
A Data-Driven County-Level Budget Allocation Model for
Opioid Crisis Management: Insights from West Virginia

Mahdi Saadati∗ Ankit Bansal† Jean-Philippe Richard‡ Samuel Workman§

Gordon Smith¶ Henry Brownstein ‖

Abstract

The opioid crisis has remained a major public health challenge in the United States for many years.
This study develops a data-driven decision support framework to guide policymakers in allocating
county-level budgets across multiple expenditure categories in order to address the opioid crisis. We
compile and curate a detailed dataset on fiscal policy and opioid-related outcomes in West Virginia
(WV), the state most severely affected by the epidemic. Drawing on this dataset, we identify causal
links between county-level budget allocations and two critical outcomes central to the opioid crisis,
number of Opioid-Related Deaths (ORDs) and Crime Incidents (CIs). To capture these relationships,
we employ Tree Ensembles (TEs) which are trained to predict outcomes as a function of budgetary
decisions. We then embed the trained TEs within a Mixed Integer Linear Programming model that
produces budget allocation strategies across expenditure categories that maximize the worst-case,
risk-averse utility of decision makers across the two outcomes. Our results show that the presented
models generate budget allocations that significantly reduce predicted ORDs and CIs across most of
the 12 southern WV counties, the area hardest hit by the opioid crisis in the state. For example, in
Cabell County, the recommended allocations suggest that predicted levels of both outcomes could
have been reduced by approximately 20% in 2023 without increasing the total budget. More broadly,
the findings demonstrate that the proposed approach yields tailored, actionable, county-level budget
recommendations that can assist policymakers in reprioritizing expenditures to more effectively
address the opioid crisis.
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1 Introduction

In recent years, the number of people using, misusing, and abusing heroin and other opioids has reached

alarming levels across the United States (U.S.) (Hedegaard et al. 2017, Mattson et al. 2021). This has

raised concern among policymakers at both federal and state levels (Office of National Drug Control

Policy 2022). Limiting its spread and mitigating its impact are at the forefront of public discourse across
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the U.S.. Opioid abuse involves not only heroin, but also modern prescription and synthetic drugs, such

as oxycodone and fentanyl (Kolodny et al. 2015), which have legitimate use in surgical procedures and

for the treatment of pain (Jones et al. 2018, Marshall et al. 2019). While heroin and today’s prescription

opioids are pharmacologically similar (Compton et al. 2016), the contemporary opioid epidemic differs

from earlier heroin epidemics (Holland et al. 2021) as the people misusing and abusing opioids cross

geographical and social boundaries (Mars et al. 2014).

While recent DEA National Threat Assessment reports (Drug Enforcement Administration 2025)

provide substantial insight into addressing the opioid epidemic at the national level, there is a critical

need for research focused on understanding and evaluating mitigation efforts at the county level. Focusing

on counties inside of a state is meaningful since laws and priorities vary significantly across states and

resource allocation decisions are easier to coordinate within a state. This paper focuses on the state of

West Virginia (WV), which has been called the epicenter of the opioid epidemic in the U.S. (Bowden et al.

2018, Merino et al. 2019). WV recorded the highest opioid overdose death rate in the U.S. in 2022, with

80.9 deaths per 100,000 population and a total of 1,335 fatalities. Our focus on WV allows us to reach

the dual goal of studying a state where the need is greatest and whose rural topography allows a more

complete view of county-level perspectives often clouded in policy studies examining large metropolitan

areas. Further, WV has displayed great county-level diversity in tackling the opioid epidemic. Overdoses

vary widely across counties as do expenditures on the strategies to mitigate the crisis. Additionally, our

focus on counties is justified by the fact that (i) county governments house many governmental functions

directly related to supply and demand side crisis interdiction (e.g., emergency, social, and public safety

services), and (ii) counties are relatively more important government units in (hardest hit) rural regions

as they house and coordinate a disproportionate amount of functions categorized as mitigation strategies

for the opioid epidemic.

This paper explores how counties can use the mix of policy tools at their disposal to reduce the

impact of the opioid epidemic (Workman and Thomas 2025). Specifically, given evidence of relationship

between fiscal decisions and opioid overdose deaths in counties (Lindenfeld et al. 2025), we examine

how trade-offs among county-level budget allocations can influence outcomes in the opioid crisis. Our

approach differs from most existing research (whether theoretical or applied) that tends to think of public

policy as an intervention on the supply-side (e.g., drug seizures) or demand-side (e.g., like harm reduction

or prevention). We view the set of policies as a mix of interdependent decisions that might address or

mitigate the crisis. Further, these studies rarely focus on rural areas, despite their often disproportionately

high overdose rates (Yaemsiri et al. 2019, Gong et al. 2019). We posit that county budget allocations are

an important factor to examine because they inherently reflect a county’s priorities and policy strategies

(Jones and Baumgartner 2005). To test this hypothesis, we use the Arellano-Bond model (Arellano and
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Bond 1991, Wooldridge 2010) to estimate the causal impact of expenditure allocations across categories

on outcomes associated with the opioid crisis.

While our mathematical framework is applicable to any set of outcomes important to a county,

this paper focuses specifically on the reduction of Opioid-Related Deaths (ORDs) and Crime Incidents

(CIs). Given the unprecedented severity of the opioid epidemic, these metrics have emerged as primary

outcomes of concerns for local governments. They represent the specific areas where decision-makers

are most prepared to proactively reallocate and “find room” in their constrained budgets. They capture

the duality of the crisis: the direct devastation of individuals and families alongside broader societal

consequences like crime. Because these issues fall under core county mandates (including public safety,

social services, and emergency response) addressing them is a moral imperative. Furthermore, targeting

these outcomes yields secondary benefits, such as reducing high-risk youth behaviors, such as substance

abuse and arrests, which remains a top-tier priority for local leadership (Ogunade et al. 2022).

Government budgeting is a complex balancing act, requiring leaders to synthesize constituent de-

mands, peer benchmarks, and a vast array of empirical data. To navigate this complexity, we propose

a data-driven optimization model designed to suggest what budget changes (whether through internal

reallocations or the strategic use of supplemental state and federal funding) can most effectively mitigate

the epidemic. Our model provides a focused analytical tool that is meant to supplement, and not replace,

existing decision-making processes by identifying which annual budget expenditure categories may ben-

efit from increased or decreased investment to reduce ORDs and CIs. Beyond its immediate application

to the opioid crisis, the underlying framework and its derivations are fully generalizable, offering a robust

roadmap for any performance metrics a county may wish to optimize.

Nonetheless, constructing this model posed several challenges because

(a) The necessary data to develop such a model was not readily accessible. For instance, annual

aggregated records of budget allocations across different expenditure categories over time for all

55 counties in WV were lacking before this work.

(b) Policymakers care about a range of outcomes in their counties, but their exact priorities for these

outcomes are not fully known. Generally, they aim to achieve lower levels of ORDs and CIs.

However, the way they assign relative importance to these different outcomes is often unclear.

(c) The outcomes, ORDs and CIs, are complex functions of budget allocations. Such functions are

not known explicitly but may be elicited from data. To develop a model that recommends budget

allocations to improve outcomes, it is essential to obtain explicit representations of these functions.

To overcome (a), we compile an original data set of local government expenditures for all 55 counties in

WV. This data set offers two distinct advantages over the typical Census of Governments data (Lindenfeld
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et al. 2025) used in studies of state and local politics. First, it comes directly from mandatory reporting

to the WV State Auditor’s Office while Census of Governments data is a survey relying on varying

response rates, accurate recall and cataloging. Second, our data is annual, reported directly to the state

and contains all major expenditure categories. We address challenge (b) by introducing a robust utility

optimization framework that aims to maximize the minimum (worst-case) risk-averse utility experienced

by decision-makers. In particular, we identify a budget allocation across different expenditure categories

that optimizes this worst-case risk-averse utility. To tackle challenge (c), we use machine learning methods

trained on historical data to capture the complex relationships between budget allocation decisions and

both ORDs and CIs. Specifically, we employ Tree Ensembles (TEs) to predict ORDs and CIs based on

budget allocations across different expenditure categories. TEs have proven effective in capturing complex

nonlinear relationships between independent variables (in our case budget allocations) and dependent

variables (in our case ORDs and CIs). As a result, they have been widely applied in various fields (Ferreira

et al. 2016, Deepa et al. 2010, Herrera et al. 2010).We integrate the trained TEs models into a Mixed

Integer Linear Programming (MILP) model for optimal budget allocation. Subsequently, we analyze the

outputs of the model across the counties in WV that are most severely impacted by the opioid crisis.

Figure 1 presents an overview of the decision support framework we propose. The first step involves

obtaining relevant expenditure data from all 55 counties in WV for the years 2012–2023. We then integrate

this expenditure data with counts of ORDs and CIs and a range of socio-economic variables. Next, we

apply the Arellano-Bond model to identify causal relationships between spending in different expenditure

categories, socio-economic variables, and ORDs and CIs. Subsequently, we use the expenditure categories

and socio-economic variables for which causal relationships are established to train TEs to predict the

number of ORDs and CIs as a function of budget allocations. Lastly, we integrate the trained TEs in an

MILP, which is then solved to obtain optimal budget allocations across different expenditure categories.

The rest of the paper is structured as follows. Section 2 reviews related literature. Section 3 details

our data collection efforts. Section 4 explores the causal relationships between the budget allocations

across different expenditure categories and both ORDs and CIs. Section 5 introduces the proposed budget

allocation model. Section 6 analyzes the model results for selected counties in WV. Lastly, Section 7 offers

concluding remarks. Furthermore, this paper is accompanied by an Online Supplement, where the labels

for Sections, Tables, and Figures are prefixed with OS.

2 Related Work

Computational research on the opioid epidemic has focused on modeling progression and dynamics

(Luo and Stellato 2024). Many studies adopt the susceptible-infected-recovered (SIR) compartmental

model to simulate and forecast the epidemic’s trajectory (White and Comiskey 2007, Battista et al. 2019).
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Figure 1: Data-driven decision support framework for county-level budget allocation.

Expanding on this approach, Chen et al. (2019) develop a compartmental model to estimate opioid-related

fatalities in the U.S. under both baseline conditions and various intervention scenarios, such as decreasing

the misuse of prescription opioids. Pitt et al. (2018) and Rao et al. (2021) use similar models to evaluate

outcomes such as life years, quality-adjusted life years, and opioid-related deaths under different policy

strategies such as limiting prescription opioid use.

Some studies have employed the SIR compartmental model to optimize resource allocation strategies

for addressing the opioid crisis. Ansari et al. (2024) integrate the SIR compartmental model with a

Markov Decision Process (MDP) framework to identify optimal budget allocations across preventive

and mitigation interventions, with the goal of minimizing the economic cost associated with fatal opioid

overdoses. Similarly, Luo and Stellato (2024) combine the SIR model with a Mixed Integer Programming

approach to determine both the optimal allocation of opioid treatment facilities and their budgets across

each state in the United States. Their objective is to minimize the number of opioid-related overdose

fatalities and the population affected by opioid use disorder. Baucum et al. (2025) address the problem of

optimally allocating Substance Use Disorder (SUD) treatment centers across counties within a state using

a predict-then-optimize framework. Rather than relying on the SIR model, they employ a two-stage least

squares method to estimate the effects of their interventions. Using the SIR model to assess the impact of

policy interventions requires a closed-form expression that links each intervention to the transition rates

between compartments. However, for the problem addressed in this paper, establishing such a relationship

between county-level budget allocations across different expenditure categories and the transition rates

of the SIR model is difficult. Therefore, we propose using TE-based predictive models to estimate ORDs

and CIs as functions of county-level budget allocations across various expenditure categories.

Similar to the problem addressed in this paper, there are numerous applications in the literature where

the relationship between decisions and outcomes is not explicitly known due to the complexity of the

underlying system. However, historical data is available and can be utilized to learn this relationship

through a machine learning model, which is then integrated into the decision-making process. Bertsimas

et al. (2016) employ ridge regression to predict the efficacy and toxicity outcomes of clinical trials,

and incorporate these predictions into a decision-making framework to identify optimal chemotherapy

regimens for cancer treatment. Baardman et al. (2019) address a revenue maximization problem where
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multiplicative regression is used to estimate demand for promotion vehicles. This work led to efforts to

develop mathematical programming formulations of trained machine learning models. Anderson et al.

(2020) and Fischetti and Jo (2018) develop MILP formulations that capture the output of a trained neural

network for any given input. The resulting formulations can be integrated into optimization models,

enabling optimal decision-making where the neural network defines part of the objective or constraints.

In a similar vein, Mišić (2020) and Kim et al. (2025) develop MILP formulations to represent the output

of trained TEs. In this paper, we use these results to formulate an optimization model that identifies

optimal budget allocations across expenditure categories where the outcomes from these allocations are

predicted using TEs.

The major contributions of this paper are as follows:

(a) Our effort represents the most comprehensive data collection and curation of local fiscal policy

in the state most affected by the opioid epidemic. Our data is more detailed and more consistent

year-to-year than for studies using the Census of Governments.

(b) We identify causal effects of budget allocations across expenditure categories to both ORDs and

CIs using the Arellano–Bond Model (Arellano and Bond 1991, Wooldridge 2010).

(c) We use historical data from Part (a) and results of the Arellano–Bond model from Part (b) to train

TEs that capture the relationship between budget allocations and both ORDs and CIs. Leveraging

these models, we develop a robust utility optimization framework that identifies budget allocations

across expenditure categories to maximize policymakers’ worst-case, risk-averse utility in reducing

ORDs and CIs.

(d) We conduct an evaluation of the model for 12 counties in southern WV, which are among the hardest

hit by the opioid crisis. Our framework provides policy-relevant budget recommendations that

are predicted to reduce both ORDs and CIs, and it can be easily adapted to any set of outcomes

considered important by the policymakers.

3 Data Collection and Compilation

We focus on two opioid epidemic-related outcomes: ORDs and CIs in WV. For ORDs, we include all

drug overdose fatalities associated with opioid use. Detailed toxicological analyses are conducted on all

drug-related deaths that occur in the state by the state-wide West Virginia Medical Examiner’s Office. All

drugs contributing to death are recorded on the death certificate and forwarded to the Bureau for Public

Health Office of Vital Statistics who maintain a database of all drug–related overdose deaths for each

specific drug detected. Any of the deaths that involved an opioid were included in our analyses as ORDs.
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For CIs, following Sim (2023) and Dave et al. (2021), we consider both property and violent crimes.

CIs data are collected from the West Virginia Incident-Based Reporting System (WVIBRS), a state-level

implementation of the FBI’s National Incident-Based Reporting System (NIBRS). We aggregate county-

level annual counts of five types of reported incidents: Burglary, Aggravated Assault, Simple Assault,

Intimidation Assault, and Robbery.

We also compile detailed data on county-level government spending across expenditure categories.

The U.S. Census Bureau’s Census of Governments, compiled through survey responses, is a regular

source of data on county government revenues and expenditures. Our data set is more comprehensive

and detailed as it covers the totality of local government expenditures in the state.

We collect expenditure information from all 55 counties in WV for fiscal years (FY) 2012–2023.

County-level expenditure data is available in digital format on the website of the State Auditor’s Office’s

Local Government Division (West Virginia State Auditor 2025). For each county, we collect the PDFs

manually and transfer the data to CSV files via an MS Excel macro. Once the data is collected, we

cross-walk categories to ensure consistency in expenditure categories across counties and years. We

adjust for inflation using the GDP deflator published by the St. Louis Federal Reserve Bank (U.S. Bureau

of Economic Analysis 2025) to make expenditure data comparable across time and space. Specifically,

we used the deflator for October of each fiscal year, indexed to FY 2023. This enables us to analyze how

counties prioritize spending and how local governments shift their budget allocations over time (Workman

and Thomas 2025, Workman et al. 2025). The expenditure data include six categories: Capital Projects

(CP), Culture and Recreation (CR), General Government (GG), Health and Sanitation (HS), Public Safety

(PS), and Social Services (SS).

Recognizing and accounting for the potential impact of social conditions on problems related to

drugs and crime (Sistani et al. 2023), we also incorporate county-level socio-economic variables into

our decision-making framework. All socio-economic data for WV counties from 2012 to 2023 are

obtained from the American Community Survey (ACS), available through the U.S. Census Bureau (U.S.

Census Bureau 2025). Cesare et al. (2024) identify four key socio-economic categories that may play

a significant role in the opioid crisis: Health Care Access, Housing, Employment, and Food Security.

Building on Table 1 of their paper, we include seven variables representing these categories, the exact list

of which is recorded in Table OS.3 and also appears at the bottom of Table 1. We also incorporate each

county’s population as an additional input in our model. For ease of exposition, we categorize population

alongside the socio-economic variables. The interested reader will find maps illustrating county-level

data for budget, ORDs, CIs, and population in Section OS.1A.
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4 Arellano–Bond Model for Dynamic Causal Analysis

In this section, we employ the Arellano–Bond model, a Dynamic Panel Data Model (Arellano and Bond

1991, Wooldridge 2010) to estimate the dynamic causal effects of budget allocations and socio-economic

variables on ORDs and CIs. This approach is appropriate because our dataset has a panel structure that

includes data on budget allocations, ORDs, CIs, and socio-economic variables for all 55 counties in WV

over the 12-year span from 2012 to 2023. We specifically adopt the Arellano–Bond model since ORDs

and CIs in a given county and year are influenced by their past values. The Arellano–Bond models for

ORDs and CIs in county 𝑖 during year 𝑡 are given by:

ORDs𝑖𝑡 = 𝜌𝑜ORDs𝑖,𝑡−1 +
∑︁
𝑗∈𝑁

𝛽𝑜𝑗 𝑥𝑖 𝑗 ,𝑡−1 +
∑︁
𝑗∈𝑆𝑒

𝛾𝑜𝑗 ℎ𝑖 𝑗 ,𝑡−1 + 𝛼𝑜
𝑖 + 𝜀𝑜𝑖𝑡 (1a)

CIs𝑖𝑡 = 𝜌𝑐1CIs𝑖,𝑡−1 + 𝜌𝑐2CIs𝑖,𝑡−2 +
∑︁
𝑗∈𝑁

𝛽𝑐𝑗𝑥𝑖 𝑗 ,𝑡−1 +
∑︁
𝑗∈𝑆𝑒

𝛾𝑐𝑗 ℎ𝑖 𝑗 ,𝑡−1 + 𝛼𝑐
𝑖 + 𝜀𝑐𝑖𝑡 . (1b)

In these models, 𝑁 denotes the set of expenditure categories, and 𝑆𝑒 represents the set of socio-economic

variables. The variable 𝑥𝑖 𝑗𝑡 = 𝑙𝑜𝑔(𝑥𝑖 𝑗𝑡 ) where 𝑥𝑖 𝑗𝑡 indicates the budget amount allocated by county 𝑖 to

expenditure category 𝑗 in year 𝑡. The variable ℎ𝑖 𝑗𝑡 represents the value of socio-economic variable 𝑗 for

county 𝑖 in year 𝑡. The terms 𝛼𝑜
𝑖

and 𝛼𝑐
𝑖

represent the time-invariant county-specific effects in equations

(1a) and (1b), respectively, while 𝜀𝑜
𝑖𝑡

and 𝜀𝑐
𝑖𝑡

denote the idiosyncratic error terms in the corresponding mod-

els. The coefficients [𝜌𝑜, [𝛽𝑜
𝑗
] 𝑗∈𝑁 , [𝛾𝑜𝑗 ] 𝑗∈𝑆𝑒 ] and [𝜌𝑐1 , 𝜌

𝑐
2 , [𝛽

𝑐
𝑗
] 𝑗∈𝑁 , [𝛾𝑐𝑗 ] 𝑗 ∈ 𝑆𝑒] capture the dynamic

causal effects of the explanatory variables [ORDs𝑖,𝑡−1, x𝑖,𝑡−1, h𝑖,𝑡−1] and [CIs𝑖,𝑡−1, CIs𝑖,𝑡−2, x𝑖,𝑡−1, h𝑖,𝑡−1]

in (1a) and (1b), respectively. The Arellano–Bond model provides consistent estimates of the dependent

variables under the sequential moment restriction assumption (Wooldridge 2010), which, for (1a) and

(1b), is expressed as:

E
(
ORDs𝑖𝑡 | [ORDs𝑖,𝑡1−1, 𝒙̃𝑖,𝑡1−1, h𝑖,𝑡1−1]𝑡𝑡1=2, 𝛼

𝑜
𝑖

)
= E

(
ORDs𝑖𝑡 |ORDs𝑖,𝑡−1, 𝒙̃𝑖 𝑗 ,𝑡−1, h𝑖,𝑡−1, 𝛼

𝑜
𝑖

)
(2a)

E
(
CIs𝑖𝑡 | [CIs𝑖 (𝑡1−1) , 𝒙̃𝑖,𝑡1−1, h𝑖,𝑡1−1]𝑡𝑡1=2, 𝛼

𝑐
𝑖

)
= E

(
CIs𝑖𝑡 |CIs𝑖,𝑡−1, CIs𝑖,𝑡−2, 𝒙̃𝑖 𝑗 ,𝑡−1, h𝑖,𝑡−1, 𝛼

𝑐
𝑖

)
. (2b)

Restriction (2a) requires that the expected value ofORDs𝑖𝑡 does not depend onORDs, budget allocations,

or socio-economic variables from years prior to 𝑡−1, once the corresponding values in year 𝑡−1 are taken

into account. In other words, if we have accounted for ORDs, budget allocations, and socio-economic

variables for a county in year 𝑡 − 1, then information from earlier years does not provide any additional

predictive value for ORDs in year 𝑡. Thus, only the most recent year’s data (year 𝑡 − 1) is relevant for

estimating ORDs, and earlier data becomes redundant once year 𝑡−1 is considered. A similar interpretation

applies to condition (2b) for CIs. In the context of this study, it is reasonable to assume that (2a) and (2b)

hold, as ORDs and CIs in year 𝑡 are likely to be strongly influenced by conditions in the years immediately

preceding 𝑡.
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Table 1 displays the output of the Arellano–Bond model obtained using STATA 19 (StataCorp 2025),

when applied to the panel dataset compiled in Section 3. The first column lists the explanatory variables,

whereas the second and third columns report the estimated coefficients in (1a) and their corresponding

p-values. Similarly, the fourth and fifth columns display the estimated coefficients in (1b) along with their

p-values. In (1a) and (1b), we normalize ORDs, CIs and budget allocations on a per-100,000 resident

basis and apply a logarithmic transformation to the budget variables, as their magnitudes are significantly

larger than those of ORDs and CIs. Finally, L1 and L2 denote one-year and two-year lags, respectively.

As is typical in econometrics, we log the expenditure data to account for positive skew and long tails in

the distribution of expenditures.

Table 1 shows that the coefficients for log(CR), log(CP), and log(GG) in (1a) are non-zero and statistically

significant (𝑝-value < 0.1). Similarly, in (1b), the coefficients for log(PS), log(CP), and log(GG) are

also non-zero and statistically significant (𝑝-value < 0.1). These results indicate that, there exists a

causal relationship between budget allocations to different expenditure categories in year 𝑡 − 1 and

ORDs, CIs in year 𝑡. Additionally, among the socio-economic variables, the coefficients for Median

Household Income, Population, and Households receiving public assistance in (1a) are both non-zero

and statistically significant (𝑝-value < 0.1). This indicates a causal relationship between the values of

these socio-economic factors in year 𝑡 − 1 and ORDs in year 𝑡. Similarly, in (1b), the coefficients for

Median Household Income, Median Gross Rent, Uninsured, and Population are likewise non-zero and

statistically significant (𝑝-value < 0.1).

Variable ORDs CIs
Coeff. 𝑝-value Coeff. 𝑝-value

L1.ORDs per 100,000 people −0.46∗∗∗ 0.000 – –
L1.CIs per 100,000 people – – −0.073 0.135
L2.CIs per 100,000 people – – −0.23∗∗∗ 0.000
L1.HS per 100,000 people (log) −1.00 0.168 3.57 0.334
L1.PS per 100,000 people (log) −0.16 0.633 −15.31∗ 0.072
L1.CR per 100,000 people (log) 0.80∗∗∗ 0.003 5.17 0.457
L1.SS per 100,000 people (log) −0.43 0.254 −2.45 0.450
L1.CP per 100,000 people (log) −0.62∗ 0.077 −5.23∗∗ 0.023
L1.GG per 100,000 people (log) −12.72∗∗ 0.027 −82.94 0.206
L1.Renters paying >30% of income 0.17 0.616 2.41 0.591
L1.Homeowners paying >30% of income 0.09 0.788 −7.41 0.520
L1.Median household income 1.76∗∗∗ 0.005 −0.01∗∗ 0.015
L1.Median gross rent −0.001 0.950 −12.84∗ 0.090
L1.Uninsured 1.25 0.168 40.16∗∗∗ 0.000
L1.Unemployment rate −0.18 0.942 7.74 0.445
L1.Population −0.0035∗ 0.076 0.0578∗∗ 0.008
L1.Households receiving public assistance 2.39∗ 0.090 −3.87 0.750

Significance levels: * 𝑝-value < 0.1, ** 𝑝-value < 0.05, *** 𝑝-value < 0.01.

Table 1: Results of the Arellano–Bond model.
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5 Modeling Framework

In this section, we develop a Robust Risk-Averse Utility Optimization Model to determine an optimal

allocation of a county’s total budget across six categories (HS, PS, CR, SS, CP, and GG) in a given year. The

goal is to reduce ORDs and CIs. While our case study and numerical experiments in Section 6 consider

specifically these six budget categories and two outcome variables in WV, we next derive a model for the

general case involving 𝑛 budget categories and 𝑚 outcomes. This general formulation enables broader

applicability across states, outcome measures, and budget structures. For simplicity of notation, we omit

the county and year indices in the following discussions and use boldface lowercase letters to denote

vectors.

We denote the set of expenditure categories by 𝑁 and the outcomes of interest by 𝑀 , where |𝑁 | = 𝑛

and |𝑀 | = 𝑚. We let 𝑥𝑖 represent the budget allocation to category 𝑖. For a given budget allocation x,

𝜉𝑖 (x) denotes the value of outcome 𝑖 ∈ 𝑀 . We denote the vector of all such outcomes (learned from data)

by 𝜉 (x) = {𝜉1(x), 𝜉2(x), . . . , 𝜉𝑚(x)}. Using this notation, the model we solve is

max
x∈X

min
𝑢∈U

𝑢(𝜉 (x)), (3)

where 𝑢(·) : R𝑚 → R is the policymakers’ overall utility from a given outcome vector 𝜉 (x), where U is

a set of utility functions over the outcomes, and where X is the set of feasible budget allocations

X =

{
x ∈ R𝑛

+
∑

𝑘∈𝑁 𝑥𝑘 ≤ 𝑏, 𝑥𝑘 − 𝜅−
𝑘
≤ 𝑥𝑘 ≤ 𝑥𝑘 + 𝜅+

𝑘
, ∀𝑘 ∈ 𝑁

}
. (4)

Model (3) seeks a budget allocation that maximizes the worst-case utility over all utility functions in the

set U, which represent plausible preferences policymakers may have regarding reductions in undesirable

outcomes. This formulation offers the advantage of a robust approach: it identifies an allocation that

performs well even under the least favorable utility function within U. The set X of feasible budget

allocations defined in (4) ensures that: (i) the total available budget 𝑏 is not over-allocated across 𝑛

categories, and (ii) the amount allocated to each category 𝑘 can decrease from the reference budget

allocation 𝑥𝑘 by at most 𝜅−
𝑘

or increase by at most 𝜅+
𝑘
. These latter constraints, which we refer to as

reference budget allocation (RBA) constraints and often write as x ∈ [x̂ − 𝜿−, x̂ + 𝜿+], restrict annual

changes by keeping each expenditure category’s allocation close to the previous year’s value, reflecting

counties’ limited flexibility in adjusting budgets.

Although model (3) is notationally simple, solving it requires an explicit reformulation suitable for

implementation using optimization solvers. To obtain this reformulation, we proceed in two steps. First,

in Section 5.1, we focus on modeling how budget allocations affect different outcomes. For this task,

we make use of TEs, a class of machine learning models known for their strong predictive accuracy

and ability to capture complex relationships in diverse datasets. We train these models on the historical
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data and socio-economic variables compiled in Section 3, taking into account the causal insights from

Section 4. In addition to their predictive accuracy, a key advantage of TEs is that their input-to-output

relationships can be represented through mixed-integer linear constraints. This allows us to incorporate

the learned vector-function 𝜉 (x) directly into (3). Second, in Section 5.2, we describe a set of reasonable

assumptions on the set of utility functions U under which we can reformulate the inner minimization

problem over utility functions 𝑢 ∈ U using linear programming duality. By introducing suitable dual

variables and constraints, we show that the robust objective can also be captured through linear constraints.

Together, these two steps establish that (3) can be formulated and solved as an MILP, which we describe

in Section 5.3.

5.1 Modeling Outcome Functions 𝜉𝑖 (x) using TEs

Tree ensembles are powerful machine learning models that combine the predictions of multiple decision

trees to produce more accurate and robust results for both regression and classification. Each decision

tree is a piecewise constant function whose structure can be visually represented as a tree. We refer the

unfamiliar reader to Hastie et al. (2009) for a textbook discussion or Section OS.1B for a brief introduction.

5.1.1 Pruning Decision Trees

With a slight abuse of notation, we use 𝑡 to denote both the graphical structure of a decision tree and the

function it defines. Specifically, we write 𝑡 (x) to indicate the output of the tree on input vector x. Decision

trees are naturally constructed over hyper-rectangular domains X = [𝒍, 𝒖]. In the ensuing sections, we

will often consider a decision tree’s outputs over a smaller hyper-rectangle X′. Next, we show that such

a restriction results in a function that can still be represented by a decision tree. The idea behind this

simplification is formalized in Observation 2, which builds on the following observation that any branch

of a decision tree that is never reached by inputs from the subdomain X′ can be safely pruned, whereas

any branch that is always taken by such inputs when the parent node is reached can be contracted.

Observation 1. Let 𝑡 be a decision tree defined over X ⊆ R𝑝, and suppose that the query at node 𝑣 of 𝑡 is

of the form 𝑥𝑘 ≤ 𝑑 versus 𝑥𝑘 > 𝑑, for some 𝑘 ∈ {1, . . . , 𝑝} and threshold 𝑑 ∈ R. Let 𝑡0 denote the subtree

of 𝑡 rooted at 𝑣, and let 𝑡1 and 𝑡2 be the left and right subtrees of 𝑣, respectively. For bounds 𝑟𝑘 ≤ 𝑠𝑘 ∈ R,

define the restricted domain X′ = {𝑥 ∈ X | 𝑟𝑘 ≤ 𝑥𝑘 ≤ 𝑠𝑘}. Construct a modified tree 𝑡′ as follows: (i) if

𝑑 < 𝑟𝑘 , replace 𝑡0 in 𝑡 with 𝑡2, (ii) if 𝑑 ≥ 𝑠𝑘 , replace 𝑡0 in 𝑡 with 𝑡1, (iii) otherwise, let 𝑡′ = 𝑡. Then, for all

𝑥 ∈ X′, we have 𝑡 (𝑥) = 𝑡′(𝑥).

In the special case where 𝑟𝑘 = 𝑠𝑘 = 𝑥𝑘 , i.e., the value of 𝑥𝑘 is known, then one of the condition (i) or

(ii) in Observation 1 will be always satisfied. Consequently, the above construction yields a simplified tree

𝑡′, equivalent to 𝑡 over the restricted domain, that bypasses the use of node 𝑣 and eliminates the associated
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query on 𝑥𝑘 . The result of Observation 1 can be applied recursively to prune all splits involving a variable

𝑥𝑘 whose thresholds fall outside the interval [𝑟𝑘 , 𝑠𝑘). In particular, any split of the form 𝑥𝑘 ≤ 𝑑 with

𝑑 < 𝑟𝑘 , or 𝑥𝑘 > 𝑑 with 𝑑 > 𝑠𝑘 , can be removed by replacing the split node with the child corresponding

to the consistent branch. This recursive procedure provides an efficient method to build the pruned tree

𝑡′, and leads to the following observation.

Observation 2. Let 𝑡 be a decision tree defined overX ⊆ R𝑝. For bounds 𝑟𝑘 ≤ 𝑠𝑘 ∈ R for 𝑘 ∈ {1, . . . , 𝑝},

define the restricted domain X′ = {𝑥 ∈ X | 𝑟𝑘 ≤ 𝑥𝑘 ≤ 𝑠𝑘 ,∀𝑘 = 1, . . . , 𝑝}. There exists a decision tree 𝑡′

that only uses queries of the form 𝑥𝑘 ≤ 𝑑 or 𝑥𝑘 > 𝑑 where 𝑑 ∈ [𝑟𝑘 , 𝑠𝑘) for each 𝑘 such that 𝑡′(𝑥) = 𝑡 (𝑥),

∀𝑥 ∈ X′. Further, if 𝑟𝑘 = 𝑠𝑘 for some 𝑘 , 𝑡′ does not contain any queries on 𝑥𝑘 .

Given a restricted domain X′ and an original decision tree 𝑡, we refer to the tree 𝑡′ satisfying the

conditions of Observation 2 as the restriction of 𝑡 over X′.

5.1.2 Formulating Input-to-Ouput Relationships of TEs as MIPs

Given their strong predictive performance, we use TEs to model outcomes 𝜒𝑖 (x, h) for each 𝑖 ∈ 𝑀

as functions of both budget allocations x and socio-economic variables h. Although, unlike budget

allocations, socio-economic variables cannot be altered, they are included during training to improve

predictive accuracy. Because (3) is solved for each county individually, the socio-economic variables 𝒉̄

of a county will be known at the time of solving. This allows us to define the outcome functions solely

in terms of x by setting 𝜉𝑖 (x) = 𝜒𝑖 (x, 𝒉̄) for 𝑖 ∈ 𝑀 . Observation 2 establishes that 𝜉𝑖 (x) is described as a

TE in which all decision nodes query x variables exclusively. For each outcome 𝑖 ∈ 𝑀 , we denote the set

of all trees 𝑡 in the trained TE that have been pruned so as to predict 𝜉𝑖 (x) solely from x by T𝑖 . For short,

we refer to the collection of the set of trees T𝑖 , for all 𝑖 ∈ 𝑀 , as T . Given the training data, it is natural to

assume that these trees are defined over the non-negative orthant.

We are interested in modeling the relationship between x and 𝜉𝑖s over the set of possible budget

allocations, and in particular, are interested in deriving an explicit formulation for the set

O(T ,X) = {(x, z) | 𝑧𝑖 = 𝜉𝑖 (x),∀𝑖 ∈ 𝑀, x ∈ X}.

Next, we show that O(T , 𝑋) can be described as a mixed-integer programming set. This description

extends the formulation in Kim et al. (2025), which itself built on the earlier work of Mišić (2020).

Let f(t) denote the set of leaves of tree 𝑡 ∈ T and 𝐿𝑘 denote the collection of all split values involving

expenditure category 𝑘 that arise in any of the trees in T . Specifically, for each 𝑘 ∈ 𝑁 , we assume

wlog that 𝐿𝑘 = {𝑎𝑘0, 𝑎𝑘1, 𝑎𝑘2, 𝑎𝑘3, . . . , 𝑎𝑘 |𝐿𝑘 |} where 0 = 𝑎𝑘0 < 𝑎𝑘1 < · · · < 𝑎𝑘 |𝐿𝑘 | = ∞ and for

each 𝑣 ∈ {1, 2, 3 . . . , |𝐿𝑘 | − 1} there exists a tree in 𝑡 ∈ T that includes the split condition 𝑥𝑘 ≤ 𝑎𝑘𝑣.
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The elements of 𝐿𝑘 divide the domain of the expenditure category 𝑘 into |𝐿𝑘 | intervals of the form

(𝑎𝑘 (𝑣−1) , 𝑎𝑘𝑣] for 𝑣 ∈ 𝐿̄𝑘 := {1, 2, . . . , |𝐿𝑘 |}.

Consider a tree 𝑡 ∈ T𝑖 . Each leaf of 𝑡 corresponds to a region in the input space x that is characterized

by a collection of intervals on each of the input variables. For each variable 𝑥𝑘 and each leaf 𝑙 of tree 𝑡,

we denote the set of these intervals by 𝐽𝑘
𝑙𝑡
⊆ 𝐿̄𝑘 . Finally, we let 𝑐𝑙𝑡 be the output value of leaf 𝑙 of tree 𝑡

and 𝑣𝑡 be the weight assigned to tree 𝑡. The combination of sets T𝑖 , 𝐽𝑘𝑙𝑡 , 𝐿𝑘 , and parameters 𝑐𝑙𝑡 and 𝑣𝑡 , is

sufficient to completely define and compute all values of all outcomes 𝜉𝑖 (x) for any combination of input

values x.

In addition to the natural variables z and x, the formulation we use requires the introduction of

two sets of binary variables. Let 𝑞𝑙𝑡 be a binary variable that takes the value 1 if leaf 𝑙 of tree 𝑡

is selected and 0, otherwise. Additionally, let 𝑥𝑘𝑣 be a binary variable that takes the value 1 if 𝑥𝑘

belongs to the interval (𝑎𝑘 (𝑣−1) , 𝑎𝑘𝑣] and 0, otherwise. Building on Kim et al. (2025) and Mistry et al.

(2021) and using the fact that expenditures are numerical, we write that O(T ,X) = proj(x,z) P(T ,X) :=

{(x, x̄, z, q) | (5a) − (5h), x ∈ X} whose feasible region contains the constraints

𝑧𝑖 =
∑︁
𝑡∈T𝑖

∑︁
𝑙∈f(𝑡 )

𝑐𝑙𝑡𝑣𝑡𝑞𝑙𝑡 ∀𝑖 ∈ 𝑀 (5a)

𝑥𝑘 ≥
∑︁
𝑣∈ 𝐿̄𝑘

𝑎𝑘 (𝑣−1)𝑥𝑘𝑣 ∀𝑘 ∈ 𝑁 (5b)

𝑥𝑘 ≤
∑︁
𝑣∈ 𝐿̄𝑘

𝑎𝑘𝑣𝑥𝑘𝑣 ∀𝑘 ∈ 𝑁 (5c)∑︁
𝑣∈ 𝐿̄𝑘

𝑥𝑘𝑣 = 1 ∀𝑘 ∈ 𝑁 (5d)

∑︁
𝑙∈f(𝑡 ):𝐽𝑘

𝑙𝑡
⊆{ 𝑗1,..., 𝑗2}

𝑞𝑙𝑡 ≤
𝑗2∑︁

𝑣= 𝑗1

𝑥𝑘𝑣 ∀𝑡 ∈ T𝑖 ,∀𝑖 ∈ 𝑀,∀𝑘 ∈ 𝑁,∀ 𝑗1 ≤ 𝑗2 ∈ 𝐿̄𝑘 (5e)

∑︁
𝑙∈f(𝑡 )

𝑞𝑙𝑡 = 1 ∀𝑡 ∈ T𝑖 ,∀𝑖 ∈ 𝑀 (5f)

𝑞 ·𝑡 ∈ {0, 1} |f(𝑡 ) | ∀𝑡 ∈ T𝑖 ,∀𝑖 ∈ 𝑀 (5g)

x̄𝑘 ∈ {0, 1} | 𝐿̄𝑘 | ∀𝑘 ∈ 𝑁. (5h)

Constraints (5b)-(5d) ensure that, for each 𝑘 ∈ 𝑁 , an interval in 𝐿̄𝑘 containing 𝑥𝑘 is selected, whereas

constraints (5e) and (5f) determine the leaf of each tree that is reached for a given x̄𝑘 . Constraints (5a)

aggregate the values of the selected leaves to compute 𝑧𝑖 = 𝜉𝑖 (x). In the literature, the simplex constraint

(5d) is often reformulated in incremental form to better leverage the branching capabilities of commercial

solvers. Our models solve efficiently without this transformation.

The definition of X, and therefore of O(T ,X), incorporates RBA constraints (4). These constraints

require that the function described by each TE be optimized over a subregion of its domain. Observation 2
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shows that these constraints can be enforced implicitly by restricting each tree to the subdomain defined

by [x̂ − 𝜿−, x̂ + 𝜿+]. As a result, we obtain a simplified representation of the input-to-output relationship

between budget allocations and outcomes that does not require explicitly formulating or enforcing the

RBA constraints. Proposition 1 follows directly.

Proposition 1. Define X = [x̂ − 𝜿−, x̂ + 𝜿+] and X′ = {x ∈ R𝑛
+ |

∑
𝑘∈𝑁 𝑥𝑘 ≤ 𝑏}. It holds that

P(T ,X) = P(T ′,X′),

where T ′ is the collection of trees obtained by restricting the domains of trees of T to X.

Restricting the trees to the domain X alters the sets 𝐽𝑘
𝑙𝑡

, f(𝑡), and 𝐿𝑘 that define their structure.

Specifically, after applying this restriction, we have 𝑎𝑘0 = 𝑥𝑘 − 𝜅−
𝑘

and 𝑎𝑘 |𝐿𝑘 | = 𝑥𝑘 + 𝜅+
𝑘

for each 𝑘 ∈ 𝑁 .

Nevertheless, the structural form of the formulation in (5) is preserved following this restriction.

Next, we observe that, although the variables x were introduced as the natural inputs to the model, the

predicted values z depend only on variables x̄, as evidenced by constraint (5a). We show next that these

variables are not needed and can be removed from the formulation. Beyond simplifying the formulation,

working with the reduced variable set x̄ highlights a structural property of TE functions: since these

functions are piecewise constant, their optimal solutions are not isolated points but entire hyperrectangles

of input values yielding the same objective. Thus, instead of identifying a single optimal solution, the

reduced model focuses on producing a hyperrectangle of optimal solutions. This has practical advantages,

as it provides decision-makers with a range of flexible alternatives rather than a single prescribed choice.

We revisit this point during our discussion of the computational results in Section 6. Eliminating

variables x also has the advantage of reducing the number of variables and constraints in the model,

without compromising the quality of the LP relaxation of the model. More precisely, we next show

that the x variables used in the definition of P(T ′,X′) can be eliminated from this formulation without

weakening its relaxation. The set of constraints from P(T ′,X′) containing only x define the set:

P1 =


(x, x̄) ∈ R |𝑁 | × [0, 1]

∑
𝑘∈𝑁 | 𝐿̄𝑘 |

∑
𝑘∈𝑁 𝑥𝑘 ≤ 𝑏,

𝑥𝑘 ≥ ∑
𝑣∈ 𝐿̄𝑘

𝑎𝑘 (𝑣−1)𝑥𝑘𝑣, ∀𝑘 ∈ 𝑁

𝑥𝑘 ≤ ∑
𝑣∈ 𝐿̄𝑘

𝑎𝑘𝑣𝑥𝑘𝑣, ∀𝑘 ∈ 𝑁


. (6)

The following proposition characterizes the projection of P1 onto the space of variables x̄.

Proposition 2. Consider the inequality∑︁
𝑘∈𝑁

∑︁
𝑣∈ 𝐿̄𝑘

𝑎𝑘 (𝑣−1)𝑥𝑘𝑣 ≤ 𝑏. (7)

It holds that projx̄ P1 = P2 where P2 =

{
x̄ ∈ [0, 1]

∑
𝑘∈𝑁 | 𝐿̄𝑘 | | (7)

}
.
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Proof. First, we prove that projx̄ P1 ⊆ P2. Let x̄1 ∈ projx̄ P1. This implies that there exists x1 such

that (x1, x̄1) ∈ P2. Using the first two families of constraints of P1, we write that 𝑏 ≥ ∑
𝑘∈𝑁 𝑥1

𝑘
≥∑

𝑘∈𝑁
∑

𝑣∈ 𝐿̄𝑝

𝑘
𝑎
𝑝

𝑘 (𝑣−1)𝑥
1
𝑘𝑣

, which along with the bounds on variables x̄, implies that projx̄ P1 ⊆ P2.

Second, we prove that P2 ⊆ projx̄ P1. Let x̄1 ∈ P2. Hence, x̄1 satisfies the bound constraints. Further,

define 𝑥1
𝑘
=
∑

𝑣∈ 𝐿̄𝑘
𝑎𝑘 (𝑣−1)𝑥

1
𝑘𝑣

for 𝑘 ∈ 𝑁 . Since
∑

𝑘∈𝑁
∑

𝑣∈ 𝐿̄𝑘
𝑎𝑘 (𝑣−1)𝑥

1
𝑘𝑣

≤ 𝑏, it follows that
∑

𝑘∈𝑁 𝑥1
𝑘
≤

𝑏. Furthermore, we have that 𝑥1
𝑘
=
∑

𝑣∈ 𝐿̄𝑘
𝑎𝑘 (𝑣−1)𝑥

1
𝑘𝑣

<
∑

𝑣∈ 𝐿̄𝑘
𝑎𝑘𝑣𝑥

1
𝑘𝑣

, where the last inequality is due

to the facts that 𝑎𝑘 (𝑣−1) < 𝑎𝑘𝑣 and 𝑥1
𝑘𝑣

≥ 0 for all 𝑘 and 𝑣. This implies that (x1, x̄1) ∈ P1, showing that

P2 ⊆ projx̄ P1. □

Proposition 2 yields an alternative, more compact formulation for representing the outcomes 𝜉𝑖

as functions of the budget allocation decisions, without loss of tightness. This reformulation can be

expressed as:

Q(T ′) := {(x̄, z, q) | (5a), (5d) − (5h), (7)}.

Hence, the derivations in this section provide the following alternate formulations of (3):

max
x∈X

min
𝑢∈U

𝑢(𝜉 (x)) = max
(x,x̄,z,q) ∈P (T ,𝑋)

min
𝑢∈U

𝑢(z) = max
(x̄,z,q) ∈Q (T′ )

min
𝑢∈U

𝑢(z). (8)

In the rest of this paper, we will use the latter one.

5.2 Robust Risk-Averse Utility Optimization Model

We now turn our attention to the inner problem of (3), min𝑢∈U 𝑢(z), which seeks to identify the worst-case

utility function within the admissible set U for a given vector of outcomes z. We begin by motivating

this formulation and outlining the assumptions we place on the utility functions in U. We then derive an

equivalent reformulation of the problem that can be integrated into (8).

Policymakers often have limited attention, evaluate allocations on multiple outcomes and differ in

the weights they attach to the relative importance of outcomes (Jones 2003, Workman 2015). Thus,

comparing two vectors of outcomes is difficult. Therefore, we assume policymakers face uncertainty

about how their strategies map onto outcomes and their own utility over the outcomes of their investments.

Policymakers aim to act rationally but are constrained by the context in which decisions are made. As

it is rational to allocate budgets so that utility is maximized (Mas-Colell et al. 1995), we adopt a utility

optimization model, maximizing the worst-case utility of the policymakers, for allocating budgets across

the expenditure categories with a focus on managing the opioid crisis. Our modeling framework is based

on the following assumptions.

Assumption 1.
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a. For a vector z of outcomes 𝜉, the utility function of the policymaker satisfies 𝑢(z) =∑
𝑖∈𝑀 𝜎𝑖𝑢̄𝑖 (𝑧𝑖)

where 𝑢̄𝑖 (𝑧𝑖) : R → [0, 1] is the utility of the policymaker when output 𝜉𝑖 takes value 𝑧𝑖 and 𝜎𝑖 is

the priority coefficient for outcome 𝑖 where a higher value of 𝜎𝑖 indicates greater importance on

improving outcome 𝑖.

b. Let Ū𝑖 be the set of non-decreasing concave piecewise linear functions 𝑢̂𝑖 (·) that are such that

𝑢̄𝑎
𝑖
(·) ≤ 𝑢̂𝑖 (·) ≤ 𝑢̄𝑏

𝑖
(·) and right-derivatives satisfy 𝑢̄′𝑎

𝑖
(·) ≤ 𝑢̂′

𝑖
(·) ≤ 𝑢̄′𝑏

𝑖
(·) for two given reference

functions 𝑢̄𝑎
𝑖

and 𝑢̄𝑏
𝑖
. We assume that 𝑢̄𝑖 (·) ∈ Ū𝑖 ∀𝑖 ∈ 𝑀 .

Assumptions 1a and 1b ensure that policymakers are risk-averse (Mas-Colell et al. 1995). This is

reasonable considering the state of the opioid crisis in WV where policymakers are likely to favor budget

allocations that offer modest but reliable improvements over those that promise greater gains with high

uncertainty (Kahneman and Tversky 1979). These assumptions also ensure that policymakers’ utility is

non-decreasing in the outcomes, preferring higher values for each outcome. As lower ORDs and CIs are

preferred, we will transform them to conform with these assumptions.

Assumption 1a allows us to simplify both the modeling and computation by ensuring that the utility

from a given outcome 𝑖 ∈ 𝑀 is independent of the values of other outcomes 𝑗 ∈ 𝑀 . The piecewise linear

assumption in Assumption 1b is justified because piecewise linear functions can closely approximate a

wide range of functions. Furthermore, the reference functions specified in the same assumption limit

the set of functions included in Ū𝑖 , which restricts our framework from producing overly conservative

solutions. Let U denote the set of all utility functions over R𝑚 that satisfy Assumption 1. Under this

definition, the inner minimization problem in (3) reduces to

min
𝑢∈U

𝑢(z) =
∑︁
𝑖∈𝑀

𝜎𝑖 𝜋̄𝑖 (z) where 𝜋̄𝑖 (z) = min
𝑢̄𝑖∈Ū𝑖

𝑢̄𝑖 (𝑧𝑖). (9)

For an outcome 𝑧𝑖 ∈ [𝜃1
𝑖
, 𝜃2

𝑖
], let 𝜃1

𝑖
= 𝑝𝑖0 < 𝑝𝑖1 < 𝑝𝑖2 < · · · < 𝑝𝑖𝑤𝑖

= 𝜃2
𝑖

represent a partition

of [𝜃1
𝑖
, 𝜃2

𝑖
] into 𝑤𝑖 intervals. While multiple approaches could be used to define these intervals, we

extract them from the trained TE as described in Section 6. Given these partitions and Assumption 1, we

approximate 𝜋̄𝑖 (x) by solving the following linear program (Hu and Mehrotra 2015):

𝜋̄𝑖 (z) =min 𝑏̃𝑖𝑧𝑖 + 𝑎̃𝑖 (10a)

s.t.

[ 𝒚̂1] 𝑏̂𝑖 𝑗+1 − 𝑏̂𝑖 𝑗 − ¤𝑏𝑖 𝑗
(
𝑝𝑖 𝑗+1 − 𝑝𝑖 𝑗

)
≤ 0, ∀ 𝑗 = 0, . . . , 𝑤𝑖 − 1 (10b)

[ 𝒚̂2] 𝑏̂𝑖 𝑗+1 − 𝑏̂𝑖 𝑗 − ¤𝑏𝑖 𝑗+1
(
𝑝𝑖 𝑗+1 − 𝑝𝑖 𝑗

)
≥ 0, ∀ 𝑗 = 0, . . . , 𝑤𝑖 − 2 (10c)

[ 𝒚̂3] 𝑙𝑖 𝑗 𝑏̃𝑖 + 𝑎̃𝑖 ≥ 𝑏̂𝑖 𝑗 , ∀ 𝑗 = 0, . . . , 𝑤𝑖 (10d)

[ 𝒚̂4], [ 𝒚̂5] 𝑢̃𝑖 (𝑝𝑖 𝑗 , 0.41) ≤ 𝑏̂𝑖 𝑗 ≤ 𝑢̃𝑖 (𝑝𝑖 𝑗 , 0.68), ∀ 𝑗 = 0, . . . , 𝑤𝑖 (10e)
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[ 𝒚̂6], [ 𝒚̂7] 𝑢̃′𝑖 (𝑝𝑖 𝑗 , 0.41) ≤ ¤𝑏𝑖 𝑗 ≤ 𝑢̃′𝑖 (𝑝𝑖 𝑗 , 0.68), ∀ 𝑗 = 0, . . . , 𝑤𝑖 − 1 (10f)

𝑏̂𝑖 𝑗 , 𝑎̃𝑖 , 𝑏̃𝑖 , ¤𝑏𝑖 𝑗 ≥ 0, ∀ 𝑗 = 0, . . . , 𝑤𝑖 (10g)

where the notation for dual variables is stated before each constraint, and

𝑢̃𝑖 (𝑡, 𝜆) =
1

1 − 𝜆
𝑡1−𝜆, 𝜆 ∈ [0.41, 0.68] (11)

is the Constant Relative Risk Aversion (CRRA) utility function (Holt and Laury 2002). We use CRRA in

our analysis as this utility function has been empirically shown to effectively capture the risk aversion

behavior of decision-makers (Holt and Laury 2002, Hu and Mehrotra 2015). Variables 𝑏̃𝑖 and 𝑎̃𝑖 represent

the slope and intercept of the linear segment of the piecewise-linear function at 𝑧𝑖 . Variable 𝑏̂𝑖 𝑗 captures

the value of the function 𝜋̄𝑖 at the point 𝑝𝑖 𝑗 , whereas variable ¤𝑏𝑖 𝑗 represents the slope of the line segment

of the piecewise-linear function 𝜋̄𝑖 over the interval [𝑝𝑖 𝑗 , 𝑝𝑖, 𝑗+1]. Constraints (10b) and (10c) ensure that

𝜋̄𝑖 is piecewise-linear, concave, and non-decreasing. Constraints (10d) along with the objective function

(10a) give the value of 𝜋̄𝑖 (z). Constraints (10e) and (10f) impose bounds on the value of 𝜋̄𝑖 at the 𝑤𝑖 + 1

breakpoints and on the slope of each of the 𝑤𝑖 line segments, respectively. These constraints approximate

the bounds defined by the reference functions in Assumption 1b by specifying 𝑢̄𝑎 (·) = 𝑢̃(·, 0.41) and

𝑢̄𝑏 (·) = 𝑢̃(·, 0.68).

Next, we dualize (10) for each 𝑖 ∈ 𝑀 to obtain an expression for 𝜋̄𝑖 (z) as a maximization prob-

lem. To simplify the expression of this dual problem, we introduce the notation ŷ1:7
𝑖

for the vec-

tor (ŷ1
𝑖
, ŷ2

𝑖
, ŷ3

𝑖
, ŷ4

𝑖
, ŷ5

𝑖
, ŷ6

𝑖
, ŷ7

𝑖
) of all dual variables of (10), where ŷ1

𝑖
, ŷ6

𝑖
, ŷ7

𝑖
∈ R𝑤𝑖 , ŷ2

𝑖
∈ R𝑤𝑖−1, and

ŷ3
𝑖
, ŷ4

𝑖
, ŷ5

𝑖
∈ R𝑤𝑖+1. For the same reason, we define the function

Ψ𝑖 (ŷ1:7
𝑖 ) =

𝑤𝑖∑︁
𝑗=0

(
𝑢̃𝑖 (𝑝𝑖 𝑗 , 0.41) 𝑦̂4

𝑖 𝑗 + 𝑢̃𝑖 (𝑝𝑖 𝑗 , 0.68) 𝑦̂5
𝑖 𝑗 + 𝑢̃′𝑖 (𝑝𝑖 𝑗 , 0.41) 𝑦̂6

𝑖 𝑗 + 𝑢̃′𝑖 (𝑝𝑖 𝑗 , 0.68) 𝑦̂7
𝑖 𝑗

)
.

Using this notation, it is easily established that the dual of (10) is the optimization problem

𝜋̄𝑖 (z) = max
{
Ψ𝑖 (ŷ1:7

𝑖
) (ŷ1

𝑖
, ŷ2

𝑖
, ŷ3

𝑖
, ŷ4

𝑖
, ŷ5

𝑖
, ŷ6

𝑖
, ŷ7

𝑖
, 𝑧𝑖) ∈ R𝑖

}
(12)

whose feasible region

R𝑖 =

{
(ŷ1

𝑖
, ŷ2

𝑖
, ŷ3

𝑖
, ŷ4

𝑖
, ŷ5

𝑖
, ŷ6

𝑖
, ŷ7

𝑖
, 𝑧𝑖) (14a) − (14j)

}
(13)

is defined through the constraints

− 𝑦̂1
𝑖0 − 𝑦̂2

𝑖0 − 𝑦̂3
𝑖0 + 𝑦̂4

𝑖0 + 𝑦̂5
𝑖0 ≤ 0 (14a)

𝑦̂1
𝑖 ( 𝑗−1) − 𝑦̂1

𝑖 𝑗 + 𝑦̂2
𝑖 ( 𝑗−1) − 𝑦̂2

𝑖 𝑗 − 𝑦̂3
𝑖 𝑗 + 𝑦̂4

𝑖 𝑗 + 𝑦̂5
𝑖 𝑗 ≤ 0 ∀ 𝑗 = 1, . . . , 𝑤𝑖 − 2 (14b)

𝑦̂1
𝑖 ( 𝑗−1) − 𝑦̂1

𝑖 𝑗 + 𝑦̂2
𝑖 ( 𝑗−1) − 𝑦̂3

𝑖 𝑗 + 𝑦̂4
𝑖 𝑗 + 𝑦̂5

𝑖 𝑗 ≤ 0 ∀ 𝑗 = 1, . . . , 𝑤𝑖 − 1 (14c)
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𝑦̂1
𝑖 (𝑤𝑖−1) − 𝑦̂3

𝑖𝑤𝑖
+ 𝑦̂4

𝑖𝑤𝑖
+ 𝑦̂5

𝑖𝑤𝑖
≤ 0 (14d)

− 𝑦̂1
𝑖0(𝑝𝑖1 − 𝑝𝑖0) + 𝑦̂6

𝑖0 + 𝑦̂7
𝑖0 ≤ 0 (14e)

− 𝑦̂1
𝑖 𝑗 (𝑝𝑖 ( 𝑗+1) − 𝑝𝑖 𝑗) − 𝑦̂2

𝑖 ( 𝑗−1) (𝑝𝑖 𝑗 − 𝑝𝑖 ( 𝑗−1) )

+ 𝑦̂6
𝑖 𝑗 + 𝑦̂7

𝑖 𝑗 ≤ 0 ∀ 𝑗 = 1, . . . , 𝑤𝑖 − 1 (14f)
𝑤𝑖∑︁
𝑗=0

𝑝𝑖 𝑗 𝑦̂
3
𝑖 𝑗 ≤ 𝑧𝑖 (14g)

𝑤𝑖∑︁
𝑗=0

𝑦̂3
𝑖 𝑗 ≤ 1 (14h)

ŷ1
𝑖 , ŷ

5
𝑖 , ŷ

7
𝑖 ≤ 0 (14i)

ŷ2
𝑖 , ŷ

3
𝑖 , ŷ

4
𝑖 , ŷ

6
𝑖 ≥ 0. (14j)

5.3 MILP Formulation for (3) using TEs Trained to Predict Outcomes 𝜉

Combining (8), (9), and (12), we can reformulate (3) as the following MIP:

(F ) max
∑︁
𝑖∈𝑀

𝜎𝑖Ψ𝑖 (ŷ1:7
𝑖 )

(ŷ1
𝑖 , ŷ

2
𝑖 , ŷ

3
𝑖 , ŷ

4
𝑖 , ŷ

5
𝑖 , ŷ

6
𝑖 , ŷ

7
𝑖 , 𝑧𝑖) ∈ R𝑖 , ∀𝑖 ∈ 𝑀

(x̄, z, q) ∈ Q(T ′).

The expanded form of this model, after projecting out z, can be found in Section OS.1C. Model F is the

formulation we implement and solve in the following section for a WV case study. This study demonstrates

its practical relevance and tractability.

6 Results and Discussion

In this section, we apply F to counties in WV. All experiments in this section were performed on an Apple

M2 processor with 8.00 GB of RAM, using Python 3.13.2. The optimization model was solved using

GUROBI 11.0.0. We assess the performance of our budget allocation model by implementing F for 12

southern WV for the years 2020, 2022 and 2023. Year 2021 is excluded from our analysis due to data

inconsistencies caused by COVID-19. This region has commonly been identified as the most severely

impacted by the opioid epidemic and is at the epicenter of the state’s energy and economic transition -

long recognized as a source of the epidemic. Before solving F for a (county, year) pair (𝑐, 𝑦), we train two

separate tree ensemble models, one for ORDs and the other for CIs. Based on the Arellano-Bond model

results, the TE training features for predicting ORDs are previous year’s (𝑦 − 1) ORDs, budget allocations

in all six expenditure categories, Median Household Income, and total annual population for county 𝑐.
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For predicting CIs, the TE training features include CIs from year 𝑦 − 2 and, from year 𝑦 − 1, budget

allocations in all six expenditure categories, Median Household Income, Median Gross Rent, Uninsured

Population, and total population for county 𝑐. We retain all six expenditure categories despite some

showing no statistically significant causal relationship with ORDs or CIs. This is because of the budget

constraint (7) in F that upper-bounds the total allocation across all categories. Additionally, there may

also exist bounds on how much each category’s allocation can deviate from its existing level.

Unlike the Arellano-Bond model, we do not apply a logarithmic transformation to the six expenditure

categories. Our preliminary experiments showed no significant differences in the prescriptive results

obtained with or without the transformation. This is likely because exp(·) and 𝑙𝑜𝑔(·), being non-

decreasing functions, preserve the order of values, resulting in similar splits in the trained TEs. The

training data consists of the above-described information from all counties in WV for the years 2012–2023.

We use scikit-learn to train TEs and apply RandomizedSearchCV to tune the hyper-parameters.

Trained on expenditure and socio-economic variables with statistically significant causal links to ORDs and

CIs, TEs show strong predictive performance across three metrics and consistently match or exceed Linear

Regression, Support Vector Regression, and kNN, effectively capturing the budget allocation–outcome

relationships, thereby justifying their use in this study. Details on tuning and predictive accuracy of TEs

can be found in Section OS.1D.

In Assumption 1b, we assume that policymakers’ utility is a non-decreasing function of the outcomes,

meaning they favor higher outcome values. Because lower values of ORDs and CIs are desirable in our

context, we transform these outcomes into normalized metrics 𝜉𝑖 (x) for each 𝑖 ∈ 𝑀 to reflect this

preference structure. Specifically, we define the normalized outcomes as:

𝜉𝑖 (x) =
𝜂𝜉𝑚𝑎𝑥

𝑖
− 𝜉𝑖 (x)

𝜉𝑚𝑎𝑥
𝑖

− 𝜉𝑚𝑖𝑛
𝑖

∀𝑖 ∈ 𝑀, (15)

where 𝜉𝑚𝑎𝑥
𝑖

and 𝜉𝑚𝑖𝑛
𝑖

represent the maximum and minimum observed values of outcome 𝑖 in the dataset,

respectively. The multiplier 𝜂 > 1 in the numerator is included to ensure that 𝜉𝑖 (x) remains strictly

positive, since the derivative of 𝑢̃𝑖 (𝑡, 𝜆), as defined in (11), is undefined at 𝑡 = 0 for 𝜆 ∈ [0.41, 0.68]. In

our computational experiments, we use 𝜂 = 1.2. Additionally, for each outcome 𝑖 ∈ 𝑀 , we first normalize

the leaf values in T𝑖 according to (15), then sort the distinct normalized values in ascending order. These

sorted values form the partition 𝜃1
𝑖
= 𝑝𝑖0 < 𝑝𝑖1 < 𝑝𝑖2 < · · · < 𝑝𝑖𝑤𝑖

= 𝜃2
𝑖

that is used in F , where the

total number of unique leaf values in T𝑖 is 𝑤𝑖 + 1.

We assess our budget allocation model, F , by applying it to 12 counties in southern WV: Boone,

Cabell, Raleigh, Fayette, Kanawha, Lincoln, Logan, McDowell, Mercer, Mingo, Wayne, and Wyoming.

These counties are among the hardest hit by the opioid crisis with the highest average ORDs per 100,000

people from 2012 to 2023. A major driver of the opioid crisis in these counties is the long-term decline

of coal as the foundation of their economies (Thompson et al. 2020, Young et al. 2023). In these
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areas, coal is closely linked not only to residents’ well-being and health, but also to the ability of local

governments to provide essential services through coal severance tax revenues. In WV, these revenues are

allocated to counties based on the amount of coal they produce (Hoy 2023). Substantial portions of local

budgets for law enforcement and public health depend on these funds. These 12 counties lie squarely

within the “coal fields” — the region most reliant on the coal industry and the tax revenues it generates.

The industry’s decline has left behind people with physical and mental harm, as well as underfunded

government services. Together, these conditions fuel the demand for opioids while making it harder for

local governments to respond effectively.

In this analysis, we evaluate three sets of coefficient values for {𝜎ORDs, 𝜎CIs}: {1, 1}, {100, 1}, and

{1, 100}, each representing a different policy emphasis. We label {1, 1} as the Balanced Priority Policy

(BPP), where F aims to achieve a solution that gives equal importance to the utility obtained from

reducing both ORDs and CIs. We refer to the setting {100, 1} where the focus is primarily on minimizing

ORDs as the Opioid Priority Policy (OPP). Conversely, we refer to the setting {1, 100} where reducing CIs

is the higher priority as the Crime Priority Policy (CPP). In the RBA constraints, we set 𝜅− = 𝜅+ = 𝛿𝑥𝑘

for each 𝑘 ∈ 𝑁 with 𝑥𝑘 > 0 and consider three values of 𝛿 = {0.1, 0.3, 0.5}. A value of 𝛿 = 0.1 restricts

deviations from the reference budget allocations 𝑥𝑘 for 𝑘 ∈ 𝑁 to just 10%, thereby limiting the flexibility

of F in identifying solutions that achieve lower ORDs and CIs. In contrast, setting 𝛿 = 0.5 permits up

to 50% deviation from the reference allocations, offering F significantly more flexibility in optimizing

outcomes. We do not include RBA constraints for expenditure categories with 𝑥𝑘 = 0 because there are

only a few such categories in our dataset. Thus, the RBA constraints for categories with 𝑥𝑘 > 0, combined

with the overall budget constraint defining X, implicitly limit the allocation to expenditure categories

with 𝑥𝑘 = 0.

The remainder of this section is structured as follows. Section 6.1 analyzes the reductions in ORDs

and CIs that F suggests are possible. Section 6.2 examines the budget allocations it recommends.

6.1 Reduction in ORDs and CIs

In this section, we compare the predicted values of ORDs and CIs (denoted as ORDs𝑜𝑝𝑡 and CIs𝑜𝑝𝑡 )

obtained from the budget allocations produced by F with the corresponding observed values, ORDs𝑜𝑏𝑠 and

CIs𝑜𝑏𝑠. To quantify the improvement, we compute the percentage reductions as 𝜁ORDs = ORDs𝑜𝑏𝑠−ORDs𝑜𝑝𝑡

ORDs𝑜𝑏𝑠
×

100 and 𝜁CIs =
CIs𝑜𝑏𝑠−CIs𝑜𝑝𝑡

CIs𝑜𝑏𝑠
× 100. We begin by focusing on a single county, Cabell. Cabell County has

experienced highest per-capita rates of ORDs and high per-capita rates of CIs, along with relatively low

per-capita total budget compared to other counties in WV. These conditions make Cabell County a strong

candidate for applying F .

Figure 2 plots the values of 𝜁ORDs and 𝜁CIs for Cabell county across the years 2020, 2022, and 2023,
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under all three priority policies (BPP, OPP, and CPP), for each of the three 𝛿 values. As shown in Figures 2a

and 2b, the values of 𝜁ORDs and 𝜁CIs for BPP across all years and 𝛿 levels (excluding 𝛿 = 0.1 in 2022)

range from 8.72% to 28.41% and from 3.79% to 23.62%, respectively. This indicates that the budget

allocations produced by F are predicted to result in substantially lower ORDs and CIs than the observed

values. Given the strong predictive accuracy of TEs and the causal relationships identified in Section 4,

these findings underscore the potential of model F to aid policymakers in adjusting budget allocation

decisions to reduce ORDs and CIs.

Furthermore, as seen in Figures 2c and 2f, the values of 𝜁ORDs and 𝜁CIs under OPP and CPP, respectively,

are non-decreasing as 𝛿 increases. This trend is expected since higher 𝛿 values allow F greater flexibility

in adjusting budget allocations across expenditure categories, enabling the model to identify allocations

that better optimize the targeted outcome. When comparing across priority policies, we observe that

𝜁ORDs improves under OPP relative to BPP, while 𝜁CIs declines. For example, in 2022 with 𝛿 = 0.3, 𝜁ORDs

rises from 23.5% under BPP to 25.3% under OPP, whereas 𝜁CIs falls from 3.8% to –5.6%. A similar but

reversed pattern emerges when comparing CPPwith BPP. Under CPP, 𝜁CIs increases, while 𝜁ORDs declines.

Specifically, for 2022 and 𝛿 = 0.3, 𝜁CIs increases from 3.8% under BPP to 7.7% under CPP, while 𝜁ORDs

drops from 23.5% to 8.9%. These results suggest that, for Cabell County, a trade-off may exist between

reducing ORDs and CIs: improvements in one outcome may come at the cost of the other.

Such trade-offs in outcomes are well-known in the study of political science and public policy

(Breunig and Busemeyer 2012). In the counties we examine, high rates of co-morbidities have increased

the likelihood that public policies across different substantive areas become closely interconnected. In

Cabell County, for instance, millions of opioid pills were shipped to Huntington, WV, and the surrounding

areas (Voelker 2018). During this same period, the county experienced significant levels of co-morbidities,

particularly obesity and cigarette smoking, making it even more difficult to balance public health needs

with drug interdiction efforts. These health challenges constrain policy flexibility, tightening the linkage

between competing priorities.

Next, we examine whether the above insights also apply to the other 11 counties of southern WV. We

found that all 11 other counties exhibit trends similar to those observed in Cabell County. In most cases,

F identifies budget allocations where the predicted ORDs and CIs are lower than the observed values.

Moreover, as 𝛿 increases, 𝜁ORDs and 𝜁CIs tend to improve under the OPP and CPP, respectively, whereas

under the BPP policy, at least one of the two metrics improves. Across various priority policies, similar

trade-offs to those seen in Cabell County emerge. In most of the other 11 counties analyzed, 𝜁ORDs tends to

be higher under OPP than under BPP, whereas 𝜁CIs is generally higher under CPP than BPP. This suggests

that prioritizing improvements in one outcome often would come at the cost of reducing gains in the

other, a pattern we found to be common throughout southern WV. These trade-offs are well-documented
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Figure 2: Percentage reductions in ORDs and CIs (𝜁ORDs and 𝜁CIs) across various 𝛿 values under priority

policies for Cabell County.
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in theoretical decision models of governance and public policy and are supported by empirical evidence

(Breunig and Busemeyer 2012). We refer to Figures OS.3 and OS.4 for graphs summarizing our findings

for all 12 counties.

6.2 Changes in Budget Allocations

We now examine the budget allocations that lead to the predicted ORDs and CIs values described in

Section 6.1. For each budget category 𝑘 ∈ 𝑁 , an optimal solution to F provides a budget range from the

set 𝐿̄𝑘 . Therefore, instead of a single allocation, F produces an interval for each category. This offers

policymakers greater flexibility in selecting budget allocations, subject to the overall budget constraint.

We denote this interval for category 𝑘 , county 𝑐 and year 𝑦 as (LB𝑦
𝑐𝑘
, UB

𝑦

𝑐𝑘
).

Let 𝑥𝑦
𝑐𝑘

represent the observed budget allocation for county 𝑐 in category 𝑘 for year 𝑦. We assess

the recommended budget adjustments through the interval (Δ̃𝑦

𝑐𝑘
, Δ̂

𝑦

𝑐𝑘
) where Δ̃

𝑦

𝑐𝑘
=
LB

𝑦

𝑐𝑘
− 𝑥̃𝑦

𝑐𝑘

𝑏
𝑦
𝑐

× 100 and

Δ̂
𝑦

𝑐𝑘
=
UB

𝑦

𝑐𝑘
− 𝑥̃𝑦

𝑐𝑘

𝑏
𝑦
𝑐

× 100. Here, 𝑏𝑦𝑐 denotes the total budget of county 𝑐 in year 𝑦, whereas Δ̃
𝑦

𝑐𝑘
and Δ̂

𝑦

𝑐𝑘

reflects the minimum and maximum percentage change, respectively, in the allocation to category 𝑘

relative to the county’s total budget for that year.

Table 2 reports the values of (Δ̃𝑦

𝑐𝑘
, Δ̂

𝑦

𝑐𝑘
) for Cabell County in 2023 under all combinations of 𝛿

levels and priority policies. The last two rows of the table display the values of 𝑥𝑦
𝑐𝑘

and the total county

budget 𝑏𝑦𝑐 for 2023. The table’s final column presents the value of 𝜅𝑦𝑐 =

∑
𝑘∈𝑁 UB

𝑦

𝑐𝑘

𝑏
𝑦
𝑐

for each 𝛿 level and

priority policy, representing the maximum fraction of the total budget that can be allocated based on the

bounds prescribed by F . As shown in the table, F recommends significant changes in three expenditure

categories: CR, GG, and PS. Under the BPP policy, as 𝛿 increases from 0.1 to 0.3, F suggests a substantial

decrease in allocations to CR and GG, and an increase in spending on PS. These adjustments lead to an

improvement in outcomes, with 𝜁ORDs rising from -2.32% to 8.72% and 𝜁CIs from 12.99% to 21.37%;

see Figures 2a and 2b. These findings align with the Arellano-Bond model results in Table 1, where CR

has a statistically significant positive coefficient for ORDs, and PS has a statistically significant negative

coefficient for CIs. This suggests that reducing spending on CR and increasing investment in PSmay help

reduce ORDs and CIs, respectively. Although GG shows a statistically significant negative relationship

with ORDs in the Arellano-Bond model, F still recommends decreasing its allocation. This is due to the

budget constraint, which the Arellano-Bond model does not account for. Moreover, when 𝛿 increases to

0.5, a shift occurs: F recommends reducing funding to PS and increasing it for GG due to the budget

limitation. This change results in a further increase in 𝜁ORDs to 10.07%, but a slight decrease in 𝜁CIs to

20.96% compared to the outcomes at 𝛿 = 0.3.

Under the OPP policy, which prioritizes reducing ORDs, F recommends decreasing allocations to both

PS and CR, a recommendation that aligns with the Arellano-Bond model results in Table 1. However,
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an interesting pattern emerges with respect to GG as 𝛿 increases. Specifically, F suggests a reduction

in GG spending when 𝛿 = 0.3, followed by an increase when 𝛿 = 0.5. As illustrated in Figure 2c, the

values of 𝜁ORDs for 𝛿 = 0.3 and 0.5 are quite close—9.44% and 10.07%, respectively. To attain these

reductions in ORDs, F identifies two distinct strategies: one involves simultaneously making a substantial

cut in CR spending while increasing allocation to GG, and the other reflects a scenario where a significant

reduction in CR is not feasible. The first strategy becomes viable only when a higher flexibility level (i.e.,

𝛿 = 0.5) allows for greater reallocation across categories. When 𝛿 is smaller (e.g., 0.3), the scope for

cutting CR is limited, prompting F to reduce spending on GG instead. This illustrates how F accounts

for interdependencies between budget categories—recognizing that achieving notable improvements in

outcomes may require coordinated, simultaneous adjustments across multiple expenditure areas.

This seemingly counterintuitive result can be attributed to the way public institutions process in-

formation—through complex, nonlinear mechanisms that involve threshold effects. Governments often

respond only after a problem becomes severe, at which point their actions may be disproportionate. This

indicates that the government action only occurs after an outcome crosses a certain threshold, and such

thresholds are not always triggered in a gradual, incremental fashion. As a result, influencing outcomes

often requires substantial budget cuts or expansions (Workman et al. 2009, Workman and Thomas 2025).

Under the CPP policy, which emphasizes reducing CIs, increasing 𝛿 from 0.1 to 0.5 results in greater

budget allocation to PS and reduced spending on CR and GG. This reallocation leads to an increase in 𝜁CIs

from 13.80% to 23.53%; see Figure 2f. These patterns are in line with the Arellano-Bond model results

in Table 1, where PS has a statistically significant negative coefficient with respect to CIs, suggesting

that increased spending in this category is associated with reduced crime incidents. This also aligns with

intuitive expectations—boosting investment in public safety is a reasonable approach when the goal is to

lower crime.

Next, we extend our analysis to include the 11 other counties in southern WV. Our goal is to examine

whether our model reveals county-wise differences in budget allocations across southern WV. We found

that most counties direct the most of their funds toward GG and PS, whereas CP receives only a minimal

portion; see Table OS.4. This spending pattern stands in contrast to the Arellano-Bond model findings

(Table 1), which identify CP as having a statistically significant negative association with both ORDs and

CIs. In line with this evidence, the most substantial budget reallocation recommendations made by F

across the 12 counties focus on CP, GG, and PS. In many of the 12 counties, F suggests notable increases

in funding for CP. Given the constraint of total budget, the increased funding for CP is primarily achieved

by reducing allocations to GG. This is mainly due to two reasons: first, GG currently receives the highest

share of the total budget, making it the most practical source for reallocation; and second, GG does not

have a statistically significant effect on CIs (see Table 1). Consequently, under the CPP policy, the model
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Priority Policy 𝛿 CP CR GG HS PS SS 𝜅
𝑦
𝑐

BPP 0.10 (-0.021, 0.021) (-1.077, -0.964) (-5.502, -4.580) (0.009, 0.020) (3.192, 3.381) (0.034, 0.036) 0.98

0.30 (-0.062, -0.030) (-3.138, -3.110) (-5.574, -4.580) (0.009, 0.030) (5.494, 6.379) (0.259, 0.263) 0.99

0.50 (-0.103, -0.030) (-5.052, -5.048) (8.588, 10.616) (-0.026, -0.024) (-3.998, -3.876) (0.263, 0.282) 1.02

OPP 0.10 (-0.021, 0.021) (-1.077, -0.964) (3.188, 3.505) (0.009, 0.020) (-3.381, -3.375) (0.142, 0.144) 0.99

0.30 (-0.062, -0.030) (-2.092, -1.999) (-4.131, -4.108) (-0.026, -0.024) (-3.998, -3.876) (0.263, 0.282) 0.90

0.50 (-0.103, -0.030) (-5.052, -5.048) (8.588, 10.616) (-0.027, -0.026) (-3.998, -3.876) (0.263, 0.282) 1.02

CPP 0.10 (-0.021, 0.021) (-0.791, 0.359) (-5.502, -4.580) (0.009, 0.020) (-2.983, -2.600) (0.651, 0.910) 0.94

0.30 (-0.062, -0.030) (-3.138, -3.110) (-5.574, -4.580) (0.009, 0.030) (4.671, 5.143) (0.651, 0.910) 0.98

0.50 (-0.103, -0.030) (-5.048, -5.033) (-4.131, -4.108) (0.088, 0.098) (5.143, 5.156) (1.522, 1.526) 0.98

𝑥
𝑦

𝑐𝑘
$60,079 $3,154,678 $16,114,350 $57,147 $9,902,121 $0

𝑏
𝑦
𝑐 $29,288,375

Table 2: Minimum & maximum percentage change values (Δ̃𝑦

𝑐𝑘
, Δ̂

𝑦

𝑐𝑘
) for 𝑐 = Cabell County and 𝑦 = 2023

across 𝛿 values and priority policies.

recommends sharper reductions in GG funding at higher values of 𝛿. As for PS, F generally advises

reducing allocations across most counties, though some exceptions exist. For example, with 𝛿 = 0.5,

2 counties receive an increase in PS funding under BPP, while 4 each receive an increase under OPP

and CPP. In the remaining counties, F recommends reducing PS allocations or keeping them at existing

levels. Although these reductions are generally smaller than those seen for GG, they are justified by PS

receiving the second-largest share of the budget. The increases can be explained by the fact that PS is

found to have a statistically significant negative impact on CIs as per the results of the Arellano-Bond

model in Table 1. For graphical representation of these results, see Figures OS.5–OS.10.

These results align with the realities of local government operations and spending priorities. GG

represents the pool of expenditures for running the government and receives the largest share of resources.

In addressing both drug treatment and crime prevention, a persistent and shifting tension exists regarding

how funds are distributed across policy domains. The model’s guidance for GG points toward a redefinition

of local government’s central functions, indicating a major reordering of policy priorities.

Reallocating resources as suggested by F could strengthen the response to the drug crisis but

might come at the expense of infrastructure and other essential services. Reducing PS funding often

faces opposition from powerful law enforcement interests and, as our analysis shows, could result in

higher crime rates. County-specific context is critical for these decisions: in areas where geographic,

infrastructural, and demographic factors make supply interdiction crucial, cuts to PS could be minimal;

in areas where such interdiction is unlikely or impractical, a more balanced spending strategy could be

prioritized. Ultimately, counties assess both logistical and political feasibility, as effective policies must

fall within an acceptable “zone of acquiescence” on these dimensions; otherwise, adoption will be slow
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or absent.

7 Conclusion

In public policy broadly—and in public health and criminal justice in particular—policies are often

conceptualized as one-time interventions. There are valid reasons for this: evidence-based research

identifies certain policies that, if implemented, tend to improve outcomes in addressing Substance Use

Disorder (SUD). Methodological conventions also reinforce this view, as many statistical frameworks are

built around the assumption that a single policy is enacted at a given point in time, followed by measurable

outcomes later. However, this “single-intervention” perspective does not reflect the actual decision

environment of most policymakers. They must juggle numerous competing issues, each demanding

attention and policy action. In practice, policymakers rely on a combination of decisions to nudge

governance toward their preferred outcomes, working within the limits of their bounded rationality. From

this perspective, policies aimed at any particular issue, such as SUD, are better understood as a mix of

actions, rather than a single intervention. Moreover, while the intervention-based model may be grounded

in science, it often overlooks the socio-economic and political realities of decision-making. Some policy

choices are simply more acceptable to local officials than others. By framing public policy as a mix of tools

or levers for influencing outcomes, we provide a more adaptable framework that accommodates diverse

political and social contexts. This flexibility improves the likelihood of policy adoption in real-world

governance.

In this paper, we develop a county-level decision support framework that integrates causal inference,

machine learning, and utility optimization to inform budget allocation strategies targeting opioid-related

outcomes. The proposed framework explicitly captures the complex relationships between county-level

budget allocations and two key outcomes (ORDs and CIs) while accounting for the unknown or unspecified

priorities that policymakers may have regarding these outcomes. We leverage causal inferences from the

Arellano-Bond model to guide the selection of expenditure categories and socio-economic variables used

as input features in training the TEs that predict ORDs and CIs. Subsequently, for a given county, we

embed trained TEs into an MILP model that generates budget allocations across expenditure categories

to optimize the policymakers’ worst-case risk-averse utility. This approach enables the development of

a tailored, county-level decision support tool to guide budget allocations, helping to more effectively

manage the opioid crisis.

The application of our approach to the state of WV yields several important findings. The Arellano-

Bond model establishes statistically significant causal relationships between budget allocations in dif-

ferent expenditure categories, socio-economic factors, and both ORDs and CIs. In our computational

experiments, we apply F to 12 southern counties in WV—the area most acutely affected by the opioid
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crisis—using six expenditure categories: CP, CR, GG, HS, PS, and SS, and targeting two opioid-related

outcomes: ORDs and CIs. These outcomes are by far the most important for addressing the opioid

crisis, representing the direct effect on individuals and families, as well as the externalities (e.g., crime).

Our computational results indicate that F can effectively recommend budget allocations across the six

expenditure categories to substantially reduce both ORDs and CIs in all 12 southern WV counties. We

further evaluate the performance of F under three distinct priority policies: BPP (equal emphasis on ORDs

and CIs), OPP (greater emphasis on ORDs), and CPP (greater emphasis on CIs). Our analysis reveals a

trade-off between the two outcomes—greater improvements in one may lead to lower improvements in

the other.

Building on the observed outcome improvements, we analyze the underlying budget allocations that

drive them. Instead of providing fixed allocation values, F generates intervals for each expenditure

category, offering policymakers flexibility in implementation. We assess these allocations under three

levels of 𝛿 = 0.1, 0.3, and 0.5, where 𝛿 represents the maximum allowable increase or decrease in any

category relative to its current allocation. At higher 𝛿 values, the budget shifts prescribed by F closely

mirror the relationships identified by the Arellano-Bond model. Further, we observe that F captures

interdependencies among expenditure categories—indicating that meaningful improvements in outcomes

often require coordinated, multi-category budget adjustments.

We identify three directions of future research that may improve the generalizability of the proposed

framework. First, incorporating additional outcome metrics, such as the share of individuals in recovery,

public confidence in law enforcement, and economic growth, can offer a more holistic view of how

budget allocations help in managing the opioid crisis. Second, as each of the six expenditure categories

contains multiple subcategories, the models in this paper can also guide budget allocation at a more

granular level, enabling more targeted and effective micro-level decision-making. The results generated

by our model can serve as the foundation for a two-step subcategory-level analysis. In the first step, the

model identifies which major budget categories should receive increased or decreased funding—and by

what amount—to help minimize ORDs and CIs. In the second step, the specific subcategories within

each major category can have their allocations adjusted in a manner consistent with the overall changes

identified in step one, while still adhering to the objective of reducing ORDs and CIs. Third, the current

approach assumes policymakers are risk-averse in their decision-making. However, decision-makers may

sometime demonstrate more nuanced, potentially risk-seeking preferences. A budget allocation model

that relaxes this assumption could prove useful at capturing policymakers’ complexities.

Data Availability Statement: The data that support the findings of this study are available from the

corresponding author, upon reasonable request.
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İskenderoğlu et al. (2020). Comparison of support vector regression and random forest algorithms for estimating the

sofc output voltage by considering hydrogen flow rates. International Journal of Hydrogen Energy 45(60),

35023–35038.

James, G., D. Witten, T. Hastie, R. Tibshirani, et al. (2013). An introduction to statistical learning, Volume 112.

Springer.

Jones, B. D. (2003). Bounded rationality and political science: Lessons from public administration and public

policy. Journal of Public Administration Research and Theory 13(4), 395–412.

Jones, B. D. and F. R. Baumgartner (2005). The Politics of Attention: How Government Prioritizes Problems.

University of Chicago Press.

Jones, M. R., O. Viswanath, J. Peck, A. D. Kaye, J. S. Gill, and T. T. Simopoulos (2018). A brief history of the

opioid epidemic and strategies for pain medicine. Pain and Therapy 7, 13–21.

Kahneman, D. and A. Tversky (1979). Prospect theory: An analysis of decision under risk. Econometrica 47(2),

263–291.

Kim, J., J.-P. P. Richard, and M. Tawarmalani (2025). A reciprocity between tree ensemble optimization and

multilinear optimization. Operations Research 73(5), 2610–2626.

Kolodny, A. et al. (2015). The prescription opioid and heroin crisis: a public health approach to an epidemic of

addiction. Annual Review of Public Health 36, 559–574.

Lindenfeld, Z., D. Silver, A. I. Mauri, and M. W. Rothbart (2025). Beyond social determinants: Fiscal determinants

of overdose death in US counties, 2017–2020. Social Science & Medicine 364, 117529.

29



Luo, J. and B. Stellato (2024). Frontiers in operations: Equitable data-driven facility location and resource allocation

to fight the opioid epidemic. Manufacturing & Service Operations Management 26(4), 1229–1244.

Mars, S. G., P. Bourgois, G. Karandinos, F. Montero, and Ciccarone (2014). Every ‘never’ i ever said came true’:

transitions from opioid pills to heroin injecting. International Journal of Drug Policy 25, 257–66.

Marshall, B., M. K. Bland, R. Hulla, and R. J. Gatchel (2019). Considerations in addressing the opioid epidemic

and chronic pain within the USA. Pain Management 9, 131–138.

Mas-Colell, A., M. D. Whinston, J. R. Green, et al. (1995). Microeconomic theory, Volume 1. OUP, New York.

Mattson, C. L., L. J. Tanz, K. Quinn, M. Kariisa, P. Patel, and N. L. Davis (2021). Trends and geographic patterns

in drug and synthetic opioid overdose deaths–United States, 2013–2019. Morbidity and Mortality Weekly

Report 70(6), 202.

Merino, R., N. Bowden, S. Katamneni, and A. Coustasse (2019). The opioid epidemic in West Virginia. Health

Care Management 38, 187–195.
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Online Supplement

OS.1: Supplementary Material

OS.1A Graphical Description of Collected Data

In this section, we use maps of West Virginia to visualize geographical patterns in our data on county

budgets and opioid crisis outcomes. Figures OS.1a to OS.1d display the average population, ORDs per

100,000 residents, CIs per 100,000 residents, and average budget per 100,000 residents, respectively, for

each county in WV over the period 2012–2023. As shown in Figure OS.1b, the southern counties, such

as McDowell, Logan, Wyoming, and Cabell, exhibit the highest average opioid mortality rates, pointing

to stark regional disparities. Similarly, Figure OS.1c indicates that southern counties such as Kanawha,

Raleigh, Fayette, and Cabell report the highest average crime incident rates per 100,000 residents. Finally,

Figure OS.1d shows that counties bearing the highest burden of ORDs and CIs, such as McDowell, Cabell,

and Kanawha, have some of the lowest per capita budgets. The scarcity of monetary resources in many

counties makes clear the importance of allocating county budgets efficiently to effectively combat the

opioid crisis.

OS.1B Background on Tree Ensembles (TEs)

To inform budget allocations, our model must identify from data the relationships between allocations

and outcomes. While various machine learning models could be applied, in this paper we employ TEs

because they have proven successful in many applications (Ferreira et al. 2016, Deepa et al. 2010, Herrera

et al. 2010) and are among the best predictive models across various datasets (Fernández-Delgado et al.

2014).

TEs are machine learning models that are used for classification (when the output takes values in a

finite discrete set) and regression (when the output variable takes continuous values). TEs are a collection

of a decision trees where each decision tree can be viewed as a function that, given any value for the

independent variables (𝑋1, . . . , 𝑋𝑛), produces the value of a dependent variable𝑌 by answering a cascade

of queries, each checking whether a single input variable falls below or exceeds a specified threshold.

Because of the cascading nature of the queries, this function can be visualized as a tree. The output of

a decision tree is obtained by following a sequence of queries from the root to a leaf node and returning

the value associated with that leaf during training. A decision tree models the dependent variable 𝑌 as a

piecewise constant function over the input space. Each leaf of the tree corresponds to a hyper-rectangular

region defined by the threshold-based conditions on the path leading to that leaf. The output of a TE is

computed by combining the individual predictions of multiple decision trees, typically through averaging.

TEs are preferred over single decision trees as they exhibit much-enhanced prediction accuracy.
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Figure OS.1: Population and average per-capita metrics across WV counties from 2012–2023. Subplots

show: (a) population, (b) ORDs per 100,000, (c) CIs per 100,000, and (d) budget per 100,000.
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Figure OS.2: Tree ensemble predicting value 1
2 (average of green leaves’ values) when (𝑋1, 𝑋2) =

(1.2, 2.1).

To give a concrete example, we represent in Figure OS.2, a TE with two trees that predicts the value

of a dependent (output) variable 𝑌 from independent (input) variables 𝑋1 and 𝑋2. In the context of our

application, one may think of 𝑋1 as the amount of money spent on PS, 𝑋2 as the amount money spent on

2



HS, and 𝑌 as the number of opioid deaths. When (𝑋1, 𝑋2) = (1.2, 2.1), the trees of the TE of Figure OS.2

predict values of 𝑌 equal to 0 and 1, respectively. To generate these predictions, each tree is traversed

from the root to a leaf node by selecting, at each split, the branch corresponding to the condition satisfied

by the input (𝑋1, 𝑋2) = (1.2, 2.1). Generally, a TE outputs the average of predictions from the individual

trees, i.e., 1
2 in our example. In practice, TEs typically consist of numerous trees that are deeper and

depend on a greater number of variables than those illustrated in Figure OS.2.

OS.1C Extensive Form of F

The budget allocation model F we proposed in Section 5.3 is obtained by reformulating (3). This

reformulation integrates the mixed-integer set from Section 5.1, which encodes how tree ensembles

capture the relationship between budget allocations and outcomes, with the linear constraints from

Section 5.2, which characterize the worst-case utility maximization problem. Next, we present the

complete set of constraints for F in a single display.
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ŷ1
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7
𝑖 ≤ 0 ∀𝑖 ∈ 𝑀

ŷ2
𝑖 , ŷ

3
𝑖 , ŷ

4
𝑖 , ŷ

6
𝑖 ≥ 0 ∀𝑖 ∈ 𝑀

q·𝑡 ∈ {0, 1} |f(𝑡 ) | ∀𝑡 ∈ T𝑖 ,∀𝑖 ∈ 𝑀

x̄𝑘 ∈ {0, 1} | 𝐿̄𝑘 | ∀𝑘 ∈ 𝑁.

OS.1D Tuning and Evaluating the Prediction Accuracy of Tree Ensembles

In this section, we discuss the tuning of TEs specifically for the collected data. Subsequently, we evaluate

how well these models predict ORDs and CIs in WV.

Table OS.1 presents the tuned hyper-parameters for predicting ORDs and CIs for years 2020, 2022,

and 2023. We tune four key TE parameters: (i) the maximum depth of each tree (max depth ), (ii) the

minimum number of samples required at a leaf node (min samples leaf ), (iii) the minimum number of

samples needed to split an internal node (min samples split), and (iv) the number of trees in the ensemble

(n estimators).

Year max depth min samples leaf min samples split n estimators

ORDs CIs ORDs CIs ORDs CIs ORDs CIs

2020 None 20 1 2 2 7 200 50

2022 None 30 2 2 2 5 200 100

2023 10 None 2 4 2 2 100 200

Table OS.1: Tuned TE hyper-parameters for predicting ORDs and CIs for years 2020, 2022, and 2023.

Next, we assess the predictive accuracy of TEs by comparing their performance to three commonly

used regression models: k-Nearest Neighbors (kNN), Support Vector Regression (SVR), and Linear Regres-

sion (LR). Benchmarking TEs against LR shows their advantage over linear models, while comparisons

with kNN and SVR highlight differences from instance-based and kernel-based methods in capturing non-

linear patterns (İskenderoğlu et al. 2020). We assess these models over three years: 2020, 2022, and

2023. Specifically, we train the models using data up to 2019, 2020, and 2022, then predict the values

of ORDs and CIs for all 55 counties in WV for the years 2020, 2022, and 2023, respectively. Year 2021 is

excluded from our analysis due to data inconsistencies caused by COVID-19.

Table OS.2 compares the four regression models in predicting ORDs and CIs using three performance

metrics: Coefficient of Determination (R2), Mean Absolute Error (MAE), and a custom metric which

we define as the Prediction Deviation Index (PDI). Coefficient of Determination, R2 ∈ [0, 1],

indicates how well a model explains the variability in the outcome variable (James et al. 2013); values
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closer to 1 suggest that the model accounts for a large portion of the variance. MAE quantifies the average

absolute difference between predicted and actual values, providing a direct measure of prediction error.

The Prediction Deviation Index for model 𝑟 , output 𝑖 and year 𝑗 is calculated as the geometric

mean of PDI𝑟
𝑙 𝑗𝑖

=

���1 −
𝑃𝑟
𝑙 𝑗𝑖

𝐴𝑙 𝑗𝑖

��� across all 55 counties, where 𝑃𝑟
𝑙 𝑗𝑖

is the predicted value for output 𝑖 in county

𝑙 and year 𝑗 , and 𝐴𝑙 𝑗𝑖 is the corresponding observed value. While MAE captures the absolute magnitude of

errors, PDI reflects the relative deviation of predictions from actual values, with smaller values indicating

better accuracy. Note that PDI𝑟
𝑙 𝑗𝑖

is undefined when 𝐴𝑙 𝑗𝑖 = 0. In our dataset covering 2020, 2022, and

2023, there are no zero-valued CIs, and only 7 out of 165 observations for ORDs (55 counties × 3 years)

have 𝐴𝑙 𝑗𝑖 = 0. These few instances are excluded from the analysis in this section.

Year Model R2 MAE PDI

ORDs CIs ORDs CIs ORDs CIs

2020

TEs 0.810 0.947 7.772 69.809 0.3241 0.2369

kNN 0.778 0.798 8.451 99.291 0.4130 0.3096

LR 0.775 0.935 8.854 93.226 0.4644 0.4155

SVR 0.701 0.923 9.773 78.989 0.4880 0.3137

2022

TEs 0.919 0.906 6.170 76.779 0.3022 0.2694

kNN 0.895 0.921 7.034 72.411 0.3882 0.3445

LR 0.954 0.910 5.255 85.116 0.3242 0.4377

SVR 0.940 0.865 5.413 73.215 0.3187 0.2471

2023

TEs 0.952 0.968 4.049 47.324 0.2019 0.1321

kNN 0.923 0.904 5.942 79.376 0.3256 0.2628

LR 0.948 0.969 4.177 68.301 0.1946 0.3794

SVR 0.950 0.966 4.157 53.887 0.1835 0.2017

Table OS.2: R2, MAE, and PDI ratios for ORDs and CIs across years and models.

As shown in Table OS.2, TEs deliver the highest R2 scores for ORDs in both 2020 and 2023, and

perform strongly in 2022 with a value of 0.919. For CIs, TEs also achieve the best R2 values in 2020 and

2023, with no score dropping below 0.906 across the three years. These results highlight the robustness

of TEs in explaining variation in both ORDs and CIs. In terms of accuracy, TEs obtain the lowest MAE for

both outcomes in 2020 and 2023 and perform comparably to the best model in 2022. TEs also produce

the lowest or near-lowest PDI values across all three years for both ORDs and CIs. Furthermore, the

average PDI for TEs consistently stays below 0.33 for each year and outcome. For example, in 2022, the

mean PDI is 0.302 for ORDs and 0.269 for CIs, decreasing further to 0.202 and 0.132, respectively, in

5



2023. This demonstrates the high predictive accuracy of TEs.

OS.2: Supplementary Figures

Figure OS.3: Percentage reductions in ORDs (𝜁ORDs) across various 𝛿 values under all priority policies for

12 southern counties in WV in 2023.
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Figure OS.4: Percentage reductions in CIs (𝜁CIs) across various 𝛿 values under all priority policies for

12 southern counties in WV in 2023.
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(c) 𝛿 = 0.1 — CPP
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(d) 𝛿 = 0.3 — BPP
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(f) 𝛿 = 0.3 — CPP
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(g) 𝛿 = 0.5 — BPP
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(h) 𝛿 = 0.5 — OPP
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(i) 𝛿 = 0.5 — CPP

Figure OS.5: Maximum percentage increase or minimum percentage decrease in allocation to CP (Δ̂𝑦

𝑐 (CP) )

across various 𝛿 values under all priority policies for 12 southern counties in WV in 2023.
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(b) 𝛿 = 0.1 — OPP
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(c) 𝛿 = 0.1 — CPP
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(d) 𝛿 = 0.3 — BPP
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(f) 𝛿 = 0.3 — CPP
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(h) 𝛿 = 0.5 — OPP
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(i) 𝛿 = 0.5 — CPP

Figure OS.6: Maximum percentage increase or minimum percentage decrease in allocation to GG (Δ̂𝑦

𝑐 (GG) )

across various 𝛿 values under all priority policies for 12 southern counties in WV in 2023.
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(e) 𝛿 = 0.3 — OPP
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(f) 𝛿 = 0.3 — CPP
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(g) 𝛿 = 0.5 — BPP
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(h) 𝛿 = 0.5 — OPP
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(i) 𝛿 = 0.5 — CPP

Figure OS.7: Maximum percentage increase or minimum percentage decrease in allocation to PS (Δ̂𝑦

𝑐 (PS) )

across various 𝛿 values under all priority policies for 12 southern counties in WV in 2023.
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(c) 𝛿 = 0.1 — CPP
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(e) 𝛿 = 0.3 — OPP
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(f) 𝛿 = 0.3 — CPP
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(g) 𝛿 = 0.5 — BPP
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(h) 𝛿 = 0.5 — OPP
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(i) 𝛿 = 0.5 — CPP

Figure OS.8: Maximum percentage increase or minimum percentage decrease in allocation to CR (Δ̂𝑦

𝑐 (CR) )

across various 𝛿 values under all priority policies for 12 southern counties in WV in 2023.
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(b) 𝛿 = 0.1 — OPP
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(c) 𝛿 = 0.1 — CPP
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(d) 𝛿 = 0.3 — BPP
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(e) 𝛿 = 0.3 — OPP
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(f) 𝛿 = 0.3 — CPP
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(g) 𝛿 = 0.5 — BPP
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(h) 𝛿 = 0.5 — OPP
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(i) 𝛿 = 0.5 — CPP

Figure OS.9: Maximum percentage increase or minimum percentage decrease in allocation to HS (Δ̂𝑦

𝑐 (HS) )

across various 𝛿 values under all priority policies for 12 southern counties in WV in 2023.
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(a) 𝛿 = 0.1 — BPP
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(b) 𝛿 = 0.1 — OPP
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(c) 𝛿 = 0.1 — CPP
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(d) 𝛿 = 0.3 — BPP
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(e) 𝛿 = 0.3 — OPP

Boone

Cabell

McDowell

Logan

Fayette

Mercer

Wyoming

Raleigh

Lincoln

Kanawha

Mingo

Wayne

-30%

-20%

-10%

0%

10%

20%

30%

Ch
an

ge
 in

 S
ha

re
 (O

pt
im

ize
d 

- A
ct

ua
l) 

[%
]

(f) 𝛿 = 0.3 — CPP
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(g) 𝛿 = 0.5 — BPP
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(h) 𝛿 = 0.5 — OPP
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(i) 𝛿 = 0.5 — CPP

Figure OS.10: Maximum percentage increase or minimum percentage decrease in allocation to SS

(Δ̂𝑦

𝑐 (SS) ) across various 𝛿 values under all priority policies for 12 southern counties in WV in 2023.
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OS.3: Supplementary Tables

Socio-economic Variables Source

Population ACS

Uninsured (%) — Health Care Access ACS

Median household income ($) — Income ACS

Median gross rent ($) — Housing ACS

Renters paying >30% of income for housing (%) — Housing ACS

Homeowners paying >30% of income for housing (%) — Housing ACS

Unemployment rate (% of those aged 16+) — Employment ACS

Households receiving public assistance (%) — Food Security ACS

Table OS.3: Socio-economic variables and their data sources.

County CP CR GG HS PS SS

Boone 0.00 0.00 66.89 0.00 33.11 0.01

Cabell 0.21 10.77 55.02 0.20 33.81 0.00

Fayette 0.00 5.26 63.37 0.06 31.12 0.18

Kanawha 0.17 9.80 58.81 0.62 30.59 0.00

Lincoln 0.00 1.54 70.61 1.22 26.63 0.00

Logan 0.00 3.12 56.34 0.93 39.30 0.32

McDowell 0.00 0.68 57.35 0.00 41.97 0.00

Mercer 0.00 1.14 54.99 2.07 41.56 0.25

Mingo 0.00 1.90 57.03 0.00 41.08 0.00

Raleigh 0.00 7.78 48.13 3.24 40.42 0.42

Wayne 1.71 0.81 48.72 1.40 47.37 0.00

Wyoming 0.00 1.38 60.76 3.41 33.35 1.10

Table OS.4: Expenditure share (%) by category for each county in 2023.
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