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Abstract

This study analyzes the production of green hydrogen using dedicated offshore wind power in the

Dutch North Sea region. The analysis is based on a detailed techno-economic model that simu-

lates physical flows and estimates the levelized cost of hydrogen (LCOH). However, the model’s

outputs depend on user-provided inputs and evaluating all possible inputs is computationally

infeasible. To this end, “optimization with constraint learning” is employed, where surrogate

machine learning models are trained on simulation data and embedded in mixed-integer opti-

mization problems. Results demonstrate that the trained surrogate models are highly accurate

with respect to the physical flow-related outputs, where the mean absolute percentage errors are

within 3%. However, the mapping between simulation inputs and the LCOH proves more diffi-

cult to capture, where we find errors of approximately 10%. Overall, the approach enables the

user to analyze specific situations and explore potential tradeoffs in a computationally efficient

manner.
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1. Introduction

Hydrogen is expected to play a key role in the transition towards a sustainable energy

system. The North Sea is one of the world’s most active regions for offshore wind development

and provides a favorable environment for the production of green hydrogen. While pilot projects

are progressing [1, 2], the economic viability of large-scale offshore wind-to-hydrogen systems

remains an open question. To determine which locations and sets of technologies are most

promising for green hydrogen production, insights with respect to the operational dynamics [3]

and economic characteristics [4] are required.

This is commonly achieved by constructing and extracting information from techno-economic

models that represent prospective real-world systems. However, accurately modeling green hy-

drogen production systems is inherently complex, due to the intermittency of renewable energy

sources and non-linear interactions among components within the system. Additionally, model

parameters, such as capital costs, operational efficiency, and financing conditions, often need

to be projected over long time horizons [5]. This challenge is particularly pronounced for tech-

nologies that are not yet produced at a commercial scale, for which reliable data are scarce and

future trajectories are uncertain [6].

To assess the costs and performance of green hydrogen production configurations, various

contemporary studies utilize highly-detailed mathematical simulation models. Notable examples

of such simulation-based studies are the following. Egeland-Eriksen and Sartori [7] investigate

green hydrogen production via a 1.5 GW offshore wind farm close to the Norwegian island of

Utsira. Hill et al. [8] assess the costs for offshore wind farms in the United Kingdom. Calado et al.

[9] compare offshore and onshore system configurations, with a focus on assessing the influence

of electricity market regulation, for the Iberian Peninsula. Singlitico et al. [10] examine the

economic feasibility of hydrogen production from offshore wind power hubs for a 12 GW energy

island located 380 km from the coast of Denmark. Finally, Travaglini et al. [11] analyze various

large-scale offshore wind-based hydrogen production systems in the Dutch North Sea region,

and their simulation framework serves as the foundation for this study.

Although such simulation-based studies can provide valuable insights into system design,

costs, and operational performance, the outputs of these models are often highly dependent

on user-provided inputs. An input may reflect either a decision or a parameter. A decision

corresponds to a controllable choice (e.g., the sizing of an electrolyzer), whereas a parameter

reflects exogenous information (e.g., the costs associated with installing offshore wind turbines).

When modeling future hydrogen production systems, for which empirical data are limited and

expert opinions can vary considerably, it is often unclear which decisions ought to be made or
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what the parameter settings of a simulation model should be.

A common technique for addressing the issue of input dependence is to perform a sensitivity

(or Monte Carlo) analysis, which examines how changes to a model’s inputs affect its outputs [12].

However, this type of analysis does not distinguish between decisions and parameters, limiting its

prescriptive value. Furthermore, performing such an analysis in a comprehensive manner (e.g., a

global sensitivity analysis) may require a computationally infeasible number of simulation runs.

Alternatively, one could address the issue via simulation–based optimization, which does

distinguish between decisions and parameters. An overview of this broad class of methods

is given by Amaran et al. [13]. While heuristic and metaheuristic algorithms (such as local

search and simulated annealing) are popular and can be effective in certain settings [14], such

algorithms require the objective and constraint(s) to be known a priori and are not designed

to provide insight into the input-output relationships of a simulation model. Another approach

within simulation-based optimization is to use surrogate modeling, where statistical or machine

learning models are used to approximate the simulation outputs and guide the search for optimal

solutions; see Cozad et al. [15] and Kleijnen [16] for overviews.

In this paper, we utilize a surrogate modeling approach that is inspired by recent advances

in “optimization with constraint learning”, see Fajemisin et al. [17] for a survey on the topic.

Our approach, inspired by Maragno et al. [18], restricts itself to using surrogate machine learn-

ing (ML) models that can be directly embedded into mixed-integer optimization (MIO) prob-

lems. This class of models offers two key advantages over classical surrogate models, such as

Kriging. First, modern ML models can be efficiently trained on large datasets, which enables the

approach to be more effective in data-rich settings. Second, by ensuring that the surrogate ML

models are “MIO-representable”, one can directly optimize over them by leveraging commercial

MIO solvers, thereby avoiding the need for custom optimization algorithms. This direct integra-

tion between ML and optimization allows the objective to be redefined, constraints to be added

or removed, and the resulting problem(s) to be solved, with minimal additional computation

time.

For examples of the more common surrogate modeling approach, see Liu et al. [19], Yang

et al. [20] or Jafarizadeh et al. [21], who also combine simulation with machine learning and

optimization. However, note that these approaches consider a single fixed problem instance and

utilize a custom genetic algorithm to optimize over the surrogate models. Our approach differs,

as we are able to consider multiple stakeholder-defined problem instances and solve these using

a standard commercial MIO solver.
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1.1. Contribution and novelty

We present an effective approach for optimizing system design decisions related to offshore

wind-based green hydrogen production. A key advantage of our approach, with respect to alter-

native simulation-based optimization methods, is its flexibility. The user is able to modify the

objective or the constraints without having to re-solve the problem from scratch. This is partic-

ularly beneficial in dynamic settings with multiple stakeholders and objectives. Our approach

aligns with a “human-in-the-loop” approach to decision-making [22], where the provided solu-

tion(s) can be refined through interaction between stakeholders and the decision support tool.

Additionally, our approach enables the user to quickly assess the cost of imposing a constraint,

or to efficiently analyze specific situations and explore tradeoffs.

To the best of our knowledge, we are the first to apply optimization with constraint learning

to this problem domain. While this approach has been successfully applied in other domains,

such as radiotherapy [23], voltage regulation [24], molecular design [25], lot-sizing [26] and

organ allocation [27], our application in optimizing green hydrogen production via offshore wind

represents a novel contribution to the scientific literature.

1.2. Structure

The main body of the paper is organized as follows. In Section 2, we describe the simulation

framework developed by Travaglini et al. [11] and the optimization problem we seek to address.

In Section 3 we describe the approach we take for tackling this problem. Then, in Section 4, we

present our results and in Sections 5 and 6, we discuss our findings and suggest some conclusions.

2. Simulation and Optimization of Green Hydrogen Production

2.1. Simulation

The study builds on a techno-economic simulation framework that emulates green hydrogen

production from dedicated offshore wind farms [11]. The simulation model [28] accurately cap-

tures the operational behavior of both alkaline (ALK) and proton exchange membrane (PEM)

electrolyzers across a wide range of conditions. It supports the evaluation of electrolyzer types,

as well as other system design choices, with a particular focus on the interactions between

components and the intermittency of offshore wind power.

One of the primary goals of this simulation framework is to estimate the “levelized cost of

hydrogen” (LCOH). This metric is calculated by dividing the total sum of costs by the total

amount of hydrogen that is produced by the system (within a certain time horizon).

The simulation framework consists of multiple steps, as shown in Figure 1. Starting from the

estimation of the gross electrical output of the wind farm from real-world offshore wind speed
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and direction data, energy losses are subsequently estimated to determine the available power

supplied to the electrolyzer at each timestep. A detailed electrolysis module is then employed

to replicate the operational behavior of the electrolyzer stack and auxiliary systems, allowing

for the calculation of the hydrogen output available for injection into an onshore hydrogen grid.

Figure 1: Overview of the techno-economic simulation framework developed by [11]

Highly detailed modules are used to simulate the wind farm and electrolyzer, see Appendix

A for more information. Other components, such as pipelines, compressors, desalination units,

and electrical infrastructure are emulated using simplified modules.

In this study, we use wind speed and direction data sampled at 10-minute intervals. This

temporal resolution aligns with the typical averaging interval of wind farm power curves provided

by manufacturers [29], and it enables reasonably accurate modeling of electrolyzer dynamics,

including temperature variations, degradation behavior, and cold-start effects [11]. This is im-

portant as coarser time steps are likely to result in an overestimation of the hydrogen production

potential [30].

The techno-economic simulation framework described in the previous paragraphs is capable

of accurately evaluating different configurations of offshore wind-based hydrogen production

systems. However, the outputs of the simulation are highly dependent on the inputs, which

consist of a collection of decisions as well as various technical and economic parameters. To

highlight this point, Travaglini et al. [11] perform a sensitivity analysis on their case study

and find that the estimated LCOH can range anywhere from 3.0 to 10.5 euros per kilogram

of hydrogen. The inputs and outputs of this simulation framework are visually illustrated in

Figure 2.
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Figure 2: Visualization of the input-output relationships in the techno-economic simulation framework. The rect-

angles represent models, the diamond represents input decisions, the parallelograms represent input parameters

and the ellipses represent model outputs. We use the same color scheme as in Figure 1.

2.2. Optimization

The simulation model requires the user to specify a set of decisions, which define the config-

uration of the wind-to-hydrogen production system. These decisions span both continuous and

discrete variables, including asset sizing, technology selection, and locational attributes. Table 1

provides an overview of the design decisions considered in this study, along with their respec-

tive domain and unit of measurement (UoM). These choices directly influence the technical

performance of the system and indirectly influence the LCOH.

Table 1: Overview of the decisions under consideration

Decision Type Domain UoM

Number of wind turbines Integer [34, 134] [turbines]

Electrolyzer location Discrete {Onshore, Offshore} —

Electrolyzer type Discrete {ALK, PEM} —

Electrolyzer capacity Integer [5, 20] [100 MW]

Distance to shore Discrete {50, 100, 200} [km]

Cable type Discrete {AC, DC} —

For each simulation model evaluation, technical input parameters are also required. Due

to the relatively low technology readiness level of large-scale electrolyzer systems, the technical

parameters considered most uncertain are the energy consumption and degradation rates of the

ALK and PEM electrolyzers. For these uncertain parameters, we construct interval domains

using the lower and upper bounds from Travaglini et al. [11], who utilized literature analysis

and expert consultation to determine appropriate bounds (see Table A.7 in Appendix A.3 for

an overview of the values).

After specifying the decisions and technical input parameters, the simulation model is able

to simulate the physical flows through the system, and, given these flows, the economic model
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is able to estimate the LCOH. However, this last step requires specifying a number of economic

input parameters and many of these parameters are considered to be uncertain [11]. Similarly

to the uncertain technical parameters, we adopt the lower and upper bounds from Travaglini

et al. [11] to construct interval domains (see Table A.8 in Appendix A.3 for an overview of the

values).

The LCOH, along with the quantity of hydrogen produced, are the two primary outputs

of interest in this study. However, there are many more outputs that can be obtained from

utilizing the simulation framework. In collaboration with industrial stakeholders and academic

researchers, we construct a list of six key performance indicators for offshore wind-based hy-

drogen production. These are: amount of hydrogen produced, amount of brine produced as a

byproduct, amount of electricity curtailed, electrolyzer capacity factor (CF), wind farm CF and

LCOH. Note that this list extends beyond the techno-economic performance indicators that are

commonly analyzed in contemporary studies, such as [8, 10, 31], as we also include brine waste

due to its potential environmental impact [32].

Given this setup, we can now formalize our problem description. Let y1, . . . , y6 represent the

six outputs listed above, let the vector x represent the decisions under consideration and X the

domain for these decisions. Furthermore, let zt represent the uncertain technical parameters and

let ze represent the uncertain economic parameters. For each uncertain parameter, we assume

that it resides within the lower and upper bounds specified in Tables A.7 and A.8 in Appendix

A.3. Each output yk can be written as a function of the inputs, i.e., yk = Fk(x, zt, ze), where Fk

denotes utilizing the techno-economic simulation framework of Travaglini et al. [11] to evaluate

output yk, for k = 1, . . . , 6.

Imagine that a stakeholder is interested in using the techno-economic simulation framework

to determine optimal decisions for a specific problem instance, where a problem instance consists

of the following: (i) a primary output yj that he/she would like to minimize, (ii) a requirement bk

for each alternative output k ̸= j and (iii) a restricted decision domain XP ⊆ X , where XP may

contain additional constraints or conditions imposed by the stakeholder or the specific problem

context. This can be written as an optimization problem:

min
x∈X

Fj(x, zt, ze)

subject to Fk(x, zt, ze) ≤ bk, ∀k ̸= j

x ∈ XP .

(P )

Here we assume, without loss of generality, that lower values are preferable for all outputs, hence

the minimization problem (note that one can flip the sign of the output if necessary).

There are two issues with solving Problem (P ). First, the problem is ill-defined as zt and ze
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are uncertain. Second, the functions Fk are not assumed to have a known functional form, which

implies that we are not able to derive any explicit gradients or structural properties that might

aid in optimization. The functions may be queried for particular inputs and one could, in princi-

ple, attempt to solve (P ) using brute-force enumeration, zero-order optimization techniques, or

finite-difference gradient methods. However, due to the high dimensionality of (x, zt, ze) and the

fact that each evaluation requires approximately one minute, these approaches can be rendered

computationally prohibitive.

In the following section we describe an approach that enables us to approximately solve

such stakeholder-defined problem instances in a computationally efficient manner (or provide

reasonable alternative solutions if the problem instance is deemed infeasible).

3. Methods

First, note that for the framework depicted in Figure 2, the simulation model requires ap-

proximately one minute per simulation, while the economic model is able to compute the LCOH

within milliseconds. This implies that the simulation model is the primary computational bot-

tleneck in the framework described in Section 2.1. Due to the ability to quickly compute the

LCOH, we are able to “resolve” the uncertainty surrounding the economic parameters ze, by

estimating appropriate risk measures, such as the expectation (E) and conditional value-at-risk

(CVaR), via Monte Carlo sampling [33]. As such, the methodology we present in this section fo-

cuses mainly on the inputs to the simulation model (the decisions x and the uncertain technical

parameters zt).

Our methodology is as follows. First, we utilize a screening to determine which inputs are

the most influential and use this information to exclude the least influential inputs from the rest

of our analysis. Then, data is collected and used to construct surrogate ML models that are

“MIO-representable” and computationally tractable. Finally, we use the surrogate models to

approximately solve any arbitrary stakeholder-defined problem instance.

3.1. Input screening

The simulation model requires six decision variables (x1, . . . , x6) and two uncertain techni-

cal parameters (z1 and z2) as inputs (see the description in Section 2.2 for more information).

By identifying and retaining only the most influential inputs, we are able to reduce the di-

mensionality of the problem. This improves the signal-to-noise ratio, mitigates overfitting, and

improves model interpretability [34]. Moreover, when our surrogate models are embedded into

downstream MIO problems, a lower-dimensional input space is advantageous in terms of compu-
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tational efficiency. As such, it is advisable to first perform an input screening and (potentially)

discard the least impactful simulation inputs.

In settings with high experimental costs or a high number of inputs, it is advisable to use

a screening design of experiments, such as the Plackett–Burman design [35]. However, in our

setting we only consider eight inputs and can run a simulation within minutes. Therefore, we

are able to utilize a 2-level full factorial design (where we treat the distance to shore as a 3-

level input). This design prescribes 384 (2× 2× 2× 3× 2× 2× 2× 2) experiments/simulation

runs that include all possible high/low permutations of the simulation input values. We refer

to Montgomery [36] for more information on the topic of design of experiments.

For each of the 384 simulation runs, we evaluate the resulting LCOH across 10,000 economic

scenarios. These scenarios are generated by independently sampling each uncertain economic

parameter from a uniform distribution over its specified bounds (see Table A.8), and are used

to estimate risk measures for the LCOH.

We then standardize the input data and fit a linear regression model to the data (by min-

imizing the sum of squared errors). The coefficients of the regression model provide estimates

of the linear, quadratic and interaction effects of each simulation input, which we can then use

to determine the relative influence of the inputs on our outputs of interest. Thus, for each

simulation run i = 1, . . . , 384, we evaluate an input vector (x1i, . . . , x6i, z1i, z2i) and observe each

output yki. We use this data to fit the following model:

yki = αk +

6∑
j=1

βkj xji +

2∑
m=1

βk,6+m zmi +

6∑
j=1

γkj x
2
ji +

2∑
m=1

γk,6+m z2mi

+

6∑
j=1

6∑
p=j+1

ρkjp xji xpi +
6∑

j=1

2∑
m=1

ρkj,6+mxjizmi +
2∑

m=1

2∑
n=m+1

ρk,6+m,6+n zmi zni + εki.

Here, β, γ and ρ provide estimates of the linear, quadratic and interaction effects. Note that

we do not consider additional higher-order effects due to the hierarchy and heredity assump-

tions [37].

To assess the significance of these effects, we examine the associated p-values and identify

the simulation inputs for which we find that the associated p-values are always larger than 0.05,

for each of our outputs of interest. If this is the case, the corresponding simulation input is

fixed to its nominal value (see Table A.9 in Appendix A.4) and assumed to be constant during

the rest of our analysis. Doing this allows us to potentially reduce the simulation input domain

from (x, zt) ⊆ R8 to a lower-dimensional subspace (x̂, ẑt) ⊆ Rd, where d ≤ 8 denotes the number

of retained inputs post screening.
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3.2. Data collection and machine learning

Having done an input screening and (potentially) fixed the inputs for which the estimated

effect was not deemed sufficiently large, we collect data for the purpose of training ML models

to predict our outputs of interest. We collect data from N simulation model evaluations and,

for each simulation run, we also compute the resulting LCOH across 10,000 economic scenarios

(which are randomly generated in the same manner as described in Section 3.1) to estimate risk

measures for the LCOH. In our case, N is not fixed a priori, but increased incrementally until

the ML models reach an acceptable degree of accuracy (based on out-of-sample testing).

We utilize the collected data to train and test machine learning models to predict the sim-

ulation outputs, using the simulation inputs as model features. The types of ML models we

use in our approach must be MIO-representable, which implies that the input-output map-

ping of these models can be rewritten using continuous and integer variables, along with linear

constraints [18]. This class of ML models includes: linear and logistic regressions (LR), sup-

port vector machines (SVM), classification and regression trees (CART), random forests (RF),

extreme gradient boosting (XGB), gradient-boosting machines (GBM), multilayer perceptrons

with a rectified linear unit activation function (MLP).

For each output yk, we have access to a dataset {x̂i, ẑt, yki}Ni=1 with N data points. These

data can be used to construct a surrogate ML model fk, where fk(x̂, ẑt) ≈ yk. We do this as

follows. First, we randomly split the data into training, validation, and testing sets, using an

80%-10%-10% split. Next, we perform hyperparameter tuning via grid search (see Table B.10

in Appendix B), combined with 5-fold cross-validation on the training set. The best-performing

model is selected based on its mean squared error on the validation data. The testing set is held

out entirely during training and tuning, and is used exclusively to evaluate the final model’s

predictive accuracy. Thus, for each output yk, a trained ML model fk is saved and used in the

following step.

3.3. Optimization using surrogate machine learning models

The final step in our approach is to embed our trained surrogate ML models into optimization

problem formulations. The embedding of ML models into optimization problem formulations

is commonly referred to as “constraint learning” (see Fajemisin et al. [17] for an overview of

the topic). ML models can be embedded in various ways, see for example [38, 39]. For more

information on the specific embedding formulations used in this study, we refer to Section 2.2

of Maragno et al. [18].

Imagine we are interested in solving Problem (P ), as described earlier in Section 2.2. Using

10



our surrogate ML models (f), we can now approximate this problem and solve the following:

min
x̂∈X̂

fj(x̂, ẑt)

subject to fk(x̂, ẑt) ≤ bk, ∀k ̸= j

x̂ ∈ X̂P .

(P̂ )

Note that in this formulation, the difficult-to-optimize functions Fk are replaced by the more

tractable surrogate models fk. Additionally, the uncertain parameter vector zt is replaced by ẑt,

which represents a deterministic parameter vector specified by the user.

Note that the uncertain economic parameters ze do not appear in this formulation as our

surrogate models for the LCOH-related outputs are trained to directly predict the expectation

(or CVaR) of the LCOH with respect to the distribution of ze. We utilize Monte Carlo sampling

to evaluate these risk measures, where we assume that each parameter is independently and

uniformly distributed within its respective domain.

While MIO problems such as Problem (P̂ ) are, in general, “NP-hard”, for many practical

cases optimal (or near-optimal) solutions can be found in reasonable time using standard opti-

mization solvers. As we demonstrate in Section 4.2, commercial solvers such as Gurobi are able

to solve our problem instances within seconds.

4. Results

In this section, we present the results obtained by applying the methods described in Sec-

tion 3. First, in Section 4.1, we perform the input screening, summarize the collected simulation

data and use this data to train (and evaluate the accuracy of) the surrogate ML models. In

Section 4.2, we illustrate how our surrogate models can be used to obtain and evaluate solu-

tions in a dynamic manner. In Section 4.3 we showcase how our surrogate models can also be

used to analyze specific situations and explore trade-offs. All computations are conducted on

a 64-bit Windows machine equipped with a 2.80 GHz Intel Core i7 processor with 32 GB of

RAM. All optimization problems are solved using Gurobi 12.0. The code is publicly available

at: https://github.com/JustinStarreveld/hydrogen-prod-simopt-via-ocl.

4.1. Input screening, data and surrogate models

Table 2 presents the estimated first-order effects (β’s) of each simulation input on the two

primary outputs of interest: hydrogen production and the expected levelized cost of hydrogen.

The estimated effects for all inputs and outputs are provided in Table C.11 in Appendix C.

Statistically significant effects (with p-values below 0.05) are highlighted in bold.
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Table 2: Estimated first-order effects of each simulation input on the two primary outputs of interest. Statistically

significant effects (where the p-value is less than 0.05) are highlighted in bold.

Simulation input Hydrogen production [kt/y] E(LCOH) [€/kg]

Number of wind turbines 3.904 -1.259

Electrolyzer location 0.022 0.261

Electrolyzer type 0.534 -0.854

Electrolyzer capacity 2.919 -0.076

Distance to shore -0.384 0.926

Cable type -0.007 0.131

Electrolyzer energy consumption -0.788 1.353

Electrolyzer degradation rate 0.001 0.020

We observe that the cable type and electrolyzer degradation rate exhibit no statistically

significant effect on any of the considered outputs. Therefore, these two inputs are fixed to their

respective nominal values (see Table A.9 in Appendix A.4) and excluded from consideration

in the following steps (data collection, surrogate modeling, and optimization). Specifically, the

cable type is set to “AC”, while the electrolyzer degradation rate is fixed at 5.04×10−6 for ALK

and 4.85× 10−6 for PEM.

This procedure results in a single remaining uncertain technical parameter: the electrolyzer

energy consumption (zη), and five remaining decision variables: number of wind turbines (xWT ),

electrolyzer location (xEL), electrolyzer type (xET ), electrolyzer capacity (xEC) and distance to

shore (xDTS). Thus, we have:

x̂ = (xWT , xEL, xET , xEC , xDTS) , and ẑt = (zη). (1)

To characterize the boundaries of the reduced simulation input domain (x̂, ẑt) ⊆ R6, we

construct a 2-level full factorial design (where we treat the distance to shore as a 3-level input)

comprising 96 (2×2×2×3×2×2) simulation runs. In addition, we collect data from 4,000 sim-

ulation runs, where the input values are randomly and uniformly sampled from their respective

domains. Collecting this data was done in parallel (using 4 cores) and took approximately 48

hours. A visual summary of the resulting 4,096 data points is provided in Figure 3.

Figure 3 showcases the substantial variability in the simulation framework’s outputs that

arises from variation in the simulation inputs. For example, the expected LCOH can be anywhere

from 4 to 29 euros per kilogram of hydrogen, depending on x̂ and ẑt.

In the next step, we use this data to train surrogate ML models to predict each output on
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Figure 3: Box and whisker plots for each output in our dataset. The mean is depicted as a black circle.

the basis of the simulation inputs. Table 3 reports the best-performing model type for each

output, together with its out-of-sample predictive accuracy.

Table 3: Results from fitting the ML models to our data. We report the best model, along with its coefficient of

determination (R2), mean absolute error (MAE) and mean absolute percentage error (MAPE), as evaluated on

the testing data.

Output UoM Best model R2 MAE MAPE

Hydrogen production [kt/y] XGB 0.99 2.35 0.03

Brine waste [kt/y] XGB 0.99 26 0.03

Electricity curtailment [GWh/y] MLP 0.99 39 0.02

Wind farm capacity factor [-] GBM 0.98 0.01 0.02

Electrolyzer capacity factor [-] MLP 0.99 0.01 0.02

E(LCOH) [€/kg] GBM 0.73 1.05 0.11

CVaR90%(LCOH) [€/kg] MLP 0.74 1.06 0.10

The physical flow-related outputs (e.g., hydrogen production, brine waste, curtailment and

the capacity factors) are predicted with high accuracy, as the mean absolute percentage errors

are ≤ 3% for these outputs. In comparison, the LCOH-related outputs are more challenging to

predict, with mean absolute percentage errors of 11% and 10%. While the prediction accuracy

for the LCOH-related outputs is relatively low, the surrogate models can still function as effective

tools in the optimization phase of our methodology. For further elaboration on this topic, we

refer to Section 5.
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4.2. Dynamic exploration of solutions

This section illustrates how, once we have the trained ML models, we are able to provide

a fast and flexible optimization tool, where the objective or constraints can be easily modified

and a new solution can be obtained within seconds. Additionally, we illustrate how the obtained

solutions can be evaluated using the simulation framework in order to verify the accuracy of the

surrogate ML model predictions.

Suppose a stakeholder wishes to minimize the expected LCOH, under the assumption that the

energy consumption of the electrolyzer will be equal to the midpoint between its lower and upper

bounds, i.e., ẑmt = (zη) =
(
(zuη,ET − zlη,ET )/2

)
, where zuη,ET and zlη,ET denote the upper and

lower bounds of the electrolyzer energy consumption for electrolyzer type ET ∈ {ALK, PEM}.

This can be written as follows:

min
x̂∈X̂

fE(LCOH)(x̂, ẑ
m
t ). (P1)

By embedding the best-performing ML model for the output E(LCOH) into a mixed-integer

optimization problem formulation (see Section 3.3) and solving the MIO problem using Gurobi,

we obtain a solution to Problem (P1) within 0.3 seconds. Let this solution be denoted as x̂⋆
P1
.

The decisions corresponding to x̂⋆
P1

are shown in Table 4.

Table 4: Solution to Problem (P1)

Decision Value UoM

Number of wind turbines 89 [turbines]

Electrolyzer location Offshore —

Electrolyzer type PEM —

Electrolyzer capacity 2000 [MW]

Distance to shore 50 [km]

After obtaining this solution, the stakeholder is able to evaluate the performance of the solu-

tion under variation in the electrolyzer energy consumption parameter (i.e., zη ∈ {49.2, 53.7, 58.1}

kWh/kg). Using our surrogate ML models (f), we can provide a prediction for the performance

within milliseconds. Additionally, we can utilize the simulation framework (F ) to evaluate the

accuracy of these predictions (this requires three simulation evaluations and takes approximately

three minutes in total). The performance of solution x̂⋆
P1

is shown in Figure 4.
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Figure 4: Performance evaluation of the solution described in Table 4. We show the surrogate model prediction (f)

and the simulated performance (F ) for each output, where the electrolyzer energy consumption parameter is set

to its lower bound, midpoint or upper bound.

Now suppose that the stakeholder does not find this solution to be particularly desirable. For

example, the stakeholder may wish to limit the amount of brine waste to a maximum of 1,000

kilotons per year. Additionally, the stakeholder may be reluctant to support the construction of

a wind farm 50 kilometers from the shoreline, as such proximity may result in visual intrusion

on the coastal landscape. Due to the flexibility of our approach, the stakeholder can simply add

these constraints to the optimization problem formulation:

min
x̂∈X̂

fE(LCOH)(x̂, ẑ
m
t )

s.t. fBrine waste(x̂, ẑ
m
t ) ≤ 1000 [kt/y],

xDTS ≥ 100 [km],

(P2)

and solve Problem (P2) to obtain a new solution x̂⋆
P2
. This solution is obtained within 0.4 seconds

and is described in Table 5. We find that the electrolyzer location and type are unchanged,

however, the number of wind turbines is reduced from 89 to 71, the electrolyzer capacity is

reduced from 2000 MW to 1400 MW and the distance to shore is increased to 200 kilometers.

Table 5: Solution to Problem (P2)

Decision Value UoM

Number of wind turbines 71 [turbines]

Electrolyzer location Offshore —

Electrolyzer type PEM —

Electrolyzer capacity 1400 [MW]

Distance to shore 200 [km]
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Again, it is possible to evaluate the performance of this new solution using the surrogate ML

models and the simulation framework, under variation w.r.t. the electrolyzer energy consumption

parameter (i.e. zη ∈ {49.2, 53.7, 58.1} kWh/kg). These values are shown in Figure 5.
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Figure 5: Performance evaluation of the solution described in Table 5. We show the surrogate model prediction (f)

and the simulated performance (F ) for each output, where the electrolyzer energy consumption parameter is set

to its lower bound, midpoint or upper bound.

The results show that our new solution does not adhere to the brine waste restriction when

the electrolyzer energy consumption is low (i.e., zη = 49.2 kWh/kg). For this solution, the

expected LCOH is higher, at 7.4, 8.1, or 8.7 euros per kilogram (depending on zη). In addition,

the CVaR at the 90% level can exceed 9.5 euros per kilogram, potentially raising concerns about

the cost-efficiency of this solution under adverse scenarios.

Suppose that the stakeholder wishes to address such concerns and seeks a more robust

solution. The stakeholder could set ẑut =
(
zuη,ET

)
, and ẑlt =

(
zlη,ET

)
, for electrolyzer type

ET ∈ {ALK, PEM} and solve the following problem instance:

min
x̂∈X̂

fCV aR90%(LCOH)(x̂, ẑ
u
t )

s.t. fBrine waste(x̂, ẑ
l
t) ≤ 1000 [kt/y],

xDTS ≥ 100 [km].

(P3)

Note that Problem (P3) utilizes a different objective to Problem (P2), where we minimize the

conditional value at risk instead of the expectation. Additionally, in the objective we assume that

the electrolyzer energy consumption will equal its upper bound value, while in the brine waste

constraint we assume that this parameter will equal its lower bound value. The solution x̂⋆
P3

to

Problem (P3) is found within 0.3 seconds and is described in Table 6.

16



Table 6: Solution to Problem (P3)

Decision Value UoM

Number of wind turbines 63 [turbines]

Electrolyzer location Onshore —

Electrolyzer type PEM —

Electrolyzer capacity 1200 [MW]

Distance to shore 200 [km]

This solution changes the location of the electrolyzer to be onshore instead of offshore,

employs fewer wind turbines, and opts for a lower electrolyzer capacity. When the performance

of x̂⋆
P3

is evaluated using our surrogate models and the simulation framework (see Figure 6), we

observe that this solution improves upon x̂⋆
P2

in regards to the LCOH-related outputs and that

our new solution x̂⋆
P3

adheres to the brine waste restriction, even when the electrolyzer energy

consumption is at its lower bound.
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Figure 6: Performance evaluation of the solution described in Table 6. We show the surrogate model prediction (f)

and the simulated performance (F ) for each output, where the electrolyzer energy consumption parameter is set

to its lower bound, midpoint or upper bound.

Figure 7 provides a comparative overview of the performance of the three solutions (x̂⋆
P1
, x̂⋆

P2

and x̂⋆
P3
) across the seven outputs of interest. By visualizing their simulated performance side

by side, a stakeholder can quickly discern the relative strengths and weaknesses of each solution,

as well as attain an understanding of the robustness of each solution with respect to variation

in the uncertain parameters of the model (in this case the electrolyzer energy consumption).
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Figure 7: Comparison of simulation performance (F ) for the three solutions (x̂⋆
P1

, x̂⋆
P2

and x̂⋆
P3

), where the

electrolyzer energy consumption parameter is set to its lower bound, midpoint or upper bound.

Finally, note that each evaluation performed using the simulation framework yields an addi-

tional data point that can be used to retrain and refine the surrogate ML models. Implementing

such a continuous feedback loop can improve model accuracy and decision-making over time.

4.3. Analysis of specific situations and tradeoffs

This section demonstrates how the trained surrogate models can also be used to explore a

variety of situations and trade-offs. By formulating and solving different optimization problems,

we gain insights into how the decisions and parameters influence our outputs under various

constraints and assumptions.

Suppose that a stakeholder is interested in knowing the maximum amount of hydrogen pro-

duction, given a certain number of wind turbines and a fixed electrolyzer capacity of 1000 MW.

We can (approximately) obtain this information by solving the following optimization problem:

max
x̂∈X̂

fHydrogen production(x̂, ẑ
α
t )

s.t. xEC = 1000 [MW],

xWT = θ [turbines],

(2)

where the parameter θ is varied between [34, 134] and the parameter vector ẑαt is set equal to

the lower bound, midpoint, or upper bound for electrolyzer energy consumption. The results

are displayed in Figure 8, where each marker in the graph represents an optimal solution to

Problem (2).

Figure 8 shows that when the number of wind turbines is higher than 67 and the capacity

of the wind farm exceeds the capacity of the electrolyzer (in this case 1000 MW), the increase

in hydrogen production tapers off. Furthermore, we observe that the effect of the electrolyzer

energy consumption parameter is larger when the number of wind turbines is higher. For
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Figure 8: Maximum hydrogen production as a function of the number of wind turbines and the electrolyzer energy

consumption, where we assume a fixed electrolyzer capacity of 1000 MW.

example, note that, when using more than 100 wind turbines, variation in electrolyzer efficiency

can cause the maximum hydrogen production to vary by more than 20 kilotons per year.

In the following paragraphs we show how our methodology can also be used to efficiently

explore tradeoffs. Suppose that a stakeholder is interested in the utilization of the wind farm

and the electrolyzer, as measured by their respective capacity factors (CFs). A higher CF

signals more effective utilization of the asset. However, improvements in one asset’s utilization

may come at the cost of the other. For example, oversizing the wind farm relative to the

electrolyzer is expected to benefit the utilization of the electrolyzer, but is also likely to lead to

increased electricity curtailment and a low wind farm CF. This tradeoff can be investigated in

a quantitative manner by solving:

max
x̂∈X̂

λ · fElectrolyzer CF(x̂, ẑ
m
t ) + (1− λ) · fWind farm CF(x̂, ẑ

m
t )

s.t. xET = κ,

(3)

where the parameter λ is varied between [0, 1], the technical parameter vector is set equal to

the midpoint ẑmt and κ is set to be either PEM or ALK.

The resulting Pareto-type frontiers are displayed in Figure 9, where each marker in the

figure represents an optimal solution to Problem (3). We observe that the decisions under

consideration (x̂) can lead to very different CFs for both assets, highlighting the importance

of aligning the wind farm and electrolyzer capacities. As anticipated, the alkaline electrolyzer

exhibits lower capacity factors than the PEM electrolyzer, reflecting its stricter minimum load

requirements and reduced operational flexibility.
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Figure 9: Visual representation of the tradeoff between electrolyzer and wind farm capacity factors for the two

electrolyzer types.

5. Discussion

From a practical perspective, a key advantage of our approach with respect to alternative

simulation-based optimization methods is the ability to easily incorporate adjustments to the

objective or constraints without having to start from scratch. This enables industrial stakehold-

ers and policy makers to explore various objectives or introduce site-specific or preference-based

constraints (such as limiting brine waste or excluding nearshore development) and obtain prac-

tically relevant solutions in real time.

From a scientific perspective, optimization with constraint learning can enhance traditional

simulation-based studies by providing additional insights. The approach is complementary to a

dedicated sensitivity analysis, as it not only reveals how inputs influence outputs but also offers

prescriptive information by predicting “optimal” solutions to specific situations. This allows one

to analyze the “cost” of imposing certain constraints and explore potential tradeoffs.

Nevertheless, our approach also has some limitations. First, the accuracy of our surrogate

machine learning models is inherently limited by the quality and quantity of data that can be

obtained, as well as the expressive power of the ML models to which we fit the data. Throughout

this paper, we use the simulation model as our “ground truth”. While highly detailed and

grounded in engineering knowledge, it ultimately remains a model of reality and cannot fully

capture all real-world complexities. Empirical data may offer an advantage in this regard.

However, field data are not always available, and physical experiments are typically more costly

and time-consuming than computer simulations.
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Second, the surrogate models are trained (and tested) on data that are generated within

a specific domain. If a stakeholder’s interest shift outside this predefined domain, the model

predictions may become unreliable. This limitation can be partially addressed by defining a

“trust region”, as proposed in Maragno et al. [18], to ensure that surrogate model usage remains

within certain boundaries. Future work could improve generalizability of the surrogate ML

models by incorporating active learning or adaptive sampling to dynamically expand the dataset

based on stakeholder needs, observed prediction errors or optimization results.

Third, we assume that the uncertain parameters are independent and uniformly distributed.

In practice, these assumptions may not hold, as parameters could be correlated or non-uniformly

distributed. As a result, risk measures such as expectation and conditional value-at-risk should

be interpreted with caution, as they are sensitive to the underlying distributional assumptions.

Nonetheless, our methodology is capable of incorporating more realistic probabilistic assump-

tions in regard to the uncertain parameters, but this would require additional data collection.

An interesting direction for future research is to integrate robust or stochastic optimization

techniques to handle parameter uncertainty in a more systematic way.

Fourth, our approach cannot guarantee global optimality with respect to the original techno-

economic simulation framework. While we are able to validate the obtained solutions using the

simulation framework, approximation errors may still cause superior solutions to be overlooked.

In future work, the accuracy of the surrogate models could be quantified more rigorously, for

example by deriving statistical probability guarantees. Although such guarantees would require

additional assumptions, they may increase trust in the quality of the obtained solutions.

6. Conclusion

In this study, we have used a techno-economic simulation framework, in combination with

mixed-integer optimization with constraint learning, to assess green hydrogen production from

offshore wind in the Dutch North Sea. Our data-driven approach enables fast optimization of

design decisions, while explicitly accounting for uncertainty in simulation model’s parameters.

Compared to direct simulation-based optimization, the use of surrogate machine learning models

can substantially reduce computation time, making iterative and interactive analysis feasible.

The results show that the surrogate models achieve high accuracy for the physical flow-based

outputs (where the average prediction error is around 3%), but lower accuracy for cost-related

outputs (where the average prediction error is approximately 10%). Despite the existence of

prediction errors, the surrogate models remain useful for identifying promising design choices,

which can then be validated using the original simulation model. Our results demonstrate the
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effectiveness of this approach, where solutions are generated within seconds and then evaluated

and refined in a dynamic manner (e.g. by adding constraints and/or changing the objective).

Our results also show that the performance of offshore wind–based hydrogen production sys-

tems is highly sensitive to various design decisions, as well as technical and economic parameters.

For example, we find that the expected LCOH can vary anywhere between 4.3 and 28.2 euro

per kilogram. This underscores the importance of decision support tools that optimize design

decisions while explicitly accounting for uncertainty, especially in the early-stage planning of

such hydrogen production systems. Our proposed approach enables planners and policymakers

to incorporate such uncertainty, and also to rapidly identify and quantify trade-offs, thereby

supporting more informed and robust decision-making in the context of hydrogen deployment.
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Appendix A. Additional information on simulation

Appendix A.1. Wind power production

To simulate the performance of the wind farm, the open-source Python package PyWake

[40] has been adopted due to its computational efficiency and widespread use in applications of

wind energy. PyWake enables the modeling of wake interactions under steady-state conditions

and facilitates time-varying analysis of individual turbine output. Its modular structure allows

for seamless integration with additional Python-based components, such as electrolysis systems

and transmission models.

The simulation relies on PyWake’s Wind Farm module, which comprises site and turbine

objects. The site object specifies wind conditions based on wind turbine layout, reference speed,

and direction, while the turbine object defines the power and thrust curves, the hub height, and

the rotor diameter of aerogenerators.

To account for wake losses, the N.O.J. model [41] has been applied, which assumes a linearly

expanding wake with a constant decay coefficient. Offshore-specific conditions, relevant to the

Dutch North Sea context, have been modeled in accordance with DTU guidelines, omitting

terrain-related influences such as surface roughness and orography [42].

Appendix A.2. Electrolyzer

To accurately capture hydrogen production under fluctuating power inputs, the lumped

parameter electrolysis model presented in [11] has been adopted for the simulation of both

alkaline (ALK) and proton exchange membrane (PEM) technologies. This model simulates the

electrolyzer behavior relying on the polarization curves that describe the relationship between

cell voltage and current density, accounting for key electrochemical losses: activation, ohmic,

and concentration. The model takes into account the impact of thermal conditions, with heat

generation and dissipation computed from geometric parameters, as well as degradation on the

component efficiency. The impact of temperature variation on performance is modeled through

voltage shifts, approximated at 0.5 mV/°C for ALK and 0.4 mV/°C for PEM [43, 44].

Hydrogen output is determined as a function of input power and a conversion coefficient,

which is calculated at each timestep from the operating voltage, cell operating temperature, and

aging. The model also incorporates degradation by assuming a linear increase in overvoltage

with cumulative operating hours, allowing estimation of efficiency loss and stack replacements

over the system’s lifetime. A shutdown temperature of 30°C is imposed, with restart procedures

based on cold-start durations of five minutes for PEM and twenty minutes for ALK, as informed

by Singlitico et al. [10].
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Regarding the control strategies, a homogeneous distribution of the available power to maxi-

mize the number of active stacks has been assumed. Finally, stack replacement is assumed upon

exceeding critical voltage thresholds: 2.3 V for ALK and 2.23 V for PEM.

Appendix A.3. Uncertain parameters

Table A.7: Overview of the uncertain technical parameters

Parameter Lower bound Upper bound UoM

Electrolyzer energy consumption (ALK) 47.1 55.6 [kWh/kg]

Electrolyzer energy consumption (PEM) 49.2 58.1 [kWh/kg]

Electrolyzer degradation rate (ALK) 4.00× 10−6 6.85× 10−6 [V/h]

Electrolyzer degradation rate (PEM) 4.29× 10−6 6.60× 10−6 [V/h]

24



Table A.8: Overview of the uncertain economic parameters

Parameter Lower bound Upper bound UoM

CAPEX wind turbines 2,007,300 2,839,400 [€/MW]

O&M wind turbine 0.029 0.06 [% of CAPEX]

O&M reverse osmosis unit 0.02 0.025 [% of CAPEX]

CAPEX electrolyzer (ALK) 350,000 1,000,000 [€/MW]

O&M electrolyzer (ALK) 0.02 0.04 [% of CAPEX]

Replacement cost electrolyzer (ALK) 0.4 0.55 [% of CAPEX]

CAPEX electrolyzer (PEM) 500,000 1,400,000 [€/MW]

O&M electrolyzer (PEM) 0.015 0.04 [% of CAPEX]

Replacement cost electrolyzer (PEM) 0.4 0.55 [% of CAPEX]

CAPEX H2 pipelines (onshore) 320,000 840,000 [€/km]

O&M H2 pipelines (onshore) 0.008 0.07 [% of CAPEX]

CAPEX H2 pipelines (offshore) 360,000 580,000 [€/km]

O&M H2 pipelines (offshore) 0.008 0.07 [% of CAPEX]

CAPEX compressor (onshore) 800,000 4,000,000 [€/MW]

O&M compressor (onshore) 0.017 0.04 [% of CAPEX]

CAPEX compressor (offshore) 2,200,000 6,700,000 [€/MW]

O&M compressor (offshore) 0.017 0.04 [% of CAPEX]

CAPEX inter-array cables 194,000 500,000 [€/km]

O&M inter-array cables 0.002 0.022 [% of CAPEX]

CAPEX cables (AC) 3,000,000 6,840,000 [€/km]

O&M cables (AC) 0.005 0.025 [% of CAPEX]

CAPEX substructure (AC) 186,600 345,740 [€/MW]

O&M substructure (AC) 0.015 0.025 [% of CAPEX]

CAPEX cables (DC) 800,000 6,800,000 [€/km]

O&M cables (DC) 0.002 0.03 [% of CAPEX]

CAPEX substructure (DC) 565,000 807,750 [€/MW]

O&M substructure (DC) 0.015 0.023 [% of CAPEX]

CAPEX H2 substation 141,000 318,000 [€/MW]

O&M H2 substation 0.002 0.01 [% of CAPEX]
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Appendix A.4. Nominal values for simulation inputs

Table A.9: Nominal values for the simulation inputs

Decision Nominal value UoM

Number of wind turbines 67 [turbines]

Electrolyzer location Onshore —

Electrolyzer type ALK —

Electrolyzer capacity 10 [100 MW]

Distance to shore 50 [km]

Cable type AC —

Electrolyzer energy consumption (ALK) 51.8 [kWh/kg]

Electrolyzer energy consumption (PEM) 52.6 [kWh/kg]

Electrolyzer degradation rate (ALK) 5.04× 10−6 [V/h]

Electrolyzer degradation rate (PEM) 4.85× 10−6 [V/h]

Appendix B. Surrogate modeling implementation details

We follow Maragno et al. [18] and use equivalent hyperparameter grids when training our

surrogate models, these are shown in Table B.10.
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Table B.10: Description of the hyperparameter grid used for fitting the surrogate models

Model type Parameter grid

LR
alpha: [0.1, 1, 10, 100, 1000]

l1 ratio: [0.1, 0.3, 0.5, 0.7, 0.9]

SVM C: [0.1, 1, 10, 100]

CART

max depth: [3, 4, 5, 6, 7, 8, 9, 10]

min samples leaf: [0.02, 0.04, 0.06]

max features: [0.4, 0.6, 0.8, 1.0]

RF

n estimators: [10, 25]

max features: [None]

max depth: [2, 3, 4]

XGB

n estimators: [20]

max depth: [2, 3, 4]

min child weight: [1,5,10]

gamma: [0.5, 1, 2, 5, 10]

subsample: [0.8,1]

colsample bytree: [0.8,1]

GBM

n estimators: [20]

max depth: [2, 3, 4]

learning rate: [0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2]

MLP hidden layer sizes: [(10,), (20,), (50,), (100,)]
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Appendix C. Additional results

Table C.11: Estimated effects of input factors on simulation and economic model outputs. Significant effects

(p < 0.05) shown in bold.

Simulation input Hydrogen [kt/y] Brine [kt/y] Curtailment [GWh/y] Electrolyzer CF Wind farm CF E(LCOH) [EUR/kg] CVaR90%(LCOH) [EUR/kg]

Number of wind turbines 3.904 42.942 9.150 0.154 -0.063 -1.259 -1.041

Electrolyzer location 0.022 0.242 0.261 0.001 0.001 0.261 0.472

Electrolyzer type 0.534 5.874 -77.859 0.028 0.041 -0.854 -0.827

Electrolyzer capacity 2.919 32.110 33.567 -0.139 0.082 -0.076 -0.543

Distance to shore -0.384 -4.223 -2.621 -0.020 -0.022 0.926 1.207

Cable type -0.007 -0.076 -0.077 -0.000 -0.000 0.131 0.210

Electrolyzer energy consumption -0.788 -8.673 0.631 0.003 0.003 1.353 1.612

Electrolyzer degradation rate 0.001 0.012 -0.232 0.000 0.001 0.020 0.018

Number of wind turbines2 2.565 28.219 68.783 0.150 0.137 4.547 5.395

Electrolyzer capacity2 2.565 28.219 68.783 0.150 0.137 4.547 5.395

Distance to shore2 0.557 6.127 3.714 0.029 0.032 -1.938 -2.044

Electrolyzer energy consumption2 1.316 14.473 31.648 0.075 0.069 2.130 2.541

Electrolyzer degradation rate2 0.043 0.476 1.496 0.000 0.002 0.083 0.098

Number of wind turbines × Electrolyzer capacity 3.088 33.968 -12.190 0.054 0.100 -4.629 -5.412

Number of wind turbines × Distance to shore -0.136 -1.500 0.183 -0.003 0.005 -0.558 -0.656

Number of wind turbines × Electrolyzer energy consumption -0.410 -4.509 -0.235 0.000 -0.000 -0.123 -0.098

Number of wind turbines × Electrolyzer degradation rate 0.013 0.140 -0.393 0.001 -0.000 -0.004 -0.004

Electrolyzer capacity × Distance to shore -0.170 -1.866 2.389 0.002 -0.006 0.752 0.725

Electrolyzer capacity × Electrolyzer energy consumption -0.308 -3.387 -0.182 -0.000 0.000 -0.019 -0.070

Electrolyzer capacity × Electrolyzer degradation rate 0.005 0.057 0.393 -0.001 -0.000 0.011 0.012

Distance to shore × Electrolyzer energy consumption 0.035 0.381 0.022 -0.000 -0.000 0.080 0.103

Distance to shore × Electrolyzer degradation rate -0.002 -0.018 0.060 -0.000 0.000 -0.005 -0.003

Electrolyzer energy consumption × Electrolyzer degradation rate -0.003 -0.028 -0.004 0.000 0.000 0.001 0.002

Electrolyzer location × Number of wind turbines 0.008 0.083 -0.023 0.000 -0.000 0.176 0.133

Electrolyzer location × Electrolyzer capacity 0.013 0.146 -0.051 0.000 0.000 -0.328 -0.418

Electrolyzer location × Distance to shore 0.013 0.140 0.160 0.001 0.001 0.667 0.855

Electrolyzer location × Electrolyzer energy consumption -0.002 -0.024 0.003 -0.000 -0.000 0.022 0.038

Electrolyzer location × Electrolyzer degradation rate 0.000 0.000 0.015 0.000 -0.000 -0.001 -0.001

Electrolyzer type × Number of wind turbines -0.098 -1.078 24.338 -0.004 -0.018 0.776 0.837

Electrolyzer type × Electrolyzer capacity 0.170 1.867 -59.898 0.002 0.017 -0.115 -0.174

Electrolyzer type × Distance to shore 0.005 0.060 -1.207 0.000 0.000 -0.195 -0.214

Electrolyzer type × Electrolyzer energy consumption -0.538 -5.917 -13.193 -0.031 -0.029 -1.041 -1.218

Electrolyzer type × Electrolyzer degradation rate 0.031 0.344 0.989 0.000 0.001 0.056 0.065

Cable type × Number of wind turbines -0.002 -0.026 0.008 -0.000 0.000 0.089 0.063

Cable type × Electrolyzer capacity -0.004 -0.046 0.020 -0.000 -0.000 -0.061 -0.077

Cable type × Distance to shore -0.004 -0.044 -0.047 -0.000 -0.000 -0.044 0.007

Cable type × Electrolyzer energy consumption 0.001 0.008 -0.002 0.000 0.000 0.014 0.024

Cable type × Electrolyzer degradation rate -0.000 -0.000 -0.004 -0.000 0.000 -0.004 -0.001

Electrolyzer location × Electrolyzer type -0.000 -0.004 0.068 -0.000 -0.000 0.923 0.912

Electrolyzer location × Cable type 0.006 0.071 0.071 0.000 0.000 0.136 0.206

Electrolyzer type × Cable type 0.000 0.001 -0.027 0.000 0.000 -0.005 -0.007
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