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Abstract

The opioid crisis has remained a major public health challenge in the United States for many years.
This study develops a data-driven decision support framework to guide policymakers in allocating
county-level budgets across multiple expenditure categories in order to address the opioid crisis. We
compile and curate a detailed dataset on fiscal policy and opioid-related outcomes in West Virginia
(WV), the state most severely affected by the epidemic. Drawing on this dataset, we identify causal
links between county-level budget allocations and two critical outcomes central to the opioid crisis,
number of Opioid-Related Deaths (ORDs) and Crime Incidents (CIs). To capture these relationships,
we employ Tree Ensembles (TEs) which are trained to predict outcomes as a function of budgetary
decisions. We then embed the trained TEs within a Mixed Integer Linear Programming model that
produces budget allocation strategies across expenditure categories that maximize the worst-case,
risk-averse utility of decision makers across the two outcomes. Our results show that the presented
models generate budget allocations that significantly reduce predicted ORDs and CIs across most of
the 12 southern WV counties, the area hardest hit by the opioid crisis in the state. For example, in
Cabell County, the recommended allocations suggest that predicted levels of both outcomes could
have been reduced by approximately 20% in 2023 without increasing the total budget. More broadly,
the findings demonstrate that the proposed approach yields tailored, actionable, county-level budget
recommendations that can assist policymakers in reprioritizing expenditures to more effectively
address the opioid crisis.
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1 Introduction

In recent years, the number of people using, misusing, and abusing heroin and other opioids has reached
alarming levels across the United States (U.S.) (Hedegaard et al. 2017, Mattson et al. 2021). This has
raised concern among policymakers at both federal and state levels (Office of National Drug Control

Policy 2022). Limiting its spread and mitigating its impact are at the forefront of public discourse across
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the U.S.. Opioid abuse involves not only heroin, but also modern prescription and synthetic drugs, such
as oxycodone and fentanyl (Kolodny et al. 2015), which have legitimate use in surgical procedures and
for the treatment of pain (Jones et al. 2018, Marshall et al. 2019). While heroin and today’s prescription
opioids are pharmacologically similar (Compton et al. 2016), the contemporary opioid epidemic differs
from earlier heroin epidemics (Holland et al. 2021) as the people misusing and abusing opioids cross
geographical and social boundaries (Mars et al. 2014).

While recent DEA National Threat Assessment reports (Drug Enforcement Administration 2025)
provide substantial insight into addressing the opioid epidemic at the national level, there is a critical
need for research focused on understanding and evaluating mitigation efforts at the county level. Focusing
on counties inside of a state is meaningful since laws and priorities vary significantly across states and
resource allocation decisions are easier to coordinate within a state. This paper focuses on the state of
West Virginia (WV), which has been called the epicenter of the opioid epidemic in the U.S. (Bowden et al.
2018, Merino et al. 2019). WV recorded the highest opioid overdose death rate in the U.S. in 2022, with
80.9 deaths per 100,000 population and a total of 1,335 fatalities. Our focus on WV allows us to reach
the dual goal of studying a state where the need is greatest and whose rural topography allows a more
complete view of county-level perspectives often clouded in policy studies examining large metropolitan
areas. Further, WV has displayed great county-level diversity in tackling the opioid epidemic. Overdoses
vary widely across counties as do expenditures on the strategies to mitigate the crisis. Additionally, our
focus on counties is justified by the fact that (i) county governments house many governmental functions
directly related to supply and demand side crisis interdiction (e.g., emergency, social, and public safety
services), and (ii) counties are relatively more important government units in (hardest hit) rural regions
as they house and coordinate a disproportionate amount of functions categorized as mitigation strategies
for the opioid epidemic.

This paper explores how counties can use the mix of policy tools at their disposal to reduce the
impact of the opioid epidemic (Workman and Thomas 2025). Specifically, given evidence of relationship
between fiscal decisions and opioid overdose deaths in counties (Lindenfeld et al. 2025), we examine
how trade-offs among county-level budget allocations can influence outcomes in the opioid crisis. Our
approach differs from most existing research (whether theoretical or applied) that tends to think of public
policy as an intervention on the supply-side (e.g., drug seizures) or demand-side (e.g., like harm reduction
or prevention). We view the set of policies as a mix of interdependent decisions that might address or
mitigate the crisis. Further, these studies rarely focus on rural areas, despite their often disproportionately
high overdose rates (Yaemsiri et al. 2019, Gong et al. 2019). We posit that county budget allocations are
an important factor to examine because they inherently reflect a county’s priorities and policy strategies

(Jones and Baumgartner 2005). To test this hypothesis, we use the Arellano-Bond model (Arellano and



Bond 1991, Wooldridge 2010) to estimate the causal impact of expenditure allocations across categories
on outcomes associated with the opioid crisis.

While our mathematical framework is applicable to any set of outcomes important to a county,
this paper focuses specifically on the reduction of Opioid-Related Deaths (ORDs) and Crime Incidents
(CIs). Given the unprecedented severity of the opioid epidemic, these metrics have emerged as primary
outcomes of concerns for local governments. They represent the specific areas where decision-makers
are most prepared to proactively reallocate and “find room” in their constrained budgets. They capture
the duality of the crisis: the direct devastation of individuals and families alongside broader societal
consequences like crime. Because these issues fall under core county mandates (including public safety,
social services, and emergency response) addressing them is a moral imperative. Furthermore, targeting
these outcomes yields secondary benefits, such as reducing high-risk youth behaviors, such as substance
abuse and arrests, which remains a top-tier priority for local leadership (Ogunade et al. 2022).

Government budgeting is a complex balancing act, requiring leaders to synthesize constituent de-
mands, peer benchmarks, and a vast array of empirical data. To navigate this complexity, we propose
a data-driven optimization model designed to suggest what budget changes (whether through internal
reallocations or the strategic use of supplemental state and federal funding) can most effectively mitigate
the epidemic. Our model provides a focused analytical tool that is meant to supplement, and not replace,
existing decision-making processes by identifying which annual budget expenditure categories may ben-
efit from increased or decreased investment to reduce ORDs and CIs. Beyond its immediate application
to the opioid crisis, the underlying framework and its derivations are fully generalizable, offering a robust
roadmap for any performance metrics a county may wish to optimize.

Nonetheless, constructing this model posed several challenges because

(a) The necessary data to develop such a model was not readily accessible. For instance, annual
aggregated records of budget allocations across different expenditure categories over time for all

55 counties in WV were lacking before this work.

(b) Policymakers care about a range of outcomes in their counties, but their exact priorities for these
outcomes are not fully known. Generally, they aim to achieve lower levels of ORDs and CIs.

However, the way they assign relative importance to these different outcomes is often unclear.

(c) The outcomes, ORDs and CIs, are complex functions of budget allocations. Such functions are
not known explicitly but may be elicited from data. To develop a model that recommends budget

allocations to improve outcomes, it is essential to obtain explicit representations of these functions.

To overcome (a), we compile an original data set of local government expenditures for all 55 counties in

WV. This data set offers two distinct advantages over the typical Census of Governments data (Lindenfeld



et al. 2025) used in studies of state and local politics. First, it comes directly from mandatory reporting
to the WV State Auditor’s Office while Census of Governments data is a survey relying on varying
response rates, accurate recall and cataloging. Second, our data is annual, reported directly to the state
and contains all major expenditure categories. We address challenge (b) by introducing a robust utility
optimization framework that aims to maximize the minimum (worst-case) risk-averse utility experienced
by decision-makers. In particular, we identify a budget allocation across different expenditure categories
that optimizes this worst-case risk-averse utility. To tackle challenge (c), we use machine learning methods
trained on historical data to capture the complex relationships between budget allocation decisions and
both ORDs and CIs. Specifically, we employ Tree Ensembles (TEs) to predict ORDs and CIs based on
budget allocations across different expenditure categories. TEs have proven effective in capturing complex
nonlinear relationships between independent variables (in our case budget allocations) and dependent
variables (in our case ORDs and CIs). As aresult, they have been widely applied in various fields (Ferreira
et al. 2016, Deepa et al. 2010, Herrera et al. 2010).We integrate the trained TEs models into a Mixed
Integer Linear Programming (MILP) model for optimal budget allocation. Subsequently, we analyze the
outputs of the model across the counties in WV that are most severely impacted by the opioid crisis.
Figure 1 presents an overview of the decision support framework we propose. The first step involves
obtaining relevant expenditure data from all 55 counties in WV for the years 2012-2023. We then integrate
this expenditure data with counts of ORDs and CIs and a range of socio-economic variables. Next, we
apply the Arellano-Bond model to identify causal relationships between spending in different expenditure
categories, socio-economic variables, and ORDs and CIs. Subsequently, we use the expenditure categories
and socio-economic variables for which causal relationships are established to train TEs to predict the
number of ORDs and CTIs as a function of budget allocations. Lastly, we integrate the trained TEs in an
MILP, which is then solved to obtain optimal budget allocations across different expenditure categories.
The rest of the paper is structured as follows. Section 2 reviews related literature. Section 3 details
our data collection efforts. Section 4 explores the causal relationships between the budget allocations
across different expenditure categories and both ORDs and CIs. Section 5 introduces the proposed budget
allocation model. Section 6 analyzes the model results for selected counties in WV. Lastly, Section 7 offers
concluding remarks. Furthermore, this paper is accompanied by an Online Supplement, where the labels

for Sections, Tables, and Figures are prefixed with OS.

2 Related Work

Computational research on the opioid epidemic has focused on modeling progression and dynamics
(Luo and Stellato 2024). Many studies adopt the susceptible-infected-recovered (SIR) compartmental

model to simulate and forecast the epidemic’s trajectory (White and Comiskey 2007, Battista et al. 2019).
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Figure 1: Data-driven decision support framework for county-level budget allocation.

Expanding on this approach, Chen et al. (2019) develop a compartmental model to estimate opioid-related
fatalities in the U.S. under both baseline conditions and various intervention scenarios, such as decreasing
the misuse of prescription opioids. Pitt et al. (2018) and Rao et al. (2021) use similar models to evaluate
outcomes such as life years, quality-adjusted life years, and opioid-related deaths under different policy
strategies such as limiting prescription opioid use.

Some studies have employed the SIR compartmental model to optimize resource allocation strategies
for addressing the opioid crisis. Ansari et al. (2024) integrate the SIR compartmental model with a
Markov Decision Process (MDP) framework to identify optimal budget allocations across preventive
and mitigation interventions, with the goal of minimizing the economic cost associated with fatal opioid
overdoses. Similarly, Luo and Stellato (2024) combine the SIR model with a Mixed Integer Programming
approach to determine both the optimal allocation of opioid treatment facilities and their budgets across
each state in the United States. Their objective is to minimize the number of opioid-related overdose
fatalities and the population affected by opioid use disorder. Baucum et al. (2025) address the problem of
optimally allocating Substance Use Disorder (SUD) treatment centers across counties within a state using
a predict-then-optimize framework. Rather than relying on the SIR model, they employ a two-stage least
squares method to estimate the effects of their interventions. Using the SIR model to assess the impact of
policy interventions requires a closed-form expression that links each intervention to the transition rates
between compartments. However, for the problem addressed in this paper, establishing such a relationship
between county-level budget allocations across different expenditure categories and the transition rates
of the SIR model is difficult. Therefore, we propose using TE-based predictive models to estimate ORDs
and CIs as functions of county-level budget allocations across various expenditure categories.

Similar to the problem addressed in this paper, there are numerous applications in the literature where
the relationship between decisions and outcomes is not explicitly known due to the complexity of the
underlying system. However, historical data is available and can be utilized to learn this relationship
through a machine learning model, which is then integrated into the decision-making process. Bertsimas
et al. (2016) employ ridge regression to predict the efficacy and toxicity outcomes of clinical trials,
and incorporate these predictions into a decision-making framework to identify optimal chemotherapy

regimens for cancer treatment. Baardman et al. (2019) address a revenue maximization problem where



multiplicative regression is used to estimate demand for promotion vehicles. This work led to efforts to
develop mathematical programming formulations of trained machine learning models. Anderson et al.
(2020) and Fischetti and Jo (2018) develop MILP formulations that capture the output of a trained neural
network for any given input. The resulting formulations can be integrated into optimization models,
enabling optimal decision-making where the neural network defines part of the objective or constraints.
In a similar vein, MiSi¢ (2020) and Kim et al. (2025) develop MILP formulations to represent the output
of trained TEs. In this paper, we use these results to formulate an optimization model that identifies
optimal budget allocations across expenditure categories where the outcomes from these allocations are
predicted using TEs.

The major contributions of this paper are as follows:

(a) Our effort represents the most comprehensive data collection and curation of local fiscal policy
in the state most affected by the opioid epidemic. Our data is more detailed and more consistent

year-to-year than for studies using the Census of Governments.

(b) We identify causal effects of budget allocations across expenditure categories to both ORDs and

CIs using the Arellano—Bond Model (Arellano and Bond 1991, Wooldridge 2010).

(c) We use historical data from Part (a) and results of the Arellano—Bond model from Part (b) to train
TEs that capture the relationship between budget allocations and both ORDs and CIs. Leveraging
these models, we develop a robust utility optimization framework that identifies budget allocations
across expenditure categories to maximize policymakers’ worst-case, risk-averse utility in reducing

ORDs and CIs.

(d) We conduct an evaluation of the model for 12 counties in southern WV, which are among the hardest
hit by the opioid crisis. Our framework provides policy-relevant budget recommendations that
are predicted to reduce both ORDs and CIs, and it can be easily adapted to any set of outcomes

considered important by the policymakers.

3 Data Collection and Compilation

We focus on two opioid epidemic-related outcomes: ORDs and CIs in WV. For ORDs, we include all
drug overdose fatalities associated with opioid use. Detailed toxicological analyses are conducted on all
drug-related deaths that occur in the state by the state-wide West Virginia Medical Examiner’s Office. All
drugs contributing to death are recorded on the death certificate and forwarded to the Bureau for Public
Health Office of Vital Statistics who maintain a database of all drug—related overdose deaths for each

specific drug detected. Any of the deaths that involved an opioid were included in our analyses as ORDs.



For CIs, following Sim (2023) and Dave et al. (2021), we consider both property and violent crimes.
CIs data are collected from the West Virginia Incident-Based Reporting System (W VIBRS), a state-level
implementation of the FBI’s National Incident-Based Reporting System (NIBRS). We aggregate county-
level annual counts of five types of reported incidents: Burglary, Aggravated Assault, Simple Assault,
Intimidation Assault, and Robbery.

We also compile detailed data on county-level government spending across expenditure categories.
The U.S. Census Bureau’s Census of Governments, compiled through survey responses, is a regular
source of data on county government revenues and expenditures. Our data set is more comprehensive
and detailed as it covers the totality of local government expenditures in the state.

We collect expenditure information from all 55 counties in WV for fiscal years (FY) 2012-2023.
County-level expenditure data is available in digital format on the website of the State Auditor’s Office’s
Local Government Division (West Virginia State Auditor 2025). For each county, we collect the PDFs
manually and transfer the data to CSV files via an MS Excel macro. Once the data is collected, we
cross-walk categories to ensure consistency in expenditure categories across counties and years. We
adjust for inflation using the GDP deflator published by the St. Louis Federal Reserve Bank (U.S. Bureau
of Economic Analysis 2025) to make expenditure data comparable across time and space. Specifically,
we used the deflator for October of each fiscal year, indexed to FY 2023. This enables us to analyze how
counties prioritize spending and how local governments shift their budget allocations over time (Workman
and Thomas 2025, Workman et al. 2025). The expenditure data include six categories: Capital Projects
(CP), Culture and Recreation (CR), General Government (GG), Health and Sanitation (HS), Public Safety
(PS), and Social Services (SS).

Recognizing and accounting for the potential impact of social conditions on problems related to
drugs and crime (Sistani et al. 2023), we also incorporate county-level socio-economic variables into
our decision-making framework. All socio-economic data for WV counties from 2012 to 2023 are
obtained from the American Community Survey (ACS), available through the U.S. Census Bureau (U.S.
Census Bureau 2025). Cesare et al. (2024) identify four key socio-economic categories that may play
a significant role in the opioid crisis: Health Care Access, Housing, Employment, and Food Security.
Building on Table 1 of their paper, we include seven variables representing these categories, the exact list
of which is recorded in Table OS.3 and also appears at the bottom of Table 1. We also incorporate each
county’s population as an additional input in our model. For ease of exposition, we categorize population
alongside the socio-economic variables. The interested reader will find maps illustrating county-level

data for budget, ORDs, CIs, and population in Section OS.1A.



4 Arellano-Bond Model for Dynamic Causal Analysis

In this section, we employ the Arellano—Bond model, a Dynamic Panel Data Model (Arellano and Bond
1991, Wooldridge 2010) to estimate the dynamic causal effects of budget allocations and socio-economic
variables on ORDs and CIs. This approach is appropriate because our dataset has a panel structure that
includes data on budget allocations, ORDs, CIs, and socio-economic variables for all 55 counties in WV
over the 12-year span from 2012 to 2023. We specifically adopt the Arellano—Bond model since ORDs
and CIs in a given county and year are influenced by their past values. The Arellano—Bond models for

ORDs and CIs in county i during year ¢ are given by:

ORDs;; = p°ORDs; ;-1 + Z BiXije-1+ Z Yihije-1+af + €5 (la)
JEN J€ESe
CIs; = pTCISi,t—l +p§CISi,Z_2 + Z ,B;fij,z—l + Z ')/Jc:hij,t—l + a/f + 8; (lb)
JEN JESe

In these models, N denotes the set of expenditure categories, and S, represents the set of socio-economic
variables. The variable ¥;;; = log(x;j;) where x;;; indicates the budget amount allocated by county i to
expenditure category j in year t. The variable h;;; represents the value of socio-economic variable j for
county i in year ¢. The terms a7 and a; represent the time-invariant county-specific effects in equations
(1a) and (1b), respectively, while €7, and &f, denote the idiosyncratic error terms in the corresponding mod-
els. The coefficients [p?, [ﬁ?]jeN, [Yja-]jese] and [pf{, p5, [,B;T]jeN, [yjc.]j € S.] capture the dynamic
causal effects of the explanatory variables [ORDs; ;_1, X; ;—1, h; ;1] and [CIs; ;—1, CIs; ;—2, X; r—1, hj ;-]
in (1a) and (1b), respectively. The Arellano—-Bond model provides consistent estimates of the dependent
variables under the sequential moment restriction assumption (Wooldridge 2010), which, for (1a) and

(1b), is expressed as:

E (ORDSit|[ORDSi,z1 1% -1, hi,tl—l]l{lzza CK,(»’) =E (ORDs;,|ORDS; ;—1,%;j,-1,hi ,—1, ) (2a)

B (CISizl[CISi(t.—l),fz‘,zl—l,hi,zl—l];:z, af) =E (CIs;|CIs;—1,CIS; 2, Xij -1, Mis-1,0f) . (2b)

Restriction (2a) requires that the expected value of ORDs;; does not depend on ORDs, budget allocations,
or socio-economic variables from years prior to # — 1, once the corresponding values in year ¢ — 1 are taken
into account. In other words, if we have accounted for ORDs, budget allocations, and socio-economic
variables for a county in year ¢ — 1, then information from earlier years does not provide any additional
predictive value for ORDs in year ¢. Thus, only the most recent year’s data (year t — 1) is relevant for
estimating ORDs, and earlier data becomes redundant once year ¢ — 1 is considered. A similar interpretation
applies to condition (2b) for CIs. In the context of this study, it is reasonable to assume that (2a) and (2b)
hold, as ORDs and CIs in year ¢ are likely to be strongly influenced by conditions in the years immediately

preceding ¢.



Table 1 displays the output of the Arellano—Bond model obtained using STATA 719 (StataCorp 2025),
when applied to the panel dataset compiled in Section 3. The first column lists the explanatory variables,
whereas the second and third columns report the estimated coefficients in (1a) and their corresponding
p-values. Similarly, the fourth and fifth columns display the estimated coefficients in (1b) along with their
p-values. In (1a) and (1b), we normalize ORDs, CIs and budget allocations on a per-100,000 resident
basis and apply a logarithmic transformation to the budget variables, as their magnitudes are significantly
larger than those of ORDs and CIs. Finally, L1 and L2 denote one-year and two-year lags, respectively.
As is typical in econometrics, we log the expenditure data to account for positive skew and long tails in
the distribution of expenditures.

Table 1 shows that the coefficients for log(CR), log(CP), and log(GG) in (1a) are non-zero and statistically
significant (p-value < 0.1). Similarly, in (1b), the coefficients for log(PS), log(CP), and log(GG) are
also non-zero and statistically significant (p-value < 0.1). These results indicate that, there exists a
causal relationship between budget allocations to different expenditure categories in year r — 1 and
ORDs, CIs in year t. Additionally, among the socio-economic variables, the coefficients for Median
Household Income, Population, and Households receiving public assistance in (la) are both non-zero
and statistically significant (p-value < 0.1). This indicates a causal relationship between the values of
these socio-economic factors in year # — 1 and ORDs in year ¢. Similarly, in (1b), the coefficients for
Median Household Income, Median Gross Rent, Uninsured, and Population are likewise non-zero and

statistically significant (p-value < 0.1).

Variable ORDs CIs
Coeft. p-value  Coeff.  p-value

L1.0RDs per 100,000 people -0.46"*  0.000 - -
L1.CIs per 100,000 people - - -0.073 0.135
L2.CIs per 100,000 people - - -0.23***  0.000
L1.HS per 100,000 people (log) -1.00 0.168 3.57 0.334
L1.PS per 100,000 people (log) -0.16 0.633 —-15.31"  0.072
L1.CR per 100,000 people (log) 0.80™** 0.003 5.17 0.457
L1.SS per 100,000 people (log) -0.43 0.254 -2.45 0.450
L1.CP per 100,000 people (log) -0.62* 0.077  -5.23"  0.023
L1.GG per 100,000 people (log) -12.72**  0.027 -82.94 0.206
L1.Renters paying >30% of income 0.17 0.616 2.41 0.591
L1.Homeowners paying >30% of income 0.09 0.788 -7.41 0.520
L1.Median household income 1.76" 0.005  -0.01"  0.015
L1.Median gross rent —-0.001 0.950 -12.84*  0.090
L1.Uninsured 1.25 0.168  40.16™*  0.000
L1.Unemployment rate -0.18 0.942 7.74 0.445
L1.Population —-0.0035*  0.076  0.0578*  0.008
L1.Households receiving public assistance 2.39* 0.090 -3.87 0.750

Significance levels: * p-value < 0.1, ** p-value < 0.05, *** p-value < 0.01.

Table 1: Results of the Arellano—Bond model.



5 Modeling Framework

In this section, we develop a Robust Risk-Averse Utility Optimization Model to determine an optimal
allocation of a county’s total budget across six categories (HS, PS, CR, SS, CP, and GG) in a given year. The
goal is to reduce ORDs and CIs. While our case study and numerical experiments in Section 6 consider
specifically these six budget categories and two outcome variables in WV, we next derive a model for the
general case involving n budget categories and m outcomes. This general formulation enables broader
applicability across states, outcome measures, and budget structures. For simplicity of notation, we omit
the county and year indices in the following discussions and use boldface lowercase letters to denote
vectors.

We denote the set of expenditure categories by N and the outcomes of interest by M, where |N| = n
and [M| = m. We let x; represent the budget allocation to category i. For a given budget allocation x,
&;(x) denotes the value of outcome i € M. We denote the vector of all such outcomes (learned from data)

by £(x) = {£1(x),&2(X), . .., &n(X)}. Using this notation, the model we solve is
max min u(& (%)), (3)

where u(-) : R™ — R is the policymakers’ overall utility from a given outcome vector &(x), where U is

a set of utility functions over the outcomes, and where X is the set of feasible budget allocations

X={xer;

Tken Xk b, R —kp Sxp <X +kf, VkeN } “)

Model (3) seeks a budget allocation that maximizes the worst-case utility over all utility functions in the
set U, which represent plausible preferences policymakers may have regarding reductions in undesirable
outcomes. This formulation offers the advantage of a robust approach: it identifies an allocation that
performs well even under the least favorable utility function within U. The set X of feasible budget
allocations defined in (4) ensures that: (i) the total available budget b is not over-allocated across n
categories, and (ii) the amount allocated to each category k can decrease from the reference budget
allocation % by at most k, or increase by at most «;. These latter constraints, which we refer to as
reference budget allocation (RBA) constraints and often write as x € [X — k7, X + «¥], restrict annual
changes by keeping each expenditure category’s allocation close to the previous year’s value, reflecting
counties’ limited flexibility in adjusting budgets.

Although model (3) is notationally simple, solving it requires an explicit reformulation suitable for
implementation using optimization solvers. To obtain this reformulation, we proceed in two steps. First,
in Section 5.1, we focus on modeling how budget allocations affect different outcomes. For this task,
we make use of TEs, a class of machine learning models known for their strong predictive accuracy

and ability to capture complex relationships in diverse datasets. We train these models on the historical
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data and socio-economic variables compiled in Section 3, taking into account the causal insights from
Section 4. In addition to their predictive accuracy, a key advantage of TEs is that their input-to-output
relationships can be represented through mixed-integer linear constraints. This allows us to incorporate
the learned vector-function £(x) directly into (3). Second, in Section 5.2, we describe a set of reasonable
assumptions on the set of utility functions U under which we can reformulate the inner minimization
problem over utility functions # € U using linear programming duality. By introducing suitable dual
variables and constraints, we show that the robust objective can also be captured through linear constraints.
Together, these two steps establish that (3) can be formulated and solved as an MILP, which we describe

in Section 5.3.

5.1 Modeling Outcome Functions &; (x) using TEs

Tree ensembles are powerful machine learning models that combine the predictions of multiple decision
trees to produce more accurate and robust results for both regression and classification. Each decision
tree is a piecewise constant function whose structure can be visually represented as a tree. We refer the

unfamiliar reader to Hastie et al. (2009) for a textbook discussion or Section OS.1B for a brief introduction.

5.1.1 Pruning Decision Trees

With a slight abuse of notation, we use ¢ to denote both the graphical structure of a decision tree and the
function it defines. Specifically, we write 7(x) to indicate the output of the tree on input vector x. Decision
trees are naturally constructed over hyper-rectangular domains X = [I,u]. In the ensuing sections, we
will often consider a decision tree’s outputs over a smaller hyper-rectangle X’. Next, we show that such
a restriction results in a function that can still be represented by a decision tree. The idea behind this
simplification is formalized in Observation 2, which builds on the following observation that any branch
of a decision tree that is never reached by inputs from the subdomain X’ can be safely pruned, whereas

any branch that is always taken by such inputs when the parent node is reached can be contracted.

Observation 1. Let t be a decision tree defined over X C R?, and suppose that the query at node v of t is
of the form xi < d versus x > d, for some k € {1, ..., p} and threshold d € R. Let to denote the subtree
of t rooted at v, and let t| and t, be the left and right subtrees of v, respectively. For bounds ry < sy € R,
define the restricted domain X’ = {x € X | rx < xx < sx}. Construct a modified tree t’ as follows: (i) if
d < ry, replace to in t with to, (ii) if d > sg, replace ty in t with ty, (iii) otherwise, let t' = t. Then, for all

x € X/, we have t(x) =t'(x).

In the special case where r = s = Xy, i.e., the value of xj is known, then one of the condition (i) or
(i1) in Observation 1 will be always satisfied. Consequently, the above construction yields a simplified tree

t’, equivalent to ¢ over the restricted domain, that bypasses the use of node v and eliminates the associated
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query on xg. The result of Observation 1 can be applied recursively to prune all splits involving a variable
xx whose thresholds fall outside the interval [rg, sg). In particular, any split of the form x; < d with
d < rg,or xi > d with d > s, can be removed by replacing the split node with the child corresponding
to the consistent branch. This recursive procedure provides an efficient method to build the pruned tree

t’, and leads to the following observation.

Observation 2. Lett be a decision tree defined over X C RP. Forboundsry < sy € Rfork € {1,...,p},
define the restricted domain X" = {x € X | rx < xx < sk, Yk =1,...,p}. There exists a decision tree t’
that only uses queries of the form xi < d or xx > d where d € [ry, si) for each k such that t' (x) = t(x),

Vx € X'. Further, if ri, = s for some k, t' does not contain any queries on xy.

Given a restricted domain X’ and an original decision tree ¢, we refer to the tree ¢’ satisfying the

conditions of Observation 2 as the restriction of t over X’.

5.1.2 Formulating Input-to-Ouput Relationships of TEs as MIPs

Given their strong predictive performance, we use TEs to model outcomes y;(x,h) for eachi € M
as functions of both budget allocations x and socio-economic variables h. Although, unlike budget
allocations, socio-economic variables cannot be altered, they are included during training to improve
predictive accuracy. Because (3) is solved for each county individually, the socio-economic variables h
of a county will be known at the time of solving. This allows us to define the outcome functions solely
in terms of x by setting &;(x) = yi(x, h) for i € M. Observation 2 establishes that &;(x) is described as a
TE in which all decision nodes query x variables exclusively. For each outcome i € M, we denote the set
of all trees ¢ in the trained TE that have been pruned so as to predict &; (x) solely from x by 7;. For short,
we refer to the collection of the set of trees 7;, for all i € M, as 7. Given the training data, it is natural to
assume that these trees are defined over the non-negative orthant.

We are interested in modeling the relationship between x and &;s over the set of possible budget

allocations, and in particular, are interested in deriving an explicit formulation for the set
O(T.X) ={(x,2) |zi = &i(x),Vi € M,x e X}.

Next, we show that O(7, X) can be described as a mixed-integer programming set. This description
extends the formulation in Kim et al. (2025), which itself built on the earlier work of Misié (2020).

Let £(t) denote the set of leaves of tree t € 7 and L denote the collection of all split values involving
expenditure category k that arise in any of the trees in 7. Specifically, for each k € N, we assume
wlog that Ly = {ako,ak1,ar2,ax3,-..,axr,|} where 0 = axo < ax; < --- < ag,| = o and for

each v € {1,2,3...,|Lg| — 1} there exists a tree in ¢ € 7 that includes the split condition x; < ag,.
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The elements of Lj divide the domain of the expenditure category k into |Ly| intervals of the form
(ak(v-1)>akv] forv e Ly :={1,2,...,|Lkl}.

Consider a tree t € 7;. Each leaf of ¢ corresponds to a region in the input space X that is characterized
by a collection of intervals on each of the input variables. For each variable x; and each leaf [ of tree ¢,
we denote the set of these intervals by J l’j C Ly. Finally, we let ¢;; be the output value of leaf [ of tree ¢

and v, be the weight assigned to tree ¢. The combination of sets 7;, J Zk

+» Lk, and parameters c¢;; and vy, is

sufficient to completely define and compute all values of all outcomes &;(x) for any combination of input
values Xx.

In addition to the natural variables z and x, the formulation we use requires the introduction of
two sets of binary variables. Let ¢;; be a binary variable that takes the value 1 if leaf [ of tree ¢
is selected and 0, otherwise. Additionally, let Xz, be a binary variable that takes the value 1 if xj
belongs to the interval (ag(,-1), axv] and 0, otherwise. Building on Kim et al. (2025) and Mistry et al.
(2021) and using the fact that expenditures are numerical, we write that O(7", X) = projx , P(7,X) :=

{(x,X,z,q) | (5a) — (5h), x € X} whose feasible region contains the constraints

2=, D, cuvidn VieM (52)

teT; lef(t)
X2 Y k- Fh Vk e N (5b)
VEL_,k
Xk < Z AivTry Vk e N (5¢)
VEL_,k
Z Ty = 1 Vk € N (5d)
veik
J2
> Q< ) Fw Vi T Vie MYk €N,V < o€ Ly (5e)
Ief(t):Jf S {j1,mnin} v=Ji
Z qir =1 Ve T, ,VieM (5f)
1e£(r)
g.: € {0, 1}/¥0) Vie T, VieM (52)
% € {0, 1}/Ex] Vk € N. (5h)

Constraints (5b)-(5d) ensure that, for each k € N, an interval in Lj containing xy is selected, whereas
constraints (5e) and (5f) determine the leaf of each tree that is reached for a given X;. Constraints (5a)
aggregate the values of the selected leaves to compute z; = &;(x). In the literature, the simplex constraint
(5d) is often reformulated in incremental form to better leverage the branching capabilities of commercial
solvers. Our models solve efficiently without this transformation.

The definition of X, and therefore of O(7, X), incorporates RBA constraints (4). These constraints

require that the function described by each TE be optimized over a subregion of its domain. Observation 2
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shows that these constraints can be enforced implicitly by restricting each tree to the subdomain defined
by [X — k7, X+ k*]. As aresult, we obtain a simplified representation of the input-to-output relationship
between budget allocations and outcomes that does not require explicitly formulating or enforcing the

RBA constraints. Proposition 1 follows directly.

Proposition 1. Define X = [X — k7, X+ k*] and X' = {x € R} | Y en Xk < b}. It holds that
PT.X)=P(T",X),

where T is the collection of trees obtained by restricting the domains of trees of T to X.

Restricting the trees to the domain X alters the sets Jl"t, £(¢), and L that define their structure.
Specifically, after applying this restriction, we have axo = £x — ;. and ay|r,| = £x + k; foreach k € N.
Nevertheless, the structural form of the formulation in (5) is preserved following this restriction.

Next, we observe that, although the variables x were introduced as the natural inputs to the model, the
predicted values z depend only on variables X, as evidenced by constraint (5a). We show next that these
variables are not needed and can be removed from the formulation. Beyond simplifying the formulation,
working with the reduced variable set X highlights a structural property of TE functions: since these
functions are piecewise constant, their optimal solutions are not isolated points but entire hyperrectangles
of input values yielding the same objective. Thus, instead of identifying a single optimal solution, the
reduced model focuses on producing a hyperrectangle of optimal solutions. This has practical advantages,
as it provides decision-makers with a range of flexible alternatives rather than a single prescribed choice.
We revisit this point during our discussion of the computational results in Section 6. Eliminating
variables x also has the advantage of reducing the number of variables and constraints in the model,
without compromising the quality of the LP relaxation of the model. More precisely, we next show
that the x variables used in the definition of (7, X’) can be eliminated from this formulation without

weakening its relaxation. The set of constraints from £ (7, X”) containing only x define the set:

2keN Xk < b,
P =4 (x,X) € RINI % [0, I]ZkeN | Ly xp > Zveik ar(v-1Fkv, Yk eN . (6)

X < Zveik ApvXiy, Vk e N

The following proposition characterizes the projection of #; onto the space of variables X.

Proposition 2. Consider the inequality

>0 akonyFre < b. ()

keN VEl_,k

It holds that projy P = P> where P; = {x € [0, 1]Zken 1Lil | (7)}.
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Proof. First, we prove that proj; P; C P>. Let X! € proj; P;. This implies that there exists x! such
that (x!,x') € P,. Using the first two families of constraints of P, we write that b > Y, n x}( >
2keN 2ve Lr af(v_l ))Z}w, which along with the bounds on variables X, implies that projz; 1 S %».

1

Second, we prove that P, C proj; P;. Let X' € P,. Hence, X' satisfies the bound constraints. Further,

define x}c = Dively ak(v_l)i}w for k € N. Since Yxen Zyei, ak(v_])i}w < b, it follows that >z <y x,lc <
b. Furthermore, we have that x}c = Dveiy ak(v_l)i}w < el akv)f}w, where the last inequality is due
to the facts that ag(,—1) < ax, and %, > 0 for all k and v. This implies that (x',x') € £y, showing that

P, C proj; P1. m]

Proposition 2 yields an alternative, more compact formulation for representing the outcomes &;
as functions of the budget allocation decisions, without loss of tightness. This reformulation can be

expressed as:

Q(T") :={(X,z,q) | (5), (5d) = (5h), ()}

Hence, the derivations in this section provide the following alternate formulations of (3):

minu(z) = X  minu(z). ®)

max min u(£(x)) = max = ma
xeX uel (x,%,2,q)€P(7T.X) ucl (%,2,9)€Q(7") uel

In the rest of this paper, we will use the latter one.

5.2 Robust Risk-Averse Utility Optimization Model

We now turn our attention to the inner problem of (3), min,,cy u(z), which seeks to identify the worst-case
utility function within the admissible set U for a given vector of outcomes z. We begin by motivating
this formulation and outlining the assumptions we place on the utility functions in U. We then derive an
equivalent reformulation of the problem that can be integrated into (8).

Policymakers often have limited attention, evaluate allocations on multiple outcomes and differ in
the weights they attach to the relative importance of outcomes (Jones 2003, Workman 2015). Thus,
comparing two vectors of outcomes is difficult. Therefore, we assume policymakers face uncertainty
about how their strategies map onto outcomes and their own utility over the outcomes of their investments.
Policymakers aim to act rationally but are constrained by the context in which decisions are made. As
it is rational to allocate budgets so that utility is maximized (Mas-Colell et al. 1995), we adopt a utility
optimization model, maximizing the worst-case utility of the policymakers, for allocating budgets across
the expenditure categories with a focus on managing the opioid crisis. Our modeling framework is based

on the following assumptions.

Assumption 1.
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a. For avector z of outcomes &, the utility function of the policymaker satisfies u(z) = Y;cpr 0il; (2;)
where ii; (z;) : R — [0, 1] is the utility of the policymaker when output &; takes value z; and o is
the priority coefficient for outcome i where a higher value of o indicates greater importance on

improving outcome i.

b. Let U; be the set of non-decreasing concave piecewise linear functions it;(-) that are such that
uf () <d;(-) < 125’(-) and right-derivatives satisfy i () < @;(-) < ﬁ;b(') for two given reference

unctions i and i?. We assume that i; (-) € U; Vi € M.
2 L

Assumptions la and 1b ensure that policymakers are risk-averse (Mas-Colell et al. 1995). This is
reasonable considering the state of the opioid crisis in WV where policymakers are likely to favor budget
allocations that offer modest but reliable improvements over those that promise greater gains with high
uncertainty (Kahneman and Tversky 1979). These assumptions also ensure that policymakers’ utility is
non-decreasing in the outcomes, preferring higher values for each outcome. As lower ORDs and CIs are
preferred, we will transform them to conform with these assumptions.

Assumption la allows us to simplify both the modeling and computation by ensuring that the utility
from a given outcome i € M is independent of the values of other outcomes j € M. The piecewise linear
assumption in Assumption 1b is justified because piecewise linear functions can closely approximate a
wide range of functions. Furthermore, the reference functions specified in the same assumption limit
the set of functions included in U;, which restricts our framework from producing overly conservative
solutions. Let U denote the set of all utility functions over R™ that satisfy Assumption 1. Under this

definition, the inner minimization problem in (3) reduces to

minu(z) = E o;7t; (z) where 7; (z) = min it;(z;). ©)
uelU . i: €U;
ieM L
For an outcome z; € [9},912], let el} = pio < pit < pia < -+ < Piw; = 91.2 represent a partition

of [9},9[2] into w; intervals. While multiple approaches could be used to define these intervals, we
extract them from the trained TE as described in Section 6. Given these partitions and Assumption 1, we

approximate 7; (x) by solving the following linear program (Hu and Mehrotra 2015):

#; (z) =min  b;z; + d; (10a)
S.1.

[5'] bij1 = bij = bij (pijs1 —pij) <0, Vj=0,...,w;—1 (10b)

[5°] bijr1 = bij = bijr1 (pije1 — pij) 20, Vj=0,...,w; =2 (10¢)

[5°] lijbi +a; > byj, Vi=0,...,w (10d)

(541, [$°] i;(pij,0.41) < b;; < i;(pi;,0.68), Vj=0,...,w (10e)
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[5°1, [57] i;(pij»0.41) < bij < @;(pij,0.68), Vj=0,...,w;i—1 (10f)
bij,d; bi,bi; >0, Vi=0,...,w; (10g)

where the notation for dual variables is stated before each constraint, and
;i (£, Q) = %fl—ﬂ, A € [0.41,0.68] (11)
is the Constant Relative Risk Aversion (CRRA) utility function (Holt and Laury 2002). We use CRRA in
our analysis as this utility function has been empirically shown to effectively capture the risk aversion
behavior of decision-makers (Holt and Laury 2002, Hu and Mehrotra 2015). Variables b; and d; represent
the slope and intercept of the linear segment of the piecewise-linear function at z;. Variable b; j captures
the value of the function 7; at the point p;;, whereas variable b, j represents the slope of the line segment
of the piecewise-linear function 77; over the interval [p;;, p; j+1]. Constraints (10b) and (10c) ensure that
7T; is piecewise-linear, concave, and non-decreasing. Constraints (10d) along with the objective function
(10a) give the value of 7;(z). Constraints (10e) and (10f) impose bounds on the value of 7; at the w; + 1
breakpoints and on the slope of each of the w; line segments, respectively. These constraints approximate
the bounds defined by the reference functions in Assumption 1b by specifying #%(-) = i(+,0.41) and

ab(-) = i(-,0.68).

Next, we dualize (10) for each i € M to obtain an expression for 7; (z) as a maximization prob-
lem. To simplify the expression of this dual problem, we introduce the notation 9}:7 for the vec-
tor (f’} , 5’,2, 5’?, f’?, 9?, 5"?, 5"17) of all dual variables of (10), where §'} , 3‘7?, 5’17 € RWi, yl? e R¥~!, and
)Af?, y;.‘, §715 € R™i*!. For the same reason, we define the function

Wi
LICEOEDY) (a,-<pl-,-, 0.41)37; + i (pij, 0.68)93; + it} (pij, 0.41)5¢; + it} (i 0.68>ﬁZJ-)-
j=0

Using this notation, it is easily established that the dual of (10) is the optimization problem
7i (2) = max | W(57) | (592,53, 94.50.95.57.20) € R, | (12)
whose feasible region

Ri={ (51.92.9.9%.97.50.87. 20 | (14) - (14 | (13

is defined through the constraints

= Bio = Fio = Jio + Jio + I3 < 0 (14a)
Sijony = Vi + iy =9 = S+ 9 497 <0 Vi=1,...wi-=2  (l4b)
oty =S+ Iy — S+ +97 <0 Vi=1l...,w -1 (14c)
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yl!(wi—l) - )A)I$W,¢ +)A]?wi + y?wi <0 (14d)
ol NG a7
_yio(Pil —PiO)"‘yio‘*‘yio <0 (14e)

=91 (picje1) — pij) — 9?0_1)(1?;'1' — Pi(j-1))

+96,497 <0 Vi=lo.,wi-1 (14D
Wi
D piidly < (1)
j=0
Wi
PRAES (14h)
j=0
91,9797 <0 (4
§.97.91.90 2 0. (14)

5.3 MILP Formulation for (3) using TEs Trained to Predict Outcomes &

Combining (8), (9), and (12), we can reformulate (3) as the following MIP:
(7'-) max Z G'ilPi(y}ﬁ

ieM
Al A2 A3 Ad A5 A6 AT .
(yl"yi’yi5yieyl'9yi,yl"2i)eRi, VIEM

(X,2,q) € Q(T).

The expanded form of this model, after projecting out z, can be found in Section OS.1C. Model ¥ is the
formulation we implement and solve in the following section for a WV case study. This study demonstrates

its practical relevance and tractability.

6 Results and Discussion

In this section, we apply ¥ to counties in WV. All experiments in this section were performed on an Apple
M2 processor with 8.00 GB of RAM, using Python 3.13.2. The optimization model was solved using
GUROBI 11.0.0. We assess the performance of our budget allocation model by implementing ¥ for 12
southern WV for the years 2020, 2022 and 2023. Year 2021 is excluded from our analysis due to data
inconsistencies caused by COVID-19. This region has commonly been identified as the most severely
impacted by the opioid epidemic and is at the epicenter of the state’s energy and economic transition -
long recognized as a source of the epidemic. Before solving # for a (county, year) pair (c, y), we train two
separate tree ensemble models, one for ORDs and the other for CIs. Based on the Arellano-Bond model
results, the TE training features for predicting ORDs are previous year’s (y — 1) ORDs, budget allocations

in all six expenditure categories, Median Household Income, and total annual population for county c.
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For predicting CIs, the TE training features include CIs from year y — 2 and, from year y — 1, budget
allocations in all six expenditure categories, Median Household Income, Median Gross Rent, Uninsured
Population, and total population for county ¢. We retain all six expenditure categories despite some
showing no statistically significant causal relationship with ORDs or CIs. This is because of the budget
constraint (7) in ¥ that upper-bounds the total allocation across all categories. Additionally, there may
also exist bounds on how much each category’s allocation can deviate from its existing level.

Unlike the Arellano-Bond model, we do not apply a logarithmic transformation to the six expenditure
categories. Our preliminary experiments showed no significant differences in the prescriptive results
obtained with or without the transformation. This is likely because exp(-) and log(-), being non-
decreasing functions, preserve the order of values, resulting in similar splits in the trained TEs. The
training data consists of the above-described information from all counties in WV for the years 2012—-2023.
We use scikit-learn to train TEs and apply RandomizedSearchCV to tune the hyper-parameters.
Trained on expenditure and socio-economic variables with statistically significant causal links to ORDs and
CIs, TEs show strong predictive performance across three metrics and consistently match or exceed Linear
Regression, Support Vector Regression, and kNN, effectively capturing the budget allocation—outcome
relationships, thereby justifying their use in this study. Details on tuning and predictive accuracy of TEs
can be found in Section OS.1D.

In Assumption 1b, we assume that policymakers’ utility is a non-decreasing function of the outcomes,
meaning they favor higher outcome values. Because lower values of ORDs and CIs are desirable in our
context, we transform these outcomes into normalized metrics &;(x) for each i € M to reflect this
preference structure. Specifically, we define the normalized outcomes as:

n&"t - &i(x)
e e

where £"“* and f{”i" represent the maximum and minimum observed values of outcome i in the dataset,

&(x) = VieM, (15)

respectively. The multiplier > 1 in the numerator is included to ensure that &;(x) remains strictly
positive, since the derivative of i; (7, 1), as defined in (11), is undefined at 7 = 0 for A € [0.41,0.68]. In
our computational experiments, we use 7 = 1.2. Additionally, for each outcome i € M, we first normalize
the leaf values in 7; according to (15), then sort the distinct normalized values in ascending order. These
sorted values form the partition 0} =pio < pi1 < pi2 < < Piw; = 91.2 that is used in ¥, where the
total number of unique leaf values in 7; is w; + 1.

We assess our budget allocation model, 7, by applying it to 12 counties in southern WV: Boone,
Cabell, Raleigh, Fayette, Kanawha, Lincoln, Logan, McDowell, Mercer, Mingo, Wayne, and Wyoming.
These counties are among the hardest hit by the opioid crisis with the highest average ORDs per 100,000
people from 2012 to 2023. A major driver of the opioid crisis in these counties is the long-term decline

of coal as the foundation of their economies (Thompson et al. 2020, Young et al. 2023). In these
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areas, coal is closely linked not only to residents’ well-being and health, but also to the ability of local
governments to provide essential services through coal severance tax revenues. In WV, these revenues are
allocated to counties based on the amount of coal they produce (Hoy 2023). Substantial portions of local
budgets for law enforcement and public health depend on these funds. These 12 counties lie squarely
within the “coal fields” — the region most reliant on the coal industry and the tax revenues it generates.
The industry’s decline has left behind people with physical and mental harm, as well as underfunded
government services. Together, these conditions fuel the demand for opioids while making it harder for
local governments to respond effectively.

In this analysis, we evaluate three sets of coefficient values for {oorps, ocs}: {1, 1}, {100, 1}, and
{1, 100}, each representing a different policy emphasis. We label {1, 1} as the Balanced Priority Policy
(BPP), where ¥ aims to achieve a solution that gives equal importance to the utility obtained from
reducing both ORDs and CIs. We refer to the setting {100, 1} where the focus is primarily on minimizing
ORDs as the Opioid Priority Policy (OPP). Conversely, we refer to the setting {1, 100} where reducing CIs
is the higher priority as the Crime Priority Policy (CPP). In the RBA constraints, we set k= = k¥ = 0%
for each k € N with £ > 0 and consider three values of 6 = {0.1,0.3,0.5}. A value of 6 = 0.1 restricts
deviations from the reference budget allocations £, for k € N to just 10%, thereby limiting the flexibility
of ¥ in identifying solutions that achieve lower ORDs and CIs. In contrast, setting 6 = 0.5 permits up
to 50% deviation from the reference allocations, offering ¥ significantly more flexibility in optimizing
outcomes. We do not include RBA constraints for expenditure categories with ; = 0 because there are
only a few such categories in our dataset. Thus, the RBA constraints for categories with X; > 0, combined
with the overall budget constraint defining X, implicitly limit the allocation to expenditure categories
with £ = 0.

The remainder of this section is structured as follows. Section 6.1 analyzes the reductions in ORDs

and CIs that # suggests are possible. Section 6.2 examines the budget allocations it recommends.

6.1 Reduction in ORDs and CIs

In this section, we compare the predicted values of ORDs and CIs (denoted as ORDS,,, and CIS, /)

obtained from the budget allocations produced by ¥ with the corresponding observed values, ORDs 5,5 and

ORDS, s —ORDS, ¢ «

CIs,ps. To quantify the improvement, we compute the percentage reductions as 98P = ORDs,;,

100 and ¢S = C[s"é’fs—_oc]is""’ x 100. We begin by focusing on a single county, Cabell. Cabell County has
experienced highest per-capita rates of ORDs and high per-capita rates of CIs, along with relatively low
per-capita total budget compared to other counties in WV. These conditions make Cabell County a strong
candidate for applying 7.

Figure 2 plots the values of ¢%%S and /'S for Cabell county across the years 2020, 2022, and 2023,
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under all three priority policies (BPP, OPP, and CPP), for each of the three ¢ values. As shown in Figures 2a
and 2b, the values of Z%%°S and 'S for BPP across all years and & levels (excluding § = 0.1 in 2022)
range from 8.72% to 28.41% and from 3.79% to 23.62%, respectively. This indicates that the budget
allocations produced by ¥ are predicted to result in substantially lower ORDs and CIs than the observed
values. Given the strong predictive accuracy of TEs and the causal relationships identified in Section 4,
these findings underscore the potential of model ¥ to aid policymakers in adjusting budget allocation
decisions to reduce ORDs and CIs.

Furthermore, as seen in Figures 2¢ and 2f, the values of {orps and {c1s under OPP and CPP, respectively,
are non-decreasing as ¢ increases. This trend is expected since higher § values allow ¥ greater flexibility
in adjusting budget allocations across expenditure categories, enabling the model to identify allocations
that better optimize the targeted outcome. When comparing across priority policies, we observe that
{orps improves under OPP relative to BPP, while {c1s declines. For example, in 2022 with 6 = 0.3, {orps
rises from 23.5% under BPP to 25.3% under OPP, whereas {c1s falls from 3.8% to —5.6%. A similar but
reversed pattern emerges when comparing CPP with BPP. Under CPP, {15 increases, while {orps declines.
Specifically, for 2022 and 6 = 0.3, {c1s increases from 3.8% under BPP to 7.7% under CPP, while {orps
drops from 23.5% to 8.9%. These results suggest that, for Cabell County, a trade-off may exist between
reducing ORDs and CIs: improvements in one outcome may come at the cost of the other.

Such trade-offs in outcomes are well-known in the study of political science and public policy
(Breunig and Busemeyer 2012). In the counties we examine, high rates of co-morbidities have increased
the likelihood that public policies across different substantive areas become closely interconnected. In
Cabell County, for instance, millions of opioid pills were shipped to Huntington, WV, and the surrounding
areas (Voelker 2018). During this same period, the county experienced significant levels of co-morbidities,
particularly obesity and cigarette smoking, making it even more difficult to balance public health needs
with drug interdiction efforts. These health challenges constrain policy flexibility, tightening the linkage
between competing priorities.

Next, we examine whether the above insights also apply to the other 11 counties of southern WV. We
found that all 11 other counties exhibit trends similar to those observed in Cabell County. In most cases,
¥ identifies budget allocations where the predicted ORDs and CIs are lower than the observed values.
Moreover, as ¢ increases, £°f°S and /IS tend to improve under the OPP and CPP, respectively, whereas
under the BPP policy, at least one of the two metrics improves. Across various priority policies, similar
trade-offs to those seen in Cabell County emerge. In most of the other 11 counties analyzed, £°%°S tends to
be higher under OPP than under BPP, whereas 'S is generally higher under CPP than BPP. This suggests
that prioritizing improvements in one outcome often would come at the cost of reducing gains in the

other, a pattern we found to be common throughout southern WV. These trade-offs are well-documented
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Figure 2: Percentage reductions in ORDs and CIs (£%fPS and /“IS) across various & values under priority

policies for Cabell County.
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in theoretical decision models of governance and public policy and are supported by empirical evidence
(Breunig and Busemeyer 2012). We refer to Figures OS.3 and OS.4 for graphs summarizing our findings

for all 12 counties.

6.2 Changes in Budget Allocations

We now examine the budget allocations that lead to the predicted ORDs and CIs values described in
Section 6.1. For each budget category k € N, an optimal solution to ¥ provides a budget range from the
set Ly. Therefore, instead of a single allocation,  produces an interval for each category. This offers
policymakers greater flexibility in selecting budget allocations, subject to the overall budget constraint.
We denote this interval for category k, county ¢ and year y as (LBi & UB({ o)

Let )Ei « represent the observed budget allocation for county ¢ in category k for year y. We assess

. . = A = LBY, —%
the recommended budget adjustments through the interval (A”,, A’ ) where A, = ‘k—)x‘" x 100 and
ck’> “ck ck b;
A UBY, —x¥ . ~ A
= "‘b—f‘" x 100. Here, b, denotes the total budget of county ¢ in year y, whereas A), and A}

(&

reflects the minimum and maximum percentage change, respectively, in the allocation to category k
relative to the county’s total budget for that year.

Table 2 reports the values of (Ai L AZ ,) for Cabell County in 2023 under all combinations of ¢
levels and priority policies. The last two rows of the table display the values of Xﬁ « and the total county
budget b;. for 2023. The table’s final column presents the value of k). = Z"%;Bik for each ¢ level and
priority policy, representing the maximum fraction of the total budget that can be allocated based on the
bounds prescribed by #. As shown in the table, ¥ recommends significant changes in three expenditure
categories: CR, GG, and PS. Under the BPP policy, as ¢ increases from 0.1 to 0.3, F suggests a substantial
decrease in allocations to CR and GG, and an increase in spending on PS. These adjustments lead to an
improvement in outcomes, with £°fPS rising from -2.32% to 8.72% and £*s from 12.99% to 21.37%;
see Figures 2a and 2b. These findings align with the Arellano-Bond model results in Table 1, where CR
has a statistically significant positive coefficient for ORDs, and PS has a statistically significant negative
coeflicient for CIs. This suggests that reducing spending on CR and increasing investment in PS may help
reduce ORDs and CIs, respectively. Although GG shows a statistically significant negative relationship
with ORDs in the Arellano-Bond model, # still recommends decreasing its allocation. This is due to the
budget constraint, which the Arellano-Bond model does not account for. Moreover, when ¢ increases to
0.5, a shift occurs: ¥ recommends reducing funding to PS and increasing it for GG due to the budget
limitation. This change results in a further increase in Z°%°S to 10.07%, but a slight decrease in !S to
20.96% compared to the outcomes at 6 = 0.3.

Under the OPP policy, which prioritizes reducing ORDs, ¥ recommends decreasing allocations to both

PS and CR, a recommendation that aligns with the Arellano-Bond model results in Table 1. However,
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an interesting pattern emerges with respect to GG as ¢ increases. Specifically, ¥ suggests a reduction
in GG spending when 6 = 0.3, followed by an increase when § = 0.5. As illustrated in Figure 2c, the
values of ¢%fPS for § = 0.3 and 0.5 are quite close—9.44% and 10.07%, respectively. To attain these
reductions in ORDs, ¥ identifies two distinct strategies: one involves simultaneously making a substantial
cut in CR spending while increasing allocation to GG, and the other reflects a scenario where a significant
reduction in CR is not feasible. The first strategy becomes viable only when a higher flexibility level (i.e.,
0 = 0.5) allows for greater reallocation across categories. When ¢ is smaller (e.g., 0.3), the scope for
cutting CR is limited, prompting # to reduce spending on GG instead. This illustrates how ¥ accounts
for interdependencies between budget categories—recognizing that achieving notable improvements in
outcomes may require coordinated, simultaneous adjustments across multiple expenditure areas.

This seemingly counterintuitive result can be attributed to the way public institutions process in-
formation—through complex, nonlinear mechanisms that involve threshold effects. Governments often
respond only after a problem becomes severe, at which point their actions may be disproportionate. This
indicates that the government action only occurs after an outcome crosses a certain threshold, and such
thresholds are not always triggered in a gradual, incremental fashion. As a result, influencing outcomes
often requires substantial budget cuts or expansions (Workman et al. 2009, Workman and Thomas 2025).

Under the CPP policy, which emphasizes reducing CIs, increasing ¢ from 0.1 to 0.5 results in greater
budget allocation to PS and reduced spending on CR and GG. This reallocation leads to an increase in S
from 13.80% to 23.53%; see Figure 2f. These patterns are in line with the Arellano-Bond model results
in Table 1, where PS has a statistically significant negative coefficient with respect to CIs, suggesting
that increased spending in this category is associated with reduced crime incidents. This also aligns with
intuitive expectations—boosting investment in public safety is a reasonable approach when the goal is to
lower crime.

Next, we extend our analysis to include the 11 other counties in southern WV. Our goal is to examine
whether our model reveals county-wise differences in budget allocations across southern WV. We found
that most counties direct the most of their funds toward GG and PS, whereas CP receives only a minimal
portion; see Table OS.4. This spending pattern stands in contrast to the Arellano-Bond model findings
(Table 1), which identify CP as having a statistically significant negative association with both ORDs and
CIs. In line with this evidence, the most substantial budget reallocation recommendations made by
across the 12 counties focus on CP, GG, and PS. In many of the 12 counties, ¥ suggests notable increases
in funding for CP. Given the constraint of total budget, the increased funding for CP is primarily achieved
by reducing allocations to GG. This is mainly due to two reasons: first, GG currently receives the highest
share of the total budget, making it the most practical source for reallocation; and second, GG does not

have a statistically significant effect on CIs (see Table 1). Consequently, under the CPP policy, the model
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Priority Policy & P CR GG HS PS ss o
BPP 0.10 (-0.021,0.021) (-1.077,-0.964) (-5.502, -4.580)  (0.009,0.020)  (3.192,3.381)  (0.034,0.036) 0.98
0.30 (-0.062,-0.030) (-3.138,-3.110) (-5.574,-4.580)  (0.009,0.030)  (5.494, 6.379)  (0.259,0.263) 0.9
0.50 (-0.103,-0.030) (-5.052,-5.048) (8.588,10.616) (-0.026,-0.024) (-3.998,-3.876) (0.263,0.282) 1.02
OPP 0.10 (-0.021,0.021) (-1.077,-0.964) (3.188,3.505)  (0.009, 0.020) (-3.381,-3.375) (0.142,0.144) 0.99
0.30 (-0.062,-0.030) (-2.092,-1.999) (-4.131,-4.108) (-0.026,-0.024) (-3.998,-3.876) (0.263,0.282) 0.90
0.50 (-0.103,-0.030) (-5.052,-5.048) (8.588, 10.616) (-0.027,-0.026) (-3.998,-3.876) (0.263,0.282) 1.02
CPP 0.10 (-0.021,0.021) (-0.791,0.359) (-5.502,-4.580)  (0.009, 0.020)  (-2.983,-2.600) (0.651,0.910) 0.94
0.30 (-0.062,-0.030) (-3.138,-3.110) (-5.574,-4.580)  (0.009,0.030)  (4.671,5.143)  (0.651,0.910) 0.98
0.50 (-0.103,-0.030) (-5.048,-5.033) (-4.131,-4.108) (0.088,0.098)  (5.143,5.156) (1.522,1.526) 0.98
2 $60,079 $3,154,678 $16,114,350 $57,147 $9,902,121 $0
bY $29,288,375

Table 2: Minimum & maximum percentage change values (Ai o A(yj i) for ¢ = Cabell County and y = 2023

across o values and priority policies.

recommends sharper reductions in GG funding at higher values of 6. As for PS, ¥ generally advises
reducing allocations across most counties, though some exceptions exist. For example, with 6 = 0.5,
2 counties receive an increase in PS funding under BPP, while 4 each receive an increase under OPP
and CPP. In the remaining counties, ¥ recommends reducing PS allocations or keeping them at existing
levels. Although these reductions are generally smaller than those seen for GG, they are justified by PS
receiving the second-largest share of the budget. The increases can be explained by the fact that PS is
found to have a statistically significant negative impact on CIs as per the results of the Arellano-Bond
model in Table 1. For graphical representation of these results, see Figures OS.5-0S.10.

These results align with the realities of local government operations and spending priorities. GG
represents the pool of expenditures for running the government and receives the largest share of resources.
In addressing both drug treatment and crime prevention, a persistent and shifting tension exists regarding
how funds are distributed across policy domains. The model’s guidance for GG points toward a redefinition
of local government’s central functions, indicating a major reordering of policy priorities.

Reallocating resources as suggested by ¥ could strengthen the response to the drug crisis but
might come at the expense of infrastructure and other essential services. Reducing PS funding often
faces opposition from powerful law enforcement interests and, as our analysis shows, could result in
higher crime rates. County-specific context is critical for these decisions: in areas where geographic,
infrastructural, and demographic factors make supply interdiction crucial, cuts to PS could be minimal;
in areas where such interdiction is unlikely or impractical, a more balanced spending strategy could be
prioritized. Ultimately, counties assess both logistical and political feasibility, as effective policies must

fall within an acceptable “zone of acquiescence” on these dimensions; otherwise, adoption will be slow
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or absent.

7 Conclusion

In public policy broadly—and in public health and criminal justice in particular—policies are often
conceptualized as one-time interventions. There are valid reasons for this: evidence-based research
identifies certain policies that, if implemented, tend to improve outcomes in addressing Substance Use
Disorder (SUD). Methodological conventions also reinforce this view, as many statistical frameworks are
built around the assumption that a single policy is enacted at a given point in time, followed by measurable
outcomes later. However, this “single-intervention” perspective does not reflect the actual decision
environment of most policymakers. They must juggle numerous competing issues, each demanding
attention and policy action. In practice, policymakers rely on a combination of decisions to nudge
governance toward their preferred outcomes, working within the limits of their bounded rationality. From
this perspective, policies aimed at any particular issue, such as SUD, are better understood as a mix of
actions, rather than a single intervention. Moreover, while the intervention-based model may be grounded
in science, it often overlooks the socio-economic and political realities of decision-making. Some policy
choices are simply more acceptable to local officials than others. By framing public policy as a mix of tools
or levers for influencing outcomes, we provide a more adaptable framework that accommodates diverse
political and social contexts. This flexibility improves the likelihood of policy adoption in real-world
governance.

In this paper, we develop a county-level decision support framework that integrates causal inference,
machine learning, and utility optimization to inform budget allocation strategies targeting opioid-related
outcomes. The proposed framework explicitly captures the complex relationships between county-level
budget allocations and two key outcomes (ORDs and CIs) while accounting for the unknown or unspecified
priorities that policymakers may have regarding these outcomes. We leverage causal inferences from the
Arellano-Bond model to guide the selection of expenditure categories and socio-economic variables used
as input features in training the TEs that predict ORDs and CIs. Subsequently, for a given county, we
embed trained TEs into an MILP model that generates budget allocations across expenditure categories
to optimize the policymakers’ worst-case risk-averse utility. This approach enables the development of
a tailored, county-level decision support tool to guide budget allocations, helping to more effectively
manage the opioid crisis.

The application of our approach to the state of WV yields several important findings. The Arellano-
Bond model establishes statistically significant causal relationships between budget allocations in dif-
ferent expenditure categories, socio-economic factors, and both ORDs and CIs. In our computational

experiments, we apply ¥ to 12 southern counties in WW—the area most acutely affected by the opioid
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crisis—using six expenditure categories: CP, CR, GG, HS, PS, and SS, and targeting two opioid-related
outcomes: ORDs and CIs. These outcomes are by far the most important for addressing the opioid
crisis, representing the direct effect on individuals and families, as well as the externalities (e.g., crime).
Our computational results indicate that F can effectively recommend budget allocations across the six
expenditure categories to substantially reduce both ORDs and CIs in all 12 southern WV counties. We
further evaluate the performance of # under three distinct priority policies: BPP (equal emphasis on ORDs
and CIs), OPP (greater emphasis on ORDs), and CPP (greater emphasis on CIs). Our analysis reveals a
trade-off between the two outcomes—greater improvements in one may lead to lower improvements in
the other.

Building on the observed outcome improvements, we analyze the underlying budget allocations that
drive them. Instead of providing fixed allocation values,  generates intervals for each expenditure
category, offering policymakers flexibility in implementation. We assess these allocations under three
levels of 6 = 0.1, 0.3, and 0.5, where § represents the maximum allowable increase or decrease in any
category relative to its current allocation. At higher ¢ values, the budget shifts prescribed by ¥ closely
mirror the relationships identified by the Arellano-Bond model. Further, we observe that # captures
interdependencies among expenditure categories—indicating that meaningful improvements in outcomes
often require coordinated, multi-category budget adjustments.

We identify three directions of future research that may improve the generalizability of the proposed
framework. First, incorporating additional outcome metrics, such as the share of individuals in recovery,
public confidence in law enforcement, and economic growth, can offer a more holistic view of how
budget allocations help in managing the opioid crisis. Second, as each of the six expenditure categories
contains multiple subcategories, the models in this paper can also guide budget allocation at a more
granular level, enabling more targeted and effective micro-level decision-making. The results generated
by our model can serve as the foundation for a two-step subcategory-level analysis. In the first step, the
model identifies which major budget categories should receive increased or decreased funding—and by
what amount—to help minimize ORDs and CIs. In the second step, the specific subcategories within
each major category can have their allocations adjusted in a manner consistent with the overall changes
identified in step one, while still adhering to the objective of reducing ORDs and CIs. Third, the current
approach assumes policymakers are risk-averse in their decision-making. However, decision-makers may
sometime demonstrate more nuanced, potentially risk-seeking preferences. A budget allocation model
that relaxes this assumption could prove useful at capturing policymakers’ complexities.

Data Availability Statement: The data that support the findings of this study are available from the

corresponding author, upon reasonable request.
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Online Supplement

0S.1: Supplementary Material

OS.1A Graphical Description of Collected Data

In this section, we use maps of West Virginia to visualize geographical patterns in our data on county
budgets and opioid crisis outcomes. Figures OS.1a to OS.1d display the average population, ORDs per
100,000 residents, CIs per 100,000 residents, and average budget per 100,000 residents, respectively, for
each county in WV over the period 2012-2023. As shown in Figure OS.1b, the southern counties, such
as McDowell, Logan, Wyoming, and Cabell, exhibit the highest average opioid mortality rates, pointing
to stark regional disparities. Similarly, Figure OS.1c indicates that southern counties such as Kanawha,
Raleigh, Fayette, and Cabell report the highest average crime incident rates per 100,000 residents. Finally,
Figure OS.1d shows that counties bearing the highest burden of ORDs and CIs, such as McDowell, Cabell,
and Kanawha, have some of the lowest per capita budgets. The scarcity of monetary resources in many
counties makes clear the importance of allocating county budgets efficiently to effectively combat the

opioid crisis.

OS.1B Background on 7Tree Ensembles (TEs)

To inform budget allocations, our model must identify from data the relationships between allocations
and outcomes. While various machine learning models could be applied, in this paper we employ TEs
because they have proven successful in many applications (Ferreira et al. 2016, Deepa et al. 2010, Herrera
et al. 2010) and are among the best predictive models across various datasets (Ferndndez-Delgado et al.
2014).

TEs are machine learning models that are used for classification (when the output takes values in a
finite discrete set) and regression (when the output variable takes continuous values). TEs are a collection
of a decision trees where each decision tree can be viewed as a function that, given any value for the
independent variables (X1, ..., X, ), produces the value of a dependent variable Y by answering a cascade
of queries, each checking whether a single input variable falls below or exceeds a specified threshold.
Because of the cascading nature of the queries, this function can be visualized as a tree. The output of
a decision tree is obtained by following a sequence of queries from the root to a leaf node and returning
the value associated with that leaf during training. A decision tree models the dependent variable Y as a
piecewise constant function over the input space. Each leaf of the tree corresponds to a hyper-rectangular
region defined by the threshold-based conditions on the path leading to that leaf. The output of a TE is
computed by combining the individual predictions of multiple decision trees, typically through averaging.

TEs are preferred over single decision trees as they exhibit much-enhanced prediction accuracy.
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Figure OS.1: Population and average per-capita metrics across WV counties from 2012-2023. Subplots

show: (a) population, (b) ORDs per 100,000, (c) CIs per 100,000, and (d) budget per 100,000.

Figure OS.2: Tree ensemble predicting value % (average of green leaves’ values) when (X1, X») =

(1.2,2.1).

To give a concrete example, we represent in Figure OS.2, a TE with two trees that predicts the value
of a dependent (output) variable Y from independent (input) variables X; and X;. In the context of our

application, one may think of X; as the amount of money spent on PS, X, as the amount money spent on



HS, and Y as the number of opioid deaths. When (X, X) = (1.2,2.1), the trees of the TE of Figure OS.2
predict values of Y equal to O and 1, respectively. To generate these predictions, each tree is traversed
from the root to a leaf node by selecting, at each split, the branch corresponding to the condition satisfied
by the input (X1, X3) = (1.2,2.1). Generally, a TE outputs the average of predictions from the individual
trees, i.e., % in our example. In practice, TEs typically consist of numerous trees that are deeper and

depend on a greater number of variables than those illustrated in Figure OS.2.

0S.1C Extensive Form of

The budget allocation model # we proposed in Section 5.3 is obtained by reformulating (3). This
reformulation integrates the mixed-integer set from Section 5.1, which encodes how tree ensembles
capture the relationship between budget allocations and outcomes, with the linear constraints from
Section 5.2, which characterize the worst-case utility maximization problem. Next, we present the

complete set of constraints for # in a single display.
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OS.1D Tuning and Evaluating the Prediction Accuracy of Tree Ensembles

In this section, we discuss the tuning of TEs specifically for the collected data. Subsequently, we evaluate
how well these models predict ORDs and CIs in WV.

Table OS.1 presents the tuned hyper-parameters for predicting ORDs and CIs for years 2020, 2022,
and 2023. We tune four key TE parameters: (i) the maximum depth of each tree (max_depth ), (ii) the
minimum number of samples required at a leaf node (min_samples_leaf), (iii) the minimum number of
samples needed to split an internal node (min_samples_split), and (iv) the number of trees in the ensemble

(n_estimators).

Year max_depth  min_samples_leaf —min_samples_split n_estimators

ORDs CIs ORDs CIs ORDs CIs ORDs CIs

2020 None 20 1 2 2 7 200 50
2022 None 30 2 2 2 5 200 100
2023 10  None 2 4 2 2 100 200

Table OS.1: Tuned TE hyper-parameters for predicting ORDs and CIs for years 2020, 2022, and 2023.

Next, we assess the predictive accuracy of TEs by comparing their performance to three commonly
used regression models: k-Nearest Neighbors (kKNN), Support Vector Regression (SVR), and Linear Regres-
sion (LR). Benchmarking TEs against LR shows their advantage over linear models, while comparisons
with kNN and SVR highlight differences from instance-based and kernel-based methods in capturing non-
linear patterns (Iskenderoglu et al. 2020). We assess these models over three years: 2020, 2022, and
2023. Specifically, we train the models using data up to 2019, 2020, and 2022, then predict the values
of ORDs and CIs for all 55 counties in WV for the years 2020, 2022, and 2023, respectively. Year 2021 is
excluded from our analysis due to data inconsistencies caused by COVID-19.

Table OS.2 compares the four regression models in predicting ORDs and CIs using three performance
metrics: Coefficient of Determination (R?), Mean Absolute Error (MAE), and a custom metric which
we define as the Prediction Deviation Index (PDI). Coefficient of Determination, R* € [0, 1],

indicates how well a model explains the variability in the outcome variable (James et al. 2013); values



closer to 1 suggest that the model accounts for a large portion of the variance. MAE quantifies the average
absolute difference between predicted and actual values, providing a direct measure of prediction error.
The Prediction Deviation Index for model r, output i and year j is calculated as the geometric

-

mean of PDIIV‘.
Jt

.
1ji
Ayji

across all 55 counties, where Pzrji is the predicted value for output i in county
[ and year j, and A;;; is the corresponding observed value. While MAE captures the absolute magnitude of
errors, PDI reflects the relative deviation of predictions from actual values, with smaller values indicating
better accuracy. Note that PDIlrjl. is undefined when A;;; = 0. In our dataset covering 2020, 2022, and
2023, there are no zero-valued CIs, and only 7 out of 165 observations for ORDs (55 counties X 3 years)

have A;;; = 0. These few instances are excluded from the analysis in this section.

Year Model R? MAE PDI

ORDs CIs ORDs CIs ORDs CIs

TEs 0.810 0947 7.772 69.809 0.3241 0.2369
kNN  0.778 0.798 8.451 99.291 0.4130 0.3096

2020
LR 0775 0935 8.854 93.226 0.4644 0.4155
SVR  0.701 0923 9.773 78.989 0.4880 0.3137
TEs 0919 0906 6.170 76.779 0.3022 0.2694
kNN  0.895 0.921 7.034 72.411 0.3882 0.3445
2022
LR 0954 0910 5.255 85.116 0.3242 0.4377
SVR 0940 0.865 5413 73215 0.3187 0.2471
TEs 0952 0968 4.049 47324 0.2019 0.1321
kNN 0923 0.904 5.942 79.376 0.3256 0.2628
2023

LR 0948 0969 4.177 68.301 0.1946 0.3794
SVR  0.950 0966 4.157 53.887 0.1835 0.2017

Table 0S.2: RZ, MAE, and PDI ratios for ORDs and CIs across years and models.

As shown in Table OS.2, TEs deliver the highest R? scores for ORDs in both 2020 and 2023, and
perform strongly in 2022 with a value of 0.919. For CIs, TEs also achieve the best R? values in 2020 and
2023, with no score dropping below 0.906 across the three years. These results highlight the robustness
of TEs in explaining variation in both ORDs and CIs. In terms of accuracy, TEs obtain the lowest MAE for
both outcomes in 2020 and 2023 and perform comparably to the best model in 2022. TEs also produce
the lowest or near-lowest PDI values across all three years for both ORDs and CIs. Furthermore, the
average PDI for TEs consistently stays below 0.33 for each year and outcome. For example, in 2022, the

mean PDI is 0.302 for ORDs and 0.269 for CIs, decreasing further to 0.202 and 0.132, respectively, in



2023. This demonstrates the high predictive accuracy of TEs.

0S.2: Supplementary Figures
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Figure OS.3: Percentage reductions in ORDs (£°"°S) across various ¢ values under all priority policies for

12 southern counties in WV in 2023.
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Figure OS.4: Percentage reductions in CIs (£“'®) across various § values under all priority policies for

12 southern counties in WV in 2023.
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Figure OS.5: Maximum percentage increase or minimum percentage decrease in allocation to CP (AZ ( CP))

across various ¢ values under all priority policies for 12 southern counties in WV in 2023.
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Figure OS.6: Maximum percentage increase or minimum percentage decrease in allocation to GG (AZ (GG))

across various ¢ values under all priority policies for 12 southern counties in WV in 2023.
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Figure OS.7: Maximum percentage increase or minimum percentage decrease in allocation to PS (Ac (PS))

across various ¢ values under all priority policies for 12 southern counties in WV in 2023.
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Figure OS.8: Maximum percentage increase or minimum percentage decrease in allocation to CR (Ac ( CR))

across various ¢ values under all priority policies for 12 southern counties in WV in 2023.
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Figure OS.9: Maximum percentage increase or minimum percentage decrease in allocation to HS (Ac (HS))

across various ¢ values under all priority policies for 12 southern counties in WV in 2023.
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Figure OS.10: Maximum percentage increase or minimum percentage decrease in allocation to SS

(Ai (SS)) across various ¢ values under all priority policies for 12 southern counties in WV in 2023.
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08S.3: Supplementary Tables

Socio-economic Variables Source
Population ACS
Uninsured (%) — Health Care Access ACS
Median household income ($) — Income ACS
Median gross rent ($) — Housing ACS
Renters paying >30% of income for housing (%) — Housing ACS
Homeowners paying >30% of income for housing (%) — Housing ACS
Unemployment rate (% of those aged 16+) — Employment ACS
Households receiving public assistance (%) — Food Security ACS

Table OS.3: Socio-economic variables and their data sources.

County Cp CR GG HS PS SS
Boone 0.00 0.00 66.89 0.00 33.11 0.01
Cabell 0.21 10.77 55.02 0.20 33.81 0.00
Fayette 0.00 526 6337 0.06 31.12 0.18
Kanawha 0.17 9.80 58.81 0.62 30.59 0.00
Lincoln 0.00 154 70.61 122 26.63 0.00
Logan 0.00 3.12 5634 093 3930 0.32
McDowell 0.00 0.68 5735 0.00 4197 0.00
Mercer 0.00 1.14 5499 2.07 4156 0.25
Mingo 0.00 190 57.03 0.00 41.08 0.00
Raleigh 0.00 778 48.13 324 4042 042
Wayne 1.71  0.81 48.72 140 47.37 0.00
Wyoming 0.00 138 60.76 341 3335 1.10

Table OS.4: Expenditure share (%) by category for each county in 2023.
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