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Abstract

Limited geographic access to obstetric care prevents some pregnant people from receiving

timely and risk-appropriate services. This challenge is especially acute in rural areas, where

rural residents often travel far distances to obstetric care. Furthermore, obstetric access is

worsening due to the growing number of closures of rural hospitals’ obstetric units, often

due to financial concerns. In response, government organizations have initiated programs to

prevent rural hospital closures, but there are limited tools to identify where best to allocate these

resources. In this work, we propose the Maximum Choice-based Expectation Facility Location

Problem (MCE-FLP), a generalization of the maximum capture facility location problem, to

forecast which obstetric unit closures would have the worst impact on expected travel distance to

care. In this problem, we model patients’ obstetric care-seeking behavior using a multinomial

logit (MNL) discrete choice model, which we show is more accurate than assuming patients

seek their nearest obstetric unit. We show that the MCE-FLP’s objective function is not convex

or concave in general, and thus the state-of-the-art maximum capture solution methods are not

applicable. We present two linear reformulations of the MCE-FLP and design branch-and-cut

(B&C) approaches using analytical solutions to obtain the cuts. In our case study, we apply the

MCE-FLP to the obstetric care system in the state of Georgia, and we find that the projected

worst-case closures are isolated from other obstetric units and would impact above-average

rates of marginalized groups. In this work, we propose a novel generalization of the maximum
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capture problem, which maximizes an expected value that is dependent on patient/consumer

choice, and we demonstrate that this problem can be applied to determine worst-case obstetric

closures that should be prevented to maintain critical access to care.

Keywords. Choice-based facility location; Healthcare access; Random utility maximization;

Multinomial logit model; Branch-and-cut

1 Introduction

The United States' maternal mortality rate, 32.6 deaths per 100,000 live births, has increased by

27.7% from 2018 and is the highest rate among high-income countries (Chenet al. 2025). An

estimated 80% of these pregnancy-related deaths are preventable (Trostet al. 2022). Moreover,

there are signi�cant disparities, as rural women are twice as likely to die due to pregnancy compared

with their urban peers (Harringtonet al. 2023). This disparity is partially explained by a lack of

geographic access to hospital-based obstetric care, which consists of healthcare services before,

during, and after pregnancy (Kilpatricket al.2019).

The widespread trend of obstetric unit closures across the United States has decreased access to

obstetric care, particularly in rural areas. Between 2011 and 2021, 25% of rural obstetric hospitals

closed their obstetric units (Chartis Group 2023). These closures are most common in the most

rural counties (Hunget al. 2017), potentially worsening already high rates of adverse maternal

outcomes (Merktet al. 2021, Hansenet al. 2022). As a result, travel distances to obstetric care

have increased, which is associated with delayed initiation and infrequent prenatal care, higher

rates of adverse maternal outcomes, and more NICU admissions (Kennedyet al.2022, Denget al.

2024, Minionet al.2022). Although many hospital administrators believe that obstetric care is an

essential community service, low delivery volume, di�culty in sta�ng, and low reimbursement

rates can cause obstetric care facilities to be of poor quality and unpro�table, which may lead to

their closures (Kozhimannilet al.2022, Hunget al.2016). A survey of rural hospital administrators

found that 41.7% of rural obstetric hospitals reported having fewer births than they required for

�nancial viability, and 29.9% reported having fewer births than they required for clinical safety

(Kozhimannilet al.2022). Thus many more obstetric units may be at risk of closure.

The causes of obstetric unit closures and their consequences on perinatal health outcomes are

well-studied (Carrollet al. 2022, Fischeret al. 2024, Lorchet al. 2013, Sullivanet al. 2021).
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However, there has been little work on forecasting the impacts of potential obstetric unit closures

and strategically preventing these closures. As policymakers introduce hospital support programs,

such as Health Resources and Services Administration (HRSA)'s Rural Maternity and Obstetrics

Management Strategies Program (Coombs 2022), it is critical to identify the best use of these

programs' resources to support obstetric care. When forecasting the impacts of closures, it is

important to understand how patients seek obstetric care. Previous studies examining where

patients seek labor & delivery (L&D) care have found that between 11% and 51% of patients

bypasstheir closest obstetric hospital. That is, they deliver at a farther obstetric hospital, even

when their closest obstetric hospital provides the services that they need (Thorsenet al. 2023,

Carrelet al.2023).

The goal of this work is to identify which obstetric units are essential for ensuring access to

obstetric care within a region. In this article, we consider the following research question: \Which

obstetric unit closures would have the worst-case impacts on access to care, when considering patient

care-seeking behavior?" To answer this question, we develop a new framework for integrating care-

seeking behavior as a random utility maximization model into facility location design decisions. In

our setting, this framework represents an adversary that can close obstetric units to maximize the

expected travel distance to obstetric care while considering patient behavior. More generally, this

framework can be used to design facility locations to maximize the expectation of some function

with respect to the induced patient behavior (or consumer choice).

1.1. Facility Location Background

Facility location is a classical operations research problem in which a decision maker seeks to

optimally locate facilities that serve consumers (Daskin 2013). These problems arise in a wide

variety of contexts, including healthcare services (Choet al.2014), distribution networks (Liet al.

2013), and humanitarian logistics (Boonmeeet al.2017). Classical facility location models assume

that consumers will be served by their closest facility. However, this assumption is often violated to

some degree in reality. Accordingly, there has been growing attention on how consumers' choices

of which facilities to patronize should a�ect facility location decisions.

One approach for representing consumer behavior is the random utility maximization frame-

work, in which consumers are assumed to have random utilities associated with various facilities
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and choose to patronize facilities that maximize their utility (McFadden 1972). Benati and Hansen

(2002) were the �rst to integrate a random utility maximization model representing consumer be-

havior into the facility location problem. They describe a setting where a decision maker chooses

to locate facilities in a competitive market to maximize their market share, which they refer to

as the \maximum capture" model. They integrate a multinomial logit (MNL) model, a discrete

choice random utility maximization model, which provides a simple structure for the probability

of a consumer choosing a speci�c facility. The maximum capture model laid the foundation for

integrating consumer choice into the facility location problem, and most of the literature on this

topic has focused on this objective in competitive settings (Haase 2009, Haase and M•uller 2015,

Freire et al. 2016, Mai and Lodi 2020). However, there are other non-competitive contexts in

which incorporating choice could be critical to facility location decisions. For example, in primary

education, decision makers may want to minimize students' travel costs (Haaseet al. 2019). In

disaster relief, decision makers may want to minimize the response time of locating distribution

centers while ensuring coverage (Duranet al. 2011). In healthcare, decision makers may want to

maximize the quality of care that patients receive, which depends on where patients seek care. In

this article, we explore how patients' obstetric care-seeking behavior may a�ect our understanding

of which facilities are critical to providing access.

1.2. Contributions

Altogether, this article makes contributions in three aspects: model, algorithm, and application.

In our modeling:

1. We introduce a generalization of the maximum capture problem, which we refer to as the

Maximum Choice-based Expectation Facility Location Problem (MCE-FLP). In the MCE-

FLP, we consider the facility location problem in which the objective is to maximize an

expectation of a function with respect to the probability distribution of consumers' choice of

facility. We illustrate how the maximum capture problem is a special case of the MCE-FLP.

2. We examine the MCE-FLP framework when consumer choice is modeled using a MNL

discrete choice model. We show that, under the MNL model, the MCE-FLP objective

function is not concave or convex in general, unlike the maximum capture objective function.
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Thus, the state-of-the-art solution methods for the maximum capture problem that take

advantage of concavity do not extend to the MCE-FLP. However, we show that the MCE-

FLP has a quasiconcave objective function and can be represented as a mixed-integer linear

fractional program (MILFP).

3. We present two linear reformulations of the MCE-FLP. The �rst formulation is a probability-

based linear model in which the induced choice probabilities are directly represented as

decision variables, as done by Haase (2009) for the maximum capture problem. The second

formulation is a linear fractional-based formulation. We use a variable substitution method

(Yue et al.2013) to transform this formulation into a mixed-integer linear program (MILP).

We demonstrate that both of these representations lend themselves to decomposition by

consumer zone.

In our algorithm:

4. We design a branch-and-cut (B&C) approach for each linear reformulation based on the

integer L-shaped method (Laporte and Louveaux 1993). We decompose our problem into a

main problem in which the decision maker selects the facilities. Then, given the selection

of the facilities, we represent each consumer zone's choice of facility as a subproblem. We

exploit structures of these subproblems to derive the optimal dual variables analytically which

are then used to generate optimality cuts. We provide a numerical study comparing the linear

reformulations, B&C, and B&C with analytical solution cuts approaches. We demonstrate

that solving the MILP formulations directly is the fastest approach for small problems, and

the B&C approaches with analytical solution cuts are the fastest approaches for the largest

problems. Speci�cally, for the largest test instances in our study, the B&C approach with

analytically-generated cuts can solve twice as many instances as an approach that solves the

MILP formulations directly.

In our application:

5. We apply the MCE-FLP in a case study examining access to obstetric care in the state of

Georgia. We �t a simple MNL model to birth certi�cate records in Georgia and �nd that this

MNL model better approximates patient obstetric care-seeking behavior compared with a
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model that assumes patients seek care at their closest obstetric unit. Using this simple MNL

model, we consider which simultaneous obstetric unit closures would have the worst impact

on access to obstetric care, which could inform policymakers on where to focus their e�ort

and resources to prevent closures. We �nd that the MCE-FLP projected worst-case obstetric

unit closures would a�ect above-average populations of already marginalized groups, and

that these obstetric units are not frequently bypassed, indicating their critical role in providing

access to obstetric care.

1.3. Organization of the article

The remainder of this article is organized as follows: In Section 2, we provide some important

background on integrating consumer behavior with random utilities into the facility location prob-

lem. In Section 3, we formally de�ne the MCE-FLP. In Section 4, we analyze the properties

of the MCE-FLP and propose linear reformulations, and in Section 5, we develop corresponding

B&C solution methods. In Section 6, we compare the performance of these solution methods in

computational experiments, and in Section 7, we present our case study of the state of Georgia.

Finally, in Section 8, we summarize our �ndings and discuss limitations and opportunities for future

research.

2 Literature Review

In this article, we seek to forecast the impacts of potential obstetric unit closures based on patients'

care-seeking behavior represented as discrete choice model, which is a mathematical tool for

describing how individuals make choices among a discrete set of alternatives based on the features

of those alternatives. These models are used in a variety of contexts, including transportation

(Schwanen and Mokhtarian 2005, Ben-Akiva and Bierlaire 1999), healthcare (Prosseret al.2023),

and marketing (Berry 1994). Given the importance of accurately representing consumer behavior,

discrete choice modeling approaches are being integrated into optimization frameworks for a

variety of problems, including revenue management (Talluri and van Ryzin 2004) and assortment

(Rusmevichientonget al. 2010). One such problem, and the focus of this article, is the facility

location problem.

Many optimization models incorporating choice use the MNL model because of its simple struc-
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ture. The �rst maximum capture facility location approach under the MNL model was introduced

by Benati and Hansen (2002). The challenge in this approach is that the resulting mathematical

program yields a nonlinear formulation. Multiple solution methods have been proposed for this

nonlinear formulation. A subset of these approaches reformulate the resulting problem into MILP

models, which are convenient to solve (Benati and Hansen 2002, Haase 2009, Zhanget al. 2012,

Aros-Veraet al.2013). These linear reformulation approaches were compared by Haase and M•uller

(2014), who found that the most e�cient is the Haase (2009) approach.

A more recent stream of literature on the maximum capture problem under the MNL model

has taken advantage of the concavity of the objective function by proposing algorithms that use an

outer-approximation to solve this nonlinear facility location problem. Ljubi�c and Moreno (2018)

propose a B&C algorithm that combines outer-approximation and submodular cuts, and Mai and

Lodi (2020) propose a multicut outer-approximation cutting plane approach. The problem can

also be solved by a convex mixed-integer nonlinear program (MINLP) solver (e.g., Bonamiet

al. (2008)). These two solution approaches (Ljubi�c and Moreno 2018, Mai and Lodi 2020) are

regarded as state-of-the-art for the maximum capture problem under the MNL model.

Another stream of research has focused on solving variations of the maximum capture problem

under other choice models. For example, Lin and Tian (2021) propose an e�cient generalized

Benders decomposition algorithm to solve a variant where consumers make choices based on the

gravity rule, and the decision maker can choose zone-specialized attractiveness to maximize pro�t.

Legault and Frejinger (2024) propose a partial decomposition approach to solve the maximum

capture problem where utility is approximated by sampling realizations of its random terms to avoid

the limitations of the MNL model. Damet al. (2022) formalize the maximum capture problem

under the generalized extreme value family. Their objective function's continuous relaxation is

neither convex nor concave, and consequently, the approaches of Ljubi�c and Moreno (2018) and

Mai and Lodi (2020) cannot be applied. Instead, they develop a greedy heuristic.

There is growing recognition of the importance of patient choice in healthcare planning and

operations. For example, Feldmanet al. (2014) incorporate patient preference and behavior in

designing appointment schedules. Ataet al. (2021) incorporate patients' strategic choices in

kidney allocation policy. Zhanget al. (2012), Haase and M•uller (2015), and Bravoet al. (2025)

use discrete choice models in the location planning of preventive healthcare facilities to maximize
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capture. In contrast to these articles, we consider the expected travel distance to facilities instead

of capture because of the known association between negative health outcomes (e.g., adverse

pregnancy outcomes, delayed initiation of prenatal care) and travel distance to obstetric hospitals.

In this article, we examine a choice-based facility location problem motivated by access to

obstetric care. Our work lies at the intersection of two streams of research on obstetric care:

that which examines where pregnant people seek obstetric care (Gudayu 2022, Harriset al.2024,

Koller et al. 2024) and that which considers the location planning of obstetric units (Chouksey

et al. 2022, Karakaya and Meral 2022, Galv~ao et al. 2002). From an application perspective

Hwanget al. (2022) is the most closely related work, which incorporating patient preference into

a facility location problem for the Korean perinatal care system. Their objective coverage-based,

to reduce medically underserved areas, and they use linear reformulation techniques and solve

a MILP. In contrast to this article, we propose a generalizable facility location that maximizes

some choice-based expectation, and we propose an e�cient decomposition algorithm to solve our

problem.

3 The Maximum Choice-Based Expectation Facility Location Problem

3.1. Problem Setting

We now formally introduce the Maximum Choice-based Expectation Facility Location Problem

(MCE-FLP). We consider a problem in which a decision maker is choosing to add or remove

obstetric units from hospitals, which provide services to patients in a given region. We assume that

the patients who seek care from the available obstetric units can be partitioned into communities

(i.e., consumer zones)C = f 1– •••– �g, and that12 2 R is the demand for services originating from

patients located in community2 2 C. In our context,12 is the number of births originating from

community2 2 C. The decision maker then needs to decide where to locate obstetric units among

a set of candidate hospital locations,H = f 1– •••– �g.

To capture patient behavior, we assume that patients seek obstetric care according to a random

utility maximization model. Each community of patients2 2 C associates a random utility,D2� ,

with each obstetric hospital� 2 H . The random utility maximization model assumes that patients

make choices that maximize their utility. This framework allows us to compute the probability that
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a patient from community2 seeks care at an obstetric hospital� as?2� = %¹D2� � D2� 0–8� 0 2 Hº .

Given the patients' random utilities, the decision maker can then choose which subset of

candidate hospitals- � H should be selected to provide obstetric care (i.e., to be obstetric hospitals)

so as to maximize the expectation of an objective of interest with respect to the patients' choice

probabilities. We allow that other restrictions, such as the total number of hospitals o�ering obstetric

services, are captured by a feasible setX � %¹Hº (where%¹Hº denotes the power set of hospitals).

For example, if exactlyAobstetric units are allowed to be open, thenX = f - � H : j- j = Ag.

We represent our objective of interest as a random variable/ , which takes on the valueI 2� with

probability ?2� ¹- º given that the subset of hospitals selected is given by- . We refer to this as the

MCE-FLP:

max
- 2X

E- »/ ¼=
Õ

22C

12

Õ

� 2-

I 2� ?2� ¹- º (1)

whereE- »/ ¼represents the expectation of our objective/ taken with respect to the choice proba-

bilities, ?2� ¹- º, when the subset of candidate hospitals,- , is selected.

3.2. The Multinomial Logit Random Utility Maximization Model

A random utility maximization model assumes that patients from community2 2 C receive some

random utility,D2� , from seeking care at a hospital� 2 H . A general form used to represent the

random utility is that the random utilityD2� is the sum of two parts, i.e.,D2� = E2� ¸ n2� . Here,E2�

refers to the deterministic part of the utility and represents observed attributes of a community of

patients2and hospital� . Meanwhile,n2� is an error term to represent utility attributed to unobserved

attributes. In much of the maximum capture facility location literature, the multinomial logit (MNL)

model is used because of its simple speci�cation of the choice probability. In the MNL model, the

unknown component,n2� , is assumed to follow the Gumbel distribution. Throughout the remainder

of this article, we will focus on the MCE-FLP framework in (1) under an MNL model.

Under an MNL model of patient choice,?2� ¹- º can be computed as

?2� ¹- º =
exp¹E2� º

Í
� 02- exp¹E2� 0º ¸ U0

2

whereE2� = ¹V� º) 02� is the utility associated with a community of patients2 2 C and hospital

� 2 - , V� are the parameters of the MNL model, and02� is an attribute of the community-hospital
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pair. Going forward, we will denoteU2� = exp¹E2� º. In a competitive facility location context,U0
2

represents the utility associated with a competitor �rm's facilities. For example, if. � H is the set

of locations where the competitor has located facilities, thenU0
2 =

Í
: 2. 4G?¹E2: º. Alternatively, in

our healthcare context,U0
2 represents the utility of \no-choice" (e.g., foregoing labor in an obstetric

hospital). In all contexts,U0
2 represents the utility of �xed alternatives and is a constant, and?0

2 is

the associated choice probability. We assume that our decision maker is only concerned with the

choice-based expectation corresponding to the patients captured by hospitals,- � H .

Thus, specifying the MCE-FLP in (1) with an MNL model of patient choice is represented as:

max
- 2X

E- »/ ¼=
Õ

22C

12

Õ

� 2-

I 2�
U2�

Í
� 02- U2� 0 ¸ U0

2
• (2)

3.3. Examples of MCE-FLP

We now provide some examples of the MCE-FLP.

1. Maximum Capture. The MCE-FLP is a generalization of the maximum capture problem,

where a decision maker seeks to locate facilities to maximize their expected market share

under a consumer choice model. In the maximum capture case,I 2� = 1, and the problem can

be written as

max
- 2X

Õ

22C

12

Õ

� 2-

?2� ¹- º• (3)

The problem in (3) under an MNL model of choice was introduced by Benati and Hansen

(2002).

2. Maximum Service Level. Another example of the MCE-FLP is the case where a decision

maker seeks to maximize the expected level of care provided by a patient's chosen hospital.

In this case, each hospital location provides some level of service,� � , where higher levels of

services correspond with higher quality of service. Thus, this problem can be written as

max
- 2X

Õ

22C

12

Õ

� 2-

� � ?2� ¹- º•

In this case, the decision maker is incentivized to both locate hospitals at locations that are
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capable of higher levels of service and at locations that capture larger proportions of patients.

3. Maximum Distance. A �nal example of the MCE-FLP, and the context we explore in this

article, is the case where a decision maker seeks to maximize the expected distance traveled

by the captured patients, a p-median problem. In this case,I 2� = 32� , where32� is the

distance between community of patients2 2 C and hospital� 2 H . Thus, this problem can

be written as

max
- 2X

Õ

22C

12

Õ

� 2-

32� ?2� ¹- º• (4)

We explore this context as an adversarial version of a p-median problem with choice in

detail in our case study. In this problem, an adversarial decision maker's objective is to

maximize the expected population-weighted distance traveled by closing obstetric units. We

use this problem to identify which obstetric unit closures would have the worst-case impact

on patients' travel distances, which could inform obstetric unit closure prevention policies.

4 Modeling and Analysis

In this section, we introduce mathematical models to solve the MCE-FLP under a MNL choice

model. We analyze these models and derive solution algorithms presented in§5. First, we show

that the MCE-FLP can be formulated as a mixed-integer programming model:

max
G

Õ

22C

12

Õ

� 2H

I 2� ?2� ¹Gº (5a)

s•t•
Õ

� 2H

G� = A– (5b)

G� 2 f0–1g– 8� 2 H – (5c)

whereG� = 1 if an obstetric unit is located at hospital� 2 H and 0 otherwise, and?2� ¹Gº represents

probability that a patient in community2 2 C seeks obstetric care at hospital� 2 H under the

available obstetric hospitals dictated byG. Constraint (5b) states that the decision maker will place

exactlyAhospitals.
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Under the MNL model, we can represent the patient choice probability as

?2� ¹Gº =
U2� G�

Í
� 02H U2� 0G� ¸ U0

2
•

Thus, the MCE-FLP under MNL can be formulated as a mixed-integer nonlinear program (MINLP):

max
G

Õ

22C

12

Í
� 2H I 2� U2� G�

Í
� 02H U2� 0G� 0 ¸ U0

2
(6a)

s•t•
Õ

� 2H

G� = A– (6b)

G� 2 f0–1g– 8� 2 H • (6c)

4.1. Analysis of the MCE-FLP

The maximum capture problem's objective function is a special case of MCE-FLP in whichI 2� = 1

for all 2 2 C and� 2 H . Under this condition, the continuous relaxation of the objective function

(6a) is concave (Benati and Hansen 2002). This property has served as the foundation for many of

the state-of-the-art methods for solving the maximum capture problem (Ljubi�c and Moreno 2018,

Mai and Lodi 2020). However, we show that this property does not hold for our objective function

(6a) in general. All proofs are deferred to Appendix A for ease of reading.

Proposition 1. The continuous relaxation of the MCE-FLP objective function(6a) is not convex

or concave in general.

This result indicates that solution methods for the maximum capture problem that take advantage

of the concavity of the objective are generally not valid for the MCE-FLP. However, these approaches

may apply in special cases. For instance, ifI 2: = I 2F 8:– F 2 H , then the MCE-FLP objective

function (6a) becomes a scaled maximum capture objective, and all maximum capture solution

methods would correctly produce an optimal solution.

Although the MCE-FLP's objective function (6a) is not convex or concave, it is a sum of linear

fractional functions, which are quasilinear (Bazaraaet al. 2006). We elaborate how this property

can be used to reformulate the problem into a mixed-integer linear program (MILP) in§4.2.2.
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4.2. Mixed-Integer Linear Programming Reformulations

We now demonstrate how (6) can be reformulated into a MILP using two approaches. In§4.2.1, we

adapt the most e�cient maximum capture linear reformulation from Haase (2009), which explicitly

formulates choice probabilities as decision variables. We refer to this as the probability-based linear

reformulation. In§4.2.2, we present a linear reformulation using the linear fractional structure of

the MCE-FLP objective function. We refer to this as the linear fractional-based reformulation.

4.2.1. Probability-Based Linear Reformulation The early linear formulations of the maximum

capture problem areprobability-based formulations. That is, these formulations use continuous

decision variables? to re
ect consumer choice probabilities and use logic-based constraints to

relate these choice probabilities to the available facilities dictated by binary decision variablesG.

For example, Haase (2009) present a linear reformulation of the maximum capture problem (3).

Using our notation, this Haase (2009) reformulation has the objective function,

max
G–?

Õ

22C

12

Õ

� 2H

?2� • (7)

We adapt the Haase (2009) linear reformulation from the maximum capture to the MCE-FLP

(6). To do so, we �rst update the objective function to

max
G–?

Õ

22C

12

Õ

� 2H

I 2� ?2� • (8)

The Haase (2009) formulation also has a set of constraints that enforce that values of?2� are

correctly evaluated for a set of open facilities (e.g., hospitals)G� 8� 2 H . Freireet al.(2016) show

that one of these constraints (9) holds at equality when we consider the maximum capture objective

function (7) and whenG� = 1, ensuring that?2� is correctly evaluated,

?2� �
U2�

U0
2

?0
2 (9)

=
U2�

U0
2

U0
2Í

� 02H
U2� 0G� 0 ¸ U0

2
=

U2�
Í

� 02H
U2� 0G� 0 ¸ U0

2
• (10)
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With the MCE-FLP objective function (8), we are no longer strictly maximizing all?2� . Thus,

when G� = 1, (9) is not necessarily held at equality. Therefore, to solve the MCE-FLP with

the Haase (2009) reformulation, we add a constraint (11) from the Aros-Veraet al. (2013) linear

reformulation to enforce that?2� and?0
2 take on the correct values whenG� = 1,

?0
2 �

U0
2

U2�
?2� ¸ ¹ 1 � G� º 82 2 C– � 2 H – (11)

=) ?2� �
U2�

U0
2

?0
2 =

U2�
Í

� 02H U2� 0G� 0 ¸ U0
2
• (12)

Thus, constraints (9) and (11) enforce that?2� is correctly evaluated. This allows us to modify

Haase (2009) for the MCE-FLP (5) as a MILP:

max
G– ?

Õ

22C

12

Õ

� 2H

I 2� ?2� (13a)

s•t•
Õ

� 2H

G� = A– (13b)

Õ

� 2H

?2� ¸ ?0
2 = 1– 82 2 C– (13c)

?0
2 �

U0
2

U2�
?2� ¸ ¹ 1 � G� º– 82 2 C– � 2 H – (13d)

?2� �
U2�

U0
2

?0
2– 82 2 C– � 2 H – (13e)

?2� �
U2�

U2� ¸ U0
2
G� – 82 2 C– � 2 H – (13f)

?2� � 0– 82 2 C– � 2 H – (13g)

?0
2 � 0– 82 2 C– (13h)

G� 2 f0–1g– 8� 2 H • (13i)

where constraint (13c) requires the choice probabilities for each community sum to one, constraints

(13d)-(13e) enforce that the choice probabilities take on the correct values when a obstetric unit is

open, and constraint (13f) enforces that the choice probability of seeking a closed unit is zero.

4.2.2. Linear Fractional Linear Reformulation Because solution techniques that rely on con-

cavity no longer apply, we explore other properties of the MCE-FLP. Let us again consider the
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MCE-FLP under the MNL model formulated as a MINLP (6). The objective function (6a) is a

sum of linear fractional functions, which are of the form:5¹Gº = 0) Ģ 1
2) Ģ 3 where0– 22 RH are

vectors of known coe�cients and1– 32 R are known coe�cients. Bazaraaet al. (2006) show that

linear fractional functions are quasiconvex and quasiconcave, thus quasilinear, and that every local

optimum of a linear fractional program is also its global solution.

We can linearly reformulate linear fractional programs via the Charnes-Cooper transformation

(Charnes and Cooper 1962), which Yueet al. (2013) extended to mixed-integer linear fractional

programs. We now apply this linear fractional reformulation to the MCE-FLP. First, similar

to the Charnes-Cooper transformation (Charnes and Cooper 1962), we introduce new variables

C2 = ¹
Í

� 02H U2� 0G� 0¸ U0
2º� 1. The MCE-FLP (5) can then be transformed into an equivalent bilinear

program with the introduction of these new variables (Charnes and Cooper 1962, Yueet al.2013),

max
G– C

Õ

22C

12

Õ

� 2H

I 2� U2� G� C2

s•t•
Õ

� 2H

G� = A–

Õ

� 2H

U2� G� C2 ¸ U0
2C2 = 1– 82 2 C–

C2 � 0– 82 2 C–

G� 2 f0–1g– 8� 2 H •

(14)

To linearize the bilinear term,G� C2, we introduce a new variableF2� = G� C2, which we can

linearize with Glover's linearization scheme (Glover 1975, Yueet al. 2013). Thus, (14) can be
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linearized into an equivalent MILP problem,

max
G– C– F

Õ

22C

12

Õ

� 2H

I 2� U2� F2�

s•t•
Õ

� 2H

G� = A–

Õ

� 2H

U2� F2� ¸ U0
2C2 = 1– 82 2 C–

F2� � C2 � ¹ 1 � G� º) 2– 82 2 C– � 2 H –

F2� � C2– 82 2 C– � 2 H –

F2� � G� ) 2– 82 2 C– � 2 H –

F2� � 0– 82 2 C– � 2 H –

C2 � 0– 82 2 C–

G� 2 f0–1g 8� 2 H •

(15)

Here, ) 2 is an upper bound onC2� , serving as a big-M parameter in Glover's linearization

scheme.

5 Solution Methods

In the previous section, we provided two MILP reformulations of the MCE-FLP. We can directly

solve each of these formulations using a commercial optimization solver, such as Gurobi. In

this section, we demonstrate how these reformulations are amenable to branch-and-cut (B&C)

decomposition algorithms. A summary of the model formulations and their corresponding solution

methods is provided in Table 1.

Our B&C schemes for solving the MCE-FLP formulations are similar to Benders decomposi-

tion for stochastic programming. Benders decomposition breaks the extensive form of a stochastic

program into amain problemandsubproblems. The main problem typically only considers \com-

plicating variables" while the subproblems will consider the other variables assuming �xed values

of the complicating variables. In the context of stochastic programming, typically a \relaxed main

problem" is solved, which involves only the �rst-stage decisions and a subset of the constraints

required to specify the complete optimization problem. Then, the �rst-stage solutions and sub-
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Formulation Solution
Method

Acronym Description Details

Probability-
Based (13)

Solved directly Prob MILP MILP formulation (13) solved directly §4.2.1

B&C Prob B&C B&C algorithm where an optimality cut
is generating by solving the�(% %

2 ¹Ĝº,
(19)

§5.1

B&C
(Analytical)

Prob B&C-A B&C algorithm where an optimality cut
is generated by computing the�(% %

2 ¹Ĝº
analytical solution

Proposition 2

Linear
Fractional-
Based (15)

Solved directly LF MILP MILP formulation (15) solved directly §4.2.2

B&C LF B&C B&C algorithm where an optimality cut
is generating by solving the�(% !�

2 ¹Ĝº,
(23)

§5.2

B&C
(Analytical)

LF B&C-A B&C algorithm where an optimality cut
is generated by computing the�(% !�

2 ¹Ĝº
analytical solution

Proposition 3

B&C: branch-and-cut; MILP: mixed-integer linear program;�(% : dual subproblem

Table 1: Summary of solution methods for two linear reformulations.

problems' duals are used to subsequently add constraints, orcuts, to the relaxed main problem to

enforce the feasibility and/or optimality of the �rst-stage solutions from the relaxed main problem.

In our setting, we consider the binary obstetric unit location variables to be our \complicating

variables" in both the probability-based formulation (13) and the linear fractional-based formulation

(15). Thus, in each B&C scheme, our completely relaxed main problem initially only includes the

binary variables representing which hospitals have obstetric units. Then, we enforce the constraints

via cuts that are generated from the respective subproblems corresponding to (13) or (15). For both

(13) and (15), the relaxed main problem starts as:

max
\– G

Õ

22C

\ 2

s•t•
Õ

� 2H

G� = A–

\ 2 � * 2– 82 2 C–

G� 2 f0–1g– 8� 2 H –

(16)
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where* 2 is an initial upper bound on62¹Gº, the objective function of the subproblem for community

2 2 C. The\ 2 variables take on an upper bound of62¹G� º at the optimal valueG� . Then, when the

: th integer feasible solution is found, a cut (� :–2¹G: º) is generated which provides an upper bound

on \ 2 for each community2 2 C and a constraint of the form:

\ 2 � � :–2¹G: º (17)

is added for each community2 2 C. These upper bounds get progressively lower as more cuts

are generated at subsequent integer feasible solutions. In our setting, we will demonstrate that the

subproblems can be decomposed by community2 2 C. We now describe the subproblems used to

generate optimality cuts for both the probability-based and linear fractional-based formulations.

5.1. Branch-and-cut (B&C) for the Probability-Based Linear Reformulation

For probability-based formulation MILP (13), the subproblem for community2at an integer feasible

solutionĜ2 f0–1gjH j is denoted as(%%
2 ¹Ĝº and formulated as follows:

6%
2 ¹Ĝº = max

?
12

Õ

� 2H

I 2� ?2� (18a)

s•t•
Õ

� 2H

?2� ¸ ?0
2 = 1– (18b)

?0
2 �

U0
2

U2�
?2� ¸ ¹ 1 � Ĝ� º–8� 2 H – (18c)

?2� �
U2�

U0
2

?0
2– 8� 2 H – (18d)

?2� �
U2�

U2� ¸ U0
2
Ĝ� – 8� 2 H – (18e)

?2� – ?02 � 0– 8� 2 H • (18f)
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The dual of the subproblem, which we will refer to as�(% %
2 ¹Ĝº, is then:

min
W– Y– o– _

W̧
Õ

� 2H

Y� ¹1 � Ĝ� º (19a)

¸
Õ

� 2H

_�

�
U2�

U2� ¸ U0
2

�
Ĝ�

s•t• W�
U0

2

U2�
Y� ¸ o� ¸ _� � 12I 2� –8� 2 H – (19b)

W̧
Õ

� 2H

Y� �
Õ

� 2H

U2�

U0
2

\ � � 0– (19c)

Y� – o� – _� –� 0– 8� 2 H – (19d)

whereWcorresponds with (18b),Ywith (18c),o with (18d), and_ with (18e).

Solving the dual subproblem for each community,�(% %
2 ¹Ĝº, we can use the optimal solutions

(W� – Y� – _� – o� ) to add an optimality cut to the relaxed main problem (16) for each community2 2 C:

\ 2 � W� ¸
Õ

� 2H

Y�
� ¹1 � G� º ¸

Õ

� 2H

_�
�

�
U2�

U2� ¸ U0
2

�
G� • (20)

Because ^Gis a �xed integer feasible solution,�(% %
2 ¹Ĝº is an linear program (LP) and can be

solved directly using a commercial solver such as Gurobi. However, we demonstrate that the dual

subproblems,�(% %
2 ¹Ĝº, can be solved analytically, which avoids the need to build and solve an LP.

Proposition 2. GivenĜ2 f0–1gjH j and assumingA ¡ 1, the following is an optimal solution of the

�(% %
2 ¹Ĝº :

W� = 12

Õ

� 2H

I 2� U2� Ĝ� 0

Í
� 02H U2� 0Ĝ� 0 ¸ U0

2

o�
� = maxf¹ 12I 2� � WºĜ� –0g

Y�
� = maxf�¹ 12I 2� � Wº¹

U2�

U0
2

ºĜ� –0g

_�
� = maxf¹ 12I 2� � Wº¹1 � Ĝ� º–0g

For the case whenA= 1, we can solve the MCE-FLP in polynomial time by simply evaluating

the impact of opening each single hospital.
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Using the solution from Proposition 2, we can analytically compute the dual subproblem's

optimal solution and add the optimality cuts (20) to the main problem (16) for each community.

5.2. Branch-and-cut (B&C) for the Linear Fractional Linear Reformulation

We now discuss the subproblems for the MCE-FLP using the linear fractional linear reformulation

(15). The initial relaxed main problem (16) is the same as in the probability-based case. However,

the cuts di�er due to the di�erent structure of the subproblems.

Given an integer feasible solution to (16), ^G2 f0–1gjH j , the resulting subproblem for community

2 2 C based on the linear fractional formulation, which we refer to as(%!�
2 ¹Ĝº, is as follows:

6!�
2 ¹Ĝº = max

C– F
12

Õ

� 2H

I 2� U2� F2� (22a)

s•t•
Õ

� 2H

U2� F2� ¸ U0
2C2 = 1– (22b)

F2� � C2 � ¹ 1 � Ĝ� º) 2– 8� 2 H – (22c)

F2� � C2– 8� 2 H – (22d)

F2� � Ĝ� ) 2– 8� 2 H – (22e)

F2� � 0– 8� 2 H – (22f)

C2 � 0• (22g)

The dual of the subproblem, which we will refer to as�(% !�
2 ¹Ĝº, is then:

min
W– Y– \– _

W̧
Õ

� 2H

Y� ¹1 � Ĝ� º) 2 ¸
Õ

� 2H

_� Ĝ� ) 2 (23a)

s•t•

U2� W� Y� ¸ o� ¸ _� � 12I 2� U2� – 8� 2 H – (23b)

U0
2W̧

Õ

� 2H

Y� �
Õ

� 2H

o� � 0– (23c)

Y� – o� – _� � 0– 8� 2 H • (23d)

whereWcorresponds with (22b),Ywith (22c),o with (22d), and_ with (22e).
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Solving the dual subproblem for each community,�(% !�
2 ¹Ĝº, we can use the optimal solutions

(W� – Y� – _� – o� ) to add an optimality cut to the relaxed main problem (16) for each community2 2 C:

\ 2 � W� ¸
Õ

� 2H

Y�
� ¹1 � G� º) 2 ¸

Õ

� 2H

_�
� G� ) 2• (24)

Similar to the probability-based formulation, when we are given ^G, �(% !�
2 ¹Ĝº becomes an LP

and can be solved using a solver, but we show that�(% !�
2 ¹Ĝº can also be solved analytically.

Proposition 3. GivenĜ 2 f0–1gjH j and assumingC2 Ÿ ) 2–82 2 C, the following is an optimal

solution of the�(% !�
2 ¹Ĝº :

W� = 12

Õ

� 2H

I 2� U2� Ĝ� 0

Í
� 02H U2� 0Ĝ� 0 ¸ U0

2

o�
� = maxf U2� ¹12I 2� � WºĜ� –0g

Y�
� = maxf� U2� ¹12I 2� � WºĜ� –0g

_�
� = maxf U2� ¹12I 2� � Wº ¹1 � Ĝ� º–0g•

We can ensureC2 Ÿ ) 2 by de�nition of ) 2. In the remainder of this paper, we set) 2 = ¹U0
2º� 1.

Using the solution from Proposition 3, we can analytically compute the dual subproblem's

optimal solution and add the optimality cuts (24) to the main problem (16) for each community.

5.3. The complete B&C algorithm for MCE-FLP

We now formalize the entire B&C procedure, as shown in Algorithm 1. The algorithm is similar

to the Integer L-Shaped method (Laporte and Louveaux 1993), but is customized to solve the dual

subproblems analytically to obtain the dual variables and generate optimality cuts. In the next

section, we will compare solution approaches that solve each formulation directly, use B&C with

an LP solver to generate cuts, and Algorithm 1 that uses analytically-derived cuts. A summary of

the six di�erent solution methods is provided in Table 1.
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Algorithm 1 Branch-and-Cut with Analytically Derived Cuts for the MCE-FLP
1: ! �  �1 and*�  1

2: Solve the master problem (16). Let¹\̂–Ĝº be a candidate optimal solution. Set*� =
Í

22 C \̂ 2.

3: UseĜto obtain optimal dual variables¹Ŵ2, Ŷ2� –ô2� –_̂2� º for each¹2– �º 2 C � H using Proposition 2

(for probability-based) or Proposition 3 (for linear fractional-based)

4: Let Î 2 be the corresponding objective function value in (18) (for probability-based) or (22) (for linear

fractional-based). Set! � = maxf !�–
Í

22 C Î 2g

5: if ! � = *� then

6: Current solution is optimal, STOP.

7: else

8: For each community2 2 Csuch that̂\ 2 ¡ Î 2, use the current optimal dual solution¹Ŵ2, Ŷ2� –ô2� –_̂2� º

to add an optimality cut of the form (20) (for probability-based) or (24) (for linear fractional-based) to

the master problem (16). Go to Step 2.

9: end if

6 Computational Experiments

In this section, we evaluate the performance of our solution methods on a dataset that has been used

to compare formulations of the maximum capture problem.

6.1. Experimental Setting

We now describe the dataset used to compare the solution methods. We adapt the experimental

setting described in Haase and M•uller (2014) and in Freireet al. (2016) to consider the maximum

travel distance problem described by (6) in whichI 2� = 32� . In our setting, we randomly locate

jCj communities of patients andjH j hospital locations over a 30x30 plane. We considerjCj 2

f 50–100–200–400–800g, jH j = f 25–50–100g, and12 = 1. We setU0
2 = 1

999
Í

� 2H U2� so that

?0
2 = 0•001 (\no-choice" probability) when all hospitals have obstetric units.

For each instance, we have solved the problem forA 2 f2– •••–5g and for ten random seeds.

The distance between communities and hospitals,32� , is computed as Euclidean distance. The

deterministic part of the utility function is given byE2� = � V � 32� for each community-hospital

pair. ParameterV represents the sensitivity of patients to travel distance. We considerV = 0•2.
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Figure 1: Number of randomly-generated instances solved within the speci�ed time by each solution
method. The maximum allotted time was 1 hour (3600 seconds). See Table 1 for a description of
the solution methods.

This results in a total of 600 instances. We have given a time limit of one hour per instance.

The experiments are run on a Linux-based computational cluster with a total of 2,340 cores

of x86-64 processing with over 28.9TB of memory. Our algorithms are coded in Python 3.8 and

solved using Gurobi 11.0 with default parameters.

6.2. Results

Table 2 reports the computational comparison of the six approaches (see Table 1) to solve the

maximum distance MCE-FLP, and Figure 1 shows the number of solved instances of each solution

method for di�erent instance sizes. We report the number of instances solved within the time limit

of one hour and the average solution time in seconds as reported by Gurobi. Note that each row of

the table corresponds to 40 instances.

Table 2 indicates that the probability-based and linear fractional-based MILPs can solve the

majority of the smaller instances in the fastest solution time. On average, the probability-based

solution methods perform slightly faster than the linear fractional-based solution methods. However,

in instances wherej� j = 25, the linear fractional-based MILP performs faster than the probability-

based MILP on average. In all instance sizes, the B&C-A algorithms perform faster than the

B&C algorithms on average. In larger instance sizes, the B&C-A algorithms emerge as the fastest

solution methods, and, in the largest solved instances (j� j = 800–j� j = 25), the B&C-A algorithms

are fastest on average.
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# Solved instances Solution Time (CPU seconds)�

Probability-Based Linear Fractional-Based Probability-Based Linear Fractional-Based
jCj jH j MILP B&C B&C-A MILP B&C B&C-A MILP B&C B&C-A MILP B&C B&C-A

50 25 40 22 23 40 16 20 115.53 1370.31 813.09 100.57 1256.39 1153.6
50 50 39 7 10 39 4 7 1050.74 2241.55 1901.69 1059.24 2239.99 2246.82
50 100 10 0 0 8 1 0 1533.88 - - 2227.86 2472.39
100 25 40 19 20 40 15 17 269.07 1530.75 1181.01 225.37 1801.88 1614.62
100 50 32 6 6 29 0 1 1393.93 2951.1 2719.78 1590.47 - 3597.58
100 100 9 0 0 0 0 0 2426.17 - - - - -
200 25 40 14 18 40 7 12 607.48 2092.68 1505.39 467.91 1209.58 1504.87
200 50 11 0 0 10 1 0 1956.30 - - 2875.21 221.39 -
200 100 0 0 0 0 0 0 - - - - - -
400 25 30 10 10 39 10 10 2414.56 1861.97 1441.79 2220.66 2010.77 1672.35
400 50 0 0 0 0 0 0 - - - - - -
400 100 0 0 0 0 0 0 - - - - - -
800 25 3 7 7 2 6 7 3274.63 2654.32 1804.43 3253.50 2862.82 1961.45
800 50 0 0 0 0 0 0 - - - - - -
800 100 0 0 0 0 0 0 - - - - - -

Average 16.93 5.67 6.27 16.47 4.00 4.93 1504.23 2100.38 1623.88 1557.87 1759.40 1964.47
� Average among solved instances.

Table 2:Computational experiments results for HM14 dataset, grouped byjCj & jH j (40 instances per row).

7 Case study: Determining Worst-Case Obstetric Unit Closures in Georgia

We now demonstrate the use of our modeling approach to analyze which obstetric unit closures in

the state of Georgia would have the worst-case impacts on geographic access to care.

7.1. Context

According to the Georgia Obstetrical and Gynecological Society, 34% (38/112) of Georgia's

obstetric units closed between 1994-2020 (Georgia Obstetrical and Gynecological Society 2020).

Between 2010 and 2014, Georgia led the country in rural hospital closures in general (Hamet

al. 2019). Although a large percentage of Georgia's obstetric units have closed in the past thirty

years, it is unclear how obstetric closures have a�ected access to care and the quality of care among

units that remain open. In response to these closures, the Rural Hospital Stabilization Committee

was formed under the Georgia Department of Community Health to prevent closures by increasing

utilization, strengthening �nancial status, and improving the health outcomes of rural residents.

The committee provides support to rural hospitals by supporting sta� retention and development,

infrastructure improvement, and debt reduction (Hamet al.2019).

In this case study, we apply the MCE-FLP to analyze the current state of obstetric access

and identify which potential obstetric unit closures would most increase travel distances to care
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across the state when considering patient bypassing behavior. This analysis provides insights into

which obstetric hospitals should receive closure prevention resources through state and nation-wide

programs.

7.2. Problem Setting

In this problem, we assume that there is a set of existing, open obstetric hospitals,H , that serve

communities (\consumer zones") of pregnant patients,C. Rather than locating new obstetric units,

we are interested in the context where an adversary can close a set number of obstetric units,� , to

achieve the worst-case impact on access to care. Our decision variable is as follows8� 2 H ,

G� =

8>>><

>>>
:

1– if � 's obstetric unit remains open,

0– if � 's obstetric unit is closed.

We adapt (6) so thatI 2� = 32� where32� is the distance between community2 2 C and hospital

� 2 H . This objective function re
ects that we want to identify the worst-case closures that

maximize expected travel distance. Further, we modify constraint (6b) to be
Í

� 2H ¹1 � G� º = � to

re
ect that the decision maker closes� existing obstetric units (as opposed to openingAnew units).

We compare the solutions of the MCE-FLP with a model assuming that patients seek care at

their closest obstetric hospital. We model this \closest hospital" problem as a MILP,

max
G

Õ

22C

12

Õ

� 2H 2

32� H2� (25a)

s•t•
Õ

� 2H

¹1 � G� º = �– (25b)

32� H2� � 32� 0H2� ¸ � 2¹1 � G� 0º– (25c)

82 2 C– �– �0 2 H 2–

H2� � G� – 82 2 C– � 2 H 2– (25d)

G� 2 f0–1g– 8� 2 H (25e)

where constraints (25c)-(25d) ensure thatH2� = 1 if obstetric hospital� 2 H 2 is the closest open

hospital to community2 2 C, H 2 is a set of the ten closest obstetric hospitals to community
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2, and � 2 is an upper bound on travel distance of a communities closest obstetric hospital, i.e.,

� 2 = max¹32� º for � 2 H 2.

7.3. Data

We parameterize our model using data from the state of Georgia. First, we collected data to infer

the spatial distribution of communities that demand obstetric services and the spatial distribution

of obstetric hospitals. To estimate the demand for obstetric care services, we used data from the US

Census Bureau and electronic birth certi�cate data obtained from the state Vital Records O�ce in

Atlanta, Georgia. We de�ned communities of patients as census block groups, of which Georgia

has 7,432 (i.e.,jCj = 7–432). To estimate the location of these communities, we used the latitude

and longitude of the population centroid of each census block group (U.S. Census Bureau 2021).

To estimate the demand of each community (12), we used the number of patients who gave birth

and lived in the census block group2 2 C in 2019 as reported in the Georgia birth certi�cate data.

We included the 102 (i.e.,jH j = 102) obstetric hospitals in Georgia where more than 10

births occurred in 2019, as reported by Georgia birth certi�cate data. We obtained each hospital's

obstetric level of care (� � ) from Georgia's Department of Public Health public records from 2017

(Barrentineet al. 2017). We include the following levels of care:! = f BC–1–2–3–PRCg, where

BC indicates Birth Center (the lowest level of care), higher levels of care indicate more specialized

obstetric care, and PRC indicates Perinatal Regional Center (the highest level of care). The address,

latitude, and longitude of each obstetric hospital were located using Python's geopy package (GeoPy

Development Team 2024) and cross-referenced by the study team using Google Maps.

We calculated the distance between obstetric hospitals and communities of patients (32� ) as the

road distance in miles between each hospital and each census block group's population centroid

coordinates using Open Source Routing Machine (OSRM) in Python (Luxen and Vetter 2011).

7.4. Discrete Choice Model

Using Georgia's birth certi�cate data on where patients lived and where they delivered, we �t a

discrete choice model to describe patients' labor & delivery (L&D) care-seeking behavior. In these

models, the obstetric hospitals are considered the alternatives, and the road distance and obstetric

level of care are features of these alternatives. Thus, the deterministic part of the utility of a patient
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Parameter Estimate CI lower CI upper

V3 -0.111 -0.111 -0.112
VBC -2.161 -2.232 -2.090
V1 (ref) 0 NA NA
V2 0.744 0.727 0.760
V3 1.473 1.456 1.489
VPRC 1.087 1.070 1.105

Table 3: Discrete choice model parameters
used in Georgia case study.V3 describes the
coe�cient related to travel distance to care.
V� describes the coe�cient associated with
level � care for� 2 fBC–1–2–3–PRCgwhere
BC indicates Birth Center and PRC indicates
Perinatal Regional Center.

Figure 2: Percentage of births that travel to an
obstetric unit within a distance under di�erent
patient behavior assumptions. \True" describes
the observed distance traveled from Georgia birth
records. \MCE-FLP" describes estimated dis-
tance traveled according the MCE-FLP when all
units remain open. \Closest hospital" describes
the estimated distance traveled assuming patients
seek care at their closest unit.

from community2 2 C seeking care at obstetric hospital� 2 H can be described as,

E2� = V332� ¸
Õ

� 2!

V� 0��

where0�� is equal to 1 if obstetric hospital� is of level of care� 2 ! = f BC–1–2–3–PRCg and

0 otherwise, andV3 and V� are calibrated parameters of the MNL model. Using Georgia's birth

certi�cate data, we calibrated the MNL model to obtain the parameters reported in Table 3.

We assume that the \no-choice" alternative is choosing a home birth. In the state of Georgia

in 2017, the rate of home births was 0.65% (MacDorman and Declercq 2019). We round this to

0.5% and setU0
2 = 1

199
Í

� 2H U2� so that?0
2 = 0•005–82 2 C when all obstetric units are open.

7.5. Results

We now present the results of our models exploring the impacts of worst-case obstetric unit closures

on travel distance to care.First, we compare the distance that patients travel to obstetric hospitals

for L&D care as observed in birth certi�cate records with the projected distance that patients would

travel according to our MCE-FLP model and the \closest-hospital" model.
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Observation 1. The MCE-FLP under the MNL model better approximates true travel distance to

obstetric care, compared with the \closest-hospital" problem.

Figure 2 shows the percentage of deliveries that occur at hospitals within a set travel distance in

Georgia in 2019. The estimated average travel distance according to the \closest-hospital" model

is 8.1 miles and according to the MCE-FLP is 15.6 miles (� = 0), compared to the true average

travel distance of 17.0 miles.

Observation 2. The \closest hospital" problem's optimal worst-case closures underestimate the

number of births a�ected and overestimate the impact on travel distance compared with the MCE-

FLP under the MNL model.

We solved the MCE-FLP and the \closest hospital" worst-case closure problems for zero

to four closures,� 2 f 0–1–2–3–4g. We solved the MCE-FLP worst-case closure model with the

probability-based B&C analytical algorithm because it performed the fastest on the largest instances

in the computational experiments. To reduce the number of very small choice probabilities, we

assumed that patients from each community would not seek obstetric hospitals where the MNL

model estimated choice probability was less than their probability of \no-choice".

Both problems' single (� = 1) worst-case obstetric unit closure is at a level 2 hospital in south

central Georgia (closure #1) (Figure 3). The \closest hospital" solutions are presented in Appendix

B. According to the MCE-FLP under the MNL model, this single closure would increase the travel

distance to obstetric care of 2,316 (1.9%) patients from an average of 13.3 miles to 41.6 miles

(Table 4). We visualize this increase in Figure 4. According to the \closest hospital" model,

this closure would increase the travel distance to obstetric care of 2,170 (1.8%) patients from an

average of 9.8 miles to 42.3 miles (Table 4, Figure 8). For more than one worst-case closure

(� ¡ 1), the MCE-FLP and \closest hospital" problems' optimal solutions di�er. For any number

of closures,� 2 f 1–2–3–4g, the \closest hospital" problem's solutions project that closures will

a�ect a smaller population but increase their travel distance more compared with the MCE-FLP

solutions (Figure 5). This is because the MCE-FLP under the MNL model assumes that an obstetric

unit can capture patients from more communities than just those for which it is the closest hospital.

Thus, some patients who would have chosen an obstetric unit before its closure may have an even

closer alternative that they were previously choosing to bypass.
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(a) Current State (b) Worst-Case Closures

Figure 3: Impacts of one (#1), two (#1 & #2), three (#1� #3),
and four (#1� #4) worst-case closures on average travel distance
in miles by census block group according to the MCE-FLP.

Figure 4: Change in average
travel distance after one (#1), two
(#1 & #2), three (#1� #3), and four
(#1 � #4) worst-case closures ac-
cording to the MCE-FLP.

Current State Worst-Case Scenarios

No Closures One Closure Two Closures Three Closures Four Closures

Proportion of Populations

Georgia Overall Projected Population A�ected by MCE-FLP Closures

Total 122,004 (100%) 2,316 (1.9%) 4,106 (3.4%) 6,389 (5.2%) 8,019 (6.6%)
Rural 24.9% 940 (40.6%) 1430 (34.8%) 2406 (37.7%) 3326 (41.5%)
Below Poverty Level 10.3% 466 (20.1%) 882 (21.5%) 1250 (19.6%) 1493 (18.6%)
Race�

White 55.9% 1261 (54.5%) 1872 (45.6%) 3653 (57.2%) 4677 (58.3%)
Black 31.5% 863 (37.3%) 1961 (47.8%) 2278 (35.6%) 2756 (34.4%)
AIAN 0.3% 14 (0.6%) 15 (0.4%) 25 (0.4%) 32 (0.4%)
Asian 4.2% 29 (1.3%) 53 (1.3%) 70 (1.1%) 84 (1.1%)
Other 3.2% 45 (1.9%) 65 (1.6%) 132 (2.1%) 166 (2.1%)
Two+ 4.9% 101 (4.4%) 136 (3.3%) 227 (3.6%) 298 (3.7%)

Travel Distance, miles (change from current state)

Georgia Overall
Average Travel Distance 15.6 16.1 (+0.5) 16.4 (+0.8) 16.7 (+1.1) 16.9 (+1.4)
To Closest Hospital 8.0 8.6 (+0.6) 8.9 (+0.8) 9.1 (+1.0) 9.4 (+1.3)
To Closest CCO Hospital 21.6 21.6 (+0.0) 26.2 (+4.7) 26.8 (+5.2) 26.8 (+5.2)

Population A�ected by Closures
Average Travel Distance - 41.6 (+28.2) 37.9 (+25.0) 37.4 (+22.3) 38.3 (+22.3)
To Closest Hospital - 41.3 (+30.5) 34.7 (+24.3) 30.9 (+19.7) 32.1 (+19.9)
To Closest CCO Hospital - 79.7 (+0.0) 120.7 (+71.9) 92.7 (+56.1) 84.8 (+44.7)

AIAN: American Indian and Alaska Native
� Native Hawaiian and Other Paci�c Islander race statistic not reported due to insu�cient sample size.

Table 4: Demographics and travel distances of the projected current state Georgia population and
worst-case obstetric unit closures according to the MCE-FLP solutions.
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