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Abstract

Wasserstein distributionally robust optimization (DRO), a leading paradigm in data-driven
decision-making, requires evaluating worst-case risk over a high-dimensional Wasserstein ball.
We study when this worst-case evaluation admits an exact reduction to a one-dimensional for-
mulation, in the sense that it can be carried out over a one-dimensional Wasserstein ball centered
at the projected reference distribution. We refer to this property as projection equivalence. We
investigate projection equivalence across several classes of risk functionals. Starting from gen-
eral law-invariant risk functionals and progressing through monotone risk functionals, coherent
risk measures, and further specialized subclasses, we provide a complete characterization by giv-
ing necessary and sufficient conditions on the loss function under which projection equivalence
holds. Beyond simplifying worst-case risk evaluation, our characterization also identifies when
the worst-case problem admits an exact regularization reformulation, substantially extending
previously known results. Applications to distributionally robust chance-constrained programs

and classification problems are presented.

1 Introduction

Wasserstein distributionally robust optimization (DRO) has emerged as a dominant paradigm
for optimization under uncertainty, with growing prominence across operations research, statistics,
finance, and machine learning. Its strength lies in safeguarding decisions against distributional
ambiguity while delivering strong out-of-sample guarantees. In its most general form, Wasserstein

DRO can be written as

. F
min  sup p (f(§)),
fE€F FeB,(Foe) ( ( ))
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where F denotes the admissible decision class, f represents a decision-dependent loss function, p is
a risk functional, and B, (Fp, €) is the p-Wasserstein ball of radius € > 0 centered at a nominal dis-
tribution Fy. Through the choice of p, this formulation accommodates a wide array of performance
criteria: expectation in classical Wasserstein DRO, risk measures in finance, statistical functionals
in inference, and loss- or utility-based objectives in machine learning.

The primary challenge in solving Wasserstein DRO is the inner maximization, which we refer

to as the worst-case risk problem:

sup - p"(f(8)). (1)

FeBy(Fp.e)
When the random vector £ is high-dimensional, evaluating (1) is often the main bottleneck, and
overcoming this difficulty is important for both the theoretical analysis and the practical use of
Wasserstein DRO. In some cases, the high-dimensional worst-case problem (1) admits an ezact
reduction to a one-dimensional formulation over a univariate p-Wasserstein ball. We refer to this

property as projection equivalence:

sup pI(f(€)= sup p%(X), (2)
FeB,(Fo.e) GEeCp(f|Fo,¢)

where C,(f|Fp,e) denotes the one-dimensional p-Wasserstein ball centered at Gy, the distribution
of f(¢) for ¢ ~ Fy. Thus, the high-dimensional worst-case risk evaluation reduces exactly to a
one-dimensional counterpart, yielding substantial benefits for both computation and analysis, and
in many cases leading to closed-form or efficiently computable solutions.

Projection equivalence (2) has thus far been observed only in limited settings, most notably
when the loss function f is linear (or affine). In this case, Mao et al. (2022), Wu et al. (2022)
and Aolaritei et al. (2023) obtain projection equivalence by establishing a set-level equivalence:
the projection of the high-dimensional Wasserstein ball under a linear map coincides exactly with
the one-dimensional Wasserstein ball Cp(f|Fp,c). In more general settings, only a set-inclusion
relationship can be established: the projection of the high-dimensional Wasserstein ball through
f is contained in Cp(f|Fp,€) (see, e.g., Santambrogio (2015)). This in turn implies that the one-
dimensional worst-case problem, i.e., the right-hand side of (2), provides at best an upper bound
on the full-dimensional worst-case problem, i.e., the left-hand side of (2).

Set-level equivalence is stronger than projection equivalence and may therefore be more restric-
tive than necessary. For reducing the worst-case risk problem, what matters is equality of the
worst-case values, not equality of the ambiguity sets. The linear case is thus only a narrow special

instance, leaving open the fundamental question of when exact reduction is possible for broader



classes of loss functions and risk functionals, even without set-level equivalence.

To the best of our knowledge, no prior work has provided a complete characterization of when
projection equivalence holds beyond the linear setting. More generally, whether such an equivalence
holds depends on the class of risk functionals used to evaluate risk. In this paper, we close this gap by
developing a hierarchy of results: starting from the most general law-invariant risk functionals and
then specializing to monotone functionals, coherent risk measures, and further subclasses, we derive
necessary and sufficient conditions on the loss functions f under which projection equivalence (2)
holds, thus providing a complete characterization. On the one hand, our results reveal that solving
the high-dimensional worst-case risk problem via its one-dimensional counterpart is possible for
classes of loss functions that extend far beyond the linear case. On the other hand, and perhaps
even more theoretically intriguing, our results also constitute impossibility results: such a reduction
is provably not possible for any loss function outside the identified classes. This establishes a
sharp boundary for projection equivalence in Wasserstein DRO, delineating precisely when exact
reduction is feasible and when it is not. As an application, we show how our reduction results enable
an exact reformulation of Wasserstein chance-constrained programs, extending in a nontrivial way
the previous results of Xie (2021) and Chen et al. (2024) from the type-1 Wasserstein setting to
general type-p.

As another key benefit of reduction, our results show that projection equivalence enables the
identification of broader conditions under which Wasserstein DRO problems admit an exact reformu-
lation as regularized optimization problems (Pflug et al. (2012); Blanchet et al. (2019); Shafieezadeh-
Abadeh et al. (2019); Gao et al. (2024); Wu et al. (2022)). Such reformulations are of great interest
in both optimization and machine learning, as they reveal when Wasserstein DRO can be inter-
preted and solved through regularization schemes commonly applied in practice. Previously, exact
regularization reformulations were known only in restricted cases: in particular, when the risk func-
tional is the expectation (Shafieezadeh-Abadeh et al. (2019); Gao et al. (2024)), or more generally,
for other risk functionals but limited to linear loss functions (Wu et al. (2022)). Our results extend
these findings substantially by pinpointing precisely when such reformulations exist across broader
classes of risk functionals and loss functions.

We further extend the reduction result (2) to the classification setting. We show that exact
reduction remains possible, though for a more restricted class of loss functions than in our baseline
setting; nonetheless, it still goes well beyond the linear classifiers studied in existing work (e.g.,
Kuhn et al. (2019); Ho-Nguyen and Wright (2023)).

To provide a high-level view of our main results, including set-level equivalence, projection



equivalence, regularization, and the exact characterization of loss functions, we summarize their

relationships in Figure 1 for general p > 1 and Figure 2 for p = 1.

Our contributions. This paper makes the following advances:

1. Complete characterization. We provide necessary and sufficient conditions under which
the high-dimensional worst-case risk problem reduces exactly to its one-dimensional counter-

part, offering the first full characterization of projection equivalence in Wasserstein DRO.

2. Beyond set preservation. We show that projection equivalence can hold even without
set-level equivalence, revealing a broader class of (f, p) pairs than previously recognized and

establishing sharp impossibility boundaries beyond them.

3. Functional characterization. For convex losses, we identify the exact family of functions
in closed-form admitting projection equivalence, subsuming affine and piecewise-linear forms

as special cases.

4. Regularization reformulations. Leveraging projection equivalence, we derive precise con-
ditions under which Wasserstein DRO admits exact regularization representations, substan-

tially extending prior results beyond expectation and linear losses.

Figure 1: Hlustration of the relationships in Theorems 1, 2, 6 and Proposition 6
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Notes. The figure is presented for the special case Lip(f) = ¢y = 1, for simiplicity. The three conditions in the first
layer are assumed to hold for all Fy € M(R") and all € > 0, whereas the first two conditions in the second layer
are assumed to hold for all x € R™ and all € > 0. The equivalence stated in Theorem 2 holds under the assumption
that suppep, (5 o) pr(f(€) = SUPGec, (f|Fo.e) pC(X) for any monotone risk measure p. We say that “sup p admits a
regularized form” if there exists a constant C,, € R such that supgec, (5,0 p%(X) = p™(f(¢)) + Cpe. Theorem 6
shows that, when p > 1, p = ps is a convex distortion risk measure and f is convex, the two rightmost conclusions
are equivalent, with C, = ||h’||q, where ¢ is the Hélder conjugate of p. Proposition 6 shows that, when p > 1, p = H,
is defined by (29) with loss ¢(z,t) = ¢(z — t)+ for ¢ > 1 and f is convex, the same equivalence holds with C, = c.



Figure 2: Relationships among Theorem 4 and Propositions 7, 8 when p =1
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Notes. The figure is presented for the special case Lip(f) = ¢; = 1, for simiplicity. The first condition in the second
layer (left box) is assumed to hold at some xo € R", while the remaining conditions in all other boxes are assumed
to hold for all Fy € M(R™) and all ¢ > 0. Here, K denotes a bounded set. The functional H{ is defined as
HY(X) = infier B [t + £(X, t)], where £ satisfies the conditions of Proposition 7, and Lip(£(-,t)) = b for all t € R.
In Proposition 8, p; denotes a convex distortion risk measure.

2 Preliminaries

Let (22,.A,P) be an atomless probability space. A random vector £ is a measurable mapping
from © to R", n € N. Denote by F¢ the distribution of & under P. Denote by M(R") the set of
all distributions on R™. For p > 1, let LP := LP(Q, A,P) be the set of all random variables with
finite pth moment and M, (R") be the set of all distributions on R™ with finite pth moment in
each component. For any norm || - || on R", its dual norm || - || is defined as ||y|[« = supjx<1 x'y.
Let ¢ denote the Holder conjugate of p, i.e., 1/p+ 1/¢ = 1. For a real number = € R, we use
r4 = max{z,0} and z_ = max{—=z,0}; and for m € N, denote by [m] = {1,...,m}. Let e; € R"
be the vector whose ith element is 1 and all other elements are 0 for ¢ € [n]. Let x_; denote the
vector obtained by removing the i-th component from x € R™. Similarly, x_; ;) denote the vector
obtained by removing the i-th and j-th components. Denote by J, the Dirac distribution at z € R™.
We denote by x oy the Hadamard (element-wise) product of vectors x and y, i.e., the vector whose
i-th component is given by (x oy); = z;y;.

For any two n-dimensional distributions F} and F5 on M,(R™), the type-p Wasserstein metric

is defined as

W, (F1, Fp) = inf  (E7[||& — &]P])"” 3
p(FLE) = _int - (EV]JE - &), Q
where || - || is a norm on R"™, and II(F}, F3) denotes the set of all distributions on R"” x R™ with



marginals F; and F». We define the ball of distributions B, (Fp,c) on R as
B,(Fp,e) = {F € Mu(R") : W,(F, Fp) < ¢}, (4)

and refer to it as the type-p Wasserstein ball throughout this paper.

We begin by formalizing the notion of a projection-induced ambiguity set, along with the classes
of risk functionals under which our main results are developed. Let f : R” — R be a loss function,
Fy € Mp,(R™) be a nominal distribution, and ¢ > 0. The projection-induced p- Wasserstein ball is
defined as

F#Bp(Fb,e) := { Fy(e) : Fe € By(Fb,e) |,

where F'y(¢) denotes the distribution of the scalar random variable f (&) for & ~ F¢. We also write
Cp(f | Fo,€) = BP(GOa5> C Mp(R)

for the one-dimensional type-p Wasserstein ball centered at Gy, the distribution of f({) for ¢ ~ Fp.
If f is Lipschitz continuous, we define its Lipschitz constant with respect to the norm used in the

Wasserstein metric as

G0 - S
Lip(f) = s =y

Let X denote a space of real-valued random variables. We refer to any functional p : X — R as

a 1isk functional, and consider the following nested classes:

(i) Law-invariant finite-valued risk functionals. A risk functional p is law-invariant if

p(X) =p(Y) for all X, Y € X such that X Y. We assume that p(X) < oo forall X € X.

(ii) Law-invariant monotone risk functionals. A risk functional p is monotone if p(X) <

p(Y) whenever X <Y almost surely.

(iii) Law-invariant coherent risk measures. A risk functional p is coherent if it is

monotone and satisfies the following properties:
— Translation invariance: p(X +m) = p(X) + m for all m € R,
— Positive homogeneity: p(AX) = Ap(X) for all A > 0,
— Subadditivity: p(X +Y) < p(X) + p(Y).

It is well known that any law-invariant, coherent, and lower semicontinuous risk measure p :

LP — R admits a Kusuoka representation (Kusuoka (2001); Filipovic and Svindland (2007); Shapiro



(2013)) of the form

1
pF(X) = sup /0 CVaRF (X) dy(a), (5)

where .#), is a set of probability measures on [0, 1], and CVaRZ'(X) is the Conditional Value-at-Risk
(CVaR, also called Expected Shortfall, ES) at level « € [0, 1] defined as

1
VaR!'(X)ds, a € [0,1), and CVaRI(X) = VaRI'(X),

[0}

CVaR!(X)

T l-a
with VaR,, being the Value-at-Risk (VaR) at level « € [0, 1] defined as

VaRL (X) = inf{z : F(z) > a}, a €[0,1) and VaRI'(X)=inf{z: F(z) > 1}.

In this paper, we call a coherent risk measure p regular if it admits a Kusuoka representation of the

form (5) with !

1
1
C, = sup / dp(a) < 0.
0

neMp —Q
We denote by Riaw, Rmon, and Reon the respective classes of law-invariant finite-valued risk

functionals, monotone risk functionals, and regular coherent risk measures, where

Rcoh - Rmon C Rlaw-

3 Projection Equivalence for General Risk Functionals

We now present our main results: a complete characterization of the loss functions f for which
projection equivalence (2) holds. We proceed in a nested manner, starting from the largest class of
law-invariant risk functionals R,y and then restricting to the more structured classes of monotone
and coherent risk measures, Ryon and Reon. This refinement reveals progressively broader families

of losses f for which projection equivalence can be guaranteed.

3.1 Law-invariant Risk Functionals Ri,w

We first show that requiring projection equivalence to hold uniformly over all law-invariant risk
functionals is essentially as strong as requiring the associated one-dimensional ambiguity sets to
coincide, namely set-level equivalence. Theorem 1 establishes necessary and sufficient conditions

under which this equivalence holds and provides a complete characterization of the admissible loss

!The condition C, < ¢ is a standard assumption ensuring that the risk measure p takes finite value on L.



functions.
Theorem 1. Forp > 1, let f : R™ — R be a function. Then the following statements are equivalent.

(i) There exists cy > 0 such that

sup  p" (f(€) = sup  pYX) (6)
FeB,(Fo.e) GeCy(f|Fo,cre)

holds for any p € Riaw, Fo € M(R™) and € > 0.

(ii) There exists cy > 0 such that for any Fo € M(R™) and € > 0, it holds that
f#Bp(Fl)uS) :Cp(f’F07cf8)' (7)

(i1i) The function f is Lipschitz continuous, and satisfies for any x € R", ¢ > 0,

f(x)— inf f(x+y)= sup f(x+y)— f(x)=Lip(f)e. (8)
lyll<e lyl<e

Set-level equivalence (7) immediately implies projection equivalence (6) by definition. The
converse—namely, (i) = (i#i)—is considerably more delicate. As we show later, this implication is
specific to the law-invariant class and need not persist for more refined families of risk measures,
for which projection equivalence may hold even in the absence of set-level coincidence.

Set-level equivalence (7) was previously established only for linear losses f (see, e.g., Wu et al.
(2022)). Characterization (ii7) shows that linearity is not required and, more importantly, enables
us to identify a substantially richer class of loss functions for which projection equivalence holds. To
highlight the additional flexibility afforded by (iii), we provide two explicit families of admissible

losses under the choice of ¢1-norm || - || = - |1

Proposition 1. Let ||| = || - |[1. The following two families of loss functions satisfy condition (iii)

i Theorem 1.

(CL) f(X) - C(ﬁTX+g(nOX)> where ¢ > 07 HIBHOO = 17 617771 € {17 _170}7 (&S [n]a /6 on = 0: and
g s a Lipschitz function with Lip(g) < 1.

(b) f(x) = c(IBTx| = v x| + g(n 0 x)), where ¢ > 0, ||Blloc = [V]o = 1, Bisvismi € {1,-1,0},
i€n],Bon=von=Rov =0, and g is a Lipschitz function with Lip(g) < 1.

Notably, the admissible families identified above are fairly broad in the || - ||; setting. This

breadth is nontrivial: as we show next, once one moves away from | - ||1, exact reduction can



become dramatically more restrictive, and for the || - ||, norm with a € (1,00) it is impossible
beyond linear loss functions. We provide a refined characterization of functions with Lip(f) > 0
that satisfy (8) under strictly conver norms (Clarkson (1936)), i.e., norms for which ||x|| = ||y|| =1
and ||x —y| # 0 imply ||x +y| < 2. It is well known that | - ||, is strictly convex for a € (1, c0).

Perhaps surprisingly, under any such norm, the admissible class collapses: (8) holds only for linear

f.
Proposition 2. Let f : R™ — R be a Lipschitz function with Lip(f) > 0. If || -|| is a strictly convex
norm, then f satisfies (8) if and only if there exists v with ||v|| = 1 such that

f(x+tv) — f(x) =Lip(f)t, VxeR" teR. (9)

In particular, if || -|| = || - |la, @ € (1,00), then f satisfies (9) if and only if f(x) = BT x+b for some
B R and b € R.
3.2 Monotone Risk Functionals R,,on

We highlight in this section that projection equivalence can hold for a substantially richer class of
loss functions f than in the previous setting (e.g., those in Proposition 1) once we restrict attention
to monotone risk functionals. In particular, for this monotone class, projection equivalence no
longer requires set-level equivalence (7). Accordingly, we characterize the admissible loss functions

through a strictly weaker condition on f.
Theorem 2. Forp > 1, let f : R™ — R be a function. The following statements are equivalent.

(i) There exists cy > 0 such that

sup  p" (f(€)=  sup  pX) (10)
FeB, (Fo.e) GeCy(f|Fo,cre)

holds for any p € Rumon, Fo € M(R™) and € > 0.

(i) The function f is Lipschitz continuous and satisfies

sup f(x+y)— f(x)=Lip(fle, VxeR" >0. (11)

lyll<e

Comparing the characterization (8) in Theorem 1 with (11) above, we see that (8) applies only

to functions that are unbounded both above and below, whereas (11) can also apply to functions



that are unbounded only from above. Below we provide several examples that fall outside the scope

of Theorem 1 but are covered by Theorem 2. The first three are convex, whereas the fourth is not.

Example 1. (i) The norm function: f(x) = [[x[|. Note that we can rewrite f(x) = supg|,=1 Bx.

We have ¢y = 1 and by Theorem 2, for any p € Rmon, Fo € M(R") and € > 0, it holds that

sup  pl (€)= sup  p%(X),
FeB,(Fp.e) GeB,(Go,e)

where Gy € M(R) is the distribution of ||{|| and ¢ ~ Fp.
(ii) The absolute value linear function: f(x)=|8"Tx+b|, 3 € R", b € R. We have ¢; = ||3]|, and

by Theorem 2, for any p € Rmon, Fo € M(R™) and £ > 0, it holds that

sup  pl’ (\6T5+b!) = sup  pY(X),
FeBy(Fo,e) GEB,(Go,||B]|«¢)

where Gy € M(R) is the distribution of |[37¢ + b| and ¢ ~ Fp.

(iii) If[]-[| = ||-[[1 is the £1-norm, then f(x) = max;es(Bi1w1+- - -+ BinTn+b;) With max;c, [8i| = ¢
for ¢ € I, satisfies (11) with Lip(f) = c.

(iv) Take R? and the norm ||(x1,22)|| = /2% + 23, (z1,72) € R% Define

max { 7$1+21‘2’ 7%1721‘2} . T 2 0’

f(xlﬂxQ) = Vs Vs
max{“j;%‘”, “\_/?2 } , z1 < 0.

The function f satisfies (11) with Lip(f) = 1.

The first three examples are standard convex losses. This naturally raises the question of
whether other convex loss functions also enjoy projection equivalence. To address this question,
we establish a representation theorem that provides a complete closed-form characterization of all

convex losses admitting projection equivalence.

Proposition 3. If f : R" — R is a convex function and p > 1, then the function f satisfying (11)

must admit a representation of the form
f(x) = I?ealx{c]cﬂ;rx +b;}, (12)
where ¢y 2 0, B; € R", i € I, with ||Bi]|« =1 and b; € R.

10



Remark 1. It is worth noting that Proposition 3 remains valid without convexity when n = 1,
whereas convexity becomes necessary when n > 2. In particular, Example 1(iv) provides a coun-
terexample. One can verify that this function f satisfies (11), yet it is not convex along the line

x9 = 0 and therefore cannot admit the representation (12).

Thus far, we have identified (11) as a necessary condition for projection equivalence to hold
uniformly over monotone risk functionals. We next establish a somewhat unexpected result: (11)
remains necessary even if projection equivalence is required to hold only for a single monotone risk

measure—namely, Value-at-Risk.

Proposition 4. For o € [0,1) and p > 1, let f : R™ — R be a function. Then there exists c; > 0
such that

sup  VaR[ (f(€)=  sup  VaRJ(X) (13)
FEBP(Fo,E) Gecp(f‘Fo,CfE)

holds for any Fy € M(R™) and € > 0 if and only if f satisfies (11).

The above result highlights that it is difficult to expect projection equivalence beyond the class of
loss functions characterized by (11). As we show throughout the remainder of the paper, exceptions

do exist (see, e.g., Section 3.3), but (11) appears to be fairly tight in general.

Remark 2. It is worth noting that Proposition 4 does not extend to o = 1. Indeed, for any f and
any p € [1,00), we always have supgec,(f|Fp.cse) VaR{ (X) = oco. If f is unbounded from above,
then suprep, (7 ) VaRY (f(€)) = oo, which implies that (13) always holds for o = 1 in this case.

Therefore, we have Proposition 4 does not hold for @ = 1 in general.

Before proceeding further, we highlight how Proposition 4 together with Proposition 3 facilitate
the solution of important OR,/MS problems. Observe that the function f(&) := max;e {3, &/||B:|+}
is a special case of (12). By Proposition 4, this yields

T
sup  VaRZ (max P & ) = sup VaRg(X), (14)
FEB,(Fo.e) el ||Bill+ ) GeBy(Goe)

where Gy € M(R) is the distribution of f(¢{) and ¢ ~ Fjp.
We present two important applications of (14). In each case, the reduction to the one-dimensional
worst-case Value-at-Risk problem (the right-hand side of (14)) allows us to invoke the CVaR refor-

mulation in Lemma 1 to solve the original high-dimensional problem (the left-hand side of (14)).

11



Lemma 1. For a € [0,1] and p > 1, the worst-case VaR (14) is the unique = € R satisfying

1 < + CVaR[D ( <m — max CAS )p) = 0. (15)
+

—a i€l ||Bill«

Example 2 (Worst-case risk over multiple portfolios). Let 31,..., 3, € R™ denote m portfolio
weight vectors such that all of them share the same dual norm, i.e., |3« = ||B1]|« for all j € [m].

The problem of evaluating the worst-case value-at-risk of the poorest-performing portfolio is

sup  VaRl <max B/ >
FEB,(Fo,e) i€[m]

By applying (14) together with Lemma 1, the problem can be reformulated as the following opti-

mization problem:

b

min x S.t.
l—«

P
1812 + CVaRE? (— {x — max,@?(} ) <0. (16)
i€[m]
This formulation generalizes the result of Chen and Xie (2021), which is restricted to the case p = 1,
toall p>1.

Example 3 (Distributionally robust chance-constrainted program). One important application of
Wasserstein DRO is distributionally robust chance-constrained programs (Wasserstein DRCCPs),
which aim to ensure that constraints hold with high probability under distributional uncertainty.

A typical Wasserstein DRCCP takes the form

min c¢'x, (17)
xeS

t. inf  PF(a;(x)"€ <bi(x), Vi >1-—n, 1
st it (@) 7€ <bilx), Vie ) =1 (18)

where S C R” is a feasible set of the decision vector x, the vector ¢ € R¥ denotes the objective
function coefficients, {y : a;(x) Ty < b;(x), Vi € [m]} C R” is referred to as a safety set for each
x € S, and n € (0,1). For p = 1, the feasible set has been reformulated in terms of CVaR by Xie
(2021) and Chen et al. (2024). Here, we provide a new perspective and extend the result to general

12



p > 1. First, the constraint (18) is equivalent to

sup VaRf’F (max {ai ()€ — bi(x) }) <0,

FeB,(Fo,8) " \i€lm] llai ()|«

where VaR% denotes the left-continuous VaR defined by VaRL(X) = inf{z : P(X < z) > a} for
a € (0,1). One can easily verify Lemma 1 still holds true if we replace VaR,, by the left-continuous

VaRE. Applying (14) together with Lemma 1, problem (17) can be reformulated as

min c¢'x
xES
F p cb .
st. —CVaR(?, [ f(x,Q)"] > pot ieI(x),

a;(x) =0, bj(x) >0, i¢&I(x),
. (bi(x)—ﬂbi(x)TC)+ .
where f(x, ) = minje(x) g and I(x) = {i € [m] : a;(x) # 0}.
Moreover, observing that

. 1
min

i€l (x) —WCVaRfﬂn [—(b,;(x) —ai(x) &) | = ~CVaR{®, [~ f(x, €)',

we obtain the following tractable optimization problem, which provides a conservative approxima-

tion of (17):

min c'x

x€ES

st — #CVaRFO —(bi(x) — a;(x)TENP | > & i€ I(x)
[lai (%)% h R ’

a;(x) =0, bj(x) >0, i¢I(x).

This upper-bound formulation generalizes the result of Xie (2021), which is restricted to p = 1, to

arbitrary p > 1.

3.3 Coherent Risk Functionals R.on

Finally, we study projection equivalence for the coherent subclass of monotone, law-invariant

risk measures, focusing on those admitting a Kusuoka representation. It turns out that in this

For a random variable X with distribution F and a € (0,1), it holds that F(0) > « if and only if VaR% (X) < 0.
To see this, first assume that F(0) > a. By definition of VaR, we have VaR%(X) = inf{z : F(z) > a} < 0 as
0 € {x: F(z) > a}. Next assume that VaR%(X) < 0, that is, inf{z : F(z) > o} < 0. There exist z, | 0 as n — oo
such that F(z,) > a. By right-continuity of F'; we have F(0) > «.
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setting the choice of Wasserstein ball—specifically, the order p—is decisive: the regimes p > 1
and p = 1 behave fundamentally differently. We first show that when p > 1, the loss-function
condition (11) identified in the preceding section remains necessary, even after restricting attention

to coherent risk measures.

Theorem 3. Forp > 1, let f : R" — R be a function. There exists cy > 0 such that

sup  pP(f(€) = sup  pY(X) (19)
FE]BP(F(),E) Gecp(leQ,CfE)

holds for any p € Reon , Fo € M(R™) and ¢ > 0 if and only if f satisfies (11).

Similar to Proposition 4, (11) remains necessary even if projection equivalence is required to

hold only for a single coherent risk measure—mnamely, expectation.

Proposition 5. Forp > 1, let f:R"™ = R be a function. There exists cy > 0 such that

sup EF[f(§)]=  sup  EY[X]
FeB,(Fo,e) GECp(f‘F(),CfE)

holds for any Fy € M(R™) and € > 0 if and only if f satisfies (11).

In sharp contrast, the case p = 1 is markedly different: under the type-1 Wasserstein ball,
projection equivalence can hold for a significantly broader class of loss functions. We provide a

complete characterization of this class.
Theorem 4. Let p € Reon, and f : R™ — R be a function. The following statements hold.

(i) If f is Lipschitz continuous and there exist xo € R"™ and vy, € R™ with ||vg|| = 1,k € N such
that

fim T sup (0 + moe) — f(x0) = Lip(). (20)

k—00 m—oo

then for any Fy € M (R™) and € > 0, it holds with ¢y = Lip(f) that

sup pl(f(€) = sup (X)) (21)
FeB1(Fo,e) GGCl(f|F0,Cf8)

(ii) If there exists a bounded set K C R™ such that f coincides with some conver function on

R™\KC, then we have (20) is also necessary for (21) to hold for any Fy € M (R™) and € > 0.
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(i) If f is convex, then there exists cy > 0 such that (21) holds for any Fo € M(R"™) and ¢ > 0

if and only if f is Lipschitz continuous.

Conditions (i¢) and (i77) establish necessity of the characterization (20) for, respectively, poten-
tially nonconvex and convex loss functions. In particular, condition (i7) shows that (20) is necessary
for any loss function with a “convex tail”. We conclude this section by presenting examples of loss

functions that satisfy (20).
Example 4. The following are examples of Lipschitz continuous functions that satisfy (20).

(i) Norm-based check loss: f(x) = (7 — Lyjx<ey) (IX]| = ¢), where 7 > 1/2 and ¢ > 0. Then
Lip(f) = 7. One can verify that f(x) = 7(||x|| — ¢) on R™ \ £ with £ := {x : ||x|| < ¢}.

(ii) Huber check loss: f(x) = (7 — Ly, (x|)<et) (a(lX]]) — ¢), where 7 > 1/2, ¢ > 0, @ > 0, and
Jo 1s the Huber loss (Huber (1992)) defined by

Then Lip(f) = a7t and f(x) = 7(9a(]|x||) — ¢) on R™ \ £ with K := {x: g (||x]|) < ¢}.

(iii) Log-exponential check loss: f(x) = (7 — Lyp(xy<ey) (A(%])) — ¢), where 7 > 1/2, ¢ > 0 and
h(z) := log(1l 4 exp(z)). We have Lip(f) = 7 and f(x) = 7(h(||x||) — ¢) on R" \ K with
K =[x () < e}

4 From Projection Equivalence to Regularization

In this section, we highlight a further payoff of projection equivalence: it pinpoints the pairs
of risk measures p and loss functions f for which Wasserstein DRO admits an exact regularization
representation. Such representations replace the worst-case problem by a nominal risk plus an
explicit linear penalty, yielding a tractable and interpretable reformulation. Existing results of
this type, however, are largely confined to affine losses f; see Wu et al. (2022). We show, at a
general level, that the existence of an exact regularization representation is equivalent to projection
equivalence. We say that (f, p) admits an ezact reqularization representation over the Wasserstein

ball B, (Fp, €) if there exists a constant cyeg > 0 such that

sup " (f(&) = p"(f(C)) + reg e (22)

FEB,(Foe)
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where § ~ F and ¢ ~ Fj. The constant ces generally depends on the underlying Wasserstein metric
(e.g., its order and ground norm), as well as on p and f.

As a minimal prerequisite, we assume that p admits an exact regularization identity in one
dimension. Specifically, for any baseline distribution Gy on R and any € > 0, there exists a constant

¢ > 0 such that

sup  pY(€) = p“(() + ee, (23)
GeBy,(Go,e)

where £ ~ G and ¢ ~ Gg. Clearly, (23) is the one-dimensional special case of (22). Apply (23)
with the reference distribution chosen as the pushforward Gy := fxFy (i.e., the law of f({) under
¢ ~ Fp). This yields

sup PG(X) = PFO(f(C)) T+ Creg €,
GeCp(f | Fo,ce)

where ¢eg = ¢¢. Consequently, (22) holds if and only if

sup  pf(f(€) = sup  pY(X),
FeBy(Fo,e) GeCy(f | Fo,ce)

which is precisely projection equivalence.

Unlike the previous section, which established projection equivalence for broad classes of risk
measures, we now restrict attention to risk measures satisfying (23). For each such family, we
characterize the loss functions f for which projection equivalence holds. As noted in Section 3.3,
the analysis bifurcates fundamentally between higher-order Wasserstein balls (p > 1) and the type-1

Wasserstein ball; we treat them separately in Sections 4.1 and 4.2, respectively.

4.1 Type-p Wasserstein Ball (p > 1)
L,-norm risk

We begin with the higher-order L,-risk functional

ap  (B7me)" (24)

FeBy(Fo.e)

where f:R" — Ry and B, (Fp,e) denotes the type-p Wasserstein ball of radius e centered at Fj.
A one-dimensional exact regularization identity is available for the absolute-value loss. In par-

ticular, Wu et al. (2022) shows that for any Go on R and any ¢ > 0,

Eep]) " = (ESqcp]) " + e, 25
Gg;;(gm( lel1) ™ = (E%ncr) "+ e (25)
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where { ~ G and ¢ ~ Gg. By setting G := fxFp, this in turn implies

1/p 1/p
sip  (ECIXP]) T = (BR[(Q)]) 7+ epe. (26)
GGCp(f ‘ Fo,CfE)
As noted earlier, an exact regularization counterpart of (24) follows once projection equivalence

between (24) and (26) is established. For convex f, this condition can be characterized exactly.
Theorem 5. Let f: R™ — Ry be conver and let p € (1,00). The following are equivalent:

(i) There exists cy > 0 such that for every Fy € M(R") and e > 0,

sup  (BF[f7(6)])"= sup  (BE[XP)) = (EP[P(Q)) P+ epe (27)
FeB,(Fo,e) GECp(f|Fo,cye)

(i) There exist B; € R™ with ||Bi||l« =1 and b; € R, i € I, such that

fx) = (max{es B]x+b:}) (28)

o

Two takeaways follow. First, once we specialize p to the L,-risk functional, projection equiv-
alence—and hence an exact regularization identity of the form (27)—holds for a class of losses
that differs from that in Proposition 3. Second, the result is also an impossibility statement: an
exact regularization counterpart is impossible for any convex loss function f that does not admit
the representation (28). Notably, (28) subsumes, as special cases, the hinge-type losses and their

variants studied in Theorem 4 and Corollary 1 of Wu et al. (2022).

Inf-form risk functionals

We next consider a broad class of inf-form risk functionals defined through an auxiliary scalar

parameter. Specifically, for p € (1,00) we study

HE(X) = inf {t + (BF [P (X, t)])l/p} , (29)

teR

where £ : R x R — [0,00) is convex in its second argument ¢. To preclude degenerate cases
and ensure that the infimum is attained at a finite value of ¢,> we impose the boundary-slope

condition limy_, o 0l(z,t) < —1 < limy_,oo 04l(2,t),V2z € R, with 9 interpreted as a subgradient

3These conditions exclude some trivial cases. For instance, if lims— _ o 0:£(z,t) > —1, then £(z,t) is increasing in ¢
and the infimum of ¢+ (EX'[¢7(X,t)])}/? can be achieved at t = —oo, rendering the problem uninformative. Analogous
issues arise if lim¢— o0 0:€(2,t) < —1. When £ is not everywhere differentiable in ¢, interpret 9; as any selection from
the subdifferential and the limits as one-sided outer limits of subgradients.
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selection when /£ is not differentiable. This formulation encompasses many widely used risk measures,
including higher-moment and related functionals.
For two canonical choices of ¢, namely ¢(z,t) = c(z — t)4 and ¢(z,t) = c¢(z + [t])+, an exact

one-dimensional regularization identity is available; see Wu et al. (2022)

sup Hf({) = HgO(C) +e.
GEBP(Go,E)

Combining this identity with the projection-equivalence mechanism developed earlier (Proposi-
tion 3), we obtain an immediate sufficient condition for exact regularization in higher dimensions,

which extends the corresponding result in Wu et al. (2022).

Corollary 1. Forp € (1,00) and ¢ > 1, let H,, be defined by (29) with loss €. If {(z,t) = c(z —t)+
or U(z,t) = c(z + |t|)+, then for B; € R™ with ||Bi|l« =1 and b; € R, i € I, it holds that

sup ?-[5 <nlaealx{ﬂ;£ + bz}> = 7-[50 (Iglglx{ﬂiTC + bl}> + ce. (30)

FeB,(Fo.e)

As we show next, for the hinge-type loss ¢(z,t) = ¢(z — t)4, which subsumes a number of
standard higher-order risk measures as special cases, we can strengthen the preceding discussion by

establishing an impossibility result.

Proposition 6. Forp e (1,00) and c > 1, let f : R™ = R be a convez function and H, be defined
by (29) with loss £(z,t) = c(z — t)4. There exists cg > 0 such that

sup  HY (€)= sup  HS(Z)=H(f(C)) +cpee (31)
FEBP(F(),&) GGCp(f‘Fo,CfE)

holds for any Fy € M(R™) and € > 0 if and only if f satisfies (12).

Distortion risk functionals

We now turn to distortion risk functionals, a classical and widely used generalization of the
expectation (Yaari (1987), Schmeidler (1989)). A risk measure py, is called a distortion risk measure
if

F ! F
k(2) = [ VaRE(Z)an(u),
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where h : [0,1] — [0, 1] is increasing with ~(0) = 0 and h(1) = 1. Throughout, we focus on convex

distortions h, for which py is coherent, i.e., pp, € Reon. We further define

= [ wa) "

where h’ denotes the left derivative of h.

A one-dimensional exact regularization identity is available for p, (see, e.g., Wu et al. (2022)):

sup  p (&) = pio(C) + e ||W g, (32)
GEB,(Go,e)

where £ ~ G and ( ~ Gy. Combining the projection-equivalence result in Theorem 3 with the
identity above yields an immediate sufficient condition for an exact regularization reformulation.
Less obviously, the result below establishes sharpness: even when attention is restricted to distortion
risk measures, the structural condition in Theorem 6 remains necessary. Consequently, an exact

regularization counterpart is impossible outside that class.

Theorem 6. Forp > 1, let h be a convex distortion function satisfying ||h'||; € R, and f:R™ - R

be a function. There exists cy > 0 such that

sup  ph(f(€) = sup  pf(X)=pro(f(C)) + crell W |lg (33)
FEB,(Foe) GeCy(f|Fo,cre)

holds for any Fy € M(R™) and € > 0 if and only if f is given by (11).

4.2 Type-1 Wasserstein Ball

The type-1 case is qualitatively different. As noted in Section 3.3, projection equivalence can
hold for a substantially broader class of losses f when p = 1 than when p > 1. We show that the
same relaxation carries over to the risk measures considered above: in the type-1 setting, exact

regularization holds under weaker conditions on f, leading to a strictly larger admissible class.

Inf-form risk functionals

We first revisit the inf-form functionals in (29) in the type-1 setting. Specializing to p = 1,
the functional H; defined in (29) admits a convenient expectation form. For a given loss ¢, define
l1(z,t) ==t + £(z,t). Then

HI(X) = inf EF (6 (X, 1)]. (34)
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We assume that ¢, : R?> — R is convex in its second argument ¢ and satisfies the boundary-slope
condition limy,_ o 0l1(2,t) < 0 < limy_yoo Opl1(2,t), V2 € R, which ensures that the infimum in
(34) is non-degenerate and attained at a finite value of t.

Even in one dimension, exact regularization identities for the worst-case problems in (34) are
available only for a few special losses ¢;. For a general /1, it remains largely open to characterize
which loss functions f admit an exact regularization counterpart. We do not pursue a complete

characterization here; instead, we provide a broad sufficient condition.

Proposition 7. Let f : R™ — R satisfy the condition of Theorem (i), and let H1 be given in (34)
with loss function f1 : R? — R satisfying Lip(¢1(-,t)) = b € Ry for all t € R and for each t € R

there exists zo(t) such that

gl(ZO(t) +m, t) - fl (Zo(t), t)

i . - @)
It holds that for any Fy € M(R™) and e > 0,
sup MY (£(£)) = H1"(f(C)) + bLip(f)e. (36)

FeB1(Fo,e)

Note that when ¢; is such that the induced risk functional #; is coherent, the regulariza-
tion results above follow directly by combining the one-dimensional identity with the projection-
equivalence result in Theorem 4. Proposition 7, however, applies more broadly: depending on /1,
the functional #; in (34) need not be coherent and may not even be monotone.

Condition (35) is mild. In particular, if for every ¢ € R the map z — /¢;(z,t) is convex and
satisfies Lip(¢1(-,t)) = b, then (35) holds automatically. Many standard loss functions satisfy this

requirement, along with the assumptions of Proposition 7.

Example 5. The following are concrete examples of functions ¢; that satisfy the assumptions in

Proposition 7.

(i) Quantile loss (Koenker and Bassett (1978)): ¢1(z,t) = a(z—t)++(1—a)(z—t)—, a € [1/2,1),
which satisfies Lip(¢1(-,t)) = « for every ¢ and (35) holds with b = «. In this case, Hi'(X)

reduces to the expected check loss.

(ii) Huber loss (Huber (1992)): For a > 0,

|z —t| < «,

allz—t-9), lz—t>a,



which satisfies Lip(¢1(-,t)) = « for every ¢ and (35) holds with b = a.

(iii) Pseudo-Huber loss: For o > 0, £1(z,t) = o (\/1 +((z—t)/a)? — 1), which satisfies Lip(¢; (-, 1))

a for every ¢ and (35) holds with b = a.

Distortion risk functionals

We next revisit distortion risk measures in the type-1 setting. In contrast to the higher-order
case p > 1, where exact regularization typically forces a rigid structure on the loss f, the type-1
geometry allows exact regularization to hold for a substantially broader class of losses. In particular,
worst-case distortion risks over By (Fp, ) admit regularization counterparts under markedly weaker
requirements on f than those identified in Section 4.1. The following result provides a general
sufficient condition, obtained by combining the one-dimensional regularization identity for distortion
risk measures (see, e.g., Kuhn et al. (2025), Wu et al. (2022)) with the projection-equivalence result

in Theorem 4.

Proposition 8. Let h be an increasing and convex distortion function satisfying |h||cc € (0, 00),

and let f : R™ — R satisfy the conditions of Theorem j (i). We have

sup  pp (£ (€)= p° (f () +Lip(f)e ||| .-

FeBq (Fo,E)

holds for any Fy € M(R™) and £ > 0.

Expectile risk functionals

Before moving on, we pause to highlight that the type-1 setting supports more than the exact
regularization identities derived for the specific functionals above. Once projection equivalence is
available, it can also serve as a general device for obtaining other “regularization-like” reformulations
for coherent risk measures. To illustrate, we consider the expectile (Newey and Powell (1987)). For

a risk X with distribution F, the a-expectile ex” (X) is defined as the unique solution z to
aEF[(X —2)4] = (1 - ) E'[(X —2)-], (37)

and it is coherent when o >  (Bellini et al. (2014)). By Theorem 4, if f satisfies the conditions of
Theorem 4(7), then

nr©) = sup ex(X).
FeB1(Fo,e) GEeCy(f | Fo, Lip(f)e)

sup  exl (

21



The next proposition shows that the worst-case expectile can be characterized equivalently as the

solution to a regularized version of (37).

Proposition 9. For a € [1/2,1], Fy € M(R"), € > 0, and a function f satisfying the conditions

in Theorem / (i), we have Suppcg, (g ) exX (f (€)) is the unique solution to
E®[a(f(¢) = @)+ — (1= a)(f(¢) —@)-] + aLip(f)e = 0.

5 Classification

As a natural extension of the Wasserstein DRO problem (1), we now turn to a setup motivated
by classification in machine learning. Here, the random vector consists of a class label and a feature
vector, & = (Y, X) € E, where = := {—1,1} x R® C R*"! with Y denoting a binary label and X the
associated features. The classification task is to select a decision function f : R™ — R, interpreted
as a classifier, from a class A to predict the sign of Y given X.

To capture distributional robustness, we equip Z with the type-p Wasserstein metric

Wy (Fi, Fy) o= inf  (E7[d(&1, &))",
well(Fy,F2)
where TI(Fy, ) is the set of all distributions on = with marginals F; and F supported on =, the

distance between & = (Y7,X;) and & = (Y2, X3) is defined via the additively separable form
d(€1,&2) = [[X1 =X+ 6 (Y1 - Y2), (38)

with || - || a norm on R™. The penalty function © : R — {0,00} is specified by ©(0) = 0 and
O(s) = oo for s # 0. Hence, the metric prohibits perturbations in the label Y while allowing
adversarial shifts in the feature space X.

For a nominal distribution Fyy € M,(Z) and robustness radius ¢ > 0, the distributionally robust

classification problem is given by

inf sup pf(Y - f(X)),
fEA peB,(Fo.e)

where B, (Fp,¢) := {F € M(Z) : W, (F, Fy) < €}, and p is a risk functional applied to the margin
Z:=Y - f(X).
To study projection equivalence in this setting, let (Y, Xg) ~ Fy and denote by Gq the distri-
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bution of the baseline margin Yp - f(Xo). We introduce the one-dimensional Wasserstein ball
Cp(f|Fo,e) :=B,y(Gop,e) C M(R).
A classifier f admits classification projection equivalence if

sup pl(Y-f(X)=  sup  p%(2)
FEBP(F(),E) Gecp(ﬂF(),Cf&‘)

for some constant cy > 0.

As shown below, in contrast to projection equivalence in Section 3, classification projection
equivalence holds only for classifiers f that strictly satisfy set-level equivalence. This requirement
remains even when p is restricted to the monotone class Ryon, underscoring that exact reduction

in classification demands stronger conditions than in the typical Wasserstein DRO framework (1).

Proposition 10. Forp > 1 and o € [0,1), let f : R™ — R be a function. The following statements

are equivalent.

(i) There exists cy > 0 such that

sup pN(Y-f(X) =  sup  pY(X) (39)
FE]BP(F(),E) GGCp(f‘Fo,CfE)

holds for any p € Rmon, Fo € M(Z), and € > 0.

(ii) There exists cy > 0 such that for any Fy € M(Z) and € > 0, it holds that
{FY-f(X) : F(y}x) S EP(F(),&“)} = Ep(f‘Fo, Cf€). (40)

(iii) The function f is Lipschitz continuous, and satisfies (8).

Moreover, this necessity remains even under specialized risk measures; in particular, the char-

acterization (8) is still required when the risk functional is Value-at-Risk.
Proposition 11. For a € [0,1) and p > 1, let f : R" — R be a function. There exists cy > 0 such

that

sup  VaRZ (V- f(X)) = sup VaR& (X) (41)
FE@F(F(),E) GE?;;(f‘F(),Cf&‘)

holds for any Fy € M(Z) and € > 0 if and only if f satisfies (8).
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Recall that when the norm || - || = || - || is the {g-norm for some a € [1,00), Propositions 1
and 2 identify explicit loss-function forms under which projection equivalence holds. Combining
these loss-function forms with Proposition 10 and the one-dimensional regularization representation
for convex distortion risk measures, i.e. (32), yields the following regularization reformulation
for distributionally robust classification under distortion risk measures (see Wu et al. (2022) for
examples of such classification formulations), linking robust classification directly to a familiar

paradigm in machine learning.

Corollary 2. For p > 1, Fy € M(E) with (Yy,Xo) ~ Fy, let h be an increasing and convex

distortion function satisfying ||I||; € (0,00). We have the following statements.

(i) If f(x) = BT x +b for some B € R" and b € R, we have

sup  ph (Y- f(X)) = 03 (Yo - £(Xo)) + [IBllsell -
FeB,(Fo.e)

(i) If || - || = || - |1 is the €1-norm and f is given by Proposition 1, then we have

sup  ph (V- (X)) = pp2 (Yo - f(Xo)) + cel|W -
FeB,(Fo.c)

We note that while case (i) can also be obtained through a direct analysis of linear classi-
fiers, as shown in Wu et al. (2022), case (ii) emerges only within the more general framework of

Proposition 10.

6 Conclusion

In this work, we provide the first complete characterization of projection equivalence in Wasser-
stein distributionally robust optimization. Owur central finding reveals that this powerful high-
dimensional reduction is not confined to the restrictive case of set-level equivalence but extends to
a much broader class of loss functions. By systematically navigating a hierarchy of risk function-
als, we establish a sharp boundary delineating precisely when a high-dimensional worst-case risk
evaluation simplifies to its one-dimensional counterpart. This foundational result, in turn, enables
us to derive necessary and sufficient conditions for Wasserstein DRO problems to admit exact reg-
ularization reformulations, unifying two central paradigms in optimization and machine learning.
Ultimately, our analysis delivers new classes of tractable models and establishes the fundamental

limits of such reductions, clarifying the structural properties that govern computational feasibility
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in distributionally robust optimization.

A Appendix: Proofs of the Main results
A.1 Proofs for Section 3
To prove Theorem 1, we need the following lemma.

Lemma Al. Foranyp>1,¢>0, a€0,1) and f: R" - R, we have

sup  VaRq(f(€)) = sup f(2), Vx e R". (A1)

E[||§—x]|P]<eP lz—x||<e/(1—a)!/P
Proof. Denote by g9 = /(1 — a)/P. Note that for any z € R™ with ||z — x|| < £o, we can define
&€ =xif f(z) < f(x) and £ ~ adx + (1 — ), if f(z) > f(x). In both cases, we have
Efll§ = x[P] < (1 = a)llz — x[|” < &” and VaRa(f(£)) = max{f(2), f(x)}.

Thus,

sup  VaRa(f(§)) > sup f(2).

E[]j§—x||P]<e? [z—x]l<eo

We next prove the converse inequality. For any & with E[||£—x]|P] < €P, note that if P (||€ — x[| > &9) >
0, then
eoP (1€ — x| > o) <E [lI§ — x[IPLyjg—x)>e0p] <E[I€ —x|P] < €.

It follows that P(||€ — x|| > €9) < 1 — «, that is, P(||§ — x|| < ep) > a. Thus

[z—x]l<eo

P (f(&) < sup f(Z)> = P([€ —x[| < 20) > o
By the definition of VaR, it follows that VaRa(f(§)) < sup|,—x|<<, f(2) for any & with E[[|£ —x||P] <
eP. Therefore, the converse direction holds and we complete the proof. ]

Proof of Theorem 1. Note that the implication (ii) = (i) is trivial. We only give the proof of
(i) = (44i) and (iii) = (ii).

For (i) = (iii), we first consider the case ¢y = 0. Choose p = VaR,, for some a € [0, 1) and take
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Fy = 0x for x € R™. In this case, (6) reduces to

sup  VaRq (f(§)) = sup  VaR, (X) = f(x). (A2)
E[ljg—x||P)<e? E[|X—f(x)|]<0

This, together with (A1) in Lemma A1, implies

sup f(z) = f(x), Ve>D0.

lz—x||<e/(1—a)!/P

By x is arbitrary, we have f is a constant function, which completes the proof for c¢; = 0. We
next consider the case where ¢y > 0. Without loss of generality, set ¢; = 1. For p = VaR, with
a € [0,1), we first show that (6) implies that

sup f(x+y)— f(x)=¢, VxeR" £>0. (A3)

lyll<e

To that end, take Fy = dx for x € R™. In this case, (6) reduces to

sup  VaRa(f(&)) = sup VaR,(Z). (A4)
E[||§—x||P]<eP E[|Z—f(x)[P]<e?

By Lemma A1, we have (A1) and

sup VaR(Z) = sup z=f(x)+
E[|Z—f(x)P]<e? lz—f(x)]<

T (A5)

£
(1—a)l/P

Combining (A1), (A5) and (A4) yields

€
su Z)=f(X)+———.
||zx<f_;)l/pf( )= (1—a)l/p

For o € [0,1), since € > 0 is arbitrary, it follows that for any € > 0 and x € R",
sup  f(z) = f(x) +e,
llz—x||<e
that is, (A3) holds. This identity immediately implies that
fx) = fWI<Ix-yl, VxyeR"

and thus f is Lipschitz continuous with Lipschitz constant Lip(f) = 1. Moreover, since (6) holds
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for any risk measure, by taking p = —VaR, and repeating a similar argument, we obtain that for
all e > 0 and x € R",
f(x)— inf f(x+y)=¢ VxeR" e>0,

lyll<e
and thus (8) follows. This completes the proof of (i) = (éii).

For (iii) = (4i), first note that the case Lip(f) = 0 is trivial as (7) holds with ¢; = 0. We
next consider the case Lip(f) > 0. Assume without loss of generality that Lip(f) = 1. We aim
to show that (7) holds for ¢y = 1. Since f is 1-Lipschitz continuous, we have for any &, ¢ with
E[||€ — ¢||”] < €P, it holds that

E[f(€) — F(OF] <E[I€ - <IIP] < &,

which implies fxB,(Fo,e) C Cp(f|Fo,e). To prove the reverse inclusion, it suffices to show that
for any G € Cp(f|Fp,e) and Z ~ G with E[|Z — f(¢)|P] < €P, there exists a random vector § with
distribution F¢ € B, (Fo,€) such that f(§) = Z almost surely. To this end, denote by T":= Z — f ({).
Then, we have E [|T|P] < P. By the measurable selection theorem (See Theorem 3.5 in Rieder (1978);

see also Lemma EC.12 in Wu et al. (2022)), there exist measurable mappings V; and Vy such that

Vi(w) € argmax f({(w)+y) and Vi(w)e€ argmin f({(w)+y), we Q.
Iy I<IT(w)] II<IT(w)]

Then, denote by A4 := {w: T(w) >0} and A_ := {w: T(w) < 0} and define
§(w) = (C(w) + Vi(w)la, () + (C(w) + Va(w)la_(w), we,
which is measurable. As Q@ = Ay U A_, we have
1€(w) = C(W)I| < max {[[Vi(w)[, [[Va(w)[I} < [T(W)], we,
and thus, E[||€ — ¢||”] < E[|T'|P] < €P. This implies F¢ € B,(Fo,e). Moreover, we have for w € A4

f(€&w)) = f(¢(w) + Vi(w))
= max f(y+({(w))=[f(Ww)+T(w)=2Z(w),

IVI<IT ()]

where the second equality follows from the definition of V1, the third equality follows from (8), and
the last equality follows from the definition of 7', that is, 7= Z — f ({). Similarly, one can verify
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that for w € A_,

f &) = f(C(w) + Va(w)) = f(((w)) = (-Tw)) = Z(w).

Therefore, C,(f|Fo,e) € f4Bp(Fo,¢€), and (7) follows, completing the proof.

O

To prove Proposition 1, we need the following two lemmas, and the first lemma will be used

repeatedly throughout the appendix.

Lemma A2. Let f : R®™ — R be a Lipschitz continuous function. We have the following statements

hold.

(i) If f satisfies
sup f(X + Y) - f(X) = Llp(f)gv VX, €€ RJF?

lyli<e

then for each x € R™, there exists Bx such that ||Bx|| =1 and

f(x+eBx) — f(x) =Lip(f)e, Ve >0

(ii) If f satisfies
f(x) — inf f(x+y)=Lip(f)e, Vx, e € Ry,

lyll<e

then for each x € R™, there exists nx such that |nx| =1 and

f(x) — f(x+enx) = Lip(f)e, Ve > 0.

(A6)

Proof. (i) Without loss of generality, assume that Lip(f) = 1 and fix x € R". By (A6) and the

Lipschitz continuouity, for each € > 0, there exists Bx . such that ||Bx| =1 and

f(X + 5/6)(,6) - f(x) = 5”,6,(75“ = €.

(A8)

We assert that Bx . can be chosen independently of . To show this, first note that for fixed ¢ > 0
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and the chosen By ., (A8) implies that
x4 &Bec) — F(x) = £l1Bucll =, Ve € [0,6]. (A9)

This is due to that if (A9) does not hold for some &’ € [0, ], then we have f(x+¢&'Bx.) — f(x) <€’

by the 1-Lipschitz continuity of f, and thus,

f(X + 56){,&) - f(X) = f(X + 5:6x,5) - f(x + 5//3x,5) + f(X + S/Bx,a) - f(X)

<e—¢& + fx+€PBxe) — f(x) <e,

where the first inequality follows from that f is 1-Lipschitz continuous. This yields a contradiction
to (A8). Therefore, by (A9), we have for each €, > n, n € N, there exists 8, € R™ such that
1Bnll =1 and

fx+eBy) — f(x)=¢, Veel0,e,]

By the Bolzano—Weierstrass theorem, for ||3,| < 1, n € N, there exists Bx such that |3, —B«| — 0

as n — oo. We thus have [|Bx|| = 1 and by the 1-Lipschitz continuouity of f again,
Fx+eB) — fx) ==, Ve>0.

Thus, this completes the proof of (7).
(74) The proof is similar to that of (i), and thus, is omitted. O

Lemma A3. If ||-|| = || - |1 is the £1-norm, then f satisfies (8) if and only if for any x € R™, there
exist € € {+e;} and €; € {xe;} for some i,j € [n] such that

fx+eéi) — f(x) = f(x) = f(x +¢c€;) = Lip(f)e, Ve >0; (A10)

Proof. Without loss of generality, assume that Lip(f) = 1. If | - || = || - ||1, then by Lemma A2,
(A7) holds. That is, for any x € R™, there exists Bx with [|Bx|l1 = 1 such that

fx+eBx) — f(x)=e=¢c)_|Bxkl, Ve>0. (A11)
k=1

Denote by x¢ := x and x;, := X;_1 + €fxk€k, k € [n], where fx denotes the k-th component of Gx.
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By Lipschitz continuity,
f(xk) = f(xr-1) < elBxkls k€ [n]. (A12)

Summing over k yields

fx+eBy) — f(X) < [Pl ==
k=1

By (A11), the equality is attained, and hence each inequality in (A12) must be an equality. Take
i = min{k € [n] : Bxr # 0}. Then we have x;_; = x and f(x;) — f(x) = &|fxi| with x; — x = efxie;.

Since € > 0 is arbitrary, we have there exists ¢ € [n] such that
f(x+¢c€)— f(x)=¢, Ve>0,

where €, € {te;},i € [n]. By Lemma A2(ii), there also exists nx with ||nx||1 = 1 such that
f(x) — f(x +enx) = ¢, Ve > 0. Applying the same reasoning as above, we conclude that (A10)
holds. This completes the proof. ]

Proof of Proposition 1. Without loss of generality, assume that ¢ = 1.
(a) It suffices to verify that f is 1-Lipschitz continuous and satisfies (A10). Denote by I := {i €
[n], B; # 0}. For any x,y € R"” with x # y,

fx) = fly) =B (x—y) +g(nox) —g(noy)
<Y e —wil +Lip(g) D i —wil < lx =yl
iel ieln\I
where the first inequality follows from Hélder’s inequality, and the second inequality follows from
that Lip(g) < 1. Thus f is 1-Lipschitz continuous. Next, for any x € R™ and ¢ > 0, choose i €

and define vy := sign(f;)e;, where sign(-) is the sign function. Then,

fx+ev) = f(x) =B (x+ev1) +g(no (x+ewvr))) — (B"x+g(nox))

=eBvi+g(mox+enovy) —g(nox) =¢,

where the last equality follows from 3" v; = sign(3;)3"e; = |3:| = 1 and nowv; = sign(3;)noe; = 0
for the chosen i € I, since 3 on = 0. Similarly, for any x € R™ and € > 0, by choosing ¢ € I
and vy := —sign(f;)e;, one can verify that f(x) — f(x 4 eve) = e. Hence, f satisfies (A10) with
Lip(f) =1.

(b) It is straightforward to verify that f is 1-Lipschitz continuous. It remains to verify that f
satisfies (A10). We only prove that for any x € R", there exists €; € {+e;} for some i € [n] such
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that
f(x+e€)—f(x)=¢, Ve>0 (A13)

as the existence of €; can be verified by applying the same argument to —f. Denote by I} = {i €

[n], Bi # 0}. We show it by considering the following two cases.

(i) If BTx > 0, then by taking &; = sign(3;)e; for some i € I;, we have

fx+eg)—f(x) =B (x+¢e&)| — v (x+¢c&)|+g(no(x+e&))—f(x)
—1B87x| + [vTx| — g(nox)
=e—|v (x+&)|+|v x|+ g(no (x+e&)) — g(nox)

287

where the second equality follows from that |3 "x| = 8'x and B8'&; = sign(3;)3"e; = |3i| = 1,
and the last equality follows from v'é&; =0 and noé& =0 by Bon =wvon = 0. That is,
(A13) holds.

(ii) If BTx < 0, then by choosing &; := —sign(;)e; for some i € I}, one can similarly prove (A13)
holds.
Combining the above cases, we complete the proof. ]

Proof of Proposition 2. Without loss of generality, assume that Lip(f) = 1. It suffices to show that
(9) holds whenever f satisfies (8). We prove it by contradiction. Suppose there exist x,y € R"
such that f(x) < f(y) and ||nx — By|| < ||nx|| + [|By|| = 2. Define z = x + cnx and z; =y + cfBy.
There exists ¢ large enough such that ||x — y|| < ¢(2 — ||By — nx]|), and thus,

co = |lz1 —zl| < [Ix =y + cllBy — nxll < 2¢.

This implies that

sup f(z+w) = f(2) = f(z1) = f(2) > f(z1) = f(y) + [(%) = f(2) = 2,

[wl[<co

where the second inequality follows from f(y) > f(x), and the equality follows from Lemma A2.
This yields a contradiction to (8). Thus, we have for any x,y € R", if f(x) < f(y) (hence including
x =Yy), then ||nx — By| = [[nx|| + |Byl|. Since ||nx|| = ||By|| = 1 and the norm is strictly convex,
it follows that Bx = —mx = By for all x and y € R™ with f(x) < f(y). Otherwise we have
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|nx — Byl < 2, contradicting the requirement ||nx — By || = ||nx|| +[|By|| = 2. Therefore, we have Bx
can be chosen as the same 3 for all x € R™. It then follows that there exists v € R™ with [|v]| =1
such that

f(x)— f(x—ev)=f(x+ev)— f(x)=¢, VxeR", >0.

Since the case € = 0 is trivially satisfied, it implies that (9) holds for any x € R™ and ¢ € R.

For || - || = | lla; @ € (1,00), it suffices to show for any x, y € R,

fy) = f(x)=8"(y —x), (A14)

where 3 € R" is the unique vector satisfying 8" v = ||B]|«|lv|| = 1, that is, sign(B;) = sign(v;) for
i € [n] and |B;]® = kl|v;|* for some k > 0 and b is the conjugate constant of a. By (9), we know
(A14) holds for the case y —x = tv, t € R. By 8" v = 1, we have any vector in R” can be written
as a linear combination of v and a vector u with 37w = 0 and thus, it suffices to show (A14) for
any y —x = tu with 87w = 0. We show it by contradiction. Suppose that there exist y and x such
that y —x = u, 8'u =0, and f(x) < f(y). Denote by e = f(y) — f(x) > 0. Then we have

fly+tv) — f(x)=f(y +tv) - f(y) + f(y) - f(x) =t +e,

and

n
ly +tv —x||* = ||lu+ tv||* = Z lu; + t;]®.
It follows that

fly +tv) — f(x) t+e B 1+ se
”y +tv — XH (Z?:l "LLZ + t’l}i|a)1/a (Z?:l ‘Sui + vi|a)1/a7

(A15)

where s = 1/t. Denote by I} = {i : v; > 0}, I = {i : v; < 0}, Is = {i : v; = 0,u; # 0}, and
g(s) = (L +se)® = >0 |su; + v;|*. We have as s | 0,

g (s) =a(l +se)* e — Z a(su; +v;)* Tu; + Z —su; — v;)® Z as® 1 |ug)®

1€l 1€1o 1€13
sign -1 1
= (14 s6)% e — E (su; +v;)® L, + g —su; — v;)? g s u |
i€l ZEIQ SIE
—>5—§ v luz+§ (—v;)? uz—&?—g sign(v;)|vs|*™ Ly, =e >0,
i€l 1€l
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where the last equality follows from that 87w = 0, |8;] = k1|v;|*"" and sign(v;) = sign(5;), i € [n].
This, together with ¢(0) = 0, implies g(s) > 0 for some s > 0. Substituting this into (A15) yields
that W > 1 for some t > 0. This yields a contradiction to (9). Therefore, we have (A14)
holds and thus we complete the proof. O

Proof of Theorem 2. For (i) = (ii), we can employ the exact arguments to prove (A3) in the proof
for the direction (i) = (iii) of Theorem 1 where we choose p = VaR,, for some a € [0,1) which
is a monotone risk measure to prove (A3) which is exactly the statement in (i7). It remains to
show (i7) = (i). Note that if Lip(f) = 0, then f is a constant function. Taking cy = 0, (10) holds
trivially. We next consider Lip(f) > 0. Assume without loss of generality that Lip(f) = 1. We aim
to show that (10) holds for ¢y := 1. First note that for any random vector £ with E[||& — ¢||P] < &7,

by 1-Lipschitz continuity of f, we have

E[lf(€) = F(OF] <E[I€ = <IIP] < &,

and thus, {Fyg) : Fg € By(Fo,e)} € Cp(f|Fo,€). Tt follows that

sup  p" (f(€) < sup  pY(X). (A16)
FeBy(Fo.e) GeCp(f|Fo.e)

We next show the reverse direction. It suffices to demonstrate that for any G € Cp(f|Fp,e) and

Z ~ G with E[|Z — f(¢)|P] < P, there exists F¢ € B,(Fp,e) and § ~ F¢ such that

pe(f(€)) = p%(2).

To this end, take G € C,(f|Fo,e) and Z ~ G. Define Z* = max{f({), Z} and denote by G* the
distribution of Z*. We have p%(Z) < p% (Z*) and E[|Z* — f(¢)|P] < E[|Z — f(¢)|P] < P, and thus,
G* € Cp(f|Fo,€). So, without loss of generality, assume that Z > f(¢) almost surely. Denote by
T :=Z — f(¢). We have T' > 0 almost surely and E[T?] < ¢P. With similar arguments as in the

proof of Theorem 1 (iii) = (i), there exists a measurable mapping V such that

V(w) € argmax f (((w) +y), we.
IylI<T(w)

Define &(w) = ¢(w) + V(w), w € Q. It follows that for any w € €,

f€W)) = f(C(w) +V(w)) = max f({(w)+y)=f((Ww))+T(w)=2Z(w).

IylI<T(w)
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where the second equality follows from the definition of V, the third equality follows from (11)
and the last one follows from the deifnition of 7. Moreover, noting that E[||& — ¢||P] = E[||V|]?] <
E[TP] < eP, we have F¢ € B),(Fp,e). Hence

sup  pf (f(€))>  sup  pY(X). (A17)
FeBy(Fo.e) GECp(f|Fo,e)
Combining (A17) and (A16), we have (10) holds, completing the proof. O

Proof of Proposition 3. Note that the case Lip(f) = 0 is trivial. It suffices to consider the case
Lip(f) > 0. Without loss of generality, let f satisfy (11) with Lip(f) = 1. We first show that for
each x € R", there exists 1x € df(x) such that

[l = 1, (A18)

where Jf(x) denotes the subdifferential of f at x. Note that by Lemma A2, for every x € R™, there
exists Bx € R™ with ||Bx|| = 1 such that

f(x+eBx)— f(x)=¢, Ve>D0.

This implies that the directional derivative of f at x at direction Bx equals to 1. Therefore, by
Theorem 23.4 of Rockafellar (1970), there exists a subgradient nx € df(x) such that n,) Bx = 1,

and hence,

T B = 1 < ||l Bl = Il

It then follows from ||nx||« < 1 by the 1-Lipschitz continuity of f that (A18) holds. Note that a

convex function f can be written as

f(x) = max{f(z) +n, (x —2)}.

z€R™?
We have (12) holds and thus, we complete the proof. O

Proof of Proposition J. The “if” part is a direct consequence of (iii) = (i) in Theorem 2 and the

“only if” part has been already proved in the argument for (i) = (¢i¢) in Theorem 2. O

Proof of Lemma 1. Note that (14) holds, that is,

T S
sup  VaRZ <max P& ) = sup VaR%(X) =: VaR.(Gy),
FEB,(Fo,e) icl || Bill« GEB,(Go.e)
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where Gy € M(R) is the distribution of max;e; B, ¢/||Bi||« and ¢ ~ Fy. Hence, it suffices to show
VaR,(Gp) is the unique solution of z to (15). By Proposition 4 of Liu et al. (2022), we have that

VaR,(Go) equals to the unique solution to
1
/ (z — VaR$? (X))P. du = &P. (A19)

Note that VaR,(h(X)) = h(VaR, (X)) for h(t) = —(x — )", which is an increasing and continuous
function in t € R. It follows that (A19) is equivalent to

1
/ ~VaR$? (—(z — X)%) du = 7,

or equivalently,

1
CVaR$" (—(z — X)}) = ﬁ / VaR$? (—(z — X)%) du = —

1—-a’

Therefore, VaR,(Gp) is the unique solution of = to (15), which completes the proof. O

To prove Theorem 3, we need the following lemma. We call a function f continuous, if it is

continuous with respect to the distance induced by the norm || - ||.

Lemma A4. Let f : R™ — R be a continuous function. If there exist xg € R™ and €9 > 0 such that

k= sup f(XO +Y)_f(x()) <1, (AQO)

lyll<eo €0

then for any ki € (k,1), there exist x; € R™ and €1 > 0 such that

foa+y) = fea) <kllyll, Vy with [lyf] < e

Proof. For k1 € (k,1), define g(y) = f(x0 +y) — k1llyll, y € R"™, which continuous as f is con-
tinuous. Noting that {y : ||y|| < €0} is compact, there exists y* with ||y*|| < eo such that

g(y*) = maxy|<c, 9(¥). Moreover, note that for any y with [|y| = eo, we have

9(y) = f(x0 +y) — kieo < f(x0) + keo — k1gg < f(x0) = g(0) < g(¥y"),

where the first inequality follows from the definition of k and the strict one from k < k;. Therefore,
we have [|y*| < e¢. Define

x1=x0+y" and e =¢¢— |y
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For any y with ||y|| < &1, we have ||y +y*|| < ||yl +ly*|l <e1+|ly*|| = €0. Then, by the definition

of y*, we have

fxo+y" +y)—killy +yll =9y +y") <g(y") = f(xo+y") — killy*],

and hence

fxi+y) = f(x) < By +yl = Iy* ) < kulyll, Yyl <er
This completes the proof. ]

Proof of Theorem 3. The “if” part is a direct consequence of (i) = (i) in Theorem 2. For the “only
if” part, suppose that there exists ¢y > 0 such that (19) holds for any Fy € M(R") and € > 0. If
cy = 0, then (19) reduces to

sup  pl(f(€)= sup  p%(X) = pf(f(C)). (A21)
FeB,(Fo,e) GeCp(f1F,0)

We show that f is a constant function by contradiction. Suppose there exist x,y € R™ such that

f(x) < f(y). Take Fp = dx and € = |[x — y||. Then we have dy € By, (Fp,¢) and thus,

sup  pT(f(8) = p™ (F(€)) = f(y) > F(x) = p°(f(C)),

FeB,(Fo.)

which contradicts (A21). Therefore, f is a constant function and thus satisfies (11). Now consider
the case ¢y > 0. By the positive homogeneity of p, we assume without loss of generality that cy = 1.

For p = E, equation (19) then becomes

sup E[f(6+¢)]= sup E[X + f(¢)] =EP[f()] +e, (A22)

E€[P<e? E|X[P<eP

where ¢ ~ Fp, the second equality follows from Theorem 3 in Wu et al. (2022). We next show
that (A22) implies

sup f(x+y)—f(x)=¢, ¥VxeR" e>0. (A23)

llyll<e

To see it, first note that for any x,y € R", by setting ¢ ~ Fp := 0x and € := ||y — x||, we have
(A22) implies

fly) < u«:u?ﬁl}i pE[f(E +x)] = f(x) +e = f(x)+ |ly — x|
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It follows that f is Lipschitz continuous with Lip(f) < 1. Thus, we have

sup f(x+y)—f(x)<e, VxeR" e>0.

lyll<e

We next show that f satisfies (A23) by contradiction. Suppose, for contradiction, that there exist

xg € R™ and ¢y > 0 such that

sup f(xo+y)— f(x0) < eo. (A24)

Iyll<eo

We next consider two cases: p = o0 and p € (1,00). When p = oo, we have

sup  E[f(xo +§)] <E

ess=sup([|€][)<eo

sup f (%o +y)
lyll<eo

= sup f(xo+y) < f(xo0) + <o,

lyll<eo

where the first inequality follows from the monotonicity of E and f(xg + &) < SUp|y<eo J (x0+y)
almost surely for any & with ess-sup(||€||) < eo. This contradicts (A22). Now suppose p € (1,00).
Define

€0

k= sup {f(XoJrY)—f(Xo)}'
lyll<eo

By (A24), we have k < 1. By Lemma A4, there exist k; € (k,1), x; € R™ and ¢; > 0 such that

fxity) = fxa) <kllyll, Vilyll <er
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For sufficiently small € < e1,

sup  E[f(x1+§)]

El|€[P<eP
= E||§ﬁlpp< pE [f (x1+ &) Lyg<ey + f (x1 +8) ]l{lléH>61}]
S E||£Sﬁlpp< pE [(FGe1) + kallElD Tyt + (F () + €D Lyjeseny]
=G+ sup kgl + 0= k)IEggse]
Ellg[|P<er
<)+ sup KE[ENl+ sup (1 —kDE[E)Lye[sen]
E||&||Pp<eP E|€|P<er

< f(x1) +kie+ sup (1= E)E[[I]Tgg)>ey]

E|g||P<er

<f(x)+kie+ sup (1— k) E[ENIPDYP(ELye se])

E|g||P<er
<fx)+kie+(1—k)e sup (Elggse,y])'?
E|g||P<er
c p/q
< F(x1) + ke + (1— ke <€> < F(x1) 45, (A25)
1

where the first inequality follows from that f is Lipschitz continuous with Lip(f) < 1, the third
inequality follows from E[|| €[] < (E[||€]["])/?, the fourth inequality follows from Hélder’s inequality
and k1 < 1, the sixth inequality follows from Markov’s inequality, and the strict inequality holds
because ¢ < g1 and p/¢ = p—1 > 0. Then, (A25) leads to a contradiction to (A22), thereby
establishing (A23). This completes the proof. O

Proof of Proposition 5. The proof follows directly from that of Theorem 3. O

To show Theorem 4, we need the following lemma.

Lemma A5. For a € [0,1) and e > 0, if f is a function satisfying the condition of Theorem 4(i),
then for any Fy € M(R")

sup  CVaRL (f(€))=  sup  CVaR§(X)
FEBl(FO,E) GECl(f‘Fo,CfE)

= CVaRE (£(¢)) + —2L

A2
e (A26)

where ¢ ~ Fy and cy = Lip(f).

Proof. Assume without loss generality that Lip(f) = 1. Note that the second equality in (A26)
has been given in Proposition 2 in Pflug et al. (2012) and one can easily check that fxB;(Fp,e) C
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Ci(f|Fv, €) when f is 1-Lipschitz continuous. It suffices to show

€

sup  CVaRq (f(§)) = CVaR (f(¢)) +

. A27
E[ll€—¢l]<e I-a (427)

Denote by s = limsup,,,_,.(f(xo + mwvg) — f(x0))/m. By (20), we have limy_,~ sx = 1, and thus,
there exists a sequence {k;};en such that Sk; > 1 — 1/24, i € N. By the definition of Sk;, there

exists a sequence {m;};cn such that m; — oo as j — oo and

f(x0 +mjvg;) — f(x0)
my

1
>1-=, VjeN,
J

It then follows that for any x € R,

fx+mjvg;) — f(x) = f(xo +mjvr;) — f(x0) — 2[x — x|

> 1ty — 2]x - x0]. (A28)

where m; := m;(1 — 1/j) and the first inequality uses the fact that f is 1-Lipschitz continuous.

Denote by U a uniform random variable on [0, 1] such that U and f(¢) are comonotonic.* Define
Sj :mj’Ukj]lAj +¢, jEN, (A29)
where A; := {1 —¢/m; < U < 1}. One can verify that E[||{; — C||] = ¢. Then, we have

CVaRa(f(&5)) — CVaRa(f(C)) = CVaRa (f(§;) — f(C))
F(C+mjoy;) — f(C))14,)

(

(
> CVaR,, ((m; — 2||¢ — xol|)La,)

(

> CVaR,, (1j14,) —CVaRq (2[¢ — xo[[14;)
~ 2

— —— as j — o9,
l-«

where the first and the third inequalities follow from the subadditivity of CVaR,, the second
inequality follows from (A28), the last inequality follows from CVaR,(X) < E[X]/(1 — «) for any

nonnegative random variable X, and the last limit follows from CVaRa(14,) = ¢/(m;(1 — a)) for

4Two random variables X,Y are called comonotonic if there exist a random variable Z and two nondecreasing
functions f, g such that X = f(Z) and Y = g(Z) almost surely.
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m; > ¢e/(1 —a) and lim;_,« E[[|¢ — X0[|1.4,] = 0 by the dominated convergence theorem. Thus, we

have
sup CVaRq (f (£)) > liminf CVaRa (f(£;)) > CVaRa(f(¢)) + ——
Ell§—¢ll<e UARES 11—«
That is, (A27) holds, which completes the proof. O
Proof of Theorem 4. (i) Without loss generality assume Lip(f) = 1. Note that
swp PP (f(€)= swp  sup / CVaRa(f (€))dpu(a)
FeB: (Foe) E[ll€—¢Il<e pe,
= sup sup / CVaR, (f (&))du(a)
peMp Ell€—C<e
< sup / sup  CVaRa(f (€))du(a)
pedy J0 E[lE—Cl<e
1
5
= sup [ CVaRE(£(¢) + 1= du(a), (A30)
neMp J0 -«

where the third equality follows from Lemma A5. We next show that the inequality in (A30) is an
equality. Define &; by (A29) as in the proof of Lemma A5 which satisfies E[||§; — ¢||] < ¢ and

lim inf CVaRa(f(€)) > CVaRa(£(C)) + /(1 — ).

J—00

Therefore,
1 1
sup  sup / CVaR,(f (&))du(a) = sup sup/ CVaRe(f (&§5))du(a)

ne, El|g—Cl|<e Jo pey N Jo

1
> sup / lim inf CVaRa (f (€))du(a)
NE'///p J—00

(a)7

> sup / CVaRE(£(¢)) + 1

neMp

where the second inequality follows from Fatou’s Lemma. This means that the inequality of (A30)

is actually an equality. That is,

1
sup (1) = sup [ CVARE(F(O) + - du(a). (A31)
FeB1(Fp.e) pwEMy J0 o
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Similarly, one can prove that

1
sup  p%(X) = sup sup/ CVaRy (X)dp(a)
GECi(f|Fo.e) E[|X—f(Q)lI<e nedp J0
1
— sup [ CVaRE(£(¢)) + 1 du(a). (A32)
WeEMp J 0O l -«

Combining (A31) with (A32) yields (21), which completes the proof of (7).

(71) We first show that f is Lipschitz continuous by contradiction. Suppose that f is not Lipschitz
continuous. Then for any n € N, there exist x,,, y,, such that | f(x,)— f(yn)| > n||xn—yn||. Without
loss of generality assume f(x,,) — f(yn) > n||xn — ynl|, n € N. Take F,, = &y, and €, = ||x, — ynl|.
It follows that

sup  p" (f(€)= sup  p(f(&) = f(xn) > flyn) + nen. (A33)
FeBi(Fhn.en) E[|[é-ynl]<en
Note that
sup  pY(X) = sup p(X) < fyn) + Cpeyen,
GEC1(f|Fnicren) E[|X—f(yn)lI<csen

where the first inequality follows from the Kuosuoka representation (5) and C), = sup ¢ 4, fol ﬁdu(a).
This, together with (A33), yields a contradiction to (21) by noting n can be arbitrarily large. There-
fore, f is a Lipschitz continuous function.

We next show that (20) holds. Without loss of generality, assume Lip(f) = 1. For x¢ € R" and
any v € R"” with ||v]| = 1, define

¢(v) := lim (f (xo + tv) — f (x0))/t

t—o0
which is well-defined by noting that

f (%0 +tv) — f (x0) f (%0 +tov) — f (x0)

lim = lim
t—00 t t—o00 13
+ lim t—tof(Xothv)—f(XothoU)’
imoo t—to
tv) — t
iy Lot tv) — f (%0 + 0’0)7 (A34)
t—o0 t — to
where to := supg,ei; [|2]| + [[%ol|, and the last term in (A34) is monotone as f coincides with a

convex function on R™\ K. Then, to show that (20) holds, it suffices to verify that supj, - ¢(v) =
Lip(f) = 1. Suppose for contradiction that sup,=; ¢(v) < 1 — 24 for some § > 0. Noting that
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when ¢ > tg, (f (x0 +tv) — f (x0 + tov))/(t — to) T ¢(v) as t — oo, we have for any t > ¢y and v
with |lv|| =1

f (%0 +tv) — f (%0) < to+t*tof(xo+t’v)*f(xo+to’v)

t St t t —to
to t—t to t—t
<SS+ o) < Dk (1 20), (A35)

where the first inequality follows from that f is 1-Lipschitz continuous. Then there exists t; > tg

large enough such that f(xg + tv) — f(x¢) < (1 — §)t for all £ > ¢; and ||v|| = 1. Let

B = maX{O, sup {f (xo +tv) — f(x0) — (1 — 5)15}} < 0.

[wl|=1,0<t<t1
Then, for any ¢t > 0 and v € R™ with ||v|| = 1, we have
f(x0 +tv) < f(x0) + B+ (1 —9)t. (A36)

Take Fy = dx,. For € > B/(6C,) sufficiently large,

sup " (f(€)=sup  p((f (&)

FeBy(Fo.e) E||&—xo||<e
< sup  p(f(x0) + B+ (1—9)[[€ —xol)
Ell€—xoll<e
=f(x0) +B+(1-46) sup p([l§—xoll)
E[[§—xoll<e
< f(x0)+Cpe= sup  p%(X), (A37)

GeCy (f‘F(),a)

where the first inequality follows from (A36) and the monotonicity of p € Reon, the second equality
follows from the translation invariance and positive homogeneity of p € Rcon, the strict inequality
follows from that supgje_x, < P([[§ —Xol|) = €C, by the proof of (i) and € > B/(6C,). Thus, (A37)
contradicts (21). Consequently, sup|,|=; #(v) = 1, i.e., there exists a sequence vy, with [Jvg|| =1
such that limg o ¢(Vk) = sup|y|=1 ¢(v) = 1. This completes the proof of (ii).

(731) By (¢) and (i7), it suffices to show that if f is convex and Lipschitz continuous, then (20)
holds. Note that for any k € N, there exist x; and By € 9f(xy) such that ||Bk||. > Lip(f) — 1/k.
Take v as a unit vector attaining the dual norm of B, that is, [|vg| = 1 and v, B = Bk« By
the convexity of f, we have for any x € R"

iy X mk) — f(x)

m—00 m

> o = 18ll. > Lin(f) - 1. (A38)

42



Therefore, we have (20) holds and complete the proof. O

A.2 Proofs for Section 4
To prove Theorem 5, we need the following lemma from Wu et al. (2022).
Lemma A6. Let p € (1,00),t, e >0, and n € (0,¢). For V€ LP, the following statements hold.
(i) I IVIp <e, then E[([V] +8)P] < (e + 1),

(it) If |V, < € and E[|V|] < € — 1, then there exists A > 0 that only depends on p,t,e,n such
that E[(|V|+t)P] < (e +t)P — A. In particular, if p is an integer, then E[(|V]+t)P] <

(e +t)P — ptP~1n.
Proof of Theorem 5. For (ii) = (i), take g(x) = max;e;{cyB; x+b;} and define p(X) = (E[X_’i])l/p

which is a monotone risk measure. The result follows immediately from Theorem 3 by noting that

sup  (EF[P©)))P= sup  pP(gle)).
FeB,(Fo,e) FeB,(Fo,e)

For (i) = (ii), first note that the case ¢y = 0 is trivial and similar to the case ¢; = 0 in
Theorem 3. It suffices to consider the case ¢y > 0. We assume without loss of generality that

cy = 1. Note that, (27) is equivalent to

[T$(Mﬁ@+owm=@%wmmm4avc~%ﬁ>0 (A39)
E[||€||P]<eP

For any x,y € R", take { ~ Fj := dx and set € := ||y — x||. Then, by (A39),

< s (B[4 8))" = f0 e = F6) 4y - x|

E[||§]P]<eP
Exchanging x and y yields |f(y) — f(x)| < ||y — x]|, and hence Lip(f) < 1. We then aim to show

the following statement by contradiction:

sup f(x+y)— f(x)=¢, Vx e {x: f(x) >0}, Ve > 0. (A40)

lyll<e

Suppose to the contrary that there exist xg € R™ with f(xg) > 0 and gy > 0 such that

sup f(xo+y)— f(x0) < eo. (A41)

Ilyll<eo
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For € > 0, define

k. = sup { 5

lyll<2e

f(Xo+Y)—f(X0)}_

Note that for any z € R™, by the convexity of f, we have (f(xo + tz) — f(x¢))/t is increasing in
t € Ry, and thus, for any € € (0,e/2), it holds that

Foxo+2) = fxo) < = (f (0 + 222) = F(x0)

0 2¢e

Taking supremum over ||z|| < 2e to both sides yields that for € € (0,(/2),

ko< sup f(X0+%Z)—f(X0)< sup {
E X X
l|z]|<2e €o lyll<eo

f(X0+y)_f(X0)}<l’ (A42)

€0

where the second inequality follows from |g9z/(2¢)|| < €9 whenever ||z|| < 2e¢. Similarly, for any

y € R" with [ly|| < 2e, we have

o+ 3) = 160 < B (f (304 iov) = 169
which implies that

sup {f(X(H-Y)—f(Xo)}< sup {f(XoJrY)—f(Xo)}:ka' (A43)

lyll<2e ]l lyll<2e

Thus, by (A43), we have for € € (0,e0/2),

f(xo+y) = f(x0) < kellyll, Viyll < 2e. (A44)

Further, note that

(f (x0) + ly D" = (f (x0) + kelly )" = pf"~" (x0) (1 = ke)lly ||, Vy € R™. (A45)
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Therefore, for € € (0,e0/2),

sup K [f? (x0 + £)]

B[]l <<p

" Eleleer {E[f7 (%0 + &) Lygyeasy] +E [f7 (x0 + &) Ly >20] }

) B¢ |reer {E [(f (x0) + ke llEID Lgg<oer] + E [ (x0 + &) Lyjgy>ac] }

<o {E[(F (o) + Rl Tgrenn] +E (7 Goo) + €1 B2}

= amp{BI G0+ 161~ E (7 60+ €17 — (7 620 + K181 L oe])
s el <er {EI(f (xo) + 1€1)"] = pf"™" (x0) (1 = ke)E [[1€]1Tgy<22 ] }

= o B 00) + VP =™ (00) (1= BB [V vicaey ]}

_. 1,

where the first inequality follows from (A44), the second inequality holds because f is nonnegative
with Lip(f) < 1; the third inequality follows from (A45), and the third equality holds since the

objective function in the optimization problem depends only on ||£]|. Define

1 —9-pla
Vi = {V € LP:ElVPP <&, E[|[V[1{vi<a] < (2)6}

Vo= {V e L E[V]P <P} \ V.

We can rewrite I = max {[1, I} with

1= sup {E((f (x0) +[VIP] = p" ! (x0) (1 = K E[IVIEguican] . i€ [2]

One can verify that for any V € V),

E[|V|] = E[[V[1jv>223] + E[|[VL{vi<oe]

_ 9-p/q -p/q

where the first inequality follows from the Holder’s inequality, Markov’s inequality, and the definition
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of V1. It holds that

I < sup E[(f (x0) + V)" < (f (x0) + )", (A47)

where the strict inequality follows from (A46) and Statement (i7) of Lemma A6 by noting that

f (x0) > 0. For I, we have

I < sup E[(f (x0) + [V)P] = inf pfP~" (x0) (1 — ko)E [|V |1y |<oe)]
Vey, Veys

< (f (x0) + &) = pf"~ " (x0) (1~ ke) Jnf B (V1T gvi<es]

—9-P/q) ¢
< (F (o) + 2 = (o) (1= k) L2

< (f (x0) +2)", (A48)

where the second inequality follows from Statement (i) of Lemma A6, and the third inequality is

due to the definition of V. Combining (A47) and (A48), we have

e E[f? (xo +&)] < I =max{l1, s} < (f (x0) +¢)",

which yields a contradiction to (A39). Hence, (A40) holds. By the arguments to prove (A18) as
in the proof of Proposition 3, for any z € R™ with f(z) > 0, there exists a subgradient n, € 0f(z)
such that ||n.||« = 1. Moreover, for any z € R" with f(z) = 0, we take n, = 0 € 0f(z). By the

convexity of f, for any x € R",

f(x) = max{f(2) + n, (x -~ 2)}

zER™
= max{ sup {f(z) +n] (x = 2)}, swp {f(z)+ ] (x—2)}}
f(2)=0 f(z)>0
=max{0, sup {f(z) +n] (x—2)}} = (s(x))+.
f(z)>0

where s(x) := sup(ﬁ,b)eI{ﬂTx + b} with Z := {(n,, f(z) —n, z) : f(z) > 0}. Fix x with f(x) = 0.
Take {(n;, , b3, ) }ken € T such that n;‘ka—Fb’z‘k — s(x). Note that ||ng ||« = 1 and n;‘,j—y+b;‘k < fly)
for all y € R™ and k € N. By Holder’s inequality, |n;‘ka| < x|, and hence the sequence by is
bounded. Thus, by the Bolzano—Weierstrass theorem, up to a subsequence, (n;‘k, b;‘k) — (7%, b%).
By the continuity of (n,b) — 1y +b, for any fixed y € R", we have 7% Ty + b* = lim,, oo n;‘kTy +
by, < s(y) < f(y), and in particular 7* 'x + b* = s(x) < 0. Define I=TU{(H5b):xe€{x:
f(x) =0}}. It is straightforward to verify that s(x) = max(,@’b)ef{ﬂ—rx + b} for any x € R™. Then,
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we complete the proof. O
To prove Proposition 6, we need the following three lemmas.

Lemma AT7. Forp > 1 and ¢ > 1, let H,, be defined in (29) with ((z,t) = c¢(z —t)4+, and X be
a random variable with P(X = a1) = 1 —P(X = ag) = 7, a1 > ag. If 7 < ¢ P, then problem

infrer{t + c(E[(X — t)ﬂ])l/p} admits a unique minimizer t* on (—o0, ap).

Proof. Define H(t) := t + c(E[(X — t)£])!/P, t € R. Note that

1/p
t+e((1=m)ao =P + (@ —1P) ", t<ap,
H(t) = (1- cwl/p)t + ent/Pay, ag <t <aq,

t) t 2 ai.
By m < ¢ P, we have H is continuous and strictly increasing on [ag, c0). For t < ag,
H#)=1-c((1—m)(ag —t)? + m(a; — t)p)l/pfl((l —m)(ag — )Pt + 7w(ag — t)P7).

This implies limgq, H'(t) = 1 — ex'/P > 0, and hence no minimizer lies in [ag, 00). Also, note that
(E[(X — t)ﬁ])l/p is strictly convex in t € (—o0,ap], and thus, H is strictly convex on (—o0,ag).
By limy_,_ H(t) = 0o, we have H admits a unique minimizer t* € (—o0,ap). This completes the

proof. O
Lemma A8. Forp € (1,00), a >0, k€ [0,1), ¢ > 0, and a random variable V' > 0, there exists
¢ € (0,00) depending only on (p,a,e) such that

= (Bl(a+ kViyey + Viysa)PDV? <a+ EEVP)P + E[V7).

Proof. Denote by v = (E[V?])'/?. Note that

[P =E[(a+kV)PLiyey] + El(a + V)PLiysq]
El(a+kV)’] +E[(a+ V)PLiysq]
< (o+ k(E[VP])l/P)p + E[(a + V)P Liyse]

a+V
(CL + k’l)) I:( % V ]1{V>a}:|

a—+e¢

< (a+ kv)” < ) E[VP1ysq] < (a+ k)P + cro?, (A49)
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where the second inequality follows from Lemma A6(7) (Jensen’s inequality), the third inequality

follows from that (a + z)/x is decreasing in z € [g,00), and ¢; := (a + €)P/eP. It then follows that

c1vP c1vP

ST SOt

I < ([a+ ko + coP)P < a+ kv + .
pa

where the second inequality follows from (b” + z)'/? < b+ /(pb?~ ') by the concavity of (b + z)/?
on x € Ry for b > 0, and the last inequality follows from kv, > 0. Setting ¢ = c1/(paP~!) completes
the proof. O

Lemma A9. Forp > 1, a9 > 0, ap > 0, € € (0,1], = € (0,1), k € [0,1), and ¢ > 0, let
P : R x K — R be given by

®(e;u) = ((1 — ) (ao + keug + cePul))’ + m(ay + 5u1)p)1/p,

where K = {u € R% : (1 — m)ub + 7ul <1}. Then there exist L <1 and M < oo depending only

on (p,ap,a1,&,m, ko, c) such that

sup ®(g;u) < ((1 — m)al) +7Ta7f)1/p +Le+ M2 +6P), Veecl0,d.
ucK

Proof. Define ®¢(g;u) := ((1 — m)(ao + keuo)? + m(ar + cuq)P) e, By Minkowski’s inequality,
D(g;u) < Po(s;u) + cePub. (A50)
Thus, it suffices to show that there exist L < 1 and M; < oo such that

sup ®g(g;u) < ((1 —7m)af) + Wa]l?)l/p + Le + Mye?, VY e€|0,4]. (A51)
ucekK

To show that (A51) holds, we consider a second-order Taylor expansion of ®¢(s;u) at ¢ = 0. For

any u € K, there exists z(e,u) € [0,¢] such that

2

Bo(;u) = o(0;w) + £9-Bo(0; w) + 92D (2(e, w); u)%,

where 0,®( and 8€2<I>0 denote the first- and second-order partial derivatives of ®q; with respect to

g, respectively. Note that ®o(0;u) = ((1 — 7)ah + wal) YP which is independent of w. Taking the
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supremum over u € K yields, for any € € [0, &],

2
sup (s ) < Do(0;w) + & sup {8.90(0;w)} + sup {2Do(=(e, u)u)} =
uckK ucK ucK 2

2
£
< @o(0;u) +& sup {9:-Po(0;u)} +  sup  {[2Po(s;u)|}
uek ueK,s€(0,é] 2

2

= Pu(0;u) + Le + Mg;,

where the second inequality uses the fact that z(e, u) € [0, €], and we define L := sup,,c g {9:Po(0; u)}
and M3 1= SUpP(s )06 x K |02®¢(s;u)|. Since §2® is continuous on the compact set [0,&] x K, it

follows that M, < oo. Hence, it remains to show that L < 1. A direct computation gives

L = sup
uckK

(1 —m)al  kouo + ma) ™ uy
(1 = m)af + mal) =D

- g\ /4
(1= (@l ko) + maf?™) (1 = m)uy + wa)
< sup

uek (1—m)ah+ ﬂa’f)(p_l)/p

_ (1= m)afk§ + ma})'/?

(1 — ) + mab)"/*

where the first inequality follows from Hoélder’s inequality with g := p/(p— 1), the second inequality
uses the constraint (1 — m)uh + muf < 1 for u € K, and the strict inequality holds since kg < 1.

Setting My := Ms/2, (A51) follows. By (A50) and (A51), for any € € [0, &],

sup @(e;u) < sup {Po(e;u)} + ce? sup uf)
uck ucek uck

< ((1 = m)af) + Wa]i')l/p + Le + M (2 + €P),
where the second inequality follows from sup, g uh < (1 —7)~! and M := max{Mj,c(1 — m)"'}.

This completes the proof. ]

Proof of Proposition 6. For the “if” part, the result follows directly from Corollary 1.
For the “only if” part, we first consider the case ¢y = 0. In this case, for any x,y € R", take

¢~ Fy=0dx and ¢ := ||x — y|. By (31), we have
sup  Hy(f (€ +x)) = f(x).

E[ll€]|P]<e?

It follows that f(y) < f(x) for any x,y € R", and thus, f is a constant function, which completes
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the proof for ¢y = 0. We now turn to the case ¢y > 0. Without loss of generality, we assume cy = 1.

In this case, (31) is equivalent to

JE[IIEF}]L pHp(f (€+C) =Hp(f () +ce,  VE~Fy, e>0. (A52)

We next show that for any x € R”, the subgradient V f(x) € df(x) satisfies ||V f(x)||« < 1, where
0f(x) denotes the subdifferential of f at x. Suppose, for contradiction, that there exists xo € R"”
such that |V f(xo)|[«+ > 1. By definition of the dual norm, there exists nx, € R"” with ||nx,| = 1
such that ] V f(xo) = ||V f(x0)|+. For e > 0, define & ~ T0ceny, + (1 —m)dp with 7 = ¢7P. Then
E[l|€o]["] = €”, and thus,

sup  Hy(f (€ +x0))
EflgP)<er

> Hyp(f(&o + x0))

= f(x0) +Hp(f (& + x0) — f(x0))

= f(x0) + inf{t + c(E[(f (€0 + x0) — f(x0) — )1])"/*}

= f(x0) + inf{t + c(B[((f (€0 + x0) — f(X0))L{ggmeemy — 1) )""}
> f(xo) + nf{t + c(B[(cemiy V £ (x0) L gg—cenn,} — 71)'/7}

= f(x0) + c2 ||V f (x0) |+ mf{t + c(E[(1gy=cen,} — 8)11)"/7}

= f(%0) + e Vf(x0)[l« > f(x0) + ¢z, (A53)

where the first equality follows from the translation invariance of H,, the second inequality follows
from the convexity of f, the forth equality follows from 7, V f(x0) = ||V f(x0)« and the positive
homogeneity of H,, the fifth equality uses Hp(]l{io:cenxo}) = 1, and the strict inequality follows
from ||V f(x0)]|« > 1 and € > 0. The inequality (A53) contradicts (A52). Therefore, ||V f(x)]« <1
for all x € R™. Since f is convex, it follows that f is Lipschitz continuous with Lip(f) < 1. Finally,
by the proof of Proposition 3, to establish that f satisfies (12), it suffices to show that

sup f(x+y)—f(x)=¢, VxeR" e>0.

lyll<e

Suppose, to the contrary, that there exist xg € R™ and g > 0 such that

sup f(Xo + y) - f(Xo) < €p. (A54)

lyll<eo
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Define
f(x0 +y) — f(x0)

ko := sup < 1.
lyll<eo €0
By the convexity of f, we have
fxo+y) = f(xo) < kollyll,  Vlyll < eo (A55)

By (A52), there must exist x; € R™ such that f(x;) > f(x0). Let ¢ ~ Fp := (1 — m)dx, + mx,,

with some 7 € (0,¢™P). By Lemma A7, there exists a unique minimizer ¢* < f(x¢) such that

Hy(£(Q)) = t* + c(E[(f(¢) — )PV (A56)

Fix € := min{1, e }. For ¢* satisfying (A56) and for all sufficiently small ¢ < &, we have

sup  Hp(f(C+€))

Ellg]lr<er

= sup irtlf{t +c(E[(f(E+C) - tﬁ])l/p}
E[|€[7)<eP

< sup {4+ c(E[(f (€ +C) — )R]V}
E[||&P]<eP

= sup {t"+cE[(fE+C)—F(C)+f(C) -t}

E[ll€]|P]<e?

< sup {E+e(BI((F(E+C) = ()4 + (F(C) —t)4)7) P

E[l1€]|P]<e?

= sup {4 (BT )+ (F(¢) — t))P) /"), (A57)

E|€|P<e?
where the last inequality uses (z+vy)+ < x4 +yy forall z,y € R, and T'(&,¢) := (f(€+¢)— f(C))+-

It therefore suffices to consider

Ii= sup (E[((f(C)—t)s + TN,
E[||€[|P]<eP

Note that, by (A55), we have T'(§,x0) < koll€l|L{j¢)<cor + €11 g)>e0) almost surely. Moreover,
T(&,x1) < ||€]| almost surely, since Lip(f) < 1. Let ag := f(x0) — t* and a; := f(x1) — t*, and

o1



ag, a1 > 0. Therefore,

"= 1E[|I£Sﬁ1’]g])< P{(l N W)E[(ao * T<€’XO))p €= XO} + WE[(al + T(€7X1))p | ¢ = Xl}}

< sup {(1 — m)E[(ao + kol €l Tge<zo1 + €I T f1e1503)" | € = %o
E[||&[[P]<eP

(- €)7 [ ¢ =]}

= sup {(1 — W)E[(CLO + ki()V]l{Vggo} + V]l{V>€O})p | C = Xo}
E[VP]<LeP

+7E[(a1 + V)7 | ¢ = xl}}

= sup {(1—7)[1 -|—7r.72}.
E[VP]<eP (A58)
o8

where the first equality uses the law of total expectation. Here, we write
I ==E[(ao + koVIiveey + Viysey)' | ¢ =x0] and I :=E[(a1 + V)" | ¢ = x1].
Applying Lemma A8 conditionally, there exists ¢y € (0,00), depending only on (p, ag, £0), such that
1/p P
I < (ao+ko(E[VP | ¢ =x0]) " + coE[VP | { =x%¢] ) - (A59)
Moreover, by Lemma A6(i) (Jensen’s inequality),
1p\?
B< (ot B0 1¢=x)") (A60)

Note that E[V?] = (1 — mE[V? | ¢ = x| + 7E[V? | ¢ = x1]. Let vy = (B[V? | ¢ = x))'/? and
vy := (E[VP | ¢ = x1])"/P. Applying (A59) and (A60) to (A58) then yields

IP < sup {(1 —Tr)(ao—i—kovo—{—covg)p—i—w(al —l—vl)p}

(1—7r)v§+7rv117<ap
— p_p\P p
= sup {(1 — 1) (ao + kouoe + coufe?)” + m (a1 + uie) }, (A61)

(1—m)ub+mui<1

where the equality follows from the change of variables uy := vo/e and uy := vi/e. Applying

Lemma A9 to (A61), there exist L < 1 and M < oo such that, for all € € [0, £],
I< ((1—7r)a8—|—7m11’)1/p+L€+M(€2+5p). (A62)
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Let 6 := (1 — L)/2. Then there exists n > 0 such that M(n +nP~!) < §. Hence, for all sufficiently
small ¢ < min{&, n}, applying (A62) to (A57) yields

sup Hp(f(C+E&)) <t*+c((1—m)ah + mal) YP 4 cLe + cM(e+eP e

E|€[lP<eP

<Hp(F(Q) + (L +d)e < Hp(f(C)) + ce, (A63)

where t* satisfies (A56), namely, H,(f(¢)) = t* + ¢((1 — m)ah + ma})'/P. Consequently, (A63)

contradicts (A52), which completes the proof. O

Proof of Theorem 6. For the “if” part, suppose that f : R” — R is of the form (11). Then the
claim follows directly from Theorem 2 together with Theorem 5 of Wu et al. (2022).

For the “only if” part, we assume that there exists ¢y > 0 such that (33) holds for any Fy €
M(R™) and € > 0. If ¢y = 0, then (33) reduces to

sup  pr(f(€+C)) = p°(f(C))- (A64)

E|[lP<e?

An argument analogous to that for the case ¢y = 0 in the proof of Theorem 3 shows that f is
a constant function. Hence, f satisfies (11). Now consider the case ¢y > 0. By the positive
homogeneity of pj,, we assume without loss of generality that ¢y = 1. In this case, (33) is equivalent

to

sup o (f(€+€)) = Py (F(C)) +elll . (A65)

E|g||P<er

We next show that f satisfies (11). To see this, we first show that f is Lipschitz continuous with
Lip(f) < 1. Notably, for any x,y € R", set Fy = dx and ¢ := ||y — x||. Then

(y) <_sup pp(f(E+x)) = f(x) + [Wllge = f(x) + [B]lqllx = ¥l

E€|lP<e?

Hence f is Lipschitz continuous with Lip(f) < ||A/[|; < co. We next show that Lip(f) < 1. Note
that when p = 0o, we have ||h/[|; = 1. Therefore, it suffices to consider the case p € (1,00). Suppose
otherwise that Lip(f) > 1. We claim that for any sufficiently small 6 > 0, there exist xg € R",
to > 0, and vg € R™ with ||vg|| = 1 such that

f(Xo + t’vo) — f(Xo) > (1 + 25)t, Vit e (0, to]. (A66)
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Indeed, by the definition of Lip(f), for any sufficiently small § > 0 there exist x,y € R"™ with
x # y such that |f(x) — f(y)|/|lx — y|| = 1+ 4. Without loss of generality, assume f(y) > f(x).
Let d := |ly — x||, define vy := (y — x)/d, and consider the function ¢ : [0,d] — R given by
o(s) := f(x+ svp). Since f is Lipschitz, ¢ is absolutely continuous and hence differentiable almost
everywhere, with ¢(d) fo ¢'(s)ds. The inequality f(y)— f(x)/d > 1+46 implies that there
exists s5 € (0,d) such that ¢’(85) > 1+ 36. By the definition of the derivative, there exists tg > 0
such that ¢ (ss +1t) — ¢ (ss) = (1 + 20)t for all t € (0,tp]. Setting x¢ := x + s5v9, we obtain (A66),
which proves the claim. Next, let U be a uniform random variable on [0,1]. Fix ¢ > 0 sufficiently

small, and let xq, vg, and to be such that (A66) holds. For any € > 0 sufficiently small, define

W(U/P ) ~
R, = €(H£L,”)q)/p, R. :=min{R.,ty} and &; :=vgR..
q

One can verify that E[|&;||P < E[RE] = €P. Note that lim. o E[(h'(U))?1{g_¢)] = 0 by the domi-

nated convergence theorem. Hence, for any n < 1 —1/(1 + 24), there exists €, > 0 such that
E[(W(U)ir.>t0)] < nllWll§, Ve € (0] (A67)
For ¢ < g, sufficiently small, we then have

sup  pp(f(xo +§)) (A68)
E|g||P<eP

2 pr (f(x0 + &1))

= pn (f(x0+voR.))

> o (£x0) + (1 +20) . )

= F(x0) + (1 +20)p (B:)

= f(x0) + (1 + 20)E[min{ A, to}h’(U)]

2 f(x0) + (14 20) (E[R'(U)] = E[RN (U) (5. 1)])

= F(x0) + (1+28) (=[]l - E[(h’(U))qn{RE>to}])

17| ’(I/P

> f(xo0) + (1 +20)(1 = n)el[Wllg > f(x0) + &l ]lq; (A69)

where the second inequality follows from (A66) and the fact that Es < to almost surely, the third
equality uses the comonotonicity of E&- and h/(U), the fourth equality follows from the definition of
R., the fourth inequality follows from (A67), and the strict inequality holds because (1425)(1—n) >
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1. Thus, (A69) contradicts (A65). It follows that f is Lipschitz continuous with Lip(f) < 1. We
next show that f satisfies (11). Since Lip(f) < 1, suppose for contradiction that there exist x € R”

and g > 0 such that
sup (f(X+y)— f(%)) < o (A70)

lyli<eo

We next consider two cases: p = o0 and p € (1,00). When p = 0o, we have

sup — pp(f(x+8)) < sup f(x+y) < f(%)+eo, (AT1)
ess-sup(||&]|)<eo llyll<eo
where the first inequality follows from the monotonicity of pj,. Thus, (A71) contradicts (A65). Now

suppose p € (1,00). Define
f&+y) -~ f®)

€0

k:= sup
llyll<eo

By the strict inequality in (A70), we have k < 1. By Lemma A4, there exist k; € (k, 1), x; € R",
and 1 > 0 such that
fx1+y) = fx) <kllyl,  Vyl <en (A72)

1/q
Next, note that lim; g ( fll_ (W ()9 du) = 0 by the dominated convergence theorem. Hence,

for any n > 0, there exists t,, > 0 such that

! 1/q
(f wtean)™ <ol vee o) (AT3)

—t

Define .
X, = {F—l(U) :/O |F~(u)[Pdu < 0o, F~H(U) > 0}.

Then {Fx : X € LP} = {Fx : X € A}, and all random variables in A}, are comonotonic. Fix
n € (0,1 — k1) and choose ¢, > 0 such that (A73) holds. For ¢ € (0,61t,17/p] and any X € X}, with
| X ||, < e, Markov’s inequality yields

E[X? P
P(X > e1) < [p | ¢ <€> <ty (A74)
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Consequently, for such n and e, we have

sup pp(f(x1+¢§))

E|jg|lP<e?

= sup {pn (f (x1 + &) L{jg)<cry + [ (x1+ &) Lijgy>ey)}

E|€[lP<e?

See Arn((FOx) + Rll€) Degery + (f () + 1€ Lggoen)}

=f(x1)+ sup {pn (kllENLgep<err + €L e>ey) }

E|jg|lP<e?

= f(x1)+ sup {pn (/ﬁXﬂ{Xgel} + Xﬂ{X>el})}
E[XP]<eP, X0

= f(x1) + sup  {pn (M XLy y + Xlixsey)}
E[XP)<eP, XEX,

= f(x1) + sup  {E[(MiXTxeoy + X pxse )W (U)]}
E[XP]<eP, XX,

< f(x) +k sup  (B[(W (U)Lx<c,y) ) VI (E[XP) P
E[XP]<eP, XX,

+  sup (B[N (U)Lxse,y) )V UB[XP)YP
E[XP]<eP, X €X,

<fxa)+kie  sup (E[(R(U)Lixeey))Y?
E[XP]<eP, XEX),

+e  sup (B[N (U)xse )
E[XP]<eP, X€X,

7t7]

1 1/q
< f(x1) + Ky Hh’”q5+</1 (h/(u))qdu> £

gf(x1)+(k1+77)Hh/Hqs < f(x1)+ HhIHqE. (AT5)
Here, the first inequality follows from Lip(f) < 1 together with (A72). The fourth equality uses the
law invariance of pj,. The fifth equality follows from the comonotonicity of k1 X1 x<. 3+ Xxscy
and A/ (U) for X € X,. The second inequality follows from Holder’s inequality. The fourth inequality
uses the nonnegativity of 1/, as h is a convex distortion function, together with (A74). The fifth

inequality follows from (A73), and the final strict inequality holds because k; +n < 1. Thus, (A75)
leads to a contradiction to (A65), thereby establishing (11). This completes the proof. O

Before proving Proposition 7, we need the following lemma.

Lemma A10. For any p € [1,00),Fy € My, (R") ande >0, let £ : R" x R — Ry satisfy {(z,t) is
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convex int € R and there exists M > 0 such that
|0(z1,t) — 0 (22,t)| < M||z; — 22|, V,z1,22 € R", t€R.

We have the following statements hold.

(i) If limy_, o OU(2z,t) /0t < —1 for all z € R™, then we have

i 1/p . P 1/p
sup inf ¢+ (B[00 (&t =inf sup {t+ (B[ (g,0) "]
pom ne{e (50 En0) "} =t s (o @1 6 0) )

(i1) If limyy oo 0(2z,t) /0t < 0 < limy_yop OU(2,t)/0t for all z € R, then we have

sup infEF [P (€,t)] =inf sup EF [P (&,1)].
FeB,(Fo,e) t€R &, o) tER peB, (F,e) 16, )

Proof. (i) Denote by my ¢(F,t) :=t + (EF [¢7 (€, t)])l/p. With the similar arguments as in the proof
of Lemma EC.8 in Wu et al. (2022), one can verify that m ((F,t) is concave in F for all t € R and
convex in t for all F € M, (R™). Moreover, we have lim;_, 4, 71 ¢(F,t) = oo for all F' € M, (R").
Thus, the set of all minimizers of the problem inf;cgr 7 ((F,t) is a closed interval. Denote by
t(F) := inf arg min, m ¢(F,t). We will show that {¢t(F) : F' € B, (Fy,€)} is a subset of a compact
set. For any F € B, (Fp,c) and t € R, let £ ~ F and ¢ ~ Fy such that E[||§ — ¢[|P] < P, and we

have

mLe(Fy) = me (Fo,t)] = | (BF [ (6,0) 77 = B [ (¢, 1))

< (B[, t) — L, t)IP)HP
< (E[MP||€ - <[P < Me, (A76)

where the first inequality follows from the triangle inequality, and the last step uses the definition

of the Wasserstein ball B, (Fp, ). Hence,
T (Bt (Fo)) < mie (Fo,t (Fo)) + Me. (A77)

Note that 71 ¢ (Fy,t) — 0o as t — £oo. There exists A > 0 such that m ¢ (Fo,t) > m1 ¢ (Fo,t (Fp))+
2Me for all t ¢ [t (Fo) — A,t (Fo) + A]. This, combined with (A76), imply that

m1e(Fyt) = me (Fo,t) — Me > ¢ (Fo, t (Fo)) + Me, Vt ¢ [t (Fo) — At (Fo) + A].
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This, together with (A77), implies {t(F) : F' € B,(Fp,e)} C [t(Fo) — A, t(Go) + A]. Using a

minimax theorem (see e.g., Sion (1958)), it holds that
sup inf m(F,t) =  sup inf mTe(F,t
FeB,(Fye) t€R LelFt) FEB,(F,e) tEIL(Fo)—AL(Fo)+A] 1Ft)

- inf sup oy o(Ft
tE[t(Fo)—At(Fo)+A] FeB, (Fy,e) el

>inf  sup  m(Ft)
t€R PeB, (Fo,e)

The converse direction is trivial. Hence, we complete the proof.

(74) The proof is similar to (7).

O

Proof of Proposition 7. Without loss of generality, assume that Lip(f) = 1. Denote by €~1(z,t) =

01(f(z),t). For any z1,2z9 € R" with z; # 2,

|1(21,1) — 1(22,1)] = |1(f (21), 1) — 2(f (22), 1)
<b|f(z1) — f(z2)| < bljz1 — 22|, VEER,

where the first inequality follows from the uniform Lipschitz continuity of ¢1(z,t) in z € R, and the

second inequality follows from the Lipschitz continuity of f. Thus, €~1(z, t) is Lipschitz continuous

in z for all ¢, with constant b. Moreover, one can verify that €~1(z,t) is convex in t and satisfies

limy o 8[1(z,t)/8t < 0 < limy_yeo 8@1(z,t)/8t for all z € R™. Therefore, €~1(z,t) satisfies the

assumptions of Lemma A10(i7). Hence,

sip H{(f(€) = sup il [7i(&,0)]
FEBy (Fy.e) FEBy (Fp.e) tER

—inf sup EF €~1£,t
tER FeBy (Fy.e) [ ( )}

=inf sup EF[41(f(€),1)].
teR FEBl(F07€)

We next show that

sup  EF [(1(f(€),0)] = sup  E[G(f(§), )]=E [61(f(C). )] + be.

FeB1(Fo.e) Efl€—¢ll]<e

It suffices to establish the second equality. First,

sup  (E[6(F(£), )] =B (f(€),0)]) <b sup  E[I§ — (| < be,
: Elll~¢ll<e

o8

(ATS)

(A79)



where the first inequality follows from the Lipschitz continuity of ¢1(-,¢) and f. For the reverse
inequality, we follow arguments similar to those used in Lemma A5 and Theorem 4. For the sake of
completeness, we nevertheless provide a detailed proof. By (20), with similar arguments as in the
proof of Lemma A5, there exist nondecreasing sequences {k;} jen and {m;};cn such that m; — oo
as j — oo and (f(xo +myvg;) — f(x0))/m; > 1— f. Let U be a uniform random variable on [0, 1],

independent of ¢, and define
§j = C+myvg,Liyea,y, where Aj:=[l—¢/my,1).

One can verify that E [|€; — ¢|| = ¢. For each realization of ¢, denote by A; := f(¢+m vy;) — f(C).

By Lipschitz continuity of f,
1
mj(l—j)—2HC—Xo|| < Aj <mj+2[I¢ = %o (A80)

Thus Aj/m; — 1 and A; — oco. Recall that for each t € R there exists zo(t) such that

Zl(zo(t)+m’2_zl(zo(t)’t) = b, which implies that lim,, .o W = b for all z,t € R.

O(f(Q+A;.) =41 (f(€)1)

A

limy;, 00

Note that A; — oo, as j — co. Then, we have lim;_,

= b. Therefore, for any

t € R and sufficiently large m; > max{1,¢e},

sup E [El(f(g)v t) - El (f(C)7 t)]
EfllE—=¢ll<e

f1(f(£j)vt) - gl(f(C)J)]
C+myvk ),t) = €1(f(€), 1)) 1a,]

[
E[(&
B [ )+ A1) — 6 (F(0), t>>hj]
|

mjm A
J J
A (6 Ait)— 0 t
mj( 1 + ij l(f(C) ))} E [mj]lAj]

[ i (G(f(C) +4A,t) - f(f(C)ﬂf))]
mj Aj

E

— be as j — o0, (A81)

where the third equality uses the independence of U and ¢, and the limit follows from the dominated

convergence theorem, since

Al

<b‘
m

gl(f(C)“‘Aj?t)_gl(f(C)vt))' < b(1 + 2| — xol|),

' mj Aj j

with the last inequality from (A80) and m; > 1. Combining (A81) with (A79) and (A78), we obtain
(36). This completes the proof. O
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Proof of Proposition 8. Without loss of generality, assume Lip(f) = 1. Note that pp, € Reon. Since
f satisfies (20), Theorem 4(7) yields

sup  pp (f(€)) = sup  pfi(X). (A82)
FeBy(Fo.e) GeC1(f|Fo.e)

Moreover, it follows from Proposition 2 in Pflug et al. (2012) (see also Theorem Wu et al. (2022))

that
sup PR (X) = " (F(Q)) + el [l oo (A83)
GGCl(f|F0,€)
Combining (A82) and (A83) completes the proof. O

Proof of Proposition 9. Note that we can rewrite ex! (X) = max{zx € R : EF[(,(X — z)] > 0},

«

where /o (2) := ary — (1 —a)z_, z € R. Denote by ¢y = Lip(f). Therefore we have

sup ex%(X) = sup max {z € R : EC[lo(X —2)] > 0}
GeC1(f|Fo,cse) GeC1(f|Fo,cye)
=max{r € R: sup EC[lo(X — )] > 0}

GeCy (f|F(),Cf8)

= max {z : E® [0, (f(¢) — 2)] + acpe = 0},

where the last equality follows from the regularization result of a convex Lipschitz continuous
function over a Wasserstein ball, i.e., supgep, Gy, EC[lo(X — x)] = E9[lo(X — 2)] + ae. This

implies

sup  ext (f(€)) = max {z : EP[lo(f(¢) — 2)] + acse = 0},
FeBy (Fo,e)

or equivalently, the unique solution to Ef°[¢,(f(¢) — z)] + acse = 0. This completes the proof. [

A.3 Proofs for Section 5

Proof of Proposition 10. By Theorem 1, it is straightforward to verify the implications (i7) = (7)
and (7i7) = (#i). We only give the proof of (i) = (ii).

For (i) = (iii), suppose that there exists ¢y > 0 such that (39) holds for any ¢ > 0 and
Fo e M(E). If ¢y =0, take p = VaR, with a € [0,1). Let Fy be such that (Yp, Xg) ~ Fp, where
Yo = 1 almost surely and Fx, denote the marginal distribution of Xy. Then, with similar arguments
as in the proof of (i) = (i4i) in Theorem 1, it follows that f must be constant. Now consider ¢y > 0

and take p = VaR, with o € [0,1). Assume without loss of generality that ¢y = 1. Let Fyy be such
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that (Yo, Xo) ~ Fp, where Yy = 1 almost surely and X ~ Fx,. In this case, (39) reduces to

sup  VaRL (f(X))=  sup  VaR$(X),
FeBy(Fx,»€) GeCp(f|Fxq:€)

which holds for any ¢ > 0 and Fx, € M(R"™). By Lemma A1 and the proof of Theorem 1 (i) = (ii),
it follows that

sup f(x+y)—f(x)=e¢, (A84)

lyll<e

for any x € R™ and ¢ > 0. Similarly, let Fy be such that (Yp, Xo) ~ Fp, where Yy = —1 almost
surely and Xg ~ Fx,. Then, for any ¢ > 0 and any Fx, € M(R"), it holds that

sup  VaRL (—f(X)) = sup VaR& (X).
FGBP(FXO,E) GECp(—leXO,E)
By Lemma A1, we have
f(x)—||irH1£ fx+y)=¢, VxeR" e>0. (A85)
ylI<e
Combining (A84) and (A85), we have (9) holds. This completes the proof. O

Proof of Proposition 11. The “if” part is a direct consequence of (iii) = (i) in Proposition 41 and

the “only if” part has been already proved in the proof for (i) = (iii) in Proposition 41. O

Proof of Corollary 2. By Propositions 1, 2, 10, and Theorem 6, the conclusion follows immediately.

O
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