aksk)v

T
k + vk(yk −Aksk)

T

vTk sk
− (yk −Aksk)

T sk
(vTk sk)

2
vkv

T
k .

Therein, the vector vk ∈ Rn is a scaling vector that can be a function of sk, yk, and Ak. In the PSB case,
we set vk = sk.

Corollary 4.1 (Local convergence and convergence rates). Let the assumptions of Theorem 3.7 be satisfied.
Then, the sequence {xk} obtained by the regularized structure-exploiting PSB method, i.e., Bk as in (3.21),
where Ak is updated according to (4.4) using (1.3) and (4.1), is well-defined and converges Q-super-linearly
to x∗. Furthermore, the sequences {∥Bk∥} and {∥(Bk)

−1∥} are uniformly bounded.

Proof. As Rn is a finite dimensional separable Hilbert space for all n ∈ N, Theorem 3.7 guarantees
that the sequence {xk}k∈N obtained by the regularized structure-exploiting PSB method is well-defined
and converges linearly to x∗. Since all operators are now finite-rank, they are Hilbert-Schmidt operators,
especially A0−Z(x∗). Furthermore, all norms on a finite dimensional vector space are equivalent, yielding
that Assumption A2 holds with respect to the Hilbert–Schmidt norm. Then, Theorem 3.8 implies Q-super-
linear convergence to x∗. □

On the one hand, it is necessary to regularize the ill-posed problem and thus obtain a well-posed problem,
while on the other hand, one is usually interested in obtaining a globally convergent algorithm that is
resistant to the quality of the initial guess. Moreover, a common difficulty in solving inverse problems
in practice is the specific choice of the regularization parameter. Therefore, we want to assess whether
we can address these two issues by controlling the regularization parameter in such a way that it leads to
globalization.
To obtain global convergence, QN methods are usually combined with a line search or trust region method.
Kanzow and Steck [23] have already conducted extensive studies on this topic, which serve as a basis for
us. They have developed a globalization strategy in which the Hessian approximation is regularized and
the regularization parameter is controlled by combining some of the respective advantages of line search
and trust region methods. Therefore, our framework uses the results of [23] to improve robustness by
regularization to stabilize the solution process for a better handling of poor initial guesses.

Remark 4.2. Note that this globalization is also applicable for the LM method by simply setting Ak = 0
for all k ∈ N0.

We now proceed with analyzing the convergence of Algorithm 1 both in the PSB case and in the LM case.

Algorithm 1 Global regularized structure-exploiting QN (GRSE)

Require: A0 ∈ Rn×n;α0, η > 0;x0 ∈ Rn; g0 = ∥∇J(x0)∥; yδ ∈ Rm; c, p, θ ∈ (0, 1), σ > 1, k = 0
while gk ≥ η do

Evaluate the forward function F (xk), compute its derivative F ′(xk), the residual rk = F (xk)− yδ

and the gradient ∇J(xk) = F ′(xk)
T rk.

Solve for sk:

(4.5)
(
F ′(xk)

TF ′(xk) +Ak + αkI
)
sk = −∇J(xk)

Compute predk = αk

2 ∥sk∥2 − 1
2∇J(xk)

T sk, aredk = J(xk)− J(xk + sk) and ρk = aredk
predk

if Eq. (4.5) admits no solution or ρk ≤ c or predk ≤ pgk∥sk∥: then
Set αk+1 = σαk, xk+1 = xk and Ak+1 = Ak (unsuccessful step)

else
Set xk+1 = xk + sk, αk+1 = θαk and compute gk+1 = ∥∇J(xk+1)∥ (successful step)
Compute Ak+1 according to (4.4) with (4.1) and vk = sk.

end if
k = k + 1

end while
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Theorem 4.3 (Global Convergence). Let V ⊂ X be bounded and let the sequence {xk}k∈N generated by
Algorithm 1 be a subset of V , where the termination criterion is neglected, i.e., η = 0. Let J be bounded
from below, C be bounded, and Z be Lipschitz continuous on V . Then, for the sequence {xk}k∈N generated
by Algorithm 1 it holds that

lim inf
k→∞

∥∇J(xk)∥ = 0.

Furthermore, if ∇J is uniformly continuous on V , then it holds for the sequence {xk}k∈N generated by
Algorithm 1 that

lim
k→∞

∥∇J(xk)∥ = 0.

Proof. Preliminarily, we prove that Algorithm 1 performs infinitely many successful steps. Therefore, we
assume the contrary, namely that there exists k0 ∈ N such that all steps with index k ≥ k0 are unsuccessful.
This yields that αk → ∞ for k → ∞ as well as xk = xk0 for all k ≥ k0. Consequently,

C(xk) +Ak = F ′(xk)
TF ′(xk) +Ak = F ′(xk0

)TF ′(xk0
) +Ak0

= C(xk0
) +Ak0

for all k ≥ k0. Thus, for sufficiently large k ≥ k0 we know that C(xk0) +Ak0 +αkI is invertible and that

lim
k→∞

(C(xk0
) +Ak0

+ αkI) s

∥(C(xk0) +Ak0 + αkI) s∥
=

s

∥s∥
.

This implies that sk → 0 for k → ∞ and

lim
k→∞

sk
∥sk∥

= − ∇J(xk0
)

∥∇J(xk0)∥
.

Observing (C(xk0
) +Ak0

+ αkI)sk = −∇J(xk0
) for k ≥ k0 yields that

lim
k→∞

αk∥sk∥ = ∥∇J(xk0)∥.

With this, arguing analogously as in the proof of Lemma 2 in [23] leads to a contradiction. Hence, the set
of indices S ⊂ N of successful steps of Algorithm 1 has infinite cardinality. Now, as every step k ∈ S is
successful, we have for every k ∈ S that

J(xk)− J(xk+1) ≥ c predk ≥ pc∥∇J(xk)∥∥sk∥.
We assume for the sake of contradiction that

(4.6) lim inf
k→∞

∥∇J(xk)∥ > 0,

which yields that there exist k0 ∈ N and ϵ > 0 such that ∥∇J(xk)∥ ≥ ϵ for all k ≥ k0. As J is bounded
from below and xk is not updated in unsuccessful steps, we obtain

∞ >
∑
k∈N

(J(xk)− J(xk+1)) =
∑
k∈S

(J(xk)− J(xk+1)) ≥ pcϵ
∑

k∈S,k≥k0

∥sk∥.

This particularly means that
∑

k∈S,k≥k0
∥sk∥ < ∞. Since

∑
k∈S,k<k0

∥sk∥ is bounded as it is a finite
sum, we conclude that there exists a constant MS > 0 such that∑

k∈S

∥sk∥ = MS < ∞.

Thus, sk →S 0 for k → ∞. By assumption Z is Lipschitz continuous on V . Hence, Z is bounded on V
and Lemma 2 in [15] is applicable, which yields that there exist constants d1, d2 ≥ 0 such that

∥Ak+1∥ ≤ d1 + d2
∑
j∈S

∥sj∥.(4.7)

For every step k ∈ S we have (C(xk) + Ak + αkI)sk = −∇J(xk). By denoting the bound of C with
MC > 0, we obtain

∥∇J(xk)∥ ≤ ∥C(xk)∥∥sk∥+ ∥Ak∥∥sk∥+ αk∥sk∥
≤ (MC + d1 + d2MS)∥sk∥+ αk∥sk∥.

Therefore, every subsequence of {αk}k∈S must be unbounded, since otherwise ∥∇J(xkl
)∥ converges to

0 for l → ∞ as skl
→S 0 for l → ∞, which violates (4.6). Hence one obtains αk → ∞, meaning that
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Algorithm 1 also performs infinitely many unsuccessful steps. With this, arguing now analogously as in
the proof of Theorem 1 in [23] yields a contradiction to (4.6). Consequently, lim infk→∞ ∥∇J(xk)∥ = 0.
If ∇J is uniformly continuous on V , arguing in the same way as in the proof of Theorem 2 in [23], it
follows that limk→∞ ∥∇J(xk)∥ = 0, since the argumentation therein does not distinguish specifically
between successful and highly successful steps.
If the LM update is chosen, {Ak}k∈N is a sequence of zero matrices and C is bounded on V as depicted
before, yielding boundedness of {C(xk) + Ak}k∈N. Hence, we can directly apply Lemma 1, Lemma 2,
Theorem 1 and Theorem 2 in [23]. □

Remark 4.4. Theorem 4.3 ensures that, given any η > 0, Algorithm 1 terminates with ∥∇J(xk)∥ ≤ η after
finitely many iterations.

5. NUMERICAL EXPERIMENT

In this section, we analyze our algorithms by applying them to a suitable parameter identification problem
using a parameter-dependent PDE model and additional observations or measurements. Furthermore, we
may also consider F as a vector-valued forward operator, such that F ′′ would be a 3-tensor-valued operator,
which however results in a matrix-valued operator when applied to the residual. Specifically, we want to
identify the material parameters of a piezoelectric specimen. Piezoelectric components are widely used in
electronic devices, ranging from everyday items such as electric toothbrushes and headphones to advanced
medical and industrial applications such as ultrasound imaging and fuel injectors. Therefore, an accurate
characterization of the material parameters is crucial for the design and simulation of reliable sensors and
actuators.
As geometry, we consider a piezoelectric ring with an outer radius of 6.35 mm, an inner radius of 2.6 mm,
and a thickness of 1 mm. To reduce the dimension of the considered material parameter matrices and the
underlying PDE model and thus to reduce computational effort, we exploit the inherent rotational symmetry
and transform the ring into a rectangular domain by adopting cylindrical coordinates rather than Cartesian
coordinates, where the z-axis is selected as the axis of rotation. Hence, we consider Ω as a rectangle
with vertices (2.6, 0), (6.35, 0), (6.35, 1), (2.6, 1), where coordinates are given in mm. Consequently, we
obtain a Lipschitz domain Ω ⊂ R2 and assume that its boundary can be represented as the disjoint union
∂Ω := Γa∪̇Γ0∪̇Γn, where Γa is the boundary segment electrically excited with a spatially independent
(equally distributed) excitation signal, Γ0 is the grounded boundary segment, and Γn is the remaining part
of ∂Ω. We introduce the state space

W :=
(
H2

B(Ω,C2)×H2
0,Γ(Ω,C)

)
,

where

∇ :=

(
∂
∂r
∂
∂z

)
and B :=


∂
∂r 0
1
r 0
0 ∂

∂z
∂
∂z

∂
∂r

 .

It coincides with the solution space of the following Fourier-transformed PDE-system

∀ω ∈ W : −ρω2d1û− BT
(
d2c

EBû+ eT∇ϕ̂0

)
= BTeT∇χ in Ω(5.1)

−∇ ·
(
eBû− εS∇ϕ̂0

)
= −∇ · εS∇χ in Ω(5.2)

n ·
(
eBû− εS∇ϕ̂0

)
= n · εS∇χ on Γn(5.3)

NT
(
d2c

EBû+ eT∇ϕ̂0

)
= −NTeT∇χ on ∂Ω,(5.4)

where s = (û, ϕ̂0) is the solution of the system, ρ ∈ R+, d1 := 1−iαω , d2 := 1+iωβ. We denote the space
of angular frequencies with W ⊂ R+, |W| < ∞. Furthermore, n is the normal element corresponding
to ∇ and N the normal element corresponding to B. Additionally, we included the Rayleigh damping
model, with α, β ∈ R+

0 as Rayleigh damping parameters. The mixed Dirichlet boundary conditions,
needed to model the excitation behavior, were homogenized using the Dirichlet lift ansatz with Dirichlet
lift function χ(ω), see [24]. We assume that the piezoelectric coupling parameter e is unknown and has
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to be reconstructed, while the elasticity parameter cE and the permittivity εS are known. The piezoelectric
coupling parameter can be described by the matrix

(5.5) e :=

(
0 0 0 e15
e31 e31 e33 0

)
.

Consequently, we define the parameter space X

X :=

{
p ∈ R3 : p1 = e15, p2 = e31, p3 = e33

}
.

and the piezoelectric model operator Aω : X ×W → W ∗ for each ω ∈ W via

⟨Aω(p, s), (v, w)⟩W∗,W := 2π

∫
Ω

(
− d1ρω

2ûTv +
(
d2c

EBû+ eT∇ϕ̂0

)T
Bv

+
(
eBû− εS∇ϕ̂0

)T
∇w + (eT∇χ)TBv − (εS∇χ)T∇w

)
r d(r, z) .(5.6)

To recover information on the parameter p, we need observed data with respect to the state s and the
parameter. Hence, we define the charge pulse approximation, see Chapter 5.1 in [29], Qω : X ×W → C,

Qω(p, z) = 2π

∫
Γa

r
(
e(θ)Bû− εS(θ)∇

(
ϕ̂0 + χ

))
· n d(r, z)(5.7)

for each ω ∈ W . We assume that ∥Qω∥C > 0, which is physically motivated. Next, we define the
observation operator Oω : X ×W → R for each ω ∈ W as

Cω(p, z) = log (∥Qω∥C) .(5.8)

To model the inverse problem, we employ the reduced approach, meaning that we have to eliminate the
model by introducing a so-called parameter-to-state map Sω for each ω ∈ W , which maps each parameter
to the corresponding solution of the underlying PDE model (5.1)-(5.4). As observed data is usually con-
taminated with noise, we consider noisy data yδ ∈ R|W|. Then, the forward operator F : X → R|W| is
defined by

F (p) = (Cω(p, Sω(p)))ω∈W .

Consequently, we want to identify p ∈ X such that

(5.9) F (p) = yδ.

Using Proposition 1 in [24], we know that for each ω ∈ W , Aω is well-defined, bounded, bijective, and
continuously Fréchet differentiable on X × W , Sω is well-defined, non-linear, and continuously Fréchet
differentiable on X . Due to the affine linearity of Aω with respect to s and p, we conclude that Aω is
three times continuously Fréchet differentiable on X × W . Using the implicit function theorem, Sω is
three times continuously Fréchet differentiable on X . Due to its affine linear structure in the state, we
conclude that Qω is also three times continuously Fréchet differentiable on X ×W . Hence, F is Lipschitz
continuously Fréchet differentiable. Since F is a mapping between finite dimensional Hilbert spaces, the
Hilbert-Schmidt and symmetry assumptions are naturally satisfied.
To implement and numerically solve the inverse problem, we employ a discretize-then-optimize approach.
For this purpose, the full problem setting is discretized in advance to take advantage of AD. In particular, we
use a classical finite element method (FEM), realized with the finite element tool FEniCS [1] in DOLFIN
version 2019.2.0.dev0, using AD via the dolfin adjoint [28] library of FEniCS in version 2019.1.0. We use
h = 150µm as the FEM element size and a polynomial degree of g = 3. Furthermore, we use an excitation
signal ϕ̂e = 0.03 V and true material parameters and damping parameters as in [16], where we perform
any numerical realizations in kHz. Note that specifying the Dirichlet lift function χ used for stating the
system (5.1)-(5.4) is not necessary and can be avoided in practice, as it is possible to directly implement
mixed Dirichlet conditions in FEniCS. We consider the frequency and angular frequency domain

F := {f ∈ N : f ≡ 0 mod 5, 50 ≤ ω < 4550}
W := {ω = 2πf ∈ R+ : f ∈ F}.(5.10)
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To incorporate potential model errors, we generate the noisy observation data using the charge pulse ap-
proximation, see Chapter 5.1 in [29], i.e., Qω : X ×W → C,

Qω(p, s) = 2π

∫
Ω

r
(
eBû− εS∇ϕ̂

)
∇ϕ̂ d(r, z)(5.11)

and contaminate this simulated data additively with uniformly distributed random noise with a noise level
of 5%. We employ the hyperparameters θ = 0.5, α0 = 10−4, σ = 4, c = p = 10−4 and η = 7e − 5. As
initial Quasi-Newton matrices for each block, we use F ′′(p0)

∗ (F (p0)− yδ
)
, where F ′′(p0) is computed

via AD.
For the sake of better visualization, the reconstructed parameter values have been normalized by the respec-
tive true parameter in all figures, so that convergence to the value 1 is desired. Furthermore, we assumed
that the initial guess is an overestimate. In our numerical tests, underestimating the true parameter yielded
similar results.
We start by focusing on the numerical results of the local method. Therefore, we choose a sufficiently
small deviation of the initial guess from the true parameter of 5%, which means that the initial guess is 5%
larger than the true parameter. We compare the performance during the parameter identification process of
the RSE-PSB method and the LM method in Figure 1. These two methods differ in the choice of Ak, as in
the RSE-PSB method Ak is computed in each step k ∈ N using the PSB method under the modified secant
condition (3.12), and in the LM method Ak is kept constant at 0. As a stopping criterion, we employ a
gradient threshold, i.e., the optimization process is terminated once the norm of the gradient of the objective
function is smaller or equal to η. The reconstruction results of the RSE-PSB method show clear similarity
to the LM method, which is to be expected at this point since the deviation of the initial guess from the
ground truth is small. Consequently, the approximation error of the LM method is correspondingly small.
Finally, the reconstruction results of the RSE-PSB exhibit super-linear convergence behavior, which can be
recognized in Figure 2.
Note that, even with gradients obtained via algorithmic differentiation, super-linear convergence may de-
teriorate once the gradient norm falls below a moderate threshold such as η. This occurs because small
variations in the gradient and curvature near a minimizer amplify floating-point round-off errors. As a
result, the effective numerical noise floor, which is several orders of magnitude above machine precision,
precludes super-linear convergence behavior.

FIGURE 1. Performance of RSE-PSB and LM with 5% deviation of the initial guess
from the ground truth.
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FIGURE 2. Local super-linear convergence behavior of RSE-PSB.

However, since in applications the quality of the initial guess may not be sufficient for local methods, we
now focus on the numerical results of the global methods. For this purpose, we choose a deviation of the
initial guess from the true parameter of 50%. We will now take a closer look at the globalized RSE-PSB
method (GRSE-PSB) and the globalized LM method (G-LM). In Figure 3, we compare the performance
of the GRSE-PSB method and the G-LM method during the parameter identification process. It is evident

FIGURE 3. Performance of GRSE-PSB and G-LM with 50% deviation of the initial
guess from the ground truth.
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that the G-LM method requires roughly three times as many iteration steps as the GRSE-PSB method to
satisfy the specified threshold η. This can be explained by the fact that the approximation error is large due
to the large deviation of the initial guess. Nevertheless, the reconstruction results for both methods show
convergence to the true parameter.
Note that with all deviations above, every iteration step remains in the feasible set, as all parameters must
be positive to maintain well-posedness of the forward problem.

6. CONCLUSION

This paper proposed a regularized, structure-exploiting Powell-Symmetric-Broyden (RSE-PSB) method
designed for solving ill-posed inverse problems in both infinite dimensional and finite dimensional set-
tings. By deriving a modified secant condition in a Hilbert space setting and approximating the symmetric,
yet potentially indefinite, second-order term (F ′′(xk)(·))∗(F (xk) − yδ), which is typically neglected in
standard Levenberg-Marquardt approaches, we presented a method that overcomes challenges inherent
in ill-posedness. It leverages the problem structure not only by decomposing into data discrepancy and
regularization terms but also by exploiting the structure of the analytical second Fréchet derivative to ap-
proximate the symmetric second-order term. We discussed the local convergence of the method, where we
proved local Q-linear convergence via the BDP and established local Q-super-linear convergence under the
assumption that the initial error is a Hilbert-Schmidt operator.
To ensure robustness in practical applications, particularly when the initial guess significantly deviates from
the true solution, we developed a globalization approach that employs dynamic control of the regularization
parameter, ensuring global convergence and simultaneously stabilizing the ill-posed problem. Thus, the
control strategy for the regularization parameter also serves to address the specific choice of the parameter.
Finally, the efficiency of the method was demonstrated on a PDE-based parameter identification problem
in piezoelectricity using AD.
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