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Abstract

Counterfactual explanations (CEs) offer a human-understandable way to explain decisions by
identifying specific changes to the input parameters of a base or present model that would lead to
a desired change in the outcome. For optimization models, CEs have primarily been studied in
limited contexts and little research has been done on CEs for general integer optimization prob-
lems. In this work, we address this gap. We first show that the general problem of constructing
a CE is Σp

2-complete even for binary integer programs with just a single mutable constraint.
Second, we propose solution algorithms for several of the most tractable special cases: (i) mu-
table objective parameters, (ii) a single mutable constraint, (iii) mutable right-hand-side, and
(iv) all input parameters can be modified. We evaluate our approach using classical knapsack
problem instances, focusing on cases with mutable constraint parameters. Our results show that
our methods are capable of finding optimal CEs for small instances involving up to 40 items
within a few hours. Additionally, we present experiments on the resource constrained shortest
path problem.

Keywords: counterfactual explanations, integer optimization, complexity, constraint genera-
tion

1 Introduction

Automated decision-making increasingly shapes critical aspects of modern society, ranging from
applications in medical scheduling and financial planning to supply chain optimization and disaster
management. Many of these applications are modeled as integer optimization problems (IPs)
and are solved by state-of-the-art methods, such as branch and cut. Despite their widespread
use, the reasoning behind optimization-based decisions is often unclear to those affected. For
instance, optimization algorithms are used for automated planning of surgeries in hospitals [CDB10,
BBD+25]. A patient denied an earlier surgery date may ask for an explanation for this decision.
In humanitarian logistics, optimal robust depot locations are calculated to quickly dispatch relief
items to a region affected by a disaster [SWdF21]. Here, the properties of an optimal solution
significantly depend on the choice of optimization model and uncertainty set. Officials from a
certain region may ask for an explanation why their region did not receive a depot while another
region did.
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One established way to provide explanations for decisions made by automated systems is based
on the paradigm of counterfactual explanations (CEs). A CE is a minimal change in model inputs
that would lead to a desired change in outcome. For example, in the aforementioned depot location
problem, a CE could be: “If the population in your region were 5% higher and the transportation
time to region B were 3% smaller, it would be optimal to open a depot in your region.” Coun-
terfactuals have become a cornerstone of explainable artificial intelligence that offers individuals
understandable and actionable insights into automated predictions [VBH+24, MRIB22, MKR+24].
Their role in optimization problems–particularly those involving integrality constraints–has only
begun to be explored. First works studied the concept of counterfactuals for binary linear opti-
mization problems where only objective parameters are mutable [KB21, KSB21, KB23], drawing
on techniques from constraint programming and inverse optimization. Later, [KIBd25] identified
three types of counterfactuals of interest for optimization problems—weak, strong, and relative
CEs—and analyzed them for linear optimization with continuous decision variables. In [LS24] the
authors derive a heuristic for calculating weak CEs based on a penalty alternating direction method.
Relative CEs have since been investigated for contextual stochastic optimization [RAF25], and CEs
have been used to explain efficiency targets in data envelopment analysis [BRAM24] and to detect
minimum number of constraints to make a problem infeasible in constraint programming [GOQ24].
Coming back to the case of integer optimization, however, the aforementioned three types of CEs
remain largely unexplored, particularly when mutable parameters appear in the constraints.

Constructing CEs is closely related to a number of existing areas of research in optimization.
The most obvious connection is to global sensitivity analysis, but rather than quantifying how
outcomes vary under systematic parameter changes, CEs ask how parameters must be minimally
changed to induce specified outcome changes. This perspective highlights the relationship to inverse
optimization—indeed, one may view CE construction as a generalized form of inverse optimization
[CMZ25, Wan13]. It also highlights connections to bilevel optimization: the model structures
induced by weak CEs are similar to those in optimistic bilevel formulations [DKPVK15, Dem02,
KLLS21], whereas strong CEs naturally correspond to pessimistic bilevel formulations [WTKR13].
Certain special cases connect directly to well-studied problem classes. The case in which only the
objective function can be modified subsumes the most classical version of inverse optimization, in
which one seeks an objective that makes a given solution optimal. The case in which only the right-
hand-side can vary relates both to multiobjective optimization via the restricted value function and
to the standard form of mixed integer bilevel linear optimization [Dem02]. Finally, the most general
case considered here is equivalent to a bilevel optimization model in which the lower-level problem
is a mixed integer bilinear optimization problem.

This paper fills a gap in the literature by studying weak and strong counterfactual explanations
for integer linear optimization problems (ILPs) in which mutable parameters may appear both in
the objective function and in the constraints. Our contributions are as follows:

• We present complexity results showing that constructing CEs in both the weak and strong
cases is Σp

2-hard, even if the mutable parameters only appear in a single constraint.

• We propose solution algorithms to calculate weak and strong CEs for the case when only a
single constraint may contain mutable parameters. We distinguish four different cases: the
mutable parameters appear (i) only in the objective function, (ii) only in the constraints, (iii)
only on the right-hand side of the constraints, or (iv) everywhere in the problem.

• We present computational experiments based on knapsack instances from kplib, showing
that optimal CEs can be computed in a few hours for instances containing up to 40 items.
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Additionally, we evaluate applications of CEs regarding resource constraint shortest path
problems.

2 Definitions

In the following, we describe the basic definitions and the mathematical framework on which our
study is based. To formally define the notion of a counterfactual explanation, we first need to define
a so-called present optimization problem on which the current decision, which we refer to as the
present solution, is based. In this paper, we consider the following form for the present problem:

min ĉ⊤x

s.t. Âx ≥ b̂,

x ∈ X ,
(1)

where ĉ ∈ Zn (the objective function), b̂ ∈ Zn (the right-hand-side), and Â ∈ Zm×n (the constraint
matrix) are the present values of the mutable parameters, i.e., those that can be modified to obtain
a CE. The set X ⊆ Zn

+ is the immutable feasible set, consisting of constraints that cannot be
modified. In many applications, the set X is the feasible set of a MILP, though for the algorithms
described later, we only require the set X be the feasible set of an optimization problem for which
we have an appropriate black-box solver.

To reason about counterfactuals, we introduce two additional sets. The favored solution space,
denoted by D ⊆ Zn

+, consists of solutions that exhibit desirable properties and that we attempt to
make optimal by modifying the mutable parameters to generate a CE. Themutable parameter space,
denoted by H ⊆ Zn × Zm×n × Zn, are the triples (c, A, b) of values that the mutable parameters
are allowed to take on in attempting to generate a CE. We assume that D ∩ X ̸= ∅ and that H is
bounded and contains (ĉ, Â, b̂) ∈ H.

The structure of H depends on the nature of the application, but the following are the most
typical ways in which the mutable parameter space would be specified:

1. Only objective function parameters are mutable: H = Hc × {Â} × {b̂}

2. Only constraint parameters are mutable: H = {ĉ} ×HA ×Hb

3. Only the right-hand side parameters are mutable: H = {ĉ} × {ĤA} ×Hb

4. All parameters are mutable: H = Hc ×HA ×Hb

In principle, H can be any (MILP-representable) set. In the remainder of the paper, we choose
H to be a discrete set for two reasons. First, in most applications, parameter values are naturally
discrete. Even if we allow the parameters to take on rational values, we can still scale them to be
integral without loss of generality. Second, allowing parameter values to be continuous can result
in feasible sets that are open, which leads to difficulties in constructing CEs; see [KIBd25] for a
discussion on open feasible regions.

We now define the problem of constructing weak and strong CEs. Given a present problem of
the form (1), a favored solution space D, and a mutable parameter space H, a weak CE is any
(c, A, b) ∈ H such that some optimal solution of the resulting modified instance lies in D, i.e., fulfills
the desired properties.

Definition 1. A weak counterfactual explanation for (1) is a point (c, A, b) ∈ H that satisfies the
weak CE condition:

D ∩ argmin
x∈X :Ax≥b

c⊤x ̸= ∅. (2)
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In general, we are interested in CEs that modify the present problem as little as possible. To
measure the amount of modification, we utilize a distance measure δ : H × H → R≥0 and define

the cost of a weak CE to be δ
(
(c, A, b), (ĉ, Â, b̂)

)
. We call a weak CE with minimal cost an optimal

weak CE. An optimal weak CE can be computed by solving the following optimistic bilevel problem.

min
c,A,b,x

δ
(
(c, A, b), (ĉ, Â, b̂)

)
s.t. x ∈ argmin

x∈X :Ax≥b
c⊤x,

x ∈ D,
(c, A, b) ∈ H.

(3)

When a problem has multiple optimal solutions, either due to its inherent structure or the
characteristics of the solver used, a decision maker may want to ensure that all optimal solutions
satisfy the desired properties specified by D. This motivates the concept of a strong CE.

Definition 2. A strong counterfactual explanation for (1) is a point (c, A, b) ∈ H that satisfies the
strong CE condition:

argmin
x∈X :Ax≥b

c⊤x ⊆ D. (4)

Once again, for a given distance measure δ, the cost of a strong CE is then given by δ
(
(c, A, b), (ĉ, Â, b̂)

)
.

We call a strong CE with minimal cost δ an optimal strong CE. An optimal strong CE can be com-
puted by solving the following pessimistic bilevel problem:

min
c,A,b,x

δ
(
(c, A, b), (ĉ, Â, b̂)

)
s.t. x ∈ D ∀x ∈ argmin

x∈X :Ax≥b
c⊤x,

(c, A, b) ∈ H.

(5)

To illustrate the definitions of weak and strong CEs, let us give a toy example.

Example 1. Consider the following instance of (1):

min x1 + 2x2 + 2x3

s.t. x1 + 3x2 + 2x3 ≥ 3,

x ∈ {0, 1}3.

The optimal solution is to select only x2 = 1 and to set all other variables to zero. Assume that
only the constraint parameters â2 = 3 and â3 = 2 are mutable, each in the range {0, 1, 2, 3, 4}. Here
is the counterfactual question: “What is the minimal change in the mutable parameters we need to
perform, such that a solution with x3 = 1 is optimal, i.e., D = {x ∈ {0, 1}3 : x3 = 1}?” Figure 1
shows the feasible regions for the weak and the strong CEs for this example.
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Item 1: c1 = a1 = 1

Item 2: c2 = 2, â2 = 3, a2 ∈ [0, 4]

Item 3: c3 = â3 = 2, a3 ∈ [0, 4]

a3

a2

1

1

2

2

3

3

4

4

× × × × ×

× × × × ×

× × × × ×

× × O× × ×

× × × × ×

i1 , i2 , i3 (5)

i2 , i3 (4)

i1, i3(3)

i1, i2(3)

i2(2)

i1, i2 ∨ i3(3)

i3(2)

i2 ∨ i3(2)

Figure 1: Counterfactual regions for a (1) with right-hand side b = 3 and three item i1, i2, i3, the
latter two of which have a mutable weight. The favored solution space consists of all all solutions
that contain i3, i.e., D1 = {x ∈ {0, 1}3 : x3 = 1}. Green and orange regions represent strong and
weak CEs, respectively. Each region is labeled with the items that are part of an optimal solution
and the optimum solution value. The black O marks the parameter values (Â) of the present
problem.

In the remainder of the paper, we present both results establishing the computational complexity
of the problem of constructing weak and strong CEs, as well as algorithms for doing so. For reasons
discussed later in the paper (see especially Remark 3), the algorithms presented assume m = 1 (we
are only allowed to modify a single constraint). The complexity results, however, are general.

3 Complexity

In this section, we show that the problems of deciding whether a counterfactual explanation exists
is complete for Σp

2 in both the weak and strong cases. We use the oracle-based definition of the
polynomial hierarchy, as formalized in [AB07], and the polynomial many-to-one notion of reduction
introduced by [Kar72]. This means that to prove membership in Σp

2, we have to show that whenever
a weak/strong CE exists, there is a formal certificate of this fact that can be verified in polynomial
time, given an oracle for solving problems in NP. The assumption that we have access to an oracle
for solving problems in NP means, in particular, that we assume that we have the ability to solve
the decision version of an ILP in constant time, and hence, the optimization version of ILP in
polynomial time.

3.1 Weak Counterfactual Explanations

We first consider the problem of determining whether there exists a weak CE with respect to a
present optimization problem of the form (1), which we denote as WCE-FEAS. Formal complexity
arguments require careful specification of the input and its (encoded) size. For this problem, the
formal input is the triple (ĉ, Â, b̂) and the sets X , H, and D. To reason about complexity and
input sizes, we must make assumptions about the sets X , H, and D, and we assume here that these
sets are the feasible regions of ILPs (the results should hold for any sets for which the problem of
determining whether the set is non-empty is in NP). The size of the input is the sum of the sizes
of the descriptions of the individual components.
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When a weak CE exists, Equation (2) suggests both a certificate and a method of verifying it
that requires solving an ILP. It remains to show that there must always exist such a certificate that
is polynomial in the size of the input and that this certificate can be verified in polynomial time.

Theorem 1. WCE-FEAS is in Σp
2.

Proof. If a weak CE exists, this means that there must exist a point x∗ ∈ Zn and a triple
(c∗, A∗, b∗) ∈ Zn × Zm×n × Zn such that x∗ ∈ argminx∈X :A∗x≥b∗(c

∗)⊤x and that x∗ ∈ D. For
c̃ := (c∗)⊤x∗ we must then have that (x∗, c∗, A∗, b∗) ∈ Q where

Q := {(x, c, A, b) ∈ X ∩ D ×H : Ax ≥ b, c⊤x = c̃}

Since mixed-integer quadratic programming feasibility is in NP (see Theorem 1 in [PDM17]), there
must exist (x̄, c̄, Ā, b̄) ∈ Q that has size polynomial in the original input data. We claim that
(x̄, c̄, Ā, b̄) ∈ Q is then a certificate that can be checked in polynomial time, given an oracle for
problems in NP.

The verification requires checking first whether x̄ ∈ X ∩ D, which can be done in polynomial
time under our assumptions. Second, we need to check that x̄ ∈ argminx∈X :Āx≥b̄ c̄

⊤x. This can
also be done in polynomial time using the available NP oracle.

The following result then shows that WCE-FEAS is Σp
2-complete.

Theorem 2. WCE-FEAS is complete for Σp
2 and cannot be approximated with a constant ap-

proximation factor in polynomial time, unless the polynomial hierarchy collapses, even when H =
{ĉ} ×Ha × {b̂} (for given ĉ ∈ Zn and b̂ ∈ Zm) and X = {0, 1}n.

Proof. We reduce the unitary bilevel interdiction knapsack problem (UBIK) to WCE-FEAS.
UBIK is defined as follows: Let (c̄, ā, b̄) be an instance of the binary knapsack problem with n
items

max c̄⊤x

s.t. ā⊤x ≤ b̄,

x ∈ {0, 1}n,

where all entries of (c̄, ā, b̄) are positive and integer. Consider a follower, who desires a solution with
objective value at least K, and a leader who can delete up to k items from the knapsack. Then,
the UBIK consists of deciding if there exists a subset of items I ⊆ [n] with |I| ≤ k such that for
any feasible knapsack solution using only the items from [n] \ I, the objective value is strictly less
than a given target K. It was shown in [BTCCH] that UBIK is Σp

2-complete. The UBIK problem
is equivalent to an instance of WCE-FEAS where the present problem is

min − c̄⊤x

s.t. − ā⊤x ≥ −b̄,
x ∈ {0, 1}n,

which has been put into the required form by negating the input data, and the required sets are
defined as

• X = {0, 1}n,

• D = {x ∈ {0, 1}n : −c̄⊤x ≥ −K + 1}, and
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• H = {c̄}×Ha×{b̄}, where Ha = {a ∈ Rn : ai = −āi− δib̄, i ∈ [n],
∑n

i=1 δi ≤ k, δ ∈ {0, 1}n}.

The definition of D encodes the condition that the optimal values is strictly less than K, while
the definition of H encodes that up to k items may be forced to have value zero in the solution
(interdicted).

Now let a ∈ Ha be a weak CE. By construction, the maximum attainable objective of the
knapsack problem with weights a is K − 1. Furthermore, at most k items were interdicted (since
a ∈ Ha) to achieve that, i.e., a YES instance for UBIK. Similarly, if the weak CE problem is
infeasible this implies that for every set of at most size k of interdicted items there exists a KP
solution that has objective value at least K. Hence, we showed that UBIK is a yes-instance iff the
constructed weak CE problem is feasible.

Since UBIK is Σp
2-complete, the reduction shows that WCE-FEAS is Σp

2-hard. Together with
Theorem 1, this implies that WCE-FEAS is Σp

2-complete, even under strong restrictions. Notably,
the CE only requires solving a feasibility problem, which implies that no efficient approximation
algorithms exist unless the polynomial hierarchy collapses.

Remark 1. For the (3) where only the right hand side b is mutable, it suffices to enumerate all
relevant right hand side values of b. Assuming that Hb = {b ∈ Z : b ≤ b ≤ b̄}, we then have to solve
the problem

min
b∈Z, b≤b≤b̄

δ
(
(ĉ, Â, b), (ĉ, Â, b̂)

)
s.t. x ∈ argmin

x∈X :Âx≥b

ĉ⊤x,

x ∈ D.

We can now iterate through all values of b, sorted by distance regarding δ
(
(ĉ, Â, b), (ĉ, Â, b̂)

)
, and

for each, we can check if the Condition (2) for (ĉ, Â, b) is true. The latter condition can be verified
by checking

min
x∈X :Âx≥b

ĉ⊤x = min
x∈X∩D:Âx≥b

ĉ⊤x,

which involves solving two (potentially) NP-hard problems.

This remark leads to a solution algorithm when the present problem is a knapsack problem. If
at the same time the favored solution space is given by a fixed number of knapsack constraints, then
both problems we have to solve for every value of b can be solved in pseudopolynomial time, which
leads to a pseudopolynomial algorithm. The exact computational complexity discussion follows.

Theorem 3. Let the underlying problem be a knapsack problem, i.e., X = {0, 1}n, Â = â ∈ Zn
+

and
D =

{
x ∈ {0, 1}n : q⊤i x ≥ pi, i = 1, . . . , T

}
with qi ∈ Zn

+, pi ∈ Z for all i ∈ [T ]. Furthermore, assume Hb = {b ∈ Z : b ≤ b ≤ b̄}, then (3) can

be solved in time O
(
nb̄2

∏T
i=1(pi + 1)

)
.

Proof. First, note that if b < 0, then we can remove all negative values for b. Hence, in the worst
case we have to check b̄ times whether b is a weak CE. For each value of b, we have to solve two
multi-dimensional knapsack problems:

min
x∈{0,1}n:â⊤x≥b

ĉ⊤x and min
x∈{0,1}n:â⊤x≥b,

q⊤i x≥pi i=1,...,T

ĉ⊤x.
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The second problem can be solved by the classical pseudopolynomial algorithm for multi-dimensional

knapsack problems in time O
(
nb

∏T
i=1(pi + 1)

)
(see [Fre04]) and this dominates the runtime of

solving the classical knapsack problem on the left. Since b ≤ b̄ and we have to solve the latter
problems b̄ times, the desired result follows.

3.2 Strong Counterfactual Explanations

In this section, we show complexity results and solution algorithms for the problem of determining
whether there exists a strong CE, which we refer to as SCE-FEAS. The basic setup for SCE-FEAS
is the same as for the case of WCE-FEAS, and the problem has the same form of input. The
difference is in the verification problem, which is more involved in the case of a strong CE. Rather
than needing to show that ∃x ∈ D, x ∈ argminx∈X :Ax≥b c

⊤x, we need to show that ∀x ∈ D, x ∈
argminx∈X :Ax≥b c

⊤x.
We first provide the following proposition showing that for a given point (c, a, b) ∈ H, we can

check if the point is a strong CE by solving three NP-hard optimization problems.

Proposition 1. A parameter vector (c, A, b) ∈ H is a strong counterfactual explanation, if and
only if

min
x∈X :Ax≥b

c⊤x = min
x∈X∩D:Ax≥b

c⊤x ≤ min
x∈X\D:
Ax≥b

c⊤x− 1. (6)

Proof. The first equation ensures that some solution from D is indeed optimal for the parameters
(c, a, b), just as in the weak CE case. The second inequality ensures that all optimal solutions are
contained in D. The result follows directly from the definition of strong CE.

Note that the condition x /∈ D used in the last of the three problems is not always possible to
formulate compactly. If D is defined by a single constraint, i.e., D≥ = {x ∈ X :

∑
i∈I αixi ≤ β},

then the condition x /∈ D is equivalent to x ∈ {x ∈ X :
∑

i∈I αixi > β}. However, if the description
of D is given by multiple constraints, a big-M formulation may need to be used to model x /∈ D.
In the rest of the section, we assume that we have a polynomial size description for x /∈ D. Under
this condition, we show that SCE-FEAS is in Σp

2 by an argument similar to that for the weak CE,
but with a different certificate. In the case that a strong CE exists, there are points x∗1, x

∗
2 ∈ Zn

and a triple (c∗, A∗, b∗) ∈ Zn × Zm×n × Zn such that x∗1 ∈ argminx∈X :A∗x≥b∗(c
∗)⊤x, x∗1 ∈ D, and

x∗2 ∈ argminx∈X ,x ̸∈D:A∗x≥b∗(c
∗)⊤x, with (c∗)⊤x∗1 ≤ (c∗)⊤x∗2− 1. As in WCE-FEAS, we must show

that a certificate of polynomial size, consisting of these elements, must exist and can be verified in
polynomial time, given an oracle for problems in NP.

Theorem 4. SCE-FEAS is in Σp
2.

Proof. If a strong CE exists, this means that there must exist x∗1, x
∗
2 ∈ Zn and a triple (c∗, A∗, b∗) ∈

Zn×Zm×n×Zn such that x∗1 ∈ argminx∈X :A∗x≥b∗(c
∗)⊤x, x∗1 ∈ D, and x∗2 ∈ argminx∈X ,x ̸∈D:A∗x≥b∗(c

∗)⊤x,

with (c∗)⊤x∗1 ≤ (c∗)⊤x∗2 − 1. For c̃1 := (c∗)⊤x∗1 we must then have

(x∗1, x
∗
2, c

∗, A∗, b∗) ∈ R :=

{(x1, x2, c, A, b) ∈ (X ∩ D)×X ×H :

Ax1 ≥ b, Ax2 ≥ b, c⊤x1 = c̃1,

c⊤x1 ≤ c⊤x2 − 1}
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Since MIQP feasibility is in NP, there must exist (x̄1, x̄2, c̄, Ā, b̄) ∈ R that has size polynomial in
the original input data (see Theorem 1 in [PDM17]). We claim that (x̄1, x̄2, c̄, Ā, b̄) ∈ R is then a
certificate that can be checked in polynomial time, given an oracle for problems in NP.

The verification requires checking first whether x̄1 ∈ X ∩ D and x̄2 ∈ X , which can be
done in polynomial time under our assumptions. Second, we need to check both that x̄1 ∈
argminx∈X :Āx≥b̄ c̄

⊤x and whether x∗2 ∈ argminx∈X ,x ̸∈D:Āx≥b̄ c̄
⊤x. Both of these checks can also

be done in polynomial time using the available NP oracle.

Theorem 5. SCE-FEAS is complete for Σp
2, even for H = {ĉ} × Ha × {b̂}, where Ha is a finite

set, and X = {0, 1}n.

Proof. We use exactly the same reduction as in the proof of Theorem 2 with the same inputs,
but we simply interpret those inputs as a description of an instance of SCE-FEAS instead of
WCE-FEAS.

4 Algorithms

Building on our earlier observations regarding the structure of CE problems, we now present algo-
rithms designed to compute both weak and strong CEs.

4.1 Weak Counterfactual Explanations

In the following, we develop three algorithms corresponding to the three cases of the mutable
parameter space listed in Section 2.

Only objective function parameters are mutable. If â and b̂ are fixed, the mutable param-
eter space is denoted by Hc ⊆ Rn. In this case, we can reformulate (3) as

min
x,c

δ
(
(c, â, b̂), (ĉ, â, b̂)

)
(7a)

s.t. c⊤x ≤ c⊤y ∀y ∈ X : â⊤y ≥ b̂, (7b)

â⊤x ≥ b̂, (7c)

x ∈ D ∩ X , (7d)

c ∈ Hc, (7e)

where Constraints (7c) and (7d) ensure that an optimal solution x is feasible and lies in D, while
Constraints (7b) ensure that the solution x is optimal for the objective vector c. Note that the
problem has one constraint for every feasible solution y ∈ X ∩ {y : â⊤y ≥ b̂}, i.e., the formulation
can be of exponential size. Hence, we iteratively generate the constraints by finding the most
violating constraint via a separation problem in each iteration. This procedure is the same as in
[KB23] applied to our problem setup. The whole procedure can be found in Algorithm 1. The
correctness follows from the same argumentation as in [KB23].

Only constraint parameters are mutable. In this subsection, only the constraint parameters
a, b are mutable, i.e., ĉ is fixed. The mutable parameter space is denoted as Ha ×Hb, or in short,
Ha,b ⊆ Zn+1.
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Algorithm 1 Solve Problem (7)

Require: â, b̂, ĉ,D,X ,H
Ensure: Optimal solution c∗ of (7).
set Y ← ∅
optimal← false
while not optimal do

Calculate an optimal solution (c̃, x̃) of problem

min
c,x

δ
(
(c, â, b̂), (ĉ, â, b̂)

)
s.t. c⊤x ≤ c⊤y ∀y ∈ Y,

â⊤x ≥ b̂,

x ∈ D ∩ X ,
c ∈ Hc.

Calculate an optimal solution ỹ of the separation problem

min c̃⊤y

s.t. â⊤y ≥ b̂,

y ∈ X .

if c̃⊤ỹ < c̃⊤x̃ then
Y ← Y ∪ {ỹ}

else
optimal ← true ▷ End While Loop

end if
end while
return c̃
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We first define the smallest and the largest value an optimal solution x ∈ D ∩ X can have over
all parameter configurations (a, b) ∈ Ha,b. The smallest value is

cmin := min
(a,b)∈Hfeas

min
a⊤x≥b
x∈D∩X

ĉ⊤x (8)

and the largest value is
cmax := max

(a,b)∈Hfeas

min
a⊤x≥b
x∈D∩X

ĉ⊤x, (9)

whereHfeas :=
{
(a, b) ∈ Ha,b : {x ∈ D ∩ X : a⊤x ≥ b} ≠ ∅

}
. The following lemma provides a simple

way to calculate bounds for cmin and cmax.

Lemma 1. It holds
cmin ≥ min

a⊤maxx≥bmin
x∈D∩X

ĉ⊤x =: c

and
cmax ≤ max

a⊤maxx≥bmin
x∈D∩X

ĉ⊤x =: c̄,

where (amax)i := max(a,b)∈Ha,b
ai and bmin := min(a,b)∈Ha,b

b.

Proof. To prove the first result consider an arbitrary parameter configuration (a, b) ∈ Hfeas and
any feasible solution x∗, i.e., it holds a⊤x∗ ≥ b. Since (â, b̂) ∈ Ha,b such a point (a, b) always exists.
Then this solution is feasible for a⊤maxx ≥ bmin as well, since

a⊤maxx
∗ ≥ a⊤x∗ ≥ b ≥ bmin,

where the first inequality follows from x∗ ≥ 0 and the definition of amax. Hence, it holds for every
(a, b) ∈ Hfeas that

min
a⊤x≥b
x∈D∩X

ĉ⊤x ≥ min
a⊤maxx≥bmin

x∈D∩X

ĉ⊤x,

which proves the first result. The second result follows from a similar argumentation. Applying
the results above for all (a, b) ∈ Hfeas, we obtain

min
a⊤x≥b
x∈D∩X

ĉ⊤x ≤ max
a⊤x≥b
x∈D∩X

ĉ⊤x ≤ max
a⊤maxx≥bmin

x∈D∩X

ĉ⊤x,

which proves the result.

Since ĉ and all solutions x ∈ X have only integer entries, the objective value of the best solution
in D ∩ X for any (a, b) ∈ Hfeas is contained in

C := {cmin, cmin + 1, . . . , cmax}. (10)

The main idea of the algorithm developed in this section is to iterate over the values in C and
find the best parameter setting (a, b) ∈ Ha,b that ensures the existence of a optimal solution in D
with the corresponding optimal value from C. We first show the following lemma.
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Lemma 2. For every v ∈ C, the following problem is either infeasible or any optimal solution
(a∗(v), b∗(v)) is a (not necessarily optimal) weak counterfactual explanation:

min
a,b,x

δ
(
(ĉ, a, b), (ĉ, â, b̂)

)
(11a)

s.t. a⊤y ≤ b− 1 ∀y ∈ X : ĉ⊤y ≤ v − 1, (11b)

ĉ⊤x = v, (11c)

a⊤x ≥ b, (11d)

x ∈ D ∩ X , (11e)

(a, b) ∈ Ha,b. (11f)

Proof. Assume the problem is feasible. Since Ha,b is discrete and bounded the problem must have
an optimal solution (a∗(v), b∗(v), x∗). We have to show that this optimal solution is a counterfactual
explanation, i.e., there exists a solution x̃ ∈ D with

x̃ ∈ argmin
x∈X :a∗(v)⊤x≥b∗(v)

ĉ⊤x.

We show in the following that x∗ fulfills the latter condition. First, Constraint (11e) ensures that
x∗ ∈ D ∩ X . Constraint (11d) ensures that

a∗(v)⊤x∗ ≥ b∗(v)

holds. Second, Constraints (11b) and (11c) ensure that every solution in X which has a better ob-
jective value than ĉ⊤x∗ is infeasible. Hence, x∗ must be optimal for the problem, and (a∗(v), b∗(v))
is a weak counterfactual explanation.

The intuition behind Lemma 2 is as follows: The first set of constraints ensures that all solu-
tions y ∈ X which are better than the considered optimal value v are infeasible for the solution
(a∗(v), b∗(v)), i.e., the optimal value of the problem for the parameters (ĉ, a∗(v), b∗(v)) is at least v.
The remaining constraints ensure that a solution x ∈ D exists which is feasible for the constraint
parameters (a∗(v), b∗(v)) and has optimal value v. If such a solution exists, this solution must be
optimal, and hence (a∗(v), b∗(v)) is a weak CE and a possible candidate for an optimal weak CE.

To solve Problem (11) effectively, a cut generation procedure can be performed, where the
constraints for a solution y are separated iteratively. This procedure is shown in Algorithm 2. Note
that if in Algorithm 2 an upper bound d∗ for the cost of a CE is known, we use that bound to
cut off non-improving solutions. From classical constraint generation theory the following theorem
directly follows.

Theorem 6. Algorithm 2 calculates an optimal solution of Problem (11).

We now show that there must exist a value v∗ ∈ C such that (a∗(v∗), b∗(v∗)) is an optimal weak
counterfactual explanation.

Lemma 3. There exists a v∗ ∈ C, such that any optimal solution (a∗(v∗), b∗(v∗)) of Problem (11)
with v = v∗ is an optimal weak CE.

12



Algorithm 2 Solve Problem (11)

Require: v, â, b̂, ĉ,D,X ,Ha,b, known upper bound d∗ for (3)
Ensure: Optimal solution (a∗(v), b∗(v)) of (11).
set Y ← ∅
optimal← false
while not optimal do

Calculate an optimal solution (ã, b̃) of problem

min
a,b,x

δ
(
(ĉ, a, b), (ĉ, â, b̂)

)
s.t. a⊤y ≤ b− 1 ∀y ∈ Y,

ĉ⊤x = v,

a⊤x ≥ b,

x ∈ D ∩ X ,

δ
(
(ĉ, a, b), (ĉ, â, b̂)

)
≤ d∗,

(a, b) ∈ Ha,b.

If problem is infeasible, stop and return infeasible.
Otherwise, calculate an optimal solution ỹ of the separation problem

max ã⊤y

s.t. ĉ⊤y ≤ v − 1,

y ∈ X .

if ã⊤ỹ ≥ b̃ then
Y ← Y ∪ {ỹ}

else
optimal ← true ▷ End While Loop

end if
end while
return (ã, b̃)
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Proof. Let (a∗, b∗) ∈ Ha,b be an optimal weak CE, i.e., an optimal solution of Problem (3). Then
there exists a solution x∗ ∈ D which is optimal for the problem

v∗ := min ĉ⊤x

s.t. (a∗)⊤x ≥ b∗,

x ∈ X .

Since (a∗, b∗) ∈ Hfeas, cmin ≤ v∗ ≤ cmax must hold. And since ĉ ∈ Zn and X ⊂ Zn
+, v

∗ is integer
and it must hold that v∗ ∈ C. Hence, (a∗, b∗, x∗) is feasible for Constraints (11c) – (11f) for v = v∗.
Furthermore, from the optimality of x∗ and the integrality of y and ĉ, a∗, b∗, it follows that

(a∗)⊤y ≤ b∗ − 1 ∀y ∈ X : ĉ⊤y ≤ v∗ − 1.

We can conclude that (a∗, b∗, x∗) is feasible for Problem (11) with v = v∗. Since every optimal
solution of (11) is a weak CE by Lemma 2, it follows that (a∗(v∗), b∗(v∗)) must be an optimal weak
CE.

The latter two lemmas indicate that we can solve Problem (3) by iterating over all values v ∈ C
and solve the corresponding Problem (11). The best solution (a∗(v), b∗(v)) found over all these
values must then be an optimal solution of (3). While this idea is feasible, it may happen that C
contains a large number of values, and solving (3) for each is too expensive. To cut off unpromising
solutions, we derive a lower bound for the objective function values in the following lemma.

Lemma 4. For a given v̄ ∈ Z the optimal value of the following problem is a lower bound for every
feasible master problem (11) with integer v ≥ v̄:

min
a,b

δ
(
(ĉ, a, b), (ĉ, â, b̂)

)
s.t. a⊤y ≤ b− 1 ∀y ∈ X : ĉ⊤y ≤ v̄ − 1,

(a, b) ∈ Ha,b.

(12)

Proof. Consider an arbitrary v ≥ v̄ for which (11) is feasible and a corresponding arbitrary feasible
solution (a(v), b(v), x(v)) of (11). We show that (a(v), b(v)) is feasible for (12) to prove the result.
Clearly, (a(v), b(v)) ∈ Ha,b is true. Furthermore, from Constraints (11b) it follows that

a(v)⊤y ≤ b(v)− 1 ∀y ∈ X : ĉ⊤y ≤ v − 1.

Since v̄ ≤ v, (a(v), b(v)) must also be feasible for (12). This proves the result.

Problem (12) can be solved again by a constraint generation procedure, where we iteratively
generate constraints for corresponding solutions y ∈ X . An important property of Problem (12) is
the following:

Corollary 1. The lower bound provided by Lemma 4 is non-decreasing in v̄.

Proof. This follows immediately from the fact that for v ≥ v̄:

{y ∈ X : ĉ⊤y ≤ v̄ − 1} ⊆ {y ∈ X : ĉ⊤y ≤ v − 1}
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The resulting lower bounds can be used as a stopping criterion when iterating over all values
v ∈ C. More precisely, iterate through C starting with v = cmin and increasing it. For each v ∈ C, we
can solve (11) to obtain a feasible weak CE (if the corresponding problem is feasible). We can store
the best feasible weak CE (abest, bbest) and the corresponding distance dbest = δ(abest, â)+δ(bbest, b̂).
At the same time, for the current v, we can calculate the lower bound (12) with v̄ = v. If this lower
bound is at least as large as the best known value dbest, we can terminate early and (abest, bbest) is
an optimal weak CE. The whole procedure is presented in Algorithm 3.

Algorithm 3 Optimal Weak CE for Mutable Constraint Parameters.

Require: â, b̂, ĉ,D,Ha,b

Ensure: Optimal weak CE (a∗, b∗).
Best known solution: (a∗, b∗) = ∅
Best known distance: d∗ =∞
Best known lower bound: lb = −∞
Calculate bounds c, c̄ as in Lemma 1.
for all v = c, c+ 1, . . . , c̄ do

Set lb to the optimal value of (12) with v̄ = v.
if lb ≥ d∗ then

Stop and return (a∗, b∗).
else

Calculate opt. solution (a∗(v), b∗(v)) of Problem (11) by Algorithm 2.
if δ(a∗(v), â) + δ(b∗(v), b̂) < d∗ then

(a∗, b∗)← (a∗(v), b∗(v))
d∗ ← δ(a∗(v), â) + δ(b∗(v), b̂)

end if
end if

end for
return (a∗, b∗)

Remark 2. Before running Algorithm 3, we verify whether (â, b̂) is already a weak CE, which then
must be the optimal one. This verification involves solving two deterministic integer optimization
problems as described in Section 3.1. If the check is not successful, we run Algorithm 3.

Theorem 7. Algorithm 3 calculates an optimal weak CE for the case where only the parameters a
and b are mutable.

Proof. The correctness follows from Lemma 1, 2 and 4 and Theorem 6.

All parameters are mutable. In this section, all parameters in the objective and the constraint
are mutable. In this case the weak CE problem (3) can be formulated as follows:

min
c,a,b,x

δ
(
(c, a, b), (ĉ, â, b̂)

)
s.t. c⊤x ≤ c⊤y ∀y ∈ X : a⊤y ≥ b,

a⊤x ≥ b,

x ∈ D ∩ X ,
(c, a, b) ∈ H.
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Since the number and type of constraints depend on the decision variables a and b, the algorithms
from the previous sections are not applicable. However, (3) can be reformulated as

min
c,a,b,x,z

δ
(
(c, a, b), (ĉ, â, b̂)

)
s.t. c⊤x ≤ c⊤y +Mzy ∀y ∈ X , (13a)

a⊤y ≥ b−Mzy ∀y ∈ X , (13b)

a⊤y ≤ b− 1 +M(1− zy) ∀y ∈ X , (13c)

x ∈ D ∩ X , (13d)

a⊤x ≥ b, (13e)

zy ∈ {0, 1} ∀y ∈ X , (13f)

(c, a, b) ∈ H, (13g)

where M is a sufficiently large value. Constraints (13b) and (13c) ensure that zy = 0 if and
only if y is feasible for the choice of constraint parameters (a, b), and zy = 1, otherwise. Then,
Constraints (13a) ensure that the chosen solution x has the best objective value below all feasible
solutions y ∈ X , while for all infeasible y ∈ X the constraint is redundant due to the big-M value.
Constraints (13d) and (13e) ensure that the solution x is feasible for the chosen parameters a, b
and lies in D.

For linear representable distance functions δ, formulation (13) is bilinear, an thus can be solved
by state-of-the-art optimization solvers. However, it can contain an exponential number of con-
straints. Similar to the previous algorithms it can be solved by iteratively generating solutions
y ∈ X , corresponding variables zy and corresponding constraints. The procedure is presented in
Algorithm 4.

Theorem 8. Algorithm 4 calculates an optimal weak CE.

Proof. This follows analogously to Theorem 7.

Remark 3. We restricted the analysis of this section to the case of a single mutable constraint. The
reason is that in the master problems (11) and (13) we model the condition that certain solutions
y are infeasible. For multiple mutable constraints this would involve modeling the condition Ax ≱ b
which involves the introduction of big-M constraints, leading to the equivalent formulation

a⊤i x ≤ b− 1 +M(1− zi), i = 1, . . . ,m,
m∑
i=1

zi ≥ 1,

z ∈ {0, 1}n.

In our iterative framework, this results in generating a large set of big-M constraints and corre-
sponding binary variables. Since the resulting methods are computationally intractable even for few
dimensions, we refrain from presenting this case in detail. On the other hand, for the case of a
single mutable constraint the condition a⊤x ≱ b can be easily formulated as a⊤x ≤ b− 1.

4.2 Strong Counterfactual Explanations

As in the case of weak CE algorithms, we can develop three algorithms corresponding to the three
cases of the mutable parameter space listed in Section 2.
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Algorithm 4 Solve Problem (13)

Require: â, b̂, ĉ,D,X ,H
Ensure: Optimal solution (a∗, b∗, c∗) of (13).
set Y ← ∅
optimal← false
while not optimal do

Calculate an optimal solution (ã, b̃, c̃, x̃) of problem

min
c,a,b,x,z

δ
(
(c, a, b), (ĉ, â, b̂)

)
s.t. c⊤x ≤ c⊤y +Mzy ∀y ∈ Y,

a⊤y ≥ b−Mzy ∀y ∈ Y,
a⊤y ≤ b− 1 +M(1− zy) ∀y ∈ Y,
x ∈ D ∩ X ,
a⊤x ≥ b,

zy ∈ {0, 1} ∀y ∈ Y,
(c, a, b) ∈ H.

Calculate an optimal solution ỹ of the separation problem

min c̃⊤y

s.t. ã⊤y ≥ b̃,

y ∈ X .

if c̃⊤ỹ < c̃⊤x̃ then
Y ← Y ∪ {ỹ}

else
optimal ← true ▷ End While Loop

end if
end while
return (ã, b̃, c̃)
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Only objective function parameters are mutable. In this subsection, only the objective
parameters are mutable, i.e., â and b̂ are fixed. The mutable parameter space is denoted asHc ⊂ Rn.
In this case, we can reformulate (5) as

min
x,c

δ
(
(c, â, b̂), (ĉ, â, b̂)

)
(14a)

s.t. c⊤x ≤ c⊤y − 1 ∀y ∈ X \ D : â⊤y ≥ b̂, (14b)

â⊤x ≥ b̂, (14c)

x ∈ D ∩ X , (14d)

c ∈ Hc, (14e)

where Constraints (14c) and (14d) ensure that a solution x from D is feasible, while Constraints
(14b) ensure that any feasible solution in X \ D cannot be optimal. It follows that for an opti-
mal solution c∗ of (14) all optimal solutions must be contained in D. Note that (14) can have
one constraint for every feasible solution y ∈ X \ D, of which there can be exponentially many.
Hence, similar to Algorithm 1 we iteratively generate the constraints by finding the most violating
constraint via the separation problem

min c⊤y

s.t. â⊤y ≥ b̂,

y ∈ X \ D.

Note that the essential difference to the weak CE algorithm is the constraint y ∈ X \ D in
the separation problem. For simple cases of D (e.g., if D is described by a single constraint or by
variable fixations), this condition can be modeled by linear constraints. However, in general this
condition may involve the use of big-M constraints, similarly as described in Remark 3.

Only constraint parameters are mutable. The ideas for the weak CEs can be extended to
the strong CE case. We assume again that ĉ only has integer entries and define the set C as in
(10). Analogously to Lemma 2, we can verify the following result: For every v ∈ C, the following
problem is either infeasible or an optimal solution thereof is a (not necessarily optimal) strong
counterfactual explanation:

min
a,b,x

δ
(
(ĉ, a, b), (ĉ, â, b̂)

)
(15a)

s.t. a⊤y ≤ b− 1 ∀y ∈ X \ D : ĉ⊤y ≤ v, (15b)

ĉ⊤x = v, (15c)

a⊤x ≥ b, (15d)

x ∈ D ∩ X , (15e)

(a, b) ∈ Ha,b. (15f)

If the strong CE problem is feasible, Constraints (15c) – (15e) ensure that there exists a solution
x ∈ D which is feasible and this solution has objective value v. Constraints (15b) ensure that every
solution, which is not in D and has objective value at least as good as v, is not feasible. Hence,
feasible solutions outside of D are not optimal.

The same result of Lemma 3 holds for the strong CE version, i.e., there exists a v∗ ∈ C, such
that any optimal solution of (15) is an optimal solution of (5). Likewise, similar to the lower bound
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in Lemma 4, it is easy to see that the following problem provides a lower bound for every problem
(15) with integer v ≥ v̄:

min
a,b

δ
(
(ĉ, a, b), (ĉ, â, b̂)

)
(16a)

s.t. a⊤y ≤ b− 1 ∀y ∈ X \ D : ĉ⊤y ≤ v̄, (16b)

(a, b) ∈ Ha,b. (16c)

Hence Algorithm 2 and Algorithm 3 can be directly adapted for the strong CE case by replacing
each subproblem with the adapted version presented above. The details of the corresponding
algorithms are presented in the Appendix as Algorithm 5 and Algorithm 6.

All parameters are mutable. In this section all parameters in the objective and the constraints
are mutable. In this case, the strong CE problem (5) can be reformulated as

min
c,a,b,x

δ
(
(c, a, b), (ĉ, â, b̂)

)
(17a)

s.t. c⊤x ≤ c⊤y − 1 ∀y ∈ X \ D : a⊤y ≥ b, (17b)

a⊤x ≥ b, (17c)

x ∈ D ∩ X , (17d)

(c, a, b) ∈ H. (17e)

The main difference to the weak CE case is that (17b) ensures that all solutions which are not in
D cannot be optimal. As for the weak CEs, we can then reformulate Problem (17) as

min
c,a,b,x,z

δ
(
(c, a, b), (ĉ, â, b̂)

)
(18a)

s.t. c⊤x ≤ c⊤y − 1 +Mzy ∀y ∈ X \ D, (18b)

a⊤y ≥ b−Mzy ∀y ∈ X \ D, (18c)

a⊤y ≤ b− 1 +M(1− zy) ∀y ∈ X \ D, (18d)

x ∈ D ∩ X , (18e)

a⊤x ≥ b, (18f)

zy ∈ {0, 1} ∀y ∈ X , (18g)

(c, a, b) ∈ H, (18h)

where M is a large enough big-M value. Constraints (18c) and (18d) ensure that zy = 0 if and
only if y is feasible for the choice of constraint parameters (a, b) and zy = 1 otherwise. Hence,
Constraints (18b) ensure that the chosen solution x has the best objective value below all feasible
solutions y ∈ X while for all infeasible y ∈ X the constraint is redundant due to the big-M value.
Constraints (18e) and (18f) ensure that the selected solution x is feasible for the chosen parameters
a, b and lies in D.

Analogously to the weak CEs, formulation (18) is bilinear and can be solved by state-of-the-art
optimization solvers. However, it can contain an exponential number of constraints. Similar to
the previous algorithms it can be solved by iteratively generating solutions y ∈ X , corresponding
variables zy and corresponding constraints. The procedure is presented in Algorithm 7 in the
Appendix.
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5 Computational Study

In this section, we perform numerical experiments on a set of test problems to evaluate the perfor-
mance of the proposed algorithms in obtaining both weak and strong CEs.

5.1 Setup of Knapsack Instances

Data. We tested the algorithms on knapsack benchmark instances from kplib1, which we inter-
preted as cover instances to be consistent with the notation throughout this work. The instances
were originally designed according to the procedure outlined in Kellerer, Pferschy & Pisinger [KPP04].
We used instances with a data range of 10002 and instance sizes in [10, 20, 30, 40], which were gen-
erated by slicing larger instances. Since it is well-known that the practical hardness of knapsack
problems depends on the instance structure [Pis05, SMCM21], e.g., if items value/weight ratios are
correlated, the problems tend to be harder to solve in practice [Pis05], we use both 20 uncorrelated
and strongly correlated instances each. In total, we consider 4× 2× 20 = 160 testing instances per
favored solution space and CE type.

Favored solution spaces. Let I+, I− ⊂ {1, . . . , n} with I+ ∩ I− = ∅ be index sets of variables
that are to be fixed to 1 or 0, respectively. Then, we define two sets for positive and negative
fixations as D+ = {x ∈ {0, 1}n : xi = 1 ∀i ∈ I+} and D− = {x ∈ {0, 1}n : xi = 0 ∀i ∈ I−}
respectively. In our computational experiments, the number of elements to be fixed is set to the
following fraction: ⌈

0.1 · b
1
n

∑
i∈n̄ ai

⌉
.

Intuitively, this means 10% of the items in an expected cover solution are fixed to some value. In
each case, the present cover problem was first solved. Then, the favored elements were randomly
selected among the items that were not part of the present solution.

We also define a favored solution space D≥ for given parameters α ∈ {0, 1}n and β ∈ N:

D≥ = {x ∈ {0, 1}n :
∑
i∈I

αixi ≥ β}.

For our computational experiments, 10% of all items are randomly selected to be part of the
constraint and β = 1, i.e., at least one item from the constraint set must be selected.

For each of the three types of favored solution spaces, we need to be able to take the complement
of D to model the constraint y ∈ X \ D in the separation problems for the strong CEs. The
complement of D≥ is given by the knapsack constrained set

{x ∈ {0, 1}n :
∑
i∈I

αixi ≤ β − 1}.

Similarly, the complements of D+ and D− are

{x ∈ {0, 1}n :
∑
i∈I+

xi ≤ |I+| − 1},

1See https://github.com/likr/kplib.
2Note that Algorithms 3, 4, 6 and 7 are sensitive to changes in the data range by design, i.e., changes in the data

range will lead to a proportional change in the number of subproblems, and thus the runtime.
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{x ∈ {0, 1}n :
∑
i∈I−

xi ≥ 1},

respectively.

Mutable parameter space. For the mutable parameter spaces, we consider only settings where
parameters can be changed homogeneously by a flat percentage of 5%. For the distance δ we use
the sum of absolute deviations, i.e., the ℓ1-norm, as the objective function. Thus, in total we get
160× 3× 2 = 960 different instances.

Implementation. We implemented all proposed algorithms in Python using Gurobi 12.0.0 as a
solver. All data and code are made available upon request. All computations were ran on RWTH
Aachen Universities’ High-Performance Computing (HPC) CLAIX on Intel Xeon 8468 Sapphire
nodes with a single 2.1 GHz core and 5GB RAM each. We used a maximum runtime of 10h. A
full implementation of all code is provided under [EKBR25] 3.

5.2 Computational Results on Knapsack Instances

Existence and cost of counterfactual explanations. In total, we found an optimal counter-
factual for 668 instances among 960. Of the remainder, in 10 instances of size 30 and in 32 instances
of size 40 the runtime of 10h was insufficient to prove optimality or infeasibility. A further 250
instances were flagged as infeasible, generally due to finding an infeasible lower bound subproblem.
Of the 250 infeasible instances, only four were strongly correlated, and the remainder were among
the uncorrelated instances.

Finding a feasible solution required on average a relative change of 0.25±0.48% in weights, with
a range of 0%−3%. However, note that for many uncorrelated instances, we did not find a feasible
solution. Thus, for those instances, a larger mutable parameter space might be necessary. Note
that larger parameter spaces imply larger ranges of C as well. In our study, up to 2590 different
potential objective values were considered per instance with an average of 1160± 597 values. This
excludes the effect of the lower bound proposed in Lemma 4 shown in the next subsection.

Effect of lower bound. We find that the lower bound reduces the number of iterations required
to solve an instance to optimality by more than 50%. Figures 2 and 3 illustrate this for strong and
weak CEs, respectively.

We also observe that good solutions are centered around the halfway point of 50%, which tends
to be close to the original objective value. Thus heuristically searching for small changes to the
weights that lead to solutions close to the original objective function value appears to be a promising
search strategy. However, this sacrifices the lower bound from Lemma 4 that significantly accelerates
the exact approach. The observations above apply for both weak and strong CEs equally.

Scaling of runtime. As to be expected, runtime increases significantly with instance size. Fig-
ures 4a and 4b illustrate this. The number of cuts required scales equally with instance size, as
can be seen in Figures 4c and 4d. In summary, CE can be computed using the algorithms pro-
vided. However, runtime and memory demands scale exponentially with instance size, which is to
be expected for a Σp

2-complete problem.
We can also illustrate this using primal-dual gaps. For that we restrict the data displayed to

the 1st and 2nd item from each size, i.e 10, 20, 30, and 40. This is shown in Figure 5.

3See https://zenodo.org/records/18110317
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Figure 2: Progress towards optimal solution for 480 strong CE instances of size 10, 20, 30, 40 that
were solved to optimality. Red are primal and blue are dual bounds. The x-axis is normalized to
the total number of values in C. The y-axis is normalized around each instance’s optimum.

Figure 3: Progress towards solution for 480 weak CE instances of size 10, 20, 30, 40 that were solved
to optimality. Red are primal and blue are dual bounds. The x-axis is normalized to the total
number of values in C. The y-axis is normalized around each instance’s optimum.

Deriving insights from counterfactuals. Computing CEs can also enable us to quantify (par-
tial) decision values in terms of their contribution to an objective. Although strongly correlated
instances are generally considered to be harder, the fact that all items have a similar cost/weight
ratio means small changes in weights are sufficient to add/remove an element from a solution.
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(a) Strong CE runtimes (b) Weak CE runtimes

(c) Strong CE number of cuts (d) Weak CE number of cuts

Figure 4: Boxplot comparison of runtimes (top row) and total number of generated cuts (bottom
row) for 480 strong and weak CE instances with sizes 10, 20, 30, and 40. Instances not solved to
optimality are assigned 36000s (10h).

As an example, consider CEs for the cover instance in Table 1.

Table 1: Exemplary strongly correlated cover instance. For a demand/capacity of 2358, an optimal
cover picks items 1, 2, and 7 for a total objective of 2701.

Item 0 1 2 3 4 5 6 7 8 9

Weight 135 848 764 256 496 450 652 789 94 29
Costs 235 948 864 356 596 550 752 889 194 129

We compute a strong CE for every item that is not currently part of the optimal solution, with a
positive fixation for each. More precisely, for each item i that is not part of the optimal solution we
calculate the minimal parameter change needed such that item i is included in all optimal solutions.
The results are given in Table 2.

We observe different types of modifications: To enforce item 0, the incumbent solution is made
less attractive, thus item 7 is then substituted by items 0 and 6. For items 4, 5 and 6, we see
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Figure 5: Progress towards solution for 64/96 strong CE instances solved to optimality. Blue
instances are size 40, red instances are size 30, yellow and green correspond to sizes 20, 10. The
x-axis is normalized to the total number of values in C. The y-axis is normalized around each
instance’s optimum.

Table 2: Comparison of CEs for different items in a strongly correlated instance sorted by cost.
The cost/weight ratio is based on the initial weights, items [1, 2, 7] have a ratio of 0.89/0.88/0.88
respectively.

Item CE cost cost
weight ratio Changes to weights New solution

0 44 0.57 1:-9, 2:-5, 7:-30 [0, 1, 2, 6]
4 44 0.83 1:-41, 2:-3 [2, 4, 5, 6]
5 44 0.81 1:-42, 7:-2 [2, 4, 5, 6]
6 44 0.87 1:-42, 7:-2 [2, 4, 5, 6]
8 51 0.48 2:-5, 4:-2, 6:+1, 7:-39, 8:+4 [1, 2, 6, 8]
3 64 0.72 2:-38, 5:+21, 7:-6 [1, 3, 5, 7]
9 65 0.22 2:+42, 3:+22, 9:+1 [1, 2, 6, 9]

that CEs themselves contain alternatives, e.g., to ensure either item is part of an optimal solution
multiple equivalent changes of weights lead to the new solution of [2, 4, 5, 6]. Item 8 is significantly
less attractive, enforcing it to be part of a solution requires a higher CE cost, even more so for items
3 and 9. Finally, we observe that simple metrics such as cost/weight are insufficient to capture
modeling dynamics – item 9 is very good in terms of cost/weight ratio, but still unattractive for
optimal solutions. Thus, CEs allow for more differentiated evaluation of (partial) solutions.

5.3 An Application to the Resource Constrained Shortest Path Problem

In many cases, even considering few mutable constraints allows us to derive insights into an instance.
Next, we examine the following setting: The task is to route traffic through a given graph, where
using an arc comes with a toll. Given a limited toll budget this problem can be modeled as a
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Resource Constrained Shortest Path (RSCP). A CE in the toll parameters asks now how we have
to change the toll such that an optimal path would use a certain edge or not.

Figure 6: CE for RCSP problem. Edge values indicate (length, toll). The red path is the original
shortest path for a toll budget of 8; the least change in toll that leads to e(1,2) not being part of an
optimal solution is given by lowering the toll of e(3,4) by one unit, resulting in the green RCSP.

Figure 6 illustrates a counterfactual in such a setting for a toy example. If we assume a toll
budget of 8 units, initially, the red path is the shortest path, with total length 12. Assume the
arc e(1,2) goes through the city center and we would like to avoid routing traffic through there
whenever possible. Our question would then be: What is the smallest change so that the arc e(1,2)
is no longer part of a shortest path? The result is given by the green path, which has total length
9 and requires a single change to the data, i.e., lowering the toll of arc e(3,5) by one unit. In our
example, this would mean that if we wanted to avoid routing traffic through the city center e(1,2),
the best way to do so is to waive the toll on e(3,5) making it more attractive to bypass the city
center.

In terms of mathematics, note that the RCSP contains multiple flow conservation constraints.
However, since those are immutable, they do not affect our algorithm. Furthermore, we can bound
the cost values c by finding the optimal RCSP for each feasible value of b, i.e., the toll budget.

Solving RCSP pricing problems. Finally, we test our algorithm on a set of benchmark in-
stances from literature. For that, we use the SPPRCLIB data set provided by Jepsen et al. [JPS08].
The instances represent pricing problems from solving capacitated vehicle routing problems with
column generation, see [FLL+06]. As such, they contain negative node weights, as well as a re-
source constraint on the nodes. In Appendix B, we provide a ILP formulation of such problems. We
restrict ourselves to the case that source and sink are the first and last indexed node, respectively,
and round node weights to the nearest thousand and scaled down accordingly, e.g. 43000 to 43.
The instances are complete graphs with 45 − 262 nodes. We investigate what would be the least
change to the weights in the resource constraint by a maximum of 10% to exclude the current first
node from the shortest path. In the context of a pricing problem, this would imply computing a
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least change to the duals that would have led to a different column being added.
Of 44 instances, we found a weak CE for 22. Of these 22 instances, for 5 the original solution

was already a counterfactual explanation. Finding a CE took an average of 15±19s and a maximum
of 63s. In about half the cases, the new RSCPs only have small alterations, for the other half, a
completely new path is chosen. We note that we can thus compute CEs also for larger and more
complex problems, provided the mutable part is limited. In the context of RSCP, this might allow
insights into reoccurring patterns or the lack thereof in column generation.

6 Conclusion

In this work, we studied weak and strong counterfactual explanations (CEs) for integer (linear)
optimization problems. We showed that in the general case, computing a counterfactual increases
complexity by one level in the polynomial hierarchy, that is, NP-complete problems have a coun-
terfactual that is Σp

2-complete, which is equivalent to general bilevel integer linear programming.
We present algorithms to calculate counterfactual explanations for integer linear problems and im-
plemented a tractable version thereof, which we evaluated on cover problem instances. We found
that the proposed approach works well for instances with up to 40 items.

There are several open research directions to extend our work. Further research could consider
and exploit specific (combinatorial) structures of the present problem to detect situations where
calculating CEs is on a lower rank of the polynomial hierarchy and computationally less demanding.
Developing heuristics also presents another promising avenue for further research. These methods
can deliver computationally efficient solutions that closely approximate the optimal results. Beyond
their standalone utility, these heuristic solutions can also serve as effective starting points for the
exact algorithms that we proposed here.

7 Code and Data Disclosure

The code and data to support the numerical experiments in this paper can be found at [EKBR25]
, respectively under the link https://zenodo.org/records/18110317.
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library. We thank Christina Büsing and Hector Geffner for enabling this research collaboration, as
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Appendix

A Algorithms for Strong CEs

Algorithm 5 Solve Problem (15)

Require: v, â, b̂, ĉ,D,X ,Ha,b, known upper bound d∗ for (3)
Ensure: Optimal solution (a∗(v), b∗(v)) of (11).
set Y ← ∅
optimal← false
while not optimal do

Calculate an optimal solution (ã, b̃) of problem

min
a,b,x

δ(a, â) + δ(b, b̂)

s.t. a⊤y ≤ b− 1 ∀y ∈ Y,
ĉ⊤x = v,

a⊤x ≥ b,

x ∈ D ∩ X ,
δ(a, â) + δ(b, b̂) ≤ d∗,

(a, b) ∈ Ha,b.

If problem is infeasible, stop and return infeasible.
Otherwise, calculate an optimal solution ỹ of the separation problem

max ã⊤y

s.t. ĉ⊤y ≤ v,

y ∈ X \ D.

if ã⊤ỹ ≥ b̃ then
Y ← Y ∪ {ỹ}

else
optimal ← true ▷ End While Loop

end if
end while
return (ã, b̃)

B Integer Programming Formulations for the Resource Constrained
Shortest Path Problems

For the toy example, let cij be costs for arc ij ∈ A and wij the respective weights. Furthermore,
we designate a start node s and a target node t. Then, we define a decision variable xij ∈ {0, 1}
that is 1 if arc ij is part of the shortest path and 0 otherwise. The RCSPP is then given by:
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Algorithm 6 Optimal Strong CE for Mutable Constraint Parameters.

Require: â, b̂, ĉ,D,Ha,b

Ensure: Optimal weak CE (a∗, b∗).
Best known solution: (a∗, b∗) = ∅
Best known distance: d∗ =∞
Best known lower bound: lb = −∞
Calculate bounds c, c̄ as Lemma 1.
for all v = c, c+ 1, . . . , c̄ do

Set lb to the optimal value of (16) with v̄ = v.
if lb ≥ d∗ then

Stop and return (a∗, b∗).
else

Calculate opt. solution (a∗(v), b∗(v)) of Problem (15) by Algorithm 5.
if δ(a∗(v), â) + δ(b∗(v), b̂) < d∗ then

(a∗, b∗)← (a∗(v), b∗(v))
d∗ ← δ(a∗(v), â) + δ(b∗(v), b̂)

end if
end if

end for
return (a∗, b∗)

min
∑

(i,j)∈A

cijxij

s. t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji =


1, i = s,

−1, i = t,

0, else,

∀i ∈ V,

∑
(i,j)∈A

wij xij ≤ b, (R)

xij ∈ {0, 1}, ∀(i, j) ∈ A.

In our setting, we assume that only the resource constraint R is mutable.
For the SPPRCLIB instances, the resource constraints are formulated on nodes, not edges.

Furthermore, nodes also incur cost ck for a node k. Thus, we use a modified formulation, as seen
below:
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Algorithm 7 Solve Problem (18)

Require: â, b̂, ĉ,D,X ,H
Ensure: Optimal solution (a∗, b∗, c∗) of (18).
set Y ← ∅
optimal← false
while not optimal do

Calculate an optimal solution (ã, b̃, c̃, x̃) of problem

min
c,a,b,x,z

δ(c, ĉ) + δ(a, â) + δ(b, b̂)

s.t. c⊤x ≤ c⊤y − 1 +Mzy ∀y ∈ Y,
a⊤y ≥ b−Mzy ∀y ∈ Y,
a⊤y ≤ b− 1 +M(1− zy) ∀y ∈ Y,
x ∈ D ∩ X ,
a⊤x ≥ b,

zy ∈ {0, 1} ∀y ∈ Y,
(c, a, b) ∈ H.

Calculate an optimal solution ỹ of the separation problem

min c̃⊤y

s.t. ã⊤y ≥ b̃,

y ∈ X \ D.

if c̃⊤ỹ < c̃⊤x̃ then
Y ← Y ∪ {ỹ}

else
optimal ← true ▷ End While Loop

end if
end while
return (ã, b̃, c̃)
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min
∑

(i,j)∈A

cijxij +
∑

(i,j)∈A

ci + cj
2

xij +
cs + ct

2

s. t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji =


1, i = s,

−1, i = t,

0, else,

∀i ∈ V,

∑
(i,j)∈A

wi + cj
2

xij +
ws + wt

2
≤ b, (R)

xij ∈ {0, 1}, ∀(i, j) ∈ A.
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