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Abstract

The Augmented Lagrangian Method (ALM), firstly proposed in 1969, remains
a vital framework in large-scale constrained optimization. This paper addresses a
linearly constrained composite convex minimization problem and presents a general
proximal ALM that incorporates both Nesterov acceleration and relaxed accelera-
tion, while enjoying a proximal-indefinite term. Under mild assumptions without
requiring prior knowledge of the objective function’s strong convexity modulus, we
establish the global convergence of the proposed method and derive an O(1/k?)
nonergodic convergence rate for the Lagrangian residual, the objective gap, and the
constraint violation, where k denotes the iteration number. Numerical experiments
on testing large-scale sparse signal reconstruction tasks demonstrate the method’s
superior performance against several well-established methods.
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1 Introduction

Let R™*™ and R" denote the set of m x n dimensional matrix space and the set of
n dimensional vector space, respectively. Both spaces are endowed with the Euclidean
norm | - || = \/(-, ), where (-,-) is the inner product. The objective of this paper is to
develop an accelerated first-order method for solving the following linearly constrained
composite programming problem

xIélﬁl{ITln 0(z) == f(z) + p(x) s.t. Az =0, (1.1)
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where A € R and b € R™ are given, f : R™ — R is a proper, lower semicontinuous
convex function (not necessarily smooth), and p : R™ — R is a smooth convex function
whose gradient is Lipschitz continuous with a constant L:

Vp(z1) — Vp(a2)|| < Loy — =2

}7 Vi, e € R™. (1.2)

Throughout this paper, the solution set of (1.1) is assumed to be nonempty. Constraints
of the form x € X, where X is a simple closed convex set, can be incorporated into
the objective function by introducing the corresponding indicator function. Due to this
transformation, Problem (1.1) covers numerous applications, including signal recovery
[7, 21], federated learning [29], image processing [8], statistical learning [13] and so on.

1.1 Mathematical notation

The bold symbols I and 0 denote identity matrix and zero matrix/vector with proper
dimensions, respectively. For any symmetric matrix G, we adopt the notation ||z|% =
x T Gz. Specifically, when G is positive semidefinite, ||z||¢ = V2T Gx denotes a weighted
norm where the superscript | represents the transpose operator. The subdifferential of
a convex function f is denoted by df(-), and it reduces to V f(-) when f is differentiable.
The notation Vf(x) denotes the subgradient of f at x, which satisfies the inequality
fly) — f(z) > <@f(:c),y — :c> for all z,y € dom(f). The proximal operator of f with
given parameter 7 > 0 is defined as

1
prox, (1) i= arg min {f(2) + -l —-|2}.

1.2 Related work

A benchmark approach for solving (1.1) is the Augmented Lagrangian Method (ALM,
[9]) which proceeds recursively through the following iterative steps:

{xkﬂ = arg rgﬂig%l Ls(x, \g) == L(z, A\p) + gHAx - b||27
Not1 = Ak + B(Azpqr — b),

where £(z,\) = 0(z)+ AT (Az —b) is the associated Lagrange function, A denotes the La-
grange multiplier, and 8 > 0 represents the penalty parameter for the equality constraint.
The standard ALM described above, along with its variants, has garnered significant at-
tention from multiple perspectives, including the acceleration of the convergence rate,
the simplification of solving the subproblem, and the exploration of model applications.
Relevant studies can be found in [4, 10, 12, 14, 18, 19, 26, 28]. Most of ALM-type meth-
ods are developed based on the principle of iteratively minimizing approximations to
the nonsmooth objective function of the core subproblem, followed by the update of the
dual variable. However, a crucial factor that determines the whole performance of ALM
is how to efficiently handle the subproblem involved. A widely adopted and effective
technique is to incorporate a quadratic proximal term in the form of 1|2 — x4 ||%,, where
D represents a symmetric matrix that may be indefinite. Leveraging this technique, we
can reformulate the above subproblem as

. B 1
zrélﬁ% {G(I) + §||Ax —b+ )‘k/5||2 + §||‘T - Ik”i}

Simple algebra shows that it is equivalent to prox%g(xk - %AT[)% + B(Axy — b)]) by
choosing D = rI — BAT A. Consequently, the task of solving such a subproblem becomes



relatively easier than the original, provided that the proximity operator of 8 can be readily
obtained. Otherwise, efficient approaches are imperative to derive an inexact solution.
For example, the Hamilton-Jacobi-based proximal operator proposed by Osher, et al.
[23] offers a viable approach in such situations.

Recently, the aforementioned kind of proximal matrices has been extended to be pos-
itive indefinite, as studied in [12]. This extension has given rise to a globally convergent
yet optimal proximal ALM:

T41 = arg Min {ﬁﬁ(% M)+ 5@ — ka?)O}
Mot = A + 7B (Azpgr — b).

Here, v € (0,2) denotes the stepsize parameter for the dual update, Dy = D—(1—7)3AT A
and D € R™*™ is an arbitrarily chosen positive definite matrix. The global sublinear
convergence of the algorithm specified in (1.3) has been detailedly proven for any 7 > &TW.
Note that, here the proximal matrix Dy is not necessarily positive definite due to the
region of 7. Although the value of 7 can not reach 2 in the deterministic ALM-type
methods, it can be 2 as elaborated in the stochastic ALM [3, Section A.2].

Another pivotal issue lies in the establishment of accelerated convergence rates for
ALM-type methods. Earlier accelerated method can be traced back to the accelerated
gradient method [22], which was specifically designed for unconstrained smooth opti-
mization problems. Since that seminal work, an increasing number of researchers have
been eager to enhance the performance of the standard ALM and its associated splitting
variants by applying or extending the renowned Nesterov acceleration technique. For
example, He, et al. [10] proposed an accelerated ALM based on positive definite proxi-
mal matrices. They further demonstrated that the associated Lagrange residual of their
method exhibited the O(1/k?) convergence rate. For other ALM variants achieving the
same convergence rate, we refer to [2, 17, 18, 19]. More recently, a novel accelerated
ALM, as presented in [16], was proposed for solving (1.1), that is,

(1.3)

tp—1
tht1

T =Tk + (l‘k - Jfk—1),

{ F(u) + (AT Ay + V(1) u) }

Up41 = arg min

S 25 a0+ - (L
i = e + U

Akt = A + Bt (Auggr — b),

where 0 > 0 and {¢x41} is a positive sequence satisfying ti+1 < ti + tg4+1. When the
function f exhibits strong convexity, additional conditions must be imposed to guarantee
convergence of (1.4). It is worth noting that the subproblem of (1.4) may be as challenging
to solve as the original problem, since it does not make full use of the proximity operator
of f. Consequently, to streamline the subproblem and enhance the flexibility of the
algorithm (1.4), a pertinent and natural question arises: Can we show similar accelerated
results for a more practical version of (1.4)? This variant would incorporate a potentially
prozimal-indefinite term and a larger dual stepsize, while ensuring that the subproblem
allows for the effective utilization of its proximity operator.

1.3 Methodology and contribution

Before addressing the above motivating question, we first introduce a double-accelerated
proximal-indefinite ALM (see Alg. 1.1), where {74} is a nonincreasing sequence confined
to the following specified region:

20L 2aL /1 + yat? 24+t2 ol
1+i227—k>max / 27 5_1/ k,% .
Tty tr +te_4 iy



Note that the sequence {73} is well-defined, since 1+ 2%& > 2L and it holds

) 3
rig iy

2aL  2aL/r+~ati_/2+ 13 2aLt2_, 2 —~a

1+
rt2 2 +t2 rt3 2

t2 >0

for any ~ € (0, %) and « € (0,2). Moreover, the nondecreasing property of {t;} implies

2aL/r +vat? /2 + 12 al 12 —t2_ rt? rya’?
/ 2751/ L ey A S R S )
tk —I—tk71 Ttk tktkfl tk71 2

As a result, the region of 73, reduces to

2aL 2aL/r +~yat?_ /2 + 13
LSO b L STLRR S (1.5)
2 2+,

Algorithm 1.1 Accelerated Proximal-indefinite ALM (AP-ALM) for solving (1.1).

Parameters: 3> 0, a € (0,2), v € (0,2), Dy, = 7rl — BAT A with r > B||AT A|| and
T satisfying (1.5).
Initialization: (x1,A1) € R™ x R", uy = x1, to = a.
for k=1,2,---, do
1. Determine a positive nondecreasing sequence {tx} > « such that

t7 <ti_q + aty. (1.6)
T = %uk + tkt;axk.
Uk+1 = argufgﬂi@ {f(u) + (AT A, + Vp(Zk), u) + %HAU — bH2 + %‘Hu - ukHZDk}

N 1 t—1
Thy1 = g Uk + 25 Tk

Aet1 = A + 7Bt (Augir — b).

. Relazation step: < i:“ > — ( i: ) +a< §k+1 —ik ) .
+ k+1 — Ak

end

S O W

The first-order optimality condition of uy41-subproblem is

1.~ -
Dy (upt1 — ug) = i [V f(urs1) + Vp(ar) + AT Xes1], (1.7)
where V f(ug41) € 8f (ugs1) and
5\k+1 = M\ + Bti (Auk+]_ — b). (1.8)

By the choice of Dy, as in Algorithm 1.1, the subproblem in the third step amounts to

Uk+1 = Prox__1 f(uk —
t

TRtk

- [Ip() + AT+ AT (Auy n)]).

Contributions of this paper are summarized as the following aspects:

e Generality of algorithmic parameters. Compared with the existing dual up-
dates presented in [2, 6, 14], our dual variable in the fifth step exhibits a more
flexible parameter v € (0,2/«a), along with a dynamic, nondecreasing sequence
{tx}. In this context, ¢ serves the function of Nesterov acceleration. To be more
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precise, the sequence {t;} satisfying (1.6) is called the general Nesterov accelera-

tion technique. In the specific case where the relaxation parameter o = 1, one can

144 /144¢2 . . .
choose t, = f’”, which reduces to the classical Nesterov acceleration. We

further provide nice properties of this general Nesterov acceleration in Lemma 3.3
as well as feasible updating rules that are suitable for experimental implementation.

Flexibility of the proximal subproblem. The definition of Dy and the range
of {7} imply that this dynamic proximal matrix Dy may be positive indefinite. If
{tx} > « satisfies (1.6) and f is only convex, then a nonpositive definite proximal
matrix can be employed according to Lemma 3.1. When (A,b) = (0,0), problem
(1.1) degenerates into an unconstrained composite convex programming problem.
In this case, by selecting 7, = 1, Dy will reduce to Dy = rI with » > 0, the
subproblem takes the following form

Tt
U1 = argmin {f(u) + i”u —up +
u

5 lkVp(ik)H2}.

iy
This is a variant of proximal gradient method. For this particular case, when o = 1,
Algorithm 1.1 reduces to an extension of the method in [25] for minimizing f + p
and a variant of the accelerated proximal point method [11] for minimizing f.

Accelerated convergence rate and high performance. In contrast to the
O(1/k) convergence rate exhibited by certain existing ALM-type methods, such as
those presented in [4, 12], we have derived an O(1/k?) accelerated convergence rate,
where k denotes the iteration number. This remarkable result is established using a
potential energy function that incorporates the Lagrange residual, the primal resid-
ual and the dual residual. Notably, this accelerated convergence rate is achieved
without requiring the objective function to be strongly convex or assuming that
the constraint matrix A has full row rank. To the best of our knowledge, this is
the first time to establish the accelerated convergence rate for a proximal-indefinite
ALM-type method, while abandoning the strongly convexity of the objective func-
tion. Furthermore, we have proven the global convergence of our method, a topic
that was not explored in previous references [6, 10, 16, 18, 19]. Comparative ex-
periments on testing large-scale sparse signal reconstruction problems demonstrate
that the proposed algorithm not only exhibits accelerated convergence behavior
but also outperforms several existing first-order methods.

Technical preliminaries

This section is dedicated to presenting necessary technical preliminaries that will stream-
line the convergence analysis of our AP-ALM. Leveraging the Taylor expansion, we can
infer from (1.2) that

L
< Z

= 2“1'2_.T1H2, vxlvaERm

p(z2) — p(z1) — <VP(901),962 - 901>

Combine it with the convexity of function p to obtain

(Vp(@),20 —21) = (Vp(T), 32 —T) + (Vp(T),Z — 21)

> plas) — pl@) — & fes 7 +p(7) — pla)

plz) — plar) — 5 |lea — 2" (2.1)



The property in (2.1), along with the upcoming lemmas, will serve as crucial tools for
conducting a comprehensive analysis of both the convergence and the iteration complexity
of the proposed method.

Lemma 2.1 [1/, Lemma 4] Let {hi}>5 be a sequence in R™ and {ay} be a sequence in
[0,1). Assume Hhk—H + Zle aihiH < ¢ for all integer k > 1. Then,

sup [|hg[| < [[Pa]] + 2c.

E>1
Lemma 2.2 [2/, Theorem 1] Let {a} 25, {bx}i25, {cu}i25, and {dy}{ 25 be nonnega-
tive sequences in R satisfying

ap+1 < ap(1+bg) + ¢, — dg, Yk > 0.

If 3 b < 400 and Y ¢ < 400, then lim ay exists and Y di < 4o0.
k=0 k=0 k—o0 k=0

Let (z*,\*) be the saddle-point of L£(x,\). Then, it is also the primal-dual solution
to the problem (1.1) and satisfies the following saddle-point inequality

L(x* A) < L(z",\*) < L(z,\"), V(z,A) €R™ xR". (2.2)
Alternatively, it satisfies the following Karush-Kuhn-Tucker (KKT) system
—ATA* € Of(x*) + Vp(z*) and Az* =0, (2.3)
where A\* is the solution to the corresponding dual problem
m/\in{é)*(fAT)\) +b A} (2.4)

Here, 6* denotes the Fenchel conjugate of the convex function 6, defined as 6*(y) =
SUP,cdom(0) {yTz —6(z)}, where dom(6) represents the domain of 6.

3 Main results

By constructing an energy sequence that incorporates the Lagrange residual, as well as
the iterative residuals associated with the primal and dual variables, we will prove the
global convergence of the proposed algorithm. Additionally, we will establish its O(1/k?)
accelerated convergence rate, where k denotes the iteration number.

3.1 Energy sequence and its property
Define the following potential energy sequence
E,=E” +E? + EY (3.1)

where )
E =2 [L(xx, A7) — L(z7,07)],

1 1
B = T fu — 2|} . B = gl =N

and D = rI — AT A. Clearly, E; > 0 for all k > 1 according to (1.5) and (2.2). In order
to investigate the properties of Ex, we recall the following identity

212 — Iyl = 2(z,G(z — y)) — ||z - y||% (3.2)

for any z,y € R™ and symmetric matrix G € R™>*"™,

2
)




Lemma 3.1 Let {E;} be defined in (3.1), {7} and {tx} satisfy (1.5) and (1.6), respec-
tively. If (t2 —t2_)Dx = psptp—11, where uy > 0 is the convex modulus of f, then the
iterates generated by Algorithm 1.1 satisfy

1-— 12
(Ek+1 — ( Tk+;)aﬁ k1 HAuk+1 — b”2>
1-— t2
< (B0 - %HAW = of*) = Slonss — vellz, (3.3)
where ) oo T
v = Uk and Gy — (rwtgr —aL)I -t A" A 2_3@ -
Ak 0 37a28

Proof. Firstly, combine the fourth step with sixth step of Algorithm 1.1 to obtain

tk—a

t
Ug+1 = T, + Tk (i’k+1 - l'k) = + Ek(karl - :Uk) = Tp4+1 + ($k+1 - :Ek), (3.4)

equivalently,

« t, — o
Thyl = —Ug4+1 + k Tk (3.5)

ty ty

Since t; > «, we have by the convexity of f that
* « *
Flanen) + (X Az = b) <5 (F(uern) + (N, Augr —b))

b — o (F) + (X7, Ay — b))

+
k

Consequently, combining the last inequality and (1.6) leads to

E), BV = [t —a) — 2] [Llrr, A — L5, 0]
+ti£($k+1, )\*) — atkﬁ(x*, )\*) — tk(tk — Oé)ﬁ(l‘k, )\*)

< BL g, \) — Al L(a7A) — b (b — a) L@ A

=t {f(karl) + (N, Azpyy — b) + P($k+1)} — aty, {f(ﬁf*) + P(x*)}
—t(ty — ) [f(xk) + (N\*, Az, — b) + p(:ck)]

<oty [f(upgr) — f(2%) + (N, Auggq — b))

taty [p(zre1) — p(a®)] + te(te — @) [p(zrg1) — p(@r)]- (3.6)
Secondly, we turn to estimate an upper bound of the term E,(ci)l — Ef). The second
step of Algorithm 1.1 and (3.5) indicate

o
Tyl — Tk = a(’ukJrl — ’LLk). (37)

Combine (3.7) with (3.4) and (2.1) to obtain
(upgr — 2%, Vp(Zy))

t —
= (@41 — 25, Vp(F)) + =

- (Tpy1 — o, VD(Th))

> p(@es1) — pla”) + oo [p(zrs1) — plak)] — %kaﬂ - ijZ
= p(rrg1) —p(z™) + o [p(xk+1) —P(ffk)] - %Huk+1 - ukHz- (3.8)



By the known relationships Dy = 7,71 — BATA = 7D — (1 — 71,)BAT A with D =
rI — BATA and Dy < Dy (as we choose {7} as a nonincreasing sequence satisfying
(1.5)), it holds that

1- & 1— 2
B, B - T’“*;W ’“+1||A<uk+1—x*>||2+%|m<uk—m*>n2
at

= ek -2, -

at
= (lunsr =27l

».)

altiyy — ;)

2 2
+7kHuk+1 _x*HDk+1—Dk f““kﬂ _QC*HDk+1
at? ati, | —t3) 2
< Sl =, = flue = 2" [5,) + = s =25,

For the proximal matrix Dy, satisfying (t7 —t2 _,)Dy < pstr—11, combine these conditions
with (3.2) and (1.7) to obtain

1-— t2 1-— t2
e e T | LS
1
< ati((ukH — %, D (up 41 — up)) — §}|Uk+1 - Uk”;k)
alt?, , —t
( k+; k Huk—H _ x*HQDkH
* - Vi Ty * ati 2
= —atp(uppr — 25, Vp(T) + Vf(ugr) + AN — 7”““1 — k[,
- a2, —t?

—atgp(upyr — 2%, AT (A1 — X)) + WHU’““ - x*H;m
< —aty, (f(uk+1) — f&) + (N Aug — x*)>) + %H“Hl - x*H%kH

—aty[p(zes1) — p(@*)] = (tk — )t [p(zri1) — p(a)]

—atp(Atpsr — ), Apg1 — A) — %”ukﬂ — w2 p, —arr
<

—aty, (f (ukt1) — f(&*) + (N*, A(upgr — m*)>)
—aty [p(arsr) — pla*)] — (b — a)ti [p(zr1) — p(zr)]
—ati(Alurs = a*) Meer = N) = Sllues = welp, —asr (3.9)
where the last inequality uses (3.8) and the notation
D1 = (tjq — t3)Drs1 — st 2 0.
Note that by the last two steps of Algorithm 1.1 and Ax* = b, we have

Akl — Ap = a(;\k—i-l — )\k) = 'yozﬁtkA(ukH — l‘*) (3.10)
Combining (3.10) with (3.2) results in
1 P 112
EY, -EBY = ﬁ(H)‘kH =AM = e = 21)
1 1 2
= — A A M) — == || Ae+1 — A
’Yﬁ< k+1 — k1 — k) 2’75” |

1
= Oltk<)\k+1 ¥ A Uk+1 — T )> ’yﬁ|‘)\k+1 - >\kH2' (311)



Finally, summing up the above inequalities (3.6), (3.9) and (3.11) together with the
second inequality in (1.6), we obtain
o 2 1 2
B —Be < gl —wnllgpanr — 5ol heen = M

(1 — Tey1)afty 4
2
+atk<A(uk+1 — ZL'*), )\k+1 — )\k+1>« (312)

In addition, it follows from (3.10) that

1-— 12
e - VO

X 1
teA(uppr — %) = m(Ak+1 - Xi)s
while the fifth step of Algorithm 1.1 and the definition of 5\k+1 indicate
- 1
Akt — M1 = M1 — Ak — StpA(upyr — 2%) = (1 - 'Toz) (Met1 — An).
Substituting the last two relationships into (3.12) gives

1
Epp —Ep < —%HukJrl - Ukaka,aH - 277”)\1%1 - )\kHZ

Ot SOt gy — ) = = g =)

+ 7%</\k+1 i (1- %) (st = M) )

== Sl = 0y, arx = 3z ks = M
e o

R s VT

So, rearranging it with Ax* = b completes the proof. N

Remark 3.1 The condition (t2 —t3_)Dy < pstr—11 can be removed for the case puy =0
(that is, f is just a convex function). In this case, we have from the nondecreasing
property of {ty} that the matriz Dy can be negative indefinite.

Lemma 3.1 does not guarantee the monotonicity of the sequence {Ej}. Nevertheless,

by combining (1.5) with an estimate for the lower bound of the term %Hka - kaQG,
the monotonicity of certain variants of this sequence can be established, as stated in the
following corollary.

Corollary 3.1 Let {E.} be defined in (3.1) and D = r1 — BATA. Then, under the
conditions in Lemma 3.1, the iterates generated by Algorithm 1.1 satisfy

(Ek+1 N (1- Tk+1)tz2+1 + 2QL/TQ5\\Auk+1 B b||2)
—(Ek n (1- Tk)t%-i- QQL/Taﬁ(HAuk B sz)

- _2[(Tk — )2 + (Thy1 — l)ti2+1 — 2aL/r} + (2 —ya)t? aBHAUk-&-l B ng
a(mt} —aL/r) ke — i (3.13)

2



Proof. By the structure of the matrix Gy, and (3.10), we deduce

t2 —al
_%HU’H’l _Uksz +MHUHI _ukHQD (3.14)
_ _%HAUJCJFl . bH2 + (1 Tk:)t; +aL/rO¢ﬁHA(uk+1 _ uk>H2
192 _ 2
. 2[(m = DB —al/r] + (2 'Va)tkaBHAUkJrl — |

2
+[(1 —T)ts + aL/r] a,BHAUk - sz
I Dt + (71 — 1)ti2+1 —2aL/r] + (2 —yo)t af||Auggr — bH2

_ [(1 — Tht1)tesg + aL/r} o] Aug 1 — bH2 + [(1 = 7t + aL/r]ap| Auy, — b||2,

where the inequality uses the property
I = nll* < 2011 +2nl* with (§,n) = (Aukt1 — b, Aug = b).

Finally, plug (3.14) into the right-hand side of (3.3) to end the proof. MW
Now, based on the above corollary and the notation E; derived from (3.1):

O[Tlt%
2

1
E; = §[L(z1,X") — Lz, \")] + (E fx*||;+27ﬁ||xl N (3.15)

we show a preliminary result for the convergence of the proposed algorithm.

Lemma 3.2 Under the conditions in Lemma 3.1, we have

2
Tkt Amin (D)

(1 —7)t3 +2aL/r
2

g, — 2*||* < {Ei+ af[Aw —bl"},  (3.16)

where Amin (D) denotes the minimal eigenvalue of D and Eq is given by (3.15).
Proof. For the sake of conciseness, denote

(1 —7%)t2 + 2aL/r

E,=E; + 5

aﬁHAuk — sz.

It follows from (3.13) and (1.5) that the sequence {Ej} is nonincreasing.
According to the nonincreasing property of {Ex}, (1.5), the relationships b = Axz*
and u; = x1, we have

(1 —70)t2 +2aL/r

E, <E,<E; =E; + )

af||Azy — b, (3.17)

where E; defined by (3.15) is a nonnegative constant. Besides, it follows from the defi-
nition of E; and the positive definiteness of matrix D that

O[Tkti
2

aTkt%)\rnin(D) ||Uk . 5['*H2

E; > 5

[

Combine it with (3.17) to confirm the conclusion. W

10



3.2 Convergence analysis

In this section, we analyze the convergence of the proposed algorithm as well as its
accelerated convergence rate.

Theorem 3.1 Under the conditions in Lemma 8.1, we have
(i) lim ||(zkt1, Akt1) — (T, A\e)|| =0 and lim ||Azgyr — 0| = 0;
k—o0 k—ro0

(i) Any limit point of {\g} is the solution to the dual problem (2.4), and any limit point
of {ur} is the solution to the primal problem (1.1).

Proof. Sum the inequality (3.13) over k =1,2,..., 00 together with (3.16) to have

2( — Dt + (Ten — D8Ry — 20L/r] + (2 - ya)t}

o8 A —

K

2
k=1
o0 _ _ 2
JFZ o Tktk aL/r) Huk—H B Uk”p <E, + (1 71)t12+ 204L/7"0[5HA:£l B sz < 00,
k=1

which, by (1.5) and the positive definiteness of D, implies

lim [Juppr —uel| =0 and  lim ||tx(Augsr —b)|| = 0. (3.18)
k— o0 k—o0
Combine the last equality in (3.18) with the fifth and sixth steps of Algorithm 1.1 to get
lim ||)\k+1 - )‘kH =0.
k—oc0

Recalling (3.4), it holds that

tk tk,1 —

Upt1 — U = E(xlﬁ»l — ) — (xx — T—1).

So,

t th1 —«

Elznsr — orll ST lzk — ro1 ]|+ lungr —

« [0

L‘k
Tl — zpoall + luars — well = llzk — 21,
which, by Lemma 2.2 with
172
ay = *||~Tk+1 — x|, br =0, ek = |lugpr — ukll, di = [|or — zp-1]]

and (3.18), implies hm dr, =0 and lim ay exists. So, the first part of the assertion (i)

k—o0

is proved. By (3.4) agam we have

t —
Az — b= (Aupyr —b) — i

A(zpy1 — xk), (3.19)

which ensures the second part of the assertion (i) by (3.18) and klirn |zk+1 — zk| = 0.
—00

Next, we prove the second assertion. Combining (3.17), the definition of Ej and the
positive definiteness of D, we know both {uy} and {A;} are bounded. Let A be a limit
point of {\;} and assume the subsequence {\x, }x,ex converges to it. Then, combine
(1.2) with (3.4) and (3.7) to have

«
tx

t
I9p(ukn) = Vo(@)| < Ll = 2l = L =2 (o = 21) + (wega = w)|,

11



and moreover klim IVp(uk+1) — Vp(Zg)|| = 0. Based on these results and a reformulation
— 00
of (1.7):

Ohi1 = — A N1 + AT N1 — M) — BteAT (Aug, — b) — Totir (upsr — ug)
+ Vp(ury1) — Vp(Zr)
€0f(ug+1) + Vp(ug+1),

we conclude that ug41 € 90*(0k41) and klim Spr1 = —AT A
— 00

Now, let uq be the limit point of {uy} accompanied with (ueo, Aso). Then, since 6*
is a proper closed convex function, it holds

0 (—ATNY) > 0" (6pp1) + (w1, —ATN = Spp1).
Take limit to both sides of the above inequality with £ — oo and Aus, = b to obtain
O (—ATXN) +bT N > 0" (—=ATA°) + b Ao

Note that A\* is a solution to the dual problem (2.4). So, it follows from the above
inequality that A is also a solution to (2.4).

The equality Au, = b implies that u is a feasible point of the primal problem (1.1).
Since {Ar} is bounded, there exists a subset of indices K; C K such that limg_oo A =
Aoos Where A is a dual solution to (2.4) and k € K;. So,

Kllall?l)oo(Uk7 )\k) = (uoo, /\oo)a

which, together with the relation —AT A\, € 90(us), ensures that (e, Aoo) is a solution
to the KKT system (2.3). As a result, 2 is a primal solution to (1.1). W

From (3.4) and Theorem 3.1 (i), we have limy_,cc Tx1+1 = Uso. Hence, any limit point
of the sequence {zy} is the solution to the primal problem (1.1). In what follows, we
will establish the accelerated convergence rate for the proposed method, as presented in
Theorem 3.2. The accelerated results obtained here are better than the ergodic iteration-
complexity bounds reported in [27].

Theorem 3.2 Let (x*, \*) be the primal-dual solution to (1.1). Then, under the condi-
tions in Lemma 8.1, there exist constants c1,co > 0 such that
£($k7 )‘*) - [:(l‘*, )‘*) < &

> tiq’
|0(2x) — 0(a*)| < 2ted Xl (3.20)
[ Azy, —b]| <

k—1

C1

tia

Proof. Denote

(1 —7)t3 +2aL/r
2

where E; defined by (3.15) is a nonnegative constant. According to (3.17) and the

definition of Ey in (3.1), we have

ca=E; + aﬁ”Aa:l—bH2,

L, A7) = L \) < o
k—1

and

| Ak — X < v/2yBc. (3.21)

12



The equality in (3.4) can be rewritten as ug1 = é[thkﬂ — (tr — oz)xk], which by
using the auxiliary notations

(3.22)

gives

k
Akl — AL = Z()\H—l —\i) = 047/52751‘ (Auipr —b)

i=1 i=1

B [ (i — ) — 1t~ ) (A )]

i=1

: 2 (s —
=78 {hi"rl_hi“rw
=1

=P [hk+1 —hy + zk: aihz}-

i=1

Combine this relationship with (3.21) to obtain

k
Hhk+1 + Y aih
i—1

By (1.6), we know aj, defined in (3.22) belongs to [0,1) for all £ > 1. Hence, it follows
from Lemma 2.1 that

[Akt1 = A"+ A" = M|

< ||h| +
17 3

< |l +

A1 = || + v2vBcs
7B '

2\ = M| + 2VF5Fer
VB ’
Combining it with the definition of A in (3.22) leads to

1hell < e :=3|hi|l + Yk > 1.

el o 2 sy

[Azy —bl| = < ;
i~ i

Besides, it follows from the definition of £(x, \) and the first inequality in (3.20) that

o1 + ool |

0(@) = 0(a")] < £lax A — L") + ] e -] < S5
k

The proof is completed. W
Finally, combining the definition of ¢; in Theorem 3.2 and Lemma 3.2, we conclude
that there exists a constant ¢z = %:(D) > 0 with 7 being the lower bound of {7}
such that Huk — :Z:*H2 < a% Note that this result, including both relaxation factor
k
and Nesterov parameter, implies that {ux} converges to z* in the worst-case O(ﬁ)
2

accelerated rate.

3.3 Adaptive parameters

Since the selection of {t;} will affect the convergence rate of our algorithm as shown in
(3.20) and the subsequent experiments, next we analyze some properties of this sequence
and provide feasible updating rules.

13



Lemma 3.3 For any « € (0,2) and every k > 1, we have
(i) The sequence {tx} satisfying (1.6) yields

V5 —1 V541
2

ty —tp—1 < a, and t < 5

ak;

(i) If we choose

a+y/a? +4t2
te = : (3.23)

2

then (1.6) holds and moreover t, > £t1a.

and hence

aty/a?+4t2 |
2

Proof. The way of updating ¢ in (1.6) implies a < ¢, <

a4+ /o2 + 4t7

try — -1 <
E—lk-13> 5

th—1-

Let ¢(y) = w — y. Then, the fact that ¢'(y) = \/%74?/2 — 1 < 0 shows the

nonincreasing property of ¢(y). So, we deduce

)= o,

ty — tk—1 < B(to) = ¢(a
a+ d(a))k = @ak.

ty <to + ko(a) < (
The first conclusion in (ii) can be proved by introduction. W

Remark 3.2 Lemma 3.3 distinguishes itself from [6, Lemma 3.5] due to the fact that
a € (0,2). The rules in (i) offer viable options for achieving an O(1/k?) convergence
rate. In fact, the rule specified in (3.23) identical to those in [1, 2, 6], yet the range of «
differs from the existing literature. More precisely, in [1, 6], o is an artificial parameter
constrained to be less than or equal to 1. When a = 1, the rule in (3.23) reduces to
the classical Nesterov rule [22]. However, when o # 1, (3.23) diverges from the strategy

outlined in [20, Lemma 2.1], which is given by ty, = pryatdte Vq;“’“’l with p € (0,1] and ¢ > 0.

4 Numerical experiments

In this section, we carry out a series of experiments on large-scale sparse signal reconstruc-
tion problems with the aim of assessing the performance of our AP-ALM (i.e., Algorithm
1.1). All experiments are implemented using MATLAB R2019b (64-bit) and performed
on a PC with Windows 10 operating system, equipping with an Intel i7-8565U CPU and
16GB RAM.

Recalling the following linearly constrained ¢;-f5 minimization problem:

. Hor 2
nin 0(z) = ||zl + §Hx|| , s.t. Ax = b, (4.1)
where A is an n X m measurement matrix, b € R" is a response vector and g > 0
is the regularization parameter. The goal of model (4.1) is to reconstruct a signal x
that closely approximates the original sparse signal z*, utilizing the given data A and b.
Notably, when o = 0, the above problem reduces to the popular basis pursuit problem
in compressive sensing. In the following experiments, the matrix A is configured as
a Gaussian measurement matrix whose elements are randomly drawn from standard

14



Gaussian distribution A/(0,1). The original true signal z* contains a specific number of
non-zero elements (which we fix at m/50), and each of these non-zero elements is sampled
from a Gaussian distribution A/(0,2). The response vector b is generated by b = Az* +e,
where the noise € is first generated by standard Gaussian distribution m N(0,1) and
subsequently normalized with the norm 107°.

102 107
AP-ALM1 AP-ALM1
L e AP-ALM2 oo AP-ALM2
b AP-ALM3 10° AP-ALM3
- Y
0 A
_ 10 \'\v\ -
) g 5
I - ®1102 g
= o g 2
& .
W
2 N
10 M Vin . 104
Vi AP-ALM1
'y = AP-ALM2
AP-ALM3
10 10° 10
0 50 100 150 0 50 100 150 0 50 100 150
Iter Iter Iter
10* 102 102
AP-ALM1 AP-ALM1 fdon
-------- AP-ALM2 =-=-=-=- AP-ALM2 g
100 S
102 AP-ALM3 AP-ALM3
AP-ALM1
AP-ALM2
AP-ALM3

50 100 150 0 50 100 150
Iter Iter

Figure 1: Comparison of three types of AP-ALM for solving Problem (4.1): the top with (n,m) =
(500, 1000) and the bottom with (n, m) = (1000, 2000).

0.995 0.995
0.99 0.99
e -
0.985 [ 0.985
0.98 0.98
0 50 100 150 0 20 40 60 80 100 120 140 160
Iter Iter

Figure 2: Variation tendency of 75 by three types of AP-ALM for solving Problem (4.1): the left with
(n,m) = (500,1000) and the right with (n, m) = (1000, 2000).

4.1 Performance of AP-ALM with different parameter and data

In this subsection, we initiate the evaluation of the performance of our AP-ALM un-
2

der different strategies: (sl) ¢, = GanVAanu 1 ”q;_éltk‘l with (p,q) = (1/20,1/2); (s2) tx =

o a? 2

Ve ot (93) t, = a + £ with ¢ = 7, simply denoted by AP-ALMI, AP-ALM2
and AP-ALM3, respectively. The initial points are set as (z1, A1) = (0,0) and the reg-
ularization parameter is fixed as = 0.001. For the parameter 7, it is selected as the
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average of the upper and lower bounds specified (1.5). The penalty parameter and re-
laxation stepsize use the tuned values (8, «) = (0.001,1.2). Then, we use tuned values
(r,7) = (B||AT A|| +0.001,1.6). According to Theorem 3.2, the following qualities will be
employed to examine the performance of our proposed methods:

e Constraint violation Equ_err(k) = || Axy, — b|l;
e Objective error: Obj_err(k) = [0(xy) — 0(z*)|;

e Signal-to-noise ratio SNR(k) = 10log,, Lz —meantzll2

lokr1—z*|2

By applying AP-ALM to the problem (4.1) with (n,m) € {(500,1000), (1000,2000)}
under the stopping criterion ||Axj —b|| < 5x 10~ (as also referenced in [18, 19]), Figure
1 illustrates the convergence behaviours of the aforementioned qualities. Figure 2 implies
that a proximal-indefinite term is exploited in experiments as 7 is nonincreasing and
smaller than 1. From Figure 1, it is evident that AP-ALM3 performs significantly better
than AP-ALM1 and AP-ALM2. Consequently, in the subsequent experiments, we will
adopt AP-ALM3 as the default implementation of Algorithm 1.1.

10 10* 102
________ X, = zeros(m,1)

________ X,= zeros(m,1)

............... x,= rand(m,1) s X, = raNA(M, 1)

X3= ones(m,1)

X3= ones(m,1)

10t

SNR

1004

-X= zeros(m,1)
4= rand(m,1)

—_—X= ones(m,1)

50 100 0 50 100
Iter Iter Iter

________ X, = zeros(m,1) N =mnmeme X, = ZEIOS(M, 1)

............... x,= rand(m,1)

Xy= ones(m,1)

............... x,= rand(m,1)

Xy= ones(m,1)

________ x,= zeros(m,1)

............... X, = rand(m,1)
X, = ones(m,1)

0 50 100 150 0 50 100 150 0 50 100 150
Iter Iter Iter

Figure 3: Comparison of AP-ALM3 for solving Problem (4.1) with different initial point: the top with
(n,m) = (1000, 2000) and the bottom with (n,m) = (2000, 3000).

Figure 3 presents a comparison of AP-ALM3 using different initial points z;. It
is evident that AP-ALMS3 exhibits relatively superior performance when z; is set as a
zero vector. As a result, we will adopt the zero vector as the default initial point for our
method. Finally, we conduct an investigation on the performance of AP-ALMS3 for solving
the problem (4.1), considering various methods of generating a square matrix A: (1)
Gaussian measurement matrix generated in the same manner as previously described; (2)
Skew symmetric matrix generated using the formula A = B+ BT, where B = randn(n);
(3) Tridiagonal matrix constructed by A = diag(ones(1,n)*4)+diag(—ones(1,n—1),1)+
diag(—ones(1,n— 1), —1). Figure 4 provides the convergence curves of AP-ALMS3 for the
problem (4.1) with n € {2000,4000}. As illustrated in Figure 4, the proposed method is
demonstrated to be remarkable valid in handling different structures of A.
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Figure 4: Comparison of AP-ALMS3 for solving Problem (4.1) with different constrained matrix A: the
top with n» = 2000 and the bottom with n = 4000.
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Figure 5: Comparison of different ALM-type methods for solving Problem (4.1): the top with (n,m) =
(500,1000) and the bottom with (n, m) = (2000, 4000).
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4.2 Comparison of AP-ALM with other existing methods

In this subsection, we use AP-ALM3 as the default algorithm and compare it with several
existing accelerated ALM-type methods:

o the accelerated ALM (Ke-ALM, [19]) with tuned penalty value 8 = m/(10]|ATb||)
which performs better than the original setting in [19];

e The well-known ALM (ALM, that is (1.3) with Dy = 0) with tuned dual stepsize
v =1.8and 8 =m/(10]|ATb||);

e the double-penalty ALM (P-rALM, [4]) with the involved relaxation factor v = 1.4,
r =m/(10||ATb||), and the proximal matrix Q = 71— 7AT A with 7 = 1.1r||AT A.

The problem data are generated in the same way as that in the first part of Section
4.1, but the penalty parameter p is selected as 0.01 hereafter. Figure 5 depicts the
convergence curves of different ALM-type methods described above. Additionally, Fig-
ure 6 shows the CPU time comparisons, and Figure 7 presents the comparison between
the original signal and the signal reconstructed by AP-ALM3 when the dimensions are
(n,m) = (2000,4000), where the bottom subfigure shows the minimum energy recon-
struction signal Afb (the point satisfying AT A = ATb) versus the original signal. After
identifying the nonzero positions in the reconstructed signal shown in Figure 7, it always
has the correct number of spikes for the case with dimensions (n, m) = (2000, 4000) and
is closer to the original signal. In addition, we can observe that the proposed AP-ALM3
converges significantly faster than other existing methods in terms of the measurement
metrics. Although Ke-ALM shares the same O(1/k?) accelerated convergence rate as our
AP-ALMS3, it performs less favorably compared to P-rALM that has a O(1/k) conver-
gence rate, where k denotes the number of iterations. These comparison results validate
the numerical acceleration of our proposed method and its theoretical acceleration as
sated in Theorem 3.2.
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Iter Iter

Figure 6: Comparison of CPU time by different ALM-type methods for solving Problem (4.1): the left
with (n,m) = (500, 1000) and the right with (n, m) = (2000, 4000).

5 Concluding remarks

The so-called Nesterov acceleration technique has been extensively investigated in some
first-order methods to improve the theoretical convergence rate, however, the resulting
subproblem often remains as challenging to solve as the original problem. To address
this limitation, this paper introduces an accelerated proximal-indefinite augmented La-
grangian method (AP-ALM) for linearly constrained composite convex programs. Our
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Figure 7: Original signal and reconstructed signal by AP-ALMS3 for the case with (n, m) = (2000, 4000).

proposed method not only incorporates a general Nesterov acceleration technique, but
also admits a much easier proximal subproblem by exploiting a widely-used proximal ter-
m. Additionally, the so-called relaxation step is implemented to numerically accelerate
the method. We have conducted a comprehensive analysis of the global convergence of
AP-ALM and its accelerated convergence rates. Furthermore, the numerical performance
of AP-ALM has been validated through comparisons with several existing methods in
the context of large-scale sparse signal reconstruction problems. In the future, our re-
search will focus on developing a stochastic version of this AP-ALM but with the general
Bregman distance [5] as the proximal term for some nonconvex composite programming
problems arising from machine learning.
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