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Abstract

While several classes of integer linear optimization problems are known to be solvable in poly-
nomial time, far fewer tractability results exist for integer nonlinear optimization. In this work,
we narrow this gap by identifying a broad class of discrete nonlinear optimization problems that
admit polynomial-time algorithms. Central to our approach is the notion of projection-width, a
structural parameter for systems of separable constraints, defined via branch decompositions of
variables and constraints. We show that several fundamental discrete optimization and counting
problems can be solved in polynomial time when the projection-width is polynomially bounded,
including optimization, counting, top-k, and weighted constraint violation problems. Our results
subsume and generalize some of the strongest known tractability results across multiple research
areas: integer linear optimization, binary polynomial optimization, and Boolean satisfiability.
Although these results originated independently within different communities and for seemingly
distinct problem classes, our framework unifies and significantly generalizes them under a single
structural perspective.

Key words: discrete separable optimization; integer nonlinear optimization; integer linear opti-
mization; polynomial time algorithm; projection width; incidence treewidth

1 Introduction

The field of integer linear optimization has reached a high level of maturity, with a rich theoretical
framework, efficient algorithms, and numerous applications. A central outcome of this development
is the identification of broad and structurally rich classes of integer linear optimization problems that
admit polynomial-time algorithms (see [Sch86, CCZ14] and references therein). Many optimization
problems arising in applications, however, are inherently nonlinear. Despite their importance,
integer nonlinear optimization problems remain far less understood from a complexity-theoretic
perspective, with polynomial-time solvability known only for a few highly restrictive classes. The
main goal of this paper is to narrow this gap by identifying a broad class of integer nonlinear
optimization problems that can be solved in polynomial time.

Separable systems. The framework that we introduce in this paper operates over highly general
systems of separable constraints. A separable system is a quadruple

(
X,D,C∈, C≥), where X is a
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finite set of variables, D is a finite domain set, and where C∈, C≥ are sets of separable constraints
of the form ∑

x∈X
f c
x(x) ∈ ∆c c ∈ C∈,∑

x∈X
f c
x(x) ≥ δc c ∈ C≥,

where f c
x : D → Z for every x ∈ X and c ∈ C∈ ∪C≥, where δc ∈ Z for every c ∈ C≥, and where ∆c

is a finite subset of Z for every c ∈ C∈. Throughout the paper, we assume that a separable system
is given by explicitly providing f c

x for every x ∈ X and c ∈ C, ∆c for every c ∈ C∈, and δc for
every c ∈ C≥. Clearly, a constraint in C≥ can also be expressed as a constraint in C∈. However,
we choose to handle constraints in C≥ separately, as doing so allows us to efficiently solve broader
classes of problems. Separable constraints constitute a broad and expressive class of constraints.
Notable special cases include linear and pseudo-Boolean inequalities and set constraints, as well as
parity or, more generally, modulo constraints.

The problems. In this paper, we consider several fundamental discrete optimization and count-
ing problems defined over a separable system

(
X,D,C∈, C≥), which we informally introduce below:

1. Optimization: Given a separable value function for each variable, find a highest-value assign-
ment from X to D satisfying all the constraints. (See Section 4.1 and Theorem 1.)

2. Counting: Count the number of assignments from X to D satisfying all the constraints. (See
Section 4.2 and Theorem 2.)

3. Top-k: Given a separable value function for each variable, find k highest-value assignments
from X to D satisfying all the constraints. (See Section 4.3 and Theorem 3.)

4. Weighted constraint violation: Given a weight for each constraint, find an assignment from X
to D that minimizes the weighted violation of the constraints. (See Section 4.4 and Theorem 4.)
Although the four problems above already form a substantial class of fundamental discrete non-

linear optimization and counting problems, our framework can be applied more broadly to other
problems defined over separable systems. For instance, it can be leveraged in polyhedral theory to
derive compact extended formulations using the approach of [MRC90], and in knowledge compila-
tion to translate constraints into succinct deterministic DNNF representations, as in [Cap16].

Our results. We present exact algorithms for the four problems mentioned above. The running
times of our algorithms are low-degree polynomials in |X|, |D|, |C|, where C := C∈ ∪ C≥, and in
two more parameters: wproj and Λ. The first one, wproj, is the projection-width of the separable
system, which is the central concept introduced in this paper and is formally defined in Section 1.1.
This concept is inspired by the PS-width of CNF formulas, originally developed for satisfiability
problems in [STV14], and it generalizes the idea in a substantially different context and captures
structural properties specific to separable systems over finite domains. The second parameter is
Λ, which denotes the maximum time required to check whether an integer belongs to a set ∆c, for
some c ∈ C∈. This parameter is introduced for convenience and generality, since Λ depends on how
∆c is given. The running time that we obtain for the optimization and the counting problems is

O
(
wproj

3 (|X|+ |C|) |C|+ wproj

∣∣C∈∣∣Λ + |X| |C| |D| log (|D|)
)
.

For the top-k problem, we get

O
(
wproj

3 (|X|+ |C|) (|C|+ k log(k)) + wproj

∣∣C∈∣∣Λ + |X| |C| |D| log (|D|)
)
,
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and for the weighted constraint violation we get

O
(
wproj

3 (|X|+ |C|) |C|+ |X| |C| |D| log (|D|)
)
.

We refer the reader to Theorems 1 to 4 for the precise statements of our results. All running times
are stated under the arithmetic model of computation, in which each basic arithmetic operation
(addition, subtraction, multiplication, division, and comparison) is assumed to take constant time,
independent of operand sizes. Moreover, in our algorithms, the sizes of all intermediate and output
values are bounded by a polynomial in the input size. We note that sharper running-time bounds
may be attainable through a more refined analysis, especially in specific cases. For instance,
when the involved functions are linear rather than separable, when |D| = 2, or when branch
decompositions (introduced later in this section) are linear [STV14].

Our results establish a broad class of tractable discrete nonlinear optimization and counting
problems. To illustrate their generality, we show that they subsume some of the strongest known
tractability results in integer linear optimization, binary polynomial optimization, and Boolean
satisfiability. In integer linear optimization, it subsumes the polynomial-time solvability of instances
with bounded incidence treewidth established in [GOR17]. In binary polynomial optimization, it
generalizes the tractability of instances defined on hypergraphs with bounded incidence treewidth
shown in [CDPDG24], while additionally allowing the presence of further constraints. In Boolean
satisfiability, our framework encompasses the tractability of weighted MaxSAT and #SAT on CNF
formulas with bounded PS-width [STV14], which captures nearly all known tractable cases of these
problems [Cap16].

All these three results follow as direct corollaries of our framework under highly specialized and
restrictive assumptions. Compared to our general setting, each of them is considerably narrower.
In particular, all functions involved are linear, only inequality constraints are considered, and the
variable domains are restricted to integer intervals in integer linear optimization, and to {0, 1}
in binary polynomial optimization and Boolean satisfiability. While the primary contribution of
this paper lies in the nonlinear setting, the fact that these disparate results emerge as special
cases highlights the broader significance of projection-width, which provides a common structural
explanation for tractability across seemingly different problem classes and research communities.

In the remainder of this section, we present the definition of projection-width.

1.1 Projection-width

Translated separable system. Consider a separable system
(
X,D,C∈, C≥), and let C := C∈∪

C≥. Although not strictly necessary, we begin by rewriting the constraints in C. This reformulation
clarifies the intuition behind projection-width and simplifies the notation used throughout the
paper.

For every c ∈ C we define

gcx := f c
x −min {f c

x(d) | d ∈ D} ∀x ∈ X.

For every c ∈ C∈, we also define

Γc := ∆c −
∑
x∈X

min {f c
x(d) | d ∈ D} ,

and for every c ∈ C≥, we set

γc := δc −
∑
x∈X

min {f c
x(d) | d ∈ D} .
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We then obtain the equivalent translated separable system∑
x∈X

gcx(x) ∈ Γc c ∈ C∈,∑
x∈X

gcx(x) ≥ γc c ∈ C≥.

We now have gcx : D → Z≥0 and min {gcx(d) | d ∈ D} = 0 for every x ∈ X and c ∈ C. As a result,
we can assume Γc ⊆ Z≥0, for every c ∈ C∈. Similarly, we can assume γc ≥ 0 for every c ∈ C≥,
since otherwise every assignment satisfies the constraint, and so the constraint can be discarded.
For every c ∈ C∈, we define γc as the largest element in Γc. From now on, we will mostly consider
the translated separable system instead of the original separable system.

Projections. For constraint c ∈ C, X ′ ⊆ X, and τ : X ′ → D, we define the constraint bound of
c by τ as

cbc (τ) :=
∑
x∈X′

gcx(τ(x)).

Note that cbc (τ) ∈ Z≥0. To build intuition, we observe that the constraint bound provides the
minimum possible left hand side of constraint c over all assignments from X to D whose restriction
to X ′ is τ .

Given X ′ ⊆ X, C ′ ⊆ C, and τ : X ′ → D, we denote by C ′/τ the map from C ′ to Z≥0 defined
by (

C ′/τ
)c

:= min {cbc (τ) , γc} ∀c ∈ C ′.

Note that in this context, we use the word “map” to avoid confusion with our “assignments.” Since
γc ∈ Z≥0 and cbc (τ) ∈ Z≥0, we have (C ′/τ)

c ∈ {0, 1, . . . , γc}, for every c ∈ C ′. Note that, if
C ′ = ∅, then C ′/τ is the empty map ϵ : ∅ → Z≥0. On the other hand, if X ′ = ∅, then τ is the
empty assignment ϵ : ∅ → D, and C ′/ϵ is given explicitly by(

C ′/ϵ
)c

= 0 ∀c ∈ C ′.

We observe that C ′/τ captures the contribution of the assignment τ to the left hand sides of the
constraints in C ′, up to the threshold γc.

Given X ′ ⊆ X and C ′ ⊆ C, we define

proj(C ′, X ′) :=
{
C ′/τ | τ : X ′ → D

}
.

As a result, proj(C ′, X ′) encodes how all assignments from X ′ to D can contribute to the left hand
sides of the constraints in C ′, before the threshold γc is reached.

Projection-width. Consider now a branch decomposition T of X ∪C, which is a rooted binary
tree with a one-to-one correspondence between the leaves of T and the set X ∪ C. We say that a
vertex of T is an inner vertex if it has children, and is a leaf if it has no children. Given a vertex v
of T , we denote by Tv the subtree of T rooted in v, by Cv the set of constraints in C such that the
corresponding vertex appears in the leaves of Tv, and by Xv the set of variables in X that similarly
appear in the leaves of Tv. We denote by Cv := C \Cv and by Xv := X \Xv. A key role is played
by the two projections

proj(v) := proj(Cv, Xv) =
{
Cv/τ | τ : Xv → D

}
,
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proj(v) := proj(Cv, Xv) =
{
Cv/τ | τ : Xv → D

}
.

If we denote by V (T ) the set of vertices of T , the projection-width of the separable system(
X,D,C∈, C≥) and T is defined by

max
v∈V (T )

max (|proj(v)| , |proj(v)|) .

The projection-width of the separable system
(
X,D,C∈, C≥) is then defined as the minimum among

the projection-widths of the separable system
(
X,D,C∈, C≥) and T , over all branch decompositions

T of X ∪ C.

Organization of the paper. The rest of the paper is organized as follows. In Section 2, we
study the relationship between the projections proj(v) and proj(v) in a branch decomposition, and
use these insights to efficiently construct all such sets throughout the decomposition. In Section 3,
we introduce the notion of shapes, which enables us to retain in the branch decomposition only
the assignments that satisfy all the constraints, effectively filtering out the others. In Section 4,
we present and analyze our algorithms for optimization, top-k, counting, and weighted constraint
violation. Finally, in Section 5, we obtain some corollaries of our main theorems, and we discuss
how our results subsume previously known tractability results in integer linear optimization, binary
polynomial optimization, and Boolean satisfiability.

2 Projections

In the following, given X1, X2 disjoint subsets of X, τ1 : X1 → D, τ2 : X2 → D, we denote by
τ1 ∪ τ2 the assignment from X1 ∪X2 to D defined by

(τ1 ∪ τ2) (x) :=

{
τ1(x) if x ∈ X1,

τ2(x) if x ∈ X2.

Observation 1. Consider a separable system
(
X,D,C∈, C≥), and let c ∈ C∈∪C≥. The following

properties hold:
(i) Given X ′ ⊆ X and τ : X ′ → D, cbc (τ) ∈ Z≥0.
(ii) Given X1, X2 disjoint subsets of X, τ1 : X1 → D, τ2 : X2 → D, we have cbc (τ1 ∪ τ2) =

cbc (τ1) + cbc (τ2).

Proof. (i). Follows directly from gcx(τ(x)) ∈ Z≥0 for every x ∈ X.
(ii). Follows directly from the definition of constraint bound.

We will often use the next simple result. The first few times we will employ it, we will use it
with c = 0. However, later on we will need the more general version presented below.

Lemma 1. For all nonnegative a, b, c, γ, the following identity holds:

min {a+ b, γ − c} = min {a+min {b, γ} , γ − c} .

Proof.

min {a+min {b, γ} , γ − c} = min {a+ b, a+ γ, γ − c}
= min {a+ b, γ − c} .
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2.1 Structure of proj(v)

The next result is at the heart of the relationship between sets proj(v) in a branch decomposition.

Lemma 2. Consider a separable system
(
X,D,C∈, C≥), let C := C∈ ∪ C≥, let T be a branch

decomposition of X ∪C, and let v be an inner vertex of T with children v1 and v2. Let τ : Xv → D,
and let τ1 and τ2 denote the restrictions of τ to Xv1 and Xv2, respectively. Then,(

Cv/τ
)c

= min
{(

Cv1/τ1
)c

+
(
Cv2/τ2

)c
, γc

}
∀c ∈ Cv.

Proof. Let c ∈ Cv and observe that Cv = Cv1 ∩ Cv2 . We have(
Cv/τ

)c
= min {cbc (τ) , γc}
= min {cbc (τ1) + cbc (τ2) , γ

c} (from Observation 1 (ii))

= min {min {cbc (τ1) , γc}+min {cbc (τ2) , γc} , γc} (from Lemma 1)

= min
{(

Cv1/τ1
)c

+
(
Cv2/τ2

)c
, γc

}
.

Lemma 2 suggests the following relationship between Φ ∈ proj(v), Φ1 ∈ proj(v1), and Φ2 ∈
proj(v2):

Φc = min {Φc
1 +Φc

2, γ
c} ∀c ∈ Cv. (L1)

Lemma 3. Consider a separable system
(
X,D,C∈, C≥), let C := C∈ ∪ C≥, let T be a branch

decomposition of X ∪C, and let v be an inner vertex of T with children v1 and v2. If Φ ∈ proj(v),
then there exist Φ1 ∈ proj(v1) and Φ2 ∈ proj(v2) such that (L1) holds. Vice versa, if Φ1 ∈ proj(v1)
and Φ2 ∈ proj(v2), then there is a unique Φ ∈ proj(v) such that (L1) holds.

Proof. Let Φ ∈ proj(v). Then, there exists τ : Xv → D such that Φ = Cv/τ . Observe that Xv is
the disjoint union of sets Xv1 and Xv2 . Let τ1 and τ2 denote the restrictions of τ to Xv1 and Xv2 ,
respectively. Let Φ1 := Cv1/τ1 ∈ proj(v1) and Φ2 := Cv2/τ2 ∈ proj(v2). Then, Lemma 2 implies
that (L1) holds.

Let Φ1 ∈ proj(v1) and Φ2 ∈ proj(v2). Then, there exist τ1 : Xv1 → D and τ2 : Xv2 → D such
that Φ1 = Cv1/τ1 and Φ2 = Cv2/τ2. Let τ := τ1 ∪ τ2 : Xv → D, and define Φ := Cv/τ ∈ proj(v).
Then, Lemma 2 implies that (L1) holds. From (L1), Φ is clearly unique.

2.2 Structure of proj(v)

The relationship between sets proj(v) in a branch decomposition is slightly more complex, since it
also involves maps from proj(v). The next result is at the heart of this relationship.

Lemma 4. Consider a separable system
(
X,D,C∈, C≥), let C := C∈ ∪ C≥, let T be a branch

decomposition of X∪C, and let v be an inner vertex of T with children v1 and v2. Let τ1 : Xv1 → D,
and let τ and τ2 denote the restrictions of τ1 to Xv and Xv2, respectively. Then,

(Cv1/τ1)
c = min

{
(Cv/τ)

c +
(
Cv2/τ2

)c
, γc

}
∀c ∈ Cv1 .

Symmetrically, let τ2 : Xv2 → D, and let τ and τ1 denote the restrictions of τ2 to Xv and Xv1,
respectively. Then,

(Cv2/τ2)
c = min

{
(Cv/τ)

c +
(
Cv1/τ1

)c
, γc

}
∀c ∈ Cv2 .
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Proof. We only prove the first part of the statement, since the second part is symmetric. Let
c ∈ Cv1 and observe that Cv1 = Cv ∩ Cv2 . We have

(Cv1/τ1)
c = min {cbc (τ1) , γc}
= min {cbc (τ) + cbc (τ2) , γ

c} (from Observation 1 (ii))

= min {min {cbc (τ) , γc}+min {cbc (τ2) , γc} , γc} (from Lemma 1)

= min
{
(Cv/τ)

c +
(
Cv2/τ2

)c
, γc

}
.

Lemma 4 suggests two more relationships. The first one between Ψ ∈ proj(v), Ψ1 ∈ proj(v1),
and Φ2 ∈ proj(v2):

Ψc
1 = min {Ψc +Φc

2, γ
c} ∀c ∈ Cv1 . (L2)

The second one between Ψ ∈ proj(v), Φ1 ∈ proj(v1), and Ψ2 ∈ proj(v2):

Ψc
2 = min {Ψc +Φc

1, γ
c} ∀c ∈ Cv2 . (L3)

Lemma 5. Consider a separable system
(
X,D,C∈, C≥), let C := C∈ ∪ C≥, let T be a branch

decomposition of X∪C, and let v be an inner vertex of T with children v1 and v2. If Ψ1 ∈ proj(v1),
then there exist Ψ ∈ proj(v) and Φ2 ∈ proj(v2) such that (L2) holds. Vice versa, if Ψ ∈ proj(v)
and Φ2 ∈ proj(v2), then there is a unique Ψ1 ∈ proj(v1) such that (L2) holds. Symmetrically, if
Ψ2 ∈ proj(v2), then there exist Ψ ∈ proj(v) and Φ1 ∈ proj(v1) such that (L3) holds. Vice versa, if
Ψ ∈ proj(v) and Φ1 ∈ proj(v1), then there is a unique Ψ2 ∈ proj(v2) such that (L3) holds.

Proof. We only prove the first part of the statement, since the second part is symmetric.
Let Ψ1 ∈ proj(v1). Then, there exists τ1 : Xv1 → D such that Ψ1 = Cv1/τ1. Observe that Xv1

is the union of disjoint sets Xv and Xv2 . Let τ and τ2 denote the restrictions of τ1 to Xv and Xv2 ,
respectively. Let Ψ := Cv/τ ∈ proj(v) and Φ2 := Cv2/τ2 ∈ proj(v2). Then, Lemma 4 implies that
(L2) holds.

Let Ψ ∈ proj(v) and Φ2 ∈ proj(v2). Then, there exist τ : Xv → D and τ2 : Xv2 → D such that
Ψ = Cv/τ and Φ2 = Cv2/τ2. Let τ1 := τ ∪ τ2 : Xv1 → D, and define Ψ1 := Cv1/τ1 ∈ proj(v1).
Then, Lemma 4 implies that (L2) holds. From (L2), Ψ1 is clearly unique.

2.3 Constructing all projections

In this section, we use the structural results in Lemmas 3 and 5 to construct efficiently all sets
proj(v) and proj(v) in a branch decomposition. We begin with some projections that have a very
simple structure.

Remark 1. Consider a separable system
(
X,D,C∈, C≥), let C := C∈∪C≥, and let T be a branch

decomposition of X ∪ C.
(i) proj(l), for a leaf l of T corresponding to a constraint c ∈ C. We have X l = ∅, thus there is

only one assignment from X l to D, the empty assignment ϵ. Therefore, proj(l) contains only
one map. Because C l = C \ {c}, this map is given by (C \ {c})/ϵ.

(ii) proj(l), for a leaf l of T corresponding to a variable x ∈ X. We have X l = {x}, thus there are
|D| assignment from X l to D. Therefore, proj(l) contains at most |D| maps. Because C l = C,
they are of the form C/τ , for every assignment τ : {x} → D.

(iii) proj(r), for the root r of T . Since Cr = ∅, proj(r) contains only the empty map ϵ : ∅ → Z≥0.
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(iv) proj(r), for the root r of T . Since Xr = ∅, proj(r) contains only one map. Because Cr = C,
this map is given by C/ϵ.

Proposition 1. Consider a separable system
(
X,D,C∈, C≥), let C := C∈ ∪ C≥, and let T be

a branch decomposition of X ∪ C of projection-width wproj. There is an algorithm that computes
proj(v) and proj(v), for every vertex v of T , in time

O
(
wproj

2 log(wproj) (|X|+ |C|) |C|+ |X| |C| |D| log (|D|)
)
.

Proof. The construction of the sets proj(v), for every vertex v of T , is performed in a bottom up
manner.

Leaves corresponding to constraints. For every leaf l of T corresponding to a constraint
c ∈ C, we know from Remark 1 (i) that proj(l) contains only one map, and it can be constructed
in time O (|C|). Since there are |C| leaves corresponding to constraints, they require O(|C|2) time.

Leaves corresponding to variables. For every leaf l of T corresponding to a variable x ∈ X,
we know from Remark 1 (ii) that proj(l) contains at most |D| maps, and they can be constructed,
possibly with duplicates, in time O (|C| |D|). We sort the obtained |D| maps lexicographically in
time O (|C| |D| log (|D|)), and then we delete duplicates in time O (|C| |D|). Therefore, for every
leaf l of T , the set proj(l) can be constructed in time O (|C| |D| log (|D|)). Since there are |X| leaves
corresponding to variables, they require O (|X| |C| |D| log (|D|)) time.

Inner vertices. Consider an inner vertex v of T with children v1 and v2. From Lemma 3,
every Φ ∈ proj(v) can be constructed from one Φ1 ∈ proj(v1) and one Φ2 ∈ proj(v2) as in (L1).
For each pair Φ1,Φ2, the construction requires O (|C|) time. Since T is of projection-width wproj,
there are at most wproj

2 pairs, we can construct all maps in proj(v) in time O
(
wproj

2 |C|
)
. We

then sort the obtained maps lexicographically in time O
(
wproj

2 log(wproj) |C|
)
, and then we delete

duplicates in time O
(
wproj

2 |C|
)
. Therefore, for every inner vertex v of T , the set proj(v) can

be constructed in time O
(
wproj

2 log(wproj) |C|
)
. Since there are |X| + |C| − 1 inner vertices, they

require O
(
wproj

2 log(wproj) (|X|+ |C|) |C|
)
time.

The construction of the sets proj(v), for every vertex v of T , is performed in a top down
manner. For the root r of T , the set proj(r) can be constructed, as in Remark 1 (iv), in time
O (|C|). Next, consider a vertex v of T with children v1 and v2. From Lemma 5, every Ψ1 ∈
proj(v1) can be constructed from one Ψ ∈ proj(v) and one Φ2 ∈ proj(v2) as in (L2). For each
pair Ψ,Φ2, the construction requires O (|C|) time. Since T is of projection-width wproj, there
are at most wproj

2 pairs, and the total time required for v1, including deleting duplicates, is
O
(
wproj

2 log(wproj) |C|
)
. Symmetrically, we can construct proj(v2) using (L3). Since the total

number of vertices of T is 2 (|X|+ |C|)− 1, the construction of the sets proj(v), for every vertex v
of T , requires O

(
wproj

2 log(wproj) (|X|+ |C|) |C|
)
time.

3 Shapes

Consider a separable system
(
X,D,C∈, C≥), let C := C∈ ∪ C≥, let T be a branch decomposition

of X ∪ C, and let v be a vertex of T . A shape (for v, with respect to T ) is a pair

(Φ,Ψ)

such that Φ ∈ proj(v) and Ψ ∈ proj(v). In other words, (Φ,Ψ) is a shape if there exists τ : Xv → D
such that Φ = Cv/τ , and there exists τ ′ : Xv → D such that Ψ = Cv/τ

′. Observe that if T is of
projection-width wproj, then proj(v) and proj(v) have cardinality at most wproj, thus there are at
most wproj

2 different shapes for v.
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Linked shapes. We now define the concept of “linked shapes”, which allows us to relate the
shapes for an inner vertex v to the shapes for its children v1 and v2. Consider a separable system(
X,D,C∈, C≥), let C := C∈ ∪ C≥, let T be a branch decomposition of X ∪ C, and let v be an
inner vertex of T with children v1 and v2. We say that (Φ,Ψ), (Φ1,Ψ1), (Φ2,Ψ2) are linked shapes
for v, v1, v2, if they can be constructed as follows: First, let Ψ ∈ proj(v), Φ1 ∈ proj(v1), and
Φ2 ∈ proj(v2) such that

Φc
1 +Φc

2 ≤ γc ∀c ∈ Cv ∩ C∈, (L1∗)

Ψc +Φc
2 ≤ γc ∀c ∈ Cv1 ∩ C∈, (L2∗)

Ψc +Φc
1 ≤ γc ∀c ∈ Cv2 ∩ C∈. (L3∗)

Then define Φ, Ψ1, and Ψ2 according to (L1), (L2), and (L3), respectively. We also say that the
above linked shapes originated from Ψ, Φ1, Φ2. Since Φ

c,Ψc
1,Ψ

c
2,∈ {0, 1, . . . , γc}, (L1), (L1∗), (L2),

(L2∗), (L3), (L3∗) are equivalent to

Φc = Φc
1 +Φc

2 ∀c ∈ Cv ∩ C∈, (L1∈)

Ψc
1 = Ψc +Φc

2 ∀c ∈ Cv1 ∩ C∈, (L2∈)

Ψc
2 = Ψc +Φc

1 ∀c ∈ Cv2 ∩ C∈, (L3∈)

Φc = min {Φc
1 +Φc

2, γ
c} ∀c ∈ Cv ∩ C≥, (L1≥)

Ψc
1 = min {Ψc +Φc

2, γ
c} ∀c ∈ Cv1 ∩ C≥, (L2≥)

Ψc
2 = min {Ψc +Φc

1, γ
c} ∀c ∈ Cv2 ∩ C≥. (L3≥)

Note that linked shapes are indeed shapes. In fact, Lemma 3 implies that Φ ∈ proj(v), thus (Φ,Ψ)
is a shape for v. On the other hand, Lemma 5 implies Ψ1 ∈ proj(v1) and Ψ2 ∈ proj(v2), so (Φ1,Ψ1)
is a shape for v1 and (Φ2,Ψ2) is a shape for v2.

Assignments of shape. Consider a separable system
(
X,D,C∈, C≥), let C := C∈ ∪ C≥, let T

be a branch decomposition of X ∪ C, and let v be a vertex of T . Given a shape (Φ,Ψ) for v, we
say that τ : Xv → D has shape (Φ,Ψ) if

Φc = min {cbc (τ) , γc} ∀c ∈ Cv, (S1)

cbc (τ) ≤ γc ∀c ∈ Cv ∩ C∈, (S1∗)

Ψc + cbc (τ) ∈ Γc ∀c ∈ Cv ∩ C∈, (S2∈)

Ψc + cbc (τ) ≥ γc ∀c ∈ Cv ∩ C≥. (S2≥)

Note that (S1) can be written in the form Φ = Cv/τ . Also, since Φc ≤ γc, (S1) and (S1∗) are
equivalent to

Φc = cbc (τ) ∀c ∈ Cv ∩ C∈, (S1∈)

Φc = min {cbc (τ) , γc} ∀c ∈ Cv ∩ C≥. (S1≥)

Note that an assignment τ : Xv → D can have more than one shape. If τ has shape (Φ1,Ψ1) and
shape (Φ2,Ψ2), then it only implies Φ1 = Φ2 = Cv/τ .

The intuition behind the notion of “assignment of shape” is that if τ : Xv → D has shape
(Φ,Ψ), then it can be extended to an assignment satisfying all constraints in Cv by combining it
with τ ′ : Xv → D such that Cv/τ

′ ≥ Ψ. The next result details how the notion of shape allows us
to obtain the assignments that satisfy all the constraints in C.
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Remark 2. Consider a separable system
(
X,D,C∈, C≥), let C := C∈ ∪ C≥, let T be a branch

decomposition of X ∪C, and let r be the root of T . Consider the shape (ϵ, C/ϵ) for r (see Remark 1
(iii) and (iv)), and note that Xr = X, Cr = C, and Cr = ∅. Therefore, (S1∈), (S1≥), (S2∈), (S2≥)
imply that an assignment τ : X → D has shape (ϵ, C/ϵ) if and only if

cbc (τ) ∈ Γc ∀c ∈ C∈,

cbc (τ) ≥ γc ∀c ∈ C≥.

Since

cbc (τ) =
∑
x∈X

gcx(τ(x)),

this happens if and only if τ satisfies the constraints in C.

In particular, Remark 2 implies that there can be shapes (Φ,Ψ) for v such that there is no
τ : Xv → D of shape (Φ,Ψ).

3.1 From children to parent

Our next goal is to relate the “assignments of shape” for an inner vertex v to the “assignments
of shape” for its children v1 and v2. First, we study this connection when traversing the tree in a
bottom up manner.

Lemma 6. Consider a separable system
(
X,D,C∈, C≥), let C := C∈ ∪ C≥, let T be a branch

decomposition of X ∪ C, and let v be an inner vertex of T with children v1 and v2. Let (Φ,Ψ),
(Φ1,Ψ1), (Φ2,Ψ2) be linked shapes for v, v1, v2. If τ1 : Xv1 → D has shape (Φ1,Ψ1) and τ2 : Xv2 →
D has shape (Φ2,Ψ2), then τ := τ1 ∪ τ2 : Xv → D has shape (Φ,Ψ).

Proof. Let τ1 : Xv1 → D of shape (Φ1,Ψ1) and τ2 : Xv2 → D of shape (Φ2,Ψ2). To prove that τ
has shape (Φ,Ψ), we need to show that τ satisfies conditions (S1∈), (S1≥), (S2∈), (S2≥).

Condition (S1∈). Let c ∈ Cv ∩ C∈, and note that j ∈ Cv1 ∩ Cv2 . We have

Φc = Φc
1 +Φc

2 (from (L1∈))

= cbc (τ1) + cbc (τ2) (from (S1∈) for τ1 and τ2)

= cbc (τ) (from Observation 1 (ii)).

Therefore, τ satisfies condition (S1∈).
Condition (S1≥). Let c ∈ Cv ∩ C≥, and note that j ∈ Cv1 ∩ Cv2 . We have

Φc = min {Φc
1 +Φc

2, γ
c} (from (L1≥))

= min {min {cbc (τ1) , γc}+min {cbc (τ2) , γc} , γc} (from (S1≥) for τ1 and τ2)

= min {cbc (τ) , γc} (from Lemma 2).

Therefore, τ satisfies condition (S1≥).
Condition (S2∈). Let c ∈ Cv ∩C∈. Then c ∈ Cv1 ∩Cv2 or c ∈ Cv2 ∩Cv1 . We assume, without

loss of generality, that c ∈ Cv1 ∩ Cv2 , since the other case is symmetric. We get

Ψc + cbc (τ) = Ψc + cbc (τ1) + cbc (τ2) (from Observation 1 (ii))

= Ψc + cbc (τ1) + Φc
2 (from (S1∈) for τ2)
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= Ψc
1 + cbc (τ1) (from (L2∈))

∈ Γc (from (S2∈) for τ1).

Therefore, τ satisfies condition (S2∈).
Condition (S2≥). Let c ∈ Cv ∩C≥. Then c ∈ Cv1 ∩Cv2 or c ∈ Cv2 ∩Cv1 . We assume, without

loss of generality, that c ∈ Cv1 ∩ Cv2 , since the other case is symmetric. We get

Ψc + cbc (τ) = Ψc + cbc (τ1) + cbc (τ2) (from Observation 1 (ii))

≥ Ψc + cbc (τ1) + min {cbc (τ2) , γc}
= Ψc + cbc (τ1) + Φc

2 (from (S1≥) for τ2)

≥ min {Ψc +Φc
2, γ

c}+ cbc (τ1)

= Ψc
1 + cbc (τ1) (from (L2≥))

≥ γc (from (S2≥) for τ1).

Therefore, τ satisfies condition (S2≥).

3.2 From parent to children

Next, we study this connection among “assignments of shape” when traversing the tree in a top
down manner.

Lemma 7. Consider a separable system
(
X,D,C∈, C≥), let C := C∈ ∪ C≥, let T be a branch

decomposition of X ∪C, and let v be an inner vertex of T with children v1 and v2. Let (Φ,Ψ) be a
shape for v, and let τ : Xv → D of shape (Φ,Ψ). Let τ1 and τ2 denote the restrictions of τ to Xv1

and Xv2, respectively. There is a unique pair of shapes (Φ1,Ψ1) for v1 and (Φ2,Ψ2) for v2 such
that (Φ,Ψ), (Φ1,Ψ1), (Φ2,Ψ2) are linked shapes, τ1 has shape (Φ1,Ψ1), and τ2 has shape (Φ2,Ψ2).

Proof. Since τ1 : Xv1 → D must have shape (Φ1,Ψ1), and τ2 : Xv2 → D must have shape (Φ2,Ψ2),
according to (S1) we need to set Φ1 := Cv1/τ1 ∈ proj(v1) and Φ2 := Cv2/τ2 ∈ proj(v2). Then,
Lemma 2 implies that (L1) holds. Therefore, the only triple of linked shapes that we can consider
is the one originated from Ψ, Φ1, Φ2, which we denote by (Φ,Ψ), (Φ1,Ψ1), (Φ2,Ψ2). Note that,
according to Lemma 2 and (L1), the linked shape (Φ,Ψ) that we obtained is indeed the shape for
v we started from.

To complete the proof, we only need to show that τ1 has shape (Φ1,Ψ1) and τ2 has shape
(Φ2,Ψ2). We only show it for τ1, as the other one is symmetric. We already know that (S1) holds
for τ1, thus to prove that τ1 has shape (Φ1,Ψ1), it suffices to show that τ1 satisfies (S1∗), (S2∈),
(S2≥).

Condition (S1∗). Let j ∈ Cv1 ∩ C∈. We consider separately two cases. If c ∈ Cv, we have

cbc (τ1) = cbc (τ)− cbc (τ2) (from Observation 1 (ii))

≤ cbc (τ) (from Observation 1 (i))

≤ γc (from (S1∗) for τ).

If c ∈ Cv, we have

cbc (τ1) = cbc (τ)− cbc (τ2) (from Observation 1 (ii))

≤ cbc (τ) (from Observation 1 (i))

∈ Γc −Ψc (from (S2∈) for τ)
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≤ γc.

Therefore, τ satisfies condition (S1∗).
Condition (S2∈). Let c ∈ Cv1 ∩ C∈. Then c ∈ Cv ∩ Cv2 . We have

Ψc
1 + cbc (τ1) = min {Ψc +Φc

2, γ
c}+ cbc (τ1) (from (L2))

= min {Ψc + cbc (τ2) , γ
c}+ cbc (τ1) (from (S1∈) for τ2)

= min {Ψc + cbc (τ1) + cbc (τ2) , γ
c + cbc (τ1)}

= min {Ψc + cbc (τ) , γc + cbc (τ1)} (from Observation 1 (ii))

= Ψc + cbc (τ) (from (S2∈) for τ)

∈ Γc (from (S2∈) for τ).

Therefore, τ satisfies condition (S2∈).
Condition (S2≥). Let c ∈ Cv1 ∩ C≥. Then c ∈ Cv ∩ Cv2 . We have

Ψc
1 + cbc (τ1) = min {Ψc +Φc

2, γ
c}+ cbc (τ1) (from (L2))

= min {Ψc +min {cbc (τ2) , γc} , γc}+ cbc (τ1) (from (S1≥) for τ2)

= min {Ψc + cbc (τ2) , γ
c}+ cbc (τ1) (from Lemma 1)

= min {Ψc + cbc (τ1) + cbc (τ2) , cb
c (τ1) + γc}

= min {Ψc + cbc (τ) , cbc (τ1) + γc} (from Observation 1 (ii))

≥ γc (from (S2≥) for τ).

Therefore, τ satisfies condition (S2≥).

3.3 Structure of shapes

The next key result is a direct consequence of Lemmas 6 and 7, and will play a major role in our
main algorithms. To state it, we define

X̂v(Φ,Ψ) := {τ : Xv → D | τ has shape (Φ,Ψ)} .

Proposition 2. Consider a separable system
(
X,D,C∈, C≥), let C := C∈∪C≥, let T be a branch

decomposition of X ∪ C, and let v be an inner vertex of T with children v1 and v2. Let (Φ,Ψ) be
a shape for v, and let P denote the set of pairs of shapes (Φ1,Ψ1) for v1 and (Φ2,Ψ2) for v2 such
that (Φ,Ψ), (Φ1,Ψ1), (Φ2,Ψ2) are linked shapes. Then X̂v(Φ,Ψ) is the union of disjoint sets{

τ1 ∪ τ2 | τ1 ∈ X̂v1(Φ1,Ψ1), τ2 ∈ X̂v2(Φ2,Ψ2)
}
, ∀ ((Φ1,Ψ1), (Φ2,Ψ2)) ∈ P.

Proof. Containment ⊇ follows from Lemma 6, while containment ⊆ follows from Lemma 7. The
fact that the union is disjoint follows from the uniqueness in Lemma 7.

4 Algorithms

4.1 Optimization

In this section, we consider our first problem defined over a separable system, and we show how
shapes can be used to solve it. In the optimization problem, we are given a separable system
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(
X,D,C∈, C≥) and νx : D → R for every x ∈ X. For every assignment τ : X → D, we define its
value

ν(τ) :=
∑
x∈X

νx (τ(x)) . (1)

The goal is to find a highest-value assignment from X to D satisfying the constraints in C∈ ∪C≥,
or prove that no such assignment exists. In the next result, we show that we can solve efficiently
the optimization problem on separable systems with bounded projection-width.

Theorem 1 (Optimization). Consider a separable system
(
X,D,C∈, C≥), let C := C∈ ∪C≥, and

let T be a branch decomposition of X ∪ C of projection-width wproj. Let νx : D → R for every
x ∈ X. Then, the optimization problem can be solved in time

O
(
wproj

3 (|X|+ |C|) |C|+ wproj

∣∣C∈∣∣Λ + |X| |C| |D| log (|D|)
)
. (2)

Proof. First, we apply Proposition 1 and compute proj(v) and proj(v), for every vertex v of T , in
time O

(
wproj

2 log(wproj) (|X|+ |C|) |C|+ |X| |C| |D| log (|D|)
)
.

Table. Next, our algorithm will construct, for each vertex v of T , a table Tabv indexed by the
shapes (Φ,Ψ) for v. For every assignment τ : Xv → D, we define its value

νv(τ) :=
∑
x∈Xv

νx (τ(x)) .

For a shape (Φ,Ψ), the content of the table Tabv at this index, which we denote by Tabv(Φ,Ψ),
should be a pair (τ, νv(τ)), where τ is a highest-value assignment from Xv to D of shape (Φ,Ψ). If
no such assignment exists, we should have Tabv(Φ,Ψ) = NA. We now explain how we can compute
the table Tabv, for every vertex v of T . This is done in a bottom up manner.

Leaves corresponding to constraints. Consider a leaf l of T corresponding to a constraint
c ∈ C. From Remark 1 (i), there is only one assignment from X l to D, the empty assignment
ϵ, which has value 0, and that can be constructed in time O(1). We now find all shapes (Φ,Ψ)
for l such that ϵ has shape (Φ,Ψ); We then set Tabl(Φ,Ψ) := (ϵ, 0) if ϵ has shape (Φ,Ψ), and
Tabl(Φ,Ψ) := NA otherwise. Clearly, there is only one Φ ∈ proj(l), and it satisfies (S1∈) and
(S1≥). For every Φ ∈ proj(l), we need to check (S2∈) or (S2≥), depending on whether c is in C∈

or C≥, and this can be done in time O (Λ) and O(1) respectively. Therefore, we can compute the
table Tabl in time O (wprojΛ) if c ∈ C∈, and in time O (wproj) if c ∈ C≥. Since there are |C∈| leaves
corresponding to constraints in C∈, and

∣∣C≥∣∣ leaves corresponding to constraints in C≥, in total
they require O

(
wproj |C∈|Λ + wproj

∣∣C≥∣∣) time.
Leaves corresponding to variables. Consider a leaf l of T corresponding to a variable

x ∈ X. From Remark 1 (ii), there are |D| assignment from X l to D, and they can be constructed,
with their values, in time O(|D|). We now fix one such assignment τ , and find all shapes (Φ,Ψ) for
l such that τ has shape (Φ,Ψ). There is at most one Φ ∈ proj(l) satisfying (S1∈) and (S1≥), and
it can be constructed in time O(C). We fix such Φ, and observe that τ has shape (Φ,Ψ), for every
Ψ ∈ proj(l), which are at most wproj. This is because conditions (S2∈), (S2≥) are always satisfied
since Cv = ∅. Once we have considered all |D| assignments, for every shape (Φ,Ψ) for l, which are
at most wproj

2, we set Tabl(Φ,Ψ) := (τ, νv(τ)), where τ is the highest-value assignment of shape
(Φ,Ψ), or Tabl(Φ,Ψ) := NA if no assignment has shape (Φ,Ψ). Therefore, we can compute the
table Tabl in time O

(
|C| |D|+ wproj

2
)
. Since there are |X| leaves corresponding to variables, in

total they require O
(
|X| |C| |D|+ wproj

2 |X|
)
time.

13



Inner vertices. Consider now an inner vertex v of T , with children v1, v2. We loop over all
triples (Φ,Ψ), (Φ1,Ψ1), (Φ2,Ψ2) of linked shapes for v, v1, v2. To do so, we pick Ψ ∈ proj(v),
Φ1 ∈ proj(v1), and Φ2 ∈ proj(v2), we check (L1∗), (L2∗), (L1∗), and if they are satisfied, we define
Φ, Ψ1, and Ψ2 according to (L1), (L2), and (L3), respectively. Note that we have at most wproj

3

such triples, and for each the above check and construction requires O(|C|) time. For each triple of
linked shapes with Tabv1(Φ1,Ψ1) ̸= NA and Tabv2(Φ2,Ψ2) ̸= NA, let (τ1, νv1(τ1)) := Tabv1(Φ1,Ψ1)
and (τ2, νv2(τ2)) := Tabv2(Φ2,Ψ2). We then construct the value of the “candidate assignment for
(Φ,Ψ)” given by τ1 ∪ τ2 in time O(1) by summing νv1(τ1) and νv2(τ2).

For each shape (Φ,Ψ) for v, we then set the highest-value assignment τ1∪τ2, among all candidate
assignments for (Φ,Ψ), as the content of Tabv(Φ,Ψ), together with its value. If there are no
candidate assignments for (Φ,Ψ), we set Tabl(Φ,Ψ) := NA. To improve runtime, here we do not
explicitly construct τ1 ∪ τ2; instead, we store pointers to (Φ1,Ψ1) and (Φ2,Ψ2) giving the highest-
value, so that this is done in time O(1) instead of O (|X|). Proposition 2 implies that we set Tabv
correctly, for every inner vertex v of T . Therefore, for each inner vertex v of T , the table Tabv can
be computed (partially implicitly) in time O(wproj

3 |C|). Since there are |X|+ |C|−1 inner vertices
of T , in total they require O(wproj

3 (|X|+ |C|) |C|) time.
Root. Once the table Tabv is computed, for every vertex v of T , we consider the root r of

T , and the shape (ϵ, C/ϵ) for r (see Remark 1 (iii) and (iv)). From Remark 2, the assignments
τ : X → D that have this shape are precisely those that satisfy the constraints in C. The table
Tabr, indexed by (ϵ, C/ϵ), implicitly contains a highest-value assignment from X to D satisfying the
constraints in C. Following our pointers, we can construct it explicitly in time O (|X|+ |C|).

4.2 Counting

In this section, we consider the counting problem. In this problem, we are given a separable system(
X,D,C∈, C≥), and our goal is to return the number of assignments τ : X → D satisfying the
constraints in C∈ ∪ C≥. Next, in Theorem 2, we show how we can solve efficiently the counting
problem on separable systems with bounded projection-width.

Theorem 2 (Counting). Consider a separable system
(
X,D,C∈, C≥), let C := C∈ ∪ C≥, and let

T be a branch decomposition of X ∪ C of projection-width wproj. Then, the counting problem can
be solved in time (2).

Proof. The proof follows the same structure as that of Theorem 1, and we only highlight the
differences here.

Table. For a shape (Φ,Ψ), the content of the table Tabv at this index should be the number
of assignments τ : Xv → D of shape (Φ,Ψ).

Leaves corresponding to constraints. Here, we set Tabl(Φ,Ψ) := 1 if ϵ has shape (Φ,Ψ),
and Tabl(Φ,Ψ) := 0 otherwise.

Leaves corresponding to variables. Here, we set Tabl(Φ,Ψ) to be the number of assignments
that have shape (Φ,Ψ), among the |D| that we constructed.

Inner vertices. Here, we first initialize Tabv(Φ,Ψ) := 0 for every shape (Φ,Ψ) for v. Then,
for each triple (Φ,Ψ), (Φ1,Ψ1), (Φ2,Ψ2) of linked shapes for v, v1, v2, we let ν1 := Tabv1(Φ1,Ψ1)
and ν2 := Tabv2(Φ2,Ψ2), and add ν1ν2 to Tabv(Φ,Ψ) in time O(1).

Root. From Remark 2, the content of Tabr, indexed by (ϵ, C/ϵ), is the number of assignments
τ : X → D that satisfy the constraints in C.
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4.3 Top-k

In this section, we consider the top-k problem. In this problem, we are given a separable system(
X,D,C∈, C≥) and νx : D → R for every x ∈ X. The value of an assignment is defined by (1),
like for the optimization problem. The goal is to return a sorted list of k highest-value assignments
from X to D that satisfy the constraints in C. More formally, the output should be a list of k
assignments τ1, τ2, . . . , τk from X to D satisfying the constraints in C and such that

ν(τk) ≤ ν(τk−1) ≤ · · · ≤ ν (τ1) ,

ν(τ ′) ≤ ν(τk) for every other τ ′ : X → D satisfying the constraints in C,

with the understanding that, in case there are only h < k assignments from X to D satisfying
the constraints in C, the output should be a sorted list of only those h assignments. Next, in
Theorem 3, we show how we can solve efficiently the top-k problem on separable systems with
bounded projection-width.

Theorem 3 (Top-k). Consider a separable system
(
X,D,C∈, C≥), let C := C∈ ∪ C≥, and let T

be a branch decomposition of X ∪ C of projection-width wproj. Let νx : D → R for every x ∈ X.
Then, the top-k problem can be solved in time

O
(
wproj

3 (|X|+ |C|) (|C|+ k log(k)) + wproj

∣∣C∈∣∣Λ + |X| |C| |D| log (|D|)
)
.

Proof. The proof follows the same structure as that of Theorem 1, and we only highlight the
differences here.

Table. For a shape (Φ,Ψ), the content of the table Tabv at this index should be a sorted list
of k highest-value assignments from Xv to D of shape (Φ,Ψ), with their respective values.

Leaves corresponding to constraints. Here, we set Tabl(Φ,Ψ) := (ϵ, 0) if ϵ has shape
(Φ,Ψ), and we set Tabl(Φ,Ψ) as an empty list otherwise.

Leaves corresponding to variables. Here, we set Tabl(Φ,Ψ) to be a sorted list of k-highest
value assignments of shape (Φ,Ψ), with their respective values, among the |D| that we constructed.
The only extra step required, after constructing the |D| assignments, is to order them according to
their value, which can be done in time O(|D| log (|D|)).

Inner vertices. Fix a triple (Φ,Ψ), (Φ1,Ψ1), (Φ2,Ψ2) of linked shapes for v, v1, v2. It is well
known that we can find k largest values, in sorted order, in the Cartesian sum of two sorted arrays
in time O(k log(k)), using a best-first search strategy with a max-heap, and that only k largest
elements in each array need to be considered. We then construct the values of the k highest-
value assignments, in sorted order, among all assignments of the form τ1 ∪ τ2 with τ1 of shape
(Φ1,Ψ1) and τ2 of shape (Φ2,Ψ2), by only considering those with τ1 in Tabv1(Φ1,Ψ1) and τ2 in
Tabv2(Φ2,Ψ2). We call these k highest-value assignments a “candidate top-k for (Φ,Ψ).” Since we
store the corresponding assignments implicitly, the total time for one triple is O(k log(k)). This is
done for each triple of linked shapes.

Now fix one shape (Φ,Ψ) for v, consider all candidate top-k for (Φ,Ψ), and denote by N(Φ,Ψ) ≤
wproj

3 their number. It then follows from Proposition 2 that we can set the content of Tabv(Φ,Ψ) by
finding the k highest-value assignments, in sorted order, among allN(Φ,Ψ) candidate top-k for (Φ,Ψ).
It is well known that we can find k largest values, in sorted order, in N sorted arrays of k elements
each in time O(N+k log(N)), using a k-way merge with a max-heap. Since we store the assignments
implicitly, the total time for the merge corresponding to (Φ,Ψ) is O(N(Φ,Ψ)+k log(N(Φ,Ψ))). Using∑

(Φ,Ψ) shape of v N(Φ,Ψ) ≤ wproj
3, we obtain that the total time for the merges corresponding to the

shapes of v is O(wproj
3k). Therefore, for each inner vertex v of T , the table Tabv can be computed
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in time O
(
wproj

3 |C|+ wproj
3k log(k)

)
. Since there are |X| + |C| − 1 inner vertices of T , in total

they require O(wproj
3 (|X|+ |C|) (|C|+ k log(k))) time.

Root. From Remark 2, the content of Tabr, indexed by (ϵ, C/ϵ), implicitly contains a sorted
list of k highest-value assignments from X to D that satisfy the constraints in C. Following our
pointers, we can construct them explicitly in time O (k (|X|+ |C|)).

4.4 Weighted constraint violation

In this section we define a problem that significantly extends the weighted MaxSAT problem. This
problem is inherently defined on a separable system with C∈ = ∅. We remark that this problem
can also be extended to general separable systems, but such an extension appears to offer little
value and practical relevance. In the weighted constraint violation problem, we are given a separable
system of the form (X,D, ∅, C), and ωc ∈ R for every c ∈ C. For every assignment τ : X → D, we
define its weight

ω(τ) :=
∑
c∈C

ωcmin

{∑
x∈X

gcx(τ(x)), γ
c

}
=

∑
c∈C

ωcmin {cbc (τ) , γc}

=
∑
c∈C

ωc(C/τ)c.

The goal is to find a highest-weight assignment from X to D.
The name of the problem arises by considering the special case ωc ≥ 1, where for all c ∈ C,

we have ω(τ) ≤
∑

c∈C ωcγc, for every τ : X → D, and ω(τ) =
∑

c∈C ωcγc if and only if τ
satisfies all the constraints in C. Compared to the problems considered in Sections 4.1 and 4.2,
the weighted constraint violation problem might seem more exotic. However, it contains as special
cases MaxSAT and weighted MaxSAT, and it will allows us to show how our techniques can be
used to significantly extend the known tractability of these problems for formulas with bounded
PS-width [STV14]. To write the weighted MaxSAT problem as a separable constraint problem, it
suffices to observe that each clause can be written as a constraint c with D := {0, 1}, γc := 1, and
where ωc is the (non-negative) weight of c in the weighted MaxSAT problem.

While the approach that we use to solve the weighted constraint violation problem is still
based on the theory of shapes that we developed in Section 2, we will not be using the concept of
assignments of shape, which we introduced in Section 3, and that played a key role in Sections 4.1
and 4.2. Instead, we rely on the “weaker” notion of assignments of configuration, which we define
next.

Let T be a branch decomposition of X ∪ C, let v be a vertex of T , and let (Φ,Ψ) be a shape
for v. We say that τ : Xv → D has configuration Φ if condition (S1≥) holds, that is,

Φ = Cv/τ.

Furthermore, for τ : Xv → D we define its Ψ-weight

ωΨ(τ) :=
∑
c∈Cv

ωcmin {cbc (τ) , γc −Ψc} ∈ Z.

In our algorithm, for the shape (Φ,Ψ), we will compute a highest-Ψ-weight assignment from Xv to
D of configuration Φ. Such an assignment will be simple to compute in the leaves, and will yield
the solution to the problem in the root, as discussed below.
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Remark 3. Consider a separable system of the form (X,D, ∅, C), let T be a branch decomposition
of X∪C, and let r be the root of T . Consider the shape (ϵ, C/ϵ) for r (see Remark 1 (iii) and (iv)),
and note that Xr = X. Note that every assignment from X to D has configuration ϵ. Furthermore,
C/ϵ is given explicitly by

(C/ϵ)c = 0 ∀c ∈ C,

thus ω
C/ϵ
r (τ) = ω(τ) for every assignment τ from X to D. Therefore, the set of highest-(C/ϵ)-weight

assignments from X to D of configuration ϵ coincides with the set of highest-weight assignments
from X to D.

The next result shows how ωΨ (τ1 ∪ τ2) can be easily computed from ωΨ1 (τ1) and ωΨ2 (τ2);
It will be the key in computing the highest-Ψ-weight assignments, traversing T in a bottom up
manner.

Lemma 8. Consider a separable system of the form (X,D, ∅, C), and let ωc ∈ R for every c ∈ C.
Let T be a branch decomposition of X∪C, and let v be an inner vertex of T with children v1 and v2.
Let (Φ,Ψ), (Φ1,Ψ1), (Φ2,Ψ2) be linked shapes for v, v1, v2. Let τ1, τ

′
1 : Xv1 → D of configuration

Φ1 and τ2, τ
′
2 : Xv2 → D of configuration Φ2. Then,

ωΨ (τ1 ∪ τ2) = ωΨ1 (τ1) + ωΨ2 (τ2) +
∑

c∈Cv1

ωcmin {Φc
2, γ

c −Ψc}+
∑

c∈Cv2

ωcmin {Φc
1, γ

c −Ψc} .

Proof. It suffices to prove that, for every c ∈ Cv1 ,

min {cbc (τ1 ∪ τ2) , γ
c −Ψc} = min {cbc (τ1) , γc −Ψc

1}+min {Φc
2, γ

c −Ψc} . (3)

In fact, from (3) and the symmetric identity for v2, we obtain

ωΨ (τ1 ∪ τ2) =
∑
c∈Cv

ωcmin {cbc (τ1 ∪ τ2) , γ
c −Ψc}

=
∑

c∈Cv1

ωcmin {cbc (τ1 ∪ τ2) , γ
c −Ψc}+

∑
c∈Cv2

ωcmin {cbc (τ1 ∪ τ2) , γ
c −Ψc}

=
∑

c∈Cv1

ωcmin {cbc (τ1) , γc −Ψc
1}+

∑
c∈Cv1

ωcmin {Φc
2, γ

c −Ψc}

+
∑

c∈Cv2

ωcmin {cbc (τ2) , γc −Ψc
2}+

∑
c∈Cv2

ωcmin {Φc
1, γ

c −Ψc}

= ωΨ1 (τ1) + ωΨ2 (τ2) +
∑

c∈Cv1

ωcmin {Φc
2, γ

c −Ψc}+
∑

c∈Cv2

ωcmin {Φc
1, γ

c −Ψc} .

In the remainder of the proof, we show (3). First, we simplify the left hand side.

min {cbc (τ1 ∪ τ2) , γ
c −Ψc} = min {cbc (τ1) + cbc (τ2) , γ

c −Ψc} (from Observation 1 (ii))

= min {cbc (τ1) + min {cbc (τ2) , γc} , γc −Ψc} (from Lemma 1)

= min
{
cbc (τ1) +

(
Cv2/τ2

)c
, γc −Ψc

}
= min {cbc (τ1) + Φc

2, γ
c −Ψc} (τ2 of configuration Φ2).

Next, we rewrite the first minimum on the right hand side using (L2).

min {cbc (τ1) , γc −Ψc
1} = min {cbc (τ1) , γc −min {Ψc +Φc

2, γ
c}} .
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We can then rewrite (3) as follows:

min {cbc (τ1) + Φc
2, γ

c −Ψc} −min {cbc (τ1) , γc −min {Ψc +Φc
2, γ

c}} = min {Φc
2, γ

c −Ψc} . (4)

To check the identity (4), we first consider the case Φc
2 ≥ γc −Ψc. In this case, the right hand side

of (4) equals γc −Ψc, and the left hand side equals

(γc −Ψc)−min {cbc (τ1) , γc − γc} = γc −Ψc.

Next, we consider the case Φc
2 < γc −Ψc. In this case, the right hand side of (4) equals Φc

2 and the
left hand side equals

min {cbc (τ1) + Φc
2, γ

c −Ψc} −min {cbc (τ1) , γc −Ψc − Φc
2} .

We add and subtract Φc
2, and bring −Φc

2 inside the first minimum.

Φc
2 +min {cbc (τ1) , γc −Ψc − Φc

2} −min {cbc (τ1) , γc −Ψc − Φc
2} = Φc

2.

The following result is a direct consequence of Lemma 8.

Lemma 9. Consider a separable system of the form (X,D, ∅, C), and let ωc ∈ R for every c ∈ C.
Let T be a branch decomposition of X∪C, and let v be an inner vertex of T with children v1 and v2.
Let (Φ,Ψ), (Φ1,Ψ1), (Φ2,Ψ2) be linked shapes for v, v1, v2. Let τ1, τ

′
1 : Xv1 → D of configuration

Φ1 and τ2, τ
′
2 : Xv2 → D of configuration Φ2. If ωΨ1 (τ ′1) ≤ ωΨ1 (τ1) and ωΨ2 (τ ′2) ≤ ωΨ2 (τ2), then

ωΨ (τ ′1 ∪ τ ′2) ≤ ωΨ (τ1 ∪ τ2).

Proof. From Lemma 8,

ωΨ
(
τ ′1 ∪ τ ′2

)
= ωΨ1

(
τ ′1
)
+ ωΨ2

(
τ ′2
)
+

∑
c∈Cv1

ωcmin {Φc
2, γ

c −Ψc}+
∑

c∈Cv2

ωcmin {Φc
1, γ

c −Ψc}

≤ ωΨ1 (τ1) + ωΨ2 (τ2) +
∑

c∈Cv1

ωcmin {Φc
2, γ

c −Ψc}+
∑

c∈Cv2

ωcmin {Φc
1, γ

c −Ψc}

= ωΨ (τ1 ∪ τ2) .

We are now ready to present our algorithm for weighted constraint violation.

Theorem 4 (Weighted constraint violation). Consider a separable system of the form (X,D, ∅, C),
let ωc ∈ R for every c ∈ C, and let T be a branch decomposition of X ∪C of projection-width wproj.
Then, the weighted constraint violation problem can be solved in time

O
(
wproj

3 (|X|+ |C|) |C|+ |X| |C| |D| log (|D|)
)
.

Proof. First, we apply Proposition 1 and compute proj(v) and proj(v), for every vertex v of T , in
time O

(
wproj

2 log(wproj) (|X|+ |C|) |C|+ |X| |C| |D| log (|D|)
)
.

Table. Next, our algorithm will construct, for each vertex v of T , a table Tabv indexed by
the shapes (Φ,Ψ) for v. For a shape (Φ,Ψ), the content of the table Tabv at this index, which we
denote by Tabv(Φ,Ψ), should be a pair (τ, ωΨ(τ)), where τ is a highest-Ψ-weight assignment from
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Xv to D of configuration Φ. We now explain how we can compute the table Tabv, for every vertex
v of T . This is done in a bottom up manner.

Leaves corresponding to constraints. Consider a leaf l of T corresponding to a constraint
c ∈ C. From Remark 1 (i), there is only one assignment from X l to D, the empty assignment ϵ,
that can be constructed in time O(1). Clearly, there is only one Φ ∈ proj(l), and it satisfies (S1≥).
Hence, we set Tabl(Φ,Ψ) := (ϵ, 0) for every shape (Φ,Ψ) for l. Therefore, we can compute the
table Tabl in time O (wproj). Since there are |C| leaves corresponding to constraints in C, in total
they require O (wproj |C|) time.

Leaves corresponding to variables. Consider a leaf l of T corresponding to a variable x ∈ X.
From Remark 1 (ii), there are |D| assignment from X l to D, and they can be constructed in time
O(|D|). We now fix one such assignment τ , and observe that there is precisely one Φ ∈ proj(l) such
that τ has configuration Φ, and it can be constructed in time O(C). Once we have considered all
|D| assignments, for every shape (Φ,Ψ) for l, which are at most wproj

2, we set Tabl(Φ,Ψ) := (τ, 0),
where τ is any assignment of configuration Φ. Therefore, we can compute the table Tabl in time
O
(
|C| |D|+ wproj

2
)
. Since there are |X| leaves corresponding to variables, in total they require

O
(
|X| |C| |D|+ wproj

2 |X|
)
time.

Inner vertices. Consider now an inner vertex v of T , with children v1, v2. We loop over
all triples (Φ,Ψ), (Φ1,Ψ1), (Φ2,Ψ2) of linked shapes for v, v1, v2, as described in the proof of
Theorem 1. For each triple of linked shapes, let

(
τ1, ω

Ψ1(τ1)
)
:= Tabv1(Φ1,Ψ1) and

(
τ2, ω

Ψ2(τ2)
)
:=

Tabv2(Φ2,Ψ2). We then construct the Ψ-weight of the “candidate assignment for (Φ,Ψ)” given by
τ1 ∪ τ2, and this can be done in time O(|C|) due to Lemma 8.

For each shape (Φ,Ψ) for v, we then set the highest-Ψ-weight assignment τ1 ∪ τ2, among all
candidate assignments for (Φ,Ψ), as the content of Tabv(Φ,Ψ), together with its Ψ-weight. To
improve runtime, here we do not explicitly construct τ1 ∪ τ2; instead, we store pointers to (Φ1,Ψ1)
and (Φ2,Ψ2) giving the highest-Ψ-weight, so that this is done in time O(1) instead of O (|X|).
Therefore, for each inner vertex v of T , the table Tabv can be computed (partially implicitly)
in time O(wproj

3 |C|). Since there are |X| + |C| − 1 inner vertices of T , in total they require
O(wproj

3 (|X|+ |C|) |C|) time.
We now show that we set Tabv correctly, for every inner vertex v of T . Since we already proved it

for the leaves of T , we now assume inductively that Tabv1 and Tabv2 have been set correctly, where
v1, v2 are the children of v. Let (Φ,Ψ) be a shape for v, and let τ ′ be an assignment from Xv to D
of configuration Φ. Let τ ′1 and τ ′2 denote the restrictions of τ ′ to Xv1 and Xv2 , respectively, and set
Φ1 := Cv1/τ

′
1 and Φ2 := Cv2/τ

′
2. Consider now our procedure, when it considers the triple of linked

shapes (Φ,Ψ), (Φ1,Ψ1), (Φ2,Ψ2) originated from Ψ, Φ1, Φ2. Note that, according to Lemma 2
and (L1), the linked shape (Φ,Ψ) that we just obtained is indeed the shape for v we started from.
Let τ1 and τ2 be the assignments in Tabv1(Φ1,Ψ1) and Tabv2(Φ2,Ψ2), respectively. So τ1 ∪ τ2 is
a candidate assignment for (Φ,Ψ). By induction, ωΨ1 (τ ′1) ≤ ωΨ1 (τ1) and ωΨ2 (τ ′2) ≤ ωΨ2 (τ2).
Lemma 9 then implies ωΨ(τ ′) ≤ ωΨ(τ). Now let τ ′′ : Xv → D be the assignment in Tabv(Φ,Ψ).
τ ′′ is a candidate assignment for (Φ,Ψ), so it has configuration Φ, due to Lemma 2 and (L1).
Furthermore, by construction, we have ωΨ(τ) ≤ ωΨ(τ ′′), therefore ωΨ(τ ′) ≤ ωΨ(τ ′′).

Root. Once the table Tabv is computed, for every vertex v of T , we consider the root r of T ,
and the shape (ϵ, C/ϵ) for r (see Remark 1 (iii) and (iv)). From Remark 3, the table Tabr, indexed
by (ϵ, C/ϵ), implicitly contains a highest-weight assignment from X to D. Following our pointers,
we can construct it explicitly in time O (|X|+ |C|).
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5 Some consequences

In this section, we obtain some corollaries of our main theorems, and we discuss how our results
subsume previously known tractability results in integer linear optimization, binary polynomial
optimization, and Boolean satisfiability.

5.1 Main consequences

In Section 5.1.1, we specialize some of our main results to integer separable (nonlinear) optimization;
in Section 5.1.2, to integer linear optimization; in Section 5.1.3, to binary polynomial optimization;
and in Section 5.1.4, to Boolean satisfiability. We focus in particular on the optimization problems,
emphasizing the consequences of Theorem 1. All the results that we obtain are new, except for
Boolean satisfiability, where we recover precisely the tractability of weighted MaxSAT and #SAT
for CNF formulas with bounded PS-width in [STV14].

5.1.1 Integer separable optimization

The integer separable optimization problem is the special case of the optimization problem con-
sidered in this work (Section 4.1), where the domain consists of the integer points in a bounded
interval, and only inequality constraints are allowed. Formally, a separable inequality system is a

quadruple
(
X,DI , C

≤
S , C≥

S

)
, where X is a finite set of variables, DI is a finite domain set of the

form DI = {−Dmax,−Dmax + 1, . . . , Dmax} for some Dmax ∈ Z≥0, and where C≤
S , C≥

S are sets of
separable inequality constraints of the form∑

x∈X
f c
x(x) ≤ δc c ∈ C≤

S ,∑
x∈X

f c
x(x) ≥ δc c ∈ C≥

S ,

where f c
x : DI → Z for every x ∈ X and c ∈ C≤

S ∪ C≥
S , and where δc ∈ Z for every c ∈ C≤

S ∪ C≥
S .

Clearly, a constraint in C≥
S can also be expressed as a constraint in C≤

S , and vice versa. However,
we choose to keep both types of constraints, as moving one inequality from one set to the other
may affect the resulting projection-width of the system.

The definition of projection-width of a separable inequality system follows from our original
definition for separable systems in Section 1.1, since every inequality constraint c ∈ C≤

S can be
written as a set constraint in C∈ with Γc = {0, 1, . . . , γc}, where as usual

γc := δc −
∑
x∈X

min {f c
x(d) | d ∈ DI} .

In the integer separable optimization problem, we are given a separable inequality system(
X,DI , C

≤
S , C≥

S

)
and νx : DI → R for every x ∈ X. For every assignment τ : X → D, we

define its value

ν(τ) :=
∑
x∈X

νx (τ(x)) .

The goal is to find a highest-value assignment from X to DI satisfying the constraints in C≤
S ∪C≥

S ,
or prove that no such assignment exists.

Since |DI | = 2Dmax + 1, our Theorem 1 directly implies the following result:
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Corollary 1 (Integer separable optimization). Consider a separable inequality system
(
X,DI , C

≤
S , C≥

S

)
,

let CS := C≤
S ∪ C≥

S , and let T be a branch decomposition of X ∪ CS of projection-width wproj. Let
νx : D → R for every x ∈ X. Then, the integer separable optimization problem can be solved in
time

O
(
wproj

3 (|X|+ |CS |) |CS |+ |X| |CS |Dmax log (Dmax)
)
. (5)

5.1.2 Integer linear optimization

The integer linear optimization problem is the special case of integer separable optimization con-
sidered in Section 5.1.1, where all functions are linear.

Formally, a linear inequality system is a separable inequality system
(
X,DI , C

≤
L , C≥

L

)
, where

for every c ∈ C≤
L ∪ C≥

L and x ∈ X, the function f c
x : DI → Z is of the form

f c
x(x) = acxx,

for some acx ∈ Z. In the integer linear optimization problem, we are given a linear inequality system(
X,DI , C

≤
L , C≥

L

)
and νx ∈ R for every x ∈ X. For every assignment τ : X → DI , we define its

value

ν(τ) :=
∑
x∈X

νx · (τ(x)) .

The goal is to find a highest-value assignment from X to DI satisfying the constraints in C≤
L ∪C≥

L ,
or prove that no such assignment exists. Corollary 1 directly implies the following result:

Corollary 2 (Integer linear optimization). Consider a linear inequality system
(
X,DI , C

≤
L , C≥

L

)
,

let CL := C≤
L ∪ C≥

L , and let T be a branch decomposition of X ∪ CL of projection-width wproj. Let
νx ∈ R for every x ∈ X. Then, the integer linear optimization problem can be solved in time

O
(
wproj

3 (|X|+ |CL|) |CL|+ |X| |CL|Dmax log (Dmax)
)
. (6)

5.1.3 Binary polynomial optimization

Important applications of our results arise in binary polynomial optimization, an area that has
recently seen significant progress; see, for example, [DPK17, DPK18b, DPK18a, DPK21, DPK24b].
In a binary polynomial optimization problem, we are given a hypergraph H = (V,E), together with
νv ∈ R for every v ∈ V , and νe ∈ R for every e ∈ E. Let XV := {xv | v ∈ V } denote the set of
variables. The goal is to find an assignment τ : XV → {0, 1} maximizing∑

v∈V
νvτ(xv) +

∑
e∈E

νe
∏
v∈e

τ(xv).

The objective function above is, in general, not separable. However, it is well-known how the
binary polynomial optimization problem can be reformulated as an integer linear optimization
problem. To do so, we apply Fortet’s linearization [For59, For60], introducing auxiliary variables
Y E = {ye | e ∈ E}. For every assignment τ : XV ∪ Y E → {0, 1}, we define its value by the linear
function

ν(τ) :=
∑
v∈V

νvτ(xv) +
∑
e∈E

νeτ(ye).
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Consistency between the auxiliary variables and the original ones is then enforced through linear
inequalities. Among several possible formulations, we adopt the standard linearization, though
exploring alternative formulations could be an interesting direction in light of the results of this
paper.

As we discussed in Section 5.1.1, each linear inequality can be placed in either C≤
L or C≥

L , and

this choice may affect the resulting projection-width. Here, we place all inequalities in C≥
L . This

yields the linear inequality system SBPO = (XV ∪ Y E , {0, 1} , ∅, CBPO), where the constraints in
CBPO are given by

(1− ye) + xv ≥ 1 ∀v ∈ e, ∀e ∈ E,∑
v∈e

(1− xv) + ye ≥ 1 ∀e ∈ E.

The binary polynomial optimization problem is thus equivalent to the integer linear optimization
problem of finding a maximum-value assignment from XV ∪Y E to {0, 1} satisfying the constraints
in CBPO. We can then directly apply Corollary 2 to obtain the following tractability results for
binary polynomial optimization, where we denote by size(H) :=

∑
e∈E |e| the size of the hypergraph

H.

Corollary 3 (Binary polynomial optimization). Consider a hypergraph H = (V,E) and let T be a
branch decomposition of XV ∪ Y E ∪ CBPO of projection-width wproj. Let νv ∈ R for every v ∈ V ,
and νe ∈ R for every e ∈ E. Then, the binary polynomial optimization problem can be solved in
time

O
(
wproj

3 (|V |+ size(H)) size(H)
)
.

Theorem 1 also allows us to solve classes of constrained binary polynomial optimization, which is
the extension of binary polynomial optimization obtained by considering only assignments satisfying
some given additional separable constraints. 1

Formally, let
(
XV ∪ Y E , {0, 1} , C∈

c , C
≥
c

)
be a separable system representing these constraints.

We then define the constrained binary polynomial optimization problem as the problem of finding a
maximum-value assignment from XV ∪ Y E to {0, 1} satisfying the constraints in C∈

c ∪C≥
c ∪CBPO.

At this point, we can again directly apply Theorem 1 and obtain the following result.

Corollary 4 (Constrained binary polynomial optimization). Consider a hypergraph H = (V,E),
a separable system

(
XV ∪ Y E , {0, 1} , C∈

c , C
≥
c

)
, and let T be a branch decomposition of XV ∪ Y E ∪

C∈
c ∪ C≥

c ∪ CBPO of projection-width wproj. Then, the constrained binary polynomial optimization
problem can be solved in time

O
(
wproj

3 (|V |+ size(H)) size(H)
)
.

We remark that literals can be naturally incorporated into our framework, in both the uncon-
strained and constrained settings. The only modification required is that, in the constraints in
CBPO, some variables xv may be replaced by 1−xv and vice versa. Consequently, all results in this
section remain valid in this more general setting. We have excluded literals purely for notational
simplicity. For additional background on binary polynomial optimization with literals, also known
as pseudo-Boolean optimization, we refer the reader to [BH02, CDPDG24, DPK24a, DPK25].

Note that most known tractability results for binary polynomial optimization rely on structural
properties of the underlying hypergraph H. In contrast, Corollaries 3 and 4 are of a different

1If the additional separable constraints are linear, it suffices to use Corollary 2 instead of Theorem 1.
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nature, as they are based instead on properties of the constraint system. In Section 5.2.3, we
present an example illustrating how these these results can be leveraged to derive tractability
conditions expressed in terms of the hypergraph, thereby bringing them closer in spirit to existing
results in the literature.

5.1.4 Boolean satisfiability

In this section, we show that our main results subsume those of [STV14] on the tractability of
weighted MaxSAT and #SAT for CNF formulas with bounded PS-width. This influential result
accounts for nearly all known tractable cases of these SAT problems, including formulas with
bounded primal treewidth, bounded incidence treewidth, bounded signed incidence clique-width,
bounded incidence clique-width, bounded MIM-width, as well as γ-acyclic formulas and disjoint-
branches formulas [STV14, Cap16].

We begin by defining PS-width, where “PS” stands for precisely satisfiable. Our notation
closely parallels that used for projection-width, highlighting the structural similarity between the
two concepts. A CNF formula is a pair (X,F ), where X is a set of variables and F is a set of
clauses. Recall that a clause is the disjunction of literals, that is, variables or negation of variables
of X. Given X ′ ⊆ X, F ′ ⊆ F , and τ : X ′ → {0, 1}, we define F ′/τ , as the set of clauses in F ′ that
are satisfied by τ . Given X ′ ⊆ X and F ′ ⊆ F , we denote by

proj(F ′, X ′) = {F ′/τ | τ : X ′ → {0, 1}}.

Given a branch decomposition T of X ∪ F and a vertex v of T , we denote by Tv the subtree of T
rooted in v, by Fv the set clauses of F such that the corresponding vertex appears in the leaves of
Tv and by Xv the set of variables of F that similarly appear in the leaves of Tv. We denote by

proj(v) := proj (F \ Fv, Xv) ,

proj(v) := proj (Fv, X \Xv) .

If we denote by V (T ) the set of vertices of T , the PS-width of the formula (X,F ) and T is defined
by

max
v∈V (T )

max (|proj(v)| , |proj(v)|) .

The PS-width of a formula (X,F ) is then defined as the minimum among the PS-widths of the
formula (X,F ) and T , over all branch decompositions T of X ∪ F .

Observation 2. Let (X,F ) be a CNF formula. Then, there exists a separable system (X,D, ∅, CF )
with |CF | = |F |, and D = {0, 1} such that an assignments τ : X → {0, 1} satisfies the constraints
in CF if and only if it satisfies the clauses in F . Moreover, a branch decomposition of X ∪ F of
PS-width wps yields a branch decomposition of X ∪ CF of projection-width wps. Furthermore, we
have gcx(x) ∈ {0, x, 1− x} for every x ∈ X, c ∈ CF , and γc = 1 for every c ∈ CF .

Proof. For every clause in F , we write a constraint in CF over variables X with domain D = {0, 1}
defined by ∑

x∈X+

x+
∑

x∈X−

(1− x) ≥ 1,

where X+ denotes the set of variables that appear in the positive literals in the clause, and X−

denotes the set of variables that appear in the negative literals in the clause. Clearly, an assignment
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τ : X → {0, 1} satisfies the clause if and only if it satisfies the obtained constraint. It then suffices
to show that a branch decomposition of X ∪ F of PS-width wps yields a branch decomposition of
X ∪ CF of projection-width wps. To see this, let X ′ ⊆ X, F ′ ⊆ F , τ : X ′ → {0, 1}, and let C ′ be
the set of constraints in CF originating from the clauses in F ′. Observe that (C ′/τ)

c ∈ {0, 1} for
every c ∈ CF . Furthermore, a clause f ∈ F ′ is in the set F ′/τ if and only if (C ′/τ)

c
= 1, where c

is the constraint in C ′ corresponding to f .

Thanks to Observation 2, in the special case where C∈ = ∅, D = {0, 1}, gcx(x) ∈ {0, x, 1− x}
for every x ∈ X, c ∈ CF , and γc = 1 for every c ∈ CF , Theorem 2 recovers the tractability of
#SAT on CNF formulas with bounded PS-width as established in [STV14]. Similarly, Theorem 4
subsumes the tractability of weighted MaxSAT for CNF formulas with bounded PS-width in the
same work. The running time we obtain for these two problems is comparable to that in [STV14],
and is given by

O
(
w3
ps (|X|+ |F |) |F |

)
,

where wps denotes the PS-width of the given branch decomposition.

5.2 Consequences for incidence treewidth

In this section, we show that our main results imply the tractability of optimization and counting
problems over separable systems whose incidence graph has bounded treewidth. Consider a sep-
arable system S =

(
X,D,C∈, C≥), and let C := C∈ ∪ C≥. The incidence graph of S, denoted

Ginc (S), is the bipartite graph with vertex bipartition X ∪ C, where an edge connects x ∈ X and
c ∈ C if and only if gcx ̸≡ 0.

In the next result, we show that, given a tree decomposition of Ginc (S) with treewidth bounded
by a constant, one can efficiently construct a branch decomposition of X∪C whose projection-width
is polynomially bounded.

Lemma 10 (Treewidth and projection-width). Consider a separable system S =
(
X,D,C∈, C≥),

let C := C∈ ∪ C≥, let γ := max {γc | c ∈ C}, and let T be a tree decomposition of Ginc (S) of
treewidth winc. Then, in time O(|X|+ |C|), we can construct a branch decomposition T ′ of X ∪ C
of projection-width at most

max {|D| , γ + 1}winc+1 .

Proof. Without loss of generality, we can assume that T is binary. In fact, for any vertex with
more than two children, we can replace it with a binary tree of new vertices, each associated with
the same bag, i.e., subset of X ∪C. This transformation does not increase the size of any bag and
therefore does not increase the treewidth. We can then construct a branch decomposition T ′ of
X ∪C as follows. First, we add a vertex r as the father of the root of T . Then, for every v ∈ X ∪C,
let t be the vertex of T closest to the root of T such that v appears in the bag of t, and we hang
a leaf with label v on the edge between t and its father. We then remove the leaves that have no
label. The resulting tree T ′ is binary and for every v ∈ X ∪ C, there exists precisely one leaf of T ′

with label v. Therefore, T ′ is a branch decomposition of X∪C. We claim that the projection-width
of S and T ′ is at most the one in the statement.

First, let l be a leaf of T ′ corresponding to a constraint c in C. Since X l = ∅, we have
|proj(l)| = 1. Moreover, C l = {c} implies

∣∣proj(l)∣∣ ≤ γc+1. Next, let l be a leaf of T ′ corresponding
to a variable x in X. Since X l = {x}, we have |proj(l)| ≤ |D|. Moreover, C l = ∅ implies∣∣proj(l)∣∣ = 1.
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Next, let v be an inner vertex of T ′. If v is also a vertex of T , let t := v. Otherwise, let t be
the vertex of T in T ′

v closest to v. We observe that, by construction, the label of every leaf of T ′
v

appears only in bags of Tt. Moreover, the label of every leaf of T ′ \ T ′
v either only appears in bags

of T \ Tt, or it appears in the bag of t.
Let x ∈ Xv and c ∈ Cv such that gcx ̸≡ 0. By the previous observation, x appears only in bags

of Tt and c only appears in bags of T \ Tt or in the bag of t. Since gcx ̸≡ 0, x and c must appear
in a common bag, so c must appear in the bag of t. Therefore, the constraints c ∈ Cv with gcx ̸≡ 0
for some x ∈ Xv all appear in the bag corresponding to t, so they are at most winc + 1. Hence,
|proj(v)| ≤ (γ + 1)winc+1.

Let c ∈ Cv and x ∈ Xv such that gcx ̸≡ 0. By the previous observation, c appears only in bags
of Tt and x only appears in bags of T \ Tt or in the bag of t. Since gcx ̸≡ 0, x and c must appear
in a common bag, so x must appear in the bag of t. Therefore, the variables x ∈ Xv with gcx ̸≡ 0
for some c ∈ Cv all appear in the bag corresponding to t, so they are at most winc + 1. Hence,
|proj(v)| ≤ |D|winc+1.

Thus the projection-width of T ′ is at most max {|D| , γ + 1}winc+1.

Lemma 10, together with our main results Theorems 1 to 4, implies the tractability of prob-
lems defined over separable systems S whose incidence graph Ginc (S) has bounded treewidth. In
particular, from Theorem 1 and Lemma 10 we obtain the following result.

Corollary 5 (Optimization – incidence treewidth). Consider a separable system S =
(
X,D,C∈, C≥),

let C := C∈ ∪ C≥, let γ := max {γc | c ∈ C}, and let T be a tree decomposition of Ginc (S) of
treewidth winc. Let νx : D → R for every x ∈ X. Then, the optimization problem can be solved in
time (2), where wproj is replaced by max {|D| , γ + 1}winc+1 .

It is natural to ask whether one could design an algorithm with a running time similar to that
in Corollary 5, but where γ is replaced by log(γ). However, this is unlikely, as it would yield a
polynomial-time algorithm for the subset sum problem, or for the 0, 1 knapsack problem, both of
which are well-known to be weakly NP-complete. Indeed, such problems can be naturally expressed
as optimization problems with D = {0, 1} and winc = 1, since they involve only a single constraint.

It is worth emphasizing that the bounded incidence treewidth setting in Corollary 5 is sub-
stantially more restrictive than our main bounded projection-width setting in Theorem 1. Even
within the more limited SAT framework discussed in Section 5.1.4, several important classes of
formulas admit PS-width polynomially bounded, but incidence treewidth not bounded by a con-
stant, including those with bounded signed incidence clique width, bounded incidence clique-width,
bounded MIM-width, γ-acyclic formulas, and formulas with disjoint branches [STV14, Cap16]. In
Observation 3 below, we present a family of linear inequality systems whose incidence treewidth
is not bounded by a constant, while the projection-width remains polynomially bounded. For this
family, Theorem 1 yields a polynomial-time algorithm, while Corollary 5 does not. To the best of
our knowledge, also Corollary 5 is new. The main reason we wrote Corollary 5 is that it allows us
to illustrate how our results subsume known tractability results in integer linear optimization (see
Section 5.2.2) and binary polynomial optimization (see Section 5.2.3).

Observation 3. There exists a family of linear inequality systems SL with 2n variables such that
the treewidth of Ginc (SL) is at least n, and the projection-width of SL is at most 2n.

Proof. Consider the linear inequality system SL =
(
X,DI , ∅, C≥

L

)
, with variablesX = {x1, x2, . . . , x2n},

domain DI = {0, 1}, and linear inequality constraints C≥
L = {c1, c2, . . . , c2n}, where for k ∈
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Figure 1: Illustration of the branch decomposition T in the proof of Observation 3.
•

• •

• •

• •

• •

• •

• •

• •
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c2n−1

x2n−1

· · ·

c2

x2 x1

{1, 2, . . . , 2n}, ck is given by

k∑
i=1

xi ≥ γck ,

where γck ∈ {0, 1, . . . , 2n}. The subgraph of Ginc (SL) induced by variables x1, x2, . . . , xn and
constraints cn+1, cn+2, . . . , c2n is complete bipartite, thus the treewidth of Ginc (SL) is at least n.
Now let T be the linear branch decomposition of X ∪C≥

L in Figure 1. It is simple to show that the
projection-width of SL and T is bounded by 2n.

We note that Corollary 5 immediately yields several classical tractability results. Given a
hypergraph H = (V,E), recall that the incidence graph of H, denoted Ginc (H), is the bipartite
graph with vertex bipartition V ∪ E, where an edge connects v ∈ V and e ∈ E if and only if
v ∈ e. Corollary 5 implies that, given a tree decomposition of the incidence graph Ginc(H) of
treewidth winc, the weighted set cover and weighted set packing problems on H can be solved
in time O(23(winc+1) (|E|+ |V |) |V |), while the weighted hitting set and weighted independent set
problems on H can be solved in time O(23(winc+1) (|V |+ |E|) |E|).

Finally, we note that Corollary 5 remains valid when the incidence treewidth is replaced by
the primal treewidth. More precisely, the same result holds if, in its statement, the incidence
graph of the separable system Ginc (S) is replaced by the primal graph Gpri (S). The primal graph
of a separable system S is the graph Gpri (S) with vertex set X, where two vertices x, x′ ∈ X
are adjacent if and only if there exists a constraint c ∈ C such that gcx ̸≡ 0 and gcx′ ̸≡ 0. This
follows from the well-known fact that any tree decomposition of Gpri (S) of treewidth wpri can be
transformed into a tree decomposition of Ginc (S) of treewidth at most wpri + 1.

5.2.1 Integer separable optimization

From Corollary 1 and Lemma 10 we obtain the following result.

Corollary 6 (Integer separable optimization – incidence treewidth). Consider a separable inequal-

ity system SS =
(
X,DI , C

≤
S , C≥

S

)
, let CS := C≤

S ∪ C≥
S , let γ := max {γc | c ∈ CS}, and let T be
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a tree decomposition of Ginc (SS) of treewidth winc. Let νx : D → R for every x ∈ X. Then,
the integer separable optimization problem can be solved in time (5), where wproj is replaced by
max {|DI | , γ + 1}winc+1 .

5.2.2 Integer linear optimization

From Corollary 2 and Lemma 10 we obtain the result below.

Corollary 7 (Integer linear optimization – incidence treewidth). Consider a linear inequality

system SL =
(
X,DI , C

≤
L , C≥

L

)
, let CL := C≤

L ∪ C≥
L , let γ := max {γc | c ∈ CL}, and let T

be a tree decomposition of Ginc (SL) of treewidth winc. Let νx ∈ R for every x ∈ X. Then,
the integer linear optimization problem can be solved in time (6), where wproj is replaced by
max {2Dmax + 1, γ + 1}winc+1 .

Bounding γ in Corollary 7, allows us to compare our result with the literature in integer linear
optimization. We obtain the following result.

Corollary 8 (Integer linear optimization – incidence treewidth v2). Consider a linear inequality

system SL =
(
X,DI , C

≤
L , C≥

L

)
, let CL := C≤

L ∪C≥
L , and let T be a tree decomposition of Ginc (SL)

of treewidth winc. Let νx ∈ R for every x ∈ X. Let Amax be the maximum absolute value of acx, for
x ∈ X and c ∈ CL. Then, the integer linear optimization problem can be solved in time (6), where
wproj is replaced by (2AmaxDmax |X|+ 1)winc+1 .

Proof. We apply Corollary 7. To bound γ := max {γc | c ∈ CL}, recall (see Section 1.1) that γc,
for c ∈ CL, is defined by:

γc := δc −
∑
x∈X

min
{
acxd

′ | d′ ∈ DI

}
.

As discussed in Section 1.1, we can assume γc ≥ 0 for every c ∈ CL. We can also assume δc ≤
AmaxDmax |X| for every c ∈ CL. For c ∈ C≤

L , this is because otherwise all assignments from X to

DI satisfy the constraint c. For c ∈ C≥
L , this is because otherwise no assignment from X to DI

satisfies the constraint c. We then obtain γ ≤ 2AmaxDmax |X|.

We observe that Corollary 8 recovers the tractability result for integer linear optimization
established in [GOR17]. In fact, our running time is comparable to that of theorem 11 in [GOR17],
which is

O((AmaxDmax |X|)2winc+2winc(|X|+ |CL|)).

5.2.3 Binary polynomial optimization

For a hypergraph H, it is shown in [CDPDG24] that a tree decomposition of Ginc (H) of treewidth
winc yields a tree decomposition of Ginc (SBPO) of treewidth at most 2(winc + 1). Combining this
result with Corollary 3 and Lemma 10 gives the following.

Corollary 9 (Binary polynomial optimization – incidence treewidth). Consider a hypergraph H =
(V,E) and let T be a tree decomposition of Ginc (H) of treewidth winc. Let νv ∈ R for every v ∈ V ,
and νe ∈ R for every e ∈ E. Then, the binary polynomial optimization problem can be solved in
time

O
(
26winc+9 (|V |+ size(H)) size(H)

)
,
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Corollary 9 recovers the tractability result in [CDPDG24] for binary polynomial optimization
over hypergraphs with bounded incidence treewidth. Unlike the proof in [CDPDG24], ours does
not rely on knowledge compilation.

For constrained binary polynomial optimization, we can employ Corollary 5 and Lemma 10 to
obtain the following tractability result.

Corollary 10 (Constrained binary polynomial optimization – incidence treewidth). Consider a
hypergraph H = (V,E) and let T be a tree decomposition of Ginc (H) of treewidth winc. Consider
a separable system Sc =

(
XV ∪ Y E , {0, 1} , C∈

c , C
≥
c

)
and let W be a vertex cover of Ginc (Sc) of

cardinality κ. Let νv ∈ R for every v ∈ V , and νe ∈ R for every e ∈ E. Then, the constrained
binary polynomial optimization problem can be solved in time

O
(
26winc+9+3κ (|V |+ size(H)) size(H)

)
.

Proof. From the proof of lemma 3 in [CDPDG24], a tree decomposition of Ginc (H) of treewidth
winc yields a tree decomposition of Ginc (SBPO) of treewidth at most 2(winc + 1). Now denote by
S′ the separable system obtained by putting together the separable systems SBPO and Sc, that
is, S′ =

(
XV ∪ Y E , {0, 1} , C∈

c , CBPO ∪ C≥
c

)
. Note that Ginc (S

′) is obtained by adding isolated
vertices to Ginc (SBPO) and Ginc (Sc), and then taking their union. Clearly, adding isolated vertices
does not increase the treewidth or the cardinality of a vertex cover. It then follows from lemma 3
in [ALQ+24], that Ginc (S

′) has treewidth at most 2(winc + 1) + κ. The result then follows from
Corollary 5.

Corollary 10 is just one illustration of how Corollary 5 can be applied to constrained binary
polynomial optimization. Other results of the same type can be obtained by replacing lemma 3 in
[ALQ+24] with analogous bounds on the incidence treewidth of the combined system. In particular,
Corollary 10 is new and substantially extends the recent result of [CDPDG24], which establishes
tractability of binary polynomial optimization with a single “extended cardinality constraint.”
More general tractability statements can be obtained by applying directly Theorem 1 instead of
Corollary 5.
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