
Improving Directions in Mixed Integer Bilevel Linear
Optimization

Federico Battista and Ted K. Ralphs

Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA

COR@L Technical Report 25T-018-R1

Improving Directions in Mixed Integer Bilevel Linear Optimization

Federico Battista ∗1 and Ted K. Ralphs †1

1Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA

Original Publication: October 30, 2025

Last Revised: December 30, 2025

Abstract

We consider the central role of improving directions in solution methods for mixed integer
bilevel linear optimization problems (MIBLPs). Current state-of-the-art methods for solving
MIBLPs employ the branch-and-cut framework originally developed for solving mixed integer
linear optimization problems. This approach relies on oracles for two kinds of subproblems:
those for checking whether a candidate pair of leader’s and follower’s decisions is bilevel feasible,
and those required for generating valid inequalities. Typically, these two types of oracles are
managed separately, but in this work, we explore their close connection and propose a solution
framework based on solving a single type of subproblem: determining whether there exists a
so-called improving feasible direction for the follower’s problem. Solution of this subproblem
yields information that can be used both to check feasibility and to generate strong valid
inequalities. Building on prior works, we expose the foundational role of improving directions
in enforcing the follower’s optimality condition and extend a previously known hierarchy of
optimality-based relaxations to the mixed-integer setting, showing that the associated relaxed
feasible regions coincide exactly with the closure associated with intersection cuts derived from
improving directions. Numerical results with an implementation using a modified version of the
open source solver MibS show that this approach can yield practical improvements.

1 Introduction

Bilevel optimization problems are a class arising from the recasting of game-theoretic equilibrium
problems, such as that of finding a subgame perfect Nash equilibrium in the classic Stackelberg
game, as mathematical optimization problems. Stackelberg games are two-player sequential games
in which the players, called the leader and the follower, make one move each, with each move
consisting of deciding the values of a set of associated decision variables. The leader chooses values
for their decision variables first and then the follower selects an optimal reaction by solving an
optimization problem called the follower’s (reaction) problem, with the leader’s solution as an input

∗feb223@lehigh.edu
†ted@lehigh.edu

2

parameter. In this paper, we focus on the well-studied special case of a general bilevel optimization
problem known as a mixed integer bilevel linear optimization problem (MIBLP) in which the decision
variables of both the leader and the follower are constrained by linear inequalities and the values of
some variables are required to be integer.

The goal of solving a bilevel optimization problem is to determine the optimal decision of the leader.
Doing so, however, requires understanding the functional dependence of the follower’s reaction on
the leader’s decision. From the leader’s standpoint, the casting of the problem as a mathematical
optimization problem can be viewed as introducing constraints involving the so-called value function
of the follower’s problem into a standard mathematical optimization problem. The value function
encodes optimality conditions for the follower’s problem that are parameterized on the leader’s
decision.

The introduction of these additional nonconvex constraints is the main reason for both the theoretical
and practical difficulty of solving problems in this class. In fact, even the simplest case, in which all
constraints are linear and all variables are continuous, known as the bilevel linear optimization problem
(BLP), is strongly NP-hard [Hansen et al. (1992); Buchheim (2023)]. Such bilevel optimization
problems are usually tackled by reformulating them as single-level mathematical optimization
problems by incorporating optimality conditions for the follower’s problem derived from, e.g., the
KKT conditions, as constraints; see, e.g., [Dempe and Zemkoho (2020); Zare et al. (2019)].

MIBLPs are more difficult to solve than BLPs, both in theory and in practice. From a theoretical
computational complexity standpoint, a decision version of MIBLP is complete for the class
ΣP

2 [Stockmeyer (1976); Jeroslow (1985)], the second level of the so-called polynomial hierarchy.
Roughly speaking, this means that even if we had a constant-time oracle for solving NP-complete
subproblems (e.g., MILPs), solving MIBLPs would still remain as difficult as solving MILPs.

Despite the intractability indicated by the problem’s worst-case complexity, the fact that we can
reliably solve MILPs of small- to medium-scale in practice means that practical algorithms based on
oracle computations should be possible. Indeed, the most successful approach for solving MIBLPs
to date is the branch-and-cut algorithm, which takes a solution approach similar to that for solving
MILPs but relies crucially on the solution of MILP subproblems both for checking feasibility and
for generating the valid inequalities needed to strengthen the weak initial relaxation.

To date, state-of-the-art branch-and-cut solvers [Fischetti, Ljubić, et al. (2017); Tahernejad, Ralphs,
and DeNegre (2020)] have treated the MILP subproblems arising when generating cuts as separate
from those arising when checking feasibility of a solution, despite their theoretical equivalence. We
argue that this separation overlooks an opportunity for significant algorithmic gains. By adopting a
more integrated, “gray-box” perspective—where these oracles are not isolated but instead allowed
to share internal information—we can leverage the strong overlap between separation and feasibility
checking. We show that such a shift reduces redundant oracle computations and paves the way for
more effective solution methods.

1.1 Definitions and Notation

Before outlining the contribution of this paper, we lay out the formal definitions and notation, as
well as briefly review known results used in the remainder of the paper. In the literature, a number
of equivalent ways of formulating MIBLPs have been presented. Here, we use the so-called value

3

function formulation:

min
{
cx+ d1y

∣∣ x ∈ X, y ∈ P1(x) ∩ P2(x) ∩ Y, d2y ≤ ϕ(b2 −A2x)
}
, (MIBLP)

where

• X = Zr1
+ × Rn1−r1

+ and Y = Zr2
+ × Rn2−r2

+ , respectively, reflect the integrality requirements on
the values of the leader’s and follower’s variables;

• P1(x) =
{
y ∈ Rn2

+

∣∣ G1y ≥ b1 −A1x
}
is the set of values of the followers variables satisfying

the leader’s constraints;

• P2(x) =
{
y ∈ Rn2

+

∣∣ G2y ≥ b2 −A2x
}
is the set of values of the follower’s variables satisfying

the follower’s constraints,

while the input data are c ∈ Qn1 ; d1, d2 ∈ Qn2 ; A1 ∈ Qm1×n1 ; G1 ∈ Qm1×n2 ; b1 ∈ Qm1 ; A2 ∈ Qm2×n1 ;
G2 ∈ Qm2×n2 ; and b2 ∈ Qm2 . As discussed further below, this formulation assumes the follower
behaves in an optimistic fashion (see Dempe [2002] for discussion of other formulations).

The function ϕ is the aforementioned value function of the follower’s problem, defined as

ϕ(β) = min
{
d2y

∣∣ G2y ≥ β, y ∈ Y
}
∀β ∈ Rm2 . (VF)

The role of the value function ϕ is to encode the optimality conditions for the follower’s problem.
Specifically, for x̂ ∈ X, ŷ ∈ P1(x) ∩ P2(x) ∩ Y , if

d2ŷ ≤ ϕ(b2 −A2x̂), (OPT)

then ŷ is contained in the rational reaction set w.r.t. to x̂, defined formally as

R(x̂) =
{
y ∈ S(x̂)

∣∣ d2y ≤ d2ȳ, ∀ȳ ∈ S(x̂)
}
, (RS)

where
S(x̂) = {y ∈ Y | P1(x̂) ∩ P2(x̂)}

is the set of feasible solutions for the follower’s problem, given the leader’s decision. In this case, we
say that (x̂, ŷ) is bilevel feasible. The set of all bilevel feasible solutions is the bilevel feasible region,
denoted by

F = {(x, y) ∈ Rn1 × Rn2 | x ∈ X, y ∈ R(x)} .

When |R(x̂)| > 1, the lower-level problem has multiple optimal solutions and one can make different
assumptions about the procedure for selecting among alternative optima. The formulation (MIBLP)
that we employ here specifies the aforementioned optimistic assumption in which the follower selects
the response that is most favorable for the leader’s objective function.

The standard relaxations of an MIBLP are either the linear optimization problem (LP) relaxation
with the polyhedral feasible region

P =
{
(x, y) ∈ Rn1

+ × Rn2
+

∣∣ y ∈ P1(x) ∩ P2(x)} ,

or the MILP relaxation with feasible region

S = P ∩ (X × Y).

Throughout the paper, we make the following standard assumptions.

4

Assumption 1. P is bounded.

Assumption 2. All first-level variables with at least one non-zero coefficient in the second-level
problem (so-called linking variables) are integer.

The first assumption guarantees the boundedness of (MIBLP), but is made primarily for the sake
of presentation and can be relaxed. The second assumption ensures that the optimal solution value
of (MIBLP) is attainable whenever the optimal solution value is finite [Vicente et al. (1996)]. Finally,
because the validity of some inequalities we discuss relies on integrality of the input parameters, we
make the following simplifying assumptions in the remainder of the paper.

Assumption 3. A2x+G2y − b2 ∈ Zm2 for all (x, y) ∈ S and d2 ∈ Zn2.

Example 1. For the reminder of this paper, we make use of the well-known bilevel problem
from Moore and Bard [1990] as a running example. Figure 1 shows the bilevel feasible region and
optimal solution, along with the standard relaxations P and S. While a two-dimensional example
is illustrative, it cannot capture some of the complexities we address in this work. Hence, we also
present a three-dimensional bilevel problem, as shown in Figure 2.

x

y

1 2 3 4 5 6 7 8

1

2

3

4

obj fun

P
S
F
opt sol

min
x∈Z+

− x− 10y

s.t. y ∈ argmin {y :

−5x+ 4y ≤ 6

x+ 2y ≤ 10

2x− y ≤ 15

2x+ 10y ≥ 15

y ∈ Z+ }

Figure 1: The feasible region, the LP and MILP relaxation, and the optimal solution of the example
from Moore and Bard [1990].

x

0

1

2

3

y1

0
2

4
6

8
10

y
2

0

1

2

3

4

min
x∈{0,1,2,3}

− x− 2y1 − 5y2

s.t. y ∈ argmin {y2 :
x+ 3y2 ≥ 3

−16x+ 12y1 − 4y2 ≤ 59

−x+ 9y1 − 2y2 ≥ 2

−2x+ 6y1 + 23y2 ≥ 40

−x+ y1 + 10y2 ≤ 45

y ∈ Z2
+ }

Figure 2: A three-dimensional MIBLP and the feasible region of its LP relaxation.

5

1.2 Improving Directions

We now introduce the concept of improving directions.

Definition 1. A vector w ∈ Zr2 ×Rn2−r2 is an improving direction (ID) if d2w < 0 and we denote
the set of all IDs as W := {w ∈ Zr2 × Rn2−r2 | d2w < 0}. With respect to a given (x̂, ŷ) ∈ P, an
ID w is an improving feasible direction (IFD) if ŷ + w ∈ P2(x̂). The set of all improving feasible
directions with respect to (x̂, ŷ) is

W(x̂, ŷ) = {w ∈ W | ŷ + w ∈ P2(x̂)} . (1)

Informally, improving feasible directions with respect to a bilevel infeasible solution are those
that point towards the bilevel feasible region F . Note that although this definition requires that
improving directions must themselves satisfy the integrality requirements of the follower’s problem,
an improving direction can nevertheless be said to be feasible with respect to any point in P, not
only points in S.
The most obvious use of improving feasible directions is as a certificate of bilevel infeasibility for
points in S. We present the following fundamental result that shows the relationship between the
existence of an improving direction and bilevel feasibility of a given point.

Proposition 1. Let (x̂, ŷ) ∈ S. Then we have (x̂, ŷ) ∈ F ⇐⇒W(x̂, ŷ) = ∅.

Proof. (⇒) Assume (x̂, ŷ) ∈ F and W(x̂, ŷ) ̸= ∅ for sake of contradiction. Then d2ŷ = ϕ(b2−A2x̂).
Now let w ∈ W(x̂, ŷ), then by definition ŷ + w ∈ P2(x̂). Moreover, we have

d2(ŷ + w) < d2ŷ = ϕ(b2 −A2x̂).

This implies that either d2ŷ > ϕ(b2−A2x̂) or ŷ /∈ P2(x̂), then ŷ /∈ R(x̂). This contradicts the bilevel
feasibility of (x̂, ŷ).

(⇐) We prove the contrapositive. Let (x̂, ŷ) /∈ F be given. Then ∃ ȳ ∈ S(x̂) such that d2ȳ < d2ŷ.
Now consider w := ȳ− ŷ. Note that ŷ+w ∈ P2(x̂) and d2w < 0 by construction. Then w ∈ W(x̂, ŷ)
and the statement is proven.

This result leads to an alternative method to check bilevel feasibility, which is to check whether
W(x̂, ŷ) = ∅. By Proposition 1, when (x̂, ŷ) ∈ S, emptiness of W(x̂, ŷ) is equivalent to bilevel
feasibility. On the other hand, W(x̂, ŷ) may be empty if (x̂, ŷ) ∈ P \ S, even if (x̂, ŷ) ̸∈ conv(F)
(Proposition 1 does not apply). From a computational perspective, this is quite important. As a
side note, Proposition 1 also indicates that checking feasibility of a given solution is a problem in
co-NP, which is interesting, though not unexpected.

Given a candidate pair (x̂, ŷ) ∈ S and a direction w ∈ W(x̂, ŷ), the follower’s solution can be
augmented to form an improving solution, i.e., a new candidate pair (x̂, ŷ + w) that remains in S
but improves the follower’s objective, i.e., d2(ŷ + w) < d2ŷ. In fact, when (x̂, ŷ) satisfies integrality
requirements, checking whether W(x̂, ŷ) is empty is formally equivalent to determining the existence
of an improving solution to the follower’s problem, as both can be formulated as MILPs. However, as
discussed in Section 4.2, elements of W(x̂, ŷ) can be generated using a variety of objective functions,

6

enabling the computation of directions with different desirable properties. This makes it a seemingly
more flexible approach to certifying bilevel infeasibility.

In the context of traditional, single-level integer linear optimization, the problem of determining
whether there exists a so-called augmenting vector has been previously studied and it was shown
to be oracle-polynomial-time equivalent to solving an MILP by Schulz [2009], who called it the
augmentation problem. Similarly, bilevel feasibility of a given candidate solution in the MIBLP
context can be checked by determining whether an IFD exists. It follows that an algorithm for
solving MIBLPs based only on generating IFDs is possible.

Example 2. In Figure 3 we show three bilevel infeasible points and possible improving feasible
directions moving them toward points in F of the Moore and Bard [1990] example. Note that for
points in S \ F , there must exist at least one IFD (see, e.g., ŷ1 and ŷ2). However, IFDs may also
exist for points in P (e.g., ŷ3). Moreover, the same improving direction (e.g., w1) may be feasible
for more than one point. It is easy to verify that given any of these points (say, ŷ1), we can move
along any of the IFDs (say, w1), to obtain an improving feasible solution.

x

y

1 2 3 4 5 6 7 8

1

2

3

4

IFD

P
F

ŷ1 = 4

ŷ2 = 3

ŷ3 = 5
2y∗ = 3

w1

w2 w1

Figure 3: The improving feasible directions moving points in S (or P) towards points in F .

1.3 Valid Inequalities

We briefly review the basic concepts of valid inequalities.

Definition 2 (Valid Inequality). A valid inequality for F is a triple (αx, αy, β) ∈ Qn1 ×Qn2 ×Q
such that

F ⊆ {(x, y) ∈ Rn1 × Rn2 | αxx+ αyy ≥ β} .

The goal of generating valid inequalities in a branch-and-cut algorithm can be expressed in several
related ways. Most obviously, the goal is to strengthen the relaxation, leading to an improved dual
bound. This is accomplished by removing solutions to the relaxation that are infeasible to the
original problem through the addition of valid inequalities violated by those solutions. This shrinks
the feasible region of the relaxation, resulting in a better approximation of conv(F).

7

Another way of viewing the same goal is as that of implicitly enforcing constraints that were relaxed,
in this case the optimality conditions. Although the constraints that were relaxed are nonlinear,
their effect can be replicated using linear inequalities because the objective function is linear, which
allows us to convexify the feasible region. Thus, while the goal in the MILP setting is to expose
points satisfying integrality conditions as extreme points of the relaxed feasible region, here we
need to additionally ensure that the exposed solutions satisfy second-level optimality conditions.
In other words, the exposed integer points must also lie on the boundary of the epigraph of the
value function (roughly speaking). The fact that the exposed points must simultaneously satisfy
these two different properties results in complex interactions when generating valid inequalities that
require careful algorithmic control. More details of the theory underlying the generation of valid
inequalities in the MIBLP case, as well as detailed discussions of control mechanisms are provided
in Tahernejad and Ralphs [2025].

The general recipe by which most of the known classes of valid inequalities for MIBLPs are
constructed is to first identify a set C containing no (improving) bilevel feasible solutions in its
interior and then generate an inequality valid for conv(int(C) ∩ P). Such an inequality is valid for
F , since F ⊆ int(C) ∩ P. Because this recipe is strictly a generalization of the one first proposed
by Balas [1972] in the context of MILPs, these inequalities are sometimes referred to broadly as
intersection cuts (ICs). By employing different “solution free” sets and by replacing F with the
feasible region of a relaxation, we can derive a wide range of different classes of valid inequality.

The most common way in which ICs are generated in practice is the method proposed in the original
paper of Balas [1972]. That is, we replace P with a simplicial radial cone that contains F and
whose single extreme point lies in the interior of a convex set C containing no feasible points in its
interior, as described above. Then the hyperplane defined by the points of intersection of the rays
of the simplicial cone with the set C is a hyperplane that separates the cone’s extreme point from F .
When we reference the term intersection cut in the remainder of the paper, we are referring to this
specific type of IC, defined as follows.

Definition 3 (Bilevel Free Set). A bilevel free set (BFS) is a set C ⊆ Rn1+n2 such that int(C)∩F = ∅.

Definition 4 (Intersection Cut). Let C ⊆ Rn1+n2 be a convex BFS with a given point (x̂, ŷ) ∈ Rn1+n2

in its interior. Let V(x̂, ŷ) be a simplicial radial cone containing F with vertex (x̂, ŷ). Then, if
the triple (αx, αy, β) ∈ Qn1+n2+1 is such that the set {(x, y) ∈ Rn1+n2 | αxx + αyy = β} is the
unique hyperplane containing the points of intersection of C with the extreme rays of V(x̂, ŷ), we
have (αx, αy, β) is an inequality valid for F and violated by (x̂, ŷ). Such inequality is called an
intersection cut.

The simplicial cone is often taken to be that described by a linearly independent set of inequalities
binding at some basic feasible solution to the initial LP relaxation, but we consider cones derived in
other ways later in the paper. In Section 3.2, we define a notion of rank similar to the standard
notion from the theory of valid inequalities for MILPs. Beginning with inequalities derived from
(bilevel infeasible) extreme points of P , which are the inequalities of rank 1, one can then iteratively
apply this procedure to derive inequalities of higher rank.

In Fischetti, Ljubić, et al. [2017] and Fischetti, Ljubić, et al. [2018], a number of classes of ICs
were introduced, but two in particular play a central role in what follows—those arising from the
existence of improving solutions and improving directions, respectively. In [Tahernejad and Ralphs

8

(2025)], the authors refer to these two classes as improving solution intersection cuts (ISICs) and
improving direction intersection cuts (IDICs).

As observed by Fischetti, Ljubić, et al. [2017], the strength of an IC is directly related to the “size”
of the set C: a “larger” such set should result in a stronger inequality (see discussion in Fischetti,
Ljubić, et al. [2017]; Fischetti, Ljubić, et al. [2018]). Because of the specific forms of convex sets
utilized for the two classes of ICs, an improving direction/solution that will result in a large bilevel
free set for one class will not necessarily result in a large bilevel free set for the other class.

1.4 Contribution

Improving directions arise naturally in bilevel optimization and the use of an oracle for finding
such directions in an algorithm for solving bilevel optimization problems is not new. As observed
in Tahernejad and Ralphs [2025], ICs generated from improving directions are the strongest
inequalities known from an empirical standpoint. Beyond separation, such oracles have also been
used for branching [Wang and Xu (2017)] and for strengthening relaxations [Xueyu et al. (2022)].

The contributions of this paper are two-fold. From the theoretical standpoint, we highlight the
fundamental role of improving directions in restoring the follower’s optimality condition. To this
end, we generalize the hierarchy of optimality-based relaxations presented in Xueyu et al. [2022]
for bilevel linear problems with only binary variables to the mixed-integer context and show that
the convex hulls of the feasible regions defined by this hierarchy can be exactly characterized using
inequalities generated from improving directions.

From a computational standpoint, our contribution is to show that unifying the oracle computations
for the separation of bilevel infeasible points with those for checking bilevel feasibility and leveraging
the equivalence of the underlying MILP subproblems can lead to significant improvements in the
practical performance of the branch-and-cut algorithm. Given that the problem of finding an
improving direction serves both to generate strong valid inequalities and check bilevel feasibility,
it naturally arises as a suitable candidate for the purpose. Motivated by this, we propose and
implement a branch-and-cut algorithm that follows the basic outline described in Tahernejad, Ralphs,
and DeNegre [2020] but avoids checking feasibility of solutions by solving the follower’s problem and
instead solves the problem of determining whether there exists an improving feasible direction. We
argue that solving the leader’s problem to provable optimality without ever explicitly evaluating the
follower’s value function is not just possible but has the potential to improve empirical performance.

1.5 Outline

The remainder of this paper is organized as follows: Section 2 introduces a hierarchy of optimality-
based relaxations that arise from improving directions. Section 3 discusses the generation of
inequalities valid for bilevel feasible points derived from improving directions. Section 4 introduces
the algorithm and presents methods to generate these improving feasible directions. Finally, Section 5
presents the computational results.

9

2 The k-opt Hierarchy

Both of the standard relaxations of MIBLPs discard the optimality conditions for the follower’s
problem completely, which results in weak relaxations in general. In zero-sum problems, for example,
the follower’s problem is implicitly being solved with an objective function that is precisely the
opposite of the follower’s true objective.

Rather than completely discard the optimality condition, it is possible to impose a weaker condition
that improves the bound yielded by the linear relaxation, yet whose computation remains tractable.
In general, this can be achieved by replacing the reaction set R(x) with a suitable superset. A
straightforward way to define such a set is to replace the follower’s problem with a relaxation. In Xie
et al. [2025], for example, the optimality condition is relaxed by allowing lower-level solutions within
a specified optimality gap. Here, we follow the ideas of Xueyu et al. [2022] and instead require
the follower’s reactions to satisfy local rather than global optimality conditions. In [Xueyu et al.
(2022)], this was done for MIBLPs with only binary variables in the follower’s problem. We extend
the method by generalizing the definition of k-neighborhood. For a given y ∈ Y and k ∈ Z+, the
k-neighborhood of y is

Nk(y) = {ȳ ∈ Y | ∥ȳ − y∥1 ≤ k} .
For y ∈ Y , the elements in the k-neighborhood are the points in Y that can be reached by following
any direction w ∈ Y with ∥w∥1 ≤ k. Therefore, we can modify the reaction set (RS) to one requiring
only local optimality by replacing R(x) with

R(x; k) =
{
y ∈ S(x)

∣∣ d2y ≤ d2ȳ, ∀ȳ ∈ Nk(y) ∩ S(x)
}
. (k-RS)

for some k ∈ Z+. Note that for k = 0 we have that N0(y) = {y} and R(x; 0) = S(x), whereas for

k̄ :=

r2∑
i=1

(⌊
max

(x,y)∈P
yi

⌋
−
⌈

min
(x,y)∈P

yi

⌉)
+

n2∑
i=r2+1

⌈
max

(x,y)∈P
yi − min

(x,y)∈P
yi

⌉
,

which is finite by Assumption 1, we have Nk̄(y) = Y and R(x; k̄) = R(x), for all x ∈ X.

In Xueyu et al. [2022], (k-RS) is referred to as the k-optimal reaction set and any y ∈ R(x; k) as a
k-optimal reaction. Moreover, the authors show that for Y = {0, 1}n2 and for any fixed k ∈ Z+, the
set of points in (k-RS) is MILP-representable with a description of polynomial size.

The MIBLP with k-optimal follower is then formally defined as follows:

min cx+ d1y

s.t. (x, y) ∈ S (BPk)

y ∈ R(x; k),
for all k ∈ Z+. The set of feasible points of (BPk) is

F(k) = {(x, y) ∈ Rn1 × Rn2 | x ∈ X, y ∈ R(x; k)} . (2)

Following an approach similar to Xueyu et al. [2022], we can characterize membership in R(x; k) for
x ∈ X by a set of necessary and sufficient conditions. For this purpose, we denote the set of all
improving directions with a 1-norm no bigger than k as

Wk = {w ∈ W | ∥w∥1 ≤ k} ,

10

and those that are feasible with respect to a given (x̂, ŷ) as

W(x̂, ŷ; k) =
{
w ∈ Wk | ŷ + w ∈ P2(x̂), ∥w∥1 ≤ k

}
.

Then we have the following result.

Proposition 2. Let (x̂, ŷ) ∈ S. Then (x̂, ŷ) ∈ F(k)⇐⇒W(x̂, ŷ; k) = ∅.

Proof. Let k ∈ [k̄]. Then the proof is divided into two parts.
(⇒) We prove the contrapositive. Let W(x̂, ŷ; k) ̸= ∅ be given. Then there exists w ∈ W(x̂, ŷ; k)
such that ȳ := ŷ + w ∈ Nk(ŷ) ∩ S(x̂) with d2ȳ < d2ŷ ⇒ ŷ /∈ R(x̂; k)⇒ (x̂, ŷ) /∈ F(k).

(⇐) Again, we prove the contrapositive. Let (x̂, ŷ) /∈ F(k) be given. Then ŷ /∈ R(x̂; k) ⇒
∃ ȳ ∈ Nk(ŷ) ∩ S(x̂) with d2ȳ < d2ŷ. Now consider w := ȳ − ŷ. Note that ∥w∥1 ≤ k, w ∈ P2(x̂) and
d2w < 0 by construction. Then w ∈ W(x̂, ŷ; k) and this proves the statement.

In other words, just as we can check the feasibility of (x̂, ŷ) with respect to the constraints
of (MIBLP) by checking emptiness of W(x̂, ŷ), we can check feasibility with respect to (BPk) by
checking emptiness of W(x̂, ŷ; k).

With the next result, we show that (BPk) defines a hierarchy of relaxations for (MIBLP).

Theorem 1. S = F(0) ⊇ F(1) ⊇ F(2) ⊇ . . . ⊇ F(k̄) = F .

Proof. To show that F(k) ⊇ F(k + 1) for k = 0, 1, . . . , k̄ − 1, it is sufficient to observe that
W(x, y; k′) ⊆ W(x, y; k′′), for all k′, k′′ ∈ [k̄], with k′ ≤ k′′, then it follows from Proposition 2. For
k = 0 we have that N0(y) = {y} and R(x; 0) = S(x). Furthermore, if k = k̄ then Nk̄(y) = Y and
R(x; k̄) = R(x).
The next question we address explores the theoretical computational complexity of computing the
dual bound of (BPk) for a fixed value of k. As a natural extension of the result in Xueyu et al.
[2022], the following theorem shows that the decision version of (BPk) is NP-complete.

Theorem 2. The decision version of (BPk) is NP-complete for any fixed integer k ≥ 1.

Proof. Given any fixed integer k ≥ 1, we consider the feasibility problem associated with (BPk),
which is one form of decision version of (BPk). That is, we consider the problem of deciding
whether ∃(x, y) ∈ F(k). First, we prove that this decision problem is in NP. Then, we show that
the problem of determining whether a given MILP is feasible can be reduced to that of deciding
whether (BPk) is feasible.

To show that the feasibility problem associated with (BPk) is in NP, we show that when F(k) ̸= ∅,
then there exists a certificate that can be verified in polynomial time. When F(k) ̸= ∅, there must
exist (x̂, ŷ) ∈ F(k). By Proposition 2, (x̂, ŷ) ∈ F(k) if and only if W(x̂, ŷ; k) = ∅. Then, a verifier
is deciding whether ∀w ∈ Wk, w /∈ W(x̂, ŷ; k). Given any w ∈ Wk, verifying that w ∈ W(x̂, ŷ; k)
can be done in polynomial time by deciding the membership of ŷ + w to the polytope P2(x̂).
Moreover, the set Wk has a cardinality of O(nk), which is polynomial in n for any fixed integer
k ≥ 1. Therefore, the certificate can be verified in time polynomial in n.

11

To show that the problem of deciding feasibility of an MILP can be reduced to that of deciding
feasibility of (BPk), let X :=

{
x ∈ X

∣∣ A1x ≥ b1
}
and consider the MILP feasibility problem of

determining whether X ̸= ∅. The certificate for this problem is any x ∈ X . We show how to
construct such a certificate from the certificate of an instance of (BPk). As such, let an instance
of (BPk) feasibility be defined as follows. We let Y = Rn2

+ , G1 = 0m1×n2 , A
2 = 0m2×n1 , G

2 = In2

(the identity matrix of order n2), b
2 = 0n2 and d2 = 1n2 (the all-zeros and all-ones vectors of order

n2, respectively). Note that by construction, R(x; k) = R(x) = {0n2} for all x ∈ X . It is easy
to verify that x ∈ X ⇐⇒ (x,0n2) ∈ F(k). Then any certificate of feasibility for the constructed
instance of (BPk) can be mapped to a certificate for the feasibility of the MILP.

In the context of bilevel problems with only binary variables at the second level, Xueyu et al. [2022]
show that optimizing over (BPk) for “small” values of k already yields much stronger dual bounds
for (MIBLP). In this work, the relevance of this hierarchy of relaxations is mainly theoretical. We
show in Section 3 that the feasible solutions of (BPk) can be described by adding to the MILP
relaxation S a specific (finite) class of valid linear inequalities arising from improving directions
(or equivalently, improving solutions). From a theoretical standpoint, this gives us some insight
regarding the strength of such a class of inequalities.

Example 3. Figure 4 shows slices of P of the three-dimensional example for the four integer values
of x. For each slice, we illustrate the feasible points of (BPk) for different values of k. In particular,
we can observe in Figure 4b (x̂ = 1) that

R(x̂, 1) \ R(x̂) = {(x̂, 3, 2), (x̂, 7, 3), (x̂, 2, 2), (x̂, 1, 2)} ⊃
⊃ R(x̂, 2) \ R(x̂) = {(x̂, 2, 2), (x̂, 1, 2)} ⊃
⊃ R(x̂, 3) \ R(x̂) = {(x̂, 1, 2)} ,

and that
F(1) ⊃ F(2) ⊃ F(3) ⊃ F(4) = F ∪ {(3, 4, 1)} .

Note that (3, 4, 1) is the only element in F(4) that is not also in F , since for its unique IFD
w = (4,−1) we have ∥w∥1 = 5. Therefore, for all k ≥ 5, F(k) = F .

3 Valid Inequalities from IDs

In this section, we discuss the generation of valid inequalities from improving directions. Our goal
is to formalize what seems to be an intuitive connection between IDICs and the k-opt hierarchy
introduced in Section 2, both of which are derived from the concept of improving directions. The
connection we aim to establish is that, roughly speaking, F(k) can be described using IDICs derived
only from BFSs obtained from improving directions w ∈ W and such that ∥w∥1 ≤ k. After briefly
reviewing the definitions related to ICs in Section 3.1 and introducing a notion of rank analogous to
that for valid inequalities in MILPs in Section 3.2, we prove the main theoretical result in Section 3.3.

12

y1

y2

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

F
F(1) \ F(2)
F(2) \ F(3)

(a) x̂ = 0

y1

y2

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

F
F(1) \ F(2)
F(2) \ F(3)
F(3) \ F(4)

(b) x̂ = 1

y1

y2

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

F
F(1) \ F(2)
F(2) \ F(3)
F(3) \ F(4)

(c) x̂ = 2

y1

y2

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

F
F(1) \ F(2)
F(2) \ F(3)
F(3) \ F(4)
F(4) \ F(5)

(d) x̂ = 3

Figure 4: Slices of the feasible region of (BPk).

3.1 Intersection Cuts

As already mentioned, we focus on two related types of intersection cuts that can be derived from
improving directions and improving solutions, respectively. Specifically, the classes differ in the
definition of bilevel free set.

Improving Direction Intersection Cuts. We first describe the BFS used for generating IDICs.

Theorem 3 (Fischetti, Ljubić, et al. [2018]). Let (x̂, ŷ) ∈ Rn1+n2 be the extreme point of a simplicial
radial cone V(x̂, ŷ) containing F ̸= ∅ and w ∈ W(x̂, ŷ). Then we have that

αxx+ αyy ≥ β ∀(x, y) ∈ F ,

where this inequality is the IC generated from the bilevel free set

CID(w) =
{
(x, y) ∈ Rn1 × Rn2

∣∣ A2x+G2(y + w) ≥ b2 − 1, y + w ≥ −1
}
. (IDIC)

Furthermore, αxx̂+ αyŷ < β.

To see why CID(w) is a BFS for any w ∈ W, observe that for (x̂, ŷ) ∈ S ∩ int(CID(w)), ŷ + w is
feasible for the associated follower’s problem, which means that w is an IFD with respect to (x̂, ŷ).
Hence, (x̂, ŷ) must be bilevel infeasible. Thus, the set CID(w) contains all points with respect to
which w is an improving feasible direction.

13

Note that the definition of BFS given in (IDIC) is independent of the point (x̂, ŷ). As long as w is
an ID, CID(w) is a BFS—it need not be feasible with respect to any particular point (although the
BFS associated with a given ID could be empty). The reason we may want to construct a direction
that is an IFD w.r.t. a specific point is that this ensures the point lies in the interior of CID(w),
which in turn ensures that the point will violate the generated IC.

To summarize, separation of (x̂, ŷ) ∈ P \ F by some IC can be guaranteed if

(i) W(x̂, ŷ) ̸= ∅;

(ii) we can construct a simplicial radial cone V(x̂, ŷ) ⊇ F with (x̂, ŷ) as its extreme point; and

(iii) V(x̂, ŷ) ̸⊆ CID(w) (F ̸= ∅).

By Proposition 1, condition (i) is automatically satisfied whenever (x̂, ŷ) ∈ S \ F . In practical
computation, the case that W(x̂, ŷ) = ∅ may arise and is an important consideration, as discussed
further in Tahernejad and Ralphs [2025]. In such a case, we cannot separate (x̂, ŷ) ∈ P from F with
an IDIC, although we can still do so with an inequality valid for conv(S). Condition (ii) is typically
easy to satisfy, since when (x̂, ŷ) is an extreme point of P, the simplicial cone arises naturally from
an associated LP basis. Violation of condition (iii) means F = ∅, which typically only happens
after branching constraints have been applied in the context of a branch-and-cut algorithm.

Improving Solution Intersection Cuts. Let us now consider, in constrast, the BFSs used to
generate ISICs.

Theorem 4 (Fischetti, Ljubić, et al. [2017]; Fischetti, Ljubić, et al. [2018]). Let (x̂, ŷ) ∈ Rn1+n2 be
the extreme point of a simplicial radial cone V(x̂, ŷ) containing F such that d2ŷ > d2y∗ for some
y∗ ∈ P2(x̂) ∩ Y . Then, under the stated assumptions, we have

αxx+ αyy ≥ β ∀(x, y) ∈ F ,

where this inequality is the IC associated with the bilevel free set

CIS(y∗) =
{
(x, y) ∈ Rn1 × Rn2

∣∣ d2y ≥ d2y∗, A2x ≥ b2 −G2y∗ − 1
}
, (ISIC)

Furthermore, αxx̂+ αyŷ < β.

The convex set (ISIC) includes all points (x, y) for which x satisfies the follower’s constraints for
the fixed improving solution y∗ ∈ Y and for which y has a second-level objective no better than
that of y∗. As with IDICs, the BFS does not depend on the point (x̂, ŷ). There is a BFS associated
with each y∗ ∈ Y (though again, some could be empty). The reason we may desire a y∗ such that
d2y∗ < d2ŷ is to guarantee that (x̂, ŷ) can be separated.

As with IDICs, it may be possible to generate an inequality when (x̂, ŷ) ̸∈ S. Conditions (ii) and
(iii) for separation by an IDIC must also be satisfied for separation by an ISIC, but instead of
condition (i), we must have P2(x̂) ∩ Y ̸= ∅. By Proposition 1, this is assured when (x̂, ŷ) ∈ S \ F .

14

Example 4. Let us consider the example from Moore and Bard [1990]. The optimal solution (x̂, ŷ)
to the LP relaxation satisfies integrality requirements, but is bilevel infeasible. In this case, it is
straightforward to see that w = −1 is an improving feasible direction and y∗ = 2 is an improving
solution. Figure 5 depicts all possible IDICs and ISICs obtained by combining the direction and
solution with both BFSs. For the sake of this example, the BFSs reported here are defined by the
original constraints rather than the relaxed right-hand sides. Although separation of the current
solution is guaranteed under broad assumptions, for deeper cuts, we want CID(w) to be as large as
possible and this means choosing a “short” directions w. On the other hand, larger set CIS(y∗) arise
from solutions y∗ ∈ Y that are “further” from ŷ, i.e., for which ∥y∗ − ŷ∥ is “larger”.

x

y

1 2 3 4 5 6 7 8

1

2

3

4
(x̂, ŷ)

P
F
BFS

V(x̂, ŷ)
IDIC

(a) IDIC with IFD w = −1

x

y

1 2 3 4 5 6 7 8

1

2

3

4
(x̂, ŷ)

P
F
BFS

V(x̂, ŷ)
IDIC

(b) ISIC with IS y∗ = 2

x

y

1 2 3 4 5 6 7 8

1

2

3

4
(x̂, ŷ)

P
F
BFS

V(x̂, ŷ)
IDIC

(c) IDIC with IFD y∗ − ŷ

x

y

1 2 3 4 5 6 7 8

1

2

3

4
(x̂, ŷ)

P
F
BFS

V(x̂, ŷ)
IDIC

(d) ISIC with IS ŷ + w

Figure 5: Illustration of IS and IDICs using different improving solutions/directions on Moore and
Bard example [Moore and Bard (1990)]

Connections between ISICs and IDICs. For any given (x̂, ŷ) ∈ S \ F , it is easy to verify that
if we are given any improving direction w ∈ W(x̂, ŷ), we can use it to obtain an improving solution
y∗ = ŷ+w ∈ P2(x̂)∩Y and vice versa. However, this equivalence does not always hold for points in
P \ F . Consider, for instance, the point (1, 2.2) ∈ P \ S from the Moore and Bard [1990] example.
Figure 5a shows that (1, 2.2) /∈ CID(−1), implying W(1, 2.2) = ∅, even though Figure 5c confirms
that (1, 2.2) ∈ CIS(2). Thus, there may exist points in P \ S that admit improving solutions, but no
improving feasible directions. In this case, it occurs because the direction w = −0.2 does not satisfy
the integrality requirements. As a consequence, the separation of fractional extreme points may fail

15

even when d2ŷ > ϕ(b2 −A2x̂), whereas this cannot happen with ISICs.

Another important aspect is the contrast of the two BFSs. The set CID(w) is defined by a direction
w, not a fixed second-level solution. In contrast, CIS(y∗) is defined with respect to a fixed y∗ ∈ Y .
Intuitively, to enlarge CIS(y∗), y∗ should be a high quality solution to the second-level problem—
corresponding to directions of larger magnitude—which is in opposition to the goal of choosing w
such that CID(w) is large. For this reason, depending on what kind of IC we are generating, different
directions must be considered desirable. This issue is addressed in depth in Section 4.2.

3.2 Closures and Rank for Intersection Cuts

In the context of MILPs, one way of characterizing the overall strength of a specific class of valid
inequalities is by analyzing the so-called closure, which is the convex set obtained by adding all
inequalities in the class to the initial LP relaxation. Before making the connections between IDICs
and the k-opt hierarchy more formal, we first show how to apply the standard notions of closure
and rank to the ICs discussed in Section 3.1.

As with MILPs, when the set of non-dominated inequalities in a class is finite, the closure is a
polyhedron and is itself a relaxation of the original problem. The inequalities defining this first
closure are defined to have rank 1. Taking the closure again with respect to the relaxation defined
by the first closure yields the rank 2 closure and this process can be iterated. In general, the closure
of rank r is the closure with respect to that of rank r − 1. The rank of a given valid inequality with
respect to this hierarchy is the smallest value of r such that the inequality is valid for the rank r
closure, but not the rank r − 1 closure [Cornuéjols (2008)].

To apply these concepts to ICs, an obvious approach would be to consider all cuts that can be
derived from the procedure of Definition 4, taking (x̂, ŷ) to be one of the extreme points of P . Given
an extreme point (x̂, ŷ), the definition requires specifying a simplicial radial cone pointed at (x̂, ŷ).
Such a cone is easily obtained from a basis of the LP relaxation with respect to which (x̂, ŷ) is the
associated basic feasible solution. Different bases yield different cuts, so a closure could be derived
by considering all cones arising from all bases for all extreme points of P and combining these with
all possible BFSs.

A simpler construction is one in which we enumerate all possible BFSs and consider the convex hull
of the complement of the interior for each. By taking the intersection of all such complements with
P , we obtain a similar closure. More formally, for each w ∈ W , let D1(w) := conv(P \ int(CID(w))).
Then the first closure of P with respect to the class of ICs associated with BFSs (IDIC) is called
the rank 1 IDIC closure and defined as

P1
ID =

⋂
w∈W

D1(w).

Although the set of all IDs W is not finite in general, it can be replaced by a finite subset consisting
of IDs with 1-norm at most k̄ (as defined earlier) in the above. The rank r IDIC closure, denoted
by Pr

ID, is recursively defined as the rank 1 closure of Pr−1
ID as follows

Pr
ID =

⋂
w∈W

Dr(w),

16

where Dr(w) := conv(Pr−1
ID \ int(CID(w))), for all w ∈ W, and P0

ID := P. Hence, the closure yields
a natural hierarchy of relaxations over these classes of valid inequalities, ranging from low-rank
(weaker) to high-rank (stronger) cuts.

As noted before, since there are points in P \ conv(F) that cannot be separated by IDICs at all, the
facet-defining inequalities of conv(F) cannot all be expected to have finite IDIC rank. The next
example shows a case in which there exists an r∗ such that Pr∗+1

ID = Pr∗
ID and Pr∗

ID ∩ S ≠ F .

Example 5. Figure 6 depicts a polytope P ⊃ F of the Moore and Bard [1990] example. As
illustrated, all extreme points (x, y) ∈ ext(P) are fractional, i.e., (x, y) /∈ S. However, none of
these extreme points lie in int(CID(−1)) (depicted in green), and thus cannot be separated by an
IDIC. Consequently, we have that Pr

ID = P, for all r > 0. Moreover, Pr
ID ∩ S ̸= F , as the point

(3, 2) ∈ (Pr
ID ∩ S) \ F .

x

y

1 2 3 4 5 6 7 8 9

1

2

3

P
F
BFS

Figure 6: Illustration of a polytope where all extreme points are fractional and have an empty set
of IFDs.

On the other hand, it is possible to separate any point in S \ F that is an extreme point of P from
conv(F) with an IDIC, so a pure cutting plane method using a combination of IDICs and MILP
cuts is possible. Next, we show that Pr

ID is a polyhedron for any r > 0.

Proposition 3. For all w ∈ W, D1(w) is a polyhedron.

Proof. We show that the set of extreme points of conv(P\int(CID(w))) is finite. Note that P∩CID(w)
is a polyhedron. Hence, ext(P ∩ CID(w)) is a finite set. Then, by construction we have that

ext(conv(P \ int(CID(w)))) ⊆ ext(P) ∪ ext(P ∩ CID(w)).

Since both sets on the right-hand side are finite, so must be the left-hand side.

Theorem 5. Let r > 0 be given. Then Pr
ID is a polyhedron.

Proof. Note that for all ŵ ∈ W \W k̄, we have conv(P \ int(CID(ŵ))) = P. Then

Pr
ID =

⋂
w∈W

Dr(w) =
⋂

w∈W k̄

Dr(w),

17

for all r > 0. First, we prove the statement for r = 1. For all w ∈ W k̄, D1(w) is polyhedral by
Proposition 3. It follows that P1

ID is obtained as the intersection of a finite number of polyhedra.
Assuming the statement holds for r − 1, we prove the statement for r > 1. Since Pr−1

ID ⊆ P is

polyhedral, by Proposition 3 we have that Dr(w) is still polyhedral, for all w ∈ W k̄. Hence, Pr
ID is

the result of the intersection of a finite number of polyhedra.

The same analysis can be applied to the ISICs defined by (ISIC) to obtain a hierarchy defined by
closures Pr

IS.

3.3 Intersection Cuts and k-optimality

The hierarchy of relaxations presented in the previous section provides a framework to classify the
strength of IDICs as a function of their IDIC rank, which is the natural counterpart of the similar
hierarchies in the theory of valid inequalities for MILPs (Chvátal-Gomory rank, etc.). Our goal
in this section, however, is to analyze a different and more practical hierarchy that classifies the
strength of IDICs as a function of the points in S they can separate, with a close relationship to the
k-opt hierarchy introduced earlier.

The analysis in this section was the original motivation for undertaking the work presented in this
paper, driven by the desire of computing the strong bounds produced by the k-opt relaxation. As
our main result in this section shows, these bounds can be obtained with only a minimal modification
to the existing branch-and-cut framework of Tahernejad, Ralphs, and DeNegre [2020] by restricting
the generation of valid inequalities to the subset of IDICs that are valid for the feasible points of the
k-opt hierarchy, that is, those derived from IFDs with 1-norm at most k. To formalize this result,
we first introduce the notion of a k-IDIC, an IDIC valid for (BPk).

Definition 5. For k ∈ [k̄], a k-IDIC is an IC generated from a BFS CID(w) such that w ∈ Wk.

Before getting into the formalities, we first outline the intuition behind the proof. Consider any
bilevel infeasible point (x, y) ∈ S \ F and let k∗ = minw∈W(x,y) ∥w∥1 be the smallest 1-norm of any
IFD w.r.t. (x, y). Proposition 2 and Theorem 1 together imply that (x, y) ∈ F(k) if and only if
k ≤ k∗ − 1. In particular, we must have W(x, y; k∗) ̸= ∅ and hence, there must be at least one
IFD w ∈ W(x, y; k∗). From this IFD w, given an appropriate simplicial cone (which we show below
always exists), we can always derive a k∗-IDIC separating (x, y) from F(k∗) (and hence also from
F(k) for all k∗ ≤ k ≤ k̄).

To state the same logic in other terms, Proposition 2 and Theorem 1 together specify a partition of
S \ F into levels that correspond to levels of the k-opt hierarchy. A point (x, y) is on level k if it is
in F(k) \ F(k + 1). A point on level k can be separated from F(k + 1) by a (k + 1)-IDIC.

It is important to emphasize that there is no relationship in general between the IDIC rank of an
inequality (as defined in Section 3.2) and the level of the points it can separate. In fact, for any
fixed k, a k-IDIC can have any IDIC rank. There exists an entire rank hierarchy for k-IDICs for
any fixed k that mirrors that derived in the previous section. Applying Definition 5 to the extreme
points of P, for example yields k-IDICs of “rank 1” and we can iterate to derive k-IDICs of higher
rank.

Next, we state the main result of this section which comprises two parts. The first establishes that

18

k-IDICs are valid for F(k) by showing that for all w ∈ Wk, CID(w) is “F(k)-free”. The second
shows that any point in S that is not in F(k) can be separated by a k-IDIC.

Theorem 6. For all k ∈ [k̄], the following statements hold:

(1) all k-IDICs are valid for F(k); and

(2) for all (x, y) ∈ S \ F(k), there exists a k-IDIC violated by (x, y).

In other words, k-IDICs can separate all and only points in S \ F(k).

Proof. (1) Let k ∈ [k̄] and w ∈ Wk be given. We show that int(CID(w)) ∩ F(k) = ∅. By definition
of (IDIC), w ∈ W(x, y; k) for all (x, y) ∈ int(CID(w)) ∩ S. Consequently, Proposition 2 implies
(x, y) /∈ F(k).
(2) Let k ∈ [k̄] and (x, y) ∈ S \ F(k) be given. First, we show that a suitable simplicial radial cone
can be constructed from standard geometric arguments. The polyhedron

F (x,y)(k) = conv(F(k) ∪ {(x, y)})

contains F(k) and has (x, y) as one of its extreme points. Moreover, there exists a simplicial radial
cone V(x, y) pointed at (x, y) whose description is obtained by selecting a set of linearly independent
inequalities binding at (x, y) from the description of F (x,y)(k). Then, by Proposition 2 there exists
a w ∈ W(x, y; k); and (x, y) ∈ int(CID(w)) by the definition of (IDIC). Therefore,

conv
(
F (x,y)(k) \ int(CID(w))

)
is a k-IDIC violated by (x, y).

To complete the argument, we show that, for any given k ∈ [k̄], the convexification of the set of
points satisfying both integrality requirements and all possible k-IDICs derived from Theorem 6
coincides with that of the feasible region of (BPk). As such, for all k ∈ [k̄], let

Πk
ID =

⋂
(x,y)∈F(k−1)\F(k)

⋂
w∈W(x,y;k)

conv
(
F (x,y)(k) \ int(CID(w))

)
.

be the intersection of all the k-IDICs separating from F(k) points in F(k − 1) \ F(k), those having
level k − 1.

Corollary 1. For all k ∈ [k̄], conv(S ∩Πk
ID) = conv(F(k)).

From a theoretical standpoint, the previous result connects the strength of IDICs generated from
an ID with 1-norm k to the k-opt relaxation. From a practical standpoint, it suggests that the
separation of this family of cuts produces dual bounds converging to those associated with the
hierarchy (BPk). As a matter of fact, branch-and-cut and cutting-plane methods can be interpreted
as optimizing over the convex hull of a certain feasible region. Therefore, such dual bounds can, in
principle, be computed by a pure cutting plane in which integrality is restored with the separation
of standard MILP cuts, while k-optimality is enforced by k-IDICs. Equivalently, the same bounds

19

can be produced by a branch-and-cut algorithm exclusively generating k-IDICs, with integrality
enforced (convexification) through standard MILP branching.

We end the section with a few complementary results, illustrated through examples. In contrast
with the properties established for IDICs, an analogous result does not hold in general for ISICs.
Specifically, given a point (x̂, ŷ) ∈ S \ conv(F(k)) and a w ∈ W(x̂, ŷ; k), it is not necessarily the
case that w is an IFD for every (x, y) ∈ int(CIS(ŷ + w)) ∩ S, as we exemplify next.

Example 6. Figure 7 shows the slice of the three-dimensional example for x̂ = 1. Let us consider
ŷ = (4, 3), w = (0,−1) and y∗ = (4, 2) as the improving solution. The BFS is defined as
CIS(y∗) = {(x, y) ∈ Rn1 × Rn2 | y2 ≥ 2, 0 ≤ x ≤ 3}. One can verify that (1, 7, 3) ∈ CIS(y∗), but
w /∈ W(1, 7, 3; 1) = ∅.

Note that, unlike the MILP setting where all points satisfying integrality requirements within the
convex hull of S are feasible, there may exist points (x, y) ∈ conv(F(k))∩S for whichW(x, y; k) ̸= ∅,
and thus (x, y) /∈ F(k), as illustrated in the following example.

Example 7. Figure 7 shows a slice of conv(F(1)) (in green) of the three-dimensional example, for
x̂ = 1. It is easy to verify that the vector ŵ = (0,−1) is an IFD for the point (4, 2) ∈ S(x̂), i.e.,
W(4, 2; k) ̸= ∅. Although (4, 2) ∈ int(CID(ŵ)), there exists no simplicial radial cone pointed at (4, 2)
that contains F(k), since (4, 2) ∈ conv(F(k)). Therefore, in this case, separation with k-IDICs is
not possible but also unnecessary.

y1

y2

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

F
F(1) \ F(2)
F(2) \ F(3)
F(3) \ F(4)
conv(F(1))

Figure 7: A slice of conv(F(1)) of the three-dimensional example, for x̂ = 1

4 Branch-and-Cut Algorithm

In this section, we present a branch-and-cut algorithm based on the overarching framework of [Tah-
ernejad, Ralphs, and DeNegre (2020); Tahernejad and Ralphs (2025)] but in which the feasibility
check and the generation of valid inequalities are unified with an oracle for finding an IFD. The
implementation is based on the open source solver MibS [DeNegre et al. (2024)] and we refer the

20

reader to [Tahernejad, Ralphs, and DeNegre (2020); Tahernejad and Ralphs (2025)] for details.
This section describes the details of the main components, focusing on the differences from what is
currently implemented in MibS 1.2.

4.1 General Framework

The outline of the overall method is in Algorithm 1. Obviously, this is only a general framework

Algorithm 1 Generic Branch-and-Cut Using Improving Direction Oracle

1: Initialize the set Q of unexplored subproblems with the original problem.
2: U ←∞
3: while Q ̸= ∅ do
4: Select a node t from Q with feasible region F t.
5: Bound node t to generate dual bound Lt and candidate solution (xt, yt).
6: if Lt =∞ or Lt ≥ U then
7: Prune node t.
8: Check W(xt, yt)

?
= ∅ (optional if (xt, yt) ̸∈ S).

9: if W(xt, yt) ̸= ∅ and/or (xt, yt) ̸∈ S then
10: Either

• separate (xt, yt) from conv(F) and put t back in Q; or

• branch and add new subproblems t1, . . . , tk to Q.

11: else
12: (xt, yt) ∈ F by Proposition 1.
13: U t ← cxt + d1yt.
14: U ← min{U,U t}.
15: Prune node t.

and the precise way in which various steps in this algorithm are implemented determines crucially
how the algorithm will perform in practice. In particular, the choice between separation (generating
a violated valid inequality) and branching on line 10 is important. Most of the detailed control
mechanisms, including the one for making the decision between branching and cutting, are the same
here as in MibS 1.2 and are discussed in [Tahernejad and Ralphs (2025)]. In the remainder of this
section, we focus on the method used for generating IFDs, which is the main innovation.

4.2 Generating Feasible Improving Directions

Line 8 of the algorithm is the step that differentiates our approach from that of Tahernejad, Ralphs,
and DeNegre [2020]. We now switch gears and discuss the empirical issues surrounding the framework
that has been introduced in the previous sections. In particular, we focus on the practical details of
the problem of generating an appropriate IFD, given a candidate solution (x̂, ŷ) ∈ P . As we already
mentioned, the goal of finding an IFD is twofold. First, the IFD (or the proof that none exists),
certifies the feasibility status of (x̂, ŷ) by Proposition 1 when (x̂, ŷ) ∈ S (otherwise, (x̂, ŷ) is trivially
infeasible). Second (and perhaps more crucially), the direction serves to produce an IC violated
by (x̂, ŷ). For this latter purpose, the particular direction produced makes a big difference. In the

21

following two sections, we first discuss relevant objective functions and then both an exact and a
heuristic way of generating directions according to these objective functions.

4.2.1 Objective Functions

Although any IFD inW(x̂, ŷ) suffices to generate a BFS of either the form (IDIC) or the form (ISIC)
that can be used to generate an associated IC violated by (x̂, ŷ), the particular objective function
used serves to guide the selection, ideally leading to BFSs that are “larger” and therefore produce
deeper cuts.

Let us consider the BFS (IDIC) first. As previously remarked, a direction w ∈ W(x̂, ŷ) is likely to
include more points in CID(w) if its 1-norm is small. Clearly, a possible approach is to consider the
following objective function

min ∥w∥1 . (3)

Fischetti, Ljubić, et al. [2018] proposed an objective function that has a related goal

min

{
m2∑
i=1

max{g2iw, 0}+ ∥w∥1

}
, (4)

where g2i is the ith row of G2. This objective can be linearized in the obvious way and the idea is
that row i can be dropped in the definition of set (IDIC) if g2iw ≤ 0, enlarging the BFS.

For the BFS (ISIC), although it is constructed based on a solution, we can nevertheless consider any
w ∈ W(x̂, ŷ) and set y∗ = ŷ +w. Intuitively, a good direction for this IC is obtained by maximizing
the improvement in the follower’s objective function by using the objective

min d2w. (5)

Other objectives are also possible. For example, an objective with the philosophy similar to that
of (4) is suggested in Fischetti, Ljubić, et al. [2017].

4.2.2 Algorithms

Exact. Given a desired objective function, the most straightforward way of generating an IFD is
to take the approach described in [Fischetti, Ljubić, et al. (2018); Tahernejad and Ralphs (2025)]
for the generation of IDICs. That is, we describe elements of W(x̂, ŷ) as the points in the following
mixed-integer set and directly optimize over this set with the given objective using an off-the-shelf
method for solving MILPs.

d2w ≤ −1
G2w ≥ b2 −A2x̂−G2ŷ (ID)

w ≥ −ŷ
w ∈ Y.

As previously noted, the infeasibility of (ID) certifies emptiness of W(x̂, ŷ), while any solution is
an IFD with respect to (x̂, ŷ). From a theoretical standpoint, the question of whether there is a

22

point satisfying (ID) is equivalent to that of whether there is an improving solution to the follower’s
problem, provided that (x̂, ŷ) ∈ S. From a practical standpoint, there is a difference, since (ID)
allows us to specify an objective function that favors certain improving directions (and thus certain
improving solutions) over others.

Heuristic. Although optimizing over (ID) is a straightforward approach, the main challenges in
finding IFDs this way is the computational burden associated with solving an NP-hard subproblem.
Fortunately, to guarantee the correctness of a hypothetical branch-and-cut algorithm using an
oracle based on Proposition 1 for checking bilevel feasibility, we only need an exact answer to the
associated decision problem when the candidate solution satisfies integrality requirements. In cases
where separation is the primary task, a heuristic approach for finding feasible solutions of (ID)
would suffice. Furthermore, it may be computationally advantageous to first run heuristics, even
when the solution belongs to S, resorting to an exact algorithm only if no IFD is found using
the heuristic. Recent work by Gaar et al. [2024] highlights the benefits of heuristic methods for
identifying improving solutions in the context of generating valid inequalities for integer bilevel
nonlinear problems, further supporting the promise of this approach.

We present two heuristics aimed at producing an IFD with respect to a given (x̂, ŷ) ∈ P by
restricting the feasible region to, e.g., elements of W(x̂, ŷ; k), for some “small” value of k. This
choice is supported by some preliminary evidence. First, the example of Figure 4 suggests that
F(k) is a reasonably good approximation of F even for small values of k. More broadly, the results
in Xueyu et al. [2022] also indicate that k ≈ 3 provides a good trade-off between the quality of the
dual bound of (BPk) and the computational burden required to compute it. Corollary 1 provides a
theoretical guarantee that the effect of generating k-IDICs in this context should mirror the effect
of solving the k-opt relaxation. Perhaps most importantly, this problem lends itself well to heuristic
approaches, such as local searches, since if a direction w ∈ W(x̂, ŷ; k) exists, then it must direct ŷ
towards points in its k-neighborhood. Consequently, a promising approach is to search exclusively
on directions leading ŷ to points in Nk(ŷ).

The first method is described in Algorithm 2 and uses a pure local search algorithm. Given a
value of k, it examines all possible directions w with ∥w∥1 ≤ k and checks if they are improving
and feasible. Note that this approach allows to use any (possibly non-linear and/or non-convex)
objective function as a measure of “quality” of the multiple IFDs the local search may identify.

The second approach is inspired by the well-known primal heuristic for MILPs, local branch-
ing [Fischetti and Lodi (2008)], and consists in intersecting the feasible region of (ID) with the
k-neighborhood of ŷ, leading to the following formulation:

d2w ≤ −1
G2w ≥ b2 −A2x̂−G2ŷ (k-ID)

w ≥ −ŷ
∥w∥1 ≤ k

w ∈ Y.

The resulting MILP tends to be noticeably easier to solve than (ID). Moreover, if (4) is used as
objective function, then the same artificial variables can be used to linearize both the objective and
the 1-norm constraint.

23

Algorithm 2 generateNeighbors(k, (x, y), obj)

Input: k ≤ k̄, (x, y) ∈ P, obj : Zn2 → R
Output: w∗ = argminw∈W obj(w), with W ⊆W(x̂, ŷ; k)

1: Let W ← ∅ ▷ Initialize W
2: for w ∈ Zn2 such that ∥w∥1 ≤ k do
3: if d2w ̸≤ −1 then
4: Discard w and go to line 2 ▷ w is not improving

5: if G2w ̸≥ b2 −A2x̂−G2ŷ then
6: Discard w and go to line 2 ▷ w is not feasible

7: if ŷ + w ̸≥ 0 then
8: Discard w and go to line 2 ▷ w is not feasible

9: W ←W ∪ {w} ▷ w is an IFD for (x̂, ŷ)

10: w∗ ← argminw∈W obj(w)
11: return w∗

5 Computational Results

In this section, we report on the extensive empirical analysis carried out to assess the impact of the
modifications to the standard branch-and-cut approach already implemented in MibS 1.2. This
analysis has several related goals. First and foremost, we want to assess the advantage of unifying
the feasibility check with the generation of valid inequalities by use of a single oracle. Second, within
the context of Algorithm 1, we want to measure the computational benefit of heuristic methods for
finding IFDs. The overall objective is to determine whether the scheme presented has the potential
to improve state-of-the-art solvers.

5.1 Implementation Details

We build on the foundation presented in Tahernejad, Ralphs, and DeNegre [2020], which is imple-
mented in the open source solver MibS, distributed by the COIN-OR [2018] Foundation’s repository
of open source projects. For a comprehensive description of the parameters available in MibS, we refer
the reader to the documentation available at https://github.com/coin-or/MibS. All algorithmic
variations presented have been implemented on top of version 1.2.1 and their employment can be
regulated using the following newly introduced parameters.

• useImprovingDirectionOracle controls whether bilevel feasibility is checked using the new
oracle for generating improving directions as in Algorithm 1. Otherwise, MibS’s default oracle
is used and the scheme follows to the one presented in Tahernejad, Ralphs, and DeNegre
[2020].

• improvingDirectionType controls the method used to find an IFD, either the local search is
used, as described in Algorithm 2, or the problem (ID) is solved as an MILP. Note that even
when the local search is used, the solver must still solve (ID) when necessary to guarantee the
correctness (see discussion in Section 4.2).

24

https://github.com/coin-or/MibS

• maxNeighborhoodSize controls the parameter k in Algorithm 2 (k-ID, resp.) if improvingDirectionType
is set to 1 (0, resp.).

• useLocalSearchDepthLb and useLocalSearchDepthUb regulate the use of heuristics for find-
ing an IFD. These parameters restrict the execution of Algorithm 2 or (k-ID) to nodes
whose depth in the search tree falls within the specified lower and upper bounds. Otherwise,
problem (ID) is solved.

Most of the experiments were done using the automatic default parameters settings in MibS 1.2.1,
but when useImprovingDirectionOracle is set to True, several default behaviors are changed.

• The automatic setting of parameters related to cut generation is disabled and only the
generation of IDICs is enabled. The automatic defaults in MibS may or may not enable
generation of IDICs and/or additional classes.

• The fractional branching strategy is always used, even for interdiction problems. This is
because we conjecture that the fractional strategy has a clear potential to be more effective
in the context of Algorithm 1, since it fosters the satisfaction of integrality requirements at
both levels, allowing a more frequent application of Proposition 1 and, in turn, the discover of
primal bounds.

• Finally, in MibS 1.2, the bilevel feasibility check precedes the cut generation and is implemented
with an oracle that evaluates (VF) by solving the follower’s problem to optimality. By default,
this check is undertaken when either the current solution satisfies integrality at both levels or
all the linking variables are fixed. In the latter case, MibS solves an upper bounding problem
(one additional MILP) to find the best solution for the given set of linking variables. When
useImprovingDirectionOracle is True, the usual check is bypassed, and the feasibility check
is instead undertaken after cut generation, since Proposition 1 says that the integer solution
is feasible if and only if we are not able to find an IFD (generate an IC).

5.2 Dataset

The selection of a diversified collection of instances is one of the crucial tasks for an insightful
empirical analysis since special classes of problems can show very different behavior. Recently,
Thürauf et al. [2025] released the Bilevel Optimization (Benchmark) Instance Library (BOBILib)
whose intent is to provide access to the community to a large and well-curated set of test instances,
in a similar fashion of the MIPLIB [Gleixner et al. (2021)] for MILPs. The instances used in this
work are drawn from Tahernejad and Ralphs [2025], which includes some of the instances available
in BOBILib, along with additional ones constructed by the authors. Moreover, a subset of instances
from Xueyu et al. [2022] is included. Table 1 provides details on each dataset, including the number
of instances, types of leader’s and follower’s variables, the range of variables and constraints at
each level, and the alignment of the objective functions of the two levels. There are a total of 399
interdiction problems and 277 IBLPs. The final count of instances is 676.

25

Class Data Set # Var. Type Var# Constr# Align Source

Interdiction
INT-DEN 300

B 10-40 1
-1 DeNegre [2011]

B 10-40 11-41

INT-SHI 99
B 15-30 1

-1 Xueyu et al. [2022]
B 15-30 16-31

IBLP

DEN 50
I 5-15 0

Varies DeNegre [2011]
I 5-15 20

DEN2 110
I 5-10 0

Varies DeNegre [2011]
I 5-20 5-15

ZHANG 30
B 50-80 0

0.6-0.8 Zhang and Ozaltın [2017]
I 70-110 6-7

ZHANG2 30
I 50-80 0

0.6-0.8 Zhang and Ozaltın [2017]
I 70-110 6-7

FIS 57
B Varies Varies

-1 Fischetti, Ljubić, et al. [2018]
B Varies Varies

Table 1: Summary of the datasets

5.3 Experimental Setup

All experiments were conducted on compute nodes running the Linux (Debian 8.11) operating
system with dual AMD Opteron 6128 processors and 32 GB of RAM. All experiments were run
sequentially with a time limit of 3600 seconds and a memory limit of 16 GB. Unless stated otherwise,
all other parameters of MibS 1.2.1 were set to their default values.

5.4 Configurations

We compared various configurations using the approach of Algorithm 1 (useImprovingDirectionOracle
set to True) with various configuration of MibS 1.2.1. Variations of Algorithm 1 are referred to by
names prefixed with idB&C. The configurations of idB&C differ in the settings for the previously
introduced parameters. Because of the numerous policies that have been tested, we group all
configurations under the following classes, where “*” stands as a placeholder for the actual value of
the corresponding parameter:

• idB&C-MILP: solves IFD problem exactly as the MILP (ID) using an off-the-shelf solver;

• idB&C-MILP-k *: solves IFD problem (k-ID) exactly for the specified value of k;

• idB&C-LS-k *: employs the local search Algorithm 2 with the specified value of k;

• idB&C-LS-k *-dBnd * *: uses the local search Algorithm 2 when the depth of the current
node in the tree falls between the specified range. Otherwise, it solves (ID);

This last set of configurations tries to determine whether it is more computationally advantageous
to employ heuristics only at the lower levels of the enumeration tree before resorting to solving (ID),

26

or vice versa. Clearly, an exhaustive evaluation of all possible combinations of different ranges and
values of k for each configuration would be impractical. Therefore, based on the observations of
Section 4.2.2, we limited the range of maxNeighborhoodSize to be in {2, 3, 4, 5}, and considered
two settings for the ordered pair useLocalSearchDepthLb\Ub: (0, 10) and (10,+∞). For the case
k = 3, we also tested additional pairs: (0, 8), (0, 12), (8,+∞), and (12,+∞). In total, 21 different
idB&C configurations were tested.

As previously hinted, for those configurations using heuristics (i.e. all, except idB&C-MILP) the
solution of (ID) is mandatory if the current solution (x, y) ∈ S and no IFD is found by such
approximations. This guarantees a correct application of Proposition 1.

The configurations of MibS tested are as follows:

• MibS: all parameters are set at their default values (the generation of IDICs may be disabled);

• MibS only IDICs: only the generation of IDICs is enabled and no other classes; IFDs are
generated by solving problem (ID) as an MILP using an off-the-shelf solver.

• MibS IDIC-MILP: the generation of IDICs is enabled and separation of other classes of cuts is
determined automatically by the default mechanism in MibS; IFDs are generated by solving
problem (ID) as an MILP using an off-the-shelf solver.

• MibS IDIC-LS-k *: the generation of IDICs is enabled and separation of other classes of cuts
is determined automatically by the default mechanism in MibS; IFDs are generated by first
employing Algorithm 2 and then solving problem (ID) as an MILP when no IFD is found
using local search.

The branch-and-cut scheme of MibS only IDICs differs from idB&C-MILP solely in its use of the
standard oracle. Therefore, it serves as the most relevant baseline configuration for comparison with
idB&C. In contrast, due to the use of multiple separation routines and the eventuality of disabling
IDIC generation, MibS provides a fair comparison mainly with MibS only IDICs, MibS IDIC-MILP,
and MibS IDIC-LS-k *. The specific values of k and the control mechanism of the latter for finding
IFDs were selected from the best-performing configuration of idB&C.

5.5 Results

To summarize the results of the experiment, we present several kinds of plots:

• Performance profiles show empirical cumulative distribution functions (CDFs) of ratios of
a given performance measure of interest against the “virtual best” Dolan and Moré [2002].
Typical measures are total solution time or the number of nodes in the search tree. These
plots are useful to compare the performance of several configurations on the given measure.

• Baseline profiles mimics the previous profiles, but present empirical CDFs of ratios of a
given performance measure against the performance of a “baseline”, i.e. a solver or a specific
configuration of it, rather than against the virtual best. These plots show more distinctly
the fraction of instances in which a certain configuration outperforms (on the left side) or
underperforms (on the right side) the baseline.

27

• Cumulative profiles combine two profiles. On the left side, they show the empirical CDFs
of the fraction of instances solved within the time limit. On the right side, they report the
empirical CDFs of the fraction of instances that closed a certain final gap within the time
limit. Note that the lines on the two sides always connect, since the fraction of instances
solved within the time limit equals that of the instances with zero gap at the time limit.

In order to create each plot on (a subset of) the dataset, we first solved all instances with all
considered configurations. Instances are then excluded from the plots if (i) they were not solved
within the time limit by any of the configurations (except for cumulative profiles) and/or (ii) the
solution time is less than 5 seconds for all methods. Note that showing numerous configurations in a
single plot may have a negative impact on its readability. For this reason, each profile will plot only
the most promising results (highest performing configurations). Those not shown can be considered
less effective.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_8_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)

Ratio of baseline (MibS only IDICs (frac))

Fr
ac

tio
n

of
 in

st
an

ce
s

Baseline Profile: CPU Time (F-D-D2-Z-Z2)

(a) Baseline Profile Solution time

0 5 10 15 20 25 30 35 40
Multiple of virtual best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

Performance Profile: CPU Time (F-D-D2-Z-Z2)

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_8_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)
MibS only IDICs (frac)

(b) Performance Profile Solution time

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

2.5 5.0 7.5 10.0 12.5 15.0

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_8_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)

Ratio of baseline (MibS only IDICs (frac))

Fr
ac

tio
n

of
 in

st
an

ce
s

Baseline Profile: Nodes Processed (F-D-D2-Z-Z2)

(c) Baseline Profile nodes in the search tree

0 2 4 6 8 10 12 14
Multiple of virtual best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

Performance Profile: Nodes Processed (F-D-D2-Z-Z2)

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_8_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)
MibS only IDICs (frac)

(d) Performance Profile nodes in the search tree

Figure 8: Comparing idB&C solution time and nodes in the search tree on IBLPs datasets

28

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_8_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)

Ratio of baseline (MibS only IDICs (frac))

Fr
ac

tio
n

of
 in

st
an

ce
s

Baseline Profile: Finding IFDs total CPU Time (F-D-D2-Z-Z2)

(a) Baseline Profile Finding IFDs Tot. CPU time

0 10 20 30 40 50
Multiple of virtual best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

Performance Profile: Finding IFDs total CPU Time (F-D-D2-Z-Z2)

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_8_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)
MibS only IDICs (frac)

(b) Performance Profile Finding IFDs Tot. CPU time

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_8_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)

Ratio of baseline (MibS only IDICs (frac))

Fr
ac

tio
n

of
 in

st
an

ce
s

Baseline Profile: Finding IFDs average CPU Time (F-D-D2-Z-Z2)

(c) Baseline Profile Finding IFDs Avg. CPU time

0 10 20 30 40 50 60
Multiple of virtual best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

Performance Profile: Finding IFDs average CPU Time (F-D-D2-Z-Z2)

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_8_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)
MibS only IDICs (frac)

(d) Performance Profile Finding IFDs Avg. CPU time

Figure 9: Comparing idB&C times for finding IFDs on IBLPs datasets

29

5.5.1 Improving Direction Oracle

Figures 8–11 show the results of comparisons between idB&C in various configurations with the only
IDICs configuration of MibS. This comparison provides the best apples-to-apples comparison of
MibS and the algorithmic framework proposed here, holding as many things constant as possible. We
display baseline and performance profiles using solution CPU time, number of nodes in the search
tree, total and average CPU time spent in finding IFDs as measures on all IBLP and Interdiction
datasets, comparing all idB&C configurations against MibS only IDICs (used as the baseline).

The first remarkable result deduced from this experiment is that idB&C-MILP shows very similar
performances to MibS only IDICs over both classes of instances. Recall that idB&C never solves
the follower’s problem explicitly, but instead exploits only Proposition 1 to detect bilevel feasible
solutions. Thus, this change by itself does not yield any improvement, but it also does not degrade
performance.

From Figure 8c and 10c, we observe the expected tradeoff between the time spent generating a
“good” IFD versus the strength of the resulting inequalities. The results show that employing local
search for finding IFDs generally comes at a cost in terms of the strength of the separated IDICs.
This is expected when replacing an exact method with a heuristic and the result is an increase in
the search tree size. In terms of total CPU time, as well as time spent finding IFDs, however, the
trade-off strongly favors the use of local search. As a matter of fact, Figures 8a and 9a (10a and 11a,
resp.) indicate that local search results in a significant reduction in both the time spent to identify
IFDs and total CPU time on a substantial fraction of IBLP (Interdiction, resp.) instances, across
all configuration.

In this regard, the strategy of solving (ID) exactly only in higher levels of the tree is key in balancing
the drawbacks due to the employment of a heuristic approach with advantages. Interestingly, the
experiment emphasize that the best trade-off is achieved for small values of k, i.e., 2 and 3. This
result corroborates the related work of Xueyu et al. [2022].

More specifically, consider the solution CPU time on the IBLP dataset. Figures 8a and 8b show
that the configurations idB&C-LS-k *-dBnd * Inf are the best-performing settings. While both
idB&C-LS-k * and idB&C-MILP-k 2 reduce the solution time on a non-trivial portion of the dataset
compared to the baseline, they also exhibit significant slowdowns on the remaining fraction. In
contrast, idB&C-LS-k 2-dBnd 10 Inf offers more consistent performance, achieving at least a 20%
improvement over the baseline for roughly 75% of instances, which increases to at least 50% for
over half the dataset.

An even more prominent result is highlighted in Figure 10a on the Interdiction dataset, where
Algorithm 2 is particularly effective in finding IFDs on problem with such structure. The more
pronounced gains are again obtained by idB&C-LS-k *-dBnd 10 Inf, for k ∈ {2, 3}, showing a
significant reduction in solution time over more than 90% of all the dataset, and similar time to the
baseline on the remaining fraction.

30

5.5.2 Using Local Search in MibS

In the next experiment, we compares all previously described configurations of MibS in order
to measure the effect of using the local search for finding IFDs, holding other elements of the
algorithmic strategy of MibS constant. Given the promising outcome of the previous experi-
ment, the parameter settings and the value of k for the best-performing configuration of idB&C
(idB&C-LS-k 2-dBnd 10 Inf) were replicated for the configuration of MibS using local search, i.e.,
MibS IDIC-LS-k 2.

Figure 12 illustrates baseline, performance and cumulative profiles using CPU time and final gap
closed as performance measures, with the default MibS configuration serving as the baseline. The
CPU time spent in finding IFDs is excluded since MibS might generate different classes of cuts and
IDICs may be disabled.

On the one hand, we note from Figure 12e that MibS is the clear winner on the interdiction dataset,
primarily due to the use of cuts specialized for these problems. Nevertheless, Figure 12f shows
that MibS IDIC-LS-k 2 is the best performing configuration among all other instances. Figure 12a
shows that on IBLPs, MibS IDIC-LS-k 2 outperforms MibS by at least 20% on 60% of instances,
with solution time reductions reaching up to 60% on about 30% of the dataset. Importantly, by
examining the performance of MibS IDIC-MILP one can see that this improvement is attributed not
to the use of IDICs alone but to the application of local search specifically. Furthermore, Figures 12c
and 12d indicate that MibS is able to close more gap when local search is used. In particular,
MibS IDIC-LS-k 2 is able to solve about 12 additional instances to optimality compared to MibS

IDIC-MILP and more than 50 with respect to MibS.

Finally, Figure 13 shows baseline and performance profiles plotting the majority of configura-
tions tested in this analysis. Interestingly, plots 13a and 13b reveal that MibS IDIC-LS-k 2 and
idB&C-LS-k 2-dBnd 10 Inf have very similar performance, emphasizing the competitiveness of the
oracle based on improving directions.

6 Conclusions

Improving directions are a fundamental and versatile tool in mixed-integer bilevel linear optimization,
underpinning branching schemes, the formulation of optimality-based relaxations and the generation
of strong valid inequalities, and they have been instrumental in advancing the state-of-the-art
solution methods for this class of problems.

In this work, we have taken an important step toward explaining and quantifying how improving
directions contribute to restoring the follower’s optimality condition, by showing that the convex
hulls of the feasible regions arising from the optimality-based hierarchy of relaxations are exactly
characterized from valid inequalities stemming from improving directions. Moreover, we have
shed light on a new role that improving directions play, as they unify the oracle computations for
checking bilevel feasibility and generating strong valid inequalities, a perspective that may lead to
substantial improvements in empirical performance, as suggested by our promising experiments
with our branch-and-cut framework.

31

Notably, this novel algorithm is not limited to the generation of intersection cuts discussed here, but
can be easily extended to any class of valid inequality for MIBLPs somehow related to the existence
of an improving solution or direction. Since our branch-and-cut highlights the centrality of finding
an improving direction as NP-complete subproblem, we plan to explore the integration of MILP
warm-start capabilities implemented in SYMPHONY [Ralphs et al. (2023)] (and already used in
MibS as subsolver), to further enhance performance.

Due to the promising results of the local search shown here, we also plan to develop more refined
mechanism for better controlling its dynamic employment and other related enhancements. From a
theoretical perspective instead, we will explore connection with more general, yet related, optimality
certificates given by test sets for pure integer linear problems as already investigated in, e.g., [Conti
and Traverso (1991); Scarf (1997)].

Declarations

Funding This research was made possible with support from Office of Naval Research Grant N000142212676.

Conflicts of interests Authors have no conflicts of interests to report.

32

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_8_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)

Ratio of baseline (MibS only IDICs (frac))

Fr
ac

tio
n

of
 in

st
an

ce
s

Baseline Profile: CPU Time (INT-DEN-SHI)

(a) Baseline Profile Solution time

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Multiple of virtual best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

Performance Profile: CPU Time (INT-DEN-SHI)

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_8_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)
MibS only IDICs (frac)

(b) Performance Profile Solution time

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

2.5 5.0 7.5 10.0 12.5 15.0

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_8_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)

Ratio of baseline (MibS only IDICs (frac))

Fr
ac

tio
n

of
 in

st
an

ce
s

Baseline Profile: Nodes Processed (INT-DEN-SHI)

(c) Baseline Profile nodes in the search tree

0 2 4 6 8 10 12 14
Multiple of virtual best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

Performance Profile: Nodes Processed (INT-DEN-SHI)

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_8_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)
MibS only IDICs (frac)

(d) Performance Profile nodes in the search tree

Figure 10: Comparing idB&C solution time and nodes in the search tree on interdiction datasets

33

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_8_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)

Ratio of baseline (MibS only IDICs (frac))

Fr
ac

tio
n

of
 in

st
an

ce
s

Baseline Profile: Finding IFDs total CPU Time (INT-DEN-SHI)

(a) Baseline Profile Finding IFDs Tot. CPU time

0 10 20 30 40 50
Multiple of virtual best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

Performance Profile: Finding IFDs total CPU Time (INT-DEN-SHI)

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_8_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)
MibS only IDICs (frac)

(b) Performance Profile Finding IFDs Tot. CPU time

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_8_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)

Ratio of baseline (MibS only IDICs (frac))

Fr
ac

tio
n

of
 in

st
an

ce
s

Baseline Profile: Finding IFDs average CPU Time (INT-DEN-SHI)

(c) Baseline Profile Finding IFDs Avg. CPU time

0 10 20 30 40 50 60
Multiple of virtual best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

Performance Profile: Finding IFDs average CPU Time (INT-DEN-SHI)

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_8_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)
MibS only IDICs (frac)

(d) Performance Profile Finding IFDs Avg. CPU time

Figure 11: Comparing idB&C times for finding IFDs on interdiction datasets

34

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40

MibS only IDICs (frac)
MibS IDIC-MILP (default)
MibS IDIC-LS-k_2 (default)

Ratio of baseline (MibS (default))

Fr
ac

tio
n

of
 in

st
an

ce
s

Baseline Profile: CPU Time (F-D-D2-Z-Z2)

(a) Baseline Profile Solution time

0 5 10 15 20 25 30 35 40
Multiple of virtual best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

Performance Profile: CPU Time (F-D-D2-Z-Z2)

MibS only IDICs (frac)
MibS (default)
MibS IDIC-MILP (default)
MibS IDIC-LS-k_2 (default)

(b) Performance Profile Solution time

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25

MibS only IDICs (frac)
MibS IDIC-MILP (default)
MibS IDIC-LS-k_2 (default)

Ratio of baseline (MibS (default))

Fr
ac

tio
n

of
 in

st
an

ce
s

Baseline Profile: Gap (F-D-D2-Z-Z2)

(c) Baseline Profile Gap

0 1000 2000 3000
Time

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

0 20 40 60 80 100
Gap

MibS only IDICs (frac)
MibS (default)
MibS IDIC-MILP (default)
MibS IDIC-LS-k_2 (default)

Cumulative Profile: Time-Gap (F-D-D2-Z-Z2)

(d) Cumulative Profile

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40

MibS only IDICs (frac)
MibS IDIC-MILP (default)
MibS IDIC-LS-k_2 (default)

Ratio of baseline (MibS (default))

Fr
ac

tio
n

of
 in

st
an

ce
s

Baseline Profile: CPU Time (INT-DEN-SHI)

(e) Baseline Profile Solution time

0 5 10 15 20 25 30 35 40
Multiple of virtual best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

Performance Profile: CPU Time (INT-DEN-SHI)

MibS only IDICs (frac)
MibS (default)
MibS IDIC-MILP (default)
MibS IDIC-LS-k_2 (default)

(f) Performance Profile Solution time

Figure 12: Comparing MibS solution times on IBLP and Interdiction datasets

35

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_0_10 (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-LS-k_5-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)
idB&C-MILP-k_4 (frac)
MibS only IDICs (frac)
MibS IDIC-MILP (default)
MibS IDIC-LS-k_2 (default)

Ratio of baseline (MibS (default))

Fr
ac

tio
n

of
 in

st
an

ce
s

Baseline Profile: CPU Time (F-D-D2-Z-Z2)

(a) Baseline Profile Solution time

0 5 10 15 20 25 30 35 40
Multiple of virtual best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

Performance Profile: CPU Time (F-D-D2-Z-Z2)

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_0_10 (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-LS-k_5-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)
idB&C-MILP-k_4 (frac)
MibS only IDICs (frac)
MibS (default)
MibS IDIC-MILP (default)
MibS IDIC-LS-k_2 (default)

(b) Performance Profile Solution time

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_0_10 (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-LS-k_5-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)
idB&C-MILP-k_4 (frac)
MibS only IDICs (frac)
MibS IDIC-MILP (default)
MibS IDIC-LS-k_2 (default)

Ratio of baseline (MibS (default))

Fr
ac

tio
n

of
 in

st
an

ce
s

Baseline Profile: CPU Time (INT-DEN-SHI)

(c) Baseline Profile Solution time

0 5 10 15 20 25 30 35 40
Multiple of virtual best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

Performance Profile: CPU Time (INT-DEN-SHI)

idB&C-LS-k_2 (frac)
idB&C-LS-k_3 (frac)
idB&C-LS-k_2-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_0_10 (frac)
idB&C-LS-k_3-dBnd_10_Inf (frac)
idB&C-LS-k_3-dBnd_12_Inf (frac)
idB&C-LS-k_4-dBnd_10_Inf (frac)
idB&C-LS-k_5-dBnd_10_Inf (frac)
idB&C-MILP (frac)
idB&C-MILP-k_2 (frac)
idB&C-MILP-k_4 (frac)
MibS only IDICs (frac)
MibS (default)
MibS IDIC-MILP (default)
MibS IDIC-LS-k_2 (default)

(d) Performance Profile Solution time

Figure 13: Comparing all configurations on all the datasets

36

References

Balas, Egon (1972). “Integer Programming and Convex Analysis: Intersection Cuts from Outer
Polars”. In: Mathematical Programming 2.1, pp. 330–382.

Buchheim, Christoph (2023). “Bilevel Linear Optimization Belongs to NP and Admits Polynomial-
Size KKT-based Reformulations”. In: Operations Research Letters 51.6, pp. 618–622. issn:
0167-6377. doi: 10.1016/j.orl.2023.10.006. (Visited on 11/16/2024).

COIN-OR (2018). Computational Infrastructure for Operations Research.
Conti, Pasqualina and Carlo Traverso (1991). “Buchberger Algorithm and Integer Programming”.

In: International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting
Codes. Springer, pp. 130–139.

Cornuéjols, Gérard (Mar. 2008). “Valid Inequalities for Mixed Integer Linear Programs”. In:
Mathematical Programming 112.1, pp. 3–44. issn: 1436-4646. doi: 10.1007/s10107-006-0086-
0. (Visited on 07/08/2025).

Dempe, Stephan (2002). Foundations of Bilevel Programming. Springer Science & Business Media.
Dempe, Stephan and Alain Zemkoho (2020). “Bilevel Optimization”. In: Springer Optimization and

Its Applications. Vol. 161. Springer.
DeNegre, S.T., T.K. Ralphs, and S. Tahernejad (2024). “MibS Version 1.2”. In: doi: 10.5281/

zenodo.1439384. url: https://github.com/coin-or/MibS.
DeNegre, Scott (2011). Interdiction and Discrete Bilevel Linear Programming. Lehigh University.
Dolan, Elizabeth D and Jorge J Moré (2002). “Benchmarking Optimization Software with Perfor-

mance Profiles”. In: Mathematical programming 91, pp. 201–213.
Fischetti, Matteo, Ivana Ljubić, Michele Monaci, and Markus Sinnl (2017). “A New General-Purpose

Algorithm for Mixed-Integer Bilevel Linear Programs”. In: Operations Research 65.6, pp. 1615–
1637.

— (2018). “On the Use of Intersection Cuts for Bilevel Optimization”. In:Mathematical Programming
172.1-2, pp. 77–103.

Fischetti, Matteo and Andrea Lodi (2008). “Repairing MIP Infeasibility through Local Branching”.
In: Computers & operations research 35.5, pp. 1436–1445.

Gaar, Elisabeth, Jon Lee, Ivana Ljubić, Markus Sinnl, and Kübra Tanınmış (July 2024). “On
SOCP-based Disjunctive Cuts for Solving a Class of Integer Bilevel Nonlinear Programs”. In:
Mathematical Programming 206.1, pp. 91–124. issn: 1436-4646. doi: 10.1007/s10107-023-
01965-1. (Visited on 06/02/2025).

Gleixner, Ambros, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeffrey Linderoth, Marco Luebbecke,
Hans D. Mittelmann, Derya Ozyurt, Ted K. Ralphs, Yuji Shinano, and Domenico Salvagnin (2021).
“MIPLIB 2017: Data-driven Compilation of the 6th Mixed-Integer Programming Library”. In:
Mathematical Programming Computation 13, pp. 443–490. doi: 10.1007/s12532-020-00194-3.
url: http://www.optimization-online.org/DB_FILE/2019/07/7285.pdf.

Hansen, Pierre, Brigitte Jaumard, and Gilles Savard (1992). “New Branch-and-Bound Rules for
Linear Bilevel Programming”. In: SIAM Journal on scientific and Statistical Computing 13.5,
pp. 1194–1217.

Jeroslow, Robert G. (June 1985). “The Polynomial Hierarchy and a Simple Model for Competitive
Analysis”. In: Mathematical Programming 32.2, pp. 146–164. issn: 1436-4646. doi: 10.1007/
BF01586088. (Visited on 11/16/2024).

37

https://doi.org/10.1016/j.orl.2023.10.006
https://doi.org/10.1007/s10107-006-0086-0
https://doi.org/10.1007/s10107-006-0086-0
https://doi.org/10.5281/zenodo.1439384
https://doi.org/10.5281/zenodo.1439384
https://github.com/coin-or/MibS
https://doi.org/10.1007/s10107-023-01965-1
https://doi.org/10.1007/s10107-023-01965-1
https://doi.org/10.1007/s12532-020-00194-3
http://www.optimization-online.org/DB_FILE/2019/07/7285.pdf
https://doi.org/10.1007/BF01586088
https://doi.org/10.1007/BF01586088

Moore, James T. and Jonathan F. Bard (1990). “The Mixed Integer Linear Bilevel Programming
Problem”. In: Operations research 38.5, pp. 911–921.

Ralphs, T.K., M. Güzelsoy, and A. Mahajan (2023). “SYMPHONY Version 5.7”. In: doi: 10.5281/
zenodo.7926908. url: https://github.com/coin-or/SYMPHONY/.

Scarf, Herbert E (1997). “Test Sets for Integer Programs”. In: Mathematical Programming 79,
pp. 355–368.

Schulz, Andreas S. (2009). “On the Relative Complexity of 15 Problems Related to 0/1-Integer
Programming”. In: Research Trends in Combinatorial Optimization. Ed. by William Cook,
László Lovász, and Jens Vygen. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 399–428.
isbn: 978-3-540-76795-4 978-3-540-76796-1. doi: 10.1007/978-3-540-76796-1_19. (Visited on
11/16/2024).

Stockmeyer, Larry J (1976). “The Polynomial-Time Hierarchy”. In: Theoretical Computer Science
3.1, pp. 1–22.

Tahernejad, S. and T.K. Ralphs (2025). Valid Inequalities for Mixed Integer Bilevel Linear Opti-
mization Problems. Technical Report 20T-013. COR@L Laboratory, Lehigh University. url:
https://arxiv.org/abs/2510.02998.

Tahernejad, S., T.K. Ralphs, and S.T. DeNegre (2020). “A Branch-and-Cut Algorithm for Mixed
Integer Bilevel Linear Optimization Problems and Its Implementation”. In: Mathematical
Programming Computation 12, pp. 529–568. doi: 10.1007/s12532-020-00183-6. url: https:
//arxiv.org/abs/2104.09010.

Thürauf, J., T. Kleinert, I. Ljubić, T.K. Ralphs, and M. Schmidt (2025). “BOBILib: Bilevel
Optimization (Benchmark) Instance Library”. In: Mathematical Programming Computation
(Accepted for Publication). url: https://optimization-online.org/2024/07/bobilib-
bilevel-optimization-benchmark-instance-library/.

Vicente, Luis Nunes, Gilles Savard, and Joaquim J. Judice (1996). “Discrete Linear Bilevel Pro-
gramming Problem”. In: Journal of optimization theory and applications 89, pp. 597–614.

Wang, Lizhi and Pan Xu (2017). “The Watermelon Algorithm for the Bilevel Integer Linear
Programming Problem”. In: SIAM Journal on Optimization 27.3, pp. 1403–1430.

Xie, Y., T.K. Ralphs, and O.A. Prokopyev (2025). A Branch-and-Cut Algorithm for Mixed Integer
Bilevel Optimization with Bounded Rationality. Working Paper. COR@L Laboratory, Lehigh
University.

Xueyu, Shi, Oleg A. Prokopyev, and Ted K. Ralphs (2022). “Mixed Integer Bilevel Optimization with
a K-Optimal Follower: A Hierarchy of Bounds”. In: Mathematical Programming Computation
15, pp. 1–51. doi: 10.1007/s12532-022-00227-z. url: http://coral.ie.lehigh.edu/~ted/
files/papers/HierarchyOfBounds20.pdf.

Zare, M Hosein, Juan S Borrero, Bo Zeng, and Oleg A Prokopyev (2019). “A Note on Linearized
Reformulations for a Class of Bilevel Linear Integer Problems”. In: Annals of Operations Research
272, pp. 99–117.

Zhang, Junlong and Osman Y Ozaltın (2017). “A Branch-and-Cut Algorithm for Discrete Bilevel
Linear Programs”. In: Optimization Online.

38

https://doi.org/10.5281/zenodo.7926908
https://doi.org/10.5281/zenodo.7926908
https://github.com/coin-or/SYMPHONY/
https://doi.org/10.1007/978-3-540-76796-1_19
https://arxiv.org/abs/2510.02998
https://doi.org/10.1007/s12532-020-00183-6
https://arxiv.org/abs/2104.09010
https://arxiv.org/abs/2104.09010
https://optimization-online.org/2024/07/bobilib-bilevel-optimization-benchmark-instance-library/
https://optimization-online.org/2024/07/bobilib-bilevel-optimization-benchmark-instance-library/
https://doi.org/10.1007/s12532-022-00227-z
http://coral.ie.lehigh.edu/~ted/files/papers/HierarchyOfBounds20.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/HierarchyOfBounds20.pdf

	Introduction
	Definitions and Notation
	Improving Directions
	Valid Inequalities
	Contribution
	Outline

	The k-opt Hierarchy
	Valid Inequalities from IDs
	Intersection Cuts
	Closures and Rank for Intersection Cuts
	Intersection Cuts and k-optimality

	Branch-and-Cut Algorithm
	General Framework
	Generating Feasible Improving Directions
	Objective Functions
	Algorithms

	Computational Results
	Implementation Details
	Dataset
	Experimental Setup
	Configurations
	Results
	Improving Direction Oracle
	Using Local Search in MibS

	Conclusions

