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Abstract

We investigate polyconvexity of the double well function f(X) := |X −X1|2|X −X2|2
for given matrices X1, X2 ∈ Rn×n. Such functions are fundamental in the modeling of
phase transitions in materials, but their non-convex nature presents challenges for the
analysis of variational problems. Polyconvexity of f is related to the singular values of
the matrix difference X1 −X2. We prove that f is polyconvex if and only if the square
of the largest singular value does not exceed the sum of the squares of the other singular
values. This condition allows the function to be decomposed into the sum of a strictly
convex part and a null Lagrangean. As a direct application of this result, we prove an
existence and uniqueness theorem for the corresponding Dirichlet minimization problem
of the integral functional.

1 Introduction

A central challenge in the calculus of variations is to establish the existence of solutions to
variational problems, typically formulated as minimizing an integral functional of the form

I(y) :=

∫
Ω

f(∇y(x)) dx,

where Ω ⊂ Rn is a bounded Lipschitz domain, y : Ω → Rm is a deformation, and f : Rm×n → R
is a continuous stored energy function. For scalar-valued functions y and/or one-dimensional
domains (m = 1 and/or n = 1), the existence of minimizers can often be guaranteed under the
assumption that the integrand f is convex. However, in many physical applications, particularly
in nonlinear elasticity and materials science, y is vector-valued (m = n > 1) and f is non-
convex. This non-convexity comes from physical grounds and is essential for modeling complex
material behaviors such as phase transitions, where a material can exist in multiple stable
states, represented by different energy wells, see e.g. [3, 4].

A groundbreaking contribution to address this challenge was made by John Ball in 1977 [1]. He
introduced the weaker notion of polyconvexity. This condition is strong enough to ensure the
weak lower semicontinuity of the energy functional I; a key requirement for the direct method
in the calculus of variations – yet flexible enough to include physically relevant non-convex
energy functions. Formally, a function f : Rn×n → R is polyconvex if it can expressed as a
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convex function of all the minors (i.e. sub-determinants of all orders) of its matrix argument, i.e.,

f(X) = h(T (X)), where T : Rn×n → R(
2n
n )−1 is the vector map returning all subdeterminants of

the argument and h : R(
2n
n )−1 → R is convex. Polyconvexity implies (Morrey’s) quasiconvexity,

which is a weaker condition and which is equivalent to sequential weak lower semicontinuity of
I on W 1,p(Ω;Rn) whenever 0 ≤ f ≤ C(1 + | · |p) for some C > 0 is continuous. We say that
such f is quasiconvex if ∫

Ω

f(∇φ(x)) dx ≥ Ln(Ω)f(A) (1)

for all A ∈ Rn×n and all φ ∈ W 1,p(Ω;Rn) such that φ(x) = Ax for x ∈ ∂Ω. It was shown in [2,
Prop. 2.4] that in this case one can equivalently consider φ from the smaller space W 1,∞(Ω;Rn).
A necessary condition for quasiconvexity is the rank-one convexity. We say that f as above is
rank-one convex if t 7→ f(X + ta⊗ b) is convex for every X ∈ Rn×n and every a, b ∈ Rn. The
theory and its applications are now standard material in advanced monographs on the subject,
such as [6], [8], or [10].

In this paper, we investigate the polyconvexity of a specific and widely used double well energy
function:

f(X) := |X −X1|2|X −X2|2,
where X1 and X2 are two given matrices in Rn×n representing the preferred states or phases of
a material.

The paper is structured as follows. We begin in Sections 2 and 3 by analyzing the polyconvexity
of this function for the specific cases of n = 2 and n = 3 with X1 = −X2 = In, the identity
matrix in n dimensions, demonstrating the core mechanisms through direct computations. In
Section 4, we present our main result, which provides a necessary and sufficient condition for the
polyconvexity of the double well function in any dimension n > 1. Polyconvexity of f is related
to the singular values of the matrix differenceX1−X2. We prove that f is polyconvex if and only
if the square of the largest singular value does not exceed the sum of the squares of the other
singular values. The proof reveals that under this condition, the function can be decomposed
into the sum of a strictly convex function and a null Lagrangean [8]. Finally, as a direct and
significant application of this result, in Section 5 we prove existence and uniqueness of a solution
to the corresponding Dirichlet problem in the calculus of variations. This demonstrates that,
despite its non-convexity and the double-well structure, the energy functional is well-behaved
under the identified spectral condition (3), guaranteeing that the associated variational problem
is well-posed and allows for a unique minimizer.

We use the notation tr X for the trace of a matrix X ∈ Rn×n, |X|2 = tr XTX for the squared
Frobenius norm, and In for the identity matrix in Rn×n. Moreover, cofX ∈ Rn×n is the
cofactor matrix of X, i.e., (cofX)ij = (−1)i+j detX ′

ij where X
′
ij is the submatrix of X obtained

by removing the i-th row and the j-th column from X. Further we denote SO(n) = {R ∈
Rn×n : RTR = RRT = In, detR = 1} the set of rotations, and O(n) = {R ∈ Rn×n : RTR =
RRT = In, detR = ±1} the set of all orthonormal matrices. The dyadic product of u, v ∈ Rn

is denoted u ⊗ v ∈ Rn×n with (u ⊗ v)ij = uivj for all i, j ∈ {1, . . . , n}. We denote Lm the
m-dimensional Lebesgue measure and W 1,p(Ω;Rn) for 1 ≤ p ≤ +∞, refers to Sobolev spaces
of functions defined on Ω with values in Rn.

2 The 2x2 case

Lemma 1. The double well function X ∈ R2×2 7→ f(X) := |X − I2|2|X + I2|2 is polyconvex.
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Proof. First expand the function:

f(X) = |X − I2|2|X + I2|2

=
(
|X|2 − 2 tr X + 2

) (
|X|2 + 2 tr X + 2

)
=

(
(|X|2 + 2)− 2 tr X

) (
(|X|2 + 2) + 2 tr X

)
= (|X|2 + 2)2 − 4(tr X)2

= |X|4 + 4|X|2 + 4− 4(tr X)2.

Now observe that
(tr X)2 = |X|2 + 2detX − (X21 −X12)

2.

Substituting this identity into the expression for f(X) yields:

f(X) = |X|4 + 4|X|2 + 4− 4
(
|X|2 + 2detX − (X21 −X12)

2
)

= |X|4 + 4|X|2 + 4− 4|X|2 − 8 detX + 4(X21 −X12)
2

= |X|4 + 4(X21 −X12)
2 − 8 detX + 4

which is the sum of a strictly convex function of X and a linear function of detX.

2.1 A frame-invariant version

A function g : Rn×n → R is frame invariant if g(RX) = g(X) for all rotation matrices R, i.e.
all orthonormal matrices with determinant +1, and all X ∈ Rn×n

Lemma 2. The function g : R2×2 → R defined as g(X) = f(X)− 4(X21−X12)
2 is polyconvex,

frame invariant, non-negative, and vanishes exactly at rotations, i.e., also at X = ±I2.

Proof. Polyconvexity and frame invariance follow from the expression

g(X) := |X|4 + 4− 8 detX.

Non-negativity of g follows from the polynomial sums of squares (SOS) representation

g(X) = (|X|2 − 2)2 + 4(X11 −X22)
2 + 4(X21 +X12)

2

which also implies g(I2) = g(−I2) = 0.

Remark 1. Note that g may be seen as a version of the Saint Venant-Kirchhoff stored energy
density W (X) = 1

2
|XTX − I2|2, see, e.g. ,[8]. However, W (Q) = 0 while g(Q) > 0 for

Q ∈ O(2) \ SO(2), so that g is not minimized on mechanically unacceptable deformations that
change the orientation (dark wells).

3 The 3x3 case

Lemma 3. The double well function X ∈ R3×3 7→ f(X) := |X − I3|2|X + I3|2 is polyconvex.

Proof. First expand the function:

f(X) = |X|4 + 6|X|2 + 9− 4(tr X)2

= (|X|2 + 3)2 − (2 tr X)2.
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From the identity
det(λI3 +X) = λ3 + λ2 tr X + λ tr cofX + detX

we define tr cofX as the trace of the cofactor matrix of X or equivalently the sum of the
principal second-order minors of X. We substitute the identity

(tr X)2 = tr X2 + 2 tr cofX

into the expression for f(X) to get:

f(X) = |X|4 + 6|X|2 + 9− 4(tr X2 + 2 tr cofX)

= |X|4 + 6|X|2 − 4 tr X2 − 8 tr cofX + 9.

Decomposing X into its symmetric part Xs =
1
2
(X +XT ) and its skew-symmetric part Xa =

1
2
(X − XT ), it holds |X|2 = |Xs|2 + |Xa|2 and tr X2 = |Xs|2 − |Xa|2. This implies that the

quadratic form |X|2 − tr X2 = 2|Xa|2 is non-negative and hence convex. Then

f(X) = |X|4 + 2|X|2 + 8|Xa|2 − 8 tr cofX + 9

is the sum of a strictly convex function of X and a linear function of the second-order minors
of X.

Corollary 1 (Isotropy). It holds for any rotation matrix R ∈ SO(3) and any X ∈ R3×3

f(X) = f(RXRT )

Proof. It follows from the identity

cof (RXRT ) = cof R cofX cof RT = R cofX RT

and from the fact that similar matrices cof (RXRT ) and cofX have the same trace.

3.1 Frame invariant version

Lemma 4. The function g : R3×3 → R, g(X) = f(X)+4(tr X)2−9 is convex, frame invariant,
non-negative and vanishing at X = 0. The function ĝ : R3×3 → R, ĝ(X) = f(X) + 4(tr X)2 −
12|X|2 is frame invariant, non-negative, vanishing at X = ±I3, but it is not polyconvex.

Proof. The statements of the first sentence follow from the expression

f(X) + 4(tr X)2 − 9 = |X|4 + 6|X|2 = |X|2(|X|2 + 6).

The statements of the second sentence follow from the SOS decomposition

f(X) + 4(tr X)2 − 12|X|2 = (|X|2 − 3)2,

hence 9 = ĝ(0) > 1
2
(ĝ(diag(

√
3, 0, 0)) + ĝ(diag(−

√
3, 0, 0))) = 0. Therefore, ĝ is not rank-one

convex (see [8]) and, consequently, not polyconvex.
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4 Double well polyconvexity

More generally, given two matrices X1 and X2 of Rn×n with n ≥ 2, consider the double well
function

X ∈ Rn×n 7→ f(X) := |X −X1|2 |X −X2|2. (2)

Theorem 1. Let σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 denote the singular values of the matrix difference
X1 −X2. Function f is polyconvex if and only if the following spectral condition

σ2
1 + σ2

2 + · · ·+ σ2
n ≥ 2σ2

1 (3)

holds.

Proof. Let
A := 1

2
(X1 −X2), B := 1

2
(X1 +X2)

so that
f(X) = |(X −B)− A|2|(X −B) + A|2 (4)

and consider the singular value decomposition

A = UΣV T

with U, V ∈ O(n), Σ = diag (σ1, σ2, . . . , σn), σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Upon defining

Z := UT (X −B)V, (5)

the terms in (4) can be rewritten as

|(X −B)± A| = |UT ((X −B)± A)V | = |UT (X −B)V ± UTAV | = |Z ± Σ|.

It follows from the Cauchy-Binet formula for the determinant of the product of two matrices
(see e.g. [12, p. 103]) and from the formula for the determinant of the sum of two matrices (see
e.g. [13, p. 162]) that polyconvexity is invariant under left and right orthogonal transformations
and under translation. Consequently, polyconvexity of f is equivalent to polyconvexity of the
function g : Rn×n → R:

f(X) = g(Z) := |Z − Σ|2 |Z + Σ|2, (6)

where X and Z are related by (5).

Denoting ⟨A,B⟩ := tr ATB, it holds

|Z ± Σ|2 = |Z|2 + |Σ|2︸ ︷︷ ︸
a

±2 ⟨Z,Σ⟩︸ ︷︷ ︸
b

and
g(Z) = (a− b)(a+ b) = a2 − b2 = (|Z|2 + |Σ|2)2 − 4⟨Z,Σ⟩2. (7)

Now expand
(|Z|2 + |Σ|2)2 = |Z|4 + 2|Σ|2|Z|2 + |Σ|4

and since Σ is diagonal,

4⟨Z,Σ⟩2 = 4(
∑

1≤i≤n

σiZii)
2 = 4

∑
1≤i≤n

σ2
iZ

2
ii + 8

∑
1≤i<j≤n

σiσjZiiZjj.
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Substracting yields

g(Z) = |Z|4 + 2|Σ|2|Z|2 + |Σ|4 − 4
n∑

i=1

σ2
iZ

2
ii − 8

∑
1≤i<j≤n

σiσjZiiZjj. (8)

Split the quadratic term into diagonal/off-diagonal parts:

2|Σ|2|Z|2 = 2|Σ|2
n∑

i=1

Z2
ii + 2|Σ|2

∑
i ̸=j

Z2
ij = 2|Σ|2

n∑
i=1

Z2
ii + 2|Σ|2

∑
i<j

(Z2
ij + Z2

ji). (9)

Collect the diagonal terms from (8) and (9):

2|Σ|2
n∑

i=1

Z2
ii − 4

n∑
i=1

σ2
iZ

2
ii = 2

n∑
i=1

(|Σ|2 − 2σ2
i )Z

2
ii (10)

and pairwise complete the off-diagonal entries in (9), i.e., for each i < j:

2|Σ|2(Z2
ij + Z2

ji) = 2
[
Zij Zji

](|Σ|2 0

0 |Σ|2

)[
Zij Zji

]T
= 2

[
Zij Zji

]( |Σ|2 −2σiσj

−2σiσj |Σ|2

)
︸ ︷︷ ︸

Mij

[
Zij Zji

]T
+ 8σiσj ZijZji.

(11)

Substitute into (8) and regroup, using (10) for the diagonal part and (11) inside (9) for the
off–diagonal part:

g(Z) = |Z|4 + |Σ|4 + 2
n∑

i=1

(|Σ|2 − 2σ2
i )Z

2
ii

+ 2
∑

1≤i<j≤n

[
Zij Zji

]
Mij

[
Zij Zji

]T
+ 8

∑
1≤i<j≤n

σiσjZijZji − 8
∑

1≤i<j≤n

σiσjZiiZjj.

(12)

Introducing

s2(Z) :=
∑

1≤i<j≤n

σiσj (ZiiZjj − ZijZji) =
∑

1≤i<j≤n

σiσj det

(
Zii Zij

Zji Zjj

)
we rewrite

8
∑
i<j

σiσjZijZji − 8
∑
i<j

σiσjZiiZjj = − 8 s2(Z)

and substitute into (12) to get

g(Z) = |Z|4 + |Σ|4 +2
n∑

i=1

(|Σ|2 − 2σ2
i )Z

2
ii +2

∑
1≤i<j≤n

[
Zij Zji

]
Mij

[
Zij Zji

]T − 8 s2(Z). (13)

Now if σ2
2 + · · ·+ σ2

n ≥ σ2
1 then |Σ|2 = σ2

1 + σ2
2 + · · ·+ σ2

n ≥ 2σ2
1, so the terms (|Σ|2 − 2σ2

i )Z
2
ii in

(13) are positive and convex in Z. For each (i, j), the eigenvalues of the matrix Mij defined in
(11) are |Σ|2±2σiσj, and |Σ|2 ≥ 2σ2

1 ≥ σ2
i +σ2

j ≥ 2σiσj. This implies that all matrices Mij are

positive semidefinite, and hence the terms
[
Zij Zji

]
Mij

[
Zij Zji

]T
in (13) are positive and
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convex in Z. The term |Z|4 is strictly convex in Z. The remaining term is −8 s2(Z), which is
linear in the principal 2 × 2 minors of Z. By definition, this means that g is polyconvex, and
that proves the sufficiency of the spectral condition σ2

2 + · · ·+ σ2
n ≥ σ2

1.

To prove necessity of the spectral condition, we will use the Legendre-Hadamard inequality.
Polyconvexity of g implies rank-one convexity [8, Chapter 5], i.e., positivity of the second
derivative of g in the rank-one directions:

∇2g(Z)[u⊗ v, u⊗ v] ≥ 0, ∀Z ∈ Rn×n,∀u, v ∈ Rn.

Recalling equation (7), we have g(Z) = (|Z|2 + |Σ|2)2 − 4⟨Z,Σ⟩2 and at Z = 0 we get the
inequality

∇2g(0)[u⊗ v, u⊗ v] = 4(|Σ|2 |u⊗ v|2 − 2⟨u⊗ v,Σ⟩2) ≥ 0 (14)

Now |u⊗ v|2 = |u|2|v|2, and since Σ = diag(σ1, . . . , σn), it holds

⟨u⊗ v,Σ⟩ =
∑
i

σi uivi = ⟨Σu, v⟩.

Thus inequality (14) reads

|Σ|2 |u|2|v|2 ≥ 2 ⟨Σu, v⟩2, ∀u, v ∈ Rn.

For unit vectors u and v, the quantity on the right is maximized by aligning u and v with the
top singular direction, i.e. u = v = e1, which yields

σ2
1 + σ2

2 + · · ·+ σ2
n ≥ 2σ2

1

which is our spectral condition (3).

Note that rank-one convexity of g at zero implies (3) and hence also polyconvexity of g. Since
polyconvexity in turn implies rank-one convexity, we conclude that the two notions are equiv-
alent for g.

Such an equivalence between rank-one convexity and polyconvexity has been observed in several
other settings, typically under additional structural or dimensional assumptions. For example,
in two dimensions (n = 2), rank-one convex quadratic forms are polyconvex, see [11]. More
recently, it was proven in [9] that isotropic, rank-one convex, positively p-homogeneous functions
(p ≥ n) are polyconvex on the set {tO(n) : t ∈ R}. Further equivalence results for elastic
energies in the planar case are obtained in [14]. The equivalence of these notions for isotropic
sets has also been studied, for instance, in [5, 7].

Remark 2. If n = 2 we get from (3) that σ1 = σ2 and if n = 3 we get the triangle inequality
σ2
i + σ2

j ≥ σ2
k for all mutually distinct indices i, j, k ∈ {1, 2, 3}.

Remark 3. Polyconvexity of g from (7) is guaranteed if the weaker condition of rank-one
convexity holds at the most critical point, namely zero, the local maximum of g on the line
segment [−Σ,Σ].

5 Existence and uniqueness of minimizers

Theorem 2. Let Ω ⊂ Rn, n ≥ 2, be a bounded, open set with a Lipschitz boundary. Consider
a double well energy density function f defined in (2) and satisfying the spectral condition (3).
Given a function y0 ∈ W 1,4(Ω;Rn) and the total energy functional

I(y) :=

∫
Ω

f(∇y(x)) dx,
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the minimization problem

min
y∈W 1,4(Ω;Rn)

I(y) s.t. y = y0 on ∂Ω (15)

admits a solution and the minimizer is unique.

Proof. As in the proof of Theorem 1, let A := 1
2
(X1 −X2), B := 1

2
(X1 +X2) and the singular

value decomposition A = UΣV T with Σ = diag(σ1, . . . , σn) and σ1 ≥ · · · ≥ σn ≥ 0. Let
y ∈ W 1,4(Ω;Rn) with y = y0 on ∂Ω. We define

Z(x) := UT (∇y(x)−B)V.

Note that Z = ∇u ◦ V −1, i.e., Z(x) = ∇u(V −1x), where u ∈ W 1,4(V −1Ω;Rn) and [u ◦ V −1] ∈
W 1,4(Ω;Rn)

u(V −1x) := U⊤y(x)− U⊤Bx.

Here V −1Ω := {V −1x : x ∈ Ω} and ∇u above is the gradient with respect to the independent
variable of u from V −1Ω, not with respect to x ∈ Ω.

By orthogonal and translation invariance, it holds for almost all x ∈ Ω that

f(∇y(x)) = g(Z(x)) = |Z(x)− Σ|2 |Z(x) + Σ|2 = fC(Z(x)) + fL(Z(x))

where

fC(Z) := |Z|4+2
n∑

i=1

(
|Σ|2−2σ2

i

)
Z2

ii+2
∑
i<j

[
Zij Zji

]
Mij

[
Zij

Zji

]
+ |Σ|4, fL(Z) := − 8 s2(Z)

according to the algebraic decomposition (13). By the spectral condition of Theorem 1, fC is
convex in Z. Moreover, since |Z|4 is strictly convex, fC is strictly convex. The term fL is affine
in the 2× 2 minors of Z.

As | detV | = 1 we have

I(y) =

∫
Ω

f(∇y(x)) dx =

∫
Ω

g(∇u(V −1x)) dx =

∫
V −1Ω

g(∇u(x̃)) dx̃ := J(u)

Let

JC(u) :=

∫
V −1Ω

fC(∇u(x)) dx, JL(u) :=

∫
V −1Ω

fL(∇(x)) dx

so that
J(u) = JC(u) + JL(u).

We reformulate (15) as a minimization problem for J :

min
u∈W 1,4(V −1Ω;Rn)

J(u) s.t. u(x) = U⊤y0(V x)− U⊤BV x for x ∈ ∂V −1Ω. (16)

The problem (16) admits a unique solution. Indeed, by the classical characterization of null
Lagrangeans (see, e.g., [8, Thm. 5.21, Cor. 5.22]), we get JL(u) = JL(u0) for all admissible u.
Here, u0(x) = U⊤y0(V x) − U⊤BV x for almost all x ∈ V −1Ω. This means that JL is constant
in our minimization problem. Moreover, J is coercive on W 1,4(V −1Ω;Rn) and the admissible
set of mappings on which we minimize is convex. The existence of minimizers then follows by
the direct method and the strict convexity of JC implies the uniqueness. Let us denote the
minimizer by ũ. Consequently, ỹ(x) = U(ũ(V −1x) + U⊤Bx) for x ∈ Ω is the unique minimizer
of I in (15).
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