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Abstract

Wasserstein distributionally robust optimization (DRO), a leading paradigm in data-driven

decision-making, requires evaluating worst-case risk over a high-dimensional Wasserstein ball.

We study when this worst-case evaluation admits an exact reduction to a one-dimensional for-

mulation, in the sense that it can be carried out over a one-dimensional Wasserstein ball centered

at the projected reference distribution. We refer to this property as projection equivalence. We

investigate projection equivalence across several classes of risk functionals. Starting from gen-

eral law-invariant risk functionals and progressing through monotone risk functionals, coherent

risk measures, and further specialized subclasses, we provide a complete characterization by giv-

ing necessary and sufficient conditions on the loss function under which projection equivalence

holds. Beyond simplifying worst-case risk evaluation, our characterization also identifies when

the worst-case problem admits an exact regularization reformulation, substantially extending

previously known results. Applications to distributionally robust chance-constrained programs

and classification problems are presented.

1 Introduction

Wasserstein distributionally robust optimization (DRO) has emerged as a dominant paradigm

for optimization under uncertainty, with growing prominence across operations research, statistics,

finance, and machine learning. Its strength lies in safeguarding decisions against distributional

ambiguity while delivering strong out-of-sample guarantees. In its most general form, Wasserstein

DRO can be written as

min
f∈F

sup
F∈Bp(F0,ε)

ρF
(
f(ξ)

)
,
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where F denotes the admissible decision class, f represents a decision-dependent loss function, ρ is

a risk functional, and Bp(F0, ε) is the p-Wasserstein ball of radius ε > 0 centered at a nominal dis-

tribution F0. Through the choice of ρ, this formulation accommodates a wide array of performance

criteria: expectation in classical Wasserstein DRO, risk measures in finance, statistical functionals

in inference, and loss- or utility-based objectives in machine learning.

The primary challenge in solving Wasserstein DRO is the inner maximization, which we refer

to as the worst-case risk problem:

sup
F∈Bp(F0,ε)

ρF
(
f(ξ)

)
. (1)

When the random vector ξ is high-dimensional, evaluating (1) is often the main bottleneck, and

overcoming this difficulty is important for both the theoretical analysis and the practical use of

Wasserstein DRO. In some cases, the high-dimensional worst-case problem (1) admits an exact

reduction to a one-dimensional formulation over a univariate p-Wasserstein ball. We refer to this

property as projection equivalence:

sup
F∈Bp(F0,ε)

ρF (f(ξ)) = sup
G∈Cp(f |F0,ε)

ρG(X), (2)

where Cp(f |F0, ε) denotes the one-dimensional p-Wasserstein ball centered at G0, the distribution

of f(ζ) for ζ ∼ F0. Thus, the high-dimensional worst-case risk evaluation reduces exactly to a

one-dimensional counterpart, yielding substantial benefits for both computation and analysis, and

in many cases leading to closed-form or efficiently computable solutions.

Projection equivalence (2) has thus far been observed only in limited settings, most notably

when the loss function f is linear (or affine). In this case, Mao et al. (2022), Wu et al. (2022)

and Aolaritei et al. (2023) obtain projection equivalence by establishing a set-level equivalence:

the projection of the high-dimensional Wasserstein ball under a linear map coincides exactly with

the one-dimensional Wasserstein ball Cp(f |F0, ε). In more general settings, only a set-inclusion

relationship can be established: the projection of the high-dimensional Wasserstein ball through

f is contained in Cp(f |F0, ε) (see, e.g., Santambrogio (2015)). This in turn implies that the one-

dimensional worst-case problem, i.e., the right-hand side of (2), provides at best an upper bound

on the full-dimensional worst-case problem, i.e., the left-hand side of (2).

Set-level equivalence is stronger than projection equivalence and may therefore be more restric-

tive than necessary. For reducing the worst-case risk problem, what matters is equality of the

worst-case values, not equality of the ambiguity sets. The linear case is thus only a narrow special

instance, leaving open the fundamental question of when exact reduction is possible for broader
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classes of loss functions and risk functionals, even without set-level equivalence.

To the best of our knowledge, no prior work has provided a complete characterization of when

projection equivalence holds beyond the linear setting. More generally, whether such an equivalence

holds depends on the class of risk functionals used to evaluate risk. In this paper, we close this gap by

developing a hierarchy of results: starting from the most general law-invariant risk functionals and

then specializing to monotone functionals, coherent risk measures, and further subclasses, we derive

necessary and sufficient conditions on the loss functions f under which projection equivalence (2)

holds, thus providing a complete characterization. On the one hand, our results reveal that solving

the high-dimensional worst-case risk problem via its one-dimensional counterpart is possible for

classes of loss functions that extend far beyond the linear case. On the other hand, and perhaps

even more theoretically intriguing, our results also constitute impossibility results: such a reduction

is provably not possible for any loss function outside the identified classes. This establishes a

sharp boundary for projection equivalence in Wasserstein DRO, delineating precisely when exact

reduction is feasible and when it is not. As an application, we show how our reduction results enable

an exact reformulation of Wasserstein chance-constrained programs, extending in a nontrivial way

the previous results of Xie (2021) and Chen et al. (2024) from the type-1 Wasserstein setting to

general type-p.

As another key benefit of reduction, our results show that projection equivalence enables the

identification of broader conditions under whichWasserstein DRO problems admit an exact reformu-

lation as regularized optimization problems (Pflug et al. (2012); Blanchet et al. (2019); Shafieezadeh-

Abadeh et al. (2019); Gao et al. (2024); Wu et al. (2022)). Such reformulations are of great interest

in both optimization and machine learning, as they reveal when Wasserstein DRO can be inter-

preted and solved through regularization schemes commonly applied in practice. Previously, exact

regularization reformulations were known only in restricted cases: in particular, when the risk func-

tional is the expectation (Shafieezadeh-Abadeh et al. (2019); Gao et al. (2024)), or more generally,

for other risk functionals but limited to linear loss functions (Wu et al. (2022)). Our results extend

these findings substantially by pinpointing precisely when such reformulations exist across broader

classes of risk functionals and loss functions.

We further extend the reduction result (2) to the classification setting. We show that exact

reduction remains possible, though for a more restricted class of loss functions than in our baseline

setting; nonetheless, it still goes well beyond the linear classifiers studied in existing work (e.g.,

Kuhn et al. (2019); Ho-Nguyen and Wright (2023)).

To provide a high-level view of our main results, including set-level equivalence, projection
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equivalence, regularization, and the exact characterization of loss functions, we summarize their

relationships in Figure 1 for general p ⩾ 1 and Figure 2 for p = 1.

Our contributions. This paper makes the following advances:

1. Complete characterization. We provide necessary and sufficient conditions under which

the high-dimensional worst-case risk problem reduces exactly to its one-dimensional counter-

part, offering the first full characterization of projection equivalence in Wasserstein DRO.

2. Beyond set preservation. We show that projection equivalence can hold even without

set-level equivalence, revealing a broader class of (f, ρ) pairs than previously recognized and

establishing sharp impossibility boundaries beyond them.

3. Functional characterization. For convex losses, we identify the exact family of functions

in closed-form admitting projection equivalence, subsuming affine and piecewise-linear forms

as special cases.

4. Regularization reformulations. Leveraging projection equivalence, we derive precise con-

ditions under which Wasserstein DRO admits exact regularization representations, substan-

tially extending prior results beyond expectation and linear losses.

Figure 1: Illustration of the relationships in Theorems 1, 2, 6 and Proposition 6

f#Bp(F0, ε) = Cp(f |F0, ε)
sup

F∈Bp(F0,ε)
ρF (f(ξ)) = sup

G∈Cp(f |F0,ε)
ρG(X) sup

F∈Bp(F0,ε)
ρF (f(ξ)) = ρF0(f(ζ)) + Cρε

f(x) = maxi∈I{β⊤
i x+ bi}

with ∥βi∥∗ = 1
sup∥y∥⩽ε f(x + y) − f(x) = ε

f(x) − inf∥y∥⩽ε f(x + y) = ε
sup∥y∥⩽ε f(x+ y)− f(x) = ε

sup ρ admits
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Notes.The figure is presented for the special case Lip(f) = cf = 1, for simiplicity. The three conditions in the first
layer are assumed to hold for all F0 ∈ M(Rn) and all ε > 0, whereas the first two conditions in the second layer
are assumed to hold for all x ∈ Rn and all ε > 0. The equivalence stated in Theorem 2 holds under the assumption
that supF∈Bp(F0,ε)

ρF (f(ξ)) = supG∈Cp(f |F0,ε)
ρG(X) for any monotone risk measure ρ. We say that “sup ρ admits a

regularized form” if there exists a constant Cρ ∈ R such that supG∈Cp(f |F0,ε)
ρG(X) = ρF0(f(ζ)) + Cρε. Theorem 6

shows that, when p > 1, ρ = ρh is a convex distortion risk measure and f is convex, the two rightmost conclusions
are equivalent, with Cρ = ∥h′∥q, where q is the Hölder conjugate of p. Proposition 6 shows that, when p > 1, ρ = Hp

is defined by (29) with loss ℓ(z, t) = c(z − t)+ for c > 1 and f is convex, the same equivalence holds with Cρ = c.
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Figure 2: Relationships among Theorem 4 and Propositions 7, 8 when p = 1

lim
k→∞

lim sup
m→∞

1

m
(f(x0 +mvk)− f(x0)) = 1

with ∥vk∥ = 1, k ∈ N

sup
F∈B1(F0,ε)

ρF (f(ξ)) = sup
G∈C1(f |F0,ε)

ρG(X)

sup
F∈B1(F0,ε)

ρFh (f(ξ)) = ρF0
h (f(ζ))+∥h′∥∞εsup

F∈B1(F0,ε)
HF

1 (f(ξ)) = HF0
1 (f(ζ)) + bε
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Notes.The figure is presented for the special case Lip(f) = cf = 1, for simiplicity. The first condition in the second
layer (left box) is assumed to hold at some x0 ∈ Rn, while the remaining conditions in all other boxes are assumed
to hold for all F0 ∈ M(Rn) and all ε > 0. Here, K denotes a bounded set. The functional HF

1 is defined as
HF

1 (X) = inft∈R EF [t+ ℓ(X, t)] , where ℓ satisfies the conditions of Proposition 7, and Lip(ℓ(·, t)) = b for all t ∈ R.
In Proposition 8, ρh denotes a convex distortion risk measure.

2 Preliminaries

Let (Ω,A,P) be an atomless probability space. A random vector ξ is a measurable mapping

from Ω to Rn, n ∈ N. Denote by Fξ the distribution of ξ under P. Denote by M(Rn) the set of

all distributions on Rn. For p ⩾ 1, let Lp := Lp(Ω,A,P) be the set of all random variables with

finite pth moment and Mp(Rn) be the set of all distributions on Rn with finite pth moment in

each component. For any norm ∥ · ∥ on Rn, its dual norm ∥ · ∥∗ is defined as ∥y∥∗ = sup∥x∥⩽1 x
⊤y.

Let q denote the Hölder conjugate of p, i.e., 1/p + 1/q = 1. For a real number x ∈ R, we use

x+ = max{x, 0} and x− = max{−x, 0}; and for m ∈ N, denote by [m] = {1, . . . ,m}. Let ei ∈ Rn

be the vector whose ith element is 1 and all other elements are 0 for i ∈ [n]. Let x−i denote the

vector obtained by removing the i-th component from x ∈ Rn. Similarly, x−(i,j) denote the vector

obtained by removing the i-th and j-th components. Denote by δz the Dirac distribution at z ∈ Rn.

We denote by x◦y the Hadamard (element-wise) product of vectors x and y, i.e., the vector whose

i-th component is given by (x ◦ y)i = xiyi.

For any two n-dimensional distributions F1 and F2 on Mp(Rn), the type-p Wasserstein metric

is defined as

Wp (F1, F2) := inf
π∈Π(F1,F2)

(Eπ[∥ξ1 − ξ2∥p])1/p , (3)

where ∥ · ∥ is a norm on Rn, and Π(F1, F2) denotes the set of all distributions on Rn × Rn with
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marginals F1 and F2. We define the ball of distributions Bp(F0, ε) on Rn as

Bp(F0, ε) = {F ∈ Mp(Rn) : Wp(F, F0) ⩽ ε} , (4)

and refer to it as the type-p Wasserstein ball throughout this paper.

We begin by formalizing the notion of a projection-induced ambiguity set, along with the classes

of risk functionals under which our main results are developed. Let f : Rn → R be a loss function,

F0 ∈ Mp(Rn) be a nominal distribution, and ε > 0. The projection-induced p-Wasserstein ball is

defined as

f#Bp(F0, ε) :=
{
Ff(ξ) : Fξ ∈ Bp(F0, ε)

}
,

where Ff(ξ) denotes the distribution of the scalar random variable f(ξ) for ξ ∼ Fξ. We also write

Cp(f |F0, ε) := Bp(G0, ε) ⊆ Mp(R)

for the one-dimensional type-p Wasserstein ball centered at G0, the distribution of f(ζ) for ζ ∼ F0.

If f is Lipschitz continuous, we define its Lipschitz constant with respect to the norm used in the

Wasserstein metric as

Lip(f) := sup
x̸=y

|f(x)− f(y)|
∥x− y∥

.

Let X denote a space of real-valued random variables. We refer to any functional ρ : X → R as

a risk functional, and consider the following nested classes:

(i) Law-invariant finite-valued risk functionals. A risk functional ρ is law-invariant if

ρ(X) = ρ(Y ) for all X,Y ∈ X such that X
d
= Y . We assume that ρ(X) < ∞ for all X ∈ X .

(ii) Law-invariant monotone risk functionals. A risk functional ρ is monotone if ρ(X) ⩽

ρ(Y ) whenever X ⩽ Y almost surely.

(iii) Law-invariant coherent risk measures. A risk functional ρ is coherent if it is

monotone and satisfies the following properties:

– Translation invariance: ρ(X +m) = ρ(X) +m for all m ∈ R,

– Positive homogeneity: ρ(λX) = λρ(X) for all λ ⩾ 0,

– Subadditivity: ρ(X + Y ) ⩽ ρ(X) + ρ(Y ).

It is well known that any law-invariant, coherent, and lower semicontinuous risk measure ρ :

Lp → R admits a Kusuoka representation (Kusuoka (2001); Filipovic and Svindland (2007); Shapiro
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(2013)) of the form

ρF (X) = sup
µ∈Mρ

∫ 1

0
CVaRF

α (X) dµ(α), (5)

where Mρ is a set of probability measures on [0, 1], and CVaRF
α (X) is the Conditional Value-at-Risk

(CVaR, also called Expected Shortfall, ES) at level α ∈ [0, 1] defined as

CVaRF
α (X) =

1

1− α

∫ 1

α
VaRF

s (X)ds, α ∈ [0, 1), and CVaRF
1 (X) = VaRF

1 (X),

with VaRα being the Value-at-Risk (VaR) at level α ∈ [0, 1] defined as

VaRF
α (X) = inf{x : F (x) > α}, α ∈ [0, 1) and VaRF

1 (X) = inf{x : F (x) ⩾ 1}.

In this paper, we call a coherent risk measure ρ regular if it admits a Kusuoka representation of the

form (5) with 1

Cρ := sup
µ∈Mρ

∫ 1

0

1

1− α
dµ(α) < ∞.

We denote by Rlaw, Rmon, and Rcoh the respective classes of law-invariant finite-valued risk

functionals, monotone risk functionals, and regular coherent risk measures, where

Rcoh ⊆ Rmon ⊆ Rlaw.

3 Projection Equivalence for General Risk Functionals

We now present our main results: a complete characterization of the loss functions f for which

projection equivalence (2) holds. We proceed in a nested manner, starting from the largest class of

law-invariant risk functionals Rlaw and then restricting to the more structured classes of monotone

and coherent risk measures, Rmon and Rcoh. This refinement reveals progressively broader families

of losses f for which projection equivalence can be guaranteed.

3.1 Law-invariant Risk Functionals Rlaw

We first show that requiring projection equivalence to hold uniformly over all law-invariant risk

functionals is essentially as strong as requiring the associated one-dimensional ambiguity sets to

coincide, namely set-level equivalence. Theorem 1 establishes necessary and sufficient conditions

under which this equivalence holds and provides a complete characterization of the admissible loss

1The condition Cρ < ∞ is a standard assumption ensuring that the risk measure ρ takes finite value on L1.
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functions.

Theorem 1. For p ⩾ 1, let f : Rn → R be a function. Then the following statements are equivalent.

(i) There exists cf ⩾ 0 such that

sup
F∈Bp(F0,ε)

ρF (f(ξ)) = sup
G∈Cp(f |F0,cf ε)

ρG(X) (6)

holds for any ρ ∈ Rlaw, F0 ∈ M(Rn) and ε > 0.

(ii) There exists cf ⩾ 0 such that for any F0 ∈ M(Rn) and ε > 0, it holds that

f#Bp(F0, ε) = Cp(f |F0, cfε). (7)

(iii) The function f is Lipschitz continuous, and satisfies for any x ∈ Rn, ε > 0,

f(x)− inf
∥y∥⩽ε

f(x+ y) = sup
∥y∥⩽ε

f(x+ y)− f(x) = Lip(f)ε. (8)

Set-level equivalence (7) immediately implies projection equivalence (6) by definition. The

converse—namely, (i) ⇒ (ii)—is considerably more delicate. As we show later, this implication is

specific to the law-invariant class and need not persist for more refined families of risk measures,

for which projection equivalence may hold even in the absence of set-level coincidence.

Set-level equivalence (7) was previously established only for linear losses f (see, e.g., Wu et al.

(2022)). Characterization (iii) shows that linearity is not required and, more importantly, enables

us to identify a substantially richer class of loss functions for which projection equivalence holds. To

highlight the additional flexibility afforded by (iii), we provide two explicit families of admissible

losses under the choice of ℓ1-norm ∥ · ∥ = ∥ · ∥1.

Proposition 1. Let ∥ ·∥ = ∥ ·∥1. The following two families of loss functions satisfy condition (iii)

in Theorem 1.

(a) f(x) = c(β⊤x+ g(η ◦ x)) where c > 0, ∥β∥∞ = 1, βi, ηi ∈ {1,−1, 0}, i ∈ [n], β ◦ η = 0, and

g is a Lipschitz function with Lip(g) ⩽ 1.

(b) f(x) = c(|β⊤x| − |ν⊤x| + g(η ◦ x)), where c > 0, ∥β∥∞ = ∥ν∥∞ = 1, βi, νi, ηi ∈ {1,−1, 0},

i ∈ [n], β ◦ η = ν ◦ η = β ◦ ν = 0, and g is a Lipschitz function with Lip(g) ⩽ 1.

Notably, the admissible families identified above are fairly broad in the ∥ · ∥1 setting. This

breadth is nontrivial: as we show next, once one moves away from ∥ · ∥1, exact reduction can

8



become dramatically more restrictive, and for the ∥ · ∥a norm with a ∈ (1,∞) it is impossible

beyond linear loss functions. We provide a refined characterization of functions with Lip(f) > 0

that satisfy (8) under strictly convex norms (Clarkson (1936)), i.e., norms for which ∥x∥ = ∥y∥ = 1

and ∥x − y∥ ≠ 0 imply ∥x + y∥ < 2. It is well known that ∥ · ∥a is strictly convex for a ∈ (1,∞).

Perhaps surprisingly, under any such norm, the admissible class collapses: (8) holds only for linear

f .

Proposition 2. Let f : Rn → R be a Lipschitz function with Lip(f) > 0. If ∥ · ∥ is a strictly convex

norm, then f satisfies (8) if and only if there exists v with ∥v∥ = 1 such that

f(x+ tv)− f(x) = Lip(f)t, ∀x ∈ Rn, t ∈ R. (9)

In particular, if ∥ · ∥ = ∥ · ∥a, a ∈ (1,∞), then f satisfies (9) if and only if f(x) = β⊤x+ b for some

β ∈ Rn and b ∈ R.

3.2 Monotone Risk Functionals Rmon

We highlight in this section that projection equivalence can hold for a substantially richer class of

loss functions f than in the previous setting (e.g., those in Proposition 1) once we restrict attention

to monotone risk functionals. In particular, for this monotone class, projection equivalence no

longer requires set-level equivalence (7). Accordingly, we characterize the admissible loss functions

through a strictly weaker condition on f .

Theorem 2. For p ⩾ 1, let f : Rn → R be a function. The following statements are equivalent.

(i) There exists cf ⩾ 0 such that

sup
F∈Bp(F0,ε)

ρF (f(ξ)) = sup
G∈Cp(f |F0,cf ε)

ρG(X) (10)

holds for any ρ ∈ Rmon, F0 ∈ M(Rn) and ε > 0.

(ii) The function f is Lipschitz continuous and satisfies

sup
∥y∥⩽ε

f(x+ y)− f(x) = Lip(f)ε, ∀ x ∈ Rn, ε > 0. (11)

Comparing the characterization (8) in Theorem 1 with (11) above, we see that (8) applies only

to functions that are unbounded both above and below, whereas (11) can also apply to functions
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that are unbounded only from above. Below we provide several examples that fall outside the scope

of Theorem 1 but are covered by Theorem 2. The first three are convex, whereas the fourth is not.

Example 1. (i) The norm function: f(x) = ∥x∥. Note that we can rewrite f(x) = sup∥β∥∗=1 β
⊤x.

We have cf = 1 and by Theorem 2, for any ρ ∈ Rmon, F0 ∈ M(Rn) and ε > 0, it holds that

sup
F∈Bp(F0,ε)

ρF (∥ξ∥) = sup
G∈Bp(G0,ε)

ρG(X),

where G0 ∈ M(R) is the distribution of ∥ζ∥ and ζ ∼ F0.

(ii) The absolute value linear function: f(x) = |β⊤x+ b|, β ∈ Rn, b ∈ R. We have cf = ∥β∥∗ and

by Theorem 2, for any ρ ∈ Rmon, F0 ∈ M(Rn) and ε > 0, it holds that

sup
F∈Bp(F0,ε)

ρF
(
|β⊤ξ + b|

)
= sup

G∈Bp(G0,∥β∥∗ε)
ρG(X),

where G0 ∈ M(R) is the distribution of |β⊤ζ + b| and ζ ∼ F0.

(iii) If ∥·∥ = ∥·∥1 is the ℓ1-norm, then f(x) = maxi∈I(βi1x1+· · ·+βinxn+bi) with maxj∈[n] |βij | = c

for i ∈ I, satisfies (11) with Lip(f) = c.

(iv) Take R2 and the norm ∥(x1, x2)∥ =
√

x21 + x22, (x1, x2) ∈ R2. Define

f(x1, x2) =

max
{

−x1+2x2√
5

, −x1−2x2√
5

}
, x1 ⩾ 0,

max
{

x1+2x2√
5

, x1−2x2√
5

}
, x1 < 0.

The function f satisfies (11) with Lip(f) = 1.

The first three examples are standard convex losses. This naturally raises the question of

whether other convex loss functions also enjoy projection equivalence. To address this question,

we establish a representation theorem that provides a complete closed-form characterization of all

convex losses admitting projection equivalence.

Proposition 3. If f : Rn → R is a convex function and p ⩾ 1, then the function f satisfying (11)

must admit a representation of the form

f(x) = max
i∈I

{cfβ⊤
i x+ bi}, (12)

where cf ⩾ 0, βi ∈ Rn, i ∈ I, with ∥βi∥∗ = 1 and bi ∈ R.
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Remark 1. It is worth noting that Proposition 3 remains valid without convexity when n = 1,

whereas convexity becomes necessary when n ⩾ 2. In particular, Example 1(iv) provides a coun-

terexample. One can verify that this function f satisfies (11), yet it is not convex along the line

x2 = 0 and therefore cannot admit the representation (12).

Thus far, we have identified (11) as a necessary condition for projection equivalence to hold

uniformly over monotone risk functionals. We next establish a somewhat unexpected result: (11)

remains necessary even if projection equivalence is required to hold only for a single monotone risk

measure—namely, Value-at-Risk.

Proposition 4. For α ∈ [0, 1) and p ⩾ 1, let f : Rn → R be a function. Then there exists cf ⩾ 0

such that

sup
F∈Bp(F0,ε)

VaRF
α (f(ξ)) = sup

G∈Cp(f |F0,cf ε)
VaRG

α (X) (13)

holds for any F0 ∈ M(Rn) and ε > 0 if and only if f satisfies (11).

The above result highlights that it is difficult to expect projection equivalence beyond the class of

loss functions characterized by (11). As we show throughout the remainder of the paper, exceptions

do exist (see, e.g., Section 3.3), but (11) appears to be fairly tight in general.

Remark 2. It is worth noting that Proposition 4 does not extend to α = 1. Indeed, for any f and

any p ∈ [1,∞), we always have supG∈Cp(f |F0,cf ε)
VaRG

1 (X) = ∞. If f is unbounded from above,

then supF∈Bp(F0,ε)VaR
F
1 (f(ξ)) = ∞, which implies that (13) always holds for α = 1 in this case.

Therefore, we have Proposition 4 does not hold for α = 1 in general.

Before proceeding further, we highlight how Proposition 4 together with Proposition 3 facilitate

the solution of important OR/MS problems. Observe that the function f(ξ) := maxi∈I{β⊤
i ξ/∥βi∥∗}

is a special case of (12). By Proposition 4, this yields

sup
F∈Bp(F0,ε)

VaRF
α

(
max
i∈I

β⊤
i ξ

∥βi∥∗

)
= sup

G∈Bp(G0,ε)
VaRG

α (X), (14)

where G0 ∈ M(R) is the distribution of f(ζ) and ζ ∼ F0.

We present two important applications of (14). In each case, the reduction to the one-dimensional

worst-case Value-at-Risk problem (the right-hand side of (14)) allows us to invoke the CVaR refor-

mulation in Lemma 1 to solve the original high-dimensional problem (the left-hand side of (14)).

11



Lemma 1. For α ∈ [0, 1] and p ⩾ 1, the worst-case VaR (14) is the unique x ∈ R satisfying

εp

1− α
+CVaRF0

α

(
−
(
x−max

i∈I

β⊤
i ζ

∥βi∥∗

)p

+

)
= 0. (15)

Example 2 (Worst-case risk over multiple portfolios). Let β1, . . . ,βm ∈ Rn denote m portfolio

weight vectors such that all of them share the same dual norm, i.e., ∥βj∥∗ = ∥β1∥∗ for all j ∈ [m].

The problem of evaluating the worst-case value-at-risk of the poorest-performing portfolio is

sup
F∈Bp(F0,ε)

VaRF
α

(
max
i∈[m]

β⊤
i ξ

)
.

By applying (14) together with Lemma 1, the problem can be reformulated as the following opti-

mization problem:

min x s.t.
εp

1− α
∥β1∥p∗ +CVaRF0

α

(
−
[
x−max

i∈[m]
β⊤
i ζ

]p
+

)
⩽ 0. (16)

This formulation generalizes the result of Chen and Xie (2021), which is restricted to the case p = 1,

to all p ⩾ 1.

Example 3 (Distributionally robust chance-constrainted program). One important application of

Wasserstein DRO is distributionally robust chance-constrained programs (Wasserstein DRCCPs),

which aim to ensure that constraints hold with high probability under distributional uncertainty.

A typical Wasserstein DRCCP takes the form

min
x∈S

c⊤x, (17)

s.t. inf
F∈Bp(F0,ε)

PF
(
ai(x)

⊤ξ ⩽ bi(x), ∀ i ∈ [m]
)
⩾ 1− η, (18)

where S ⊆ Rk is a feasible set of the decision vector x, the vector c ∈ Rk denotes the objective

function coefficients, {y : ai(x)
⊤y ⩽ bi(x), ∀ i ∈ [m]} ⊆ Rn is referred to as a safety set for each

x ∈ S, and η ∈ (0, 1). For p = 1, the feasible set has been reformulated in terms of CVaR by Xie

(2021) and Chen et al. (2024). Here, we provide a new perspective and extend the result to general

12



p ⩾ 1. First, the constraint (18) is equivalent to 2

sup
F∈Bp(F0,δ)

VaRL,F
1−η

(
max
i∈[m]

{
ai(x)

⊤ξ − bi(x)

∥ai(x)∥∗

})
⩽ 0,

where VaRL denotes the left-continuous VaR defined by VaRL
α(X) = inf{x : P(X ⩽ x) ⩾ α} for

α ∈ (0, 1). One can easily verify Lemma 1 still holds true if we replace VaRα by the left-continuous

VaRL
α. Applying (14) together with Lemma 1, problem (17) can be reformulated as

min
x∈S

c⊤x

s.t. − CVaRF0
1−η [−f(x, ζ)p] ⩾

εp

η
, i ∈ I(x),

ai(x) = 0, bi(x) ⩾ 0, i ̸∈ I(x),

where f(x, ζ) = mini∈I(x)
(bi(x)−ai(x)

⊤ζ)
+

∥ai(x)∥∗ and I(x) = {i ∈ [m] : ai(x) ̸= 0}.

Moreover, observing that

min
i∈I(x)

− 1

∥ai(x)∥p∗
CVaRF0

1−η

[
−(bi(x)− ai(x)

⊤ξ)p+

]
⩾ −CVaRF0

1−η [−f(x, ζ)p] ,

we obtain the following tractable optimization problem, which provides a conservative approxima-

tion of (17):

min
x∈S

c⊤x

s.t. − 1

∥ai(x)∥p∗
CVaRF0

1−η

[
−(bi(x)− ai(x)

⊤ξi)
p
+

]
⩾

εp

η
, i ∈ I(x),

ai(x) = 0, bi(x) ⩾ 0, i ̸∈ I(x).

This upper-bound formulation generalizes the result of Xie (2021), which is restricted to p = 1, to

arbitrary p ⩾ 1.

3.3 Coherent Risk Functionals Rcoh

Finally, we study projection equivalence for the coherent subclass of monotone, law-invariant

risk measures, focusing on those admitting a Kusuoka representation. It turns out that in this

2For a random variable X with distribution F and α ∈ (0, 1), it holds that F (0) ⩾ α if and only if VaRL
α(X) ⩽ 0.

To see this, first assume that F (0) ⩾ α. By definition of VaR, we have VaRL
α(X) = inf{x : F (x) ⩾ α} ⩽ 0 as

0 ∈ {x : F (x) ⩾ α}. Next assume that VaRL
α(X) ⩽ 0, that is, inf{x : F (x) ⩾ α} ⩽ 0. There exist xn ↓ 0 as n → ∞

such that F (xn) ⩾ α. By right-continuity of F , we have F (0) ⩾ α.

13



setting the choice of Wasserstein ball—specifically, the order p—is decisive: the regimes p > 1

and p = 1 behave fundamentally differently. We first show that when p > 1, the loss-function

condition (11) identified in the preceding section remains necessary, even after restricting attention

to coherent risk measures.

Theorem 3. For p > 1, let f : Rn → R be a function. There exists cf ⩾ 0 such that

sup
F∈Bp(F0,ε)

ρF (f(ξ)) = sup
G∈Cp(f |F0,cf ε)

ρG(X) (19)

holds for any ρ ∈ Rcoh , F0 ∈ M(Rn) and ε > 0 if and only if f satisfies (11).

Similar to Proposition 4, (11) remains necessary even if projection equivalence is required to

hold only for a single coherent risk measure—namely, expectation.

Proposition 5. For p > 1, let f : Rn → R be a function. There exists cf ⩾ 0 such that

sup
F∈Bp(F0,ε)

EF [f(ξ)] = sup
G∈Cp(f |F0,cf ε)

EG[X]

holds for any F0 ∈ M(Rn) and ε > 0 if and only if f satisfies (11).

In sharp contrast, the case p = 1 is markedly different: under the type-1 Wasserstein ball,

projection equivalence can hold for a significantly broader class of loss functions. We provide a

complete characterization of this class.

Theorem 4. Let ρ ∈ Rcoh and f : Rn → R be a function. The following statements hold.

(i) If f is Lipschitz continuous and there exist x0 ∈ Rn and vk ∈ Rn with ∥vk∥ = 1, k ∈ N such

that

lim
k→∞

lim sup
m→∞

1

m
(f(x0 +mvk)− f(x0)) = Lip(f), (20)

then for any F0 ∈ M (Rn) and ε > 0, it holds with cf = Lip(f) that

sup
F∈B1(F0,ε)

ρF (f (ξ)) = sup
G∈C1(f |F0, cf ε)

ρG(X). (21)

(ii) If there exists a bounded set K ⊆ Rn such that f coincides with some convex function on

Rn\K, then we have (20) is also necessary for (21) to hold for any F0 ∈ M (Rn) and ε > 0.

14



(iii) If f is convex, then there exists cf ⩾ 0 such that (21) holds for any F0 ∈ M(Rn) and ε > 0

if and only if f is Lipschitz continuous.

Conditions (ii) and (iii) establish necessity of the characterization (20) for, respectively, poten-

tially nonconvex and convex loss functions. In particular, condition (ii) shows that (20) is necessary

for any loss function with a “convex tail”. We conclude this section by presenting examples of loss

functions that satisfy (20).

Example 4. The following are examples of Lipschitz continuous functions that satisfy (20).

(i) Norm-based check loss: f(x) =
(
τ − 1{∥x∥⩽c}

)
(∥x∥ − c), where τ ⩾ 1/2 and c ⩾ 0. Then

Lip(f) = τ . One can verify that f(x) = τ(∥x∥ − c) on Rn \ K with K := {x : ∥x∥ ⩽ c}.

(ii) Huber check loss: f(x) =
(
τ − 1{gα(∥x∥)⩽c}

)
(gα(∥x∥) − c), where τ ⩾ 1/2, c ⩾ 0, α > 0, and

gα is the Huber loss (Huber (1992)) defined by

gα(z) :=


z2

2 , |z| ⩽ α,

α(|z| − α
2 ), |z| > α.

Then Lip(f) = ατ and f(x) = τ(gα(∥x∥)− c) on Rn \ K with K := {x : gα(∥x∥) ⩽ c}.

(iii) Log-exponential check loss: f(x) =
(
τ − 1{h(∥x∥)⩽c}

)
(h(∥x∥) − c), where τ ⩾ 1/2, c ⩾ 0 and

h(z) := log(1 + exp(z)). We have Lip(f) = τ and f(x) = τ(h(∥x∥) − c) on Rn \ K with

K := {x : h(∥x∥) ⩽ c}.

4 From Projection Equivalence to Regularization

In this section, we highlight a further payoff of projection equivalence: it pinpoints the pairs

of risk measures ρ and loss functions f for which Wasserstein DRO admits an exact regularization

representation. Such representations replace the worst-case problem by a nominal risk plus an

explicit linear penalty, yielding a tractable and interpretable reformulation. Existing results of

this type, however, are largely confined to affine losses f ; see Wu et al. (2022). We show, at a

general level, that the existence of an exact regularization representation is equivalent to projection

equivalence. We say that (f, ρ) admits an exact regularization representation over the Wasserstein

ball Bp(F0, ε) if there exists a constant creg > 0 such that

sup
F∈Bp(F0,ε)

ρF
(
f(ξ)

)
= ρF0

(
f(ζ)

)
+ creg ε, (22)
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where ξ ∼ F and ζ ∼ F0. The constant creg generally depends on the underlying Wasserstein metric

(e.g., its order and ground norm), as well as on ρ and f .

As a minimal prerequisite, we assume that ρ admits an exact regularization identity in one

dimension. Specifically, for any baseline distribution G0 on R and any ε > 0, there exists a constant

c̄ > 0 such that

sup
G∈Bp(G0,ε)

ρG(ξ) = ρG0(ζ) + c̄ ε, (23)

where ξ ∼ G and ζ ∼ G0. Clearly, (23) is the one-dimensional special case of (22). Apply (23)

with the reference distribution chosen as the pushforward G0 := f#F0 (i.e., the law of f(ζ) under

ζ ∼ F0). This yields

sup
G∈Cp(f |F0,c̃ε)

ρG(X) = ρF0
(
f(ζ)

)
+ creg ε,

where creg = c̃ c̄. Consequently, (22) holds if and only if

sup
F∈Bp(F0,ε)

ρF
(
f(ξ)

)
= sup

G∈Cp(f |F0,c̃ ε)
ρG(X),

which is precisely projection equivalence.

Unlike the previous section, which established projection equivalence for broad classes of risk

measures, we now restrict attention to risk measures satisfying (23). For each such family, we

characterize the loss functions f for which projection equivalence holds. As noted in Section 3.3,

the analysis bifurcates fundamentally between higher-order Wasserstein balls (p > 1) and the type-1

Wasserstein ball; we treat them separately in Sections 4.1 and 4.2, respectively.

4.1 Type-p Wasserstein Ball (p > 1)

Lp-norm risk

We begin with the higher-order Lp-risk functional

sup
F∈Bp(F0,ε)

(
EF
[
fp(ξ)

])1/p
, (24)

where f : Rn → R+ and Bp(F0, ε) denotes the type-p Wasserstein ball of radius ε centered at F0.

A one-dimensional exact regularization identity is available for the absolute-value loss. In par-

ticular, Wu et al. (2022) shows that for any G0 on R and any ε > 0,

sup
G∈Bp(G0,ε)

(
EG[|ξ|p]

)1/p
=
(
EG0 [|ζ|p]

)1/p
+ ε, (25)
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where ξ ∼ G and ζ ∼ G0. By setting G0 := f#F0, this in turn implies

sup
G∈Cp(f |F0,cf ε)

(
EG[|X|p]

)1/p
=
(
EF0
[
fp(ζ)

])1/p
+ cf ε. (26)

As noted earlier, an exact regularization counterpart of (24) follows once projection equivalence

between (24) and (26) is established. For convex f , this condition can be characterized exactly.

Theorem 5. Let f : Rn → R+ be convex and let p ∈ (1,∞). The following are equivalent:

(i) There exists cf ⩾ 0 such that for every F0 ∈ M(Rn) and ε > 0,

sup
F∈Bp(F0,ε)

(
EF
[
fp(ξ)

])1/p
= sup
G∈Cp(f |F0,cf ε)

(
EG[|X|p]

)1/p
=
(
EF0
[
fp(ζ)

])1/p
+ cfε. (27)

(ii) There exist βi ∈ Rn with ∥βi∥∗ = 1 and bi ∈ R, i ∈ I, such that

f(x) =
(
max
i∈I

{cf β⊤
i x+ bi}

)
+
. (28)

Two takeaways follow. First, once we specialize ρ to the Lp-risk functional, projection equiv-

alence—and hence an exact regularization identity of the form (27)—holds for a class of losses

that differs from that in Proposition 3. Second, the result is also an impossibility statement: an

exact regularization counterpart is impossible for any convex loss function f that does not admit

the representation (28). Notably, (28) subsumes, as special cases, the hinge-type losses and their

variants studied in Theorem 4 and Corollary 1 of Wu et al. (2022).

Inf-form risk functionals

We next consider a broad class of inf-form risk functionals defined through an auxiliary scalar

parameter. Specifically, for p ∈ (1,∞) we study

HF
p (X) = inf

t∈R

{
t+

(
EF [ℓp(X, t)]

)1/p}
, (29)

where ℓ : R × R → [0,∞) is convex in its second argument t. To preclude degenerate cases

and ensure that the infimum is attained at a finite value of t,3 we impose the boundary–slope

condition limt→−∞ ∂tℓ(z, t) < −1 < limt→∞ ∂tℓ(z, t),∀z ∈ R, with ∂t interpreted as a subgradient

3These conditions exclude some trivial cases. For instance, if limt→−∞ ∂tℓ(z, t) ⩾ −1, then ℓ(z, t) is increasing in t
and the infimum of t+(EF [ℓp(X, t)])1/p can be achieved at t = −∞, rendering the problem uninformative. Analogous
issues arise if limt→∞ ∂tℓ(z, t) ⩽ −1. When ℓ is not everywhere differentiable in t, interpret ∂t as any selection from
the subdifferential and the limits as one-sided outer limits of subgradients.
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selection when ℓ is not differentiable. This formulation encompasses many widely used risk measures,

including higher-moment and related functionals.

For two canonical choices of ℓ, namely ℓ(z, t) = c(z − t)+ and ℓ(z, t) = c(z + |t|)+, an exact

one-dimensional regularization identity is available; see Wu et al. (2022)

sup
G∈Bp(G0,ε)

HG
p (ξ) = HG0

p (ζ) + ε.

Combining this identity with the projection-equivalence mechanism developed earlier (Proposi-

tion 3), we obtain an immediate sufficient condition for exact regularization in higher dimensions,

which extends the corresponding result in Wu et al. (2022).

Corollary 1. For p ∈ (1,∞) and c > 1, let Hp be defined by (29) with loss ℓ. If ℓ(z, t) = c(z− t)+

or ℓ(z, t) = c(z + |t|)+, then for βi ∈ Rn with ∥βi∥∗ = 1 and bi ∈ R, i ∈ I, it holds that

sup
F∈Bp(F0,ε)

HF
p

(
max
i∈I

{β⊤
i ξ + bi}

)
= HF0

p

(
max
i∈I

{β⊤
i ζ + bi}

)
+ cε. (30)

As we show next, for the hinge-type loss ℓ(z, t) = c(z − t)+, which subsumes a number of

standard higher-order risk measures as special cases, we can strengthen the preceding discussion by

establishing an impossibility result.

Proposition 6. For p ∈ (1,∞) and c > 1, let f : Rn → R be a convex function and Hp be defined

by (29) with loss ℓ(z, t) = c(z − t)+. There exists cf ⩾ 0 such that

sup
F∈Bp(F0,ε)

HF
p (f(ξ)) = sup

G∈Cp(f |F0,cf ε)
HG

p (Z) = HF0
p (f(ζ)) + cfcε (31)

holds for any F0 ∈ M(Rn) and ε > 0 if and only if f satisfies (12).

Distortion risk functionals

We now turn to distortion risk functionals, a classical and widely used generalization of the

expectation (Yaari (1987), Schmeidler (1989)). A risk measure ρh is called a distortion risk measure

if

ρFh (Z) =

∫ 1

0
VaRF

u (Z) dh(u),
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where h : [0, 1] → [0, 1] is increasing with h(0) = 0 and h(1) = 1. Throughout, we focus on convex

distortions h, for which ρh is coherent, i.e., ρh ∈ Rcoh. We further define

∥h′∥q :=
(∫ 1

0
(h′(u))q du

)1/q

,

where h′ denotes the left derivative of h.

A one-dimensional exact regularization identity is available for ρh (see, e.g., Wu et al. (2022)):

sup
G∈Bp(G0,ε)

ρGh (ξ) = ρG0
h (ζ) + ε ∥h′∥q, (32)

where ξ ∼ G and ζ ∼ G0. Combining the projection-equivalence result in Theorem 3 with the

identity above yields an immediate sufficient condition for an exact regularization reformulation.

Less obviously, the result below establishes sharpness: even when attention is restricted to distortion

risk measures, the structural condition in Theorem 6 remains necessary. Consequently, an exact

regularization counterpart is impossible outside that class.

Theorem 6. For p > 1, let h be a convex distortion function satisfying ∥h′∥q ∈ R, and f : Rn → R

be a function. There exists cf ⩾ 0 such that

sup
F∈Bp(F0,ε)

ρFh (f(ξ)) = sup
G∈Cp(f |F0,cf ε)

ρGh (X) = ρF0
h (f(ζ)) + cfε∥h′∥q (33)

holds for any F0 ∈ M(Rn) and ε > 0 if and only if f is given by (11).

4.2 Type-1 Wasserstein Ball

The type-1 case is qualitatively different. As noted in Section 3.3, projection equivalence can

hold for a substantially broader class of losses f when p = 1 than when p > 1. We show that the

same relaxation carries over to the risk measures considered above: in the type-1 setting, exact

regularization holds under weaker conditions on f , leading to a strictly larger admissible class.

Inf-form risk functionals

We first revisit the inf-form functionals in (29) in the type-1 setting. Specializing to p = 1,

the functional H1 defined in (29) admits a convenient expectation form. For a given loss ℓ, define

ℓ1(z, t) := t+ ℓ(z, t). Then

HF
1 (X) = inf

t∈R
EF
[
ℓ1(X, t)

]
. (34)
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We assume that ℓ1 : R2 → R is convex in its second argument t and satisfies the boundary–slope

condition limt→−∞ ∂tℓ1(z, t) < 0 < limt→∞ ∂tℓ1(z, t),∀z ∈ R, which ensures that the infimum in

(34) is non-degenerate and attained at a finite value of t.

Even in one dimension, exact regularization identities for the worst-case problems in (34) are

available only for a few special losses ℓ1. For a general ℓ1, it remains largely open to characterize

which loss functions f admit an exact regularization counterpart. We do not pursue a complete

characterization here; instead, we provide a broad sufficient condition.

Proposition 7. Let f : Rn → R satisfy the condition of Theorem 4(i), and let H1 be given in (34)

with loss function ℓ1 : R2 → R satisfying Lip(ℓ1(·, t)) = b ∈ R+ for all t ∈ R and for each t ∈ R

there exists z0(t) such that

lim
m→∞

ℓ1(z0(t) +m, t)− ℓ1(z0(t), t)

m
= b. (35)

It holds that for any F0 ∈ M(Rn) and ε > 0,

sup
F∈B1(F0,ε)

HF
1 (f(ξ)) = HF0

1 (f(ζ)) + bLip(f)ε. (36)

Note that when ℓ1 is such that the induced risk functional H1 is coherent, the regulariza-

tion results above follow directly by combining the one-dimensional identity with the projection-

equivalence result in Theorem 4. Proposition 7, however, applies more broadly: depending on ℓ1,

the functional H1 in (34) need not be coherent and may not even be monotone.

Condition (35) is mild. In particular, if for every t ∈ R the map z 7→ ℓ1(z, t) is convex and

satisfies Lip(ℓ1(·, t)) = b, then (35) holds automatically. Many standard loss functions satisfy this

requirement, along with the assumptions of Proposition 7.

Example 5. The following are concrete examples of functions ℓ1 that satisfy the assumptions in

Proposition 7.

(i) Quantile loss (Koenker and Bassett (1978)): ℓ1(z, t) = α(z−t)++(1−α)(z−t)−, α ∈ [1/2, 1),

which satisfies Lip(ℓ1(·, t)) = α for every t and (35) holds with b = α. In this case, HF
1 (X)

reduces to the expected check loss.

(ii) Huber loss (Huber (1992)): For α > 0,

ℓ1(z, t) =


(z−t)2

2 , |z − t| ⩽ α,

α(|z − t| − α
2 ), |z − t| > α,
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which satisfies Lip(ℓ1(·, t)) = α for every t and (35) holds with b = α.

(iii) Pseudo-Huber loss: For α > 0, ℓ1(z, t) = α2
(√

1 + ((z − t)/α)2 − 1
)
, which satisfies Lip(ℓ1(·, t)) =

α for every t and (35) holds with b = α.

Distortion risk functionals

We next revisit distortion risk measures in the type-1 setting. In contrast to the higher-order

case p > 1, where exact regularization typically forces a rigid structure on the loss f , the type-1

geometry allows exact regularization to hold for a substantially broader class of losses. In particular,

worst-case distortion risks over B1(F0, ε) admit regularization counterparts under markedly weaker

requirements on f than those identified in Section 4.1. The following result provides a general

sufficient condition, obtained by combining the one-dimensional regularization identity for distortion

risk measures (see, e.g., Kuhn et al. (2025), Wu et al. (2022)) with the projection-equivalence result

in Theorem 4.

Proposition 8. Let h be an increasing and convex distortion function satisfying ∥h′∥∞ ∈ (0,∞),

and let f : Rn → R satisfy the conditions of Theorem 4 (i). We have

sup
F∈B1(F0,ε)

ρFh (f (ξ)) = ρF0
h (f (ζ)) + Lip(f)ε

∥∥h′∥∥∞ .

holds for any F0 ∈ M(Rn) and ε > 0.

Expectile risk functionals

Before moving on, we pause to highlight that the type-1 setting supports more than the exact

regularization identities derived for the specific functionals above. Once projection equivalence is

available, it can also serve as a general device for obtaining other “regularization-like” reformulations

for coherent risk measures. To illustrate, we consider the expectile (Newey and Powell (1987)). For

a risk X with distribution F , the α-expectile exFα (X) is defined as the unique solution x to

αEF [(X − x)+] = (1− α)EF [(X − x)−], (37)

and it is coherent when α ⩾ 1
2 (Bellini et al. (2014)). By Theorem 4, if f satisfies the conditions of

Theorem 4(i), then

sup
F∈B1(F0,ε)

exFα
(
f(ξ)

)
= sup

G∈C1(f |F0,Lip(f)ε)
exGα (X).
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The next proposition shows that the worst-case expectile can be characterized equivalently as the

solution to a regularized version of (37).

Proposition 9. For α ∈ [1/2, 1], F0 ∈ M(Rn), ε > 0, and a function f satisfying the conditions

in Theorem 4(i), we have supF∈B1(F0,ε) ex
F
α (f (ξ)) is the unique solution to

EF0 [α(f(ζ)− x)+ − (1− α)(f(ζ)− x)−] + αLip(f)ε = 0.

5 Classification

As a natural extension of the Wasserstein DRO problem (1), we now turn to a setup motivated

by classification in machine learning. Here, the random vector consists of a class label and a feature

vector, ξ = (Y,X) ∈ Ξ, where Ξ := {−1, 1}×Rn ⊆ Rn+1, with Y denoting a binary label and X the

associated features. The classification task is to select a decision function f : Rn → R, interpreted

as a classifier, from a class A to predict the sign of Y given X.

To capture distributional robustness, we equip Ξ with the type-p Wasserstein metric

Wp (F1, F2) := inf
π∈Π(F1,F2)

(Eπ[d(ξ1, ξ2)
p])1/p ,

where Π(F1, F2) is the set of all distributions on Ξ with marginals F1 and F2 supported on Ξ, the

distance between ξ1 = (Y1,X1) and ξ2 = (Y2,X2) is defined via the additively separable form

d(ξ1, ξ2) = ∥X1 −X2∥+Θ(Y1 − Y2) , (38)

with ∥ · ∥ a norm on Rn. The penalty function Θ : R → {0,∞} is specified by Θ(0) = 0 and

Θ(s) = ∞ for s ̸= 0. Hence, the metric prohibits perturbations in the label Y while allowing

adversarial shifts in the feature space X.

For a nominal distribution F0 ∈ Mp(Ξ) and robustness radius ε > 0, the distributionally robust

classification problem is given by

inf
f∈A

sup
F∈Bp(F0,ε)

ρF
(
Y · f(X)

)
,

where Bp(F0, ε) := {F ∈ M(Ξ) : Wp (F, F0) ⩽ ε}, and ρ is a risk functional applied to the margin

Z := Y · f(X).

To study projection equivalence in this setting, let (Y0,X0) ∼ F0 and denote by G0 the distri-
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bution of the baseline margin Y0 · f(X0). We introduce the one-dimensional Wasserstein ball

Cp(f |F0, ε) := Bp(G0, ε) ⊆ M(R).

A classifier f admits classification projection equivalence if

sup
F∈Bp(F0,ε)

ρF (Y · f(X)) = sup
G∈Cp(f |F0,cf ε)

ρG(Z)

for some constant cf ⩾ 0.

As shown below, in contrast to projection equivalence in Section 3, classification projection

equivalence holds only for classifiers f that strictly satisfy set-level equivalence. This requirement

remains even when ρ is restricted to the monotone class Rmon, underscoring that exact reduction

in classification demands stronger conditions than in the typical Wasserstein DRO framework (1).

Proposition 10. For p ⩾ 1 and α ∈ [0, 1), let f : Rn → R be a function. The following statements

are equivalent.

(i) There exists cf ⩾ 0 such that

sup
F∈Bp(F0,ε)

ρF (Y · f(X)) = sup
G∈Cp(f |F0,cf ε)

ρG(X) (39)

holds for any ρ ∈ Rmon, F0 ∈ M(Ξ), and ε > 0.

(ii) There exists cf ⩾ 0 such that for any F0 ∈ M(Ξ) and ε > 0, it holds that

{FY ·f(X) : F(Y,X) ∈ Bp(F0, ε)} = Cp(f |F0, cfε). (40)

(iii) The function f is Lipschitz continuous, and satisfies (8).

Moreover, this necessity remains even under specialized risk measures; in particular, the char-

acterization (8) is still required when the risk functional is Value-at-Risk.

Proposition 11. For α ∈ [0, 1) and p ⩾ 1, let f : Rn → R be a function. There exists cf ⩾ 0 such

that

sup
F∈Bp(F0,ε)

VaRF
α (Y · f(X)) = sup

G∈Cp(f |F0,cf ε)

VaRG
α (X) (41)

holds for any F0 ∈ M(Ξ) and ε > 0 if and only if f satisfies (8).
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Recall that when the norm ∥ · ∥ = ∥ · ∥a is the ℓa-norm for some a ∈ [1,∞), Propositions 1

and 2 identify explicit loss-function forms under which projection equivalence holds. Combining

these loss-function forms with Proposition 10 and the one-dimensional regularization representation

for convex distortion risk measures, i.e. (32), yields the following regularization reformulation

for distributionally robust classification under distortion risk measures (see Wu et al. (2022) for

examples of such classification formulations), linking robust classification directly to a familiar

paradigm in machine learning.

Corollary 2. For p ⩾ 1, F0 ∈ M(Ξ) with (Y0,X0) ∼ F0, let h be an increasing and convex

distortion function satisfying ∥h′∥q ∈ (0,∞). We have the following statements.

(i) If f(x) = β⊤x+ b for some β ∈ Rn and b ∈ R, we have

sup
F∈Bp(F0,ε)

ρFh (Y · f(X)) = ρF0
h (Y0 · f(X0)) + ∥β∥∗ε∥h′∥q.

(ii) If ∥ · ∥ = ∥ · ∥1 is the ℓ1-norm and f is given by Proposition 1, then we have

sup
F∈Bp(F0,ε)

ρFh (Y · f(X)) = ρF0
h (Y0 · f(X0)) + cε∥h′∥q.

We note that while case (i) can also be obtained through a direct analysis of linear classi-

fiers, as shown in Wu et al. (2022), case (ii) emerges only within the more general framework of

Proposition 10.

6 Conclusion

In this work, we provide the first complete characterization of projection equivalence in Wasser-

stein distributionally robust optimization. Our central finding reveals that this powerful high-

dimensional reduction is not confined to the restrictive case of set-level equivalence but extends to

a much broader class of loss functions. By systematically navigating a hierarchy of risk function-

als, we establish a sharp boundary delineating precisely when a high-dimensional worst-case risk

evaluation simplifies to its one-dimensional counterpart. This foundational result, in turn, enables

us to derive necessary and sufficient conditions for Wasserstein DRO problems to admit exact reg-

ularization reformulations, unifying two central paradigms in optimization and machine learning.

Ultimately, our analysis delivers new classes of tractable models and establishes the fundamental

limits of such reductions, clarifying the structural properties that govern computational feasibility
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in distributionally robust optimization.

A Appendix: Proofs of the Main results

A.1 Proofs for Section 3

To prove Theorem 1, we need the following lemma.

Lemma A1. For any p ⩾ 1, ε > 0, α ∈ [0, 1) and f : Rn → R, we have

sup
E[∥ξ−x∥p]⩽εp

VaRα

(
f(ξ)

)
= sup

∥z−x∥⩽ε/(1−α)1/p
f(z), ∀x ∈ Rn. (A1)

Proof. Denote by ε0 = ε/(1 − α)1/p. Note that for any z ∈ Rn with ∥z − x∥ ⩽ ε0, we can define

ξ = x if f(z) ⩽ f(x) and ξ ∼ αδx + (1− α)δz if f(z) > f(x). In both cases, we have

E[∥ξ − x∥p] ⩽ (1− α)∥z− x∥p ⩽ εp and VaRα(f(ξ)) = max{f(z), f(x)}.

Thus,

sup
E[∥ξ−x∥p]⩽εp

VaRα(f(ξ)) ⩾ sup
∥z−x∥⩽ε0

f(z).

We next prove the converse inequality. For any ξ with E[∥ξ−x∥p] ⩽ εp, note that if P (∥ξ − x∥ > ε0) >

0, then

εp0P (∥ξ − x∥ > ε0) < E
[
∥ξ − x∥p1{∥ξ−x∥>ε0}

]
⩽ E[∥ξ − x∥p] ⩽ εp.

It follows that P(∥ξ − x∥ > ε0) < 1− α, that is, P(∥ξ − x∥ ⩽ ε0) > α. Thus

P

(
f(ξ) ⩽ sup

∥z−x∥⩽ε0

f(z)

)
⩾ P(∥ξ − x∥ ⩽ ε0) > α.

By the definition of VaR, it follows that VaRα(f(ξ)) ⩽ sup∥z−x∥⩽ε0 f(z) for any ξ with E[∥ξ−x∥p] ⩽

εp. Therefore, the converse direction holds and we complete the proof.

Proof of Theorem 1. Note that the implication (ii) ⇒ (i) is trivial. We only give the proof of

(i) ⇒ (iii) and (iii) ⇒ (ii).

For (i) ⇒ (iii), we first consider the case cf = 0. Choose ρ = VaRα for some α ∈ [0, 1) and take
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F0 = δx for x ∈ Rn. In this case, (6) reduces to

sup
E[∥ξ−x∥p]⩽εp

VaRα (f(ξ)) = sup
E[|X−f(x)|p]⩽0

VaRα (X) = f(x). (A2)

This, together with (A1) in Lemma A1, implies

sup
∥z−x∥⩽ε/(1−α)1/p

f(z) = f(x), ∀ ε > 0.

By x is arbitrary, we have f is a constant function, which completes the proof for cf = 0. We

next consider the case where cf > 0. Without loss of generality, set cf = 1. For ρ = VaRα with

α ∈ [0, 1), we first show that (6) implies that

sup
∥y∥⩽ε

f(x+ y)− f(x) = ε, ∀x ∈ Rn, ε > 0. (A3)

To that end, take F0 = δx for x ∈ Rn. In this case, (6) reduces to

sup
E[∥ξ−x∥p]⩽εp

VaRα(f(ξ)) = sup
E[|Z−f(x)|p]⩽εp

VaRα(Z). (A4)

By Lemma A1, we have (A1) and

sup
E[|Z−f(x)|p]⩽εp

VaRα(Z) = sup
|z−f(x)|⩽ ε

(1−α)1/p

z = f(x) +
ε

(1− α)1/p
. (A5)

Combining (A1), (A5) and (A4) yields

sup
∥z−x∥⩽ ε

(1−α)1/p

f(z) = f(x) +
ε

(1− α)1/p
.

For α ∈ [0, 1), since ε > 0 is arbitrary, it follows that for any ε > 0 and x ∈ Rn,

sup
∥z−x∥⩽ε

f(z) = f(x) + ε,

that is, (A3) holds. This identity immediately implies that

|f(x)− f(y)| ⩽ ∥x− y∥, ∀x,y ∈ Rn,

and thus f is Lipschitz continuous with Lipschitz constant Lip(f) = 1. Moreover, since (6) holds
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for any risk measure, by taking ρ = −VaRα and repeating a similar argument, we obtain that for

all ε > 0 and x ∈ Rn,

f(x)− inf
∥y∥⩽ε

f(x+ y) = ε, ∀x ∈ Rn, ε > 0,

and thus (8) follows. This completes the proof of (i) ⇒ (iii).

For (iii) ⇒ (ii), first note that the case Lip(f) = 0 is trivial as (7) holds with cf = 0. We

next consider the case Lip(f) > 0. Assume without loss of generality that Lip(f) = 1. We aim

to show that (7) holds for cf = 1. Since f is 1-Lipschitz continuous, we have for any ξ, ζ with

E[∥ξ − ζ∥p] ⩽ εp, it holds that

E [|f(ξ)− f(ζ)|p] ⩽ E[∥ξ − ζ∥p] ⩽ εp,

which implies f#Bp(F0, ε) ⊆ Cp(f |F0, ε). To prove the reverse inclusion, it suffices to show that

for any G ∈ Cp(f |F0, ε) and Z ∼ G with E[|Z − f(ζ)|p] ⩽ εp, there exists a random vector ξ with

distribution Fξ ∈ Bp(F0, ε) such that f(ξ) = Z almost surely. To this end, denote by T := Z−f (ζ).

Then, we have E [|T |p] ⩽ εp. By the measurable selection theorem (See Theorem 3.5 in Rieder (1978);

see also Lemma EC.12 in Wu et al. (2022)), there exist measurable mappings V1 and V2 such that

V1(ω) ∈ argmax
∥y∥⩽|T (ω)|

f (ζ(ω) + y) and V2(ω) ∈ argmin
∥y∥⩽|T (ω)|

f (ζ(ω) + y) , ω ∈ Ω.

Then, denote by A+ := {ω : T (ω) ⩾ 0} and A− := {ω : T (ω) < 0} and define

ξ(ω) = (ζ(ω) +V1(ω))1A+(ω) + (ζ(ω) +V2(ω))1A−(ω), ω ∈ Ω,

which is measurable. As Ω = A+ ∪A−, we have

∥ξ(ω)− ζ(ω)∥ ⩽ max {∥V1(ω)∥ , ∥V2(ω)∥} ⩽ |T (ω)|, ω ∈ Ω,

and thus, E[∥ξ − ζ∥p] ⩽ E[|T |p] ⩽ εp. This implies Fξ ∈ Bp(F0, ε). Moreover, we have for ω ∈ A+

f (ξ(ω)) = f(ζ(ω) +V1(ω))

= max
∥y∥⩽|T (ω)|

f(y + ζ(ω)) = f (ζ(ω)) + T (ω) = Z(ω),

where the second equality follows from the definition of V1, the third equality follows from (8), and

the last equality follows from the definition of T , that is, T = Z − f (ζ). Similarly, one can verify
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that for ω ∈ A−,

f (ξ(ω)) = f(ζ(ω) +V2(ω)) = f (ζ(ω))− (−T (ω)) = Z(ω).

Therefore, Cp(f |F0, ε) ⊆ f#Bp(F0, ε), and (7) follows, completing the proof.

To prove Proposition 1, we need the following two lemmas, and the first lemma will be used

repeatedly throughout the appendix.

Lemma A2. Let f : Rn → R be a Lipschitz continuous function. We have the following statements

hold.

(i) If f satisfies

sup
∥y∥⩽ε

f(x+ y)− f(x) = Lip(f)ε, ∀x, ε ∈ R+, (A6)

then for each x ∈ Rn, there exists βx such that ∥βx∥ = 1 and

f(x+ εβx)− f(x) = Lip(f)ε, ∀ ε > 0. (A7)

(ii) If f satisfies

f(x)− inf
∥y∥⩽ε

f(x+ y) = Lip(f)ε, ∀x, ε ∈ R+,

then for each x ∈ Rn, there exists ηx such that ∥ηx∥ = 1 and

f(x)− f(x+ εηx) = Lip(f)ε, ∀ ε > 0.

Proof. (i) Without loss of generality, assume that Lip(f) = 1 and fix x ∈ Rn. By (A6) and the

Lipschitz continuouity, for each ε > 0, there exists βx,ε such that ∥βx,ε∥ = 1 and

f(x+ εβx,ε)− f(x) = ε∥βx,ε∥ = ε. (A8)

We assert that βx,ε can be chosen independently of ε. To show this, first note that for fixed ε > 0

28



and the chosen βx,ε, (A8) implies that

f(x+ ε′βx,ε)− f(x) = ε′∥βx,ε∥ = ε′, ∀ ε′ ∈ [0, ε]. (A9)

This is due to that if (A9) does not hold for some ε′ ∈ [0, ε], then we have f(x+ ε′βx,ε)− f(x) < ε′

by the 1-Lipschitz continuity of f , and thus,

f(x+ εβx,ε)− f(x) = f(x+ εβx,ε)− f(x+ ε′βx,ε) + f(x+ ε′βx,ε)− f(x)

⩽ ε− ε′ + f(x+ ε′βx,ε)− f(x) < ε,

where the first inequality follows from that f is 1-Lipschitz continuous. This yields a contradiction

to (A8). Therefore, by (A9), we have for each εn ⩾ n, n ∈ N, there exists βn ∈ Rn such that

∥βn∥ = 1 and

f(x+ εβn)− f(x) = ε, ∀ ε ∈ [0, εn].

By the Bolzano–Weierstrass theorem, for ∥βn∥ ⩽ 1, n ∈ N, there exists βx such that ∥βn−βx∥ → 0

as n → ∞. We thus have ∥βx∥ = 1 and by the 1-Lipschitz continuouity of f again,

f(x+ εβx)− f(x) = ε, ∀ ε ⩾ 0.

Thus, this completes the proof of (i).

(ii) The proof is similar to that of (i), and thus, is omitted.

Lemma A3. If ∥ · ∥ = ∥ · ∥1 is the ℓ1-norm, then f satisfies (8) if and only if for any x ∈ Rn, there

exist ẽi ∈ {±ei} and ẽj ∈ {±ej} for some i, j ∈ [n] such that

f(x+ εẽi)− f(x) = f(x)− f(x+ εẽj) = Lip(f)ε, ∀ ε > 0; (A10)

Proof. Without loss of generality, assume that Lip(f) = 1. If ∥ · ∥ = ∥ · ∥1, then by Lemma A2,

(A7) holds. That is, for any x ∈ Rn, there exists βx with ∥βx∥1 = 1 such that

f(x+ εβx)− f(x) = ε = ε
n∑

k=1

|βxk|, ∀ ε > 0. (A11)

Denote by x0 := x and xk := xk−1 + εβxkek, k ∈ [n], where βxk denotes the k-th component of βx.
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By Lipschitz continuity,

f(xk)− f(xk−1) ⩽ ε|βxk|, k ∈ [n]. (A12)

Summing over k yields

f(x+ εβx)− f(x) ⩽ ε

n∑
k=1

|βxk| = ε.

By (A11), the equality is attained, and hence each inequality in (A12) must be an equality. Take

i = min{k ∈ [n] : βxk ̸= 0}. Then we have xi−1 = x and f(xi)− f(x) = ε|βxi| with xi −x = εβxiei.

Since ε > 0 is arbitrary, we have there exists i ∈ [n] such that

f(x+ εẽi)− f(x) = ε, ∀ ε > 0,

where ẽi ∈ {±ei}, i ∈ [n]. By Lemma A2(ii), there also exists ηx with ∥ηx∥1 = 1 such that

f(x) − f(x + εηx) = ε, ∀ ε > 0. Applying the same reasoning as above, we conclude that (A10)

holds. This completes the proof.

Proof of Proposition 1. Without loss of generality, assume that c = 1.

(a) It suffices to verify that f is 1-Lipschitz continuous and satisfies (A10). Denote by I := {i ∈

[n], βi ̸= 0}. For any x,y ∈ Rn with x ̸= y,

f(x)− f(y) = β⊤(x− y) + g(η ◦ x)− g(η ◦ y)

⩽
∑
i∈I

|xi − yi|+ Lip(g)
∑

i∈[n]\I

|xi − yi| ⩽ ∥x− y∥1,

where the first inequality follows from Hölder’s inequality, and the second inequality follows from

that Lip(g) ⩽ 1. Thus f is 1-Lipschitz continuous. Next, for any x ∈ Rn and ε > 0, choose i ∈ I

and define v1 := sign(βi)ei, where sign(·) is the sign function. Then,

f(x+ εv1)− f(x) = β⊤(x+ εv1) + g(η ◦ (x+ εv1))
)
−
(
β⊤x+ g(η ◦ x)

)
= εβ⊤v1 + g(η ◦ x+ εη ◦ v1)− g(η ◦ x) = ε,

where the last equality follows from β⊤v1 = sign(βi)β
⊤ei = |βi| = 1 and η ◦v1 = sign(βi)η ◦ei = 0

for the chosen i ∈ I, since β ◦ η = 0. Similarly, for any x ∈ Rn and ε > 0, by choosing i ∈ I

and v2 := −sign(βi)ei, one can verify that f(x) − f(x + εv2) = ε. Hence, f satisfies (A10) with

Lip(f) = 1.

(b) It is straightforward to verify that f is 1-Lipschitz continuous. It remains to verify that f

satisfies (A10). We only prove that for any x ∈ Rn, there exists ẽi ∈ {±ei} for some i ∈ [n] such
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that

f(x+ εẽi)− f(x) = ε, ∀ ε > 0 (A13)

as the existence of ẽj can be verified by applying the same argument to −f . Denote by I1 = {i ∈

[n], βi ̸= 0}. We show it by considering the following two cases.

(i) If β⊤x ⩾ 0, then by taking ẽi = sign(βi)ei for some i ∈ I1, we have

f(x+ εẽi)−f(x) = |β⊤(x+ εẽi)| − |ν⊤(x+ εẽi)|+ g(η ◦ (x+ εẽi))−f(x)

− |β⊤x|+ |ν⊤x| − g(η ◦ x)

= ε−|ν⊤(x+ εẽi)|+|ν⊤x|+ g(η ◦ (x+ εẽi))− g(η ◦ x)

= ε,

where the second equality follows from that |β⊤x| = β⊤x and β⊤ẽi = sign(βi)β
⊤ei = |βi| = 1,

and the last equality follows from ν⊤ẽi = 0 and η ◦ ẽi = 0 by β ◦ η = ν ◦ η = 0. That is,

(A13) holds.

(ii) If β⊤x < 0, then by choosing ẽi := −sign(βi)ei for some i ∈ I1, one can similarly prove (A13)

holds.

Combining the above cases, we complete the proof.

Proof of Proposition 2. Without loss of generality, assume that Lip(f) = 1. It suffices to show that

(9) holds whenever f satisfies (8). We prove it by contradiction. Suppose there exist x,y ∈ Rn

such that f(x) ⩽ f(y) and ∥ηx − βy∥ < ∥ηx∥ + ∥βy∥ = 2. Define z = x + cηx and z1 = y + cβy.

There exists c large enough such that ∥x− y∥ < c(2− ∥βy − ηx∥), and thus,

c0 := ∥z1 − z∥ ⩽ ∥x− y∥+ c∥βy − ηx∥ < 2c.

This implies that

sup
∥w∥⩽c0

f(z+w)− f(z) ⩾ f(z1)− f(z) ⩾ f(z1)− f(y) + f(x)− f(z) = 2c,

where the second inequality follows from f(y) ⩾ f(x), and the equality follows from Lemma A2.

This yields a contradiction to (8). Thus, we have for any x,y ∈ Rn, if f(x) ⩽ f(y) (hence including

x = y), then ∥ηx − βy∥ = ∥ηx∥ + ∥βy∥. Since ∥ηx∥ = ∥βy∥ = 1 and the norm is strictly convex,

it follows that βx = −ηx = βy for all x and y ∈ Rn with f(x) ⩽ f(y). Otherwise we have
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∥ηx−βy∥ < 2, contradicting the requirement ∥ηx−βy∥ = ∥ηx∥+∥βy∥ = 2. Therefore, we have βx

can be chosen as the same β for all x ∈ Rn. It then follows that there exists v ∈ Rn with ∥v∥ = 1

such that

f(x)− f(x− εv) = f(x+ εv)− f(x) = ε, ∀x ∈ Rn, ε > 0.

Since the case ε = 0 is trivially satisfied, it implies that (9) holds for any x ∈ Rn and t ∈ R.

For ∥ · ∥ = ∥ · ∥a, a ∈ (1,∞), it suffices to show for any x, y ∈ Rn,

f(y)− f(x) = β⊤(y − x), (A14)

where β ∈ Rn is the unique vector satisfying β⊤v = ∥β∥∗∥v∥ = 1, that is, sign(βi) = sign(vi) for

i ∈ [n] and |βi|b = k|vi|a for some k > 0 and b is the conjugate constant of a. By (9), we know

(A14) holds for the case y − x = tv, t ∈ R. By β⊤v = 1, we have any vector in Rn can be written

as a linear combination of v and a vector u with β⊤u = 0 and thus, it suffices to show (A14) for

any y−x = tu with β⊤u = 0. We show it by contradiction. Suppose that there exist y and x such

that y − x = u, β⊤u = 0, and f(x) < f(y). Denote by ε = f(y)− f(x) > 0. Then we have

f(y + tv)− f(x) = f(y + tv)− f (y) + f (y)− f(x) = t+ ε,

and

∥y + tv − x∥a = ∥u+ tv∥a =

n∑
i=1

|ui + tvi|a.

It follows that

f(y + tv)− f(x)

∥y + tv − x∥
=

t+ ε

(
∑n

i=1 |ui + tvi|a)1/a
=

1 + sε

(
∑n

i=1 |sui + vi|a)1/a
, (A15)

where s = 1/t. Denote by I1 = {i : vi > 0}, I2 = {i : vi < 0}, I3 = {i : vi = 0, ui ̸= 0}, and

g(s) = (1 + sε)a −
∑n

i=1 |sui + vi|a. We have as s ↓ 0,

g′(s) = a(1 + sε)a−1ε−
∑
i∈I1

a(sui + vi)
a−1ui +

∑
i∈I2

a(−sui − vi)
a−1ui −

∑
i∈I3

asa−1|ui|a

sign
= (1 + sε)a−1ε−

∑
i∈I1

(sui + vi)
a−1ui +

∑
i∈I2

(−sui − vi)
a−1ui −

∑
i∈I3

sa−1|ui|a

→ ε−
∑
i∈I1

va−1
i ui +

∑
i∈I2

(−vi)
a−1ui = ε−

n∑
i=1

sign(vi)|vi|a−1ui = ε > 0,
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where the last equality follows from that β⊤u = 0, |βi| = k1|vi|a−1 and sign(vi) = sign(βi), i ∈ [n].

This, together with g(0) = 0, implies g(s) > 0 for some s > 0. Substituting this into (A15) yields

that f(y+tv)−f(x)
∥y+tv−x∥ > 1 for some t > 0. This yields a contradiction to (9). Therefore, we have (A14)

holds and thus we complete the proof.

Proof of Theorem 2. For (i) ⇒ (ii), we can employ the exact arguments to prove (A3) in the proof

for the direction (i) ⇒ (iii) of Theorem 1 where we choose ρ = VaRα for some α ∈ [0, 1) which

is a monotone risk measure to prove (A3) which is exactly the statement in (ii). It remains to

show (ii) ⇒ (i). Note that if Lip(f) = 0, then f is a constant function. Taking cf = 0, (10) holds

trivially. We next consider Lip(f) > 0. Assume without loss of generality that Lip(f) = 1. We aim

to show that (10) holds for cf := 1. First note that for any random vector ξ with E[∥ξ− ζ∥p] ⩽ εp,

by 1-Lipschitz continuity of f , we have

E [|f(ξ)− f(ζ)|p] ⩽ E[∥ξ − ζ∥p] ⩽ εp,

and thus, {Ff(ξ) : Fξ ∈ Bp(F0, ε)} ⊆ Cp(f |F0, ε). It follows that

sup
F∈Bp(F0,ε)

ρF (f(ξ)) ⩽ sup
G∈Cp(f |F0,ε)

ρG(X). (A16)

We next show the reverse direction. It suffices to demonstrate that for any G ∈ Cp(f |F0, ε) and

Z ∼ G with E[|Z − f(ζ)|p] ⩽ εp, there exists Fξ ∈ Bp(F0, ε) and ξ ∼ Fξ such that

ρFξ(f(ξ)) ⩾ ρG(Z).

To this end, take G ∈ Cp(f |F0, ε) and Z ∼ G. Define Z∗ = max{f(ζ), Z} and denote by G∗ the

distribution of Z∗. We have ρG(Z) ⩽ ρG
∗
(Z∗) and E[|Z∗ − f(ζ)|p] ⩽ E[|Z − f(ζ)|p] ⩽ εp, and thus,

G∗ ∈ Cp(f |F0, ε). So, without loss of generality, assume that Z ⩾ f(ζ) almost surely. Denote by

T := Z − f(ζ). We have T ⩾ 0 almost surely and E[T p] ⩽ εp. With similar arguments as in the

proof of Theorem 1 (iii) ⇒ (ii), there exists a measurable mapping V such that

V(ω) ∈ argmax
∥y∥⩽T (ω)

f (ζ(ω) + y) , ω ∈ Ω.

Define ξ(ω) = ζ(ω) +V(ω), ω ∈ Ω. It follows that for any ω ∈ Ω,

f(ξ(ω)) = f(ζ(ω) +V(ω)) = max
∥y∥⩽T (ω)

f(ζ(ω) + y) = f(ζ(ω)) + T (ω) = Z(ω).
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where the second equality follows from the definition of V, the third equality follows from (11)

and the last one follows from the deifnition of T . Moreover, noting that E[∥ξ − ζ∥p] = E[∥V∥p] ⩽

E[T p] ⩽ εp, we have Fξ ∈ Bp(F0, ε). Hence

sup
F∈Bp(F0,ε)

ρF (f(ξ)) ⩾ sup
G∈Cp(f |F0,ε)

ρG(X). (A17)

Combining (A17) and (A16), we have (10) holds, completing the proof.

Proof of Proposition 3. Note that the case Lip(f) = 0 is trivial. It suffices to consider the case

Lip(f) > 0. Without loss of generality, let f satisfy (11) with Lip(f) = 1. We first show that for

each x ∈ Rn, there exists ηx ∈ ∂f(x) such that

∥ηx∥∗ = 1, (A18)

where ∂f(x) denotes the subdifferential of f at x. Note that by Lemma A2, for every x ∈ Rn, there

exists βx ∈ Rn with ∥βx∥ = 1 such that

f(x+ εβx)− f(x) = ε, ∀ ε > 0.

This implies that the directional derivative of f at x at direction βx equals to 1. Therefore, by

Theorem 23.4 of Rockafellar (1970), there exists a subgradient ηx ∈ ∂f(x) such that η⊤
x βx = 1,

and hence,

η⊤
x βx = 1 ⩽ ∥ηx∥∗∥βx∥ = ∥ηx∥∗.

It then follows from ∥ηx∥∗ ⩽ 1 by the 1-Lipschitz continuity of f that (A18) holds. Note that a

convex function f can be written as

f(x) = max
z∈Rn

{f(z) + η⊤
z (x− z)}.

We have (12) holds and thus, we complete the proof.

Proof of Proposition 4. The “if” part is a direct consequence of (iii) ⇒ (i) in Theorem 2 and the

“only if” part has been already proved in the argument for (i) ⇒ (iii) in Theorem 2.

Proof of Lemma 1. Note that (14) holds, that is,

sup
F∈Bp(F0,ε)

VaRF
α

(
max
i∈I

β⊤
i ξ

∥βi∥∗

)
= sup

G∈Bp(G0,ε)
VaRG

α (X) =: VaRα(G0),
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where G0 ∈ M(R) is the distribution of maxi∈I β
⊤
i ζ/∥βi∥∗ and ζ ∼ F0. Hence, it suffices to show

VaRα(G0) is the unique solution of x to (15). By Proposition 4 of Liu et al. (2022), we have that

VaRα(G0) equals to the unique solution to

∫ 1

α
(x−VaRG0

u (X))p+du = εp. (A19)

Note that VaRu(h(X)) = h(VaRu(X)) for h(t) = −(x− t)p+ which is an increasing and continuous

function in t ∈ R. It follows that (A19) is equivalent to

∫ 1

α
−VaRG0

u

(
−(x−X)p+

)
du = εp,

or equivalently,

CVaRG0
α

(
−(x−X)p+

)
=

1

1− α

∫ 1

α
VaRG0

u

(
−(x−X)p+

)
du = − εp

1− α
,

Therefore, VaRα(G0) is the unique solution of x to (15), which completes the proof.

To prove Theorem 3, we need the following lemma. We call a function f continuous, if it is

continuous with respect to the distance induced by the norm ∥ · ∥.

Lemma A4. Let f : Rn → R be a continuous function. If there exist x0 ∈ Rn and ε0 > 0 such that

k := sup
∥y∥⩽ε0

f(x0 + y)− f(x0)

ε0
< 1, (A20)

then for any k1 ∈ (k, 1), there exist x1 ∈ Rn and ε1 > 0 such that

f(x1 + y)− f(x1) ⩽ k1∥y∥, ∀y with ∥y∥ ⩽ ε1.

Proof. For k1 ∈ (k, 1), define g(y) = f(x0 + y) − k1∥y∥, y ∈ Rn, which continuous as f is con-

tinuous. Noting that {y : ∥y∥ ⩽ ε0} is compact, there exists y∗ with ∥y∗∥ ⩽ ε0 such that

g(y∗) = max∥y∥⩽ε0 g(y). Moreover, note that for any y with ∥y∥ = ε0, we have

g(y) = f(x0 + y)− k1ε0 ⩽ f(x0) + kε0 − k1ε0 < f(x0) = g(0) ⩽ g(y∗),

where the first inequality follows from the definition of k and the strict one from k < k1. Therefore,

we have ∥y∗∥ < ε0. Define

x1 = x0 + y∗ and ε1 = ε0 − ∥y∗∥.
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For any y with ∥y∥ ⩽ ε1, we have ∥y+y∗∥ ⩽ ∥y∥+ ∥y∗∥ ⩽ ε1+ ∥y∗∥ = ε0. Then, by the definition

of y∗, we have

f(x0 + y∗ + y)− k1∥y∗ + y∥ = g(y + y∗) ⩽ g(y∗) = f(x0 + y∗)− k1∥y∗∥,

and hence

f(x1 + y)− f(x1) ⩽ k1(∥y∗ + y∥ − ∥y∗∥) ⩽ k1∥y∥, ∀ ∥y∥ ⩽ ε1.

This completes the proof.

Proof of Theorem 3. The “if” part is a direct consequence of (i) ⇒ (ii) in Theorem 2. For the “only

if” part, suppose that there exists cf ⩾ 0 such that (19) holds for any F0 ∈ M(Rn) and ε > 0. If

cf = 0, then (19) reduces to

sup
F∈Bp(F0,ε)

ρF (f(ξ)) = sup
G∈Cp(f |F0,0)

ρG(X) = ρF0(f(ζ)). (A21)

We show that f is a constant function by contradiction. Suppose there exist x,y ∈ Rn such that

f(x) < f(y). Take F0 = δx and ε = ∥x− y∥. Then we have δy ∈ Bp(F0, ε) and thus,

sup
F∈Bp(F0,ε)

ρF (f(ξ)) ⩾ ρδy(f(ξ)) = f(y) > f(x) = ρF0(f(ζ)),

which contradicts (A21). Therefore, f is a constant function and thus satisfies (11). Now consider

the case cf > 0. By the positive homogeneity of ρ, we assume without loss of generality that cf = 1.

For ρ = E, equation (19) then becomes

sup
E∥ξ∥p⩽εp

E[f(ξ + ζ)] = sup
E|X|p⩽εp

E[X + f(ζ)] = EF0 [f(ζ)] + ε, (A22)

where ζ ∼ F0, the second equality follows from Theorem 3 in Wu et al. (2022). We next show

that (A22) implies

sup
∥y∥⩽ε

f(x+ y)− f(x) = ε, ∀ x ∈ Rn, ε > 0. (A23)

To see it, first note that for any x,y ∈ Rn, by setting ζ ∼ F0 := δx and ε := ∥y − x∥, we have

(A22) implies

f(y) ⩽ sup
E∥ξ∥p⩽εp

E[f(ξ + x)] = f(x) + ε = f(x) + ∥y − x∥.
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It follows that f is Lipschitz continuous with Lip(f) ⩽ 1. Thus, we have

sup
∥y∥⩽ε

f(x+ y)− f(x) ⩽ ε, ∀ x ∈ Rn, ε > 0.

We next show that f satisfies (A23) by contradiction. Suppose, for contradiction, that there exist

x0 ∈ Rn and ε0 > 0 such that

sup
∥y∥⩽ε0

f(x0 + y)− f(x0) < ε0. (A24)

We next consider two cases: p = ∞ and p ∈ (1,∞). When p = ∞, we have

sup
ess-sup(∥ξ∥)⩽ε0

E[f(x0 + ξ)] ⩽ E

[
sup

∥y∥⩽ε0

f(x0 + y)

]
= sup

∥y∥⩽ε0

f(x0 + y) < f(x0) + ε0,

where the first inequality follows from the monotonicity of E and f(x0 + ξ) ⩽ sup∥y∥⩽ε0 f(x0 + y)

almost surely for any ξ with ess-sup(∥ξ∥) ⩽ ε0. This contradicts (A22). Now suppose p ∈ (1,∞).

Define

k := sup
∥y∥⩽ε0

{
f(x0 + y)− f(x0)

ε0

}
.

By (A24), we have k < 1. By Lemma A4, there exist k1 ∈ (k, 1), x1 ∈ Rn and ε1 > 0 such that

f(x1 + y)− f(x1) ⩽ k1∥y∥, ∀ ∥y∥ ⩽ ε1.
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For sufficiently small ε < ε1,

sup
E∥ξ∥p⩽εp

E[f(x1 + ξ)]

= sup
E∥ξ∥p⩽εp

E
[
f (x1 + ξ)1{∥ξ∥⩽ε1} + f (x1 + ξ)1{∥ξ∥>ε1}

]
⩽ sup

E∥ξ∥p⩽εp
E
[
(f(x1) + k1∥ξ∥)1{∥ξ∥⩽ε1} + (f (x1) + ∥ξ∥)1{∥ξ∥>ε1}

]
= f (x1) + sup

E∥ξ∥p⩽εp
E
[
k1∥ξ∥+ (1− k1)∥ξ∥1{∥ξ∥>ε1}

]
⩽ f (x1) + sup

E∥ξ∥p⩽εp
k1E[∥ξ∥] + sup

E∥ξ∥p⩽εp
(1− k1)E[∥ξ∥1{∥ξ∥>ε1}]

⩽ f (x1) + k1ε+ sup
E∥ξ∥p⩽εp

(1− k1)E[∥ξ∥1{∥ξ∥>ε1}]

⩽ f (x1) + k1ε+ sup
E∥ξ∥p⩽εp

(1− k1)(E[∥ξ∥p])1/p(E1{∥ξ∥>ε1}])
1/q

⩽ f (x1) + k1ε+ (1− k1)ε sup
E∥ξ∥p⩽εp

(E1{∥ξ∥>ε1}])
1/q

⩽ f (x1) + k1ε+ (1− k1)ε

(
ε

ε1

)p/q

< f (x1) + ε, (A25)

where the first inequality follows from that f is Lipschitz continuous with Lip(f) ⩽ 1, the third

inequality follows from E[∥ξ∥] ⩽ (E[∥ξ∥p])1/p, the fourth inequality follows from Hölder’s inequality

and k1 < 1, the sixth inequality follows from Markov’s inequality, and the strict inequality holds

because ε < ε1 and p/q = p − 1 > 0. Then, (A25) leads to a contradiction to (A22), thereby

establishing (A23). This completes the proof.

Proof of Proposition 5. The proof follows directly from that of Theorem 3.

To show Theorem 4, we need the following lemma.

Lemma A5. For α ∈ [0, 1) and ε > 0, if f is a function satisfying the condition of Theorem 4(i),

then for any F0 ∈ M(Rn)

sup
F∈B1(F0,ε)

CVaRF
α (f (ξ)) = sup

G∈C1(f |F0, cf ε)
CVaRG

α (X)

= CVaRF0
α (f(ζ)) +

εcf
1− α

, (A26)

where ζ ∼ F0 and cf = Lip(f).

Proof. Assume without loss generality that Lip(f) = 1. Note that the second equality in (A26)

has been given in Proposition 2 in Pflug et al. (2012) and one can easily check that f#B1(F0, ε) ⊆
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C1(f |F0, ε) when f is 1-Lipschitz continuous. It suffices to show

sup
E[∥ξ−ζ∥]⩽ε

CVaRα (f (ξ)) ⩾ CVaRF0
α (f(ζ)) +

ε

1− α
. (A27)

Denote by sk = lim supm→∞(f(x0 +mvk)− f(x0))/m. By (20), we have limk→∞ sk = 1, and thus,

there exists a sequence {kj}j∈N such that skj > 1 − 1/2j, i ∈ N. By the definition of skj , there

exists a sequence {mj}j∈N such that mj → ∞ as j → ∞ and

f(x0 +mjvkj )− f(x0)

mj
⩾ 1− 1

j
, ∀j ∈ N.

It then follows that for any x ∈ Rn,

f(x+mjvkj )− f(x) ⩾ f(x0 +mjvkj )− f(x0)− 2∥x− x0∥

⩾ m̃j − 2∥x− x0∥, (A28)

where m̃j := mj(1 − 1/j) and the first inequality uses the fact that f is 1-Lipschitz continuous.

Denote by U a uniform random variable on [0, 1] such that U and f(ζ) are comonotonic.4 Define

ξj = mjvkj1Aj + ζ, j ∈ N, (A29)

where Aj := {1− ε/mj < U ⩽ 1} . One can verify that E [∥ξj − ζ∥] = ε. Then, we have

CVaRα(f(ξj))− CVaRα(f(ζ)) ⩾ CVaRα (f(ξj)− f(ζ))

= CVaRα

(
(f(ζ +mjvkj )− f(ζ))1Aj

)
⩾ CVaRα

(
(m̃j − 2∥ζ − x0∥)1Aj

)
⩾ CVaRα

(
m̃j1Aj

)
−CVaRα

(
2∥ζ − x0∥1Aj

)
⩾ m̃j CVaRα

(
1Aj

)
− 2

1− α
E
[
∥ζ−x0∥1Aj

]
→ ε

1− α
as j → ∞,

where the first and the third inequalities follow from the subadditivity of CVaRα, the second

inequality follows from (A28), the last inequality follows from CVaRα(X) ⩽ E[X]/(1 − α) for any

nonnegative random variable X, and the last limit follows from CVaRα(1Aj ) = ε/(mj(1 − α)) for

4Two random variables X,Y are called comonotonic if there exist a random variable Z and two nondecreasing
functions f, g such that X = f(Z) and Y = g(Z) almost surely.
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mj > ε/(1− α) and limj→∞ E[∥ζ − x0∥1Aj ] = 0 by the dominated convergence theorem. Thus, we

have

sup
E∥ξ−ζ∥⩽ε

CVaRα (f (ξ)) ⩾ lim inf
j→∞

CVaRα(f(ξj)) ⩾ CVaRα(f(ζ)) +
ε

1− α
.

That is, (A27) holds, which completes the proof.

Proof of Theorem 4. (i) Without loss generality assume Lip(f) = 1. Note that

sup
F∈B1(F0,ε)

ρF (f (ξ)) = sup
E[∥ξ−ζ∥]⩽ε

sup
µ∈Mρ

∫ 1

0
CVaRα(f (ξ))dµ(α)

= sup
µ∈Mρ

sup
E∥ξ−ζ∥⩽ε

∫ 1

0
CVaRα(f (ξ))dµ(α)

⩽ sup
µ∈Mρ

∫ 1

0
sup

E[∥ξ−ζ∥]⩽ε
CVaRα(f (ξ))dµ(α)

= sup
µ∈Mρ

∫ 1

0
CVaRF0

α (f(ζ)) +
ε

1− α
dµ(α), (A30)

where the third equality follows from Lemma A5. We next show that the inequality in (A30) is an

equality. Define ξi by (A29) as in the proof of Lemma A5 which satisfies E[∥ξj − ζ∥] ⩽ ε and

lim inf
j→∞

CVaRα(f(ξj)) ⩾ CVaRα(f(ζ)) + ε/(1− α).

Therefore,

sup
µ∈Mρ

sup
E∥ξ−ζ∥⩽ε

∫ 1

0
CVaRα(f (ξ))dµ(α) ⩾ sup

µ∈Mρ

sup
j∈N

∫ 1

0
CVaRα(f (ξj))dµ(α)

⩾ sup
µ∈Mρ

∫ 1

0
lim inf
j→∞

CVaRα(f (ξj))dµ(α)

⩾ sup
µ∈Mρ

∫ 1

0
CVaRF0

α (f(ζ)) +
ε

1− α
dµ(α),

where the second inequality follows from Fatou’s Lemma. This means that the inequality of (A30)

is actually an equality. That is,

sup
F∈B1(F0,ε)

ρF (f (ξ)) = sup
µ∈Mρ

∫ 1

0
CVaRF0

α (f(ζ)) +
ε

1− α
dµ(α). (A31)
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Similarly, one can prove that

sup
G∈C1(f |F0,ε)

ρG (X) = sup
E∥X−f(ζ)∥⩽ε

sup
µ∈Mρ

∫ 1

0
CVaRα(X)dµ(α)

= sup
µ∈Mρ

∫ 1

0
CVaRF0

α (f(ζ)) +
ε

1− α
dµ(α). (A32)

Combining (A31) with (A32) yields (21), which completes the proof of (i).

(ii) We first show that f is Lipschitz continuous by contradiction. Suppose that f is not Lipschitz

continuous. Then for any n ∈ N, there exist xn, yn such that |f(xn)−f(yn)| > n∥xn−yn∥. Without

loss of generality assume f(xn)− f(yn) > n∥xn − yn∥, n ∈ N. Take Fn = δyn and εn = ∥xn − yn∥.

It follows that

sup
F∈B1(Fn,εn)

ρF (f (ξ)) = sup
E[∥ξ−yn∥]⩽εn

ρ (f (ξ)) ⩾ f (xn) > f(yn) + nεn. (A33)

Note that

sup
G∈C1(f |Fn,cf εn)

ρG(X) = sup
E[|X−f(yn)|]⩽cf εn

ρ(X) ⩽ f(yn) + Cρcfεn,

where the first inequality follows from the Kuosuoka representation (5) and Cρ = supµ∈Mρ

∫ 1
0

1
1−αdµ(α).

This, together with (A33), yields a contradiction to (21) by noting n can be arbitrarily large. There-

fore, f is a Lipschitz continuous function.

We next show that (20) holds. Without loss of generality, assume Lip(f) = 1. For x0 ∈ Rn and

any v ∈ Rn with ∥v∥ = 1, define

ϕ(v) := lim
t→∞

(f (x0 + tv)− f (x0))/t

which is well-defined by noting that

lim
t→∞

f (x0 + tv)− f (x0)

t
= lim

t→∞

f (x0 + t0v)− f (x0)

t

+ lim
t→∞

t− t0
t

f (x0 + tv)− f (x0 + t0v)

t− t0
,

= lim
t→∞

f (x0 + tv)− f (x0 + t0v)

t− t0
, (A34)

where t0 := sup{z∈K} ∥z∥ + ∥x0∥, and the last term in (A34) is monotone as f coincides with a

convex function on Rn \K. Then, to show that (20) holds, it suffices to verify that sup∥v∥=1 ϕ(v) =

Lip(f) = 1. Suppose for contradiction that sup∥v∥=1 ϕ(v) ⩽ 1 − 2δ for some δ > 0. Noting that
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when t > t0, (f (x0 + tv) − f (x0 + t0v))/(t− t0) ↑ ϕ(v) as t → ∞, we have for any t > t0 and v

with ∥v∥ = 1

f (x0 + tv)− f (x0)

t
⩽

t0
t
+

t− t0
t

f (x0 + tv)− f (x0 + t0v)

t− t0

⩽
t0
t
+

t− t0
t

ϕ(v) <
t0
t
+

t− t0
t

(1− 2δ), (A35)

where the first inequality follows from that f is 1-Lipschitz continuous. Then there exists t1 > t0

large enough such that f(x0 + tv)− f(x0) ⩽ (1− δ)t for all t > t1 and ∥v∥ = 1. Let

B := max
{
0, sup

∥v∥=1, 0<t⩽t1

{f (x0 + tv)− f (x0)− (1− δ)t}
}
< ∞.

Then, for any t > 0 and v ∈ Rn with ∥v∥ = 1, we have

f(x0 + tv) ⩽ f(x0) +B + (1− δ)t. (A36)

Take F0 = δx0 . For ε > B/(δCρ) sufficiently large,

sup
F∈B1(F0,ε)

ρF (f (ξ)) = sup
E∥ξ−x0∥⩽ε

ρ((f (ξ))

⩽ sup
E∥ξ−x0∥⩽ε

ρ(f(x0) +B + (1− δ)∥ξ − x0∥)

= f(x0) +B + (1− δ) sup
E∥ξ−x0∥⩽ε

ρ(∥ξ − x0∥)

< f(x0) + Cρε = sup
G∈C1(f |F0,ε)

ρG (X) , (A37)

where the first inequality follows from (A36) and the monotonicity of ρ ∈ Rcoh, the second equality

follows from the translation invariance and positive homogeneity of ρ ∈ Rcoh, the strict inequality

follows from that supE∥ξ−x0∥⩽ε ρ(∥ξ−x0∥) = εCρ by the proof of (i) and ε > B/(δCρ). Thus, (A37)

contradicts (21). Consequently, sup∥v∥=1 ϕ(v) = 1, i.e., there exists a sequence vk with ∥vk∥ = 1

such that limk→∞ ϕ(vk) = sup∥v∥=1 ϕ(v) = 1. This completes the proof of (ii).

(iii) By (i) and (ii), it suffices to show that if f is convex and Lipschitz continuous, then (20)

holds. Note that for any k ∈ N, there exist xk and βk ∈ ∂f(xk) such that ∥βk∥∗ > Lip(f) − 1/k.

Take vk as a unit vector attaining the dual norm of βk, that is, ∥vk∥ = 1 and v⊤
k βk = ∥βk∥∗. By

the convexity of f , we have for any x ∈ Rn

lim
m→∞

f(x+mvk)− f(x)

m
⩾ β⊤

k vk = ∥βk∥∗ > Lip(f)− 1

k
, (A38)
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Therefore, we have (20) holds and complete the proof.

A.2 Proofs for Section 4

To prove Theorem 5, we need the following lemma from Wu et al. (2022).

Lemma A6. Let p ∈ (1,∞), t, ε > 0, and η ∈ (0, ε). For V ∈ Lp, the following statements hold.

(i) If ∥V ∥p ⩽ ε, then E [(|V |+ t)p] ⩽ (ε+ t)p.

(ii) If ∥V ∥p ⩽ ε and E[|V |] ⩽ ε − η, then there exists ∆ > 0 that only depends on p, t, ε, η such

that E [(|V |+ t)p] ⩽ (ε + t)p − ∆. In particular, if p is an integer, then E [(|V |+ t)p] ⩽

(ε+ t)p − ptp−1η.

Proof of Theorem 5. For (ii) ⇒ (i), take g(x) = maxi∈I{cfβ⊤
i x+bi} and define ρ(X) =

(
E[Xp

+]
)1/p

which is a monotone risk measure. The result follows immediately from Theorem 3 by noting that

sup
F∈Bp(F0,ε)

(
EF [fp(ξ)]

)1/p
= sup
F∈Bp(F0,ε)

ρF (g(ξ)).

For (i) ⇒ (ii), first note that the case cf = 0 is trivial and similar to the case cf = 0 in

Theorem 3. It suffices to consider the case cf > 0. We assume without loss of generality that

cf = 1. Note that, (27) is equivalent to

sup
E[∥ξ∥p]⩽εp

(E [fp (ξ + ζ)])1/p =
(
EF0 [fp (ζ)]

)1/p
+ ε, ∀ ζ ∼ F0, ε > 0. (A39)

For any x,y ∈ Rn, take ζ ∼ F0 := δx and set ε := ∥y − x∥. Then, by (A39),

f(y) ⩽ sup
E[∥ξ∥p]⩽εp

(
E
[
fp(x+ ξ)

])1/p
= f(x) + ε = f(x) + ∥y − x∥.

Exchanging x and y yields |f(y)− f(x)| ⩽ ∥y − x∥, and hence Lip(f) ⩽ 1. We then aim to show

the following statement by contradiction:

sup
∥y∥⩽ε

f(x+ y)− f(x) = ε, ∀x ∈ {x : f(x) > 0}, ∀ ε > 0. (A40)

Suppose to the contrary that there exist x0 ∈ Rn with f(x0) > 0 and ε0 > 0 such that

sup
∥y∥⩽ε0

f(x0 + y)− f(x0) < ε0. (A41)
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For ε > 0, define

kε = sup
∥y∥⩽2ε

{
f(x0 + y)− f(x0)

2ε

}
.

Note that for any z ∈ Rn, by the convexity of f , we have (f(x0 + tz) − f(x0))/t is increasing in

t ∈ R+, and thus, for any ε ∈ (0, ε0/2), it holds that

f(x0 + z)− f(x0) ⩽
2ε

ε0

(
f
(
x0 +

ε0
2ε

z
)
− f(x0)

)
.

Taking supremum over ∥z∥ ⩽ 2ε to both sides yields that for ε ∈ (0, ε0/2),

kε ⩽ sup
∥z∥⩽2ε

f
(
x0 +

ε0
2εz
)
− f(x0)

ε0
⩽ sup

∥y∥⩽ε0

{
f(x0 + y)− f(x0)

ε0

}
< 1, (A42)

where the second inequality follows from ∥ε0z/(2ε)∥ ⩽ ε0 whenever ∥z∥ ⩽ 2ε. Similarly, for any

y ∈ Rn with ∥y∥ ⩽ 2ε, we have

f(x0 + y)− f(x) ⩽
∥y∥
2ε

(
f

(
x0 +

2ε

∥y∥
y

)
− f(x)

)
,

which implies that

sup
∥y∥⩽2ε

{
f(x0 + y)− f(x0)

∥y∥

}
⩽ sup

∥y∥⩽2ε

{
f(x0 + y)− f(x0)

2ε

}
= kε. (A43)

Thus, by (A43), we have for ε ∈ (0, ε0/2),

f(x0 + y)− f(x0) ⩽ kε∥y∥, ∀ ∥y∥ ⩽ 2ε. (A44)

Further, note that

(f (x0) + ∥y∥)p− (f (x0) + kε∥y∥)p ⩾ pfp−1 (x0) (1− kε)∥y∥, ∀y ∈ Rn. (A45)
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Therefore, for ε ∈ (0, ε0/2),

sup
E[∥ξ∥p]⩽εp

E [fp (x0 + ξ)]

= sup
E[∥ξ∥p]⩽εp

{
E
[
fp (x0 + ξ)1{∥ξ∥⩽2ε}

]
+ E

[
fp (x0 + ξ)1{∥ξ∥>2ε}

]}
⩽ sup

E[∥ξ∥p]⩽εp

{
E
[
(f (x0) + kε∥ξ∥)p 1{∥ξ∥⩽2ε}

]
+ E

[
fp (x0 + ξ)1{∥ξ∥>2ε}

]}
⩽ sup

E[∥ξ∥p]⩽εp

{
E
[
(f (x0) + kε∥ξ∥)p 1{∥ξ∥⩽2ε}

]
+ E

[
(f (x0) + ∥ξ∥)p 1{∥ξ∥>2ε}

]}
= sup

E[∥ξ∥p]⩽εp

{
E [(f (x0) + ∥ξ∥)p]− E

[
((f (x0) + ∥ξ∥)p − (f (x0) + kε∥ξ∥)p)1{∥ξ∥⩽2ε}

]}
⩽ sup

E[∥ξ∥p]⩽εp

{
E [(f (x0) + ∥ξ∥)p]− pfp−1 (x0) (1− kε)E

[
∥ξ∥1{∥ξ∥⩽2ε}

]}
= sup

E[|V |p]⩽εp

{
E [(f (x0) + |V |)p]− pfp−1 (x0) (1− kε)E

[
|V |1{|V |⩽2ε}

]}
=: I,

where the first inequality follows from (A44), the second inequality holds because f is nonnegative

with Lip(f) ⩽ 1; the third inequality follows from (A45), and the third equality holds since the

objective function in the optimization problem depends only on ∥ξ∥. Define

V1 =
{
V ∈ Lp : E|V |p ⩽ εp, E[|V |1{|V |⩽2ε}] ⩽

(1− 2−p/q)

2
ε
}
,

V2 = {V ∈ Lp : E|V |p ⩽ εp} \ V1.

We can rewrite I = max {I1, I2} with

Ii = sup
V ∈Vi

{
E [(f (x0) + |V |)p]− pfp−1 (x0) (1− kε)E

[
|V |1{|V |⩽2ε}

]}
, i ∈ [2].

One can verify that for any V ∈ V1,

E[|V |] = E[|V |1{|V |>2ε}] + E[|V |1{|V |⩽2ε}]

⩽ ε2−p/q +

(
1− 2−p/q

)
ε

2
=

(
1 + 2−p/q

)
ε

2
< ε, (A46)

where the first inequality follows from the Hölder’s inequality, Markov’s inequality, and the definition
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of V1. It holds that

I1 ⩽ sup
V ∈V1

E [(f (x0) + |V |)p] < (f (x0) + ε)p , (A47)

where the strict inequality follows from (A46) and Statement (ii) of Lemma A6 by noting that

f (x0) > 0. For I2, we have

I2 ⩽ sup
V ∈V2

E [(f (x0) + |V |)p]− inf
V ∈V2

pfp−1 (x0) (1− kε)E
[
|V |1{|V |⩽2ε}

]
⩽ (f (x0) + ε)p − pfp−1 (x0) (1− kε) inf

V ∈V2

E
[
|V |1{|V |⩽2ε}

]
⩽ (f (x0) + ε)p − pfp−1 (x0) (1− kε)

(
1− 2−p/q

)
ε

2

< (f (x0) + ε)p , (A48)

where the second inequality follows from Statement (i) of Lemma A6, and the third inequality is

due to the definition of V2. Combining (A47) and (A48), we have

sup
E[∥ξ∥p]⩽ε

E[fp (x0 + ξ)] ⩽ I = max {I1, I2} < (f (x0) + ε)p ,

which yields a contradiction to (A39). Hence, (A40) holds. By the arguments to prove (A18) as

in the proof of Proposition 3, for any z ∈ Rn with f(z) > 0, there exists a subgradient ηz ∈ ∂f(z)

such that ∥ηz∥∗ = 1. Moreover, for any z ∈ Rn with f(z) = 0, we take ηz = 0 ∈ ∂f(z). By the

convexity of f , for any x ∈ Rn,

f(x) = max
z∈Rn

{f(z) + η⊤
z (x− z)}

= max
{

sup
f(z)=0

{f(z) + η⊤
z (x− z)}, sup

f(z)>0
{f(z) + η⊤

z (x− z)}
}

= max
{
0, sup

f(z)>0
{f(z) + η⊤

z (x− z)}
}
=: (s(x))+,

where s(x) := sup(β,b)∈I{β⊤x+ b} with I := {(ηz, f(z)− η⊤
z z) : f(z) > 0

}
. Fix x with f(x) = 0.

Take {(ηx
zk
, bxzk)}k∈N ∈ I such that ηx⊤

zk
x+bxzk → s(x). Note that ∥ηx

zk
∥∗ = 1 and ηx⊤

zk
y+bxzk ⩽ f(y)

for all y ∈ Rn and k ∈ N. By Hölder’s inequality, |ηx⊤
zk

x| ⩽ ∥x∥, and hence the sequence bxzk is

bounded. Thus, by the Bolzano–Weierstrass theorem, up to a subsequence, (ηx
zk
, bxzk) → (η̄x, b̄x).

By the continuity of (η, b) 7→ η⊤y+ b, for any fixed y ∈ Rn, we have η̄x⊤y+ b̄x = limn→∞ ηx⊤
zk

y+

bxzk ⩽ s(y) ⩽ f(y), and in particular η̄x⊤x + b̄x = s(x) ⩽ 0. Define Ĩ = I ∪ {(η̄x, b̄x) : x ∈ {x :

f(x) = 0}}. It is straightforward to verify that s(x) = max
(β,b)∈Ĩ{β

⊤x+ b} for any x ∈ Rn. Then,
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we complete the proof.

To prove Proposition 6, we need the following three lemmas.

Lemma A7. For p > 1 and c > 1, let Hp be defined in (29) with ℓ(z, t) = c(z − t)+, and X be

a random variable with P(X = a1) = 1 − P(X = a0) = π, a1 > a0. If π < c−p, then problem

inft∈R{t+ c(E[(X − t)p+])
1/p} admits a unique minimizer t∗ on (−∞, a0).

Proof. Define H(t) := t+ c(E[(X − t)p+])
1/p, t ∈ R. Note that

H(t) =


t+ c

(
(1− π)(a0 − t)p + π(a1 − t)p

)1/p
, t < a0,

(1− cπ1/p)t+ cπ1/pa1, a0 ⩽ t < a1,

t, t ⩾ a1.

By π < c−p, we have H is continuous and strictly increasing on [a0,∞). For t < a0,

H ′(t) = 1− c((1− π)(a0 − t)p + π(a1 − t)p)1/p−1((1− π)(a0 − t)p−1 + π(a1 − t)p−1).

This implies limt↑a0 H
′(t) = 1− cπ1/p > 0, and hence no minimizer lies in [a0,∞). Also, note that(

E[(X − t)p+]
)1/p

is strictly convex in t ∈ (−∞, a0], and thus, H is strictly convex on (−∞, a0].

By limt→−∞H(t) = ∞, we have H admits a unique minimizer t∗ ∈ (−∞, a0). This completes the

proof.

Lemma A8. For p ∈ (1,∞), a > 0, k ∈ [0, 1), ε > 0, and a random variable V ⩾ 0, there exists

c ∈ (0,∞) depending only on (p, a, ε) such that

I := (E[(a+ kV 1{V ⩽ε} + V 1{V >ε})
p])1/p ⩽ a+ k(E[V p])1/p + cE[V p].

Proof. Denote by v = (E[V p])1/p. Note that

Ip = E[(a+ kV )p1{V ⩽ε}] + E[(a+ V )p1{V >ε}]

⩽ E[(a+ kV )p] + E[(a+ V )p1{V >ε}]

⩽
(
a+ k(E[V p])1/p

)p
+ E[(a+ V )p1{V >ε}]

= (a+ kv)p + E
[(

a+ V

V

)p

V p1{V >ε}

]
⩽ (a+ kv)p +

(
a+ ε

ε

)p

E[V p1{V >ε}] ⩽ (a+ kv)p + c1v
p, (A49)
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where the second inequality follows from Lemma A6(i) (Jensen’s inequality), the third inequality

follows from that (a+ x)/x is decreasing in x ∈ [ε,∞), and c1 := (a+ ε)p/εp. It then follows that

I ⩽ ([a+ kv]p + c1v
p)1/p ⩽ a+ kv +

c1v
p

p (a+ kv)p−1 ⩽ a+ kv +
c1v

p

pap−1
,

where the second inequality follows from (bp+x)1/p ⩽ b+x/(pbp−1) by the concavity of (bp+x)1/p

on x ∈ R+ for b > 0, and the last inequality follows from kvp ⩾ 0. Setting c = c1/(pa
p−1) completes

the proof.

Lemma A9. For p > 1, a0 > 0, a1 > 0, ε̄ ∈ (0, 1], π ∈ (0, 1), k ∈ [0, 1), and c > 0, let

Φ : R+ ×K → R be given by

Φ(ε;u) :=
(
(1− π) (a0 + kεu0 + cεpup0)

p
+ π(a1 + εu1)

p
)1/p

,

where K := {u ∈ R2
+ : (1− π)up0 + πup1 ⩽ 1}. Then there exist L < 1 and M < ∞ depending only

on (p, a0, a1, ε̄, π, k0, c) such that

sup
u∈K

Φ(ε;u) ⩽
(
(1− π)ap0 + πap1

)1/p
+ Lε+M(ε2 + εp), ∀ ε ∈ [0, ε̄].

Proof. Define Φ0(ε;u) :=
(
(1− π)(a0 + kεu0)

p + π(a1 + εu1)
p
)1/p

. By Minkowski’s inequality,

Φ(ε;u) ⩽ Φ0(ε;u) + cεpup0. (A50)

Thus, it suffices to show that there exist L < 1 and M1 < ∞ such that

sup
u∈K

Φ0(ε;u) ⩽
(
(1− π)ap0 + πap1

)1/p
+ Lε+M1ε

2, ∀ ε ∈ [0, ε̄]. (A51)

To show that (A51) holds, we consider a second-order Taylor expansion of Φ0(ε;u) at ε = 0. For

any u ∈ K, there exists z(ε,u) ∈ [0, ε] such that

Φ0(ε;u) = Φ0(0;u) + ε∂εΦ0(0;u) + ∂2
εΦ0(z(ε,u);u)

ε2

2
,

where ∂εΦ0 and ∂2
εΦ0 denote the first- and second-order partial derivatives of Φ0 with respect to

ε, respectively. Note that Φ0(0;u) =
(
(1 − π)ap0 + πap1

)1/p
which is independent of u. Taking the
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supremum over u ∈ K yields, for any ε ∈ [0, ε̄],

sup
u∈K

Φ(ε;u) ⩽ Φ0(0;u) + ε sup
u∈K

{∂εΦ0(0;u)}+ sup
u∈K

{
∂2
εΦ0(z(ε,u);u)

} ε2

2

⩽ Φ0(0;u) + ε sup
u∈K

{∂εΦ0(0;u)}+ sup
u∈K,s∈[0,ε̄]

{
|∂2

εΦ0(s;u)|
} ε2

2

= Φ0(0;u) + Lε+M2
ε2

2
,

where the second inequality uses the fact that z(ε,u) ∈ [0, ε̄], and we define L := supu∈K {∂εΦ0(0;u)}

and M2 := sup(s,u)∈[0,ε̄]×K |∂2
εΦ0(s;u)|. Since ∂2

εΦ0 is continuous on the compact set [0, ε̄] × K, it

follows that M2 < ∞. Hence, it remains to show that L < 1. A direct computation gives

L = sup
u∈K

{
(1− π)ap−1

0 k0u0 + πap−1
1 u1

((1− π)ap0 + πap1)
(p−1)/p

}

⩽ sup
u∈K


(
(1− π)(ap−1

0 k0)
q + πapq−q

1

)1/q
((1− π)up0 + πup1)

1/p

((1− π)ap0 + πap1)
(p−1)/p


⩽

((1− π)ap0k
q
0 + πap1)

1/q

((1− π)ap0 + πap1)
1/q

< 1,

where the first inequality follows from Hölder’s inequality with q := p/(p−1), the second inequality

uses the constraint (1 − π)up0 + πup1 ⩽ 1 for u ∈ K, and the strict inequality holds since k0 < 1.

Setting M1 := M2/2, (A51) follows. By (A50) and (A51), for any ε ∈ [0, ε̄],

sup
u∈K

Φ(ε;u) ⩽ sup
u∈K

{Φ0(ε;u)}+ cεp sup
u∈K

up0

⩽
(
(1− π)ap0 + πap1

)1/p
+ Lε+M(ε2 + εp),

where the second inequality follows from supu∈K up0 ⩽ (1 − π)−1 and M := max{M1, c(1 − π)−1}.

This completes the proof.

Proof of Proposition 6. For the “if” part, the result follows directly from Corollary 1.

For the “only if” part, we first consider the case cf = 0. In this case, for any x,y ∈ Rn, take

ζ ∼ F0 = δx and ε := ∥x− y∥. By (31), we have

sup
E[∥ξ∥p]⩽εp

Hp(f (ξ + x)) = f(x).

It follows that f(y) ⩽ f(x) for any x,y ∈ Rn, and thus, f is a constant function, which completes
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the proof for cf = 0. We now turn to the case cf > 0. Without loss of generality, we assume cf = 1.

In this case, (31) is equivalent to

sup
E[∥ξ∥p]⩽εp

Hp(f (ξ + ζ)) = Hp(f (ζ)) + cε, ∀ ζ ∼ F0, ε > 0. (A52)

We next show that for any x ∈ Rn, the subgradient ∇f(x) ∈ ∂f(x) satisfies ∥∇f(x)∥∗ ⩽ 1, where

∂f(x) denotes the subdifferential of f at x. Suppose, for contradiction, that there exists x0 ∈ Rn

such that ∥∇f(x0)∥∗ > 1. By definition of the dual norm, there exists ηx0 ∈ Rn with ∥ηx0∥ = 1

such that η⊤
x0
∇f(x0) = ∥∇f(x0)∥∗. For ε > 0, define ξ0 ∼ πδcεηx0

+ (1− π)δ0 with π = c−p. Then

E[∥ξ0∥p] = εp, and thus,

sup
E[∥ξ∥p]⩽εp

Hp(f (ξ + x0))

⩾ Hp(f(ξ0 + x0))

= f(x0) +Hp(f(ξ0 + x0)− f(x0))

= f(x0) + inf
t
{t+ c(E[(f (ξ0 + x0)− f(x0)− t)p+])

1/p}

= f(x0) + inf
t
{t+ c(E[

(
(f (ξ0 + x0)− f(x0))1{ξ0=cεηx0} − t

)p
+
])1/p}

⩾ f(x0) + inf
t
{t+ c(E[(cεη⊤

x0
∇f(x0)1{ξ0=cεηx0} − t)p+])

1/p}

= f(x0) + cε∥∇f(x0)∥∗ inf
t
{t+ c(E[(1{ξ0=cεηx0} − t)p+])

1/p}

= f(x0) + cε∥∇f(x0)∥∗ > f(x0) + cε, (A53)

where the first equality follows from the translation invariance of Hp, the second inequality follows

from the convexity of f , the forth equality follows from η⊤
x0
∇f(x0) = ∥∇f(x0)∥∗ and the positive

homogeneity of Hp, the fifth equality uses Hp(1{ξ0=cεηx0}) = 1, and the strict inequality follows

from ∥∇f(x0)∥∗ > 1 and ε > 0. The inequality (A53) contradicts (A52). Therefore, ∥∇f(x)∥∗ ⩽ 1

for all x ∈ Rn. Since f is convex, it follows that f is Lipschitz continuous with Lip(f) ⩽ 1. Finally,

by the proof of Proposition 3, to establish that f satisfies (12), it suffices to show that

sup
∥y∥⩽ε

f(x+ y)− f(x) = ε, ∀ x ∈ Rn, ε > 0.

Suppose, to the contrary, that there exist x0 ∈ Rn and ε0 > 0 such that

sup
∥y∥⩽ε0

f(x0 + y)− f(x0) < ε0. (A54)
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Define

k0 := sup
∥y∥⩽ε0

f(x0 + y)− f(x0)

ε0
< 1.

By the convexity of f , we have

f(x0 + y)− f(x0) ⩽ k0∥y∥, ∀ ∥y∥ ⩽ ε0. (A55)

By (A52), there must exist x1 ∈ Rn such that f(x1) > f(x0). Let ζ ∼ F0 := (1 − π)δx0 + πδx1 ,

with some π ∈ (0, c−p). By Lemma A7, there exists a unique minimizer t∗ < f(x0) such that

Hp(f(ζ)) = t∗ + c(E[(f(ζ)− t∗)p])1/p. (A56)

Fix ε̄ := min{1, ε0}. For t∗ satisfying (A56) and for all sufficiently small ε < ε̄, we have

sup
E∥ξ∥p⩽εp

Hp(f(ζ + ξ))

= sup
E[∥ξ∥p]⩽εp

inf
t
{t+ c(E[(f (ξ + ζ)− t)p+])

1/p}

⩽ sup
E[∥ξ∥p]⩽εp

{t∗ + c(E[(f (ξ + ζ)− t∗)p+])
1/p}

= sup
E[∥ξ∥p]⩽εp

{t∗ + c(E[(f (ξ + ζ)− f (ζ) + f (ζ)− t∗)p+])
1/p}

⩽ sup
E[∥ξ∥p]⩽εp

{
t∗ + c

(
E[
(
(f (ξ + ζ)− f (ζ))+ + (f (ζ)− t∗)+

)p
]
)1/p}

= sup
E∥ξ∥p⩽εp

{
t∗ + c

(
E[(T (ξ, ζ) + (f(ζ)− t∗)+)

p]
)1/p}

, (A57)

where the last inequality uses (x+y)+ ⩽ x++y+ for all x, y ∈ R, and T (ξ, ζ) := (f(ξ+ζ)−f(ζ))+.

It therefore suffices to consider

I := sup
E[∥ξ∥p]⩽εp

(E[((f (ζ)− t∗)+ + T (ξ, ζ))p])1/p .

Note that, by (A55), we have T (ξ,x0) ⩽ k0∥ξ∥1{∥ξ∥⩽ε0} + ∥ξ∥1{∥ξ∥>ε0} almost surely. Moreover,

T (ξ,x1) ⩽ ∥ξ∥ almost surely, since Lip(f) ⩽ 1. Let a0 := f(x0) − t∗ and a1 := f(x1) − t∗, and
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a0, a1 > 0. Therefore,

Ip = sup
E[∥ξ∥p]⩽εp

{
(1− π)E

[(
a0 + T (ξ,x0)

)p | ζ = x0

]
+ πE

[(
a1 + T (ξ,x1)

)p | ζ = x1

]}
⩽ sup

E[∥ξ∥p]⩽εp

{
(1− π)E

[(
a0 + k0∥ξ∥1{∥ξ∥⩽ε0} + ∥ξ∥1{∥ξ∥>ε0}

)p | ζ = x0

]
+ πE

[(
a1 + ∥ξ∥

)p | ζ = x1

]}
= sup

E[V p]⩽εp

{
(1− π)E

[(
a0 + k0V 1{V ⩽ε0} + V 1{V >ε0}

)p | ζ = x0

]
+ πE

[(
a1 + V

)p | ζ = x1

]}
= sup

E[V p]⩽εp

{
(1− π)I1 + πI2

}
.

(A58)

where the first equality uses the law of total expectation. Here, we write

I1 := E
[(
a0 + k0V 1{V ⩽ε0} + V 1{V >ε0}

)p | ζ = x0

]
and I2 := E

[(
a1 + V

)p | ζ = x1

]
.

Applying Lemma A8 conditionally, there exists c0 ∈ (0,∞), depending only on (p, a0, ε0), such that

I1 ⩽

(
a0 + k0

(
E[V p | ζ = x0]

)1/p
+ c0E[V p | ζ = x0]

)p

. (A59)

Moreover, by Lemma A6(i) (Jensen’s inequality),

I2 ⩽

(
a1 +

(
E[V p | ζ = x1]

)1/p)p

. (A60)

Note that E[V p] = (1 − π)E[V p | ζ = x0] + πE[V p | ζ = x1]. Let v0 := (E[V p | ζ = x0])
1/p and

v1 := (E[V p | ζ = x1])
1/p. Applying (A59) and (A60) to (A58) then yields

Ip ⩽ sup
(1−π)vp0+πvp1⩽εp

{
(1− π)

(
a0 + k0v0 + c0v

p
0

)p
+ π

(
a1 + v1

)p}
= sup

(1−π)up
0+πup

1⩽1

{
(1− π)

(
a0 + k0u0ε+ c0u

p
0ε

p
)p

+ π
(
a1 + u1ε

)p}
, (A61)

where the equality follows from the change of variables u0 := v0/ε and u1 := v1/ε. Applying

Lemma A9 to (A61), there exist L < 1 and M < ∞ such that, for all ε ∈ [0, ε̄],

I ⩽
(
(1− π)ap0 + πap1

)1/p
+ Lε+M(ε2 + εp). (A62)
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Let δ := (1− L)/2. Then there exists η > 0 such that M(η + ηp−1) < δ. Hence, for all sufficiently

small ε ⩽ min{ε̄, η}, applying (A62) to (A57) yields

sup
E∥ξ∥p⩽εp

Hp(f(ζ + ξ)) ⩽ t∗ + c
(
(1− π)ap0 + πap1

)1/p
+ cLε+ cM(ε+ εp−1)ε

< Hp(f(ζ)) + c(L+ δ)ε < Hp(f(ζ)) + cε, (A63)

where t∗ satisfies (A56), namely, Hp(f(ζ)) = t∗ + c((1 − π)ap0 + πap1)
1/p. Consequently, (A63)

contradicts (A52), which completes the proof.

Proof of Theorem 6. For the “if” part, suppose that f : Rn → R is of the form (11). Then the

claim follows directly from Theorem 2 together with Theorem 5 of Wu et al. (2022).

For the “only if” part, we assume that there exists cf ⩾ 0 such that (33) holds for any F0 ∈

M(Rn) and ε > 0. If cf = 0, then (33) reduces to

sup
E∥ξ∥p⩽εp

ρh(f(ξ + ζ)) = ρF0
h (f(ζ)). (A64)

An argument analogous to that for the case cf = 0 in the proof of Theorem 3 shows that f is

a constant function. Hence, f satisfies (11). Now consider the case cf > 0. By the positive

homogeneity of ρh, we assume without loss of generality that cf = 1. In this case, (33) is equivalent

to

sup
E∥ξ∥p⩽εp

ρh(f(ξ + ζ)) = ρF0
h (f(ζ)) + ε∥h′∥q. (A65)

We next show that f satisfies (11). To see this, we first show that f is Lipschitz continuous with

Lip(f) ⩽ 1. Notably, for any x,y ∈ Rn, set F0 = δx and ε := ∥y − x∥. Then

f(y) ⩽ sup
E∥ξ∥p⩽εp

ρh(f(ξ + x)) = f(x) + ∥h′∥qε = f(x) + ∥h′∥q∥x− y∥.

Hence f is Lipschitz continuous with Lip(f) ⩽ ∥h′∥q < ∞. We next show that Lip(f) ⩽ 1. Note

that when p = ∞, we have ∥h′∥1 = 1. Therefore, it suffices to consider the case p ∈ (1,∞). Suppose

otherwise that Lip(f) > 1. We claim that for any sufficiently small δ > 0, there exist x0 ∈ Rn,

t0 > 0, and v0 ∈ Rn with ∥v0∥ = 1 such that

f(x0 + tv0)− f(x0) ⩾ (1 + 2δ)t, ∀ t ∈ (0, t0]. (A66)
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Indeed, by the definition of Lip(f), for any sufficiently small δ > 0 there exist x,y ∈ Rn with

x ̸= y such that |f(x) − f(y)|/∥x − y∥ ⩾ 1 + 4δ. Without loss of generality, assume f(y) > f(x).

Let d := ∥y − x∥, define v0 := (y − x)/d, and consider the function ϕ : [0, d] → R given by

ϕ(s) := f(x+ sv0). Since f is Lipschitz, ϕ is absolutely continuous and hence differentiable almost

everywhere, with ϕ(d)−ϕ(0) =
∫ d
0 ϕ′(s)ds. The inequality f(y)−f(x)/d ⩾ 1+4δ implies that there

exists sδ ∈ (0, d) such that ϕ′(sδ) ⩾ 1 + 3δ. By the definition of the derivative, there exists t0 > 0

such that ϕ (sδ + t)− ϕ (sδ) ⩾ (1 + 2δ)t for all t ∈ (0, t0]. Setting x0 := x+ sδv0, we obtain (A66),

which proves the claim. Next, let U be a uniform random variable on [0, 1]. Fix δ > 0 sufficiently

small, and let x0, v0, and t0 be such that (A66) holds. For any ε > 0 sufficiently small, define

Rε := ε
(h′(U))q/p

∥h′∥q/pq

, R̃ε := min{Rε, t0} and ξ1 := v0R̃ε.

One can verify that E∥ξ1∥p ⩽ E[Rp
ε ] = εp. Note that limε→0 E[(h′(U))q1{Rε>t0}] = 0 by the domi-

nated convergence theorem. Hence, for any η < 1− 1/(1 + 2δ), there exists εη > 0 such that

E[(h′(U))q1{Rε>t0}] ⩽ η∥h′∥qq, ∀ ε ∈ (0, εη]. (A67)

For ε < εη sufficiently small, we then have

sup
E∥ξ∥p⩽εp

ρh(f(x0 + ξ)) (A68)

⩾ ρh (f(x0 + ξ1))

= ρh

(
f(x0 + v0R̃ε)

)
⩾ ρh

(
f(x0) + (1 + 2δ)R̃ε

)
= f(x0) + (1 + 2δ)ρh

(
R̃ε

)
= f(x0) + (1 + 2δ)E[min{Rε, t0}h′(U)]

⩾ f(x0) + (1 + 2δ)
(
E[Rεh

′(U)]− E[Rεh
′(U)1{Rε>t0}]

)
= f(x0) + (1 + 2δ)

(
ε∥h′∥q −

ε

∥h′∥q/pq

E[(h′(U))q1{Rε>t0}]
)

⩾ f(x0) + (1 + 2δ)(1− η)ε∥h′∥q > f(x0) + ε∥h′∥q, (A69)

where the second inequality follows from (A66) and the fact that R̃ε ⩽ t0 almost surely, the third

equality uses the comonotonicity of R̃ε and h′(U), the fourth equality follows from the definition of

Rε, the fourth inequality follows from (A67), and the strict inequality holds because (1+2δ)(1−η) >
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1. Thus, (A69) contradicts (A65). It follows that f is Lipschitz continuous with Lip(f) ⩽ 1. We

next show that f satisfies (11). Since Lip(f) ⩽ 1, suppose for contradiction that there exist x̃ ∈ Rn

and ε0 > 0 such that

sup
∥y∥⩽ε0

(
f(x̃+ y)− f(x̃)

)
< ε0. (A70)

We next consider two cases: p = ∞ and p ∈ (1,∞). When p = ∞, we have

sup
ess-sup(∥ξ∥)⩽ε0

ρh
(
f(x̃+ ξ)

)
⩽ sup

∥y∥⩽ε0

f(x̃+ y) < f(x̃) + ε0, (A71)

where the first inequality follows from the monotonicity of ρh. Thus, (A71) contradicts (A65). Now

suppose p ∈ (1,∞). Define

k := sup
∥y∥⩽ε0

f(x̃+ y)− f(x̃)

ε0
.

By the strict inequality in (A70), we have k < 1. By Lemma A4, there exist k1 ∈ (k, 1), x1 ∈ Rn,

and ε1 > 0 such that

f(x1 + y)− f(x1) ⩽ k1∥y∥, ∀ ∥y∥ ⩽ ε1. (A72)

Next, note that limt→0

(∫ 1
1−t(h

′(u))q du
)1/q

= 0 by the dominated convergence theorem. Hence,

for any η > 0, there exists tη > 0 such that

(∫ 1

1−t
(h′(u))qdu

)1/q
⩽ η∥h′∥q, ∀ t ∈ (0, tη]. (A73)

Define

Xp =
{
F−1(U) :

∫ 1

0
|F−1(u)|pdu < ∞, F−1(U) ⩾ 0

}
.

Then {FX : X ∈ Lp} = {FX : X ∈ Xp}, and all random variables in Xp are comonotonic. Fix

η ∈ (0, 1 − k1) and choose tη > 0 such that (A73) holds. For ε ∈ (0, ε1t
1/p
η ] and any X ∈ Xp with

∥X∥p ⩽ ε, Markov’s inequality yields

P(X > ε1) ⩽
E[Xp]

εp1
⩽

(
ε

ε1

)p

⩽ tη. (A74)
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Consequently, for such η and ε, we have

sup
E∥ξ∥p⩽εp

ρh(f(x1 + ξ))

= sup
E∥ξ∥p⩽εp

{ρh
(
f (x1 + ξ)1{∥ξ∥⩽ε1} + f (x1 + ξ)1{∥ξ∥>ε1}

)
}

⩽ sup
E∥ξ∥p⩽εp

{ρh
(
(f(x1) + k1∥ξ∥)1{∥ξ∥⩽ε1} + (f (x1) + ∥ξ∥)1{∥ξ∥>ε1}

)
}

= f (x1) + sup
E∥ξ∥p⩽εp

{ρh
(
k1∥ξ∥1{∥ξ∥⩽ε1} + ∥ξ∥1{∥ξ∥>ε1}

)
}

= f (x1) + sup
E[Xp]⩽εp, X⩾0

{ρh
(
k1X1{X⩽ε1} +X1{X>ε1}

)
}

= f (x1) + sup
E[Xp]⩽εp, X∈Xp

{ρh
(
k1X1{X⩽ε1} +X1{X>ε1}

)
}

= f (x1) + sup
E[Xp]⩽εp, X∈Xp

{E[(k1X1{X⩽ε1} +X1{X>ε1})h
′(U)]}

⩽ f (x1) + k1 sup
E[Xp]⩽εp, X∈Xp

(E[(h′(U)1{X⩽ε1})
q])1/q(E[Xp])1/p

+ sup
E[Xp]⩽εp, X∈Xp

(E[(h′(U)1{X>ε1})
q])1/q(E[Xp])1/p

⩽ f (x1) + k1ε sup
E[Xp]⩽εp, X∈Xp

(E[(h′(U)1{X⩽ε1})
q])1/q

+ ε sup
E[Xp]⩽εp, X∈Xp

(E[(h′(U)1{X>ε1})
q])1/q

⩽ f (x1) + k1
∥∥h′∥∥

q
ε+

(∫ 1

1−tη

(h′(u))qdu

)1/q

ε

⩽ f (x1) + (k1 + η)
∥∥h′∥∥

q
ε < f (x1) +

∥∥h′∥∥
q
ε. (A75)

Here, the first inequality follows from Lip(f) ⩽ 1 together with (A72). The fourth equality uses the

law invariance of ρh. The fifth equality follows from the comonotonicity of k1X1{X⩽ε1}+X1{X>ε1}

and h′(U) forX ∈ Xp. The second inequality follows from Hölder’s inequality. The fourth inequality

uses the nonnegativity of h′, as h is a convex distortion function, together with (A74). The fifth

inequality follows from (A73), and the final strict inequality holds because k1+ η < 1. Thus, (A75)

leads to a contradiction to (A65), thereby establishing (11). This completes the proof.

Before proving Proposition 7, we need the following lemma.

Lemma A10. For any p ∈ [1,∞), F0 ∈ Mp (Rn) and ε ⩾ 0, let ℓ : Rn × R → R+ satisfy ℓ(z, t) is
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convex in t ∈ R and there exists M > 0 such that

|ℓ (z1, t)− ℓ (z2, t)| ⩽ M∥z1 − z2∥, ∀, z1, z2 ∈ Rn, t ∈ R.

We have the following statements hold.

(i) If limt→−∞ ∂ℓ(z, t)/∂t < −1 for all z ∈ Rn, then we have

sup
F∈Bp(F0,ε)

inf
t∈R

{
t+

(
EF [ℓp (ξ, t)]

)1/p}
= inf

t∈R
sup

F∈Bp(F0,ε)

{
t+

(
EF [ℓp (ξ, t)]

)1/p}
.

(ii) If limt→−∞ ∂ℓ(z, t)/∂t < 0 < limt→∞ ∂ℓ(z, t)/∂t for all z ∈ R, then we have

sup
F∈Bp(F0,ε)

inf
t∈R

EF [ℓp (ξ, t)] = inf
t∈R

sup
F∈Bp(F0,ε)

EF [ℓp (ξ, t)] .

Proof. (i) Denote by π1,ℓ(F, t) := t+
(
EF [ℓp (ξ, t)]

)1/p
. With the similar arguments as in the proof

of Lemma EC.8 in Wu et al. (2022), one can verify that π1,ℓ(F, t) is concave in F for all t ∈ R and

convex in t for all F ∈ Mp (Rn). Moreover, we have limt→±∞ π1,ℓ(F, t) = ∞ for all F ∈ Mp (Rn).

Thus, the set of all minimizers of the problem inft∈R π1,ℓ(F, t) is a closed interval. Denote by

t(F ) := inf argmint π1,ℓ(F, t). We will show that {t(F ) : F ∈ Bp (F0, ε)} is a subset of a compact

set. For any F ∈ Bp (F0, ε) and t ∈ R, let ξ ∼ F and ζ ∼ F0 such that E[∥ξ − ζ∥p] ⩽ εp, and we

have

|π1,ℓ(F, t)− π1,ℓ (F0, t)| =
∣∣∣(EF [ℓp (ξ, t)]

)1/p − (EF0 [ℓp (ζ, t)]
)1/p∣∣∣

⩽ (E [|ℓ (ξ, t)− ℓ (ζ, t)|p])1/p

⩽ (E [Mp∥ξ − ζ∥p])1/p ⩽ Mε, (A76)

where the first inequality follows from the triangle inequality, and the last step uses the definition

of the Wasserstein ball Bp(F0, ε). Hence,

π1,ℓ (F, t (F0)) ⩽ π1,ℓ (F0, t (F0)) +Mε. (A77)

Note that π1,ℓ (F0, t) → ∞ as t → ±∞. There exists ∆ > 0 such that π1,ℓ (F0, t) > π1,ℓ (F0, t (F0))+

2Mε for all t /∈ [t (F0)−∆, t (F0) + ∆]. This, combined with (A76), imply that

π1,ℓ(F, t) ⩾ π1,ℓ (F0, t)−Mε > π1,ℓ (F0, t (F0)) +Mε, ∀t /∈ [t (F0)−∆, t (F0) + ∆] .
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This, together with (A77), implies {t(F ) : F ∈ Bp(F0, ε)} ⊆ [t (F0) − ∆, t (G0) + ∆]. Using a

minimax theorem (see e.g., Sion (1958)), it holds that

sup
F∈Bp(F0,ε)

inf
t∈R

π1,ℓ(F, t) = sup
F∈Bp(F0,ε)

inf
t∈[t(F0)−∆,t(F0)+∆]

π1,ℓ(F, t)

= inf
t∈[t(F0)−∆,t(F0)+∆]

sup
F∈Bp(F0,ε)

π1,ℓ(F, t)

⩾ inf
t∈R

sup
F∈Bp(F0,ε)

π1,ℓ(F, t)

The converse direction is trivial. Hence, we complete the proof.

(ii) The proof is similar to (i).

Proof of Proposition 7. Without loss of generality, assume that Lip(f) = 1. Denote by ℓ̃1(z, t) :=

ℓ1(f(z), t). For any z1, z2 ∈ Rn with z1 ̸= z2,

|ℓ̃1(z1, t)− ℓ̃1(z2, t)| = |ℓ1(f(z1), t)− ℓ1(f(z2), t)|

⩽ b|f(z1)− f(z2)| ⩽ b∥z1 − z2∥, ∀ t ∈ R,

where the first inequality follows from the uniform Lipschitz continuity of ℓ1(z, t) in z ∈ R, and the

second inequality follows from the Lipschitz continuity of f . Thus, ℓ̃1(z, t) is Lipschitz continuous

in z for all t, with constant b. Moreover, one can verify that ℓ̃1(z, t) is convex in t and satisfies

limt→−∞ ∂ℓ̃1(z, t)/∂t < 0 < limt→∞ ∂ℓ̃1(z, t)/∂t for all z ∈ Rn. Therefore, ℓ̃1(z, t) satisfies the

assumptions of Lemma A10(ii). Hence,

sup
F∈B1(F0,ε)

HF
1 (f(ξ)) = sup

F∈B1(F0,ε)
inf
t∈R

EF
[
ℓ̃1(ξ, t)

]
= inf

t∈R
sup

F∈B1(F0,ε)
EF
[
ℓ̃1(ξ, t)

]
= inf

t∈R
sup

F∈B1(F0,ε)
EF [ℓ1(f(ξ), t)] . (A78)

We next show that

sup
F∈B1(F0,ε)

EF [ℓ1(f(ξ), t)] = sup
E[∥ξ−ζ∥]⩽ε

E [ℓ1(f(ξ), t)]= EF0 [ℓ1(f(ζ), t)] + bε.

It suffices to establish the second equality. First,

sup
E[∥ξ−ζ∥]⩽ε

(E [ℓ1(f(ξ), t)]− E [ℓ1(f(ζ), t)]) ⩽ b sup
E[∥ξ−ζ∥]⩽ε

E∥ξ − ζ∥ ⩽ bε, (A79)
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where the first inequality follows from the Lipschitz continuity of ℓ1(·, t) and f . For the reverse

inequality, we follow arguments similar to those used in Lemma A5 and Theorem 4. For the sake of

completeness, we nevertheless provide a detailed proof. By (20), with similar arguments as in the

proof of Lemma A5, there exist nondecreasing sequences {kj}j∈N and {mj}j∈N such that mj → ∞

as j → ∞ and (f(x0 +mjvkj )− f(x0))/mj ⩾ 1− 1
j . Let U be a uniform random variable on [0, 1],

independent of ζ, and define

ξj := ζ +mjvkj1{U∈Aj}, where Aj := [1− ε/mj , 1).

One can verify that E ∥ξj − ζ∥ = ε. For each realization of ζ, denote by ∆j := f(ζ+mjvkj )−f(ζ).

By Lipschitz continuity of f ,

mj(1−
1

j
)− 2∥ζ − x0∥ ⩽ ∆j ⩽ mj + 2∥ζ − x0∥. (A80)

Thus ∆j/mj → 1 and ∆j → ∞. Recall that for each t ∈ R there exists z0(t) such that

limm→∞
ℓ1(z0(t)+m,t)−ℓ1(z0(t),t)

m = b, which implies that limm→∞
ℓ1(z+m,t)−ℓ1(z,t)

m = b for all z, t ∈ R.

Note that ∆j → ∞, as j → ∞. Then, we have limj→∞
ℓ1(f(ζ)+∆j ,t)−ℓ1(f(ζ),t)

∆j
= b. Therefore, for any

t ∈ R and sufficiently large mj > max{1, ε},

sup
E[∥ξ−ζ∥]⩽ε

E [ℓ1(f(ξ), t)− ℓ1(f(ζ), t)]

⩾ E [ℓ1(f(ξj), t)− ℓ1(f(ζ), t)]

= E
[(
ℓ1(f(ζ +mjvkj ), t)− ℓ1(f(ζ), t)

)
1Aj

]
= E

[
mj

∆j

mj

(ℓ1(f(ζ) + ∆j , t)− ℓ1(f(ζ), t))

∆j
1Aj

]
= E

[
∆j

mj

(ℓ1(f(ζ) + ∆j , t)− ℓ1(f(ζ), t))

∆j

]
E
[
mj1Aj

]
= εE

[
∆j

mj

(ℓ1(f(ζ) + ∆j , t)− ℓ1(f(ζ), t))

∆j

]
→ bε as j → ∞, (A81)

where the third equality uses the independence of U and ζ, and the limit follows from the dominated

convergence theorem, since∣∣∣∣∆j

mj

(ℓ1(f(ζ) + ∆j , t)− ℓ1(f(ζ), t))

∆j

∣∣∣∣ ⩽ b
|∆j |
mj

⩽ b(1 + 2∥ζ − x0∥),

with the last inequality from (A80) and mj > 1. Combining (A81) with (A79) and (A78), we obtain

(36). This completes the proof.
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Proof of Proposition 8. Without loss of generality, assume Lip(f) = 1. Note that ρh ∈ Rcoh. Since

f satisfies (20), Theorem 4(i) yields

sup
F∈B1(F0,ε)

ρFh
(
f(ξ)

)
= sup

G∈C1(f |F0,ε)
ρGh (X). (A82)

Moreover, it follows from Proposition 2 in Pflug et al. (2012) (see also Theorem Wu et al. (2022))

that

sup
G∈C1(f |F0,ε)

ρGh (X) = ρF0
h

(
f(ζ)

)
+ ε∥h′∥∞. (A83)

Combining (A82) and (A83) completes the proof.

Proof of Proposition 9. Note that we can rewrite exFα (X) = max{x ∈ R : EF [ℓα(X − x)] ⩾ 0},

where ℓα(x) := αx+ − (1− α)x−, x ∈ R. Denote by cf = Lip(f). Therefore we have

sup
G∈C1(f |F0,cf ε)

exGα (X) = sup
G∈C1(f |F0,cf ε)

max
{
x ∈ R : EG[ℓα(X − x)] ⩾ 0

}
= max{x ∈ R : sup

G∈C1(f |F0,cf ε)
EG[ℓα(X − x)] ⩾ 0}

= max
{
x : EF0 [ℓα(f(ζ)− x)] + αcfε ⩾ 0

}
,

where the last equality follows from the regularization result of a convex Lipschitz continuous

function over a Wasserstein ball, i.e., supG∈B1(G0,ε) E
G[ℓα(X − x)] = EG0 [ℓα(X − x)] + αε. This

implies

sup
F∈B1(F0,ε)

exFα (f (ξ)) = max
{
x : EF0 [ℓα(f(ζ)− x)] + αcfε ⩾ 0

}
,

or equivalently, the unique solution to EF0 [ℓα(f(ζ)− x)] + αcfε = 0. This completes the proof.

A.3 Proofs for Section 5

Proof of Proposition 10. By Theorem 1, it is straightforward to verify the implications (ii) ⇒ (i)

and (iii) ⇒ (ii). We only give the proof of (i) ⇒ (iii).

For (i) ⇒ (iii), suppose that there exists cf ⩾ 0 such that (39) holds for any ε > 0 and

F0 ∈ M(Ξ). If cf = 0, take ρ = VaRα with α ∈ [0, 1). Let F0 be such that (Y0,X0) ∼ F0, where

Y0 ≡ 1 almost surely and FX0 denote the marginal distribution of X0. Then, with similar arguments

as in the proof of (i) ⇒ (iii) in Theorem 1, it follows that f must be constant. Now consider cf > 0

and take ρ = VaRα with α ∈ [0, 1). Assume without loss of generality that cf = 1. Let F0 be such
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that (Y0,X0) ∼ F0, where Y0 ≡ 1 almost surely and X0 ∼ FX0 . In this case, (39) reduces to

sup
F∈Bp(FX0

,ε)
VaRF

α (f(X)) = sup
G∈Cp(f |FX0

,ε)
VaRG

α (X),

which holds for any ε > 0 and FX0 ∈ M(Rn). By Lemma A1 and the proof of Theorem 1 (i) ⇒ (iii),

it follows that

sup
∥y∥⩽ε

f(x+ y)− f(x) = ε, (A84)

for any x ∈ Rn and ε > 0. Similarly, let F0 be such that (Y0,X0) ∼ F0, where Y0 ≡ −1 almost

surely and X0 ∼ FX0 . Then, for any ε > 0 and any FX0 ∈ M(Rn), it holds that

sup
F∈Bp(FX0

,ε)
VaRF

α (−f(X)) = sup
G∈Cp(−f |FX0

,ε)
VaRG

α (X).

By Lemma A1, we have

f(x)− inf
∥y∥⩽ε

f(x+ y) = ε, ∀x ∈ Rn, ε > 0. (A85)

Combining (A84) and (A85), we have (9) holds. This completes the proof.

Proof of Proposition 11. The “if” part is a direct consequence of (iii) ⇒ (i) in Proposition 41 and

the “only if” part has been already proved in the proof for (i) ⇒ (iii) in Proposition 41.

Proof of Corollary 2. By Propositions 1, 2, 10, and Theorem 6, the conclusion follows immediately.
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