
Inexact subgradient algorithm with a non-asymptotic

convergence guarantee for copositive programming

problems

Mitsuhiro Nishijima1 Pierre-Louis Poirion2 Akiko Takeda3

January 16, 2026

Abstract

In this paper, we propose a subgradient algorithm with a non-asymptotic conver-
gence guarantee to solve copositive programming problems. The subproblem to
be solved at each iteration is a standard quadratic programming problem, which
is NP-hard in general. However, the proposed algorithm allows this subproblem
to be solved inexactly. For a prescribed accuracy ǫ > 0 for both the objective
function and the constraint arising from the copositivity condition, the proposed
algorithm yields an approximate solution after O(ǫ−2) iterations, even when the
subproblems are solved inexactly. We also discuss exact and inexact approaches
for solving standard quadratic programming problems and compare their per-
formance through numerical experiments. In addition, we apply the proposed
algorithm to the problem of testing complete positivity of a matrix and derive a
sufficient condition for certifying that a matrix is not completely positive. Exper-
imental results demonstrate that we can detect the lack of complete positivity in
various doubly nonnegative matrices that are not completely positive.

Key words. Copositive programming, Semi-infinite programming, Subgradient-based
method, Standard quadratic programming, Completely positive matrices

1Center for Advanced Intelligence Project, RIKEN, 1-4-1, Nihonbashi, Chuo-ku, 1030027, Tokyo,
Japan. (mitsuhiro.nishijima@riken.jp).

2Center for Advanced Intelligence Project, RIKEN, 1-4-1, Nihonbashi, Chuo-ku, 1030027, Tokyo,
Japan. (pierre-louis.poirion@riken.jp).

3Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, 1138656, Tokyo, Japan; Center for Advanced Intelligence Project, RIKEN, 1-4-1, Nihon-
bashi, Chuo-ku, 1030027, Tokyo, Japan (takeda@mist.i.u-tokyo.ac.jp).

1

1 Introduction

A copositive programming problem is a conic linear programming problem involving
a copositive cone. Many studies have shown that various computationally challenging
optimization problems can be reformulated as copositive programming problems in
a unified manner [10, 11, 14]. Motivated by this, researchers have proposed various
approaches to solving copositive programming problems.

Approximations for copositive cones are widely used to solve copositive program-
ming problems. Typically, the cone consisting of sums of a real symmetric positive
semidefinite matrix and a symmetric entrywise nonnegative matrix provides an inner
approximation to a copositive cone. However, except in a few specific situations [22, 31],
it is difficult to assess the accuracy of this approximation theoretically. To approximate
copositive cones to arbitrary accuracy, various approximation hierarchies have been
proposed [1, 16, 36, 37, 51–53, 58]. Bundfuss and Dür [13] provided an adaptive ap-
proximation scheme for copositive cones based on a simplicial partition and showed
its asymptotic convergence. Žilinskas [55] also utilized a simplicial partition to solve a
copositive programming problem with a single scalar variable. Moreover, cutting-plane
methods have been used to solve copositive programming problems [4, 24], although
they lack theoretical results on asymptotic or non-asymptotic convergence.

Copositive programming is a subclass of convex semi-infinite programming, so we
can apply methods for solving convex semi-infinite programming problems to copositive
programming problems [20]. Ahmed, Dür, and Still [2] interpreted the approximation
schemes for copositive programming proposed in [9, 13] as discretization methods for
semi-infinite programming problems and derived their asymptotic convergence rates.
More recently, researchers have established theoretical results for copositive program-
ming through the lens of semi-infinite programming, including strong duality, optimality
conditions, and representations of the faces of copositive cones [21, 32–35].

In this paper, we also reformulate copositive programming problems as convex semi-
infinite programming problems, specifically as convex programming problems with a
single nonsmooth functional constraint, and propose a subgradient algorithm (Algo-
rithm 1) to solve them. The bottleneck of the proposed algorithm is solving an NP-hard
subproblem at each iteration, but it allows the subproblem to be solved inexactly. The
proposed algorithm is based on the subgradient algorithm in [44, Equation (3.2.24)]. If
we apply the subgradient algorithm in [44, Equation (3.2.24)] to the convex semi-infinite
programming problem directly, we have to solve the subproblem exactly to find a con-
straint that attains the maximal violation. The subproblem is nonconvex in general
and solving it exactly is sometimes demanding, especially for large-scale problems.

In particular, when we apply the proposed algorithm to a copositive programming
problem, the subproblem at each iteration reduces to a standard quadratic program-
ming problem. It is well known that this problem is NP-hard [41]. As discussed in
Section 4, there are several approaches to solving this subproblem either exactly or

2

inexactly. To solve the subproblem exactly, the subproblem can be reformulated as
a mixed-integer linear programming problem whose size depends only on the size of
the copositive programming problem [23]. To solve the subproblem inexactly, one may
employ the polynomial-time approximation scheme [9], which requires evaluating only
a finite number of objective values and does not require external solvers, as well as
its randomized variant. In addition, we compare their performance through numerical
experiments. The results show that exact computation is acceptable when the size of
the problem is small, whereas inexact computation becomes a viable alternative as the
size increases. In contrast to the proposed algorithm, existing approaches for copos-
itive programming problems typically require solving potentially large-scale problems
with external solvers. Many of these methods solve linear programming or semidefinite
programming problems as approximations. The higher the desired accuracy, the larger
the variable dimension and the number of constraints in the approximate problems,
regardless of the size of the original copositive programming problems.

Moreover, we establish a theoretical non-asymptotic convergence result for the pro-
posed algorithm, which also covers the case where the subproblems are solved inexactly.
In Theorem 3.4, we provide an explicit iteration-complexity bound that guarantees that
an approximate solution achieves a given accuracy. Specifically, for a prescribed accu-
racy ǫ > 0 with respect to both the objective function and the constraint induced by
copositivity, the proposed algorithm yields an approximate solution after O(ǫ−2) iter-
ations. In contrast, most existing methods either lack theoretical guarantees on the
accuracy of approximate solutions or only provide asymptotic convergence.

Our algorithm is closely related to the subgradient algorithms proposed by Nes-
terov [43], Beck et al. [6], and Wei, Haskell, and Zhao [56] for convex semi-infinite
programming problems. In particular, the algorithm presented by Wei, Haskell, and
Zhao [56] also permits inexact computation of subproblems. The four algorithms differ
in the rules for selecting the objective or constraint function to improve at each itera-
tion, choosing the step size, and computing the solution to output. These differences
yield a smaller iteration-complexity bound for our algorithm to achieve a solution within
a given accuracy than the others; see Table 1 for details. Additionally, our algorithm
does not rely on a compactness assumption on the constraint set, whereas the other
algorithms use a parameter that depends on such an assumption.

Furthermore, we apply the proposed algorithm to testing complete positivity of a
matrix. Determining whether a matrix is completely positive is NP-hard in general
settings [18], and developing practical methods for this task has been recognized as
an important problem [7]. Various approaches have been proposed to detect complete
positivity, some of which rely on specific matrix structures [17, 57], while others can
handle unstructured matrices [4, 8, 29, 45]. Following [4], we formulate the problem of
testing complete positivity as a copositive programming problem with a ball constraint.
By applying the proposed algorithm to this formulation, we obtain a sufficient condition
ensuring that an input matrix is not completely positive (Theorem 4.8). Our method

3

does not require any structural assumptions on the input matrix. In addition, numerical
experiments demonstrate that we can detect that certain doubly nonnegative matrices
are not completely positive.

The organization of this paper is as follows. In Section 2, we introduce and recall
the notation and concepts used in this paper. In Section 3, we propose an inexact sub-
gradient algorithm for solving general convex semi-infinite programming problems and
show its non-asymptotic convergence. In Section 4, we apply the proposed algorithm
to general and specific copositive programming problems and discuss how to implement
the algorithm. In particular, we present several approaches to solving the subproblem, a
standard quadratic programming problem, that needs to be solved at each iteration. In
Section 5, we verify the effectiveness of the methods introduced in the previous sections
through numerical experiments. Finally, Section 6 concludes the paper.

2 Preliminaries

For a positive integer n, we define [n] := {1, . . . , n}. For a finite set C, we use |C| to
denote the number of elements in C. For a real number a, we use |a| to denote the
absolute value of a.

Let V be a finite-dimensional real vector space equipped with a norm ‖·‖ induced
by an inner product denoted by 〈·, ·〉. We define

B(x, r) := {y ∈ V | ‖x− y‖ ≤ r}

as the closed ball with center x ∈ V and radius r > 0. Let S be a non-empty closed
convex subset of V . For x ∈ V , the distance between the point x and the set S is
defined as

dist(x, S) := min
y∈S

‖x− y‖.

The point y∗ ∈ S that attains dist(x, S) = ‖x − y∗‖ is uniquely determined. We call
the point y∗ the projection of x onto S and denote it by PS(x). Let f : V → (−∞,+∞]
be a convex function. Let dom f := {x ∈ V | f(x) < +∞} denote the effective domain
of f . For x ∈ dom f , the subdifferential of f at x is defined by

∂f(x) := {d ∈ V | f(y) ≥ f(x) + 〈d, y − x〉 for all y ∈ V }.

To specify the variable, we may write ∂xf(x) for ∂f(x). The function f is subdifferen-
tiable on a set C in V if ∂f(x) is non-empty for all x ∈ C.

We use boldface lowercase letters such as a to denote vectors. For a vector a, we
denote its transpose by a⊤ and its ith element by ai. We use R

n and R
n
+ to denote

the space of n-dimensional real vectors and the set of entrywise nonnegative vectors in
R

n, respectively. The space R
n is equipped with the standard inner product and the

2-norm, given by ‖a‖2 :=
√
a⊤a for a ∈ R

n. The zero vector is written as 0. We

4

use ei to denote the vector whose ith element is 1 and the other elements are 0. The
(n− 1)-dimensional standard simplex in R

n is defined as

∆n−1 :=

{

δ ∈ R
n
+

∣

∣

∣

∣

∣

n
∑

i=1

δi = 1

}

.

We use boldface uppercase letters such as A to denote matrices. We write Aij

for the (i, j)th element of a matrix A. We define Sn to be the space of real n × n
symmetric matrices. The space Sn is equipped with the inner product defined as
〈A,B〉 :=

∑n
i,j=1 AijBij for A,B ∈ Sn and the induced Frobenius norm defined as

‖A‖F :=
√

〈A,A〉. The zero matrix is written as O. A matrix A ∈ Sn is called
copositive if x⊤Ax ≥ 0 holds for all x ∈ R

n
+. The cone of copositive matrices, the

copositive cone for short, in Sn is denoted by COPn.

3 An inexact subgradient algorithm for convex

semi-infinite programming problems

A copositive programming problem can be regarded as a convex semi-infinite program-
ming problem. In this section, we propose an inexact subgradient algorithm for general
convex semi-infinite programming problems and establish a non-asymptotic convergence
guarantee.

The semi-infinite programming problem considered here is of the form

minimize
x∈V

f(x)

subject to g(x; δ) ≤ 0 for all δ ∈ ∆,

x ∈ S.

(3.1)

Throughout this section, we make the following assumptions on the components of
Problem (3.1).

Assumption 3.1.

(a) V is a finite-dimensional real vector space. The space V is equipped with an inner
product 〈·, ·〉, and we denote by ‖·‖ the norm induced by the inner product.

(b) S is a non-empty closed convex subset of V .

(c) The set of optimal solutions of (3.1), denoted by S∗, is non-empty.

(d) ∆ is a non-empty compact subset of Rn.

5

(e) f : V → (−∞,+∞] is a closed convex function that is subdifferentiable on S.
Moreover, there exists a positive constant Lf such that ‖d‖ ≤ Lf for all x ∈ S and
d ∈ ∂f(x).

(f) For every δ ∈ ∆, g(·; δ) : V → (−∞,+∞] is a closed convex function that is
subdifferentiable on S. Moreover, there exists a positive constant Lg such that
‖d‖ ≤ Lg for all x ∈ S, δ ∈ ∆, and d ∈ ∂xg(x; δ).

(g) For every x ∈ S, the inclusion ∆ ⊆ dom g(x; ·) holds and the function g(x; ·) is
continuous on ∆.

For the constants Lf and Lg that appear in (e) and (f), respectively, we define L :=
max{Lf , Lg}. Furthermore, the optimal value of (3.1) is denoted by f ∗.

We define G : V → (−∞,+∞] as

G(x) := max
δ∈∆

g(x; δ). (3.2)

Then we can recast the semi-infinite constraint in (3.1), requiring g(x; δ) ≤ 0 for all
δ ∈ ∆, as a single nonsmooth functional constraint G(x) ≤ 0.

Remark 3.2. The latter claim in (e) of Assumption 3.1, i.e., the boundedness of the
subdifferential of f at every x ∈ S, holds if f is subdifferentiable and Lf -Lipschitz
continuous on an open subset of V that contains S. Similarly, the boundedness of the
subdifferential of g(·; δ) at every x ∈ S stated in (f) holds if g(·; δ) is subdifferentiable
and Lg-Lipschitz continuous on an open subset of V that contains S. From the assump-
tions in (f) and (g), we see that G is a closed convex function with domG ⊆ S. Since
S is a closed convex set and since f and G are closed convex functions, S∗ is a closed
convex set.

We present the proposed algorithm in Algorithm 1. In principle, the per-iteration
subproblem is to compute G(xk), the functional-constraint violation. If the violation
exceeds ǫ, we update xk to reduce it; otherwise, we update xk to improve the objective.
However, computing G(xk) is generally nonconvex, so we seek δk ∈ ∆ that makes
g(xk; δk) approximate G(xk) well. For example, we can use the sampling approach
proposed by Wei, Haskell, and Zhao [56, Section 4] to approximate G(xk). In Section 4,
we discuss how to compute G(xk) exactly and inexactly when applying Algorithm 1 to
copositive programming problems.

We stop Algorithm 1 after a finite number of iterations in practice. If we stop after
the Nth iteration, we define

IN := {k ∈ [N] | g(xk; δk) ≤ ǫ}, (3.3)

and for a minimizer k∗ of f(xk) over k ∈ IN , we output xk∗ as the approximate so-
lution of (3.1). Lemma 3.3 provides an iteration-complexity bound ensuring that the

6

Algorithm 1 An inexact subgradient algorithm for convex semi-infinite programming
problems

Input: Initial point x1 ∈ S and error tolerance ǫ > 0

For k = 1, 2, 3, . . . : Find δk ∈ ∆ that approximately attains G(xk), i.e., with
g(xk; δk) ≃ G(xk).

(i) If g(xk; δk) ≤ ǫ, take dk ∈ ∂f(xk) and let

xk+1 := PS

(

xk −
ǫ

‖dk‖2
dk

)

.

(ii) Otherwise, namely if g(xk; δk) > ǫ, take dk ∈ ∂xg(xk; δk) and let

xk+1 := PS

(

xk −
g(xk; δk)

‖dk‖2
dk

)

.

approximate solution is well defined (i.e., the set IN is non-empty) and that it attains
a prescribed accuracy. For ease of description, we define

ξk := G(xk)− g(xk; δk),

which is nonnegative by the definition of G, for each k.

Lemma 3.3. Suppose that Assumption 3.1 holds. Let ǫ > 0 and N be a positive integer

such that

N ≥ L2 dist(x1, S
∗)2

ǫ2
. (3.4)

Then the set IN defined in (3.3) is non-empty, and for a minimizer k∗ of f(xk) over

k ∈ IN , the following two inequalities hold:

f(xk∗) ≤ f ∗ + ǫ,

G(xk∗) ≤ ǫ+ ξk∗ .

Proof. The set S∗ of optimal solutions is closed and convex (see Remark 3.2). For
convenience, let x∗ := PS∗(x1) and rk := ‖xk − x∗‖ for k = 1, . . . , N + 1.

To derive a contradiction, we assume that f(xk) > f ∗ + ǫ for all k ∈ IN . For every

7

k ∈ IN , we have

r2k+1

(a)
=

∥

∥

∥

∥

PS

(

xk −
ǫ

‖dk‖2
dk

)

− x∗

∥

∥

∥

∥

2

(b)

≤
∥

∥

∥

∥

xk −
ǫ

‖dk‖2
dk − x∗

∥

∥

∥

∥

2

= r2k +
2ǫ

‖dk‖2
〈dk, x∗ − xk〉+

ǫ2

‖dk‖2
(c)

≤ r2k +
2ǫ

‖dk‖2
(f ∗ − f(xk)) +

ǫ2

‖dk‖2
(d)
< r2k −

ǫ2

‖dk‖2
(e)

≤ r2k −
ǫ2

L2
,

where (a) follows from the update rule in (i) of Algorithm 1, (b) holds by x∗ ∈ S and the
nonexpansiveness of the projection PS, (c) follows from f ∗ = f(x∗) and dk ∈ ∂f(xk),
(d) is a consequence of the assumption for contradiction, and (e) follows from ‖dk‖ ≤ L.
In addition, for every k ∈ [N] \ IN , we have

r2k+1

(a)
=

∥

∥

∥

∥

PS

(

xk −
g(xk; δk)

‖dk‖2
dk

)

− x∗

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

xk −
g(xk; δk)

‖dk‖2
dk − x∗

∥

∥

∥

∥

2

= r2k +
2g(xk; δk)

‖dk‖2
〈dk, x∗ − xk〉+

g(xk; δk)
2

‖dk‖2
(b)

≤ r2k +
2g(xk; δk)

‖dk‖2
(g(x∗; δk)− g(xk; δk)) +

g(xk; δk)
2

‖dk‖2
(c)
< r2k −

ǫ2

‖dk‖2
(d)

≤ r2k −
ǫ2

L2
,

where (a) follows from the update rule in (ii) of Algorithm 1, (b) follows from dk ∈
∂xg(xk; δk), (c) holds because g(xk; δk) > ǫ and g(x∗; δk) ≤ 0, and (d) follows from
‖dk‖ ≤ L. Therefore,

r2k+1 < r2k −
ǫ2

L2
(3.5)

holds for every k ∈ [N]. Summing Inequality (3.5) over k from 1 to N , we have

r2N+1 < r21 −
ǫ2N

L2
. (3.6)

8

In particular, the right-hand side of (3.6) is positive since r2N+1 is nonnegative. On the
other hand, since N satisfies (3.4), we have

r21 −
ǫ2N

L2
≤ r21 − dist(x1, S

∗)2 = 0,

which is a contradiction. Hence, there exists k ∈ IN such that f(xk) ≤ f ∗ + ǫ. This
implies that the set IN is non-empty and f(xk∗) ≤ f ∗ + ǫ.

In addition, we have

G(xk∗) = g(xk∗ ; δk∗) + ξk∗ ≤ ǫ+ ξk∗ ,

where the equality follows from the definition of ξk∗ and the inequality follows from
k∗ ∈ IN . This completes the proof.

Typically, we introduce a nonnegative parameter α and find δk ∈ ∆ such that the
inequality

ξk := G(xk)− g(xk; δk) ≤ αǫ (3.7)

holds at each iteration. If we know a way to evaluate the exact value of G(x), we can
set α = 0. Setting α to a positive value allows us to compute G(x) approximately.
Since ξk∗ is also bounded by αǫ, Lemma 3.3 directly implies the following theorem.

Theorem 3.4. Suppose that Assumption 3.1 holds. Let ǫ > 0, α ≥ 0, and N be

a positive integer satisfying (3.4). For each iteration indexed by k, we find δk ∈ ∆
satisfying (3.7). Then the set IN defined in (3.3) is non-empty, and for a minimizer k∗

of f(xk) over k ∈ IN , we have the following two inequalities:

f(xk∗) ≤ f ∗ + ǫ,

G(xk∗) ≤ (1 + α)ǫ.

In the case where α = 0, i.e., where we solve subproblems exactly, we can view Algo-
rithm 1 as the application of the subgradient algorithm proposed by Nesterov [44, Equa-
tion (3.2.24)] to Problem (3.1). The algorithm in [44] is comparable to the algorithms
proposed in [43, Equation (3.2.13)] and [6], both applicable to convex programming
problems with a single nonsmooth functional constraint. Based on the algorithm [6],
Wei, Haskell, and Zhao [56] proposed an algorithm for solving convex semi-infinite pro-
gramming problems. Similar to Algorithm 1, this algorithm allows one to solve the
subproblem inexactly at each iteration. When applied to Problem (3.1), the four algo-
rithms differ in which function (f or G) they improve at each iteration, in the choice
of the step size, and in how the output is computed.

Except for Algorithm 1 and Nesterov’s algorithm [44], the other algorithms require
the compactness of S and use the value D := maxx,y∈S‖x− y‖ < +∞, the diameter of
S, in the step size. On the other hand, as shown in Theorem 3.4, Algorithm 1 and the

9

Table 1: This table summarizes the number of iterations required to obtain x̄ ∈ S such
that f(x̄) ≤ f ∗ + ǫ and G(x̄) ≤ ǫ when we solve Problem (3.1) using each algorithm.
Here, S is assumed to be a compact set of diameterD. Bregman distances are utilized in
the algorithms of [6] and [56], but we show the number of iterations when the Bregman
distance is Euclidean. For the algorithm in [56], the inequality G(x̄) ≤ ǫ holds in
expectation. In addition, the algorithm in [56] yields x̄ ∈ S such that f(x̄) ≤ f ∗ + 3

7
ǫ,

while Algorithm 1 yields x̄ ∈ S such that f(x̄) ≤ f ∗ + 1
1+α

ǫ. The number of iterations
in the algorithm of [6] is obtained by taking the limit as β → 1, where β < 1 is a
parameter appearing in [6, Corollary 2.1].

Exactness Method #Iter.

Exact [43]
3

2
+ 3

D2L2

ǫ2

[6]
(1 + log 2)2

2(2−
√
2)2

D2L2

ǫ2
≃ 4.2

D2L2

ǫ2

[44]
D2L2

ǫ2

Inexact [56] 98
D2L2

ǫ2

Algorithm 1 (1 + α)2
D2L2

ǫ2

algorithm proposed by Nesterov [44] do not assume the compactness of S but instead
use dist(x1, S

∗), the distance between the initial point and the set of optimal solutions,
to derive the number of iterations required to obtain a solution within a prescribed
accuracy. Note that dist(x1, S

∗) ≤ D holds when S is a compact set of diameter D.
Under the compactness of S, Table 1 summarizes the number of iterations required

to obtain x̄ ∈ S such that f(x̄) ≤ f ∗ + ǫ and G(x̄) ≤ ǫ when solving (3.1) with each
algorithm. If we set the violation measure α to a reasonable value, e.g., α = 1 as in the
numerical experiments conducted in Section 5, Algorithm 1 requires fewer iterations
than the inexact algorithm of Wei, Haskell, and Zhao [56] and even the exact algorithm
of Beck et al. [6].

Note that the algorithm proposed by Nesterov [43] requires neither the error tol-
erance ǫ nor the number N of iterations in advance and admits an error bound with
respect to the current iteration index k. However, the other algorithms use the error
tolerance or the number of iterations when running.

4 Application to copositive programming problems

Copositive programming is a special case of convex semi-infinite programming; thus we
can apply Algorithm 1 to copositive programming problems. In Section 4.1, we dis-

10

cuss how to implement the proposed algorithm to solve general copositive programming
problems. In Section 4.2, we apply the proposed algorithm to the problem of testing
whether a matrix is completely positive, which can be formulated as a copositive pro-
gramming problem with a ball constraint. Using Theorem 3.4, we derive a sufficient
condition for a matrix not to be completely positive. In Section 4.3, we discuss a poten-
tial approach to solving copositive programming problems involving copositive cones
over symmetric cones.

4.1 General copositive programming problems

The copositive programming problem considered here is of the form

minimize
x

c⊤x

subject to A0 +
m
∑

i=1

xiAi ∈ COPn,

x ∈ S,

(4.1)

where A0, . . . ,Am ∈ Sn, c ∈ R
m, and S is a non-empty closed convex subset of Rm.

Since A ∈ Sn belongs to COPn if and only if δ⊤Aδ ≥ 0 for all δ ∈ ∆n−1, we can
reformulate (4.1) in the form of (3.1). Specifically, the optimal value of (4.1) is equal
to that of the following convex semi-infinite programming problem:

minimize
x

f(x) := c⊤x

subject to g(x; δ) := δ⊤

(

−A0 −
m
∑

i=1

xiAi

)

δ ≤ 0 for all δ ∈ ∆n−1,

x ∈ S.

(4.2)

To implement Algorithm 1 in practice, we need to deal with the following issues.
The first issue is to compute the value L = max{Lf , Lg}. The second issue is to find
δ ∈ ∆n−1 such that G(x) − g(x; δ) ≤ αǫ for a given x ∈ S, where G(x) is defined
analogously to (3.2).

First, we discuss how to estimate the value L. The functions f and g are differen-
tiable with respect to x, so we have

∂f(x) = {c}, (4.3)

∂xg(x; δ) = {(−δ⊤A1δ, . . . ,−δ⊤Amδ)
⊤} (4.4)

for each x ∈ R
m and δ ∈ ∆n−1. From (4.3), we can set Lf to ‖c‖2. In addition, from

11

(4.4), we have

‖(−δ⊤A1δ, . . . ,−δ⊤Amδ)
⊤‖2 =

√

√

√

√

m
∑

i=1

(

n
∑

k,l=1

(Ai)klδkδl

)2

≤

√

√

√

√

m
∑

i=1

(

max
1≤k≤l≤n

|(Ai)kl|
)2

, (4.5)

where the last inequality follows from δ ∈ ∆n−1. The right-hand side of (4.5) does not
depend on δ ∈ ∆n−1, so it can be set to Lg. Thus, we can set

L = max







‖c‖2,

√

√

√

√

m
∑

i=1

(

max
1≤k≤l≤n

|(Ai)kl|
)2







. (4.6)

Next, we discuss how to find δ ∈ ∆n−1 such that G(x) − g(x; δ) ≤ αǫ. We note
that G(x) is the negative of the optimal value of the standard quadratic programming
problem

γ(Q) := min
δ∈∆n−1

δ⊤Qδ (4.7)

with the coefficient matrix Q ∈ Sn given by A0 +
∑m

i=1 xiAi. In the following sub-
subsections, we give an overview of several approaches to solving a standard quadratic
programming problem of the form (4.7), both exactly (the case where the violation
parameter α equals 0) and inexactly (the case where α > 0). An exact method is
presented in Section 4.1.1. Inexact methods are presented in Sections 4.1.2, 4.1.3, and
4.1.4. Whereas the exact method requires external solvers to solve a mixed-integer lin-
ear programming problem, only a finite number of function evaluations are performed
in the inexact methods. In Sections 4.1.2, 4.1.3, and 4.1.4, we only consider the case
where α = 1. This is without loss of generality because for general α > 0, we regard αǫ
as a new ǫ.

We briefly summarize the three inexact methods introduced in the subsequent sub-
subsections. The method presented in Section 4.1.2 is deterministic and was originally
proposed as a polynomial-time approximation scheme by Bomze and de Klerk [9]. The
method in Section 4.1.3 is a brute-force randomized approach. As shown in Section 5.1,
this method has limited practical value; however, we include it to motivate the method
in Section 4.1.4. The method in Section 4.1.4 is a randomized approach that combines
the ideas of Sections 4.1.2 and 4.1.3. When n is large, this method is expected to require
fewer function evaluations to approximate γ(Q) than the method in Section 4.1.2.

In the following methods, we frequently use a lower bound for γ(Q). The choice
of the lower bound is arbitrary, and there are many alternatives that are summarized
in the literature [12]. In our study, because we need to calculate the lower bound per

12

iteration, it might be preferable to adopt a computationally inexpensive one. As such
a bound, under the convention that 1/0 = ∞, a +∞ = ∞ for any a ∈ R ∪ {∞}, and
1/∞ = 0, Bomze, Locatelli, and Tardella [12] provided the following lower bound for
γ(Q):

γ(Q) := min
1≤i≤j≤n

Qij +
1

n
∑

k=1

1

Qkk − min
1≤i≤j≤n

Qij

.

They showed that this bound outperforms other simple closed-form lower bounds re-
ported in [12, Section 2].

Moreover, we also use a Lipschitz constant of the function δ⊤Qδ on ∆n−1. An
estimate of the constant is as follows:

K(Q) := max
δ∈∆n−1

‖∇(δ⊤Qδ)‖2 = 2 max
δ∈∆n−1

‖Qδ‖2. (4.8)

Since ‖Qδ‖2 is convex and ∆n−1 is compact, the maximization problem in (4.8) attains
its maximum at an extreme point of ∆n−1, i.e., at one of e1, . . . , en. Letting qi be the
ith column of the matrix Q for each i ∈ [n], it follows from (4.8) that

K(Q) = 2 max
1≤i≤n

‖qi‖2.

If Q = O, then the optimal value γ(O) of (4.7) is 0, and the set of optimal solutions is
∆n−1. Therefore, we may assume that Q 6= O. Under this assumption, it follows that
K(Q) > 0.

4.1.1 Exact method through mixed-integer linear programming

To solve the standard quadratic programming problem in (4.7) exactly, we can uti-
lize the mixed-integer linear programming reformulations proposed by Gondzio and
Yıldırım [23]. In their paper, various mixed-integer linear programming reformulations
of standard quadratic programming problems are presented. Among them, we adopt

13

the following reformulation based on [23, Proposition 2]:*1

minimize
δ,y,z,v

v

subject to e⊤
j Qδ ≤ v + zj for all j ∈ [n],
n
∑

i=1

δi = 1,

δj ≤ yj for all j ∈ [n],

zj ≤
(

max
1≤i≤n

Qij − γ(Q)

)

(1− yj) for all j ∈ [n],

δ ∈ R
n
+,

z ∈ R
n
+,

yj ∈ {0, 1} for all j ∈ [n].

(4.9)

For an optimal solution (δ∗,y∗, z∗, v∗) of (4.9), the vector δ∗ represents an optimal
solution of (4.7) and v∗ represents its optimal value γ(Q).

Note that finding an optimal solution of the standard quadratic programming prob-
lem in (4.7) is more demanding than merely testing copositivity of the matrix Q.
Anstreicher [3] proposed a mixed-integer linear programming formulation for testing
copositivity of a symmetric matrix. However, this formulation is not directly connected
to standard quadratic programming problems. Therefore, the mixed-integer program-
ming formulation in (4.9) is more suitable for computing an optimal solution of (4.7).

4.1.2 Inexact deterministic method through a regular grid of the standard

simplex

The first inexact method for solving the standard quadratic programming problem is
to discretize the standard simplex ∆n−1 by the regular grid defined as

∆n−1
r := {δ ∈ ∆n−1 | Every element of rδ is a nonnegative integer} (4.10)

for a positive integer r. From [9, Theorem 3.2] (see also [42, Theorem 2]), we have

min
δ∈∆n−1

r

δ⊤Qδ − γ(Q) ≤ 1

r

(

max
1≤i≤n

Qii − γ(Q)

)

. (4.11)

In other words, for a given ǫ > 0, if r satisfies

r ≥ 1

ǫ

(

max
1≤i≤n

Qii − γ(Q)

)

, (4.12)

*1Using their terminology, we adopt formulation (MILP2) with the lower bound ℓ1(Q). They claim
that this reformulation is suitable for large-scale instances because of its robust practical perfor-
mance [23, page 319].

14

it follows from (4.11) that

min
δ∈∆n−1

r

δ⊤Qδ − γ(Q) ≤ ǫ. (4.13)

Since ∆n−1
r is a finite set regardless of r, only a finite number of function evaluations

is required to solve minδ∈∆n−1
r

δ⊤Qδ. The number of evaluations is bounded by

|∆n−1
r | =

(

n+ r − 1

r

)

≤ nr,

which is polynomial in n if we regard r as a constant. If the lower bound γ(Q) is weak,
the number |∆n−1

r | of evaluations can become prohibitively large. In such cases, rather
than using the closed-form bound, it may be preferable to use the bounds obtained by
solving semidefinite programming problems as presented in [12].

4.1.3 Inexact randomized method through uniform sampling from the stan-

dard simplex

The second inexact method for solving the standard quadratic programming problem is
to discretize the standard simplex ∆n−1 by uniformly sampling from it. Let δ1, . . . , δM
be a collection of independent and identically distributed random vectors uniformly
distributed on ∆n−1. In Proposition 4.2 shown below, we provide a lower bound for the
number M of samples sufficient to ensure that

min
1≤i≤M

δ⊤
i Qδi − γ(Q) ≤ ǫ (4.14)

holds with probability at least 1− φ for a given φ ∈ (0, 1). Throughout this subsubsec-
tion, P denotes the uniform distribution on ∆n−1.

Lemma 4.1. Let r ∈ (0,
√
2]. For any x ∈ ∆n−1, we have

P (B(x, r) ∩∆n−1) ≥
(

r√
2

)n−1

.

Proof. Let vol(C) denote the (n − 1)-dimensional Lebesgue measure of an (n − 1)-
dimensional set C in R

n. Then we have

p(x) := P (B(x, r) ∩∆n−1) =
vol(B(x, r) ∩∆n−1)

vol(∆n−1)
.

First, we show that
min

x∈∆n−1
p(x) = p(e1). (4.15)

15

Since p(x) is nonnegative, we have

arg min
x∈∆n−1

p(x) = arg min
x∈∆n−1

p(x)n−1 = arg min
x∈∆n−1

vol(B(x, r) ∩∆n−1)n−1.

By [30, Lemma 6.21], the function vol(B(x, r) ∩∆n−1)n−1 with respect to x ∈ ∆n−1 is
concave, so it achieves the minimum at an extreme point of ∆n−1. By the symmetry of
∆n−1, it does so at x = e1.

For each i ∈ {2, . . . , n}, we define

ei(r) :=

(

1− r√
2

)

e1 +
r√
2
ei.

The convex hull of the set {e1, e2(r), . . . , en(r)}, denoted by ∆n−1(r), is an (n − 1)-
dimensional simplex with edge length r. Since e1, e2(r), . . . , en(r) ∈ B(e1, r) ∩ ∆n−1

and B(e1, r) ∩∆n−1 is convex, the inclusion

∆n−1(r) ⊆ B(e1, r) ∩∆n−1 (4.16)

holds. Therefore,

p(x) ≥ p(e1) =
vol(B(e1, r) ∩∆n−1)

vol(∆n−1)
≥ vol(∆n−1(r))

vol(∆n−1)
=

(

r√
2

)n−1

,

holds for any x ∈ ∆n−1, where the first inequality follows from (4.15), the second
inequality follows from (4.16), and the last equality follows from the fact that the
volume of an (n− 1)-dimensional simplex with edge length l is given by

√
n

(n− 1)!

(

l√
2

)n−1

,

so we obtain the desired result.

Below, we present the main result of this subsubsection. For notational convenience,
we define

m(ρ, φ) :=
log φ

log(1− ρ)
(4.17)

for ρ, φ ∈ (0, 1).

Proposition 4.2. Let δ1, . . . , δM be a collection of independent and identically dis-

tributed random vectors uniformly distributed on ∆n−1. In addition, let m denote the

function defined in (4.17). For ǫ ∈ (0,
√
2K(Q)] and φ ∈ (0, 1), if the number M of

samples satisfies

M ≥ m

(

(

ǫ√
2K(Q)

)n−1

, φ

)

, (4.18)

then, with probability at least 1− φ, we have

min
1≤i≤M

δ⊤
i Qδi − γ(Q) ≤ ǫ.

16

Proof. Let δ∗ be an optimal solution of minδ∈∆n−1 δ⊤Qδ. Then the probability that
δi 6∈ B(δ∗, ǫ/K(Q)) holds for all i ∈ [M] is

∏M
i=1 P (δi 6∈ B(δ∗, ǫ/K(Q))) and it is

bounded by

M
∏

i=1

P

(

δi 6∈ B

(

δ∗,
ǫ

K(Q)

))

=
M
∏

i=1

{

1− P

(

δi ∈ B

(

δ∗,
ǫ

K(Q)

))}

≤
{

1−
(

ǫ√
2K(Q)

)n−1
}M

≤ φ,

where we use Lemma 4.1 to derive the first inequality and the second inequality follows
from (4.18). This implies that with probability at least 1−φ, there exists j ∈ [M] such
that δj ∈ B(δ∗, ǫ/K(Q)). Then we have

min
1≤i≤M

δ⊤
i Qδi − (δ∗)⊤Qδ∗ ≤ δ⊤

j Qδj − (δ∗)⊤Qδ∗ ≤ K(Q)‖δj − δ∗‖2 ≤ ǫ,

so we obtain the desired result.

Remark 4.3. By using [56, Proposition 4.3], we can obtain a result similar to Proposi-
tion 4.2. Let γ̄(Q) be such that maxδ∈∆n−1 δ⊤Qδ ≤ γ̄(Q) and γ(Q) < γ̄(Q) hold, and
let δ1, . . . , δM be a collection of independent and identically distributed random vec-
tors uniformly distributed on ∆n−1. By applying [56, Proposition 4.3] to the standard
quadratic programming problem γ(Q), we see that for a given ǫ > 0, if the number M
of samples satisfies

M ≥ m

(

(

ǫ

2
√
2K(Q)

)n−1

,
ǫ

2(γ̄(Q)− γ(Q))

)

, (4.19)

the expected value of min1≤i≤M δ⊤
i Qδi is less than or equal to γ(Q) + ǫ.

We note that the number of samples shown in (4.18) and that in (4.19) are expo-
nential in n. If ρ is sufficiently small, then we have

m(ρ, φ) ≃ 1

ρ
log

(

1

φ

)

. (4.20)

The error tolerance ǫ is assumed to be small in practice, thus we obtain

(4.18) ≃
(√

2K(Q)

ǫ

)n−1

log

(

1

φ

)

, (4.21)

(4.19) ≃
(

2
√
2K(Q)

ǫ

)n−1

log

(

2(γ̄(Q)− γ(Q))

ǫ

)

.

17

4.1.4 Inexact randomized method through uniform sampling from a regu-

lar grid of the standard simplex

Generally, randomized approaches are used when the scale of problems is large and de-
terministic approaches cannot handle them. However, we see from Proposition 4.2 and
(4.21) that the randomized method in Section 4.1.3 requires an exponential number of
samples with respect to n to obtain an ǫ-approximate solution. In this subsubsection,
we discretize the standard simplex by uniformly sampling from its regular grid rather
than from the standard simplex. In Proposition 4.5 shown below, we provide a proba-
bilistic error bound on the optimal value, in which the number of function evaluations
is expected to be less than the number of points in the regular grid if n is large. Re-
call that a regular grid ∆n−1

r of the standard simplex ∆n−1 is defined as (4.10). For
simplicity, for δ ∈ ∆n−1

r , we define

Gr(δ) := B

(

δ,

√
2

r

)

∩∆n−1
r .

Lemma 4.4. For any δ ∈ ∆n−1
r , we have |Gr(δ)| ≥ n. In particular, the equality holds

if δ is any of e1, . . . , en.

Proof. The vector δ has at least one positive element. In addition, every element of δ
is one of 0, 1/r, 2/r, . . . , 1 − 1/r, 1. Therefore, there exists i ∈ [n] such that δi ≥ 1/r.
We prove |Gr(δ)| ≥ n by showing that

{

δ − 1

r
ei +

1

r
ej

∣

∣

∣

∣

j ∈ [n]

}

⊆ Gr(δ). (4.22)

For every j ∈ [n], we define δ(j) := δ− 1
r
ei+

1
r
ej ∈ ∆n−1

r . When j = i, we have δ(i) = δ,

so δ(i) ∈ Gr(δ) holds. When j 6= i, we have ‖δ(j) − δ‖2 =
√
2/r, so δ(j) ∈ Gr(δ)

holds. Thus, we obtain |Gr(δ)| ≥ n.
In particular, the converse inclusion in (4.22) holds when δ = e1. Note that the

index i that satisfies δi ≥ 1/r has to be 1, and δ(j) = (1 − 1
r
)e1 +

1
r
ej holds. Let

δ̂ ∈ Gr(e1). If δ̂1 ≤ 1− 2/r, we have

‖δ̂ − e1‖2 ≥ |δ̂1 − 1| ≥ 2

r
>

√
2

r
,

which does not happen since δ̂ ∈ B(e1,
√
2/r). If δ̂1 = 1−1/r, there exists j ∈ {2, . . . , n}

such that δ̂j = 1/r and δ̂k = 0 for all k ∈ {2, . . . , n} \ {j}. Then we have δ̂ = δ(j).

If δ̂1 = 1, it follows that δ̂ = e1, so δ̂ = δ(1) holds. Therefore, the set Gr(e1) does
not contain the elements other than δ(1), . . . , δ(n) and we obtain |Gr(e1)| = n. By
symmetry, |Gr(δ)| = n also holds when δ is any of e1, . . . , en.

18

Proposition 4.5. For a positive integer r, let δ1, . . . , δM be a collection of independent

and identically distributed random vectors uniformly distributed on ∆n−1
r . For φ ∈

(0, 1), if the number M of samples satisfies

M ≥ m

(

n

|∆n−1
r | , φ

)

, (4.23)

then, with probability at least 1− φ, we have

min
1≤i≤M

δ⊤
i Qδi − γ(Q) ≤ 1

r

(√
2K(Q) + max

1≤i≤n
Qii − γ(Q)

)

. (4.24)

In particular, for a given ǫ > 0, if r satisfies

r ≥ 1

ǫ

(

max
1≤i≤n

Qii − γ(Q)

)

, (4.25)

then, with probability at least 1− φ, we have

min
1≤i≤M

δ⊤
i Qδi − γ(Q) ≤





√
2K(Q)

max
1≤i≤n

Qii − γ(Q)
+ 1



αǫ.

Proof. Let δ∗ be an optimal solution of minδ∈∆n−1
r

δ⊤Qδ. Then the probability that

δi 6∈ B(δ∗,
√
2/r) holds for all i ∈ [M] is (1− |Gr(δ

∗)|/|∆n−1
r |)M and it is bounded by

(

1− |Gr(δ
∗)|

|∆n−1
r |

)M

≤
(

1− n

|∆n−1
r |

)M

≤ φ,

where we use Lemma 4.4 to derive the first inequality and the second inequality follows
from (4.23). This implies that with probability at least 1−φ, there exists j ∈ [M] such
that δj ∈ Gr(δ

∗). Then we have

min
1≤i≤M

δ⊤
i Qδi − γ(Q) ≤ (δ⊤

j Qδj − (δ∗)⊤Qδ∗) + ((δ∗)⊤Qδ∗ − γ(Q))

≤ K(Q)‖δj − δ∗‖2 +
1

r

(

max
1≤i≤n

Qii − γ(Q)

)

≤ 1

r

(√
2K(Q) + max

1≤i≤n
Qii − γ(Q)

)

,

where we use (4.11) to derive the second inequality and we use δj ∈ Gr(δ
∗) to derive

the third inequality.

19

Proposition 4.5 suggests the possibility that we can compute an approximate value
of γ(Q) with a smaller number of function evaluations than that required by the method
in Section 4.1.2. Using the approximation shown in (4.20), we see that

(4.23) ≃ 1

n
log

(

1

φ

)

|∆n−1
r |.

The value 1
n
log(1

φ
) is expected to be less than 1 if n is large. In such a case, with a

smaller number of function evaluations than that in Section 4.1.2, we can derive an
approximation of γ(Q) that enjoys the theoretical guarantee shown in (4.24), although
this bound is weaker than (4.11).

4.2 Testing complete positivity of a matrix

A matrix A ∈ Sn is said to be completely positive if there exist a positive integer k
and a1, . . . ,ak ∈ R

n
+ such that A =

∑k
i=1 aia

⊤
i . For a matrix C ∈ Sn, the problem

of testing the complete positivity of C can be formulated as the following copositive
programming problem with a ball constraint:

minimize
X

〈C,X〉

subject to X ∈ COPn,

X ∈ B(O, 1).

(4.26)

Without loss of generality, we may assume that ‖C‖F = 1. Since X = O is a feasible
solution of this problem, its optimal value is at most 0. In addition, by the duality
between completely positive cones and copositive cones [27, Theorem 2.1], the matrix
C is completely positive if and only if the optimal value is 0.

We can reformulate (4.26) in the form of (3.1), namely,

minimize
X

f(X) := 〈C,X〉

subject to g(X; δ) := 〈X,−δδ⊤〉 ≤ 0 for all δ ∈ ∆n−1,

X ∈ B(O, 1).

(4.27)

Therefore, we can directly apply Algorithm 1 developed in Section 3 to Problem (4.27).
As in Section 4.1, the subproblem G(X) := maxδ∈∆n−1 g(X; δ) that needs to be solved
at each iteration is essentially the standard quadratic programming problem with coef-
ficient matrix X. The calculation of the constant Lf is the same as that in Section 4.1;
we can set Lf = 1 under the assumption that ‖C‖F = 1. In addition, we can set Lg = 1
since ∂Xg(X; δ) = {−δδ⊤} and

‖−δδ⊤‖F = ‖δ‖22 ≤
(

n
∑

i=1

δi

)2

= 1

20

hold for any δ ∈ ∆n−1. Then L := max{Lf , Lg} equals 1 and Theorem 3.4 can be
translated into the following proposition.

Proposition 4.6. We apply Algorithm 1 to (4.27), in which we set the initial point X1

to O. Let N be a positive integer such that

N ≥ 1

ǫ2
. (4.28)

For each iteration indexed by k, we find δk ∈ ∆n−1 such that G(Xk)− g(Xk; δk) ≤ αǫ.
Then the set

IN := {k ∈ [N] | g(Xk; δk) ≤ ǫ} (4.29)

is non-empty and for a minimizer k∗ of f(Xk) over k ∈ IN , the following two inequal-

ities hold:

f(Xk∗) ≤ f ∗ + ǫ,

G(Xk∗) ≤ (1 + α)ǫ.

Proof. Since X1 = O and the set S∗ of optimal solutions of Problem (4.27) is included
in B(O, 1), we have

dist(X1, S
∗) ≤ 1. (4.30)

Substituting L = 1 and (4.30) into (3.4), Theorem 3.4 leads to the desired result.

Remark 4.7. By vectorizing the matrices in (4.26), we can reformulate Problem (4.26) as
a problem of the form (4.2), to which the discussion in Section 4.1 applies. Specifically,
letting Ei := eie

⊤
i for each i = 1, . . . , n and Eij := (eie

⊤
j + eje

⊤
i)/

√
2 for each 1 ≤ i <

j ≤ n and introducing variables

x = (x11, x12, x22, . . . , x1n, . . . , xnn)
⊤ ∈ R

n(n+1)
2 ,

we can reformulate Problem (4.26) as

minimize
x

f̃(x) :=
n
∑

i=1

Ciixii +
∑

1≤i<j≤n

√
2Cijxij

subject to g̃(x; δ) := δ⊤

(

−
n
∑

i=1

xiiEi −
∑

1≤i<j≤n

xijEij

)

δ ≤ 0 for all δ ∈ ∆n−1,

x ∈ B(0, 1).
(4.31)

However, the constant L := max{Lf̃ , Lg̃} calculated as (4.6) depends on n unlike the

formulation in (4.27). The coefficient vector, denoted by c ∈ R
n(n+1)/2, corresponding

21

to the objective function in (4.31) satisfies ‖c‖2 = ‖C‖F = 1, so we have Lf̃ = 1. In
addition, by the discussion in Section 4.1, the constant Lg̃ can be set to

Lg̃ =

√

√

√

√

n
∑

i=1

(

max
1≤k≤l≤n

|(Ei)kl|
)2

+
∑

1≤i<j≤n

(

max
1≤k≤l≤n

|(Eij)kl|
)2

=

√
n2 + 3n

2
.

Therefore, we have L =
√
n2 + 3n/2 and the iteration-complexity bound shown in (3.4)

increases as n rises.

Since the approximate solution Xk∗ may be an infeasible solution of Problem (4.26),
the negativity of the approximate optimal value 〈C,Xk∗〉 does not necessarily mean
that C is not completely positive. However, as shown in the following theorem, if
the approximate optimal value is less than a threshold, C is guaranteed not to be
completely positive.

Theorem 4.8. We apply Algorithm 1 to (4.27), in which we set the initial point X1

to O. Let N be a positive integer satisfying (4.28). For each iteration indexed by k, we
find δk ∈ ∆n−1 such that G(Xk)− g(Xk; δk) ≤ αǫ. After N iterations of the algorithm,

we let k∗ ∈ arg min{〈C,Xk〉 | k ∈ IN}, where IN is defined as (4.29). If the inequality

〈C,Xk∗〉 < −n(1 + α)ǫ (4.32)

holds, C is not completely positive.

Proof. By Proposition 4.6, the inequality

G(Xk∗) ≤ (1 + α)ǫ (4.33)

holds. Let X̄ := PCOPn(Xk∗). Then it follows that

‖Xk∗ − X̄‖F ≤ nmax{G(Xk∗), 0} ≤ n(1 + α)ǫ,

where we use [28, Equation (6.16)] to derive the first inequality and we use (4.33) to
derive the second inequality. Using this inequality, the Cauchy–Schwarz inequality, and
‖C‖F = 1, we have

|〈C,Xk∗〉 − 〈C, X̄〉| ≤ n(1 + α)ǫ.

Combining this with the assumption in (4.32), we see that

〈C, X̄〉 ≤ 〈C,Xk∗〉+ n(1 + α)ǫ < 0.

Since X̄ ∈ COPn, this inequality implies that C is not completely positive.

22

Remark 4.9. We note that the inequality 〈C,Xk∗〉 ≥ −1 holds by the Cauchy–Schwarz
inequality, ‖C‖F = 1, and the constraint Xk∗ ∈ B(O, 1). This implies that ǫ must
satisfy ǫ < 1

n(1+α)
to use the condition in (4.32). For example, we can set

ǫ :=
1

tn(1 + α)

for a constant t > 1, in which case only

t2(1 + α)2n2 = O(n2) (4.34)

iterations are necessary to test non-complete positivity by using Theorem 4.8. Note,
however, that t may need to be chosen large in order to detect non-complete positivity,
in which case the number of iterations in (4.34) also becomes large. We revisit the
choice of t in Section 5.3.

Remark 4.10. The number of iterations shown in (4.28) is necessary to guarantee that
the set IN is non-empty. However, in running the algorithm, we may find a matrix
Xk satisfying g(Xk; δk) ≤ ǫ even if k < 1/ǫ2. If we obtain a matrix Xk such that
g(Xk; δk) ≤ ǫ and 〈C,Xk〉 < −n(1 + α)ǫ, the matrix Xk provides a certificate that C
is not completely positive.

4.3 The case of symmetric cones beyond nonnegative orthants

In the previous subsections, we discussed how to solve copositive programming prob-
lems constrained by the copositive cone COPn. Recently, studies have been conducted
on copositive cones determined by symmetric cones (self-dual and homogeneous cones)
beyond nonnegative orthants, and on their associated copositive programming prob-
lems [46–50]. Let K be a symmetric cone in a finite-dimensional real vector space V

equipped with an inner product denoted by •. The copositive cone over the symmetric

cone K, denoted by COP(K), is the cone of self-adjoint linear transformations A on V

such that x • A(x) ≥ 0 for all x ∈ K. If K is the nonnegative orthant R
n
+, the cone

COP(Rn
+) can be identified with COPn.

In principle, we can use Algorithm 1 to solve copositive programming problems
involving a copositive cone over a symmetric cone K. We let e be an interior point in
K and define

∆K,e := {δ ∈ K | e • δ = 1}.
The set ∆K,e can be regarded as a generalization of the standard simplex; indeed,
by setting K to R

n
+ and e to the vector with all elements 1, we have ∆K,e = ∆n−1.

Generally, ∆K,e is a compact slice of K, and A ∈ COP(K) if and only if δ •A(δ) ≥ 0 for
all δ ∈ ∆K,e. The subproblem that we need to solve at each iteration of Algorithm 1 is
essentially

min
δ∈∆K,e

δ •Q(δ), (4.35)

23

where Q is a self-adjoint linear transformation on V. Problem (4.35) corresponds to the
standard quadratic programming problem in (4.7). Whereas we can utilize the mixed-
integer linear programming reformulation to solve standard quadratic programming
problems globally, it is unknown how to obtain a global solution to (4.35).

In what follows, we explore a potential approach to deriving a global solution to
Problem (4.35). It follows from [19, Section 3] that the optimal value of (4.35) is equal
to that of the following copositive programming problem with a scalar variable:

max
λ∈R

{λ | Q− λe⊗ e ∈ COP(K)}.

An optimal solution of this problem, denoted by λ∗, can be found by combining member-
ship testing for COP(K) with the bisection method. Despite the absence of established
numerical methods for the membership problem of COP(K), Orlitzky [50] explores a po-
tential extension of a recursive method to solve the membership problem for COP(Rn

+)
to that for COP(K). Since Q − λ∗e ⊗ e lies in the boundary of COP(K), there exists
δ∗ ∈ ∆K,e such that

0 = δ∗ • (Q− λ∗e⊗ e)(δ∗) = δ∗ •Q(δ∗)− λ∗,

i.e., δ∗ •Q(δ∗) = λ∗. Therefore, δ∗ is an optimal solution of Problem (4.35).

5 Numerical experiments

In this section, we verify the effectiveness of the methods introduced so far through nu-
merical experiments. As outlined in Section 4.1, four distinct methods for solving stan-
dard quadratic programming problems were presented. We compare these approaches
in Section 5.1. In Section 5.2, we compare the performance of these methods when
they are incorporated into Algorithm 1 for solving copositive programming problems.
In Section 5.3, we demonstrate that the approach introduced in Section 4.2 is effective
in detecting non-complete positivity of a matrix.

All experiments were conducted in MATLAB (R2025a) on a computer with an
Apple M1 and 16GB memory. The Gurobi solver [25] (version 12.0.2) was used to
solve mixed-integer linear programming problems.

5.1 Comparison among the methods for solving standard

quadratic programming problems

We introduced four methods to solve standard quadratic programming problems in Sec-
tions 4.1.1, 4.1.2, 4.1.3, and 4.1.4. In this subsection, we compare them numerically in
terms of solution accuracy and computational time. The standard quadratic program-
ming problem solved here is of the form (4.7). For each n ∈ {5, 10, 50, 100, 500, 1000},

24

we generated ten coefficient matrices Q ∈ Sn whose elements independently followed
the uniform distribution on the interval [−1, 1].

First, we compare the methods presented in Sections 4.1.1, 4.1.2, and 4.1.3 (denoted
MILP, Grid, and SUnif, respectively). We set the parameters in Grid and SUnif as follows.
In both methods, we set ǫ that appears in (4.12) and (4.18) to 1 or 0.1. When we used
Grid, we set r to the minimum positive integer satisfying (4.12). When we used SUnif,
we set the number M of samples to the minimum integer satisfying (4.18) and set φ to
0.05, so that (4.14) holds with probability at least 0.95. For each (n, ǫ), we solved ten
instances using each method and then took the average of the results. The maximum
execution time was set to 3600 s.

Table 2 shows the average objective values obtained by solving standard quadratic
programming problems with each method and the average computational time required
to solve them. We note that although we also solved the problems with n = 5000, we
could not solve some of the ten instances within the maximum execution time regardless
of the methods used.

We were able to solve the problems with MILP within the maximum execution time
in the case of n ≤ 500, but the computational time exceeded the maximum execution
time in the case of n = 1000. Whether we were able to solve the problems with Grid

within the maximum execution time depended on the setting of ǫ. When ǫ = 0.1, we
were not able to solve the problems with Grid within the maximum execution time.
On the other hand, when ǫ = 1, we were able to solve the problems with n = 1000 in
an average time of 8.4 s. In addition, the objective values obtained by using Grid were
much more accurate than the theoretical bounds shown in (4.13). The values in the
“Dev. from MILP” column were much smaller than ǫ appearing in the respective row.
There is no reason to use SUnif to solve standard quadratic programming problems
because the computational time of SUnif was always longer than that of MILP.

Second, to see the effectiveness of the randomized method introduced in Section 4.1.4
(denoted GUnif), we compare it with the other randomized method, SUnif, in terms of
solution accuracy and computational time. Recall that in SUnif we sample from the
standard simplex ∆n−1, whereas in GUnif we sample points from the regular grid ∆n−1

r

for some positive integer r. For each n, we solved only one of the ten instances. We
set ǫ to 1. For each (n, ǫ) we set r as in the previous experiment and choose the
number M of samples to be the smallest integer greater than or equal to c|∆n−1

r |,
where c ∈ {5 × 10−1, 1 × 10−1, 1 × 10−2}. We sampled M points δ1, . . . , δM from the
standard simplex ∆n−1 when we used SUnif, whereas we sampled from the grid ∆n−1

r

when we used GUnif. Then we calculated the value min1≤i≤M δ⊤
i Qδi. Strictly speaking,

our choice ofM does not follow the results in Sections 4.1.3 and 4.1.4. Here, we compare
sampling from the standard simplex with sampling from the regular grid by matching
the number of samples.

25

Table 2: The results of solving standard quadratic programming problems by using
MILP, Grid, and SUnif. The average objective values obtained by solving standard
quadratic programming problems with each method are listed in the “Obj. val.” column
and the average computational time required to solve them is listed in the “Time [s]”
column. The “Dev. from MILP” column denotes the difference between each average
objective value and that obtained by using MILP for the same n. The “M” column
denotes the average number M of points δ1, . . . , δM ∈ ∆n−1 that are used to calculate
an approximate optimal value min1≤i≤M δ⊤

i Qδi for a standard quadratic programming
problem of the form (4.7). The symbol >realmax in the “M” column indicates that
the average number of points exceeds realmax in MATLAB, which is the largest finite
floating-point number in IEEE double precision (approximately 1.7977× 10308).

n Method ǫ M Obj. val. Dev. from MILP Time [s]

5 MILP — — −7.96× 10−1 — 3.3× 10−3

Grid 1 1.5× 101 −7.90× 10−1 5.54× 10−3 2.9× 10−3

0.1 6.3× 103 −7.96× 10−1 1.01× 10−4 1.6× 10−2

SUnif 1 1.2× 103 −6.27× 10−1 1.69× 10−1 2.8× 10−2

0.1 1.2× 107 −7.75× 10−1 2.04× 10−2 5.3× 10−1

10 MILP — — −8.69× 10−1 — 7.7× 10−3

Grid 1 5.5× 101 −8.64× 10−1 5.00× 10−3 2.7× 10−3

0.1 3.3× 106 −8.69× 10−1 6.00× 10−6 2.8
SUnif 1 3.6× 108 −6.84× 10−1 1.85× 10−1 3.3

0.1 3.6× 1016 — — >3600

50 MILP — — −9.68× 10−1 — 2.6× 10−1

Grid 1 1.3× 103 −9.67× 10−1 9.66× 10−4 7.3× 10−3

0.1 9.9× 1016 — — >3600
SUnif 1 2.8× 1055 — — >3600

0.1 2.8× 10104 — — >3600

100 MILP — — −9.78× 10−1 — 1.0
Grid 1 5.1× 103 −9.78× 10−1 1.39× 10−4 2.3× 10−2

0.1 2.5× 1022 — — >3600
SUnif 1 1.0× 10126 — — >3600

0.1 1.0× 10225 — — >3600

500 MILP — — −9.95× 10−1 — 1.4× 102

Grid 1 1.3× 105 −9.95× 10−1 6.89× 10−5 8.2× 10−1

0.1 5.7× 1035 — — >3600
SUnif 1 >realmax — — >3600

0.1 >realmax — — >3600

1000 MILP — — >3600 — >3600
Grid 1 5.0× 105 −9.98× 10−1 — 8.4

0.1 5.0× 1041 — — >3600
SUnif 1 >realmax — — >3600

0.1 >realmax — — >3600

26

Table 3: The results of solving standard quadratic programming problems by using GUnif and SUnif. The objective
values obtained by solving standard quadratic programming problems with each method are listed in the “Obj. val.”
column and the computational time required to solve them is listed in the “Time [s]” column. The objective value
and time for GUnif and SUnif are compared for each row, respectively, and the better results are shown in bold. The
“GUnif−MILP” column denotes the difference between the objective value obtained by using GUnif and that obtained
by using MILP for the same instance. The “M” column denotes the number M of points δ1, . . . , δM ∈ ∆n−1 that are
used to calculate an approximate optimal value min1≤i≤M δ⊤

i Qδi for a standard quadratic programming problem of
the form (4.7).

Obj. val. Time [s]

n c M GUnif SUnif GUnif−MILP GUnif SUnif

50 5× 10−1 638 −9.35 × 10
−1 −9.30× 10−2 3.86× 10−2 1.3× 10−2

4.7 × 10
−3

1× 10−1 128 −6.62 × 10
−1 −8.64× 10−2 3.12× 10−1

4.0 × 10
−3 5.2× 10−3

1× 10−2 13 −6.57 × 10
−1 −6.72× 10−2 3.17× 10−1

2.3 × 10
−3 2.4× 10−3

100 5× 10−1 2525 −9.22 × 10
−1 −4.79× 10−2 1.99× 10−2 3.1× 10−2

9.3 × 10
−3

1× 10−1 505 −8.99 × 10
−1 −3.34× 10−2 4.31× 10−2 8.8× 10−3

6.2 × 10
−3

1× 10−2 51 −5.70 × 10
−1 −1.99× 10−2 3.71× 10−1 3.5× 10−3

2.5 × 10
−3

500 5× 10−1 62 625 −9.95 × 10
−1 −1.37× 10−2 1.75× 10−3 1.4 5.0 × 10

−1

1× 10−1 12 525 −9.47 × 10
−1 −1.31× 10−2 4.97× 10−2 3.1× 10−1

9.9 × 10
−2

1× 10−2 1253 −9.48 × 10
−1 −1.06× 10−2 4.87× 10−2 5.2× 10−2

1.6 × 10
−2

1000 5× 10−1 250 250 −9.88 × 10
−1 −7.60× 10−3 4.83× 10−3 1.3× 101 4.3

1× 10−1 50 050 −9.82 × 10
−1 −5.96× 10−3 1.10× 10−2 2.7 8.6 × 10

−1

1× 10−2 5005 −9.42 × 10
−1 −5.25× 10−3 5.10× 10−2 2.7× 10−1

9.1 × 10
−2

27

Tables 3 shows the objective values obtained by solving standard quadratic pro-
gramming problems with each method and the computational time required to solve
them. Here, we present only the results for the case ǫ = 1; similar results were also
obtained for ǫ = 0.1. We did not display the results of n = 5, 10 because in these cases
the numbers of points were always less than 50.

We observed that the objective values obtained by using GUnif were always better
than those obtained with SUnif. However, in many cases, the computational time
for GUnif was longer than that for SUnif. The MATLAB Profiler showed that our
implementation of GUnif spent most time in the built-in function sort, which we used
to implement uniform sampling from the regular grid. A more efficient implementation
of GUnif would shorten its computational time.

5.2 Solving general copositive programming problems

In this subsection, we compare the performance of methods for solving standard
quadratic programming problems when they are incorporated into Algorithm 1 for
copositive programming. The copositive programming problem considered here is of
the form (4.1). We let n ∈ {5, 10, 50, 100, 500, 1000} and set m = 5. For each (n,m),
we created ten instances of copositive programming, each generated as follows. The
set S was defined as R

5. Each element of the vector c ∈ R
5 was independently

sampled from the chi distribution with 1 degree of freedom. The (1, 1), . . . , (5, 5)th
elements of A0 ∈ Sn were set to 0. The other elements of A0 were independently sam-
pled from the chi distribution with 1 degree of freedom, and then 0.01 was added
to each. For each i ∈ [5], the (i, i)th element of Ai ∈ Sn was set to 1 and the
(1, 1), . . . , (i − 1, i − 1), (i + 1, i + 1), . . . , (5, 5)th elements were set to 0. The other
elements of Ai were independently sampled from the standard normal distribution. For
each j ∈ [5], the (j, j)th element of the slack matrix A0 +

∑5
i=1 xiAi is xj, which must

be nonnegative due to copositivity. This implies that every feasible solution x ∈ R
5 of

the copositive programming problem is entrywise nonnegative. Since c is also entrywise
nonnegative, we have c⊤x ≥ 0. In addition, the nonnegativity of A0 implies that x = 0

is a feasible solution, at which the objective value is 0. Therefore, the optimal value of
the problem is 0 and x = 0 is an optimal solution.

Regardless of the subproblem solver, the initial point x1 ∈ R
5 of Algorithm 1 was

set to the vector with all elements equal to 1. At each iteration indexed by k, we found
δk ∈ ∆n−1 satisfying (3.7). We see that the distance between x1 and the set of optimal
solutions is less than or equal to

√
5 since x = 0 is optimal. Based on this and (3.4),

we stopped the algorithm when the number of iterations was greater than or equal to
5L2/ǫ2 or the computational time exceeded 3600 s.

Following Section 5.1, we used MILP and Grid to solve a standard quadratic pro-
gramming problem that appears as a subproblem at each iteration of Algorithm 1.
When using MILP to solve subproblems, we set α = 0 and ǫ = 2, and when using Grid,

28

Table 4: The results of applying Algorithm 1 to copositive programming problems and
solving the subproblems usingMILP, Grid, and GUnif. The average numbers of iterations
are listed in the “#Iter.” columns, the average objective values obtained using each
method are listed in the “Obj. val.” column, and the average computational time
required is listed in the “Time [s]” column.

n Method #Iter. Obj. val. Time [s]

5 MILP 6.4 −3.02 6.3× 10−2

Grid 2.5× 101 −2.22 2.0× 10−2

10 MILP 1.1× 101 −3.48 6.6× 10−2

Grid 4.1× 101 −2.62 1.8× 10−1

50 MILP 1.6× 101 −1.51 1.5
Grid 1 — >3600

100 MILP 1.9× 101 −1.86 9.3
Grid 1 — >3600

500 MILP 2.8× 101 −1.08 9.2× 102

Grid 1 — >3600
1000 GUnif 1.2× 102 −1.06× 102 6.7× 102

we set α = 1 and ǫ = 1, so that ǫ(1 + α) = 2 in both cases. When using Grid to solve a
standard quadratic programming problem of the form (4.7) at each iteration, we set r
to the minimum positive integer satisfying (4.12).

In preliminary experiments, we observed that for both MILP and Grid the compu-
tational time exceeded 3600 s for n ≥ 1000. To solve these instances, we utilized GUnif.
We also set α = 1 and ǫ = 1. To solve a standard quadratic programming problem of
the form (4.7) at each iteration, we set r to the minimum positive integer satisfying
(4.12) and sampled 100 000 points from ∆n−1

r .
Existing methods based on a simplicial partition [13, 55] and cutting-plane tech-

niques [4, 24] introduced in Section 1 can be used to solve copositive programming
problems. These methods seem effective for finding approximate solutions in practice,
as evidenced by numerical results reported in previous studies. However, our method
differs from them in that it has a non-asymptotic convergence guarantee, which the oth-
ers lack. For this reason, we decided not to compare our method with existing methods
numerically.

Table 4 shows the average numbers of iterations, the average objective values ob-
tained using each method, and the average computational time required to solve copos-
itive programming problems. Here, we present only the results for the case ǫ(1+α) = 2;
similar results were also obtained for ǫ(1 + α) = 0.2. Except for n = 5, the compu-
tational time for MILP was shorter than that for Grid. We observed that when using
Grid, solving standard quadratic programming problems was time-consuming; indeed,
even the first iteration was not completed for instances that exceeded 3600 s. This re-

29

sult contrasts with that in Table 2, where the computational time for Grid was shorter
than that for MILP. This indicates that whether Grid or MILP is better depends on
the instance. Further investigation is needed to determine under what conditions the
computational time for Grid is shorter than that for MILP.

The number of samples in GUnif is not consistent with Proposition 4.5 and is much
smaller than the number of points in the grid.*2 The average objective values obtained
using GUnif were rather coarse. However, when MILP and Grid take too long to solve
problems, employing GUnif to obtain approximate solutions may be a viable alternative.

5.3 Testing for non-complete positivity of exceptional doubly

nonnegative matrices

A real symmetric matrix is said to be doubly nonnegative if it is positive semidefinite
and entrywise nonnegative. It is well known that every completely positive matrix is
doubly nonnegative, and the converse holds if and only if the order is less than or equal
to 4; see [26, page 101] and [39]. We can easily check whether a given matrix is doubly
nonnegative, so we are interested in deciding whether a given doubly nonnegative matrix
is completely positive. In Theorem 4.8, we provided a sufficient condition for a given
matrix not to be completely positive. In this subsection, we demonstrate that this
theorem is effective for doubly nonnegative matrices that are not completely positive.
For convenience, following the terminology of [54], we call a doubly nonnegative matrix
that is not completely positive exceptional.*3

From the numerical results in Sections 5.1 and 5.2, we observe that, even when
using MILP, the standard quadratic programming problem arising at each iteration of
Algorithm 1 can be solved within a reasonable time, provided that the problem size
is not large. For this reason, in the subsequent experiments we used only MILP to
solve standard quadratic programming problems, and thus set the violation measure
α to 0. We set the error tolerance ǫ and the number of iterations as described in
Remark 4.9. For the constant t, specified separately for the two experiments below,
Algorithm 1 was terminated when the number of iterations reached 1/ǫ2 = t2n2 or when
the computational time exceeded 3600 s. As mentioned in Remark 4.10, for an input
matrix C ∈ Sn, we also stopped Algorithm 1 as soon as we had a matrix Xk satisfying
g(Xk; δk) ≤ ǫ and 〈C,Xk〉 < −nǫ.

First, we tried to detect non-complete positivity for the ten 6×6 exceptional doubly
nonnegative matrices presented in [5, Appendix B]. We normalized each matrix and
used the normalized matrix as the input matrix C in (4.26). In this experiment, we
set the constant t that appears in (4.34) to 55. Table 5 shows the results of detecting

*2If we set r to the minimum positive integer satisfying (4.25), the number of points in ∆n−1
r

sometimes exceeded realmax in MATLAB.
*3Burer, Anstreicher, and Dür [15] refer to an exceptional doubly nonnegative matrix as a bad matrix.

30

Table 5: The results of detecting non-complete positivity for the exceptional doubly
nonnegative matrices presented in [5, Appendix B]. In the “Non-CP” column, “Y”
denotes successful detection, whereas “N” indicates failure to detect non-complete pos-
itivity.

Name Non-CP Time [s]
extremal rand 1 Y 2.3× 102

extremal rand 2 Y 4.7× 101

extremal rand 3 Y 1.6× 101

extremal rand 4 Y 1.7× 102

extremal rand 5 N 4.4× 102

extremal rand 6 Y 8.4
extremal rand 7 Y 2.2× 101

extremal rand 8 Y 4.3
extremal rand 9 Y 1.2× 101

extremal rand 10 Y 1.6× 101

Table 6: The results of detecting non-complete positivity for the exceptional doubly
nonnegative matrices presented in [54]. In the “Non-CP” column, “Y” denotes success-
ful detection, whereas “N” indicates failure to detect non-complete positivity.

n τ Non-CP Time [s]
10 0.24 Y 7.8× 101

20 0.37 Y 3.1× 102

30 0.39 Y 2.7× 103

40 0.40 N >3600

non-complete positivity for the ten matrices. Except for the matrix extremal rand 5,
we successfully detected non-complete positivity for all the other matrices.

Next, we tried to detect non-complete positivity for exceptional doubly nonnegative
matrices provided by Štrekelj and Zalar [54]. For a positive integer m and a ∈ R

m, let
C(a) ∈ Sn be the matrix whose (i, j)th element is

cicj

∫ 1

0

(

1 + 2
m
∑

k=1

ak cos(2kπx)

)

cos(2(i− 1)πx) cos(2(j − 1)πx)dx, (5.1)

where ci = 1 if i = 1 and ci =
√
2 if i ≥ 2. Note that we can calculate (5.1) analytically;

see [54, Equation (2.3)]. Then, inspired by the method for constructing exceptional
doubly nonnegative matrices presented in [54, Equation (1.12)], we solved the following

31

semidefinite feasibility problem:

〈

C1:5,1:5(a),













1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1













〉

= −τ,

C(a) is positive semidefinite,

a ∈ R
m
+ ,

(5.2)

where τ is a given positive value andC1:5,1:5(a) denotes the principal submatrix obtained
by extracting the first through fifth rows and columns of C(a). If a is a feasible solution
of this problem, then C(a) is an exceptional doubly nonnegative matrix. For each
n ∈ {10, 20, 30, 40}, we set m = n+ 1 and took τ as shown in Table 6 such that τ was
as large as possible and Problem (5.2) was feasible. After obtaining a, we normalized
the matrix C(a) and used the normalized matrix as the input matrix C in (4.26). We
solved Problem (5.2) using the modeling language YALMIP [38] (version 20250626) and
the MOSEK solver [40] (version 11.0.24). In this experiment, we set the constant t that
appears in (4.34) to 15. Table 6 shows the results of detecting non-complete positivity
for the matrices. Despite the inability to ascertain the non-complete positivity of the
matrix with n = 40 due to the time limit, we were able to detect it for the matrices
with n = 10, 20, 30.

However, the choice of the constant t in (4.34) is crucial, and in the two experiments
we selected t by trial and error. The smaller t is, the fewer the iterations, but at the
same time the harder it is to detect non-complete positivity for a matrix. In the
first experiment, setting t = 50 failed to detect non-complete positivity for the matrix
extremal rand 1. In the second experiment, setting t = 5 failed to detect non-complete
positivity for any of the exceptional doubly nonnegative matrices. We need to consider
how to set t to balance the number of iterations and the performance of detecting
non-complete positivity.

6 Conclusion

In this paper, based on the subgradient algorithm in [44, Equation (3.2.24)], which is
applicable to convex programming problems with a single nonsmooth functional con-
straint, we proposed an algorithm with a non-asymptotic convergence guarantee to
solve copositive programming problems. In contrast to the algorithm in [44, Equa-
tion (3.2.24)], the proposed algorithm allows us to solve the subproblem, which is a
standard quadratic programming problem, inexactly at each iteration. We discussed
how to solve the standard quadratic programming problem exactly and inexactly.

32

Through the numerical experiments, we identified trends indicating which method
is preferable under which circumstances for solving standard quadratic programming
problems. For small-scale problems, the exact method for standard quadratic program-
ming via mixed-integer linear programming is acceptable. For medium-scale problems,
the exact method may be effective in some cases, whereas the inexact deterministic
method obtained by discretizing the standard simplex using a regular grid may be ef-
fective in others. Note, however, that the inexact method has the advantage that it
does not require external solvers. For large-scale problems where the above two methods
take too long to solve, uniform sampling from the regular grid might be another op-
tion to solve standard quadratic programming problems inexactly, although its solution
accuracy is coarse.

Moreover, we applied the proposed algorithm to the problem of testing complete
positivity of a matrix. By using its convergence result, we provided a sufficient condition
for certifying that the matrix is not completely positive. In the numerical experiments,
we were able to detect non-complete positivity in various doubly nonnegative matrices
that are not completely positive.

Acknowledgments The first author is supported by JSPS Grant-in-Aid for Research
Activity Start-up JP25K23344. The second and third authors are supported by JSPS
Grant-in-Aid for Scientific Research(B) JP23H03351. The third author is also sup-
ported by JST CREST Grant Number JPMJCR24Q2.

References

[1] A.A. Ahmadi and A. Majumdar. DSOS and SDSOS optimization: more tractable
alternatives to sum of squares and semidefinite optimization. SIAM J. Appl. Al-

gebra Geom., 3(2):193–230, 2019. doi:10.1137/18M118935X.

[2] F. Ahmed, M. Dür, and G. Still. Copositive programming via semi-
infinite optimization. J. Optim. Theory Appl., 159(2):322–340, 2013.
doi:10.1007/s10957-013-0344-2.

[3] K.M. Anstreicher. Testing copositivity via mixed–integer linear programming.
Linear Algebra Appl., 609:218–230, 2021. doi:10.1016/j.laa.2020.09.002.

[4] R. Badenbroek and E. de Klerk. An analytic center cutting plane method to
determine complete positivity of a matrix. INFORMS J. Comput., 34(2):1115–
1125, 2022. doi:10.1287/ijoc.2021.1108.

[5] R. Badenbroek and E. de Klerk. Simulated annealing for convex optimization:
rigorous complexity analysis and practical perspectives. J. Optim. Theory Appl.,
194(2):465–491, 2022. doi:10.1007/s10957-022-02034-x.

33

https://doi.org/10.1137/18M118935X
https://doi.org/10.1007/s10957-013-0344-2
https://doi.org/10.1016/j.laa.2020.09.002
https://doi.org/10.1287/ijoc.2021.1108
https://doi.org/10.1007/s10957-022-02034-x

[6] A. Beck, A. Ben-Tal, N. Guttmann-Beck, and L. Tetruashvili. The CoMirror
algorithm for solving nonsmooth constrained convex problems. Oper. Res. Lett.,
38(6):493–498, 2010. doi:10.1016/j.orl.2010.08.005.

[7] A. Berman, M. Dür, and N. Shaked-Monderer. Open problems in the theory of
completely positive and copositive matrices. Electron. J. Linear Algebra, 29:46–58,
2015. doi:10.13001/1081-3810.2943.

[8] A. Berman and U.G. Rothblum. A note on the computation of the CP-rank. Linear
Algebra Appl., 419(1):1–7, 2006. doi:10.1016/j.laa.2006.04.001.

[9] I.M. Bomze and E. de Klerk. Solving standard quadratic optimization problems via
linear, semidefinite and copositive programming. J. Glob. Optim., 24(2):163–185,
2002. doi:10.1023/A:1020209017701.

[10] I.M. Bomze, M. Dür, E. de Klerk, C. Roos, A.J. Quist, and T. Terlaky. On
copositive programming and standard quadratic optimization problems. J. Glob.

Optim., 18(4):301–320, 2000. doi:10.1023/A:1026583532263.

[11] I.M. Bomze and M. Gabl. Optimization under uncertainty and risk: quadratic
and copositive approaches. Eur. J. Oper. Res., 310(2):449–476, 2023.
doi:10.1016/j.ejor.2022.11.020.

[12] I.M. Bomze, M. Locatelli, and F. Tardella. New and old bounds for standard
quadratic optimization: dominance, equivalence and incomparability. Math. Pro-

gram., 115(1):31–64, 2008. doi:10.1007/s10107-007-0138-0.

[13] S. Bundfuss and M. Dür. An adaptive linear approximation algorithm for copositive
programs. SIAM J. Optim., 20(1):30–53, 2009. doi:10.1137/070711815.

[14] S. Burer. On the copositive representation of binary and continuous
nonconvex quadratic programs. Math. Program., 120(2):479–495, 2009.
doi:10.1007/s10107-008-0223-z.

[15] S. Burer, K.M. Anstreicher, and M. Dür. The difference between 5 × 5 doubly
nonnegative and completely positive matrices. Linear Algebra Appl., 431(9):1539–
1552, 2009. doi:10.1016/j.laa.2009.05.021.

[16] E. de Klerk and D.V. Pasechnik. Approximation of the stability number of
a graph via copositive programming. SIAM J. Optim., 12(4):875–892, 2002.
doi:10.1137/S1052623401383248.

[17] P.J.C. Dickinson and M. Dür. Linear-time complete positivity detection and de-
composition of sparse matrices. SIAM J. Matrix Anal. Appl., 33(3):701–720, 2012.
doi:10.1137/110848177.

34

https://doi.org/10.1016/j.orl.2010.08.005
https://doi.org/10.13001/1081-3810.2943
https://doi.org/10.1016/j.laa.2006.04.001
https://doi.org/10.1023/A:1020209017701
https://doi.org/10.1023/A:1026583532263
https://doi.org/10.1016/j.ejor.2022.11.020
https://doi.org/10.1007/s10107-007-0138-0
https://doi.org/10.1137/070711815
https://doi.org/10.1007/s10107-008-0223-z
https://doi.org/10.1016/j.laa.2009.05.021
https://doi.org/10.1137/S1052623401383248
https://doi.org/10.1137/110848177

[18] P.J.C. Dickinson and L. Gijben. On the computational complexity of membership
problems for the completely positive cone and its dual. Comput. Optim. Appl.,
57(2):403–415, 2014. doi:10.1007/s10589-013-9594-z.

[19] F. Flores-Bazán, G. Cárcamo, and S. Caro. Extensions of the standard quadratic
optimization problem: strong duality, optimality, hidden convexity and S-lemma.
Appl. Math. Optim., 81(2):383–408, 2020. doi:10.1007/s00245-018-9502-0.

[20] M.A. Goberna and M.A. López. Recent contributions to linear semi-
infinite optimization: an update. Ann. Oper. Res., 271(1):237–278, 2018.
doi:10.1007/s10479-018-2987-8.

[21] M.A. Goberna, A.B. Ridolfi, and V.N. Vera de Serio. New applications of lin-
ear semi-infinite optimization theory in copositive optimization. Optimization, to
appear. doi:10.1080/02331934.2024.2411165.

[22] Y.G. Gökmen and E.A. Yıldırım. On standard quadratic programs with exact and
inexact doubly nonnegative relaxations. Math. Program., 193(1):365–403, 2022.
doi:10.1007/s10107-020-01611-0.

[23] J. Gondzio and E.A. Yıldırım. Global solutions of nonconvex standard quadratic
programs via mixed integer linear programming reformulations. J. Glob. Optim.,
81(2):293–321, 2021. doi:10.1007/s10898-021-01017-y.

[24] C. Guo, M. Bodur, and J.A. Taylor. Copositive duality for discrete energy markets.
Manag. Sci., to appear. doi:10.1287/mnsc.2023.00906.

[25] Gurobi Optimization. Gurobi Optimizer Reference Manual, 12.0 edition, 2025.
URL: https://docs.gurobi.com/projects/optimizer/en/current/.

[26] M. Hall, Jr. A survey of combinatorial analysis. In I. Kaplansky, E. Hewitt,
M. Hall, Jr., and R. Fortet, editors, Some Aspects of Analysis and Probability,
pages 35–104. John Wiley & Sons, New York, NY, 1958.

[27] M. Hall, Jr. and M. Newman. Copositive and completely positive
quadratic forms. Math. Proc. Camb. Philos. Soc., 59(2):329–339, 1963.
doi:10.1017/S0305004100036951.

[28] J.-B. Hiriart-Urruty and A. Seeger. A variational approach to copositive matrices.
SIAM Rev., 52(4):593–629, 2010. doi:10.1137/090750391.

[29] F. Jarre and K. Schmallowsky. On the computation of C∗ certificates. J. Glob.

Optim., 45(2):281–296, 2009. doi:10.1007/s10898-008-9374-y.

35

https://doi.org/10.1007/s10589-013-9594-z
https://doi.org/10.1007/s00245-018-9502-0
https://doi.org/10.1007/s10479-018-2987-8
https://doi.org/10.1080/02331934.2024.2411165
https://doi.org/10.1007/s10107-020-01611-0
https://doi.org/10.1007/s10898-021-01017-y
https://doi.org/10.1287/mnsc.2023.00906
https://docs.gurobi.com/projects/optimizer/en/current/
https://doi.org/10.1017/S0305004100036951
https://doi.org/10.1137/090750391
https://doi.org/10.1007/s10898-008-9374-y

[30] M. Jerrum. Counting, Sampling and Integrating: Algorithms and Complexity.
Birkhäuser Verlag, Basel, Switzerland, 2003. doi:10.1007/978-3-0348-8005-3.

[31] S. Kim, M. Kojima, and K.-C. Toh. Doubly nonnegative relaxations are
equivalent to completely positive reformulations of quadratic optimization prob-
lems with block-clique graph structures. J. Glob. Optim., 77(3):513–541, 2020.
doi:10.1007/s10898-020-00879-y.

[32] O.I. Kostyukova and T.V. Tchemisova. Optimality conditions for linear copositive
programming problems with isolated immobile indices. Optimization, 69(1):145–
164, 2020. doi:10.1080/02331934.2018.1539482.

[33] O.I. Kostyukova and T.V. Tchemisova. On equivalent representations and prop-
erties of faces of the cone of copositive matrices. Optimization, 71(11):3211–3239,
2022. doi:10.1080/02331934.2022.2027939.

[34] O.I. Kostyukova and T.V. Tchemisova. On strong duality in lin-
ear copositive programming. J. Glob. Optim., 83(3):457–480, 2022.
doi:10.1007/s10898-021-00995-3.

[35] O.I. Kostyukova, T.V. Tchemisova, and O.S. Dudina. Immobile indices and CQ-
free optimality criteria for linear copositive programming problems. Set-Valued

Var. Anal., 28(1):89–107, 2020. doi:10.1007/s11228-019-00527-y.

[36] J.B. Lasserre. New approximations for the cone of copositive matrices and its dual.
Math. Program., 144(1–2):265–276, 2014. doi:10.1007/s10107-013-0632-5.

[37] M. Laurent and L.F. Vargas. On the exactness of sum-of-squares approximations
for the cone of 5 × 5 copositive matrices. Linear Algebra Appl., 651:26–50, 2022.
doi:10.1016/j.laa.2022.06.015.

[38] J. Löfberg. YALMIP: a toolbox for modeling and optimization in MATLAB. In
Proceedings of the 2004 IEEE International Symposium on Computer Aided Con-

trol Systems Design, pages 284–289, 2004. doi:10.1109/CACSD.2004.1393890.

[39] J.E. Maxfield and H. Minc. On the matrix equation X ′X = A. Proc. Edinb. Math.

Soc., 13(2):125–129, 1962. doi:10.1017/S0013091500014681.

[40] MOSEK ApS. MOSEK Optimization Toolbox for MATLAB, 11.0.29 edition, 2025.
URL: https://docs.mosek.com/11.0/toolbox/index.html.

[41] K.G. Murty and S.N. Kabadi. Some NP-complete problems in quadratic
and nonlinear programming. Math. Program., 39(2):117–129, 1987.
doi:10.1007/BF02592948.

36

https://doi.org/10.1007/978-3-0348-8005-3
https://doi.org/10.1007/s10898-020-00879-y
https://doi.org/10.1080/02331934.2018.1539482
https://doi.org/10.1080/02331934.2022.2027939
https://doi.org/10.1007/s10898-021-00995-3
https://doi.org/10.1007/s11228-019-00527-y
https://doi.org/10.1007/s10107-013-0632-5
https://doi.org/10.1016/j.laa.2022.06.015
https://doi.org/10.1109/CACSD.2004.1393890
https://doi.org/10.1017/S0013091500014681
https://docs.mosek.com/11.0/toolbox/index.html
https://doi.org/10.1007/BF02592948

[42] Y. Nesterov. Random walk in a simplex and quadratic optimization over convex
polytopes. Technical report, CORE, Catholic University of Louvain, Louvain-la-
Neuve, Belgium, 2003.

[43] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Springer, New York, NY, first edition, 2004. doi:10.1007/978-1-4419-8853-9.

[44] Y. Nesterov. Lectures on Convex Optimization. Springer, Cham, Switzerland,
second edition, 2018. doi:10.1007/978-3-319-91578-4.

[45] J. Nie. The A-truncated K-moment problem. Found. Comput. Math., 14(6):1243–
1276, 2014. doi:10.1007/s10208-014-9225-9.

[46] M. Nishijima and B.F. Lourenço. Facial structure of copositive and com-
pletely positive cones over a second-order cone. arXiv e-prints, 2025.
doi:10.48550/arXiv.2502.04006.

[47] M. Nishijima and B.F. Lourenço. Non-facial exposedness of copositive
cones over symmetric cones. J. Math. Anal. Appl., 545(2):129166, 2025.
doi:10.1016/j.jmaa.2024.129166.

[48] M. Nishijima and K. Nakata. Approximation hierarchies for copositive cone over
symmetric cone and their comparison. J. Glob. Optim., 88(4):831–870, 2024.
doi:10.1007/s10898-023-01319-3.

[49] M. Nishijima and K. Nakata. Generalizations of doubly nonnegative cones
and their comparison. J. Oper. Res. Soc. Jpn., 67(3):84–109, 2024.
doi:10.15807/jorsj.67.84.

[50] M. Orlitzky. Gaddum’s test for symmetric cones. J. Glob. Optim., 79(4):927–940,
2021. doi:10.1007/s10898-020-00960-6.

[51] P.A. Parrilo. Semidefinite programming based tests for matrix copositivity. In
Proceedings of the 39th IEEE Conference on Decision and Control, pages 4624–
4629, 2000. doi:10.1109/CDC.2001.914655.

[52] J. Peña, J. Vera, and L.F. Zuluaga. Computing the stability number of a graph
via linear and semidefinite programming. SIAM J. Optim., 18(1):87–105, 2007.
doi:10.1137/05064401X.

[53] J. Sponsel, S. Bundfuss, and M. Dür. An improved algorithm to test copositivity.
J. Glob. Optim., 52(3):537–551, 2012. doi:10.1007/s10898-011-9766-2.

[54] T. Štrekelj and A. Zalar. Construction of exceptional copositive matrices. Linear
Algebra Appl., 727:368–384, 2025. doi:10.1016/j.laa.2025.08.010.

37

https://doi.org/10.1007/978-1-4419-8853-9
https://doi.org/10.1007/978-3-319-91578-4
https://doi.org/10.1007/s10208-014-9225-9
https://doi.org/10.48550/arXiv.2502.04006
https://doi.org/10.1016/j.jmaa.2024.129166
https://doi.org/10.1007/s10898-023-01319-3
https://doi.org/10.15807/jorsj.67.84
https://doi.org/10.1007/s10898-020-00960-6
https://doi.org/10.1109/CDC.2001.914655
https://doi.org/10.1137/05064401X
https://doi.org/10.1007/s10898-011-9766-2
https://doi.org/10.1016/j.laa.2025.08.010

[55] J. Žilinskas. Copositive programming by simplicial partition. Informatica,
22(4):601–614, 2011. doi:10.15388/Informatica.2011.345.

[56] B. Wei, W.B. Haskell, and S. Zhao. The CoMirror algorithm with random
constraint sampling for convex semi-infinite programming. Ann. Oper. Res.,
295(2):809–841, 2020. doi:10.1007/s10479-020-03766-7.

[57] C. Xu. Completely positive matrices of order five. Acta Math. Appl. Sin.,
17(4):550–562, 2001. doi:10.1007/BF02669709.

[58] E.A. Yıldırım. On the accuracy of uniform polyhedral approximations
of the copositive cone. Optim. Methods Softw., 27(1):155–173, 2012.
doi:10.1080/10556788.2010.540014.

38

https://doi.org/10.15388/Informatica.2011.345
https://doi.org/10.1007/s10479-020-03766-7
https://doi.org/10.1007/BF02669709
https://doi.org/10.1080/10556788.2010.540014

	Introduction
	Preliminaries
	An inexact subgradient algorithm for convex semi-infinite programming problems
	Application to copositive programming problems
	General copositive programming problems
	Exact method through mixed-integer linear programming
	Inexact deterministic method through a regular grid of the standard simplex
	Inexact randomized method through uniform sampling from the standard simplex
	Inexact randomized method through uniform sampling from a regular grid of the standard simplex

	Testing complete positivity of a matrix
	The case of symmetric cones beyond nonnegative orthants

	Numerical experiments
	Comparison among the methods for solving standard quadratic programming problems
	Solving general copositive programming problems
	Testing for non-complete positivity of exceptional doubly nonnegative matrices

	Conclusion

