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Abstract

The problem of approximation by piecewise affine functions has been
studied for several decades (least squares and uniform approximation). If
the location of switches from one affine piece to another (knots for univari-
ate approximation) is known the problem is convex and there are several
approaches to solve this problem. If the location of such switches is un-
known, the problem is complex even in the case of univariate approxima-
tion. In its classical formulation, the number of affine pieces is restricted,
since it is proportional to the dimension of the corresponding optimisa-
tion problems. On the other hand, the recent development of the theory
of neural networks, demonstrate that the functions can be efficiently ap-
proximated by overparametrised neural networks (least squares-based loss
function). In this paper, we use Chebyshev (uniform) optimisation criteria
and compare the classical approximation approach (direct) and a convex
optimisation-based approach, where the number of affine pieces is large,
but smaller than it is in the case of overparametrised networks. This can
be seen as a step towards understanding of the optimisation background
behind overparametrised networks with uniform loss function.
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1 Introduction

The problem of function approximation by a piecewise affine function was stud-
ied for decades. In the case of univariate function approximation, the continuous
piecewise affine functions are also called linear splines. This problem was exten-
sively studied [I824H26]. The coefficients of the affine pieces are the decision
variables. When the points of joining the affine pieces (called knots) are also
variables (free knot approximation), the problem of best Chebyshev approxima-
tion remains open [I8]. Moreover, this problem was identified as one the of
the most important problems of modern approximation [5].

There are several theoretical results on free knot linear spline approximation
(most of them have been extended to higher degree polynomial splines as well):
necessary optimality conditions [S[I8ITII27], sufficient optimality conditions [I8]
19] (just to name a few). Since the problem of free knot spline approximation is
non-convex, necessary and sufficient optimality conditions do not coincide and
it is not known if the conditions can be improved.

In the case of multivariate function approximation, the situation is similar:
when the location of switches from one affine piece to another is known, the
problem is convex, while in the case when they are subject to optimisation, the
problems are non-complex and remain open. The role of knots are assigned
to the intersection of affine pieces and therefore they are not points, but affine
spaces of lower dimensions. In this paper, for simplicity, we call these switches
knots (similar to univariate case).



Remark 1. It is common to call these affine pieces as linear pieces.

In [4], the authors study piecewise affine approximations of bilinear terms.
The authors provide the structural comparison of univariate and bivariate prob-
lems and reformulate them as mixed-integer programming problems. At first
glance, it is easy to underestimate the importance of this study: the authors
approximate very specific types of functions. At the same time, this problem is
a difficult optimisation problem and has many practical applications (see [4] for
details).

In its classical formulation, the objective is to mimimise the maximal devia-
tion of the approximation from the function, given the maximal number of affine
pieces. With the increase of the number of possible pieces, the approximations
become more accurate, but the dimension of the corresponding optimisation
problems is increasing.

On the other hand, artificial neural networks (ANNs) are very powerful and
popular approximation techniques, which lead to piecewise affine approxima-
tions when the activation functions are ReLU or leaky ReLU. ANNs have many
practical applications, including image and sound recognition, partial differen-
tial equation, fluid dynamics and many others, see [I3] and references therein.
ANNSs can handle models with a large number of variables by decomposing com-
plex optimisation problems into several simpler problems that can be solved
efficiently using modern optimisation. This approach is so efficient that in prac-
tice one uses overparametrised ANNs and therefore, in the case of discretised
function approximation, it leads to piecewise affine interpolation, that is, the
deviation at the discretisation points is zero. One has to remember, however,
about the danger of overfitting, which is quite common for overparametrised
networks. Modern ANNSs use a number of regularisers to reduce this possibility.

The theory of ANNs is based on solid mathematical modelling established
in [9T4T6I21], but the origins come to the work of A. Kolmogorov and his
student V. Arnold. The celebrated Kolmogorov-Arnold Theorem [2/I5] is an
attempt to solve the 13th problem of Hilbert. An excellent overview of optimi-
sation techniques for ANNs can be found in [28]. In [30], the authors provide
a comprehensive study of the activation functions from the point of view of
optimisation. Another interesting publication [I] demonstrates the existence of
target functions (functions to be approximated) that are as difficult to approx-
imate using neural networks with pre-selected activation functions. This does
not contradict the classical results (for example [9]), just the architecture of
these networks may be extremely complex. In this paper, we develop a convex
optimisation-based approach, which can be seen as an extension of ANNs, where
the activation functions within the same layer may differ. Therefore, there are
still many open problems in this field.

In this paper, we are working with uniform (Chebyshev) approximation,
where the objective is to minimise the maximal absolute deviation of the ap-
proximation from the original function. In our study, we approximate discre-
tised functions, defined on fine grids. The extension of the results to continuous
functions (multivariate case) is not straightforward even for classical polynomial
approximation, where the corresponding optimisation problems are convex [22]
and therefore it is out of scope of this paper. There are two “polar” approaches
to piecewise affine approximation. The first (classical) approach requires the
minimisation of the maximal absolute deviation when the total number of the



affine pieces is fixed. The second (overparametrised) approach allows for a large
number of possible affine pieces and therefore leads to interpolation and the
maximal absolute deviation is zero. It is also possible to design an approach,
which combines the classical and the overparametrised one.

It is clear that in the case of overparametrised approximations the inter-
polation is not always unique and therefore the choice of possible regulariser
is essential. In most practical problems, the objective of the regulariser is the
reduction of overfitting.

Most ANNs methods are relying on Gradient Descents (GD) and Stochastic
Gradient Descent (SGD) methods. There are several modifications of these
methods, for more information, refer to [6] and also the references within [28].

As it has been pointed out, ANNs approximation problems can be formulated
as optimisation problems. At the same time, some optimisation models rely on
ANNSs. For example, in [I1] ANNs are used to approximate the weakly efficient
frontier of convex vector optimisation problems satisfying Slater’s condition.
Such a fruitful cross-pollination between these ares leads to the construction of
efficient methods.

In this paper, we develop and compare two approaches for piecewise affine
approximation. The first one (direct approach) is based on mixed-integer linear
programming and remotely related to those proposed in [20], but extended to
more than two affine pieces. The second one is a convex optimisation-based
approach which requires a significant increase in the number of affine pieces,
while the approximations remain underparameterised. It was discovered that
the second approach is more efficient than the direct one.

In this paper, all the approximations are in Chebyshev (uniform or infinity)
norm. This extends the existing studies [29], where the authors deal with [,
p < o0.

The paper is organised as follows. In section [2| we provide the background
of the problem. Then in sections [3] and [4] we present our main results: sec-
tion [3] covers univariate approximation, while section [] refers to multivariate
approximation. Section [b| contains conclusions and further research directions.

2 Preliminaries

2.1 Piecewise affine approximation and its connections with
Artificial Neural Networks

ANNs are a popular tool of Machine learning and Artificial Intelligence (AI).
Deep learning is a special type of ANNs that has many practical applica-
tions [I3JI7)28]. Deep learning and ANNs can be used as a purely approxima-
tion tool for univariate and multivariate functions. The objective is to optimise
weights in the network. This approximation problem can be solved using mod-
ern optimisation tools. In the corresponding optimisation models, the objective
function is the deviation of the approximation from the original function (which
may be a continuous function or a function whose values are known only at
some discretisation points). The deviation function (called “loss function”, es-
sentially, it represents the approximation error) can be chosen in a number of
ways. For example, it can be the sum of the squares of the deviations (least
squares based models). Other possible options include, but not limited to the



maximum of the absolute values (uniform or Chebyshev approximation based
models), the sum of the absolute values (Manhattan-distance based models),
etc.

In deep learning, ANNs have a very specific structure: input layer, one or
more hidden layers and the output layer. Theoretically, one hidden layer (with
sufficiently large number of nodes in it) is enough to achieve high accuracy [9,
TAT6/2T]. In practice, however, it is recommended to train neural networks with
several hidden layers [13128]. There is no specific mathematical explanation for
this, just experimental results. In this paper, we study models with a single
hidden layer. In this case, ANNs build approximations in the form

N

S(x) = Z oo (Wx +wp), (2.1)

i=1

where N is the number nodes in the hidden layer, x € R”, function o : R — R
is called the activation function. Activation functions are predefined in advance
and not subject to optimisation. The decision variables (weights) are «;, i =
1,...,N and wj-, i=1,...,N, j =1,...,n. In this study, we use o(t) =
max{0,t} as the activation function, also known as ReLU. There are two main
reasons for choosing this activation function: this choice is quite common in
ANNs and also S(x) in is a continuous piecewise affine function.

2.2 Univariate functions

The history of uniform approximation starts with P. Chebyshev [7]. The con-
ditions are based on the number of alternating points, the point of the highest
absolute deviation, while the deviation signs are alternating.

Theorem 2.1. (Chebyshev) A necessary and sufficient optimality condition for
a polynomial of degree n is the existence of n + 2 alternating points.

In particular, if the degree of the polynomial is one (single affine piece), the
necessary and sufficient optimality condition is the existence of three alternating
points.

In most practical problems, one needs to discretise the domain rather than
working with continuous functions. The problem is as follows:

n
minimise  max v |ao+ Z a; max{0,t; — 0,1} — f(t)|, subject to X € R®",
i=1

tj,j=1,...,
(2.2)
where N is the number of discretisation points, ¢; € [¢,d] for j =1,...,N, n
is the number of subintervals, 6y = ¢, 6, = d, X = (agp,a1,...,an,01,...,0n_1)

are the decision variables.

If the knots are part of the decision variables, the problem is still open. In [20]
the authors consider this problem with two affine pieces. The corresponding
optimisation problem was reformulated as a mixed-integer linear programming
problem (MILPP) and then was efficiently solved. When the number of affine
pieces is increasing the problem becomes more complex. One of the objectives
of this paper is to extend this approach for more than two affine pieces.



2.3 Multivariate functions

In the case of multivariate approximation, the problems are more complex. In
particular, the corresponding basis functions do not form a Chebyshev system
and the notion of alternating sequence is not defined, since the points are not
totally ordered. At the same time, when the location of knots is known or when
there is a single affine piece, the optimisation problems are convex and therefore
can be efficiently solved.

The discretised version of the problem is as follows:

n
minimise  max Z a; max{0, w'T; +wy} — f(T;)|, subject to X € R"T4+n
T;,7=1,....N P

(2.3)
where N is the number of discretisation points, bfT; € @ are d-dimensional
vectors, @ is a d-dimensional hypercube, j = 1,..., N, n is the maximal number
of affine pieces, wi,i=1,...,n,k=1,...,dand a;,i = 1, ..., n are the decision
variables. X = (a1,...,an,w},...,w? are the decision variables.

2.4 Overparameterised ANNs

It is worth mentioning one result [12], where the authors prove that the sub-level
set is connected for single hidden layer overparametrised (ultra-wide) networks
with ReLU activation. This does not imply every local minimum is global, but
implies there is no spurious valley (and no strict local minimum). In particular,
it is possible to have “flat” areas and there is a need to develop numerical
methods to escape from these areas. It maybe possible to escape from such
areas using a suitable regualiser.

The development of an optimisation approach for overparameterised ANNs
is out of scope of this paper. Note that for overparameterised ANNs the optimal
loss function value is zero. Moreover, since for overparameterised network opti-
mal solutions correspond to interpolation, any optimal solution for least squares
(smooth function) is also optimal for uniform (Chebyshev) approximation.

In sections |3| and 4| we present our main contribution. We consider two main
approaches to piecewise affine approximation. In the first case, we reformulate
non-convex problems as MILPPs, which can be efficiently solved when the size of
the problems is not large. In the second case, we increase the number of possible
affine pieces, fix the location of switches from one affine piece to another and then
optimise the remaining variables. This can be done using convex optimisation
techniques, which are fast and efficient. We are not claiming that our solution
is optimal for a given number of affine pieces, since there is no efficient way to
find optimal location of knots.

In the case of univariate approximation (section |3)) we obtained the results
that satisfy sufficient optimality conditions. In the case of multivariate approx-
imation, many problems remain open.

3 Univariate function approximation

In the case of univariate approximation, the problems are simpler and therefore
there are efficient methods to construct accurate approximations.



3.1 Direct method

In [20] the authors reformulated univariate linear spline approximation with
a single internal knot problems as MILPPs. This approach can be extended
to more than two subintervals, but the number of binary variables increases
drastically, since one needs to consider all possible partitions for the so called
max min representation (see, for example [T0/23]).

In our experiments, we use a formulation, which is different from ,
but related to ANNs. The main reason for choosing this formulation is its
straightforward extension to multivariate settings (see section .

Consider the approximation in the form of . We can reformulate it as
follows:

N
SE) =) wo (W(X)), (3.1)
i=1

where Wi = ((w)T,w}) and %' = ((x*)T,1). In our experiments, we use ReL.U
as the activation function and therefore o(t) = max{0, ¢}, which is a positive ho-
mogeneous function. Therefore, if we know which «;-s are positive and which are
negative in the formulation , we can omit optimisation of i, 1 =1,..., N
and only optimise the weights. In practice, one can implement it by splitting
the sum in into a difference of two sums. Strictly speaking, the number of
components in each sum is not known. In our experiments, we assume that the
number of components in each sum is the same and refer to this number as the
number of pairs. This approach is not equivalent to the original problem, where
the function is approximated by a linear spline with at most n linear pieces,
but this is a way to construct piecewise affine approximation with only a few
linear pieces. This approach has several advantages. First of all, it connects the
classical linear spline approximation theory with ANNs. Second, it further ex-
plores the direction of reformulating the problem as a difference of convex (DC)
problem [3] and as an MILPP (similar to [4] or [20], although our methods are
novel). Finally, it has a straightforward generalisation to multivariate settings
(see section [4] for more details).

All the numerical experiments are performed on the interval [—1,1], the
discretisation step is h = 1072 and the number of pairs is 1. We test our
method on five different functions:

1. f1(t) = +/[t]; this function is nonsmooth and non-Lipschitz.
2. fo(t) = /|t — 0.75]; this function is similar to fi(t), but it is non-symmetric.
3. f3(t) = sin(27t); this function is periodic and oscillating.

4. f4(t) = t3 — 3t% + 2; this is a cubic function. The experiments with this
function are interesting, since this is an example, where neural network
was especially inaccurate, despite the fact that this is a smooth function
without any abrupt changes.

5. f5 = 1/(t*® 4+ 0.5); this is a very complex function for approximating by
a continuous piecewise linear function with only two linear pieces. The
structure of the approximation drastically changes when the the discreti-
sation step is changing.



Figure 1: Univariate functions for approximation

The graphs of the functions are presented in Figure [I] Function f5 is changing
abruptly near the point ¢ = —1. This property makes it very hard to approx-
imate f5 by any continuous function piecewise linear function even when the
number of linear pieces is large.

The experimental settings and the functions are the same as in [20], but
in the current paper we are not restricting ourselves to just one knot. For
completeness, we summarise the approach from [20] in the Appendix

The optimisation problem is constructed as follows. Assume that a; and by
are the slope and the intercept of the affine piece in the first ReLU, and as and
bo are the slope and the intercept of the affine piece in the second ReLU.

For each discretisation point ¢;, 7 = 1,..., N we introduce two new variables
C; = max{O,alti +b1}, 1= ].,...7]\[7 (32)
d; :maX{O,agti—Fbg}, i=1,...,N, (33)

where NN is the number of discretisation points. The objective is to minimise
the absolute deviation z, subject to the following constraints:

ft)—(ci—d;) <z i=1,...,N, (3.4)
(c;—di)— f(ti) <z, i=1,...,N. (3.5)

Due to —7 we have the following equations:
0<g, (3.6)
ait;+b1 <c¢, i=1,...,N, (3.7)
0<d; (3.8)
ast; + by <d;, i=1,...N, (3.9)

and for every i, at least one of the inequalities has to be satisfied as equality.
Now, we have to introduce a binary variable.

1. For each group i, at least one of the following reverse inequalities is satis-
fied (for ¢;):

art; +by > ¢, i=1,...,N,
OZCZ', Z:1,N



This can be achieved using binary variables z;, ¢ =1,..., N.

2. For each group i, at least one of the following reverse inequalities is satis-
fied (for d;):

agti+b22di, iil,...,N,
0>d;, i=1,...N.

This can be achieved using binary variables z;, ¢ =1,..., N.

Consider a larger positive parameter M (big-M, fixed value). Then the
requirement for at least one of the inequalities in each group (case 1 for ¢; and
case 2 for d;) holds can be expressed as follows:

ci — (a1t; +b1) < Mz, i=1,..., N, (3.10)
c <M(1—z),i=1,...N, (3.11)
di — (ast; +bs) < M, i=1,...,N, (3.12)
di <M(1-%),i=1,...N, (3.13)
s s ef{01), i=1,...,N (3.14)

Finally, the goal is to minimise z subject to —. Therefore, every addi-
tional pair leads to a significant increase in the number of the decision variables,
including binary variables.

The results of the numerical experiments are presented in Table The

Fun Knot(s) Max. abs. dev. | Time (sec.)
1 N/A 0.4997 5333

fa N/A 0.3002 3044

f3 N/A 0.9936 8

fa 0, = 0.2309 0.3388 959

fs | 01 = —0.8742, 6, = 0.9730 171.8496 364

Table 1: Computational results: one pair, h = 1073.

second column of Table|l| contains the location of knots: we only keep the knots
from the interval [—1,1]. With only one pair, the maximal possible number of
knots is two (function f5). In the case where all the knots are outside [—1, 1],
the column contains “N/A”. In the case of fy and f5 the approximation results
are similar to those found in [20]. In the case of functions fi1, fo and f3, no
knot was found in the interval [—1, 1], while the computational time is high (for
functions f; and fa).

Our next step is to improve the results by using two pairs. To be able
to handle the large scaled problems, we increase the discretisation step-size to
h = 0.04. The computational time increased drastically without any significant
improvement of the objective function value. Moreover, in some cases (function
f4) it became even worse, since the corresponding MILPP is very large. In the
case of function f5, the value of the objective function significantly improved,
but this is probably due to the discretisation effect: the discretisation step is
much larger and it “smoothed” the function that we need to approximate. The
results are in Table 2



Fun Knot(s) Max. abs. dev. | Time (sec.)
fi 61 =0, 8, = 0.0766, 65 = 0.7871 0.1417 6579
fa 01 =0 0.1264 4321
f3 01 = 0.2223, 0, = 0.72 0.1933 285
fa 01 =0 1.7619 3033
fs | 01 = —0.9157, 5 = 0.0802, 63 = 0.8944 0.0802 1925

Table 2: Computational results: two pairs, h = 0.04

Overall conclusion: the direct approach is not efficient for most cases. The
only exception is function f3. In the next section, we suggest another approach,
which is not optimal if the optimal location of the knots is not known. At the
same time, this approach relies on convex optimisation.

Remark 2. The results in [20] are not directly comparable with the results in
the current paper, since the structure of approximations is very different.

3.2 Convex approximation method

In this section, we assume that the knots are known. We use the classical
formulation , but the location of the knots is fixed and therefore they are
not part of the decision variables. Since the optimal location of the knots is not
known, we assume that the knots are equidistant.

In the case of one pair (section the maximal number of linear pieces is
three and in the case of two pairs it is at most five. Therefore, in our experi-
ments, for each function, we consider the cases when the number of pieces is 3, 4
or 5. the discretisation step is h = 0.001. The results are in Table[3] Comparing

Fun | number of linear pieces | Max. abs. dev. | Time (sec.)
3 0.2885 0.3054
fi 4 0.0884 0.1607
5 0.2236 0.1538
3 0.2772 0.1356
f2 4 0.25 0.1591
5 0.2148 0.1324
3 0.7267 0.2913
fa 4 0.8311 0.1405
3] 0.3576 0.1261
3 0.2776 0.1367
fa 4 0.1642 0.1408
5 0.1080 0.1367
3 88.2412 0.1241
fs 4 88.2090 0.1290
5 88.1758 0.1249

Table 3: Computational results: univariate approximation, fixed knots, h =
1073

the results in Table [1] and Table [3] one can see that the computational time is
significantly lower in the case of the fixed knots model. It is more efficient to



Figure 2: Multivariate functions for approximation

run the convex model several times with different number of (equidistant) knots
and choose the best approximation.

Remark 3. 1. The increase in the number of knots does not always lead to
the improvement in the objective function value. This is due to the fact
that the knots are fixed.

2. In the case when the location of the segments of the abrupt changes of
the function are known, it may be beneficial assign more knots in this
segments. We use equidistant knots, since we assume that there is no
prior information where to locate the knots.

3. The results in Table 2] and Table [3] are not comparable, since the discreti-
sation step-size is very different, in particular, function f5 is significantly
smoothed when the step-size is increasing.

In the next section, we implement similar models for multivariate functions.

4 Multivariate function approximation

In the case of multivariate functions, the dimension is increasing and this makes
it difficult to solve the corresponding MILPPs. In our study, we consider two
functions:

o &y(z,y) = +/|r — 0.5 4 3|y| (function with a deep minimum);

o Oy(z,y) =sin(b5x — 0.5) — /| cos(7y)| (function with several shallow local
minima).

The graphs of the functions are presented in Figure[2] The functions are approx-
imated on the hypercube [—1, 1] x [—1, 1], the discretisation step-size along each
direction is h = 0.05, this leads to 41 discretisation points along each direction.

4.1 Direct method

In our experiments, we use formulation (2.2)), where T3, j = 1,..., N are two-
dimensional vectors. The results are in Table[d] The computational time is very

10



Fun | Number of pairs | Max. abs. dev. | Time (sec.)
g 1 0.9493 623

2 1.9365 7206
Pg 1 1.2697 765

2 1.9974 7203

Table 4: Computational results: multivariate approximation, h = 0.05 along
each dimension

high. Moreover, in the case of two pairs, the program terminated prematurely,
because it exceeded the time limit. Moreover, due to this premature stopping,
the value of the objective function is better for the case of only one pair (for
both functions). The overall conclusion is that this method is not efficient. In
the next section we present the convex optimisation-based approach, which can
be seen as a generalisation of fixed knot approximation.

4.2 Convex approximation method

In this section, we propose an approach which can be seen as an extension of
fixed knot linear splines for multivariate approximation. We use the following
knot-extension coverage:

+max{0,z + ¢1}, £ max{0,y + co}, T max{0,z + y + c3}, T max{0,z — y + ¢4 },

(4.1)
where ¢y, ¢g, c3 and ¢4 are grid nodes, defined on the interval [—1, 1], the step-
size is h = 1073, There are many ways how the knot-coverage can be defined.
This study is out of scope of this paper. The experimental results are presented
in Table Comparing the results in Tables one can see that the second

Function | Maximal absolute deviation | Time (sec.)
d, 0.0687 220
O 0 213

Table 5: Computational results: multivariate approximation, fixed knots, h =
1073,

approach (convex optimisation-based approach) is fast and accurate. In this
study, we use a straightforward approach for constructing the grid for multi-
variate fixed knot coverage (4.1]). This approach relies on the fact that ReLU is
positive homogeneous. The main reason for the efficiency of this method is that
it is based on convex optimisation, which is efficient even for large problems.
In our experiments, we reformulate the convex problems as equivalent linear
programming problems, the dimension is over 16,000. Nonetheless, the compu-
tational time is much lower for this approach than it is for the direct approach.
One of the most important future research directions is to establish an efficient
approach for constructing multivariate fixed knot coverage.

Similar to univariate approximation, the convex optimisation-based approach
can only reach an optimal solution if the optimal location of the knots (cover-
age) is known. Theoretically, with the same number of linear pieces, one can

11



reach more accurate approximation, but in practice this is a very challenging
task, since the problems are non-convex.

It is also important to note that in the case of function ®, the maximal
deviation is zero (interpolation). It may be possible that there is more than one
way to interpolate the grid points of this function and then one needs to decide
which approximation is best. In many practical problems, this can be done by
applying a regularisation [I3]. For example, to choose a piecewise interpolation
with the smallest number of linear pieces involved.

5 Conclusions and further research directions

In this paper, we study two approaches for univariate and multivariate func-
tion approximation by continuous piecewise affine function. The first approach
(direct) is relying on solving low dimensional non-convex problems, while the
second one is a larger-scaled convex optimisation-based approach. For both
univariate and multivariate approximation, the results are better for the convex
optimisation-based approach.

For our future research directions, we highlight the following:

1. the development of an efficient method for finding the location of knots
for univariate approximation;

2. the development of an efficient approach constructing multivariate knot
coverage;

3. the development of efficient and computationally inexpensive regularisa-
tion techniques for interpolation problems that can also solve a number
of practical needs, including the reduction in potential overfitting (data
approximation).
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A Mixed Integer Linear Programming Approach
for one free knot

In the case of univariate approximation with one free knot, the solution can be
found by solving two mixed-integer linear programming problems [20]. In the
first problem, the optimal linear spline is the maximum of two affine pieces,
while in the second problem the optimal linear spline is the minimum of two
affine pieces.

Assume that a1 and by are the slope and the intercept of the affine piece in
the first subinterval, respectively and as and by are the slope and the intercept
of the affine piece in the second subinterval, respectively.

A.1 Maximum Problem
First, for each discretisation point ¢;, i = 1,..., N we introduce a new variable
C; :Inax{altl-—i—bl,agti—i—bg}, L= 1,...,N, (Al)

where IV is the number of discretisation points. The objective is to minimise
the absolute deviation z, subject to the following constraints:

f(ti)—CiSZ,iZI,...,N, (AQ)
ci—f(ti)gz,izl,...,N. (A3)

Due to (A.1)), we have the following equations:

a1t +b1 <¢, i=1,...,N, (A4)

ast; + by <¢;, i=1,...N, (A5)
and for every i, at least one of the inequalities has to be satisfied as equality.
This is where we have to introduce a binary variable. This can be achieved by
requiring that for each group i, at least one of the following reverse inequalities
is satisfied:

art;i+b1 >¢, i=1,...,N,

agti+b2 ZCZ'7 1= 1,N
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For each group, introduce a binary variable z;. Also consider a larger positive
parameter M (big-M, fixed value). Then the requirement for at least one of the
inequalities in each group holds can be expressed as follows:

Ci—(alti—l—bl)SMZi, i1=1,...,N, (AG)
CZ—((IQtZ—‘er)SM(].—Zz), Z:].,N, (A7)
se{0,1), i=1,...,N. (A.8)

Finally, the goal is to minimise z subject to (A.2)-(A.8).

A.2 Minimum Problem
Similar to the maximum problem, introduce a new variable
d; :min{a1ti+b1,a2ti+b2}, i=1,...,N, (AQ)

where IV is the number of discretisation points. The objective is to minimise
the absolute deviation y, subject to

f(ti)—di <y, i=1,...,N, (A.10)

Due to (A.9), we have the following equations:
alti+b12di, 7;:17...,N, (A12)

and for every i, at least one of the inequalities has to be satisfied as equality.
For each group 14, at least one of the following reverse inequalities is satisfied:

ati +b1 —d; <0, i=1,...,N,
agti—FbQ—diSO, ZZl,N

For each group, introduce a binary variable y; and a large positive number M.
Then the final block of inequalities is as follows:

alti+b1—di§M(1—yi),i:I,...,N, (A14)
ast; + by —d; < My;, i=1,...N, (A15)
y; € {0,1}. (A.16)

Finally, the problem is to minimise y subject to (A.10])-(A.16]).
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