# A Simple First-Order Algorithm for Full-Rank Equality Constrained Optimization

S. Gratton\* and Ph. L. Toint $^{\dagger}$ 17 X 2025

#### Abstract

A very simple first-order algorithm is proposed for solving nonlinear optimization problems with nonlinear equality constraints. This algorithm adaptively selects steps in the plane tangent to the constraints or steps that reduce infeasibility, without using a merit function or filter. The tangent steps are based on the AdaGrad method for unconstrained minimization. The objective function is never evaluated by the algorithm, making it suitable for noisy problems. Its worst-case evaluation complexity is analyzed, yielding a global convergence rate in  $\mathcal{O}(1/\sqrt{k})$ , which matches the best known rate of first-order methods for unconstrained problems. Numerical experiments are presented suggesting that the performance of the algorithm is comparable to that of first-order methods for unconstrained problems, and that its reliability is remarkably stable in the presence of noise on the gradient.

**Keywords:** Equality constrained optimization, objective-function-free optimization (OFFO), first-order methods, AdaGrad, evaluation complexity.

### 1 Introduction

Solving nonlinear problems with nonlinear equality constraints is a central part of more general constrained optimization, and the purpose of this paper is to contribute to the subject by proposing a very simple algorithm for the case where the constraints' Jacobian is full-rank. We introduce a method drawing its inspiration both from the "trust-funnel" approaches [17, 8] and the objective-function free (OFFO) first-order algorithms that have become very popular because of their successful use in deep learning applications. Trust-funnel methods themselves exploit the older idea of decomposing the step computed within an optimization algorithm for constrained problems into a "tangential" and a "normal" components. Advocated in particular by Byrd and Omojokun [24] for sequential quadratic programming, this last idea is to consider that a useful minimization step should, on the one hand, improve the value of the objective function without deteriorating the constraints's violation too much (this is the tangential step, because it can be interpreted as a step (nearly) tangent to the constraint's surface) and, on the other hand, improve feasibility (the normal step, mostly orthogonal to the constraints' surface). This technique has been successfully used by many algorithms, and in particular by trust-funnel ones. In this case, the two types of steps are treated separately and a choice between normal and tangential steps is made at every iteration by comparing constraint violation (primal feasibility) with some dual optimality measure. Our new proposed algorithm uses a similar mechanism, although considerably simplified. Our second source of inspiration is the thriving field of first-order methods for unconstrained problems, and, more specifically, the well-known and well understood AdaGrad [10, 29, 9, 19] algorithm. Such methods are attractive because they avoid computing the value

<sup>\*</sup>Université de Toulouse, INP, IRIT, Toulouse, France. Email: serge.gratton@enseeiht.fr. Work partially supported by 3IA Artificial and Natural Intelligence Toulouse Institute (ANITI), French "Investing for the Future - PIA3" program under the Grant agreement ANR-19-PI3A-0004"

<sup>&</sup>lt;sup>†</sup>NAXYS, University of Namur, Namur, Belgium. Email: philippe.toint@unamur.be

of the objective function entirely (they only rely on gradients). This feature makes them quite robust in the presence of noise on the gradient, as is commonly the case when its evaluation involves subsampling. Again, our new method exploits this OFFO<sup>1</sup> strategy to achieve robustness. In effect, it consists of a simplified trust-funnel method in which the tangential step is computed using the AdaGrad algorithm.

Other OFFO methods for constrained optimization have been proposed. The stochastic algorithm proposed in [1] uses a combined tangential and normal step for a quadratic model of a merit function. A (nontrivial) stochastic analysis of its convergence (albeit not its worst-case complexity) is provided. It also allows the use of second-order information, at the cost of a somewhat complicated algorithm. [7] extends this proposal to handle inequality constraints and provides an updated convergence analysis. The algorithm of [11] is more similar to ours, but differs in significant aspects. Although it uses tangential and normal steps, it does so at every iteration. The step in the Jacobian's nullspace is computed by a standard trust-region technique and a special rule is provided to update its radius. It also relies on an explicit penalty parameter with is updated in the course of the algorithm. Convergence of the algorithm is also analyzed in a stochastic setting. The method of [4] is inspired by filter methods (another class of methods for nonlinear optimization [13, 14, 12]) and also alternates between steps which attempts to reduce constraints' infeasibilities and "optimality" steps improving the objective function value, albeit ignoring the presence of constraints in the second case. Good numerical results are reported on deep learning problems, but no convergence theory or complexity analysis is provided.

In view of these comments, we summarize our contributions as follows.

- 1. In order to solve problem (2.1), we propose an "adaptive' switching" algorithm, dubbed ADSWITCH, which can be viewed as a simplified trust-funnel method. ADSWITCH uses the purely OFFO first-order AdaGrad algorithm in the plane tangent to the constraints.
- 2. We provide a complete worst-case complexity analysis for the case where the objective's gradient and the constraints are deterministic, under assumptions similar to those used in [1, 7].
- 3. We illustrate the practical behaviour of the method on a subset of the CUTEst problems [15] as provided by the S2MPJ environment [21].

The paper is organized as follows. The ADSWITCH algorithm is introduced in Section 2 together with the necessary concepts and notation. Section 3 contains the relevant complexity analysis. Numerical illustration is finally proposed in Section 4 while some conclusions and perspectives are discussed in Section 5.

**Notations:** In what follows,  $\|\cdot\|$  denotes the Euclidean norm on the relevant space,  $\sigma_{\min}(M)$  is the smallest singular value of the matrix M.

## 2 An adaptative switching algorithm

We propose solving the smooth equality constrained problem

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{such that} \qquad c(x) = 0, \tag{2.1}$$

using the purely first-order ADSWITCH method, which we now describe after establishing some notation. In (2.1), f is a smooth function from  $\mathbb{R}^n$  into  $\mathbb{R}$  and c is a smooth function from  $\mathbb{R}^n$  into  $\mathbb{R}^m$  ( $m \leq n$ ). For a given vector x, we assume that we can compute the gradient  $g(x) = \nabla_x f(x)$ , as well as the (exact) Jacobian of the constraints at x

$$J(x) = \nabla c(x) \in \mathbb{R}^{m \times n}$$
.

<sup>&</sup>lt;sup>1</sup>Objective-Function-Free Optimization.

<sup>&</sup>lt;sup>2</sup>Since the optimality steps ignore the constraints' geometry, it seems possible that their effect might significantly decrease feasibility and that cycling could occur.

Assuming J(x) has full rank, we may also compute the orthogonal projection onto its nullspace by

$$P_T(x) \stackrel{\text{def}}{=} I - J(x)^T (J(x)J(x)^T)^{-1} J(x).$$

Given this projection, the projected gradient is then

$$g_T(x) \stackrel{\text{def}}{=} P_T(x) g(x) \tag{2.2}$$

We may also define the (exact) least-squares Lagrange multiplier  $\hat{\lambda}(x)$  by

$$(J(x)J(x)^T)\widehat{\lambda}(x) = -J(x)\nabla f(x), \qquad (2.3)$$

the standard Lagrangian

$$L(x,\lambda) = f(x) + \lambda^T c(x) \tag{2.4}$$

and, for  $\rho$  fixed, the associated "augmented-Lagrangian-like" Lyapunov function

$$\psi_{\rho}(x,\lambda) \stackrel{\text{def}}{=} L(x,\lambda) + \rho \|c(x)\|, \tag{2.5}$$

which we often abbreviate for  $\lambda = \hat{\lambda}(x)$ , as

$$\psi(x) \stackrel{\text{def}}{=} \psi_{\rho}(x, \widehat{\lambda}(x)). \tag{2.6}$$

The definitions imply the important properties that

$$g_T(x) = \nabla f(x) + J(x)^T \hat{\lambda}(x)$$
 and  $J(x) g_T(x) = 0$ , (2.7)

and also that, for  $\lambda$  fixed to  $\widehat{\lambda}(x)$ ,

$$\nabla_x L(x,\lambda) = g_T(x). \tag{2.8}$$

By construction, we also have that

$$c(x)^T J(x) g_T(x) = 0.$$
 (2.9)

We are now in position to specify ADSWITCH in detail on the following page. As announced in the introduction, the algorithm uses two types of steps: "tangential steps" attempt to reduce the objective-function value (without evaluating it!) in the nullspace of the constraints, while "normal steps" aim at reducing infeasibility. Which type of step is used at a given iteration depends on the respective values of the tangential step and constraint violation.

- The tangential step is the standard AdaGrad-norm [29] step in the nullspace of the Jacobian.
- The statement of the procedure to find the normal step in Step 3 may seem abstract because  $\kappa_{\text{nrm}}$  may not be known, but, fortunately, there exist several standard techniques to achieve (2.15)-(2.16).

A first technique is to use a standard Armijo backtracking linesearch along the steepest-descent direction  $-J_k^T c_k$  (see Lemma 3.3). It is well-known that (2.16) holds in this case with  $\kappa_{\text{nrm}} = 1/L_{JTc}$  (see [3, Lemma 2.2.1], for instance). More generally, any "gradient related" direction  $d_k$ , that is any  $d_k$  satisfying (2.15) and  $d_k^T J_k^T c_k \leq -\kappa_{\text{grl}} ||J_k^T c_k||^2$  for some  $\kappa_{\text{grl}} > 0$ , can be used to initiate a backtracking linesearch.

A second possibility follows along this line and is to select a positive definite matrix  $B_k$  with bounded condition number, to define  $d_k = -B_k^{-1}J_k^Tc_k$  and then to perform a backtracking linesearch along  $d_k$  (see [5, Section 10.3.1] for a proof that  $d_k$  is a gradient-related direction), in which case a similar result holds. For instance, using  $B_k = J_k^TJ_k + \delta I_n$  for some  $\delta \geq 0$  yields the regularized Gauss-Newton step

$$s_{Nk} = -\gamma_k (J_k^T J_k + \delta I_n)^{-1} J_k^T c_k = -\gamma_k J_k^T (J_k J_k^T + \delta I_m)^{-1} c_k$$
 (2.18)

#### Algorithm 2.1: ADSWITCH

**Step 0: Initialization.** A starting point  $x_0$  is given, together with constants  $\omega > 0$ ,  $\theta > 1$ ,  $\beta, \eta, \varsigma \in (0, 1]$ . Set  $\Gamma_0 = 0$  and k = 0.

Step 1: Evaluations. Evaluate  $c_k = c(x_k), J_k = J(x_k)$  and  $g_k = \nabla_x f(x_k)$ . Set  $g_{T,k} = P_T(x_k)g_k$ ,

$$\Gamma_k^+ = \Gamma_k + \|g_{T,k}\|^2, \tag{2.10}$$

and

$$\alpha_{T,k} = \frac{\eta}{\sqrt{\Gamma_k^+ + \varsigma}} \tag{2.11}$$

Step 2: Tangential step: If

$$||c_k|| \le \beta \alpha_{T,k} ||g_{T,k}|| \tag{2.12}$$

then set

$$x_{k+1} = x_k - \alpha_{T,k} g_{T,k} \tag{2.13}$$

and

$$\Gamma_{k+1} = \Gamma_k^+, \tag{2.14}$$

and go to Step 4.

Step 3: Normal step: Otherwise, find a step  $s_{N,k}$  in the range space of  $J_k^T$  such that

$$||s_{N,k}|| \le \theta ||c_k|| \tag{2.15}$$

and there exists  $\kappa_{\text{nrm}} > 0$  independent of k such that

$$\frac{1}{2} \|c(x_k + s_{N,k})\|^2 \le \frac{1}{2} \|c_k\|^2 - \kappa_{\text{nrm}} \|J_k^T c_k\|^2, \tag{2.16}$$

and set

$$x_{k+1} = x_k + s_{N,k}. (2.17)$$

**Step 4: Loop.** Increment k by one and go to Step 2.

where  $\gamma_k > 0$  is chosen by backtracking as large as possible to ensure (2.15) and (2.16). (Note that, for  $\delta > 0$ ,  $J_k^T J_k + \delta I_n$  has bounded condition number when  $J_k$  is bounded. Moreover this is also the case for  $\delta = 0$  when  $J_k$  is full-rank.)

Suitable variants of trust-region steps are also possible [5, Section 10.3.2], themselves involving several subvariants such as the truncated conjugate gradient [26, 27], CGLS [22] or LSQR [25]. Because iterates generated by these methods are linear combinations of the gradients of  $\frac{1}{2}||c_k + J_k s||^2$ , this guarantees that the final step belongs to the range of  $J_k^T$ .

• We have mentioned an explicit formula for the projection  $P_T(x)$ , but it can also be computed using a rank-revealing QR factorization of  $J_k^T$ , the last columns of Q then providing a basis for the nullspace of  $J_k$ . In this case, if  $Q_k$  and  $R_k$  are the computed factors, then

$$g_{T,k} = Q_{k,[1:n,m+1:n]} Q_{k,[1:n,m+1:n]}^T g_k$$

and the Newton step (2.18) is given by

$$s_{N,k} = \begin{cases} -Q_{k,[1:n,1:r]} R_{k,[1:r,1:r]}^{-T} c_k & \text{if } \delta = 0, \\ -Q_{k,[1:n,1:m]} R_{k,[1:m,1:m]} (R_{k,[1:m,1:m]}^T R_{k,[1:m,1:m]} + \delta I_m)^{-1} c_k & \text{otherwise.} \end{cases}$$

$$(2.19)$$

- Observe that the ADSWITCH algorithm does not involve any explicit merit function or filter to control overall progress, but rely on the simple switching condition (2.12) (hence its name). As we will see below, an implicit merit function (a modified augmented-Lagrangian with suitably chosen parameters) is however crucial for our theoretical argument.
- ADSWITCH differs in several aspects from the trust-funnel methods of [17, 8]. The first is that it avoids evaluating the objective function in order to improve its reliability in the presence of noise. The second is that it also avoids estimating Lagrange multipliers, but at the cost of computing the exact projection  $P_T(\cdot)$ . The third is that the trust-region approach, which is explicit in trust-funnel methods, is only implicit in ADSWITCH. Indeed it has been argued in [18] that the (unconstrained) AdaGrad algorithm can be viewed as a trust-region method with a specific radius management. Moreover, (2.15) can also be viewed as a trust-region constraint (such a condition is also imposed in [17]), but without the need to explicitly update its radius. Finally, ADSWITCH<sup>3</sup> is more limited than trust-funnel methods in that it does not handle approximate projections in the tangent plane.

In what follows, we denote by  $\{k_{\tau}\}\subseteq\{k\}$  the index subsequence of "tangential iterations", that is iterations where (2.12) holds. We also denote  $\{k_{\nu}\}=\{k\}\setminus\{k_{\tau}\}$  the index subsequence of "normal iterations".

## 3 Complexity analysis

#### 3.1 Assumptions

Our analysis uses the following assumptions.

**AS.0:** f and c are continuously differentiable on  $\mathbb{R}^n$ .

**AS.1:** For all  $x \in \mathbb{R}^n$ ,  $f(x) > f_{low}$ .

**AS.2:** For all  $x \in \mathbb{R}^n$ ,  $||g(x)|| \le \kappa_g$  where  $\kappa_g \ge \eta \beta$ .

**AS.3:** For all  $x \in \mathbb{R}^n$ ,  $||c(x)|| \le \kappa_c$ .

**AS.4:** For all  $x \in \mathbb{R}^n$ ,  $||J(x)|| \le \kappa_J$ 

<sup>&</sup>lt;sup>3</sup>In its present incarnation.

**AS.5:** For all  $x \in \mathbb{R}^n$ ,  $\sigma_{\min}(J(x)) \ge \sigma_0 \in (0,1]$ .

**AS.6:** The gradient g(x) is globally Lipschitz continuous (with constant  $L_q$ ).

**AS.7:** The Jacobian J(x) is globally Lipschitz continuous (with constant  $L_J$ ).

Observe that AS.1, AS.2, AS.3 and AS.4 are automatically satisfied if the iterates  $x_k$  remain in a bounded domain of  $\mathbb{R}^n$ . Also note that

- AS.5 ensures that  $P_T(x_k)$ ,  $g_{T,k}$  and  $\widehat{\lambda}(x)$  are well-defined.
- AS.3, AS.6 and AS.7 ensure that  $\widehat{\lambda}(x)$  is Lipschitz continuous (with constant  $L_{\lambda}$ ).
- AS.4 ensures that c is Lipschitz continuous (with constant  $L_c$ ).
- AS.4, AS.5, AS.6 and AS.7 ensure that  $\nabla_x \psi_\rho(x, \hat{\lambda})$  is Lipschitz continuous (with constant  $L_L$ ).

Note that these assumptions are very similar to those of [1, 7]. In particular, AS.5 is also part of Assumption 1 in this last reference.

We finally assume, without loss of generality<sup>4</sup>, that

$$\Gamma_{k_{\tau}} \ge \varsigma \quad (\tau \ge 0).$$
 (3.1)

#### 3.2 Tangential steps

Our analysis hinges on the fact that first-order descent can be shown on the Lyapunov  $\psi(x)$ , both for tangential and normal steps, despite the fact that neither  $\hat{\lambda}(x_k)$  or  $\rho$  (which we still need to define) appears in the algorithm. We start by considering tangential steps.

Lemma 3.1 Suppose that AS.4–AS.7 hold. Then

$$\psi(x_{k_{\tau}+1}) - \psi(x_{k_{\tau}}) \le -\alpha_{T,k_{\tau}} \|g_{T,k_{\tau}}\|^2 + \eta \,\kappa_{\text{tan}} \,\alpha_{T,k_{\tau}}^2 \|g_{T,k_{\tau}}\|^2. \tag{3.2}$$

where

$$\kappa_{\text{tan}} = \frac{1}{2} \Big( L_L + \rho L_c + \beta L_\lambda + L_\lambda L_c \Big).$$

**Proof.** We have that

$$\psi(x_{k_{\tau}+1}) - \psi(x_{k_{\tau}}) = \underbrace{\psi_{\rho}(x_{k_{\tau}+1}, \widehat{\lambda}(x_{k_{\tau}})) - \psi_{\rho}(x_{k_{\tau}}, \widehat{\lambda}(x_{k_{\tau}}))}_{\Delta_{x}} + \underbrace{\psi_{\rho}(x_{k_{\tau}+1}, \widehat{\lambda}(x_{k_{\tau}+1})) - \psi_{\rho}(x_{k_{\tau}+1}, \widehat{\lambda}(x_{k_{\tau}}))}_{\Delta_{x}}.$$
(3.3)

Now consider  $\Delta_x$  and  $\Delta_\lambda$  separately. The Lipschitz continuity of  $\nabla_x \psi(x, \hat{\lambda})$  and (2.8) give that

$$\Delta_x = -\nabla_x \psi_\rho(x_{k_\tau}, \widehat{\lambda}(x_{k_\tau}))^T (\alpha_{T,k_\tau} g_{T,k_\tau}) + r_0 + \rho(\|c(x_{k_\tau+1})\| - \|c(x_{k_\tau})\|),$$

with

$$|r_0| \le \frac{L_L}{2} \alpha_{T,k_\tau}^2 ||g_{T,k_\tau}||^2.$$

Now

$$||c(x_{k_{\tau}+1})|| = ||c(x_{k_{\tau}}) - \alpha_{T,k_{\tau}} J_k g_{T,k_{\tau}} + r_1|| \le ||c(x_{k_{\tau}})|| + ||r_1||$$

<sup>&</sup>lt;sup>4</sup>The parameter ς may be re-adjusted downwards at the first tangential iteration, if necessary.

with

$$||r_1|| \le \frac{L_c}{2} \alpha_{T,k_\tau}^2 ||g_{T,k_\tau}||^2,$$

giving

$$||c(x_{k_{\tau}+1})|| - ||c(x_{k_{\tau}})|| \le \frac{L_c}{2} \alpha_{T,k_{\tau}}^2 ||g_{T,k_{\tau}}||^2.$$
(3.4)

Successively using (2.8) and (2.9), we obtain that

$$\Delta_{x} = -\alpha_{T,k_{\tau}} g_{T,k_{\tau}}^{T} g_{T,k_{\tau}} + r_{0} + \frac{\rho L_{c}}{2} \alpha_{T,k_{\tau}}^{2} \|g_{T,k_{\tau}}\|^{2} 
\leq -\alpha_{T,k_{\tau}} g_{T,k_{\tau}}^{T} g_{T,k_{\tau}} + \frac{1}{2} (L_{L} + \rho L_{c}) \alpha_{T,k_{\tau}}^{2} \|g_{T,k_{\tau}}\|^{2} 
\leq -\alpha_{T,k_{\tau}} \|g_{T,k_{\tau}}\|^{2} + \frac{1}{2} (L_{L} + \rho L_{c}) \alpha_{T,k_{\tau}}^{2} \|g_{T,k_{\tau}}\|^{2}.$$
(3.5)

Now, we may use the Lipschitz continuity of  $\hat{\lambda}$  and c to deduce that

$$\Delta_{\lambda} = c_{k_{\tau}+1}^{T} (\widehat{\lambda}_{k_{\tau}+1} - \widehat{\lambda}_{k_{\tau}}) 
= (c_{k_{\tau}+1} - c_{k_{\tau}})^{T} (\widehat{\lambda}_{k_{\tau}+1} - \widehat{\lambda}_{k_{\tau}}) + c_{k_{\tau}}^{T} (\widehat{\lambda}_{k_{\tau}+1} - \widehat{\lambda}_{k_{\tau}}) 
\leq \|c_{k_{\tau}}\| \|\widehat{\lambda}_{k_{\tau}+1} - \widehat{\lambda}_{k_{\tau}}\| + \|c_{k_{\tau}+1} - c_{k_{\tau}}\| \|\widehat{\lambda}_{k_{\tau}+1} - \widehat{\lambda}_{k_{\tau}}\| 
\leq L_{\lambda} \|c_{k_{\tau}}\| \alpha_{T,k_{\tau}} \|g_{T,k_{\tau}}\| + L_{\lambda} L_{c} \alpha_{T,k_{\tau}}^{2} \|g_{T,k_{\tau}}\|^{2},$$
(3.6)

Taking (2.12) into account gives that  $||c_{k_{\tau}}|| \leq \beta \alpha_{T,k_{\tau}} ||g_{T,k_{\tau}}||$ , we obtain that

$$\Delta_{\lambda} \le (\beta L_{\lambda} + L_{\lambda} L_c) \, \alpha_{T,k_{\tau}}^2 \|g_{T,k_{\tau}}\|^2.$$

Thus, summing  $\Delta_x$  and  $\Delta_{\lambda}$ ,

$$\psi(x_{k_{\tau}+1}) - \psi(x_{k_{\tau}}) \le -\alpha_{T,k_{\tau}} \|g_{T,k_{\tau}}\|^{2} + \frac{1}{2} (L_{L} + \rho L_{c}) \alpha_{T,k_{\tau}}^{2} \|g_{T,k_{\tau}}\|^{2} + (\beta L_{\lambda} + L_{\lambda} L_{c}) \alpha_{T,k_{\tau}}^{2} \|g_{T,k_{\tau}}\|^{2}$$

and (3.2) follows.

The bound (3.2) quantifies the effect of tangential steps on the Lyapunov function, and its right-hand side involves a first-order (descent) term and a second-order perturbation term. We now derive crucial bounds on these terms.

#### Lemma 3.2 Suppose that AS.2 and AS.5 hold. If we denote

$$\Gamma_{k_{\tau+1}} = \Gamma_{k_{\tau}} + \|g_{T,k_{\tau}}\|^2 \text{ and } \alpha_{T,k_{\tau}} = \frac{\eta}{\sqrt{\Gamma_{k_{\tau+1}} + \varsigma}},$$

then, for all  $0 \le \tau_0 \le \tau_1$ ,

$$\sum_{\tau=\tau_0}^{\tau_1} \alpha_{T,k_{\tau}} \|g_{T,k_{\tau}}\|^2 > \frac{\eta}{2\sqrt{2}} \sqrt{\Gamma_{k_{\tau_1+1}}}$$
(3.7)

$$\sum_{\tau=\tau_0}^{\tau_1} \alpha_{T,k_{\tau}}^2 \|g_{T,k_{\tau}}\|^2 \le \eta^2 \log \left(\frac{\Gamma_{k_{\tau_1+1}} + \varsigma}{\Gamma_{k_{\tau_0}} + \varsigma}\right). \tag{3.8}$$

**Proof.** Let  $w_{k_{\tau}+1} = \sqrt{\Gamma_{k_{\tau+1}} + \varsigma}$ . The definition (2.11) implies that

$$\sum_{\tau=\tau_0}^{\tau_1} \alpha_{T,k_{\tau}} \|g_{T,k_{\tau}}\|^2 = \eta \sum_{\tau=\tau_0}^{\tau_1} \frac{\|g_{T,k_{\tau}}\|^2}{\sqrt{\Gamma_{k_{\tau+1}} + \varsigma}}$$

$$> \eta \sum_{\tau=\tau_0}^{\tau_1} \frac{\|g_{T,k_{\tau}}\|^2}{w_{k_{\tau+1}} + w_{k_{\tau}}}$$

$$= \eta \sum_{\tau=\tau_0}^{\tau_1} \frac{w_{k_{\tau+1}}^2 - w_{k_{\tau}}^2}{w_{k_{\tau+1}} + w_{k_{\tau}}}$$

$$= \eta \sum_{\tau=\tau_0}^{\tau_1} (w_{k_{\tau+1}} - w_{k_{\tau_0}}),$$

$$= \eta (w_{k_{\tau+1}} - w_{k_{\tau_0}}),$$

Now observe that, using (3.1),

$$\begin{split} w_{k_{\tau_{1}+1}} - w_{k_{\tau_{0}}} &= \sqrt{\Gamma_{k_{\tau_{1}+1}} + \varsigma} - \sqrt{\Gamma_{k_{\tau_{0}}} + \varsigma} \\ &= \frac{\Gamma_{k_{\tau_{1}+1}} - \Gamma_{k_{\tau_{0}}}}{\sqrt{\Gamma_{k_{\tau_{1}+1}} + \varsigma} + \sqrt{\Gamma_{k_{\tau_{0}}} + \varsigma}} \\ &\geq \frac{\Gamma_{k_{\tau_{1}+1}} - \Gamma_{k_{\tau_{0}}}}{\sqrt{2\Gamma_{k_{\tau_{1}+1}}} + \sqrt{2\Gamma_{k_{\tau_{0}}}}} \\ &> \frac{\Gamma_{k_{\tau_{1}+1}}}{2\sqrt{2\Gamma_{k_{\tau_{1}+1}}}} = \frac{\sqrt{\Gamma_{k_{\tau_{1}+1}}}}{2\sqrt{2}} \end{split}$$

which gives (3.7). Using the concavity and the increasing nature of the logarithm, we also have from (2.11) that

$$\sum_{\tau=\tau_0}^{\tau_1} \alpha_{T,k_{\tau}}^2 \|g_{T,k_{\tau}}\|^2 = \eta^2 \sum_{\tau=\tau_0}^{\tau_1} \frac{\|g_{T,k_{\tau}}\|^2}{\Gamma_{k_{\tau+1}} + \varsigma} = \eta^2 \sum_{\tau=\tau_0}^{\tau_1} \frac{\Gamma_{k_{\tau+1}} - \Gamma_{k_{\tau}}}{\Gamma_{k_{\tau+1}} + \varsigma} \le \eta^2 \sum_{\tau=\tau_0}^{\tau_1} \log(\Gamma_{k_{\tau+1}} + \varsigma) - \log(\Gamma_{k_{\tau}} + \varsigma),$$
giving (3.8).

#### 3.3 Normal steps

Having considered tangential steps, we now show that a decrease in the Lyapunov function  $\psi$  may also be proved if a normal step is taken, provided the penalty parameter  $\rho$  is chosen large enough. We start with a fairly simple observation.

**Lemma 3.3** Suppose that AS.5 holds and that a normal step is used at iteration  $k_{\nu}$ . Then

$$||c_{k_{\nu}+1}|| \le (1 - \kappa_{\text{nrm}} \sigma_0^2) ||c_{k_{\nu}}||.$$
 (3.9)

**Proof.** We have from (2.16) that  $||c_{k_{\nu}+1}|| < ||c_{k_{\nu}}||$  Then

$$||c_{k_{\nu}}||(||c_{k_{\nu}+1}|| - ||c_{k_{\nu}}||) \le (||c_{k_{\nu}+1}|| + ||c_{k_{\nu}}||)(||c_{k_{\nu}+1}|| - ||c_{k_{\nu}}||) = ||c_{k_{\nu}+1}||^2 - ||c_{k_{\nu}}||^2$$

and therefore, using (2.16) again, that

$$||c_{k_{\nu}+1}|| - ||c_{k_{\nu}}|| \le -\frac{\kappa_{\text{nrm}} ||J_{k_{\nu}}^T c_{k_{\nu}}||^2}{||c_{k_{\nu}}||} \le -\frac{\kappa_{\text{nrm}} \sigma_0^2 ||c_{k_{\nu}}||^2}{||c_{k_{\nu}}||} = -\kappa_{\text{nrm}} \sigma_0^2 ||c_{k_{\nu}}||.$$

**Lemma 3.4** Suppose that AS.3–AS.7 hold and that a normal step is used at iteration  $k_{\nu}$ . Define

$$\rho = \frac{1}{\kappa_{\rm nrm} \, \sigma_0^2} \left[ \kappa_c \, \theta \, L_\lambda + \frac{1}{2} \kappa_c \, \theta^2 \left( L_L + L_\lambda L_c \right) + \eta \, \right] \tag{3.10}$$

Then we have that

$$\psi(x_{k_{\nu}+1}) - \psi(x_{k_{\nu}}) \le -\eta \|c_{k_{\nu}}\|. \tag{3.11}$$

**Proof.** The first part of (2.7) and the fact that  $s_{N,k}$  belongs to the orthogonal of the Jacobian's nullspace,  $\nabla_x L(x_{k_{\nu}}, \hat{\lambda}_{k_{\nu}}) = g_{T,k_{\nu}}$  and  $g_{T,k_{\nu}}^T s_{N,k_{\nu}} = 0$ . Thus, using (2.6), (3.9), (2.15), the Lipschitz continuity of  $\nabla_x \psi(x, \hat{\lambda})$  ( $\rho$  is fixed in (3.10)) and the definition of  $\Delta_x$  and  $\Delta_{\lambda}$  in (3.3), we obtain that

$$\Delta_{x} = \psi_{\rho}(x_{k_{\nu}+1}, \widehat{\lambda}_{k_{\nu}}) - \psi_{\rho}(x_{k_{\nu}}, \widehat{\lambda}_{k_{\nu}}) 
= L(x_{k_{\nu}+1}, \widehat{\lambda}_{k_{\nu}}) - L(x_{k_{\nu}}, \widehat{\lambda}_{k_{\nu}}) + \rho(\|c_{k_{\nu}+1}\| - \|c_{k_{\nu}}\|) 
\leq (\nabla_{x} L(x_{k_{\nu}}, \widehat{\lambda}_{k_{\nu}})^{T} s_{N,k_{\nu}} + r_{3} - \rho \kappa_{\text{nrm}} \sigma_{0}^{2} \|c_{k_{\nu}}\| 
\leq -\rho \kappa_{\text{nrm}} \sigma_{0}^{2} \|c_{k_{\nu}}\| + \frac{\theta^{2} L_{L}}{2} \|c_{k_{\nu}}\|^{2}.$$
(3.12)

Using AS.6, the Lipschitz continuity of  $\hat{\lambda}$  and c and AS.5, we then deduce that

$$\Delta_{\lambda} = \psi_{\rho}(x_{k_{\nu}+1}, \widehat{\lambda}_{k_{\nu}+1}) - \psi_{\rho}(x_{k_{\nu}+1}, \widehat{\lambda}_{k_{\nu}}) 
\leq (\|c_{k_{\nu}}\| + \|c_{k_{\nu}+1} - c_{k_{\nu}}\|) \|\widehat{\lambda}_{k_{\nu}+1} - \widehat{\lambda}_{k_{\nu}}\| 
\leq L_{\lambda} \|s_{N,k_{\nu}}\| \|c_{k_{\nu}}\| + \frac{L_{\lambda}L_{c}}{2} \|s_{N,k_{\nu}}\|^{2} 
\leq L_{\lambda} \theta \|c_{k_{\nu}}\|^{2} + \frac{L_{\lambda}L_{c}\theta^{2}}{2} \|c_{k_{\nu}}\|^{2}$$
(3.13)

and thus, summing (3.12) and (3.13), that

$$\psi(x_{k_{\nu}+1}) - \psi(x_{k_{\nu}}) \le -\rho \kappa_{\text{nrm}} \sigma_0^2 \|c_{k_{\nu}}\| + L_{\lambda} \theta \kappa_c \|c_{k_{\nu}}\| + \frac{1}{2} (L_L + L_{\lambda} L_c) \theta^2 \kappa_c \|c_{k_{\nu}}\|.$$

The bound (3.11) then follows from (3.10).  $\Box$ 

#### 3.4 Telescoping sum

We now combine the effects of tangential and normal steps to accumulate in a telescoping sum the relevant decreases on  $\psi(x)$  across all iterations.

Lemma 3.5 Suppose that AS.0–AS.7 hold. Then

$$\sqrt{\Gamma_{k_{\tau_1+1}}} + \sum_{\nu=\nu_0}^{\nu_1} \|c_{k_{\nu}}\| \le \kappa_{\text{gap}} + \kappa_{\text{tan}} \log \left(1 + \frac{\Gamma_{k_{\tau_1+1}}}{\varsigma}\right), \tag{3.14}$$

where

$$\kappa_{\rm gap} = \frac{2\sqrt{2}}{\eta} \left( \psi(x_0) + \frac{\kappa_J \kappa_g \kappa_c}{\sigma_0^2} + \rho \kappa_c - f_{\rm low} \right).$$

**Proof.** Combining (3.2), (3.7) and (3.8), we obtain that

$$\sum_{\tau=\tau_0}^{\tau_1} \left( \psi(x_{k_{\tau}+1}) - \psi(x_{k_{\tau}}) \right) \le -\frac{\eta}{2\sqrt{2}} \sqrt{\Gamma_{k_{\tau_1+1}}} + \eta^2 \kappa_{\tan} \log \left( \frac{\Gamma_{k_{\tau_1+1}} + \varsigma}{\Gamma_{k_{\tau_0}} + \varsigma} \right)$$
(3.15)

Then, if  $\min[k_{\nu_0}, k_{\tau_0}] = 0$  and  $\max[k_{\nu_1}, k_{\tau_1}] = k$ , we have that  $w_{k_{\tau_0}} = \varsigma$  and  $\Gamma_{k_{\tau_0}} = 0$ . The bounds (3.11) and (3.15) therefore give that

$$\psi(x_{k+1}) - \psi(x_{0}) 
= \sum_{\tau=\tau_{0}}^{\tau_{1}} \left( \psi(x_{k_{\tau}+1}) - \psi(x_{k_{\tau}}) \right) + \sum_{\nu=\nu_{0}}^{\nu_{1}} \left( \psi(x_{k_{\nu}+1}) - \psi(x_{k_{\nu}}) \right) 
\leq -\frac{\eta}{2\sqrt{2}} \sqrt{\Gamma_{k_{\tau_{1}+1}}} - \eta \sum_{\nu=\nu_{0}}^{\nu_{1}} \|c_{k_{\nu}}\| + \eta^{2} \kappa_{\tan} \log \left( \frac{\Gamma_{k_{\tau_{1}+1}} + \varsigma}{\Gamma_{k_{\tau_{0}}} + \varsigma} \right) 
\leq -\frac{\eta}{2\sqrt{2}} \sqrt{\Gamma_{k_{\tau_{1}+1}}} - \frac{\eta}{2\sqrt{2}} \sum_{\nu=\nu_{0}}^{\nu_{1}} \|c_{k_{\nu}}\| + \eta \kappa_{\tan} \log \left( 1 + \frac{\Gamma_{k_{\tau_{1}+1}}}{\varsigma} \right)$$
(3.16)

where we used the fact that  $\eta \leq 1$ . But (2.3), AS.2, AS.4, and AS.5 ensure that

$$\|\widehat{\lambda}(x)\| \le \frac{\kappa_J}{\sigma_0^2} \|g(x)\| \le \frac{\kappa_J \kappa_g}{\sigma_0^2}$$

Hence, using (2.5), AS.1, AS.2, AS.3, we have that

$$\psi(x_{k+1}) - \psi(x_0) \ge f_{\text{low}} - \frac{\kappa_J \kappa_g \kappa_c}{\sigma_0^2} - \rho \kappa_c - \psi(x_0) \stackrel{\text{def}}{=} - \eta \kappa_{\text{gap}},$$

so that (3.16) implies (3.14).

This result is central in our analysis as it provides consistent upper bounds on a quantity related to the optimality mesure  $||g_{T,k}|| + ||c_k||$ , which we now exploit separately.

#### 3.5 Tangential complexity

Our next step is to use (3.14) to derive a global rate of convergence over tangential steps. We start by proving a useful technical result.

**Lemma 3.6** Suppose that  $at \leq b + c \log(t)$  for  $t \geq 1$ . Then

$$t \le \max\left[e^{b/c}, \frac{4c^2}{a^2}\right].$$

**Proof.** Suppose that  $t > e^{b/c}$ . Then  $b \le c \log(t)$  and thus (see [28, eq. (14)])

$$at \le 2c \log(t) \le 2c \log(1+t) \le \frac{2ct}{\sqrt{1+t}}.$$

Hence  $a\sqrt{1+t} \le 2c$ , which is to say that  $t \le (2c/a)^2 - 1$ , yielding the desired bound.

We now consider the rate of convergence for tangential steps proper.

#### Lemma 3.7 Suppose that AS.0–AS.7 hold. Then

$$\sqrt{\Gamma_{k_{\tau_1+1}}} \le \kappa_T \stackrel{\text{def}}{=} \sqrt{\frac{\varsigma}{2}} \max \left[ e^{\frac{\kappa_{\text{gap}}}{2\kappa_{\text{tan}}}}, \frac{32\kappa_{\text{tan}}^2}{\varsigma} \right]$$
 (3.17)

and

$$\sum_{\tau=\tau_0}^{\tau_1} \|g_{T,k_{\tau}}\| + \|c_{k_{\tau}}\| \le \kappa_T \sqrt{\tau_1 + 1} \left(1 + \frac{\beta \eta}{\sqrt{\varsigma}}\right). \tag{3.18}$$

**Proof.** The bound (3.14) implies that

$$\sqrt{\Gamma_{k_{\tau_1+1}}} \le \kappa_{\text{gap}} + \kappa_{\text{tan}} \log \left(1 + \frac{\Gamma_{k_{\tau_1+1}}}{\varsigma}\right).$$

Now (3.1) implies that

$$1 + \frac{\Gamma_{k_{\tau_1+1}}}{\zeta} \le \frac{2}{\zeta} \Gamma_{k_{\tau_1+1}}$$

and thus that

$$\sqrt{\frac{\varsigma}{2}}\sqrt{\frac{2\Gamma_{k_{\tau_1+1}}}{\varsigma}} \leq \kappa_{\text{\tiny gap}} + \kappa_{\text{\tiny tan}}\log\left(\frac{2\Gamma_{k_{\tau_1+1}}}{\varsigma}\right) = \kappa_{\text{\tiny gap}} + 2\kappa_{\text{\tiny tan}}\log\left(\sqrt{\frac{2\Gamma_{k_{\tau_1+1}}}{\varsigma}}\right).$$

Using Lemma 3.6, we then obtain that

$$\sqrt{\Gamma_{k_{\tau_1+1}}} = \sqrt{\frac{\varsigma}{2}} \sqrt{\frac{2\Gamma_{k_{\tau_1+1}}}{\varsigma}} \leq \sqrt{\frac{\varsigma}{2}} \max \left[ e^{\frac{\kappa_{\text{gap}}}{2\kappa_{\text{tan}}}}, \frac{32\kappa_{\text{tan}}^2}{\varsigma} \right]$$

This is (3.17). We may now invoke the inequality

$$\sum_{j=0}^{k} a_j \le \sqrt{k+1} \sqrt{\sum_{j=0}^{k} a_j^2}$$

for nonnegative  $\{a_j\}_{j=0}^k$  to deduce from (2.10) and (3.17) that

$$\sum_{\tau=\tau_0}^{\tau_1} \|g_{T,k_{\tau}}\| \le \sqrt{\tau_1 + 1} \sqrt{\sum_{\tau=\tau_0}^{\tau_1} \|g_{T,k_{\tau}}\|^2} = \sqrt{\tau_1 + 1} \sqrt{\Gamma_{k_{\tau_1+1}}} \le \sqrt{\tau_1 + 1} \kappa_T.$$
 (3.19)

Using the switching condition (2.12) and the fact that  $\alpha_{T,k_{\tau}} \leq \eta/\sqrt{\zeta}$ , we also deduce that

$$\sum_{\tau=\tau_0}^{\tau_1} \|c_{k_\tau}\| \le \sum_{\tau=\tau_0}^{\tau_1} \beta \alpha_{T,k_\tau} \|g_{T,k_\tau}\| \le \frac{\beta \eta}{\sqrt{\varsigma}} \sum_{\tau=\tau_0}^{\tau_1} \|g_{T,k_\tau}\| \le \frac{\beta \eta \kappa_T \sqrt{\tau_1+1}}{\sqrt{\varsigma}}.$$

Summing this bound with (3.19) then gives (3.18).

Note that a marginally tighter bound on  $\Gamma_{k_{\tau_1}}$  can obtained, as in [2], by using the Lambert  $W_{-1}$  function (see [6]) instead of applying Lemma 3.6, but we have chosen the latter for simplicity of exposition.

### 3.6 Normal complexity

The analysis of the complexity of normal step also uses the switching condition, but in the other direction.

Lemma 3.8 Suppose that AS.0-AS.7 hold. Then

$$\sum_{\nu=\nu_0}^{\nu_1} \|g_{T,k_{\nu}}\| + \|c_{k_{\nu}}\| < \kappa_N \left(1 + \frac{2\sqrt{2}}{\beta\eta}\right), \tag{3.20}$$

where

$$\kappa_N = \kappa_{\text{gap}} + \kappa_{\text{tan}} \log \left( \frac{2\kappa_T}{\varsigma} \right).$$
(3.21)

**Proof.** The bound (3.14) ensures that

$$\sum_{\nu=\nu_0}^{\nu_1} \|c_{k_{\nu}}\| \le \kappa_{\text{gap}} + \kappa_{\text{tan}} \log \left( 1 + \frac{\Gamma_{k_{\tau_1+1}}}{\varsigma} \right)$$
 (3.22)

where  $k_{\tau_1}$  is the index of the last tangential iteration before  $k_{\nu_1}$ . As in Lemma 3.7, we may now use the assumption that  $\Gamma_{k_{\tau_1}} \geq \zeta$  and the monotonicity of the logarithm to obtain that

$$\sum_{\nu=\nu_0}^{\nu_1} \|c_{k_{\nu}}\| \le \kappa_{\text{gap}} + 2\kappa_{\text{tan}} \log \left(\sqrt{\frac{2\Gamma_{k_{\tau_1}}}{\varsigma}}\right) \le \kappa_{\text{gap}} + 2\kappa_{\text{tan}} \log \left(\sqrt{\frac{2}{\varsigma}} \kappa_T\right) = \kappa_N. \tag{3.23}$$

Using the switching condition (2.12), we obtain that, for  $\nu \in \{\nu_0, \dots, \nu_1\}$ ,

$$||c_{k_{\nu}}|| \ge \beta \alpha_{T,k_{\nu}} ||g_{T,k_{\nu}}||.$$
 (3.24)

Observe now that, using the assumption that  $\Gamma_{k_{\nu}} \geq \varsigma$ , and (3.17),

$$\alpha_{T,k_{\nu}} = \frac{\eta}{\sqrt{\Gamma_{k_{\nu}} + \varsigma}} \ge \frac{\eta}{\sqrt{2\Gamma_{k_{\nu}}}} \ge \frac{\eta}{\sqrt{2\kappa_{T}}}.$$

Thus, (3.24) yields that, for  $\nu \in \{\nu_0, \dots, \nu_1\}$ 

$$\|c_{k_{\nu}}\| \ge \frac{\beta \eta}{\sqrt{2\kappa_{T}}} \|g_{T,k_{\nu}}\|.$$
 (3.25)

With (3.23), this implies that

$$\sum_{\nu=\nu_0}^{\nu_1} \|g_{T,k_{\nu}}\| \leq \frac{\sqrt{2\kappa_T}}{\beta\eta} \sum_{\nu=\nu_0}^{\nu_1} \|c_{k_{\nu}}\| \leq \frac{\kappa_N \sqrt{2\kappa_T}}{\beta\eta}.$$

Summing this bound with (3.23) gives (3.20).

### 3.7 Combined complexity

The combined complexity may now be derived by assembling the above results.

**Theorem 3.9** Suppose that AS.0-AS.7 hold. Then

$$\frac{1}{k+1} \sum_{j=0}^{k} \left( \|g_{T,j}\| + \|c_j\| \right) \le \frac{\kappa_{\text{ADSW},1}}{\sqrt{k+1}} + \frac{\kappa_{\text{ADSW},2}}{k+1} = \mathcal{O}\left(\frac{1}{\sqrt{k+1}}\right), \tag{3.26}$$

where

$$\kappa_{\text{ADSW},1} = \kappa_T \left( 1 + \frac{\beta \eta}{\sqrt{\varsigma}} \right) + \frac{4\kappa_N \kappa_g}{\beta \eta} \text{ and } \kappa_{\text{ADSW},2} = \kappa_N \left( 1 + \frac{2\sqrt{2}}{\beta \eta} \right).$$

**Proof.** Now consider iterations from 0 to k of both types (tangential and normal) by setting  $\min[k_{\nu_0}, k_{\tau_0}] = 0$  and  $\max[k_{\nu_1}, k_{\tau_1}] = k$  (as in Lemma 3.5). We then obtain, by combining (3.18) and (3.20), that

$$\sum_{j=0}^{k} (\|g_{T,j}\| + \|c_{j}\|) = \sum_{\tau=\tau_{0}}^{\tau_{1}} (\|g_{T,k_{\tau}}\| + \|c_{k_{\tau}}\|) + \sum_{\nu=\nu_{0}}^{\nu_{1}} (\|g_{T,k_{\nu}}\| + \|c_{k_{\nu}}\|)$$

$$\leq \kappa_{T} \sqrt{k+1} \left(1 + \frac{\beta\eta}{\sqrt{\zeta}}\right) + \kappa_{N} \left(1 + \frac{2\sqrt{2}}{\beta\eta}\right),$$

where we used the inequalities  $\tau_1 \leq k_{\tau_1} \leq k$  and  $k_{\nu_1} \leq k$ . The bound (3.26) is finally obtained by dividing both sides by k+1.

### 4 Numerical illustration

To illustrate the behaviour of ADSWITCH, we coded the algorithm in Matlab and applied it on a set of small dimensional problems from the CUTEst collection [15] as supplied in Matlab by S2MPJ [21]. Our implementation uses the Newton normal step (2.19) and the constants

$$\beta = 0.01$$
,  $\eta = 1$ ,  $\theta = 1000$ ,  $\delta = \zeta = 10^{-5}$  and  $\omega = 1$ .

For a given  $\epsilon \in (0,1)$  a run on a given test problem is deemed successful at iteration k if

$$\max[\|g_{T,k}\|, \|c_k\|] \le \epsilon \quad \text{(convergence)} \tag{4.1}$$

or

$$||J_k^T c_k|| \le \epsilon \text{ but } ||c_k|| > \epsilon \text{ (infeasible critical point)}$$
 (4.2)

or if a sufficiently optimal function value was found in the sense that

$$||c_k|| \le \epsilon \text{ and } \begin{cases} |f(x_k)| \le |f_*| + 10^{-7} & \text{if } |f_*| < 10^{-7} \\ |f(x_k) - f_*| \le 10^{-7} |f_*| & \text{if } |f_*| \ge 10^{-7} \end{cases}$$
 (4.3)

where  $f_*$  is the best known feasible function value for the problem. Optimization was also stopped after a maximum of 100000 iterations.

We first ran all test problems with accurate gradient values and  $\epsilon = 10^{-5}$ . The complete results are reported in appendix, and may be broadly summarized as follows.

- 1. The algorithm appears to converge as predicted. Despite the fact that our current analysis does not cover the case where the Jacobian may lose rank, the algorithm did solve a number of instances where this occurs, sometimes finding an infeasible critical point of the constraints' violation<sup>5</sup>.
- 2. Its performance and reliability is (as could be anticipated) dominated by that of AdaGrad for the tangential step. Since this method is purely first-order, it often performs well, but may fail to solve ill-conditioned problems in a reasonable number of iterations. This is also the case for ADSWITCH. Over the 71 problems in our test set, it solves 44 (62%) of them within 750 iterations, 58 (81%) of them within 100000 iterations and fails on 13. While reliability is not a strong point of AdaGrad and ADSWITCH in the deterministic case, the situation is very different when noise is present, as we show below.

We illustrate a few case of satisfactory convergence in Figures 1 and 2. In these figures, one can clearly see the difference in speed of convergence between tangential steps (AdaGrad-like) and normal steps (Newton), and thus that the overall performance is dominated by that of the first-order method defining the tangential step. This is even clearer when convergence is too slow, as shown in Figure 3 where constraint violation remains very small<sup>6</sup>, while very slow convergence of the projected gradient results in a large number of iterations. The left panel of Figure 1 (ORTHREGA with n = 133 and m = 64) is also interesting because it shows the switching condition (2.12) in action: the algorithm first approaches an infeasible critical point of the constraints' violation until the switching rule allows the tangential step to take over, causing the iterates to escape.

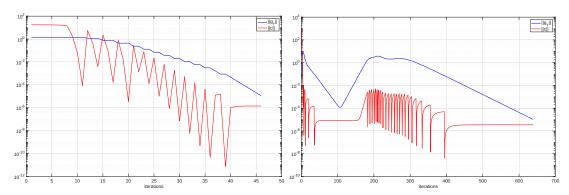



Figure 1: Evolution of the optimality measure (left: BYRDSPHR, right: ORTHREGA)

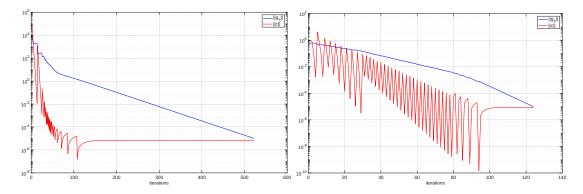
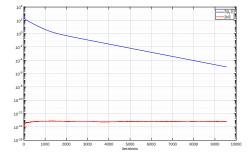




Figure 2: Evolution of the optimality measure (left: LUKVLE2, right: BT1)

<sup>&</sup>lt;sup>5</sup>This occurs, for instance, at the starting point of HS61.

<sup>&</sup>lt;sup>6</sup>HS50 has linear equality constraints only.



| Figure 3 | 3: | Evolution | of | the | optimality | mea- |
|----------|----|-----------|----|-----|------------|------|
| sure (HS | 50 | ))        |    |     |            |      |

|   | relative    | number of      | number of       |  |  |
|---|-------------|----------------|-----------------|--|--|
|   | noise level | total failures | total successes |  |  |
| Ì | 5%          | 6              | 61              |  |  |
| İ | 15%         | 7              | 53              |  |  |
| İ | 25%         | 7              | 53              |  |  |
|   | 50%         | 12             | 51              |  |  |

Figure 4: Reliability of the ADSWITCH algorithm in the presence of relative Gaussian noise on the gradient.

In order to illustrate the resilience of ADSWITCH when noise is present, we also ran the algorithm on all instances of our test problems while adding relative Gaussian noise (of zero mean and unit variance) to the gradient. Each test problem was run ten times independently, and for four levels (5%, 15%, 25% and 50%) of noise. The termination  $\epsilon$  was set to  $10^{-3}$  in (4.1)–(4.3). The table in Figure 4 reports, for each of these levels, the number of problems for which all ten runs failed (middle column) and the number of problems for which all ten runs converged (rightmost column). This table shows that the reliability of the algorithm is remarkably insensitive to the noise level. It is indeed noteworthy that around two thirds of the considered test problems could be solved with top reliability even if their gradients are perturbed by 50% relative noise, which means that barely one significant digit is correct. This stable behaviour is also visible in Figure 5 showing the performance of the algorithm on the BT1 problem for increasing noise levels.

## 5 Conclusions and perspectives

false We have proposed a very simple first-order algorithm for solving nonlinear optimization problems with nonlinear equality constraints. This algorithm adaptively selects steps in the plane tangent to the constraints or steps that reduce infeasibility. It does so without using a merit function or a filter to enforce convergence, but instead relies on the simple switching condition (2.12). The tangent steps are based on the AdaGrad method for unconstrained minimization. As is the case for AdaGrad, the objective function is never evaluated. We have analyzed its worst-case evaluation complexity and obtain global convergence rates which match the best known rates for unconstrained problems. Numerical experiments have been presented indicating that the performance of the algorithm is comparable to that of first-order methods for unconstrained problems.

At this stage, several theoretical questions remain open for further research. These include a stochastic convergence analysis, covering the cases of rank-deficient Jacobians and/or unbounded gradients, the use of alternative minimization methods in the tangential step (such as ADAM [23], ASTR1 [19], OFFAR [20] or more standard unconstrained minimizing techniques using objective function's values). On the practical side, further numerical experiments are clearly necessary for assessing the true potential of the new method. The handling of inequality constraints is also of obvious interest.

#### Acknowledgement

Philippe Toint is grateful for the continued and friendly support of the Algo team at Toulouse IRIT. The authors also thank Benedetta Morini and Stefania Bellavia for pointing out a number of typos.

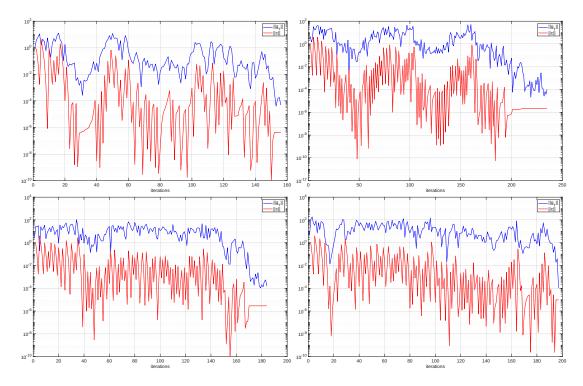



Figure 5: Evolution of the two components of the optimality measure for a run of the noisy BT1 problem, with 5% (top left), 15% (top right), 25% (bottom left) and 50% (bottom right) relative Gaussian noise on the gradient

### References

- [1] F. Curtis A. Berahas, D. Robinson, and B. Zhou. Sequential quadratic optimization for nonlinear equality constrained stochastic optimization. SIAM Journal on Optimization, 31(2):1352–1379, 2021.
- [2] S. Bellavia, G. Gratton, B. Morini, and Ph. L. Toint. Fast stochastic Adagrad for nonconvex bound-constrained optimization. arXiv:2505:06374, 2025.
- [3] C. Cartis, N. I. M. Gould, and Ph. L. Toint. <u>Evaluation complexity of algorithms for nonconvex optimization</u>. Number 30 in MOS-SIAM Series on Optimization. SIAM, Philadelphia, USA, June 2022.
- [4] C. Coelho, M. Fernanda, P. Costa, and L. L. Ferras. A two-stage training method for modeling constrained systems with neural networks. arXiv:2403.02730, 2024.
- [5] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. <u>Trust-Region Methods</u>. Number 1 in MOS-SIAM Optimization Series. SIAM, Philadelphia, USA, 2000.
- [6] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert W function. <u>Advances in Computational Mathematics</u>, 5:329—359, 1996.
- [7] F. Curtis, D. Robinson, and B. Zhou. Sequential quadratic optimization for stochastic optimization with deterministic nonlinear inequality and equality constraints. <u>SIAM Journal on Optimization</u>, 34(4):3592–3622, 2024.
- [8] F. E. Curtis, D. P. Robinson, and M. Samadi. Complexity analysis of a trust funnel algorithm for equality constrained optimization. SIAM Journal on Optimization, 28(2):1533–1563, 2018.
- [9] A. Défossez, L. Bottou, F. Bach, and N. Usunier. A simple convergence proof for Adam and Adagrad. Transactions on Machine Learning Research, October 2022.
- [10] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12, July 2011.
- [11] Y. Fang, S. Na, M. Mahoney, and M. Kolar. Fully stochastic trust-region sequential quadratic programming for equality constrained optimization problems. SIAM Journal on Optimization, 34(2):2007–2037, 2024.
- [12] R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint, and A. Wächter. Global convergence of trust-region SQP-filter algorithms for nonlinear programming. SIAM Journal on Optimization, 13(3):635–659, 2002.
- [13] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Mathematical Programming, 91(2):239–269, 2002.

- [14] R. Fletcher, S. Leyffer, and Ph. L. Toint. On the global convergence of a filter-SQP algorithm. <u>SIAM Journal</u> on Optimization, 13(1):44–59, 2002.
- [15] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a constrained and unconstrained testing environment with safe threads for mathematical optimization. <u>Computational Optimization and Applications</u>, 60(3):545– 557, 2015.
- [16] N. I. M. Gould, D. P. Robinson, and Ph. L. Toint. Corrigendum: Nonlinear programming without a penalty function or a filter. Mathematical Programming, Series A, 131(1):403–404, 2012.
- [17] N. I. M. Gould and Ph. L. Toint. Nonlinear programming without a penalty function or a filter. Mathematical Programming, Series A, 122(1):155–196, 2010. See also [16].
- [18] S. Gratton, S. Jerad, and Ph. L. Toint. Complexity of a class of first-order objective-function-free optimization algorithms. Optimization Methods and Software, 1:1–31, 2024.
- [19] S. Gratton, S. Jerad, and Ph. L. Toint. Complexity and performance for two classes of noise-tolerant first-order algorithms. Optimization Methods and Software, (to appear), 2025.
- [20] S. Gratton, S. Jerad, and Ph. L. Toint. A stochastic objective-function-free adaptive regularization method with optimal complexity. Open Journal of Mathematical Optimization, 6(5), 2025.
- [21] S. Gratton and Ph. L. Toint. S2MPJ and CUTEst optimization problems for Matlab, Python and Julia. Optimization Methods and Software, (to appear), 2025.
- [22] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. <u>Journal of the</u> National Bureau of Standards, 49:409–436, 1952.
- [23] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In <u>Proceedings in the International Conference on Learning Representations (ICLR)</u>, 2015.
- [24] E. O. Omojokun. Trust region algorithms for optimization with nonlinear equality and inequality constraints. PhD thesis, University of Colorado, Boulder, Colorado, USA, 1989.
- [25] C. C. Paige and M. A. Saunders. LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8:43–71, 1982.
- [26] T. Steihaug. The conjugate gradient method and trust regions in large scale optimization. <u>SIAM Journal on</u> Numerical Analysis, 20(3):626–637, 1983.
- [27] Ph. L. Toint. Towards an efficient sparsity exploiting Newton method for minimization. In I. S. Duff, editor, Sparse Matrices and Their Uses, pages 57–88, London, 1981. Academic Press.
- [28] F. Topsoe. Some bounds for the logarithmic function. Inequality Theory and Applications, 4(01), 2007.
- [29] R. Ward, X. Wu, and L. Bottou. Adagrad stepsizes: sharp convergence over nonconvex landscapes. In Proceedings in the International Conference on Machine Learning (ICML2019), 2019.

## Appendix; Details of the Numerical Results

The following tables give the details of the numerical results discussed in Section 4.

- Table A.1 reports the results of the noiseless runs. Columns 2 and 3 indicate the number of variables and the number of constraints. The column "#its" gives the number of iterations and the column "exitc" the termination condition ("convg" = convergence, "infeas" = infeasible critical point, "maxit" = maximum number of iterations reached).
- Tables A.2, A.3, A.4 and A.5 report the average statistics of 10 independent runs for each problem, for increasing relative Gaussian noise levels. The last column of the table gives the number of successful runs (among 10).

| Problem            | n       | m      | f(x)                           | $\ g_T(x)\ $         | c(x)                 | #its       | exitc           |
|--------------------|---------|--------|--------------------------------|----------------------|----------------------|------------|-----------------|
| BT1                | 2       | 1      | -9.999918e-01                  | 9.64e-07             | 8.25e-08             | 141        | convg           |
| BT2                | 3       | 1      | +3.256821e-02                  | 9.34e-07             | 6.29e-07             | 186        | convg           |
| BT3                | 5       | 3      | +4.093023e+00                  | 8.58e-07             | 1.76e-08             | 70         | convg           |
| BT4                | 3       | 2      | -4.551055e+01                  | 4.49e-07             | 1.16e-07             | 16         | convg           |
| BT5                | 3       | 2      | +9.617152e+02                  | 7.00e-07             | 1.86e-07             | 46         | convg           |
| BT6                | 5       | 2      | +2.770448e-01                  | 8.75e-07             | 1.55e-08             | 107        | convg           |
| BT7                | 5       | 3      | _                              | _                    | _                    | 10572      | infeas          |
| BT8                | 5       | 2      | _                              | _                    | _                    | 21         | infeas          |
| BT9                | 4       | 2      | -1.000000e+00                  | 9.95e-07             | 4.92e-07             | 2481       | convg           |
| BT10               | 2       | 2      | -1.000000e+00                  | 0.00e + 00           | 5.85e-09             | 6          | convg           |
| BT11               | 5       | 3      | +8.248909e-01                  | 9.55e-07             | 7.76e-07             | 351        | convg           |
| BT12               | 5       | 3      | +6.188119e+00                  | 9.46e-07             | 4.53e-07             | 240        | convg           |
| BYRDSPHR           | 3       | 2      | -4.683300e+00                  | 8.94e-07             | 3.33e-08             | 50         | convg           |
| DIXCHLNG           | 10      | 5      | +2.471898e+03                  | 9.98e-07             | 2.67e-07             | 2722       | convg           |
| EIGENA2            | 110     | 55     | +2.448710e-13                  | 9.90e-07             | 2.06e-09             | 696        | convg           |
| EIGENACO           | 110     | 55     | +2.436158e-13                  | 9.87e-07             | 9.41e-16             | 389        | convg           |
| EIGENB2            | 110     | 55     | +1.800000e+01                  | 6.82e-07             | 1.78e-15             | 18         | convg           |
| EIGENBCO           | 110     | 55     | +9.000000e+00                  | 6.82e-07             | 1.66e-15             | 18         | convg           |
| ELEC               | 75      | 25     | +2.438128e+02                  | 1.00e-06             | 4.79e-07             | 65380      | convg           |
| GENHS28            | 10      | 8      | +9.271737e-01                  | 9.27e-07             | 1.36e-11             | 85         | convg           |
| HS100LNP           | 7       | 2      | +6.806301e+02                  | 8.57e-07             | 2.47e-07             | 113        | convg           |
| HS6                | 2       | 1      | +9.238528e-13                  | 8.60e-07             | 8.53e-07             | 55         | convg           |
| HS7                | 2 2     | 1<br>2 | -1.732051e+00                  | 9.26e-07             | 1.96e-07             | 284        | convg           |
| HS8                | 2       | 1      | -1.000000e+00                  | 0.00e+00             | 1.32e-08             | 22         | convg           |
| HS9                | 3       | 1      | -5.000000e-01                  | 8.87e-07             | 7.11e-15             | 18098      | convg           |
| HS26               | 3       | 1      | +1.303916e-09                  | 1.00e-06             | 5.10e-07             |            | convg           |
| HS27<br>HS28       | 3       | 1      | +3.999998e-02<br>+9.687529e-13 | 9.79e-07<br>9.02e-07 | 5.23e-07<br>1.33e-15 | 271<br>137 | convg           |
| HS39               | 4       | 2      |                                | 9.02e-07<br>9.95e-07 | 4.92e-07             | 2481       | convg           |
| HS40               | 4       | 3      | -1.000000e+00                  | 9.74e-07             | 3.24e-07             |            | convg           |
| HS42               | 4       | 2      | -2.500002e-01                  | 9.74e-07<br>9.85e-07 | 8.75e-07             | 600<br>92  | convg           |
| HS46               | 5       | 2      | +1.385786e+01<br>+8.808661e-09 | 1.00e-06             | 2.35e-07             | 13907      | convg           |
| HS47               | 5       | 3      | +4.650485e-10                  | 1.00e-06             | 6.88e-07             | 26784      | convg           |
| HS48               | 5       | 2      | +2.912966e-13                  | 9.31e-07             | 2.81e-15             | 177        | convg           |
| HS50               | 5       | 3      | +2.888537e-13                  | 9.99e-07             | 6.63e-14             | 11166      | convg           |
| HS51               | 5       | 3      | +8.485715e-14                  | 5.67e-07             | 1.46e-15             | 11100      | convg           |
| HS52               | 5       | 3      | +5.326648e+00                  | 9.87e-07             | 1.76e-09             | 150        | convg           |
| HS61               | 3       | 2      |                                | -                    |                      | 2          | infeas          |
| HS77               | 5       | 2      | +2.415051e-01                  | 9.27e-07             | 1.18e-07             | 103        | convg           |
| HS78               | 5       | 3      | -2.919700e+00                  | 9.31e-07             | 1.97e-08             | 95         | convg           |
| HS79               | 5       | 3      | +7.877683e-02                  | 9.71e-07             | 2.29e-07             | 357        | convg           |
| LUKVLE1            | 20      | 18     | +6.232459e+00                  | 9.11e-07             | 1.20e-08             | 98         | convg           |
| LUKVLE2            | 20      | 13     | +4.372199e+02                  | 9.93e-07             | 3.19e-08             | 604        | convg           |
| LUKVLE3            | 20      | 2      | +2.758657e+01                  | 9.94e-07             | 8.67e-07             | 2319       | convg           |
| LUKVLE4            | 20      | 9      | +1.060660e+02                  | 1.36e + 02           | 3.15e-07             | 100000     | maxit           |
| LUKVLE6            | 21      | 10     | +1.120010e+03                  | 2.10e-01             | 7.64e-07             | 100000     | maxit           |
| LUKVLE7            | 20      | 4      | -5.352208e+00                  | 8.90e-07             | 3.91e-08             | 111        | convg           |
| LUKVLE8            | 20      | 18     | +2.099621e+03                  | 8.65e-07             | 3.18e-09             | 55         | convg           |
| LUKVLE9            | 20      | 6      | +6.560168e+00                  | 1.51e + 01           | 8.57e-07             | 100000     | maxit           |
| LUKVLE10           | 20      | 18     | +6.639332e+00                  | 7.23e-07             | 3.27e-07             | 40         | convg           |
| LUKVLE11           | 18      | 10     | +5.359296e-07                  | 3.53e-05             | 1.69e-09             | 100000     | maxit           |
| LUKVLE12           | 17      | 12     | +2.286872e+02                  | 4.44e + 01           | 2.23e+00             | 100000     | maxit           |
| LUKVLE13           | 18      | 10     | +5.483076e+01                  | 4.24e-06             | 1.20e-08             | 100000     | maxit           |
| LUKVLE14           | 18      | 10     | +4.180657e+04                  | 7.86e-01             | 7.02e-07             | 100000     | maxit           |
| LUKVLE15           | 17      | 12     | +7.527144e+01                  | 1.14e + 01           | 9.10e-07             | 100000     | maxit           |
| LUKVLE16           | 17      | 12     | +8.040898e+01                  | 2.71e + 01           | 3.79e + 00           | 100000     | maxit           |
| LUKVLE17           | 17      | 12     | +1.190180e+02                  | 5.48e + 01           | 8.37e + 00           | 100000     | maxit           |
| LUKVLE18           | 17      | 12     | +2.627594e+01                  | 1.71e + 01           | 8.37e+00             | 100000     | maxit           |
| LUKVLI4            | 20      | 9      | +1.060660e+02                  | 1.36e + 02           | 3.15e-07             | 100000     | maxit           |
| MARATOS            | 2       | 1      | -1.000000e+00                  | 9.27e-07             | 2.26e-07             | 168        | convg           |
| MWRIGHT            | 5       | 3      | +2.497881e+01                  | 9.23e-07             | 1.04e-08             | 114        | convg           |
| ORTHRDM2           | 9       | 3      | +1.087113e-13                  | 6.51e-07             | 7.14e-07             | 31         | convg           |
| ORTHRDS2           | 9       | 3      | +5.921433e-14                  | 4.81e-07             | 2.63e-08             | 33         | convg           |
| ORTHREGA           | 133     | 64     | +3.503002e+02                  | 9.82e-07             | 1.66e-08             | 705        | convg           |
| ORTHREGB           | 27      | 6      | +3.057742e-14                  | 3.50e-07             | 1.02e-08             | 15         | convg           |
| ORTHREGC           | 15      | 5      | +1.125393e-12                  | 9.24e-07             | 7.22e-08             | 50         | convg           |
| ORTHREGD           | 43      | 20     | +2.179046e+02                  | 1.74e+01             | 1.09e-03             | 100000     | maxit           |
| ORTHRGDM           | 43      | 20     | +5.067350e+01                  | 8.20e+00             | 1.97e-03             | 100000     | maxit           |
| ORTHRGDS           | 43      | 20     | +6.210193e+00                  | 9.97e-07             | 8.69e-07             | 474        | convg           |
|                    |         |        |                                |                      |                      |            |                 |
| S316m322<br>SPINOP | 2<br>11 | 1<br>9 | +8.435060e-02                  | 7.91e-04             | 2.20e-06             | 100000     | infeas<br>maxit |

Table A.1: Results of running ADSWITCH in the abscence of noise

| BT1                                                                                                                                                                                                                                                                                                                  | #success 10 10 10 10 10 10 10 10 10 10 10 10 10                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| BT2                                                                                                                                                                                                                                                                                                                  | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 |
| BT3                                                                                                                                                                                                                                                                                                                  | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                  |
| BT4                                                                                                                                                                                                                                                                                                                  | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                  |
| BT5                                                                                                                                                                                                                                                                                                                  | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        |
| BT6                                                                                                                                                                                                                                                                                                                  | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                    |
| BT8                                                                                                                                                                                                                                                                                                                  | 10<br>10<br>10<br>10<br>10<br>10<br>10                                          |
| BT9                                                                                                                                                                                                                                                                                                                  | 10<br>10<br>10<br>10<br>10<br>9                                                 |
| BT10                                                                                                                                                                                                                                                                                                                 | 10<br>10<br>10<br>10<br>9                                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                | 10<br>10<br>10<br>9                                                             |
| BT12         3         2         +6.188179e+00         6.06e-03         6.49e-04         1.29e-02           BYRDSPHR         10         5         -4.683084e+00         1.21e-02         1.63e-05         1.85e+02           DIXCHLNG         110         55         +2.471678e+03         1.25e+01         3.47e-04 | 10<br>10<br>9                                                                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                | 10<br>9                                                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                | 9                                                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                |                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                | 10                                                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                | 10                                                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                | 10                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                 | 1                                                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                 | 10                                                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                | 10                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                 | 10                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                 | 10                                                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                | 10                                                                              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                               | 10<br>10                                                                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                | 10                                                                              |
| HS50                                                                                                                                                                                                                                                                                                                 | 10                                                                              |
| HS51   5   3   +1.176429e-07   6.55e-04   1.69e-15   1.03e+01                                                                                                                                                                                                                                                        | 10                                                                              |
|                                                                                                                                                                                                                                                                                                                      | 10                                                                              |
| HS52 3 2 +5.326494e+00 1.14e-01 6.34e-05 3.00e+04                                                                                                                                                                                                                                                                    | 10                                                                              |
| HS61                                                                                                                                                                                                                                                                                                                 | 10                                                                              |
| HS77   5   3   +2.415176e-01   1.14e-02   3.55e-04   2.04e+03                                                                                                                                                                                                                                                        | 10                                                                              |
| HS78   5   3   -2.918759e+00   6.58e-02   3.58e-04                                                                                                                                                                                                                                                                   | 6                                                                               |
| HS79   20   18   +7.879160e-02   2.26e-03   3.19e-04   1.24e+02                                                                                                                                                                                                                                                      | 10                                                                              |
| LUKVLE1 20 13 +6.234044e+00 2.71e-03 3.84e-04 1.13e+02                                                                                                                                                                                                                                                               | 10                                                                              |
| LUKVLE2 20 2 +4.371168e+02 3.46e+00 5.67e-04 1.00e+05                                                                                                                                                                                                                                                                | 10                                                                              |
| LUKVLE3 20 9 +2.757471e+01 1.64e-01 6.39e-04 1.00e+05 LUKVLE4 21 10 +1.058513e+02 1.35e+02 5.50e-06 1.00e+05                                                                                                                                                                                                         | 10<br>10                                                                        |
| LUKVLE4         21         10         +1.058513e+02         1.35e+02         5.50e-06         1.00e+05           LUKVLE6         20         4         +1.119942e+03         4.69e-01         5.08e-04         1.00e+05                                                                                               | 10                                                                              |
| LUKVLE7 20 18 -5.353248e+00 1.18e-01 3.97e-04 —                                                                                                                                                                                                                                                                      | 0                                                                               |
| LUKVLE8 20 6 - 1.13e+04 1.13e+04                                                                                                                                                                                                                                                                                     | 10                                                                              |
| LUKVLE9 20 18 +6.555645e+00 1.51e+01 1.66e-04 1.00e+05                                                                                                                                                                                                                                                               | 10                                                                              |
| LUKVLE10 18 10 +6.639743e+00 1.44e-02 2.76e-04 4.84e+03                                                                                                                                                                                                                                                              | 10                                                                              |
| LUKVLE11 17 12 +3.438763e-05 1.09e-03 4.80e-04 6.96e+03                                                                                                                                                                                                                                                              | 10                                                                              |
| LUKVLE12   18   10   +2.286872e+02   4.44e+01   2.23e+00   1.00e+05                                                                                                                                                                                                                                                  | 10                                                                              |
| LUKVLE13   18   10   +5.483466e+01   8.14e-02   4.72e-04   1.00e+05                                                                                                                                                                                                                                                  | 10                                                                              |
| LUKVLE14   17   12   +4.180658e+04   8.46e-01   7.29e-04   1.00e+05                                                                                                                                                                                                                                                  | 10                                                                              |
| LUKVLE15   17   12   +7.511104e+01   1.14e+01   1.81e-04                                                                                                                                                                                                                                                             | 0                                                                               |
| LUKVLE16   17   12   +8.040898e+01   2.71e+01   3.79e+00                                                                                                                                                                                                                                                             | 0                                                                               |
| LUKVLE17   17   12   +1.190180e+02   5.48e+01   8.37e+00                                                                                                                                                                                                                                                             | 0                                                                               |
| LUKVLE18 20 9 +2.627594e+01 1.71e+01 8.37e+00 —                                                                                                                                                                                                                                                                      | 0                                                                               |
| LUKVLI4         2         1         +1.063358e+02         1.38e+02         5.60e-06         1.00e+05           MARATOS         5         3         -1.000295e+00         9.53e-04         5.91e-04         9.98e+01                                                                                                  | 10<br>10                                                                        |
| MARATOS 5 3 -1.000295e+00 9.53e-04 5.91e-04 9.98e+01 MWRIGHT 9 3 +2.497543e+01 1.45e-01 4.88e-04 —                                                                                                                                                                                                                   | 9                                                                               |
| ORTHRDM2 9 3 +1.034714e-07 6.19e-04 3.51e-04 2.16e+01                                                                                                                                                                                                                                                                | 10                                                                              |
| ORTHRDS2 133 64 +8.522014e-08 5.48e-04 3.05e-04 2.14e+01                                                                                                                                                                                                                                                             | 10                                                                              |
| ORTHREGA 27 6 +3.502947e+02 6.49e-02 7.05e-04 1.00e+05                                                                                                                                                                                                                                                               | 10                                                                              |
| ORTHREGB 15 5 +5.311601e-08 3.99e-04 3.80e-05 1.06e+01                                                                                                                                                                                                                                                               | 10                                                                              |
| ORTHREGC 43 20 +6.775424e-07 8.16e-04 5.67e-04 2.69e+01                                                                                                                                                                                                                                                              | 10                                                                              |
| ORTHREGD   43   20   -   -   2.13e+02                                                                                                                                                                                                                                                                                | 10                                                                              |
| ORTHRGDM   43   20                                                                                                                                                                                                                                                                                                   | 10                                                                              |
| ORTHRGDS   2   1   +6.210324e+00   2.21e-02   5.60e-04                                                                                                                                                                                                                                                               |                                                                                 |
| $\begin{bmatrix} 8316m322 & 11 & 9 & - & - & 0.00e+00 \end{bmatrix}$                                                                                                                                                                                                                                                 | 0                                                                               |
| SPINOP         11         9         +9.941025e-02         1.10e-03         5.74e-04         6.14e+04                                                                                                                                                                                                                 |                                                                                 |

Table A.2: Results of running ADSWITCH with 5% relative Gaussian noise

| BT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Problem  | n  | m  | avr $f(x)$    | avr $  g_T(x)  $ | avr $  c(x)  $ | avr #its        | #success |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|----|---------------|------------------|----------------|-----------------|----------|
| BT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |    |    | -1.720654e-01 |                  |                |                 |          |
| BT3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |    |    |               |                  |                |                 |          |
| BT4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |    |    |               |                  |                |                 |          |
| BT6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |    |    |               |                  |                |                 |          |
| BTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |    | 2  |               |                  |                |                 |          |
| BTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BT6      | 5  | 3  | +2.771418e-01 | 1.71e-02         | 3.62e-04       | · -             | 7        |
| BT10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BT7      | 5  |    | _             | _                | _              | 1.97e+03        | 10       |
| BT11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BT8      |    |    | +1.000238e+00 | 3.77e-04         | 3.41e-04       | 1.38e+01        | 10       |
| BT11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BT9      |    |    | -1.000468e+00 |                  |                | 6.71e + 02      |          |
| BYRDSPHR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |    |    |               |                  |                | 5.00e+00        |          |
| BYRDSPHR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |    |    |               |                  |                | _               |          |
| DIXCHING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |    |    |               |                  |                |                 |          |
| EIGENACO 110 55 +2.864156e-07 9.99e-04 9.37e-16 2.35e-02 10 EIGENBCO 75 55 +2.989956e-06 1.02e-03 2.20e-04 1.05e-03 10 EIGENBCO 75 25 +1.674676e-06 8.43e-04 4.82e-04 1.35e-03 10 ELEC 10 8 +2.438072e+02 4.00e-01 5.36e-04 — 6 ELEC 11 8 +2.438072e+02 4.00e-01 5.36e-04 — 6 ELEC 11 8 +2.438072e+02 4.00e-01 5.36e-04 — 6 ELEC 11 8 +2.438072e+02 4.00e-01 5.36e-04 — 6 ELEC 11 8 +2.438072e+02 1.04e+00 3.81e-04 — 0 HS100LNP 2 1 +6.806511e+02 1.04e+00 3.81e-04 — 0 HS6 2 1 +8.822774e-07 8.34e-04 1.77e-04 2.94e+01 10 HS7 2 2 2 -1.732173e+00 9.28e-04 4.25e-04 1.45e+02 10 HS8 2 1 -1.00000e+00 0.00e+00 1.32e-08 4.00e+00 10 HS9 3 1 -4.993365e-01 7.17e-03 6.76e-15 2.20e+01 10 HS26 3 1 +3.999706e-02 9.14e-04 2.16e-04 4.66e+01 10 HS27 3 1 +3.999706e-02 9.14e-04 2.16e-04 4.66e+01 10 HS38 4 2 +1.738691e-06 1.20e-03 7.54e-16 6.87e-01 10 HS39 4 3 -1.000411e+00 1.07e-03 4.13e-04 5.98e+02 10 HS44 4 2 -2.439358e-01 3.90e-02 4.48e-06 4.18e-02 10 HS48 5 2 +1.386507e+00 1.00e-03 1.38e-02 4.88e-02 10 HS48 5 2 +1.386507e+00 1.07e-03 1.88e-02 10 HS48 5 3 +3.810055e-07 1.05e-03 1.86e-15 9.47e+01 10 HS50 5 3 +4.766120e-07 1.29e-03 9.08e-04 4.7e+02 10 HS51 5 2 +1.4766120e-07 1.29e-03 9.08e-04 4.7e+02 10 HS52 3 2 +3.815004e-07 1.29e-03 9.08e-04 4.7e+02 10 HS51 5 2 +1.4766120e-07 1.29e-03 9.08e-04 4.7e+02 10 HS51 5 3 +1.153904e-07 1.29e-03 9.08e-04 4.7e+02 10 HS78 5 3 +2.415599e-01 1.79e-02 2.39e-04 5.11e+04 10 HS79 20 18 +7.879634e-02 2.28e-03 5.15e-04 1.54e+02 10 HS78 5 3 +2.415599e-01 1.79e-02 3.32e-04 5.11e+04 10 HS79 20 18 +7.879634e-02 2.28e-03 5.15e-04 1.54e+02 10 LUKVLE1 20 13 +6.233718e+00 4.771e-03 3.12e-04 1.54e+02 10 LUKVLE2 20 2 +4.371783e+02 7.13e-00 4.40e-04 — 9 LUKVLE3 20 9 +2.757958e+01 1.50e-03 9.32e-04 5.11e-04 10 LUKVLE1 17 12 +4.84669e-01 1.9e-00 3.88e-04 1.00e+05 10 LUKVLE1 18 10 +6.233718e+00 4.7e-00 3.89e-04 1.54e-00 1.00e+05 10 LUKVLE1 17 12 +4.84669e-01 5.66e-03 10 LUKVLE1 18 10 +2.286872e+02 1.19e-01 3.32e-04 1.19e-04 1.00e+05 10 LUKVLE1 18 10 +2.286872e+00 1.36e-00 3.32e-04 1.19e-04 1.00e+05 10 LUKVLE1 18 10 +2.286872e+00 |          |    |    |               |                  |                | 4.58e+02        |          |
| EIGENACO         110         55         +2.500993e-07         9.99e-04         9.37e-16         2.35e+03         10           EIGENBCO         75         25         +1.674676e-06         8.43e-04         4.82e-04         1.35e+03         10           EIGENBCO         10         8         +2.488072e+02         4.00e-01         5.36e-04         -6           GENHS28         7         2         +9.275303e-01         1.38e-02         6.75e-06         3.59e+04         1.0           HSG         2         1         +8.802774e-07         8.34e-04         5.77e-04         2.94e+01         10           HSS         2         1         -1.000000e+00         0.00e+00         1.32e-08         4.00e+00         10           HSS         2         1         -1.000000e+00         0.00e+00         1.32e-08         4.00e+00         10           HS26         3         1         +1.632328e-05         1.15e-03         4.97e-04         2.15e-02         10           HS26         3         1         +3.999706e-02         9.14e-04         2.16e-04         4.66e+01         10           HS28         4         2         +1.738691e-06         1.20e-03         7.54e-16         6.87e-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |    |    |               |                  |                | l <del></del> . |          |
| EIGENBCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |    |    |               |                  |                |                 |          |
| EIGENBOO         75         25         +1.674676e-06         8.43e-04         4.82e-04         1.35e+03         10           ELEC         10         8         +2.488072e+02         4.00e-01         5.36e-04         1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |    |    |               |                  |                |                 |          |
| ELEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    |    |               |                  |                |                 |          |
| GENHS28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |    |    |               |                  |                | 1.35e+03        |          |
| HS100LNP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |    |    |               |                  |                | 2 500 1 04      |          |
| HS6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |    |    |               |                  |                | 3.336+04        |          |
| HS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 2  |    |               |                  |                | 2 94e±01        |          |
| HS8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 2  |    |               |                  |                |                 |          |
| HS9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 2  |    |               |                  |                |                 |          |
| HS26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    |    |               |                  |                |                 |          |
| HS27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    |    |               |                  |                |                 |          |
| HS39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HS27     |    | 1  | +3.999706e-02 | 9.14e-04         | 2.16e-04       |                 | 10       |
| HS40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HS28     |    |    | +1.738691e-06 | 1.20e-03         | 7.54e-16       |                 | 10       |
| HS42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HS39     |    |    | -1.000411e+00 | 1.07e-03         | 4.13e-04       | 5.98e+02        | 10       |
| HS46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HS40     |    |    | -2.493358e-01 |                  |                | 4.18e+02        | 10       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |    |    |               |                  |                |                 |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 5  |    |               |                  |                |                 |          |
| HS50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 5  |    |               |                  |                |                 |          |
| HS51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    |    |               |                  |                |                 |          |
| HS52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    |    |               |                  |                |                 |          |
| HS61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    |    |               |                  |                | 9.90e+00        |          |
| HS77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    |    | +5.326745e+00 | 1.30e-01         | 6.34e-05       |                 |          |
| HS78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 5  |    | 19.415500-01  | 1 70 - 02        | 2 20- 04       |                 |          |
| HS79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    |    |               |                  |                | 5.11e+04        |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                | 1 54e±02        |          |
| LUKVLE2         20         2         +4.371783e+02         7.13e+00         4.04e-04         —         8           LUKVLE3         20         9         +2.757958e+01         5.72e-01         4.40e-04         —         9           LUKVLE4         21         10         +1.063795e+02         1.41e+02         8.44e-06         1.00e+05         10           LUKVLE6         20         4         +1.119853e+03         1.16e+00         5.46e-04         1.00e+05         10           LUKVLE8         20         6         —         —         —         1.24e-04         1.00e+05         10           LUKVLE9         20         18         +6.707674e+00         1.60e+01         2.84e-04         1.00e+05         10           LUKVLE10         18         10         +6.473732e+00         2.91e-02         3.32e-04         1.19e+04         10           LUKVLE11         17         12         +2.849669e-01         5.36e-03         5.57e-04         —         9           LUKVLE12         18         10         +5.483592e+01         1.08e-01         5.89e-04         1.00e+05         10           LUKVLE14         17         12         +4.180658e+04         1.02e+00         3.89e-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |    |    |               |                  |                |                 |          |
| LUKVLE3         20         9         +2.757958e+01         5.72e-01         4.40e-04         —         9           LUKVLE4         21         10         +1.063795e+02         1.41e+02         8.44e-06         1.00e+05         10           LUKVLE6         20         4         +1.119853e+03         1.16e+00         5.46e-04         1.00e+05         10           LUKVLE7         20         18         -5.350163e+00         4.22e-01         2.45e-04         —         —         0           LUKVLE9         20         18         +6.707674e+00         1.60e+01         2.84e-04         1.00e+05         10           LUKVLE10         18         10         +6.473732e+00         2.91e-02         3.32e-04         1.19e+04         10           LUKVLE11         17         12         +2.849669e-01         5.36e-03         5.57e-04         —         9           LUKVLE12         18         10         +2.286872e+02         4.44e+01         2.23e+00         1.00e+05         10           LUKVLE13         18         10         +5.483592e+01         1.08e-01         5.89e-04         1.00e+05         10           LUKVLE14         17         12         +4.180658e+04         1.02e+00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.200 + 02</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |    |               |                  |                | 1.200 + 02      |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                | _               |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 21 | 10 |               |                  |                | 1.00e+05        |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LUKVLE6  | 20 | 4  | +1.119853e+03 | 1.16e+00         | 5.46e-04       |                 | 10       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LUKVLE7  | 20 | 18 | -5.350163e+00 |                  | 2.45e-04       | · —             | 0        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LUKVLE8  | 20 | 6  | _             | _                | _              | 1.12e+03        | 10       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LUKVLE9  | 20 | 18 | +6.707674e+00 | 1.60e+01         | 2.84e-04       | 1.00e+05        | 10       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                | 1.19e+04        |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                | _               |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                |                 |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                |                 |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                | 1.00e+05        |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                | _               |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                | _               |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                | _               |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                | 1.000   05      |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                |                 |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                | 5.5500 + 01     |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                | 2.27e+01        |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                |                 |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                |                 |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                | 1.09e+01        |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    |               |                  |                |                 |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |    | -             | -                | -              |                 |          |
| S316m322   11   9           0.00e+00   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ORTHRGDM |    |    | _             | _                | _              |                 | 10       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |    | +6.210852e+00 | 5.11e-02         | 5.33e-04       | _               |          |
| SPINOP   11   9   +1.134528e-01   1.43e-03   6.21e-04   4.12e+04   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |    |    | _             | _                | _              |                 |          |
| 100000 00000 000000 0000000 00000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SPINOP   | 11 | 9  | +1.134528e-01 | 1.43e-03         | 6.21e-04       | 4.12e+04        | 10       |

Table A.3: Results of running ADSWITCH with 15% relative Gaussian noise

| Problem            | n       | m   | avr $f(x)$                     | avr $  g_T(x)  $ | avr $  c(x)  $ | avr #its             | #success |
|--------------------|---------|-----|--------------------------------|------------------|----------------|----------------------|----------|
| BT1                | 3       | 1   | -1.628888e-01                  | 1.65e-05         | 3.72e-04       | 1.86e+02             | 10       |
| BT2                | 5       | 3   | +3.257851e-02                  | 5.28e-03         | 3.90e-04       | 2.48e+02             | 10       |
| BT3                | 3       | 2   | +4.089948e+00                  | 6.60e-02         | 6.34e-04       | 9.29e+04             | 10       |
| BT4                | 3       | 2   | -4.551030e+01                  | 1.04e-01         | 2.53e-04       | 5.51e+02             | 10       |
| BT5                |         | 2   |                                |                  |                |                      |          |
|                    | 5       | 3   | +9.617367e+02                  | 2.09e-01         | 1.93e-04       | 6.10e+03             | 10<br>1  |
| BT6                | 5       | 2   | +2.771881e-01                  | 2.53e-02         | 6.25e-04       |                      |          |
| BT7                | 5       |     | l <del></del>                  |                  |                | 1.51e+03             | 10       |
| BT8                | 4       | 2   | +1.000238e+00                  | 2.43e-04         | 3.41e-04       | 1.42e+01             | 10       |
| BT9                | 2       | 2   | -1.000286e+00                  | 6.60e-04         | 2.91e-04       | 4.16e+02             | 10       |
| BT10               | 5       | 3   | -1.000038e+00                  | 0.00e+00         | 5.91e-05       | 5.00e+00             | 10       |
| BT11               | 5       | 3   | +8.259372e-01                  | 1.09e-01         | 4.43e-04       | _                    | 6        |
| BT12               | 3       | 2   | +6.188639e+00                  | 2.01e-02         | 3.28e-04       | 2.05e+02             | 10       |
| BYRDSPHR           | 10      | 5   | -4.672953e+00                  | 8.00e-02         | 9.61e-05       | 5.88e+02             | 10       |
| DIXCHLNG           | 110     | 55  | +2.471810e+03                  | 3.74e+01         | 4.88e-04       | _                    | 6        |
| EIGENA2            | 110     | 55  | +2.814117e-07                  | 1.06e-03         | 3.87e-04       | 4.03e+02             | 10       |
| EIGENACO           | 110     | 55  | +2.651002e-07                  | 1.03e-03         | 9.35e-16       | 2.43e+02             | 10       |
| EIGENB2            | 110     | 55  | +2.653621e-06                  | 1.02e-03         | 5.90e-04       | 1.27e+03             | 10       |
| EIGENBCO           | 75      | 25  | +6.332410e-07                  | 8.51e-04         | 4.14e-04       | 1.56e+03             | 10       |
| ELEC               | 10      | 8   | +2.438104e+02                  | 5.26e-01         | 5.69e-04       |                      | 6        |
| GENHS28            | 7       | 2   | +9.281926e-01                  | 5.42e-02         | 6.75e-06       | 2.64e+04             | 10       |
| HS100LNP           | 2       | 1   | +6.806694e+02                  | 1.50e+00         | 6.92e-04       |                      | 0        |
| HS6                | 2       | 1   | +9.704023e-07                  | 8.32e-04         | 4.74e-04       | 3.12e+01             | 10       |
| HS7                | 2       | 2   | -1.732196e+00                  | 7.94e-04         | 5.04e-04       | 1.51e+02             | 10       |
| HS8                | 2       | 1   | -1.732196e+00<br>-1.000000e+00 | 0.00e+00         | 1.32e-08       | 4.00e+00             | 10       |
| HS9                | 3       | 1   | -4.981924e-01                  | 1.09e-02         | 2.06e-14       | 7.99e+01             | 10       |
| HS26               | 3       | 1   | +1.680639e-05                  | 1.18e-03         | 5.93e-04       |                      | 10       |
|                    |         | 1   |                                |                  |                | 2.00e+02             |          |
| HS27               | 3       | 2   | +4.000247e-02                  | 9.90e-04         | 1.26e-04       | 4.02e+01             | 10       |
| HS28               | 4       |     | +2.764455e-06                  | 1.42e-03         | 8.77e-16       | 7.06e+01             | 10       |
| HS39               | 4       | 3   | -1.000434e+00                  | 7.07e-04         | 4.45e-04       | 3.96e+02             | 10       |
| HS40               | 4       | 2   | -2.232808e-01                  | 6.51e-02         | 1.23e-04       | 5.08e+02             | 10       |
| HS42               | 5       | 2   | +1.387811e+01                  | 4.89e-01         | 3.55e-04       | 3.79e+03             | 10       |
| HS46               | 5       | 3   | +7.617645e-06                  | 1.14e-03         | 6.62e-04       | 1.16e+02             | 10       |
| HS47               | 5       | 2   | +2.249967e-05                  | 1.37e-03         | 3.85e-04       | 6.16e+02             | 10       |
| HS48               | 5       | 3   | +5.445390e-07                  | 1.25e-03         | 1.39e-15       | 8.88e+01             | 10       |
| HS50               | 5       | 3   | +7.538284e-07                  | 1.61e-03         | 9.79e-14       | 6.08e+03             | 10       |
| HS51               | 5       | 3   | +1.182718e-07                  | 6.25e-04         | 1.67e-15       | 1.05e+01             | 10       |
| HS52               | 3       | 2   | +5.327150e+00                  | 1.37e-01         | 6.34e-05       | i -                  | 1        |
| HS61               | 5       | 2   | I                              | _                | _              | 1.00e+00             | 10       |
| HS77               | 5       | 3   | +2.416327e-01                  | 2.47e-02         | 2.62e-04       | · —                  | 8        |
| HS78               | 5       | 3   | -2.918216e+00                  | 8.49e-02         | 3.36e-04       | _                    | 1        |
| HS79               | 20      | 18  | +7.879582e-02                  | 3.00e-03         | 6.26e-04       | 2.09e+02             | 10       |
| LUKVLE1            | 20      | 13  | +4.363520e+00                  | 6.83e-03         | 3.41e-04       | 1.25e+02             | 10       |
| LUKVLE2            | 20      | 2   | +4.371531e+02                  | 5.88e+00         | 6.31e-04       | 1.200   02           | 9        |
| LUKVLE3            | 20      | 9   | +2.758052e+01                  | 1.14e+00         | 6.23e-04       |                      | 7        |
| LUKVLE4            | 21      | 10  | +1.146093e+02                  | 1.73e+02         | 6.14e-06       | 1.00e+05             | 10       |
| LUKVLE6            | 20      | 1 4 | +1.119798e+03                  | 2.06e+00         | 4.77e-04       | 1.00e+05             | 10       |
| LUKVLE7            | 20      | 18  | -5.349869e+00                  | 4.53e-01         | 3.32e-04       | 1.000-03             | 0        |
| LUKVLE8            | 20      | 6   | -3.3498096-00                  | 4.036=01         | 3.326=04       | 3.95e+02             | 10       |
|                    |         |     |                                | 1 45 101         | 1.50 04        |                      |          |
| LUKVLE9            | 20      | 18  | +6.467339e+00                  | 1.45e+01         | 1.53e-04       | 1.00e+05             | 10       |
| LUKVLE10           | 18      | 10  | +6.464724e+00                  | 2.88e-02         | 5.32e-04       | 4.79e+04             | 10       |
| LUKVLE11           | 17      | 12  | +6.422930e-05                  | 1.84e-03         | 3.02e-04       | 5.17e+03             | 10       |
| LUKVLE12           | 18      | 10  | +2.286872e+02                  | 4.44e+01         | 2.23e+00       | 1.00e+05             | 10       |
| LUKVLE13           | 18      | 10  | +5.501071e+01                  | 1.89e-01         | 3.69e-04       | 1.00e+05             | 10       |
| LUKVLE14           | 17      | 12  | +4.180664e+04                  | 1.77e+00         | 4.53e-04       | 1.00e+05             | 10       |
| LUKVLE15           | 17      | 12  | +7.384004e+01                  | 1.14e+01         | 1.82e-04       | _                    | 0        |
| LUKVLE16           | 17      | 12  | +8.040898e+01                  | 2.71e+01         | 3.79e+00       | _                    | 0        |
| LUKVLE17           | 17      | 12  | +1.190180e+02                  | 5.48e+01         | 8.37e+00       | _                    | 0        |
| LUKVLE18           | 20      | 9   | +2.627594e+01                  | 1.71e+01         | 8.37e+00       | _                    | 0        |
| LUKVLI4            | 2       | 1   | +1.094630e+02                  | 1.55e+02         | 9.07e-06       | 1.00e+05             | 10       |
| MARATOS            | 5       | 3   | -9.998270e-01                  | 8.83e-03         | 2.92e-04       | 3.76e+01             | 10       |
| MWRIGHT            | 9       | 3   | +2.497751e+01                  | 2.90e-01         | 5.26e-04       |                      | 7        |
| ORTHRDM2           | 9       | 3   | +1.408678e-07                  | 6.56e-04         | 4.15e-04       | 2.25e+01             | 10       |
| ORTHRDS2           | 133     | 64  | +1.867325e-07                  | 7.67e-04         | 4.32e-04       | 2.25e+01             | 10       |
| ORTHREGA           | 27      | 6   | +3.503036e+02                  | 1.71e-01         | 4.19e-04       |                      | 3        |
| ORTHREGB           | 15      | 5   | +6.680941e-08                  | 4.66e-04         | 2.55e-04       | 1.21e+01             | 10       |
| ORTHREGE           | 43      | 20  | +5.552793e-07                  | 7.69e-04         | 3.77e-04       | 2.81e+01             | 10       |
| ORTHREGO           | 43      | 20  | 0.0027000-07                   | 1.030-04         | 3.110-04       | 1.44e+02             | 10       |
| ORTHREGD           | 43      | 20  | _                              | _                | _              | 1.44e+02<br>1.60e+03 | 10       |
|                    | 43<br>2 |     |                                | 6 17- 00         | 6 20- 04       | 1.000+03             |          |
| ORTHRGDS           |         | 1 9 | +6.211177e+00                  | 6.17e-02         | 6.38e-04       | 0.00-1.00            | 0        |
| S316m322<br>SPINOP | 11      |     |                                | 1.07 00          |                | 0.00e+00             | 10       |
|                    | 11      | 9   | +1.331340e-01                  | 1.97e-03         | 5.60e-04       | 2.56e+04             | 10       |

Table A.4: Results of running ADSWITCH with 25% relative Gaussian noise

| Problem  | n   | m   | avr $f(x)$       | avr $\ g_T(x)\ $     | avr $  c(x)  $ | avr #its   | #success |
|----------|-----|-----|------------------|----------------------|----------------|------------|----------|
| BT1      | 3   | 1   | -8.595453e-01    | 9.99e-02             | 4.59e-04       | 2.67e+02   | 10       |
| BT2      | 5   | 3   | +3.258385e-02    | 7.70e-03             | 4.76e-04       | 7.86e+02   | 10       |
| BT3      | 3   | 2   | +4.090844e+00    | 1.06e-01             | 6.34e-04       | 7.000-02   | 9        |
| BT4      | 3   | 2   | -4.550471e+01    | 2.77e-01             | 2.28e-04       | 1.19e+03   | 10       |
| BT5      | 5   | 2   | +9.618963e+02    | 6.57e-01             | 2.61e-04       | 5.57e+03   | 10       |
| BT6      | 5   | 3   | +2.773363e-01    | 2.99e-02             | 5.98e-04       | 5.57e+05   | 0        |
| BT7      | 5   | 2   | +2.773363e-01    | 2.99e-02             | 5.98e-04       | 1.14e+03   | 10       |
| BT8      | 4   | 2   |                  | 1.98e-03             | 3.41e-04       |            | 10       |
| BT9      | 2   | 2   | +1.000243e+00    |                      | 2.21e-04       | 1.46e+01   |          |
|          |     |     | -1.000035e+00    | 1.17e-02             |                | 1.98e+02   | 10       |
| BT10     | 5   | 3   | -1.000038e+00    | 0.00e+00             | 5.91e-05       | 5.00e+00   | 10       |
| BT11     | 5   | 3   | +8.258014e-01    | 1.25e-01             | 5.58e-04       | _          | 5        |
| BT12     | 3   | 2   | +6.189020e+00    | 2.82e-02             | 3.48e-04       | 5.23e+02   | 10       |
| BYRDSPHR | 10  | 5   | -4.664093e+00    | 1.11e-01             | 1.19e-04       | 8.67e+02   | 10       |
| DIXCHLNG | 110 | 55  | +2.472434e+03    | 6.46e+01             | 5.25e-04       | _          | 5        |
| EIGENA2  | 110 | 55  | +9.973427e-07    | 1.86e-03             | 3.57e-04       | 4.15e+02   | 10       |
| EIGENACO | 110 | 55  | +2.948147e-07    | 1.08e-03             | 9.41e-16       | 2.81e+02   | 10       |
| EIGENB2  | 110 | 55  | +3.675137e-06    | 1.07e-03             | 5.37e-04       | 8.56e+02   | 10       |
| EIGENBCO | 75  | 25  | +2.125972e-06    | 7.45e-04             | 5.15e-04       | 1.94e+03   | 10       |
| ELEC     | 10  | 8   | +2.438199e+02    | 6.84e-01             | 5.62e-04       | i -        | 2        |
| GENHS28  | 7   | 2   | +9.280133e-01    | 5.07e-02             | 6.75e-06       | _          | 1        |
| HS100LNP | 2   | 1   | +6.806891e+02    | 1.84e+00             | 8.94e-04       | _          | 0        |
| HS6      | 2   | 1   | +1.921030e-03    | 1.60e-02             | 3.73e-04       | 2.96e+01   | 10       |
| HS7      | 2   | 2   | -1.732161e+00    | 8.73e-04             | 3.80e-04       | 9.28e+01   | 10       |
| HS8      | 2   | 1   | -1.000000e+00    | 0.00e+00             | 1.32e-08       | 4.00e+00   | 10       |
| HS9      | 3   | 1   | -4.968118e-01    | 1.36e-02             | 1.10e-14       | 7.22e+01   | 10       |
| HS26     | 3   | 1   | +3.827215e-05    | 2.15e-03             | 4.57e-04       | 1.67e+02   | 10       |
| HS27     | 3   | 1   | +4.007659e-02    | 2.90e-03             | 2.31e-04       | 9.16e+01   | 10       |
| HS28     | 4   | 2   | +2.028082e-05    | 2.71e-03             | 8.44e-16       | 7.52e+01   | 10       |
| HS39     | 4   | 3   |                  | 5.82e-03             | 4.58e-04       |            | 10       |
|          | 4   | 2   | -1.000374e+00    |                      |                | 1.94e+02   |          |
| HS40     |     | 2 2 | -1.981579e-01    | 4.81e-02             | 1.35e-04       | 3.81e+02   | 10       |
| HS42     | 5   |     | +1.391016e+01    | 5.52e-01             | 2.13e-04       | 4.87e+03   | 10       |
| HS46     | 5   | 3   | +4.013015e-05    | 1.67e-03             | 5.27e-04       | 1.56e+02   | 10       |
| HS47     | 5   | 2   | +5.386687e-05    | 2.46e-03             | 5.13e-04       | 4.49e+02   | 10       |
| HS48     | 5   | 3   | +8.988756e-06    | 4.31e-03             | 1.39e-15       | 8.36e+01   | 10       |
| HS50     | 5   | 3   | +8.049833e-05    | 1.25e-02             | 1.08e-13       | 5.38e + 03 | 10       |
| HS51     | 5   | 3   | +2.340881e-07    | 9.39e-04             | 1.98e-15       | 1.68e + 01 | 10       |
| HS52     | 3   | 2   | +5.328581e+00    | 1.57e-01             | 6.34e-05       | _          | 0        |
| HS61     | 5   | 2   | _                | _                    | _              | 1.00e+00   | 10       |
| HS77     | 5   | 3   | +2.416904e-01    | 3.22e-02             | 4.66e-04       | _          | 0        |
| HS78     | 5   | 3   | -2.914874e+00    | 1.41e-01             | 2.74e-04       | _          | 0        |
| HS79     | 20  | 18  | +7.880086e-02    | 4.41e-03             | 5.19e-04       | 9.58e+02   | 10       |
| LUKVLE1  | 20  | 13  | +3.740180e+00    | 1.06e-02             | 2.27e-04       | 1.11e+02   | 10       |
| LUKVLE2  | 20  | 2   | +4.371965e+02    | 8.04e+00             | 5.47e-04       | · —        | 6        |
| LUKVLE3  | 20  | 9   | +2.758515e+01    | 1.13e+00             | 4.96e-04       | _          | 5        |
| LUKVLE4  | 21  | 10  | +1.859096e+02    | 2.56e+02             | 9.65e-05       | 1.00e+05   | 10       |
| LUKVLE6  | 20  | 4   | +1.119752e+03    | 4.22e+00             | 5.48e-04       | 1.00e+05   | 10       |
| LUKVLE7  | 20  | 18  | -5.347145e+00    | 5.86e-01             | 4.82e-04       |            | 0        |
| LUKVLE8  | 20  | 6   | 0.01,1100,00     | 0.000 01             | 1.020 01       | 1.90e+02   | 10       |
| LUKVLE9  | 20  | 18  | +7.100923e+00    | 1.90e+01             | 3.53e-04       | 1.00e+05   | 10       |
| LUKVLE10 | 18  | 10  | +6.459921e+00    | 2.75e-02             | 4.97e-04       | 9.69e+04   | 10       |
| LUKVLE11 | 17  | 12  | +1.000256e-04    | 2.75e-02<br>2.75e-03 | 5.29e-04       | 3.72e+03   | 10       |
|          | 18  | 10  |                  |                      |                |            | 10       |
| LUKVLE12 | 18  | 10  | +2.286872e+02    | 4.44e+01             | 2.23e+00       | 1.00e+05   |          |
| LUKVLE13 |     |     | +5.501757e+01    | 3.78e-01             | 3.38e-04       | 1.00e+05   | 10       |
| LUKVLE14 | 17  | 12  | +4.180692e+04    | 4.10e+00             | 3.72e-04       | 1.00e+05   | 10       |
| LUKVLE15 | 17  | 12  | +7.963970e+01    | 1.27e+01             | 1.81e-04       | _          | 0        |
| LUKVLE16 | 17  | 12  | +8.040898e+01    | 2.71e+01             | 3.79e+00       | _          | 0        |
| LUKVLE17 | 17  | 12  | +1.190180e+02    | 5.48e+01             | 8.37e+00       | _          | 0        |
| LUKVLE18 | 20  | 9   | +2.627594e+01    | 1.71e+01             | 8.37e+00       | _          | 0        |
| LUKVLI4  | 2   | 1   | +1.641033e+02    | 2.16e+02             | 2.26e-04       | 1.00e+05   | 10       |
| MARATOS  | 5   | 3   | -1.000135e+00    | 4.39e-03             | 3.68e-04       | 3.51e+01   | 10       |
| MWRIGHT  | 9   | 3   | +2.498269e+01    | 4.85e-01             | 4.89e-04       | _          | 4        |
| ORTHRDM2 | 9   | 3   | +1.938152e-07    | 7.12e-04             | 2.85e-04       | 2.68e+01   | 10       |
| ORTHRDS2 | 133 | 64  | +2.075502e-07    | 7.50e-04             | 2.86e-04       | 2.67e+01   | 10       |
| ORTHREGA | 27  | 6   | +3.503053e+02    | 2.04e-01             | 6.55e-04       | · —        | 0        |
| ORTHREGB | 15  | 5   | +1.903767e-07    | 7.21e-04             | 2.66e-04       | 1.51e+01   | 10       |
| ORTHREGC | 43  | 20  | +7.509051e-07    | 8.31e-04             | 5.59e-04       | 3.67e+01   | 10       |
| ORTHREGD | 43  | 20  |                  |                      |                | 1.65e+02   | 10       |
| ORTHREDD | 43  | 20  | _                | _                    | _              | 1.84e+03   | 10       |
| ORTHRGDM | 2   | 1   | +6.212538e+00    | 9.40e-02             | 7.00e-04       | 1010   50  | 0        |
| S316m322 | 11  | 9   | 1 .2.2120000 700 | 3.400-02             | 1.000-04       | 0.00e+00   | 10       |
| SPINOP   | 11  | 9   | +3.658931e-01    | 1.59e-02             | 4.10e-04       | 1.53e+03   | 10       |
| DIIIVOE  | 11  | 1 9 | T9.0009916-01    | 1.09e-02             | 4.100-04       | 1.000+03   | 10       |

Table A.5: Results of running ADSWITCH with 50% relative Gaussian noise