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Abstract. In constraint learning, we use a neural network as a surrogate
for part of the constraints or of the objective function of an optimization
model. However, the tractability of the resulting model is heavily influ-
enced by the size of the neural network used as a surrogate. One way to
obtain a more tractable surrogate is by pruning the neural network first.
In this work, we consider how to approach the setting in which the neu-
ral network is actually a given: how can we solve an optimization model
embedding a large and predetermined neural network? We propose sur-
rogating the neural network itself by pruning it, which leads to a sparse
and more tractable optimization model, for which we hope to still obtain
good solutions with respect to the original neural network. For network
verification and function maximization models, that indeed leads to bet-
ter solutions within a time limit, especially—and surprisingly—if we skip
the standard retraining step known as finetuning. Hence, a pruned net-
work with worse inference for lack of finetuning can be a better surrogate.

Keywords: Constraint learning - Neural network pruning - Neural net-
work verification - Piecewise linear approximation - Rectified linear units.

1 Introduction

In the last five years, we have seen a growing interest in approximating a con-
straint or an objective function of an optimization model with a neural network.
This approach is often denoted as constraint learning. The most compelling
circumstance for using constraint learning is when the exact form of some con-
straints or part of the objective function is unknown, but can be approximated
using available data. When the exact form is known, another compelling circum-
stance is when the formulation is intractable for a combination of factors such
as being nonlinear, nonconvex, and very large [87,112,131,144].

Constraint learning has been applied in optimization models for scholarship
allocation [8], chemotherapy [83], molecular design [85], power grid operation [18,
76,92], and automated control in general [106,114,135,139]. We can also use op-
timization models involving neural networks to evaluate those neural networks
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for adversarial perturbations [2,19,23,104,116], compression [30,110,111], coun-
terfactual explanations [66,125], equivalence [67], expressiveness [16, 108, 109,
monotonicity [75], and reachability [28,77]. Conversely, when the neural network
is trained as a reinforcement learning policy, the constraints in the optimization
model can be used for limiting the action space [13,24]. Many frameworks have
been proposed to embed neural networks and other machine learning models
as part of optimization models, such as JANOS [§8], reluMIP [78], OMLT [17],
OCL [31], OptiCL [83], Gurobi Machine Learning [42], and PySCIPOpt-ML [127].

Some neural network architectures are more convenient to embed in optimiza-
tion models than others. In particular, we typically use the Rectified Linear Unit
(ReLU) activation function [44,93| for a couple of reasons. First, this activation
function became widely popular in the 2010s due to its good classification perfor-
mance and relatively lower training cost [38,70,93]. Similar to what was already
known for other neural network architectures much earlier [22, 36, 60|, we now
know that ReLU networks are also universal function approximators [47, 140].
More recently, Gaussian Error Linear Units (GELUs) [52] have been used from
the very beginning in many foundation models based on the transformer ar-
chitecture [128], such as GPT [99], BERT [26], and ViT [27]. Nevertheless, a
ReLU is a piecewise linear approximation of a GELU, which brings us to the
next point. Second, and perhaps most importantly for the continued use of Re-
LUs nowadays, each neuron with ReLLU activation represents a piecewise linear
function—and by consequence a neural network with only ReLUs is also a piece-
wise linear function [3]. In the context of nonlinear optimization, substantial
work has been devoted to using piecewise linear approximations in surrogate
models [5,21,32,63,81,82,84,86,103,130,133] because we can resort to linear op-
timization for iterative improvements over such approximations. In fact, there are
many active lines of research on what piecewise linear representations can be ob-
tained from different neural network architectures, most of which focused on Re-
LUs [3,4,16,40,43,45,46,53-55,62,88-90,95,97,100,102,105,108,109,119,124,132].

With a piecewise linear representation, we can embed the neural network
in the optimization model using a Mixed-Integer Linear Programming (MILP)
formulation. However, such formulations range from being small but having a
weak linear relaxation to having a stronger relaxation but being prohibitivelly
large [61], which makes it difficult to use an off-the-self MILP solver. That moti-
vated studies on how to tackle such models, ranging from reformulation [61, 76,
107,123] to methods for obtaining smaller big M coefficients through activation
bounds [6,19,33,41,57,74,114,123,143] and parameter rescaling [98], activation
inferences for fixing variables and limiting search space [11, 108,120, 138], cut-
ting planes [2], and heuristic solutions [96,121]. Another—perhaps overlooked—
approach is using neural networks that are smaller [15] and sparser [106,138].

In this work, we explore this latter approach of using sparser neural net-
works. On the one hand, we know that (i) sparser optimization models tend to
be solved faster; and (ii) we can sparsify a neural network, which is known as
network pruning, and still recover its performance by retraining for a few steps,
which is known as finetuning. In fact, it is already reasonably well established
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that pruning a neural network in advance leads to a more tractable constraint
learning model [106,138]. On the other hand, finetuning requires access to train-
ing data and requires a non-negligible runtime overhead. Moreover, if the pur-
pose of solving an optimization model that embeds a neural network is to verify
properties of the neural network itself, then it is not immediate if—and how—to
use a pruned counterpart of the given neural network as a proxy. Therefore, we
evaluate how much we can prune, and how much we should finetune, a neural
network to still obtain effective and efficient surrogate optimization models.

2 From Notation to Formulation

In this paper, we consider feedforward networks with fully-connected layers of
neurons having ReLU activation. Note that convolutional layers can be repre-
sented as fully-connected layers with a block-diagonal weight matrix, for which
reason we abstract that possibility. We also abstract that fully-connected layers
are often followed by a softmax layer [12], since the largest output of softmax
matches the largest input of softmax, for which reason it is not necessary to
include the softmax layer in applications such as network verification.

Each neural network has an input € = [r; z2 ... 7,,]" from a bounded
domain X and corresponding output ¥y = [y; Y2 ... ¥m]', and each layer | €
L ={1,2,...,L} has output h! = [k} kY .. Al ]T from neurons indexed by i €
N, ={1,2,...,n;}. Let W be the n; x n;_; matrix where each row corresponds

to the weights of a neuron of layer I, W} the i-th row of W, and b’ the vector
of biases associated with the units in layer . With h° for = and h” for y, the
output of each unit i in layer [ consists of an affine function g} = W}'h!=! + bl
followed by the ReLU activation h! = max{0,g!}. When training the neural
network, we vary the paramenters in {(W', b!)};c to better fit the values given
for the set of input—output pairs {(w(i), y(i))}ieg representing the training set.

When optimizing over the trained neural network, we flip what is variable
and what is constant in relation to training: we vary the input = h° and the
outputs at each layer {(g', h!)};cr, for the fixed parameters {(W', b')};cp. For
each layer [ € L and neuron i € N, we also use a binary variable z! representing
the ReLU activation to map inputs to outputs using MILP:

W'~ 1+ b =g (1)

(2 =1) = (hi = g)) (2)

(2, =0) = (g} <OAR;=0) (3)
hl >0 (4)

zi € {0,1} (5)

The indicator constraints (2)—(3) can be modeled with big M constraints [10].
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In the absence of other decision variables, one general form of representing a
linear optimization model embedding a neural network is as follows:

max ¢’z +d'y (6a)
st. Ax+ By <b (6b)
y = NN(2) (60)

We use y = NN(x) as a shorthand for the input—output mapping defined by the
set of constraints (1)—(5) VI € L, i € N; across the entire neural network.

Next, we describe two applications based on special cases of this formulation.
They are both used for evaluating our approach.

2.1 Network Verification

For neural networks used for classification, one application of embedding them
in optimization models is to determine if there is an adversarial perturbation
for a chosen input (¥ ,i € S from the training set. If (") is correctly classified
as class j € {1,...,m} by having an output y such that yjl) > y,(:) Vk €
{1,...,m}\ {4}, then we can try to determine if there is a similar input & with
a different classification. By varying the inputs within {z : || — 2®|; < &} for
a chosen €, we try to find an input that is better classified with a chosen class
J # g, e,y > yj.4 That leads to the following MILP formulation:

max y;; — yj (7a)

s.t. Z |z — a:g)| <e (7b)
ke{l,...,no}

y = NN(z) (7c)

In the model above, any solution with a positive objective function value entails
an adversarial perturbation; whereas a nonpositive optimal value implies that
no such perturbation exists for the given choices of 7, j/, and «.

2.2 Function Maximization

For neural networks used for regression, one application of embedding them in
optimization models is to optimize over the function surrogated by the neural
network. The case of finding the maximum for a neural network with a single
output—i.e., m = 1—leads to the following MILP formulation:

max Y (8a)
s.t. y=NN(x) (8b)
reX (8¢c)

4 With j' fixed, we are only ensuring that j would be a better classification than j,
since there might be another class j dominating both, i.e., y;» > y;s > y;.
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3 From Network Pruning to Sparse Surrogates

Neural networks have a very peculiar trait: assuming that two neural networks
can be trained to achieve the same level of accuracy, it is often easier to train
the largest one than it is to train the smallest one. But after training a neu-
ral network that is larger than it needs to be, we can simplify the network by
removing neurons or connections and then still recover a similar accuracy by
carefully adjusting the remaining parameters. In fact, this is becoming main-
stream knowledge with the constant discussion about number of parameters in
large language models and the application of pruning techniques for obtaining
comparable variants that are smaller and faster for inference [35,80,117,136].

3.1 Background

Neural networks are pruned by either (i) removing connections, which is equiv-
alent to zeroing out specific parameters—known as unstructured pruning; or
(ii) removing units, such as neurons, convolutional filters, or layers—known as
structured pruning. The latter has greater appeal for performance, since it goes
beyond reducing storage to using smaller hardware and running the model faster,
but then we need to prune less to still recover the original performance [20].

But why do we need network pruning? A larger neural network has a
smoother loss landscape [72,118], which facilitates training convergence; and the
larger size may also prevent layers from becoming inactive [101], which is a com-
mon cause for unsuccessful training. Why does network pruning work? In
larger networks, there is redundancy among the parameters [25], and zeroing out
parameters leads to a loss landscape from which finetuning the pruned network
for recovering the original performance converges considerably faster than the
original training [65]. From a model flexibility perspective, unstructured pruning
at moderate rates has little effect on the expressiveness of the neural network
architecture [16]. How much can we prune? In sufficiently large networks,
we can remove as much as half of the parameters and still recover the original
performance—or even improve upon it [56]. However, that varies with the task
for which the network is trained [73]. Moreover, pruning may have a disparate
effect across classes [58,59,94], which may lead to pruned networks that exacer-
bate existing performance differences [122]. On the bright side, a smaller amount
of pruning may actually correct such distortions [39]. What should we prune?
The two main philosophies [9] are (1) to remove parameters with the smallest
absolute value—dating back to [48,64,91]; and (2) to remove parameters with
the smallest expected impact on the output—dating back to [49, 50, 69], and
including the special case of exact compression [37,110,111,115]. And when
should we prune? Most studies have focused on pruning once (one-shot) and
after training, but recent work has shown that it might be beneficial to prune
iteratively and during training [34], or even before training [71].

Mathematical optimization has been extensively used in more sophisticated
pruning methods [1,7,14,16,29,30,49-51,69,79,110,111, 113,129,134, 141, 142].
Those methods tend to perform better than simpler heuristics at higher pruning
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rates. However, they also come at a greater computational cost. For moderate
pruning, something as simple as removing the weights with the smallest absolute
values, known as Magnitude Pruning (MP) [48,64,91], remains a very competi-
tive choice [142]. We take the liberty of calling it “unreasonably effective”.

The use of pruned neural networks in mathematical optimization, however,
has been less explored. Among the first studies on embedding neural networks,
Say et al. [106] observed that a modest amount of unstructured pruning—
removing about 20% of the parameters—significantly reduced the runtime for
solving the optimization model. Moreover, Xiao et al. [138] and Cacciola et
al. [15] observed that structured pruning—having fewer neurons and therefore
fewer binary decision variables mapping the activation state of each neuron—
leads to comparable neural networks that are more easily verified.

3.2 The Sparse Surrogate Approach

Suppose that we have a (dense) neural network D to which S is a sparse coun-
terpart obtained by network pruning, with y” = D(x) and y° = S(x) as the
corresponding outputs from those two neural networks for a same input .

We will succinctly describe how to use S for obtaining solutions for constraint
learning models on §. We will use the models from Sections 2.1 and 2.2.

Network Verification First, we consider the case of a network verification
problem, in which we validate if an adversarial input to the pruned network is an
adversarial input to the original network. Let VNN(N, () ¢, j, 5') be the MILP
formulation (7a)—(7¢) for verifying neural network N € {D, S} starting from
input ¥ and with maximum LIl-norm distance e for obtaining another input
x in which the output for class j’ is as large as possible in comparison to that
of class j, i.e., we want to find an input & maximizing yj\f — y]N for yN = N(x).
For the purpose of verification, it suffices to find an @ such that yJ]Y > ij . To find
a solution with positive value for dense model VNN(D, e,z 5, /), we resort
to solving sparse model VINN(S, ¢, @4, j') as outlined in Algorithm 1.

Algorithm 1 Heuristic for obtaining an adversarial input to a (dense) neural
network D by trying to solve the same problem on its sparse counterpart S

1: while trying to solve VNN(S, e, 2, ,5/) do > MILP solver call
2: if solution (x,y”) found then > Feasible solution callback
3 y? =D(x) > Output of the dense model D
4 if ij/ > yJD then > Check if x is adversarial to D
5: return > Adversarial input found
6: end if

7 end if

8: end while

9: return > No adversarial input found
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Function Maximization Next, we consider the case of a function maximiza-
tion problem, in which we check if an input to the pruned network yields a better
value than the inputs previously tried on the dense network. Let FM(N) be the
MILP formulation (8a)—(8c) for maximizing the output of the function modeled
by network A" € {D,S} over domain X. Unlike the network verification case,
there is no criterion for prematurely stopping the search in this application. To
find a solution with better value for dense model FM(D), we resort to solving
sparse model FM(S) as outlined in Algorithm 2.

Algorithm 2 Heuristic for obtaining an adversarial input to a (dense) neural
network D by trying to solve the same problem on its sparse counterpart S

1«0 > Initialize best solution as none
2: y* 4+ —00 > Placeholder for best solution value
3: while trying to solve FM(S) do > MILP solver call
4: if solution (z,y°) found then > Feasible solution callback
5: y? = D(x) > Output of the dense model D
6: if 2* =0 or y© > 3" then > Check if « is the first or a better solution
7 T x > Update best solution
8: y* — yP > Update best solution value
9: end if

10: end if

11: end while

12: return x* > Provide best solution found

4 Experiments for Network Verification

We evaluated the time for finding an adversarial input for a (dense) neural
network D by directly solving model VNN(D, () ¢, j, j'), which we denote as
Dense Runtime, in comparison to indirectly solving model VNN(S, x e 4, 7"
while resorting to Algorithm 1, which we denote as Pruned Runtime. Our goal
is to find if, and when, Pruned Runtime is shorter than Dense Runtime.

4.1 Technical Details

We used the source code of SurrogateLIB [126] as the basis for training neu-
ral networks and producing network verification problems, starting with the
MNIST dataset [68] and then extending the code to also work with the Fashion-
MNIST dataset [137]. For each of those datasets, we tried all combined vari-
ations of inputs sizes ng = 182 (compressed images) and no = 282 (images
at original size), number of ReLU layers L € {2,4}, and uniform layer width
n; € {32,64} Vi € {1,...,L}. For each dataset and choice of hyperparame-
ters, we used 10 randomization seeds for training neural networks, associating
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them with verification problems on distinct samples from the training set, and
choosing some ¢ € [4.5,5.5]. In total, we have 160 verification problems.

For producing pruned versions of those networks, we used the PyTorch li-
brary. On the number of parameters removed, we applied layerwise pruning rates
of 0.3, 0.5, 0.8, 0.9, and 0.95. On what to prune, we applied both Magnitude
Pruning (MP), which corresponds to pruning the parameters with the smallest
absolute value; and Random Pruning (RP), which corresponds to pruning pa-
rameters randomly. In addition, we also evaluated unstructured pruning, in which
case the parameters across the layer are pruned indiscriminately; and structured
pruning, in which case we consider all the parameters associated with a neuron
and decide about pruning whole neurons instead. Finally, as a last step we also
opted between finetuning the pruned network or not finetuning it and keeping it
as it was after being pruned. For each of the 160 original verification problems,
the combination of all the pruning choices above resulted in solving variants in
40 pruned versions of each neural network. In total, we use 6,560 models.

We used the BisonNet cluster. The steps involving the solution of MILP
models with Gurobi were run on Intel Xeon Gold 6442Y CPUs. The steps in-
volving network training and pruning were run on AMD EPYC 7252 CPUs with
NVIDIA RTX A5000 GPUs. The neural networks were trained and pruned using
Torch 2.0.0. Each model on MNIST was trained for 5 epochs, and each model
on Fashion-MNIST was trained for 40 epochs. Without finetuning, there was a
single round of pruning. With finetuning, there were 5 pruning rounds and each
round had 5 epochs of retraining. The MILP models were solved using Gurobi
Optimizer 10.0.1 with a time limit of 300 seconds for each of the 6,560 models.

4.2 Results and Analysis

Our best results were obtained by using Algorithm 1 with unstructured MP
instead of solving the verification model directly. We compare the runtimes (in
seconds) to solve the verification model directly and indirectly for MNIST in Fig-
ure 1 and Fashion-MNIST in Figure 2. We vary pruning rate, whether finetuning
is used, and whether finetuning time is counted as part of the runtime. We report
the percentage of instances above and below the identity line, corresponding to
the direct and the indirect approaches being faster. Those percentages do not
add up to 100% if there are ties, which includes when both methods time out.

We draw the following conclusions and provide a rationale to each conclusion
by listing observations about the plots in those figures:

(I) Using our approach in network verification is advantageous in terms of (i)
individual runtimes as well as (ii) number of instances solved:
(i) We found adversarial inputs faster for most instances regardless of
pruning rate and of finetuning the pruned neural networks or not.
(ii) When there are timeouts (i.e., not finding an adversarial input) from
solving the verification problem directly (as with MNIST), then our
approach with a small pruning rate reduces the number of timeouts.
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Fig. 1. Time to find adversarial input to networks trained on MNIST by solving the
verification problem directly (z axis) or indirectly with Algorithm 1 (y axis) per pruning
rate, use of finetuning, and inclusion of finetuning in runtime. Squares on top or (and)
right sides indicate no adversarial input found for either (both). Ties are not counted.
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Fig. 2. Time to find adversarial input to networks on Fashion-MNIST by solving the
verification problem directly (z axis) or indirectly with Algorithm 1 (y axis) per pruning
rate, use of finetuning, and inclusion of finetuning in runtime. Squares on top or (and)
right sides indicate no adversarial input found for either (both). Ties are not counted.
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(IT) The pruning rate can be adjusted for different purposes, from finding more
adversarial inputs up to a time limit at lower rates (ii again) to finding (iii)
most adversarial inputs faster at higher rates and (iv) fewer adversarial
inputs but in a much shorter amount of time at the highest rate:

(iii) The number of runtime improvements increases with pruning rate
up to 90% for both datasets, finetuned or not, and then decreases.

(iv) The differences between runtimes become more extreme in our favor
with greater pruning rates, but then the timeouts also increase.

(IIT) The pruned neural network does not need to be a good classifier to help
us find adversarial inputs (v). In fact, it is not helpful to finetune the

network to improve accuracy after pruning at lower pruning rates (vi).

For higher pruning rates, finetuning the neural network can be helpful

(vii), but the cost of finetuning would have to be amortized over solving

multiple verification problems on the same neural network (viii):

(v) The lower accuracy in the case without finetuning, almost approach-
ing random guessing (10% on either dataset), did not prevent us from
using the pruned neural networks for obtaining adversarial inputs.

(vi) The results were better without finetuning for the lowest pruning
rates (one for MNIST and three for Fashion-MNIST).

(vii) The percentage difference of instances solved faster with finetuning
is only on the second most significant digit for the higher pruning
rate, except the highest (e.g., 98.8% instead of 93.5% on MNIST and
93.8% instead of 91.2% on Fashion-MNIST for pruning rate 90%).

(viii) If we account for the finetuning cost, then it is generally faster to
solve the verification problem directly.

Given the cost-benefit advantage of not using finetuning, we conducted the
following ablations restricted to the results without finetuning.

First, we considered the impact of other network pruning choices. Figure 3
compares the joint results on MNIST and Fashion-MNIST by using unstructured
MP as before, then by only replacing unstructured with structured pruning, and
then by only replacing MP with RP. Considering possible questions due to the
favorable results for structured pruning in some of the plots, Table 1 summarizes
the number of instances on both datasets in which an adversarial input would

Table 1. Percentage of instances for which solving the verification problem indirectly
on a pruned network is faster by pruning rate (columns); using unstructured and struc-
tured pruning (top and bottom rows); and not finetuning (NF) or finetuning (F). Un-
favorable figures (below 50%) are reported in italics for greater emphasis.

Pruning Rate
0.3 0.5 0.8 0.9 0.95

NF [[ 675%  71.3% 89.4%  925%  83.8%
F 65.6%  70.6%  90.0%  96.3%  93.8%
NF | 75.0%  788%  70.6%  72.5%  65.0%
F 59.4%  57.5%  56.3%  49.4%  46.3%

Unstructured

Structured
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Fig. 3. Time to find adversarial input to networks on MNIST and Fashion-MNIST by
solving the verification problem directly (z axis) or indirectly with Algorithm 1 (y axis)
per pruning rate for different forms of network pruning. Squares on top or (and) right
sides indicate no adversarial input found for either (both). Ties are not counted.
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Table 2. Percentage of instances for which solving the verification problem indirectly
on a pruned network is faster by pruning rate (columns); disaggregated in terms of
input size (top rows), number of layers (middle), and neurons per layer (bottom rows).

Pruning Rate
0.3 0.5 0.8 0.9 0.95

182 75.0%  80.6%  86.9%  84.4%  76.3%
282 67.5% 69.4% 73.1% 80.6% 72.5%
2 80.6%  84.4%  86.3%  86.3%  76.3%
4 61.9%  65.6%  73.8%  788%  72.5%
32 69.4%  78.8%  781% 81.9%  75.6%
64 73.1%  71.3%  81.9%  83.1%  73.1%

Input Size

Network Depth

Layer Width

have been found faster than by directly solving the verification problem according
to the structural type of pruning and the use of finetuning.

The purpose of considering RP, which is not an appealing choice intuitively,
was to evaluate if a deliberate choice on how to prune would influence the results.
We can see that it does—and that the only deliberate choice that we considered
was MP. We opted for MP due to its small computational cost and widely
regarded effectiveness in practice. Hence, we leave is open to future work if
it would be beneficial to replace MP with a more sophisticated network pruning
algorithm. That improvement seems reasonable to expect, but we believe that
it would be beyond the scope of this particular study.

Second, we considered how the results vary based on the dimensions of the
neural networks considered. Table 2 summarizes the number of instances on
both datasets in which an adversarial input would have been found faster than
by directly solving the verification problem according to input size, number of
layers (network depth), and neurons per layer (layer width).

We draw more conclusions and justify them based on the above ablations:

(IV) Structured pruning without finetuning is also potentially applicable at
lower pruning rates (ix), with the caveat that more timeouts may occur
(x). However, finetuning after structured pruning appears to make the
pruned networks significantly different from the original neural network,
since their adversarial inputs are less compatible (xi):
(ix) For the two lowest pruning rates (up to 50%), more instances are
solved faster with structured MP than with unstructured MP.
(x) Across all pruning rates, structured pruning leads to more timeouts.
(xi) Finetuning has a positive effect when applied to neural networks that
were subject to unstructured pruning, and that positive effect grows
with pruning rate. The opposite happens with structured pruning.
(V) The criteria of what connections to prune (such as MP vs. RP) has a
significant effect on the results (xii), and may help extending this approach
to neural networks with larger inputs and more layers (xiii):
(xii) The results for unstructured MP are better than those for unstruc-
tured RP, and the difference grows with the pruning rate.
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(xiii) The benefit of our approach is more significant in neural networks
with smaller input size or smaller depth. On the other hand, layer
width does not affect results in a clearly monotonic way.

5 Experiments for Function Maximization

We evaluated the best solution obtained for a (dense) neural network D by
directly solving model FM(D), which we denote as Dense Mazimum Value, in
comparison to indirectly solving model FM(S) while resorting to Algorithm 2,
which we denote as Pruned Maximum Value. Our goal is to find if, and when,
Pruned Maximum Value is greater than Dense Maximum Value.

5.1 Technical Details

We used randomly initialized networks with 5 seeds for all combinations of input
sizes ng € {100,1000,10000}, number of layers L € {2,3,4,5}, uniform layer
width n; € {50,100,200} Vi € {1,..., L}, and with an extra one-neuron output
layer. That setting is similar to other papers using this problem [96,121]. Based
on the results from Section 4, we used only unstructured MP without finetuning.
When using Algorithm 2, we solved FM(S) by setting parameters MIPFocus,
PoolSearchMode to 1 and PoolSolutions to 1000, ensuring that a greater number
of solutions is obtained. We report the baseline of directly solving FM(S) with
default parameter values, since it gave better results in this case. We set the
time limit to 600 seconds for all models. All other settings are as in Section 4.

5.2 Results and Analysis

Our approach based on Algorithm 2 generally produced better results for the
instances that would be typically regarded as harder to solve for having a larger
number of linear regions [121]. The results are not as favorable as they were for
network verification, for which reason we use less space reporting and analyzing
them. Nevertheless, they have some interesting similarities and differences when
compared to those in Section 4. Table 3 summarizes the number of networks
for which we found better values indirectly with Algorithm 2 according to input
size, number of layers (network depth), and neurons per layer (layer width).
We draw the following conclusions and justifications based on the results:

(A) The results from Algorithm 2 are generally better if at least one of the
dimensions of the neural network has a larger value (a), and consistently
more so in the case of layer width (b).

(a) In 32 out of 35 cases where any dimension is not the smallest, at least
half of the instances have a better solution. In contrast, larger input sizes
were less favorable to our approach in the case of network verification.

(b) Unlike input size and network depth, any larger value for network width
corresponds to a favorable case for Algorithm 2. In contrast, network
width was the least relevant dimension in network verification.



Optimization over Trained (and Sparse) Neural Networks 15

Table 3. Percentage of instances for which solving the function maximization problem
indirectly on a pruned network yields a better solution by pruning rate (columns);
disaggregated in terms of input size (top rows), number of layers (middle), and neurons
per layer (bottom rows). Favorable figures (above 50%) are reported in bold.

Pruning Rate

0.3 0.5 0.8 0.9 0.95

100 33.3% 40.0% 18.3% 50.0% 45.0%

Input Size 1,000 63.3% 48.3% 63.3% 50.0% 50.0%
10,000 || 65.0%  58.3%  56.7%  55.0%  78.3%

2 18.9% 20.0% 24.4% 24.4% 24.4%
3 57.8%  44.4%  66.7%  55.6%  51.1%
Network Depth 4 62.2%  55.6%  66.7%  64.4%  73.3%
5 46.7%  55.6% = 66.7% = 62.2%  82.2%

50 51.7%  43.3% 35.0% 31.7% 33.3%
Layer Width 100 58.3% 51.7%  65.0% 55.0%  60.0%
200 51.7%  51.7%  68.3%  68.3%  80.0%

(B) Increasing along a dimension or along the pruning rate while fixing the other
does not necessarily lead to better results (c), but very large networks yield
considerably better results when using the highest pruning rate (d).

(c) We see at least non-monotonic variation of percentages if we increase
any dimension along the same pruning rate, or if we increase the prun-
ing rate along the same dimension. In contrast, we generally observe a
monotonic improvement up to 90% pruning rate in network verification.
(d) In all cases in which one of the dimensions is the largest, the best results
are obtained for the highest pruning rate, unlike in network verification.

6 Conclusion

With the goal of solving optimization problems embedding a dense neural net-
work, we tackled those problems indirectly through drastically sparsified neural
networks serving as surrogates. Those problems become very difficult to solve as
the neural networks grow larger in size, and the surrogate is a pruned version
of the same neural network. By making the models sparser, we naturally expect
to find solutions faster, and in some cases we do not expect or do not need to
necessarily find an optimal solution. We believe that this work contributes to
understanding how to tackle constraint learning models more effectively.

We have found that a cost-effective approach is applying unstructured prun-
ing while carefully choosing which connections to prune but not finetuning the
pruned network afterwards. We obtained consistently strong results in network
verification, even if the surrogate network had very low accuracy. We also ob-
tained encouraging, albeit modest, results in function maximization, but under
different conditions than we found them for network verification.
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