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Asynchronous Adaptive Gradient Tracking Methods
for Distributed Stochastic Optimization Problems

with Decision-dependent Distributions
Licheng Deng, Yan Gao, Yongchao Liu

Abstract—This paper proposes a distributed asynchronous
adaptive gradient tracking method, DASYAGT, to solve the
distributed stochastic optimization problems with decision-
dependent distributions over directed graphs. DASYAGT employs
the local adaptive gradient to estimate the gradient of the objec-
tive function and introduces the auxiliary running-sum variable
to handle asynchrony. We show that the iterates generated by
DASYAGT converge, in expectation, to a stationary solution with
a rate of O

(
lnK√
K

)
. The effectiveness of DASYAGT is further

demonstrated numerically with synthetic and real-world data.

Index Terms—Stochastic optimization with decision-dependent
distributions, adaptive gradient tracking method, asynchrony,
directed graphs.

I. INTRODUCTION

D ISTRIBUTED stochastic optimization problems have
been widely studied in recent years due to its applica-

tions in large-scale machine learning [1, 2], sensor networks
[3, 4] and parameter estimation [5, 6]. In many real-world
applications, it may be the case that the distributions of
stochastic elements depend on or shift in reaction to decision
variables. For example, demand depends on price [7, 8],
traffic predictions from navigation systems for route planning
influence traffic patterns [9, 10], and predictions of credit
default risk influence interest rate assignments and hence
default rates [11, 12]. The corresponding distributed stochastic
optimization problems with decision-dependent distributions
(distributed SO-DD) [13] can be formulated as follows:

min
x∈Rd

n∑
i=1

Eξi∼Di(x) [ℓi(x; ξi)], (1)

where n is the number of agents, Eξi∼Di(x) [ℓi(x; ξi)] is the
local objective function of the i-th agent and D(·) : Rd →
P(Rm) is a distribution map.

SO-DD can be traced to early works [14–16]. More recently,
Perdomo et al. [10] introduce the notion of performative stable
point, which has motivated the research on SO-DD such as
models [17–19] and algorithms [20–22]. We refer the inter-
ested readers to the surveys [23, 24] for more developments on
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SO-DD. To address substantial computational demands arising
from large datasets and provide privacy guarantees, people
consider the multi-agent stochastic optimization problems with
decision-dependent distributions [13, 25, 26]. Li et al. [13]
propose a distributed stochastic gradient descent algorithm and
show that the proposed algorithm achieves a convergence rate
of O( 1

K ) to the performative stable solution of distributed
SO-DD. Narang et al. [25] study a decision-dependent game,
where the distribution map of each player is a global linear
structure with respect to the decision variable. They propose
an adaptive gradient algorithm that adaptively estimates the
parametric description of the distribution map and uses the
current estimate of the parameters to compute an approximate
stochastic gradient. They show that the proposed algorithm
achieves a convergence rate of O( 1

K ) to the Nash equilibrium
of the decision-dependent game. Motivated by [13, 25], Deng
and Liu [26] propose the distributed stochastic gradient track-
ing algorithm and the distributed adaptive gradient tracking
algorithm to seek the performative stable solution and the
optimal solution of distributed SO-DD, respectively. For the
performative stable solution, they show that the proposed algo-
rithm achieves the convergence rate of O( 1

K ). For the optimal
solution, they show that the proposed algorithm achieves the
convergence rate of O( lnK√

K
).

In the multi-agent optimization problems, the distributed
synchronous algorithms may require waiting for the slowest
agent to complete its task before all agents can proceed to
the next one. Therefore, the asynchronous algorithms [27–
31] are extensively studied to address such case. Recently,
Tian et al. [32] propose the asynchronous SONATA, which
combines the gradient tracking mechanism with the push-sum
strategy in the asynchronous setting. They show that, over
strongly connected directed graphs, the proposed algorithm
achieves a linear convergence rate and a convergence rate of
O( 1

K ) for the strongly convex and the non-convex objective
function, respectively. Subsequently, Kungurtsev et al. [33]
propose a stochastic version of asynchronous SONATA and
show that, over strongly connected directed graphs, the pro-
posed algorithm achieves a convergence rate of o( 1

Ka ), where
a ∈ (0, 12 ), for non-convex objective function. Moreover, Zhu
et al. [34] study the convergence for the stochastic version of
asynchronous SONATA on the more general directed graphs
and show that it achieves linear convergence rate for strongly
convex objective function and converges to a stationary point
with a rate of O( 1√

K
) for non-convex objective function. We

refer the interested readers to the surveys [35, 36] on more
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distributed asynchronous algorithms.
Indeed, as stated in [25, Remark 12], the agents for solv-

ing the multi-agent stochastic optimization problems with
decision-dependent distributions may have to learn the de-
cisions of other agents in practice, resulting in that the
agents may observe local data or the decisions of others
asynchronously. This motivates us to propose a distributed
asynchronous gradient tracking-based algorithm to seek the
optimal solution of non-convex distributed SO-DD over the
directed graph. As far as we are concerned, the contribution
of the paper can be summarized as follows.

• We provide a distributed asynchronous adaptive gradient
tracking method (DASYAGT), which generalizes the dis-
tributed gradient tracking-based algorithms in [26, 34].
Compared to the stochastic version of asynchronous
SONATA in [34], DASYAGT employs auxiliary track-
ing variables to track the average adaptive gradient.
Compared to the distributed adaptive gradient tracking
algorithm in [26], DASYAGT introduces the auxiliary
running-sum variables to handle asynchrony.

• We show that the iterates generated by DASYAGT con-
verge to a stationary point at a rate of O

(
lnK√
K

)
, which

differs from the rate of O
(

1√
K

)
in [34] by a logarithmic

factor. The underlying reason is that DASYAGT needs
to learn the parameter of the distribution map. To the
best of our knowledge, the convergence of DASYAGT
seems to be the first rigorous result on the convergence
of the distributed asynchronous algorithm for solving the
distributed SO-DD. The effectiveness of DASYAGT is
further demonstrated numerically with synthetic and real-
world data.

The rest of this paper is organized as follows. Section II in-
troduces DASYAGT and presents some standard assumptions.
Section III studies the convergence of DASYAGT. Numerical
experiments are provided in Section IV. In Section V, we
provide concluding remarks. Moreover, the proof can be found
in the Appendix.

Throughout this paper, vectors default to columns if not
otherwise specified. Rd denotes the d-dimension Euclidean
space endowed with norm ∥x∥ =

√
⟨x, x⟩. Denote 1 :=

(1 1 . . . 1)⊺ ∈ Rd and 0 := (0 0 . . . 0)⊺ ∈ Rd. I ∈ Rn×n stands
for the identity matrix. The inner product of two matrices A,B
is denoted by ⟨A,B⟩. Denote F (x) :=

∑n
i=1 fi(x), where

fi(x) := Eξi∼Di(x) [ℓi(x; ξi)]. To clarify the expression, we
denote ∇ℓi(x; ξ) as the gradient taken with respect to the first
argument x, ∇ξℓi(x; ξ) as the gradient taken with respect to
the second argument ξ. We declare that given the sequence
{Gt}kt=s with k ≥ s, Gk:s := GkGk−1 · · ·Gs+1Gs if k ≥ s
and Gk:s := Gs otherwise. In addition, we consider a set
of agents V = {1, · · · , n} connected on a communication
network G = (V, E), where E ⊆ V × V represents links
or edges among the agents. If (i, j) ∈ E it means that the
i-th agent can send information to the j-th agent. We use
N in
i ≜ {j ∈ V | (j, i) ∈ E} and N out

i ≜ {j ∈ V | (i, j) ∈ E}
to denote the sets of in-neighbors and out-neighbors that the
i-th agent can communicate with.

II. DASYAGT

In this section, we first present DASYAGT for seeking the
optimal solution of the non-convex distributed SO-DD (1),
which reads as follows.

Algorithm 1 Distributed ASYnchronous Adaptive Gradient
Tracking (DASYAGT):
Require: 1. For any i ∈ V , initial values xi,0 ∈ Rd, distribu-

tion D̂i,0(·), ξi,0 ∼ Di(xi,0), vi,0 = ρ̃ij,0 = 0; τikj,−1 =
−D, ρij,l = vi,l = 0, ∀l ∈ {−D,−D + 1, · · · , 0};
zi,0 = gi,0 = G(xi,0, ξi,0, D̂i,0(·)); step sizes γk, νk > 0;
weight matrices W := [wij ]n×n and M := [mij ]n×n.
2. Preprocessing the distribution map for any i ∈ V:

D̂i,1(·) = π
(
D̂i,0(·), xi,0, ξi,0

)
.

1: for k = 0, 1, 2, · · · do
2: Agent ik wakes up: pick the delay dj,k and set τikj,k =

max{τikj,k−1, k − dj,k}, ∀j ∈ N in
ik

.
3: Perform local descent: vik,k+1 = xik,k − γkzik,k.
4: Update decision:

xik,k+1 = wikikvik,k+1 +
∑
j∈N in

ik

wikjvj,τikj,k .

5: Draw samples: ξik,k+1 ∼ Di(xik,k+1).
6: Compute local adaptive gradient:

gik,k+1 = G(xik,k+1, ξik,k+1, D̂ik,k+1(·)).

7: Update gradient tracking:

zik,k+ 1
2
=zik,k +

∑
j∈N in

ik

(
ρikj,τikj,k − ρ̃ikj,k

)
+ gik,k+1 − gik,k.

8: Process messages: zik,k+1 = mikikzik,k+ 1
2

, ρjik,k+1 =

ρjik,k + mjikzik,k+ 1
2

, ∀j ∈ N out
ik

(Send ρjik,k+1 to
every j ∈ N out

ik
).

9: Update buffer: ρ̃ikj,k+1 = ρikj,τikj,k
, ∀j ∈ N in

ik
.

10: Update the distribution map:

D̂ik,k+2(·) = π
(
D̂ik,k+1(·), xik,k+1, ξik,k+1

)
.

11: Untouched state variables shift to state k + 1 while
keeping the same value.

12: end for

In Algorithm 1, at each iteration k, only the ik-th agent
wakes up and performs: (i) Local computations. With zik,k be-
ing a proxy to the global adaptive gradient, the ik-th agent first
performs an approximate stochastic gradient descent on xik,k
and generates the intermediate result vik,k+1 at Step 3. (ii)
Local communication for consensus and calculation of local
adaptive gradient. The ik-th agent performs a consensus step
on the x-variables with possibly outdated information vj,τikj,k

from their in-neighbors at Step 4, and then calculates the local
adaptive gradient G(xik,k+1, ξik,k+1, D̂ik,k+1(·)) at Step 6,
where D̂ik,k(·) represents an estimate of Di(·) and ξik,k+1 ∼
Di(xik,k+1). (iii) Local communication for gradient-tracking.
The ik-th agent forms the local estimate zik,k+ 1

2
based on

the current cumulative mass variables ρikj,τikj,k
and buffer
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variables ρ̃ikj,k from its in-neighbors, and local adaptive
gradient-difference term gik,k+1 − gik,k at Step 7, where the
local buffer ρ̃ikj,k stores the value of ρikj that the ik-th agent
used in its last update. (iv) Update the buffer variables. After
transmitting information to its out-neighbors at Step 8, the ik-
th agent updates the buffer variable ρ̃ikj to match the most
recently consumed ρikj variable at Step 9. (v) Update the
distribution map. Based on xik,k+1 and D̂ik,k+1(·), the ik-th
agent updates the distribution map D̂ik,k+2(·) at Step 10.

In what follows, we make following conditions on the com-
munication network, the weight matrix, asynchronous model,
the objection function and the distribution map to guarantee
the convergence of Algorithm 1.

Assumption 1 (Weight matrices and network). Let G(W )
and G(M⊺) be graphs induced by matrixs W and M⊺,
respectively. Suppose that
(i) W is row-stochastic and A is column-stochastic, i.e.,

W1 = 1 and 1⊺M = 1⊺. In addition, the weight
matrices satisfy: there exists g > 0 such that wii ≥ g
and mii ≥ g, for ∀i ∈ V; and wij ≥ g and mij ≥ g, for
∀(j, i) ∈ E ; wij = 0 and mij = 0, otherwise;

(ii) the graphs G(W ) and G(M⊺) each contain at least one
spanning tree. Moreover, there exists at least one node
that is a root of spanning trees for both G(W ) and
G(M⊺), i.e., R := RW ∪ RM⊺ ̸= ∅, where RW (resp.
RM⊺ ) denotes the set of roots of all possible spanning
trees in the graph G(W ) (resp. G(M⊺)). Define r := |R|.

Assumption 1 (i) is a standard condition on the directed
network and the matrix [32–34, 37]. As commented in [37],
Assumption 1 (ii) is weaker than requiring strong connec-
tivity for both G(W ) and G(M⊺). Assumption 1 (ii) allows
flexible design of the underlying network topology, includ-
ing popular structures such as Ring and Gossip structures.
Building on consensus with non-doubly stochastic matrices,
the AB/push–pull method has been applied on reinforcement
learning [38] and economic dispatch problems [39].

Assumption 2 (Asynchronous model). Suppose that
(i) there exists T ≥ n such that ∪k+T−1

t=k it = V , for ∀k ∈ N;
(ii) there exists D ∈ N such that 0 ≤ dj,k ≤ D, for ∀j ∈ N in

ik
and ∀k ∈ N.

Assumption 2 has been well used in the distributed asyn-
chronous optimization [32–34] and excludes scenarios where
some agents remain inactive indefinitely and some communi-
cation links fail for infinitely long time.

Assumption 3 (Objective function and gradient). For any
i ∈ V ,
(i) there exists a positive constant L such that

∥∇fi(x)−∇fi(x′)∥ ≤ L∥x− x′∥, ∀x, x′ ∈ Rd;

(ii) there exists δ > 0 such that

Eξ∼Di(x) [∥∇ℓi(x; ξ)∥] ≤ δ, ∀x ∈ Rd;

(iii) there exists σ > 0 such that

Eξ∼Di(x)

[
∥∇x,ξℓi(x; ξ)−Eξ′∼Di(x)

[
∇x,ξ′ℓi(x; ξ

′)
]
∥2
]

≤ σ2, ∀x ∈ Rd.

In Assumption 3, condition (i) requires the objective func-
tions to be smooth, while conditions (ii) and (iii) bound the
norm of the stochastic gradient and its variance, respectively.

Assumption 4 (Distribution map). There exists a probability
measure Pi and Ai ∈ Rp×d such that

ξi ∼ Di(x) ⇐⇒ ξi = Aix+ ζi, ζi ∼ Pi, ∀i ∈ V.

Under Assumption 4, the gradient of fi(·) can be derived
as

∇fi(x) = Eξi∼Di(x) [∇ℓi(x; ξi) +A⊺
i∇ξℓi(x; ξi)] ,

and the corresponding stochastic gradient of fi(·) at xi,k can
be derived as

∇ℓi(xi,k; ξi,k) +A⊺
i∇ξℓi(xi,k; ξi,k),

where ξi,k ∼ Di(xi,k). In Algorithm 1, the learning step 10
provides an estimate of Ai, and then we have an adaptive
gradient of fi(·) at xi,k,

G(xi,k, ξi,k, D̂i,k(·)) = ∇ℓi(xi,k; ξi,k) +A⊺
i,k∇ξℓi(xi,k; ξi,k),

where ξi,k ∼ Di(xi,k) and Ai,k may be updated dynamically
with

Ai,k+1 = Ai,k + νk(qi,k − ξi,k −Ai,kui,k)u
⊺
i,k,

where νk = 2
k+6d , qi,k ∼ Di(xi,k+ui,k) and ui,k ∼ N (0, Id).

III. CONVERGENCE OF DASYAGT

In this section, we study the convergence of DASYAGT.
For ease of analysis, we first reduce the asynchronous

agent system to a synchronous augmented one with no delays
by adding virtual agents, which virtually store the value of
delayed variables during transmission of information between
adjacent agents, to the graph G(W ) and G(M⊺). For the
augmented graph of G(W ), we add D + 1 virtual agents for
each agent i, denoted by i[0], i[1],· · · ,i[D], to store delayed
information vi,k, vi,k−1, · · · ,vi,k−D. For the augmented graph
of G(M⊺), we add D + 1 virtual agents for each edge
(j, i) ∈ E(M), denoted by (j, i)0, (j, i)1,· · · ,(j, i)D, to store
the delayed information z(j,i)0,k, z(j,i)1,k,· · · , z(j,i)D,k. Then,
we define the set of real and virtual agents as V̂ := V ∪
{(j, i)d|(j, i) ∈ E(M), d = 0, 1, · · · , D} and its cardinality
as S := |V̂| = n + (D + 1)|E(M)|. Following from the
above augmented system, we define the augmented matrix
Ŵk ∈ Rn(D+2)×n(D+2) and M̂k ∈ RS×S as

Ŵrl,k :=



wikik , if r = l = ik;

wikj , if r = ik, l = j + (dj,k + 1)n;

1, if r = l ∈ {1, 2, . . . , 2n} \ {ik, ik + n};
1, if r ∈ {2n+ 1, 2n+ 2, . . . , (D + 2)n}

∪{ik + n} and l = r − n;

0, otherwise,

and M̂k := PkSk, where

Shl,k :=



1, if l ∈ {(j, ik)d | dj,k ≤ d ≤ D}
and h = ik;

1, if l ∈ V̂ \ {(j, ik)d | dj,k ≤ d ≤ D}
and h = l;

0, otherwise,
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and

Phl,k :=



mjik , if l = ik and h = (j, ik)
0, j ∈ N out

ik
(M);

mikik , if l = h = ik;

1, if l = h ∈ V \ ik;
1, if l = (i, j)d, h = (i, j)d+1, (i, j) ∈ E(M),

0 ≤ d ≤ D − 1;

1, if l = h = (i, j)D, (i, j) ∈ E(M);

0, otherwise.

With the augmented matrix Ŵk and M̂k, we write Algo-
rithm 1 of the augmented system in a compact form as

hk+1 = Ŵk

(
hk − γkeikz

⊺
ik,k

)
, (2)

ẑk+1 = M̂kẑk +Pkeik (gik,k+1 − gik,k)
⊺, (3)

where
gi,k = ∇ℓi(xi,k, ξi,k) + (Ai,k)

⊺∇ξℓi(xi,k, ξi,k),

hk :=


xk
vk
...

vk−D

 , ẑk :=


zk

zE(M)0,k

...
zE(M)D,k

 ,

zE(A)d,k :=


z1d,k
z2d,k

...
z|E(M)|d,k

 , d = 0, · · · , D,

(4)

and zsd,k denotes z(j,i)d,k if (j, i) is the s-th edge of E(M).
In what follows, we present the asymptotic behaviors of

Ŵk and M̂k over spanning-tree graphs.

Lemma 1. [34, Lemma 1] Suppose Assumptions 1 and 2 hold.
We have for any k ≥ t ≥ 0, Ŵk is row stochastic and there
exists a sequence of stochastic vectors {ψk}k≥0 such that

∥Ŵk:t − 1ψ⊺
t ∥ ≤ c1κ

k−t,

where ψi,k ≥ η := g(2n−1)T+nD, for ∀i ∈ RW , c1 :=
2
√
n(D+2)(1+η)

1−η , κ := (1− η)
1

(2n−1)T+nD ∈ (0, 1).

Lemma 2. [34, Lemma 2] Suppose Assumptions 1 and 2 hold.
We have for any k ≥ t ≥ 0, M̂k is column stochastic and there
exists a sequence of stochastic vectors {ϕk}k≥0 such that for
∀i, j ∈ {1, · · · , S},

|
(
M̂k:t

)
i,j

− ϕi,k| ≤ c2κ
k−t, ∀i, j ∈ {1, · · · , S}

where ϕi,k ≥ η, for ∀i ∈ RM⊺ , c2 := 2(1+η−1)
1−η .

Moreover, by Lemma 1, we have that

1ψ⊺
t = lim

k→∞
Ŵk:t =

(
lim
k→∞

Ŵk:t+1

)
Ŵt = 1ψ⊺

t+1Ŵt,

and thus ψ⊺
t = ψ⊺

t+1Ŵt, for ∀t ≥ 0. Then, by (2), we have

xψk+1 = xψk − γkψ
⊺
keikz

⊺
ik,k

, (5)

where xψk := ψ⊺
khk.

Obviously, by Lemma 2 and the definition of Pk, we have

1⊺ẑk =

(
n∑
i=1

gi,k

)⊺

. (6)

In addition, we introduce an auxiliary sequence {z′i,k}i∈V ,
initialized as z′i,0 = E [gi,0] for i ∈ V , which resembles the
recursion of tracking variable {zi,k}i∈V . We denote z′k as the
augmented auxiliary variable corresponding to the tracking
variables ẑk. Then, similar to (3), the recursion of the auxiliary
variable z′k can be rewritten in a compact form as follows:

z′k+1 = M̂kz
′
k +Pkeik (ĝik,k+1 − ĝik,k)

⊺, (7)

where ĝi,k = E [gi,k] and gi,k is defined in (4). Again, by the
column stochasticity of M̂k and Pk, we have

1⊺z′k =

(
n∑
i=1

ĝi,k

)⊺

. (8)

We first provide a technical result that plays a key role in
analyzing the convergence of DASYAGT.

Proposition 1. Suppose that Assumptions 1 - 4 hold. Then
(i):

E
[
∥hk+1 − 1xψk+1∥

2
]

≤2c21κ
2k∥h0 − 1xψ0 ∥

2 +
4c21
1− κ

k∑
l=0

κk−lγ2
l E
[
∥z′il,l∥

2]
+

8nc21σ
2

1− κ

k∑
l=0

κk−lγ2
l E
[
∥Al−τl −A∥2

]
+

4nc21σ
2(1 + 2∥A∥2)
1− κ

k∑
l=0

κk−lγ2
l . (9)

(ii):

E
[
∥z′ik+1,k+1 − ϕik+1,k1

⊺z′k+1∥2
]

≤4Sc22κ
2k∥z′0∥2 +

72Sc22L
2

(1− κ)κ2

k∑
l=0

κk−lE
[
∥hl − 1xψl ∥

2
]

+
72Sc22L

2

(1− κ)κ2

k∑
l=0

κk−lγ2
l E
[
∥z′il,l∥

2]
+

144nSc22σ
2L2

(1− κ)κ2

k∑
l=0

κk−lγ2
l E
[
∥Al−τl −A∥2

]
+

32Sc22δ
2

(1− κ)κ2

k+1∑
l=0

κk+1−lE
[
∥Al−τl −A∥2

]
+

72nSc22L
2σ2(1 + 2∥A∥2)

(1− κ)κ2

k∑
l=0

κk−lγ2
l , (10)

where c1 :=
2
√
n(D+2)(1+η)

1−η , c2 := 2(1+η−1)
1−η , κ :=

(1− η)
1

(2n−1)T+nD , η := g(2n−1)T+nD and τk is the number
of iterations agent ik has skipped since it’s last update.

Proof. Part (i):
Applying (2) recursively, we have

hk+1 = Ŵk:0h0 −
k∑
l=0

γlŴk:leilz
⊺
il,l
. (11)

Then, by left multiplying ψ⊺
k+1 on both side of (11) and the

fact that ψ⊺
t = ψ⊺

t+1Ŵt, we have

xψk+1 = xψ0 −
k∑
l=0

γlψ
⊺
l eilz

⊺
il,l
, (12)
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where xψk = ψ⊺
khk.

Using (11) and (12), we have

∥hk+1 − 1xψk+1∥
2

≤2c21κ
2k∥h0 − 1xψ0 ∥

2 +
2c21
1− κ

k∑
l=0

κk−lγ2
l ∥zil,l∥

2,

where the inequality follows from Lemma 1 and [34, Lemma
8]. Taking expectation on both sides of the above inequality,
we have

E
[
∥hk+1 − 1xψk+1∥

2
]

≤2c21κ
2k∥h0 − 1xψ0 ∥

2 +
4c21
1− κ

k∑
l=0

κk−lγ2
l E
[
∥z′il,l∥

2]
+

4c21
1− κ

k∑
l=0

κk−lγ2
l E
[
∥zil,l − z′il,l∥

2] . (13)

For the last term on the right-hand side of (13),

E
[
∥zik,k − z′ik,k∥

2]
≤E

[
∥1⊺ẑk − 1⊺z′k∥2

]
=E

[
∥

n∑
i=1

gi,k −
n∑
i=1

ĝi,k∥2
]

≤nσ2(1 + 2∥A∥2) + 2nσ2E
[
∥Ak−τk −A∥2

]
, (14)

where τk is the number of iterations agent ik has skipped
since it’s last update, the equality follows from (6) and (8),
the last inequality follows from Assumption 3 (ii) and (iii).
Substituting (14) into (13), we arrive at (9).

Part (ii):
Applying (7) recursively, we have

z′k+1 =M̂k:0z
′
0 +

k∑
l=1

M̂k:lPl−1eil−1(ĝil−1,l − ĝil−1,l−1)
⊺

+Pkeik (ĝik,k+1 − ĝik,k)
⊺.

Then

∥z′ik+1,k+1 − ϕik+1,k1
⊺z′k+1∥

=∥
(
M̂k:0

)
ik,:

z′0 + Pik,k(ĝik,k+1 − ĝik,k)
⊺ − ϕik+1,k1

⊺z′0

+
k∑
l=1

(
M̂k:l

)
ik,:

Pl−1eil−1(ĝil−1,l − ĝil−1,l−1)
⊺

−
k∑
l=0

ϕik+1,k1
⊺Pleil(ĝil,l+1 − ĝil,l)

⊺∥

≤c2
√
Sκk∥z′0∥+

c2
√
2S

κ

k∑
l=0

κk−l∥ĝil,l+1 − ĝil,l∥, (15)

where the inequality follows from Lemma 2.
For the last term on the right-hand side of (15),

∥ĝil,l+1 − ĝil,l∥
≤∥ĝil,l+1 −∇fil(xil,l+1)∥+ ∥ĝil,l −∇fil(xil,l)∥

+ ∥∇fil(xil,l+1)−∇fil(xil,l)∥
≤δ∥Al+1−τl+1 −A∥+ δ∥Al−τl −A∥+ L∥xil,l+1 − xil,l∥,

where the last inequality is due to Assumption 3 (i) and (ii).
Then

E
[
∥z′ik+1,k+1 − ϕik+1,k1

⊺z′k+1∥2
]

≤4Sc22κ
2k∥z′0∥2 +

72Sc22L
2

(1− κ)κ2

k∑
l=0

κk−lE
[
∥hl − 1xψl ∥

2
]

+
72Sc22L

2

(1− κ)κ2

k∑
l=0

κk−lγ2
l E
[
∥zil,l∥

2]
+

32Sc22δ
2

(1− κ)κ2

k+1∑
l=0

κk+1−lE
[
∥Al−τl −A∥2

]

≤4Sc22κ
2k∥z′0∥2 +

72Sc22L
2

(1− κ)κ2

k∑
l=0

κk−lE
[
∥hl − 1xψl ∥

2
]

+
72Sc22L

2

(1− κ)κ2

k∑
l=0

κk−lγ2
l E
[
∥z′il,l∥

2]
+

72Sc22L
2

(1− κ)κ2

k∑
l=0

κk−lγ2
l E
[
∥zil,l − z′il,l∥

2]
+

32Sc22δ
2

(1− κ)κ2

k+1∑
l=0

κk+1−lE
[
∥Al−τl −A∥2

]
, (16)

where the first inequality follows form [34, Lemma 8].
Substituting (14) into (16), we arrive at (10). The proof is
complete.

With Proposition 1, we provide the upper bounds for
the accumulative consensus error

∑k
l=0 E

[
∥hl − 1xψl ∥2

]
and tracking error

∑k
l=0 E

[
∥z′il,l − ϕil,l−11

⊺z′l∥2
]

with∑k
l=0 E

[
∥∇F (xψl )∥2

]
.

Lemma 3. Suppose that Assumptions 1 - 4 hold and the step
size satisfies γk = γ < 1√

4nc3L2+27c4
, where c3 :=

4c21
(1−κ)2

and c4 :=
4Sc22L

2[4c21+(1−κ)2]
κ2(1−κ)4 . Then

(i):

k∑
l=0

E
[
∥hl − 1xψl ∥

2
]

≤ 4c3γ
2

1− (4nc3L2 + 27c4)γ2

k∑
l=0

E
[
∥∇F (xψl )∥

2
]

+
ch
(
1− 72c4γ

2
)

1− (4nc3L2 + 27c4)γ2
+

4czc3γ
2

1− (4nc3L2 + 27c4)γ2

+

[
128Sc3c

2
2δ

2γ2

κ2 (1− (4nc3L2 + 27c4)γ2) (1− κ)2

+
2nc3γ

2
[
(σ2 + 2δ2)− 36c4σ

2γ2
]

1− (4nc3L2 + 27c4)γ2

]
k∑
l=0

E
[
∥Al−τl −A∥2

]
+
nc3σ

2γ2(k + 1)(1 + 2∥A∥2)
1− (4nc3L2 + 27c4)γ2

. (17)
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(ii):

k∑
l=0

E
[
∥z′il,l − ϕil,l−11

⊺z′l∥2
]

≤ 72c4γ
2

1− (4nc3L2 + 27c4)γ2

k∑
l=0

E
[
∥∇F (xψl )∥

2
]

+
cz
[
1− 4nc3L

2γ2
]

1− (4nc3L2 + 27c4)γ2
+

72nchc4L
2γ2

1− (4nc3L2 + 27c4)γ2

+

[
32Sc22δ

2
[
1− 4nc3L

2γ2
]

κ2 (1− (4nc3L2 + 27c4)γ2) (1− κ)2

+
18nc4γ

2(σ2 + 4δ2)

1− (4nc3L2 + 27c4)γ2

+
72nc3c4σ

2L2γ4

1− (4nc3L2 + 27c4)γ2

] k∑
l=0

E
[
∥Al−τl −A∥2

]
+

18nc4σ
2γ2(k + 1)(1 + 2∥A∥2)

1− (4nc3L2 + 27c4)γ2
, (18)

where ch :=
(
1 +

2c21
1−κ2

)
∥h0 − 1xψ0 ∥2 and cz := ∥z′i0,0 −

ϕi0,−11
⊺z′0∥2 +

4Sc22∥z
′
0∥

2

1−κ2 +
72Sc22L

2

(1−κ)2κ2

(
1 +

2c21
1−κ2

)
∥h0 −

1xψ0 ∥2.

Proof. See Appendix A for the detailed proof.

Due to Assumption 1 (ii), the activation of non-root node
cannot guarantee a sufficient descent towards stationary point,
leading to that the vanilla descent lemma in [32, 33] no
longer can be established at every global iteration. Therefore,
we move to establish the following lemma based on two-
time-scale techniques which provides an upper bound of∑k′T−1
k=0 E

[
∥∇F (xψk )∥2

]
.

Lemma 4. Suppose that Assumptions 1 - 4 hold and the step
size satisfy γk = γ ≤ min{ 2

nL(2T 2+rTη2) ,
1

8nL}. Then, for
∀k′ ≥ 1, we have

(
rη2

8T
− γ

) k′T−1∑
k=0

E
[
∥∇F (xψk )∥

2
]

≤F (xψ0 )− F ⋆

γ
+ nL2

k′T−1∑
k=0

E
[
∥hk − 1xψk ∥

2
]

+
1 + γ

2γ

k′T−1∑
k=0

E
[
∥z′ik,k − ϕik,k−11

⊺z′k∥2
]
+
(
rTη2σ2L2n3γ2

+nδ2 + 2Lγn2σ2 + 2σ2T 2L2n3γ2) k′T−1∑
k=0

E
[
∥Ak−τk −A∥2

]
+
rk′η2σ2L2T 2n3γ2(1 + 2∥A∥2)

2
+ Lk′Tγn2σ2(1 + 2∥A∥2)

+ k′σ2L2γ2T 3n3(1 + 2∥A∥2), (19)

where F ⋆ := minx∈Rd F (x).

Proof. See Appendix B for the detailed proof.

With the above supporting lemmas, we are ready to study
the convergence rate of DASYAGT.

Theorem 1. Suppose that Assumptions 1 - 4 hold. For ∀K > 0
being a multiple of T defined in Assumption 2 (i), the step size
γk = γ = 1

σ
√
rK+γ̄−1

and νk = 2
k+6dT , we have

1

K

K−1∑
k=0

E
[
∥∇F (x̄k)∥2

]
≤64Tσ(F (xψ0 )− F ⋆ + cz) + C3ση

2

η2
√
rK

+
2048caσSc

2
2δ

2

η2κ2(cq − 1)(1− κ)2
√
rK

+
2048caSc

2
2δ

2

rη2γ̄κ2(cq − 1)(1− κ)2K

+
64T γ̄−1(F (xψ0 )− F ⋆ + cz) + C1rTη

2 + C4η
2

rη2K

+
2048STc22δ

2γ̄−1 + C2rTη
2κ2(1− κ)2

rKη2κ2(1− κ)2
ln (K + (cq − 1)T )

+
2048STc22δ

2σ

η2κ2(1− κ)2
√
rK

ln (K + (cq − 1)T ) , (20)

where x̄k := 1
n1

⊺xk, F ⋆ := minx∈Rd F (x),

γ̄ :=min

{
1 + 18c4

2nc3L2 + 18c4
,

rη2

32T (1 + 18c4)
,

2

nL (2T 2 + rTη2)
,
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1

8nL
,

1√
2(4nc3L2 + 27c4)

}
,

cz :=∥z′i0,0 − ϕi0,−11
⊺z′0∥2 +

4Sc22∥z′0∥2

1− κ2

+
72Sc22L

2

(1− κ)2κ2

(
1 +

2c21
1− κ2

)
∥h0 − 1xψ0 ∥

2,

c3 :=
4c21

(1− κ)2
, c4 :=

4Sc22L
2
[
4c21 + (1− κ)2

]
κ2(1− κ)4

,

ca :=max{(1 + 6d)∥A0 −A∥2, 8d
n∑
i=1

tr(Σi)}, cq := 6d,

C1 :=
4nchL

2

T
+
czc3
4nT

+
64(2chnL

2 + 9c4chL+ cz)

rη2

+
c3ca(σ

2 + 2δ2)

8(cq − 1)
+
ncaσ

2

cq − 1
+

8(czc3 + 9c4ch)

nrη2

+
8cac3Sc

2
2δ

2

nκ2(cq − 1)(1− κ)2
+
caσ

2(4c3 + 16n+ 2nT 2)

Trη2(cq − 1)

+
c4caσ

2(144Ln3 + 9nc3L+ 18n2 + 2c3)

Trη2L2n3(cq − 1)

+

[
576c4
L

+
72c4
nL2

+
256c3Sc

2
2

nκ2(1− κ)2
+

2048Sc22
κ2(1− κ)2

+16c3 + 64n]
caδ

2

Trη2(cq − 1)
,

C2 :=
8Sc3c

2
2δ

2

nTκ2(1− κ)2
+
c3(σ

2 + 2δ2)

8T
+ nTσ2

+

[
144c4
L

+
9c3c4
Ln2

+
2c3c4
L2n3

+
18c4
nL2

+ 2nT 2

+4c3 + 16n]
σ2

rη2
+

[
576c4
L

+
72c4
nL2

+
256c3Sc

2
2

nκ2(1− κ)2

+
2048Sc22
κ2(1− κ)2

+ 64n+ 8c3

]
δ2

rη2
,

C3 :=
64nT (1 + 2∥A∥2)(18c4 + Ln)

rη2
,

C4 :=
64nT (1 + 2∥A∥2)(18c4 + 2c3nL

2 + n2T 2L2)

rη2

+ 4n2L2(c3 + 8nT 2)(1 + 2∥A∥2),
(21)

and Σi is the covariance matrix of ζi defined in Assumption
4, c1, c2, κ, η are defined in Proposition 1.

Proof. For ∀k′ ≥ 1, we have

1

k′T

k′T−1∑
k=0

E
[
∥∇F (x̄k)∥2

]
≤ 2

k′T

k′T−1∑
k=0

[
E
[
∥∇F (xψk )∥

2
]
+E

[
∥∇F (x̄k)−∇F (xψk )∥

2
]]

≤ 2

k′T

k′T−1∑
k=0

[
E
[
∥∇F (xψk )∥

2
]
+ n2L2E

[
∥x̄k − xψk ∥

2
]]

≤ 2

k′T

k′T−1∑
k=0

[
E
[
∥∇F (xψk )∥

2
]
+ nL2E

[
∥hk − 1xψk ∥

2
]]
, (22)

where the second inequality follows from Assumption 3 (i)
and the last inequality follows from the fact that ∥11⊺

n ∥ = 1.
By substituting (17), (18) into (19) and rearranging the

terms yields, we have(
rη2

8
− Tγ − 4nc3TL

2γ2

1− (4nc3L2 + 27c4)γ2

− 36c4Tγ(1 + γ)

1− (4nc3L2 + 27c4)γ2

)
1

k′T

k′T−1∑
k=0

E
[
∥∇F (xψk )∥

2
]

≤ 1

k′

[
F (xψ0 )− F ⋆

γ
+

4nc3czL
2γ2

1− (4nc3L2 + 27c4)γ2

+
chnL

2
(
1− 72c4γ

2
)

1− (4nc3L2 + 27c4)γ2
+

36nchc4γL
2(1 + γ)

1− (4nc3L2 + 27c4)γ2

+
cz(1 + γ)

(
1− 4nc3L

2γ2
)

2γ (1− (4nc3L2 + 27c4)γ2)

]

+

[
9nc4γ(1 + γ)

[
(σ2 + 4δ2) + 4c3σ

2L2γ2
]

1− (4nc3L2 + 27c4)γ2

+
128nSc3c

2
2δ

2L2γ2

κ2 (1− (4nc3L2 + 27c4)γ2) (1− κ)2

+
2c3n

2L2γ2
[
(σ2 + 2δ2)− 36c4σ

2γ2
]

1− (4nc3L2 + 27c4)γ2

+
16Sc22δ

2(1 + γ)
[
1− 4nc3L

2γ2
]

γκ2 (1− (4nc3L2 + 27c4)γ2) (1− κ)2

+2Lγn2σ2 + nδ2 + 2σ2T 2L2γ2n3

+rTη2σ2L2γ2n3] 1

k′

k′T−1∑
k=0

E
[
∥Ak−τk −A∥2

]
+ LTγn2σ2(1 + 2∥A∥2) + σ2L2γ2T 3n3(1 + 2∥A∥2)

+
rη2σ2L2T 2n3γ2(1 + 2∥A∥2)

2
+
c3Tn

2σ2L2γ2(1 + 2∥A∥2)
1− (4nc3L2 + 27c4)γ2

+
9nTc4γσ

2(1 + γ)(1 + 2∥A∥2)
(1− (4nc3L2 + 27c4)γ2)

. (23)

On the other hand, by the fact that γ ≤ γ̄, we have

rη2

8
− Tγ − 4nc3TL

2γ2

1− (4nc3L2 + 27c4)γ2

− 36c4Tγ(1 + γ)

1− (4nc3L2 + 27c4)γ2
≥ rη2

16
. (24)

Then, by (23) and (24), we can bound the first term on the
right-hand side of (22), that is,

1

k′T

k′T−1∑
k=0

E
[
∥∇F (xψk )∥

2
]

≤ 16

k′rη2

[
F (xψ0 )− F ⋆

γ
+

4nczc3L
2γ2

1− (4nc3L2 + 27c4)γ2

+
chnL

2
(
1− 72c4γ

2
)

1− (4nc3L2 + 27c4)γ2
+

36nc4chγL
2(1 + γ)

1− (4nc3L2 + 27c4)γ2

+
cz(1 + γ)

(
1− 4nc3L

2γ2
)

2γ (1− (4nc3L2 + 27c4)γ2)

]

+

[
9nc4γ(1 + γ)

[
(σ2 + 4δ2) + 4c3σ

2L2γ2
]

1− (4nc3L2 + 27c4)γ2

+
128nc3Sc

2
2δ

2L2γ2

κ2 (1− (4nc3L2 + 27c4)γ2) (1− κ)2

+
2c3n

2L2γ2
[
(σ2 + 2δ2)− 36c4σ

2γ2
]

1− (4nc3L2 + 27c4)γ2

+
16Sc22δ

2(1 + γ)
[
1− 4nc3L

2γ2
]

γκ2 (1− (4nc3L2 + 27c4)γ2) (1− κ)2

+2Lγn2σ2 + nδ2 + 2σ2T 2L2γ2n3

+rTη2σ2L2γ2n3] 16

k′rη2

k′T−1∑
k=0

E
[
∥Ak−τk −A∥2

]
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+
16

rη2

[
9c4nTγσ

2(1 + γ)(1 + 2∥A∥2)
1− (4nc3L2 + 27c4)γ2

+
rη2σ2L2T 2n3γ2(1 + 2∥A∥2)

2

+
c3Tn

2σ2L2γ2(1 + 2∥A∥2)
1− (4nc3L2 + 27c4)γ2

+ σ2L2γ2T 3n3(1 + 2∥A∥2)

+LTγn2σ2(1 + 2∥A∥2)
]
. (25)

For the second term on the right-hand side of (25),
k′T−1∑
k=0

E
[
∥Ak−τk −A∥2

]
≤
k′T−1∑
k=0

ca
k + (cq − 1)T

≤ ca
T (cq − 1)

+ ln
(
k′T + (cq − 1)T

)
. (26)

where ca = max{(1 + 6d)∥A0 − A∥2, 8
∑n
i=1 dΣi}, cq = 6d

and the first inequality follows from [25, Lemma 21].
Combining (17), (25) and (26) with (22), we have

1

K

K−1∑
k=0

E
[
∥∇F (x̄k)∥2

]
≤64T (F (xψ0 )− F ⋆ + cz)

rη2Kγ
+

2048caSc
2
2δ

2

rKγη2κ2(cq − 1)(1− κ)2

+
2048STc22δ

2

γKrη2κ2(1− κ)2
ln (K + (cq − 1)T )

+
C1T

K
+
C2T ln (K + (cq − 1)T )

K
+ C3σ

2γ + C4σ
2γ2,

where K = k′T and C1, C2, C3, C4 are defined in (21).
Then, choosing γ = 1

σ
√
rK+γ̄−1

, we arrive at (20). The proof
is complete.

Theorem 1 shows that the averaged iterates generated by
DASYAGT converge to the stationary point at a rate of
O
(

lnK√
K

)
. Notably, compared to the rate of O

(
1√
K

)
in

[34], the rate in Theorem 1 includes an additional logarithmic
factor due to learning the parameter of the distribution map.
To the best of our knowledge, Theorem 1 seems to be the
first rigorous result on the convergence of the distributed
asynchronous algorithm for the stationary solution of the
distributed SO-DD.

IV. EXPERIMENTAL RESULTS

To show the practical performance of DASYAGT, we con-
duct experiments on the multi-agent Gaussian mean estimation
problem with synthetic data and the logistic regression prob-
lem with a Kaggle credit scoring dataset [40]. We consider
three network topologies satisfying Assumption 1, i.e., binary
tree, line, directed ring (c.f., Figure 3 in [34]).

In all experiments, we consider the following asynchronous
model: (i) Activation lists are generated by concatenating
random rounds. Within a round, we have each agent appearing
exactly once, that is, the length of a round is T = n; (ii) Each
transmitted message has a traveling time, which is sampled
uniformly from the interval [0, D]. Moreover, in all figures,
the orange line, the blue line and the red line denote binary
tree, line, directed ring, respectively, and one period represents
an activation period.

A. Multi-agent Gaussian Mean Estimation

Consider the following distributed stochastic optimization
problem with decision-dependent distributions

min
x∈R

n∑
i=1

Eωi∼Di(x) [ωix] , (27)

where for i = 1, · · · , n, ωi = 20x + ξi, ξi ∼ N (0, 1).
Obviously, the objective value in (27) can be computed as
0 with the optimal solution x⋆ = 0.

In the experiment, we run DASYAGT over three networks
with 100 periods. The parameter of the delay model is set as
D = 10 and the step size of DASYAGT is set as γ = 0.0001.

(a) Objective value (b) Squared gradient norm

(c) Consensus error

Fig. 1: Multi-agent Gaussian mean estimation over three different
topologies with 15 nodes.

In Figure 1, we report the convergence of DASYAGT,
where Figure 1 (a), (b) and (c) record the performance on the
objective value, the squared gradient norm and consensus error
over binary tree graph, line graph and directed ring graph with
n = 15 nodes. From Figure 1 (a) and (b), we can observe that
the objective value of DASYAGT reaches the optimal value
and the squared gradient norm tends to 0, which matches the
conclusion of Theorem 1. From Figure 1 (c), we can observe
that the consensus error of DASYAGT tends to 0. In Figure
2, we record the performance of DASYAGT on the objective
value and the squared gradient norm over binary tree topology
with n = 7, 15, 31 nodes. From Figure 2 (a) and (b), we
can observe that the objective value and the squared gradient
norm of DASYAGT reach 0 indicating that DASYAGT can be
applied to the communication networks with different size.
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(a) Objective value (b) Squared gradient norm

Fig. 2: Multi-agent Gaussian mean estimation over binary tree
topology with different number of nodes.

B. Logistic Regression
Consider the following logistic regression problem

min
x∈Rd

1

N

n∑
i=1

N∑
j=1

ℓ(x; aij , bij) +
β

2
∥x∥2, (28)

with

ℓ(x; aij , bij) = log(1 + exp(⟨aij , x⟩))− bij⟨aij , x⟩,

where l(·) is the logistic loss function, x represents parameter
of the classifier, β > 0 is a regularization parameter, N is the
total number of training samples for the i-th agent, aij is the
feature of the j-th sample for the i-th agent, bij ∈ {0, 1} is
the corresponding label.

In what follows, we adopt the Kaggle credit scoring dataset
[40] with d = 11 features for loan approval in bank as the
base dataset, where we treat the utilization of credit lines,
number of open credit lines, and number of real estate loans
as strategic features, to generate the data of the i-th agent
Si = {aij , bij}Nj=1 that depends on the i-th decision xi. Given
the base dataset S0

i = {a0ij , b0ij}Nj=1 for the i-th agent, aij =
a0ij +Aixi and bij = b0ij , where Ai ∈ R11×11 is a matrix with
all entries equal to 10 except the rows corresponding to the
non-strategic features. In the experiment, we set N = 500,
D = 5, β = 0.001 and run DASYAGT with 100 periods,
where the step size of DASYAGT is set as γ = 0.0001.

In Figure 3, we report the convergence of DASYAGT, where
Figure 3 (a), (b) and (c) record the performance on the train
loss, the train gradient and the consensus error over binary
tree graph, line graph, directed ring graph with n = 15 nodes
and Figure 3 (d) records the performance on the train gradient
over binary tree graph with n = 7, 15, 31 nodes. From Figure
3 (a), we can observe that the training loss of DASYAGT
reaches around 4.852. From Figure 3 (b), we may observe
that the training gradient of DASYAGT tends to 0, which again
matches the conclusion of Theorem 1. From Figure 3 (c), we
may observe that the consensus error of DASYAGT tends to 0.
From Figure 3 (d), we can observe that the training gradient
of DASYAGT tends to 0, which is similar to the result of
synthetic data and indicates that DASYAGT may be applied
to the communication networks with different size in practical
issues.

(a) Training loss (b) Training gradient

(c) Consensus error (d) Training loss

Fig. 3: Strategic classification.

V. CONCLUSION

We propose a distributed asynchronous algorithm,
DASYAGT, to seek the optimal solution of the distributed
stochastic optimization problems with decision-dependent
distributions and show that DASYAGT achieves a convergence
rate of O

(
lnK√
K

)
in expectation. One promising research

direction could be considering the performance of the
asynchronous algorithms on the decision-dependent game
[25].

APPENDIX

A. Proof of Lemma 3
Proof. According to (9), we have that for k ≥ 0,

k∑
l=0

E
[
∥hl − 1xψl ∥

2
]

≤
(
1 +

2c21
1− κ2

)
∥h0 − 1xψ0 ∥

2 + nc3σ
2γ2(1 + 2∥A∥2)(k + 1)

+ c3γ
2

k∑
t=0

E
[
∥z′it,t∥

2]+ 2nc3σ
2γ2

k∑
t=0

E
[
∥At−τt −A∥2

]
≤
(
1 +

2c21
1− κ2

)
∥h0 − 1xψ0 ∥

2 + nc3γ
2(1 + 2∥A∥2)

k∑
l=0

σ2

+ 4c3γ
2

k∑
l=0

E
[
∥z′il,l − ϕil,l−11

⊺z′l∥2
]

+ 4c3γ
2

k∑
l=0

ϕ2
il,l−1E

[
∥

n∑
i=1

ĝi,l −∇F (xψl )∥
2

]

+ 4c3γ
2

k∑
l=0

ϕ2
il,l−1E

[
∥∇F (xψl )−

n∑
i=1

∇fi(xi,l)∥2
]
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+ 4c3γ
2

k∑
l=0

ϕ2
il,l−1E

[
∥∇F (xψl )∥

2
]

+ 2nc3σ
2γ2

k∑
l=0

E
[
∥Al−τl −A∥2

]
≤ch + 4c3γ

2
k∑
l=0

E
[
∥z′il,l − ϕil,l−11

⊺z′l∥2
]

+ 4nc3L
2γ2

k∑
l=0

E
[
∥hl − 1xψl ∥

2
]

+ c3γ
2

k∑
l=0

(
4E
[
∥∇F (xψl )∥

2
]
+ n(1 + 2∥A∥2)σ2

+2n(σ2 + 2δ2)E
[
∥Al−τl −A∥2

])
, (29)

where c3 =
4c21

(1−κ)2 , ch =
(
1 +

2c21
1−κ2

)
∥h0 − 1xψ0 ∥2, the

second inequality follows (8) and the last inequality follows
from Assumption 3 (i), (ii).

Similarly, by (10), we have that for k ≥ 0,
k∑
l=0

E
[
∥z′il,l − ϕil,l−11

⊺z′l∥2
]

≤cz + 72c4γ
2

k∑
l=0

E
[
∥z′il,l − ϕil,l−11

⊺z′l∥2
]

+ 72nc4L
2γ2

k∑
l=0

E
[
∥hl − 1xψl ∥

2
]

+ 18c4γ
2

k∑
l=0

(
n(σ2 + 4δ2)E

[
∥Al−τl −A∥2

]
+4E

[
∥∇F (xψl )∥

2
]
+ n(1 + 2∥A∥2)σ2

)
+

32Sc22δ
2

(1− κ)2κ2

k∑
t=0

E
[
∥At−τt −A∥2

]
, (30)

where c4 =
4Sc22L

2[4c21+(1−κ)2]
κ2(1−κ)4 and cz = ∥z′i0,0 −

ϕi0,−11
⊺z′0∥2 +

4Sc22∥z
′
0∥

2

1−κ2 +
72Sc22L

2

(1−κ)2κ2

(
1 +

2c21
1−κ2

)
∥h0 −

1xψ0 ∥2.
By some calculation on (29), (30) and the fact that γ2 <

1
4nc3L2+27c4

, (17) and (18) hold. The proof is complete.

B. Proof of Lemma 4

To prove Lemma 4, we first bound the lower and upper
bound of E

[
∥∇F (xψk )∥2

]
within a length of activation period

T .

Lemma 5. Suppose that Assumptions 1 - 4 hold. Then, for
∀k ≥ 0 and t ∈ [1, T − 1], E

[
∥∇F (xψkT+t)∥2

]
can be lower

bounded by

E
[
∥∇F (xψkT+t)∥

2
]

≥1

2
E
[
∥∇F (xψkT )∥

2
]
− 2σ2L2γ2T 2n3(1 + 2∥A∥2)

− 4Tn2L2γ2
T−1∑
l=0

E
[
∥z′ikT+l,kT+l − ϕikT+l,kT+l−11

⊺z′kT+l∥2
]

− 4Tn2L2γ2
T−1∑
l=0

ψ2
ikT+l,kT+lϕ

2
ikT+l,kT+l−1E

[
∥1⊺z′kT+l∥2

]

− 4Tσ2L2γ2n3
T−1∑
l=0

ψ2
ikT+l,kT+lE

[
∥AkT+l−T −A∥2

]
, (31)

and upper bounded by

E
[
∥∇F (xψkT+t)∥

2
]

≤2E
[
∥∇F (xψkT )∥

2
]
+ 4σ2L2γ2T 2n3(1 + 2∥A∥2)

+ 8Tn2L2γ2
T−1∑
l=0

E
[
∥z′ikT+l,kT+l − ϕikT+l,kT+l−11

⊺z′kT+l∥2
]

+ 8Tn2L2γ2
T−1∑
l=0

ψ2
ikT+l,kT+lϕ

2
ikT+l,kT+l−1E

[
∥1⊺z′kT+l∥2

]
+ 8Tσ2L2γ2n3

T−1∑
l=0

E
[
∥AkT+l−τkT+l −A∥2

]
. (32)

Proof. By (12), we have

xψkT+t = xψkT − γ

t−1∑
l=0

ψikT+l,kT+lz
⊺
ikT+l,kT+l. (33)

Next, we give the lower bound and the upper bound of
E
[
∥∇F (xψkT+t)∥2

]
, respectively.

By AM-GM inequality, we have

E
[
∥∇F (xψkT+t)∥

2
]
≥ 1

2
E
[
∥∇F (xψkT )∥

2
]

−E
[
∥∇F (xψkT+t)−∇F (xψkT )∥

2
]
. (34)

and

E
[
∥∇F (xψkT+t)∥

2
]
≤ 2E

[
∥∇F (xψkT )∥

2
]

+ 2E
[
∥∇F (xψkT+t)−∇F (xψkT )∥

2
]
. (35)

For the second term on the right-hand side of (34) and (35),

E
[
∥∇F (xψkT+t)−∇F (xψkT )∥

2
]

≤Tn2L2γ2
T−1∑
l=0

ψ2
ikT+l,kT+lE

[
∥zikT+l,kT+l∥2

]
≤4Tn2L2γ2

T−1∑
l=0

E
[
∥z′ikT+l,kT+l − ϕikT+l,kT+l−11

⊺z′kT+l∥2
]

+ 4Tn2L2γ2
T−1∑
l=0

ψ2
ikT+l,kT+lϕ

2
ikT+l,kT+l−1E

[
∥1⊺z′kT+l∥2

]
+ 4Tσ2L2γ2n3

T−1∑
l=0

ψ2
ikT+l,kT+lE

[
∥AkT+l−τkT+l −A∥2

]
+ 2σ2L2γ2T 2n3(1 + 2∥A∥2), (36)

where the first inequality follows from Assumption 3 (i), (33)
and the last inequality follows from (14). Substituting (36)
into (34) and (35), we arrive at (31) and (32), respectively.
The proof is complete.

With the above supporting lemma, we are ready to prove
Lemma 4.

Proof. By the update recursion (12) and the fact that ψ⊺
t =

ψ⊺
t+1Ŵt, we have

E
[
F (xψk+1)

]
≤E

[
F (xψk )

]
+ γψik,kE

[
⟨∇F (xψk ),−(zik,k)

⊺⟩
]
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+
nLγ2ψ2

ik,k

2
E
[
∥zik,k∥

2]
≤E

[
F (xψk )

]
− γψik,kE

[
⟨∇F (xψk ), (z

′
ik,k)

⊺ − ϕik,k−11
⊺z′k⟩

]
− γψik,kϕik,k−1E

[
⟨∇F (xψk ),1

⊺z′k⟩
]

+ γψik,kE
[
⟨∇F (xψk ), (z

′
ik,k)

⊺ − (zik,k)
⊺⟩
]

+ 2nLγ2ψ2
ik,kE

[
∥z′ik,k − ϕik,k−11

⊺z′k∥2
]

+ 2nLγ2ϕ2
ik,k−1ψ

2
ik,kE

[
∥1⊺z′k∥2

]
+ 2Ln2σ2γ2ψ2

ik,kE
[
∥Ak−τk −A∥2

]
+ Ln2σ2γ2ψ2

ik,k(1 + 2∥A∥2)

≤E
[
F (xψk )

]
− γψik,kϕik,k−1E

[
⟨∇F (xψk ),1

⊺z′k⟩
]

+ γψik,kE
[
⟨∇F (xψk ), (z

′
ik,k)

⊺ − (zik,k)
⊺⟩
]

+
γ2ψik,k

2
E
[
∥∇F (xψk )∥

2
]
+ Ln2σ2γ2ψ2

ik,k(1 + 2∥A∥2)

+
ψik,k
2

E
[
∥z′ik,k − ϕik,k−11

⊺z′k∥2
]

+ 2nLγ2ψ2
ik,kE

[
∥z′ik,k − ϕik,k−11

⊺z′k∥2
]

+ 2nLγ2ϕ2
ik,k−1ψ

2
ik,kE

[
∥1⊺z′k∥2

]
+ 2Ln2σ2γ2ψ2

ik,kE
[
∥Ak−τk −A∥2

]
, (37)

where the first inequality follows from Assumption 3 (i), the
last inequality follows from (14) and the Cauchy-Schwarz
inequality.

For the second term on the right-hand side of (37),

E
[
⟨∇F (xψk ),1

⊺z′k⟩
]

≥1

2
E
[
∥∇F (xψk )∥

2
]
−E

[
∥∇F (xψk )−

n∑
i=1

∇fi(xi,k)∥2
]

+
1

2
E
[
∥1⊺z′k∥2

]
−E

[
∥

n∑
i=1

∇fi(xi,k)− 1⊺z′k∥2
]

≥1

2
E
[
∥∇F (xψk )∥

2
]
+

1

2
E
[
∥1⊺z′k∥2

]
− nL2E

[
∥hk − 1xψk ∥

2
]
− nδ2E

[
∥Ak−τk −A∥2

]
, (38)

where the last inequality follows from (8) and Assumption 3
(i), (ii).

Substituting (38) into (37),

E
[
F (xψk+1)

]
≤E

[
F (xψk )

]
− γψik,kϕik,k−1

2
E
[
∥∇F (xψk )∥

2
]

+
γ2

2
E
[
∥∇F (xψk )∥

2
]
+ nγL2E

[
∥hk − 1xψk ∥

2
]

+

(
1

2
+ 2nLγ2

)
E
[
∥z′ik,k − ϕik,k−11

⊺z′k∥2
]

+

(
2nLγ2ϕ2

ik,k−1ψ
2
ik,k −

γψik,kϕik,k−1

2

)
E
[
∥1⊺z′k∥2

]
+
(
2Ln2σ2γ2 + nγδ2

)
E
[
∥Ak−τk −A∥2

]
+ Ln2σ2γ2(1 + 2∥A∥2). (39)

Summing (39) over k from 0 to k′T − 1, we have

γ

2

k′−1∑
k=0

T−1∑
t=0

ψikT+t,kT+tϕikT+t,kT+t−1E
[
∥∇F (xψkT+t)∥

2
]

− γ2
k′T−1∑
k=0

E
[
∥∇F (xψk )∥

2
]

≤F (xψ0 )− F ⋆ + nγL2
k′T−1∑
k=0

E
[
∥hk − 1xψk ∥

2
]

−
k′T−1∑
k=0

(
γψik,kϕik,k−1

2
− 2nLγ2ϕ2

ik,k−1ψ
2
ik,k

)
E
[
∥1⊺z′k∥2

]
+

(
1

2
+ 2nLγ2

) k′T−1∑
k=0

E
[
∥z′ik,k − ϕik,k−11

⊺z′k∥2
]

+
(
2Ln2σ2γ2 + nγδ2

) k′T−1∑
k=0

E
[
∥Ak−τk −A∥2

]
+ Lk′Tn2σ2γ2(1 + 2∥A∥2), (40)

where F ⋆ = minx∈Rd F (x).
For the first term on the left-hand side of (40), we have

k′−1∑
k=0

T−1∑
t=0

ψikT+t,kT+tϕikT+t,kT+t−1E
[
∥∇F (xψkT+t)∥

2
]

≥rη
2

2

k′−1∑
k=0

E
[
∥∇F (xψkT )∥

2
]
− 2k′σ2L2γ2T 3n3(1 + 2∥A∥2)

− 4T 2n2L2γ2
k′T−1∑
k=0

ψ2
ik,kϕ

2
ik,k−1E

[
∥1⊺z′k∥2

]
− 4σ2T 2L2γ2n3

k′T−1∑
k=0

E
[
∥Ak−τk −A∥2

]
− 4T 2n2L2γ2

k′T−1∑
k=0

E
[
∥z′ik,k − ϕik,k−11

⊺z′k∥2
]

≥rη
2

4T

k′T−1∑
k=0

E
[
∥∇F (xψk )∥

2
]

− k′σ2L2γ2n3T 2 (rη2 + 2T
)
(1 + 2∥A∥2)

− 2n2L2γ2 (rTη2 + 2T 2) k′T−1∑
k=0

ψ2
ik,kϕ

2
ik,k−1E

[
∥1⊺z′k∥2

]
− 2n2L2γ2 (2T 2 + rTη2

) k′T−1∑
k=0

E
[
∥z′ik,k − ϕik,k−11

⊺z′k∥2
]

− 2σ2L2γ2n3 (rTη2 + 2T 2) k′T−1∑
k=0

E
[
∥Ak−τk −A∥2

]
, (41)

where the first inequality follows from (31), Assumption 2 and
the last inequality follows from (32). Then, by substituting (41)
into (40) and the fact that γ ≤ min{ 2

Ln(2T 2+rTη2) ,
1

8nL}, (19)
holds. The proof is complete.
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