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Abstract

While several classes of integer linear optimization problems are known to be solvable in poly-
nomial time, far fewer tractability results exist for integer nonlinear optimization. In this work,
we narrow this gap by identifying a broad class of discrete nonlinear optimization problems that
admit polynomial-time algorithms. Central to our approach is the notion of projection-width, a
structural parameter for systems of separable constraints, defined via branch decompositions of
variables and constraints. We show that several fundamental discrete optimization and counting
problems can be solved in polynomial time when the projection-width is polynomially bounded,
including optimization, counting, top-k, and weighted constraint violation problems. Our results
subsume and generalize some of the strongest known tractability results across multiple research
areas: integer linear optimization, binary polynomial optimization, and Boolean satisfiability.
Although these results originated independently within different communities and for seemingly
distinct problem classes, our framework unifies and significantly generalizes them under a single
structural perspective.

Key words: discrete separable optimization; integer nonlinear optimization; integer linear opti-
mization; polynomial time algorithm; projection width; incidence treewidth

1 Introduction

The field of integer linear optimization has reached a high level of maturity, with a rich theoretical
framework, efficient algorithms, and numerous applications. A central outcome of this development
is the identification of broad and structurally rich classes of integer linear optimization problems that
admit polynomial-time algorithms (see [Sch86l [CCZ14] and references therein). Many optimization
problems arising in applications, however, are inherently nonlinear. Despite their importance,
integer nonlinear optimization problems remain far less understood from a complexity-theoretic
perspective, with polynomial-time solvability known only for a few highly restrictive classes. The
main goal of this paper is to narrow this gap by identifying a broad class of integer nonlinear
optimization problems that can be solved in polynomial time.

Separable systems. The framework that we introduce in this paper operates over highly general
systems of separable constraints. A separable system is a quadruple (X ,D,C*, 02), where X is a
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finite set of variables, D is a finite domain set, and where C'S, C'~ are sets of separable constraints
of the form

> filx) e A ceCS,
reX
D filx) =0 cec,
reX

where f¢: D — Z for every z € X and ¢ € CSUC~, where §° € Z for every ¢ € C~, and where A°
is a finite subset of Z for every ¢ € ('S, Throughout the paper, we assume that a separable system
is given by explicitly providing f¢ for every z € X and ¢ € C, A for every ¢ € C<, and §° for
every ¢ € C'~. Clearly, a constraint in ('~ can also be expressed as a constraint in C'. However,
we choose to handle constraints in O~ separately, as doing so allows us to efficiently solve broader
classes of problems. Separable constraints constitute a broad and expressive class of constraints.
Notable special cases include linear and pseudo-Boolean inequalities and set constraints, as well as
parity or, more generally, modulo constraints.

The problems. In this paper, we consider several fundamental discrete optimization and count-
ing problems defined over a separable system (X ,D,C*, Cz), which we informally introduce below:

1. Optimization: Given a separable value function for each variable, find a highest-value assign-
ment from X to D satisfying all the constraints. (See Section [{.1] and Theorem [1] )

2. Counting: Count the number of assignments from X to D satisfying all the constraints. (See
Section and Theorem [2] )

3. Top-k: Given a separable value function for each variable, find k£ highest-value assignments
from X to D satisfying all the constraints. (See Section and Theorem [3])

4. Weighted constraint violation: Given a weight for each constraint, find an assignment from X
to D that minimizes the weighted violation of the constraints. (See Section and T heorem)
Although the four problems above already form a substantial class of fundamental discrete non-

linear optimization and counting problems, our framework can be applied more broadly to other
problems defined over separable systems. For instance, it can be leveraged in polyhedral theory to
derive compact extended formulations using the approach of [MRC90], and in knowledge compila-
tion to translate constraints into succinct deterministic DNNF representations, as in [Capl6].

Our results. We present exact algorithms for the four problems mentioned above. The running
times of our algorithms are low-degree polynomials in | X|, |D|, |C|, where C':= ('S U C'=, and in
two more parameters: wproj and A. The first one, wpyoj, is the projection-width of the separable
system, which is the central concept introduced in this paper and is formally defined in Section [1.1
This concept is inspired by the PS-width of CNF formulas, originally developed for satisfiability
problems in [STV14], and it generalizes the idea in a substantially different context and captures
structural properties specific to separable systems over finite domains. The second parameter is
A, which denotes the maximum time required to check whether an integer belongs to a set A°, for
some ¢ € ('S, This parameter is introduced for convenience and generality, since A depends on how
A€ is given. The running time that we obtain for the optimization and the counting problems is

O (Wproj” (IX[ +1C) [C] + wproj |C°| A + |X] |C] [D]log (1D])) -
For the top-k problem, we get

O (wproj” (1X| + |C1) (IC] + klog(k)) + wproj || A + |X]|C][D]log (| DI)) ,



and for the weighted constraint violation we get

O (utpnof® (1X] +1C

)OI+ XTe

Dllog (|D])) -

We refer the reader to Theorems [I] to [4] for the precise statements of our results. All running times
are stated under the arithmetic model of computation, in which each basic arithmetic operation
(addition, subtraction, multiplication, division, and comparison) is assumed to take constant time,
independent of operand sizes. Moreover, in our algorithms, the sizes of all intermediate and output
values are bounded by a polynomial in the input size. We note that sharper running-time bounds
may be attainable through a more refined analysis, especially in specific cases. For instance,
when the involved functions are linear rather than separable, when |D| = 2, or when branch
decompositions (introduced later in this section) are linear [STV14].

Our results establish a broad class of tractable discrete nonlinear optimization and counting
problems. To illustrate their generality, we show that they subsume some of the strongest known
tractability results in integer linear optimization, binary polynomial optimization, and Boolean
satisfiability. In integer linear optimization, it subsumes the polynomial-time solvability of instances
with bounded incidence treewidth established in [GORI7]. In binary polynomial optimization, it
generalizes the tractability of instances defined on hypergraphs with bounded incidence treewidth
shown in [CDPDG24], while additionally allowing the presence of further constraints. In Boolean
satisfiability, our framework encompasses the tractability of weighted MaxSAT and #SAT on CNF
formulas with bounded PS-width [STV14], which captures nearly all known tractable cases of these
problems [Capl6).

All these three results follow as direct corollaries of our framework under highly specialized and
restrictive assumptions. Compared to our general setting, each of them is considerably narrower.
In particular, all functions involved are linear, only inequality constraints are considered, and the
variable domains are restricted to integer intervals in integer linear optimization, and to {0,1}
in binary polynomial optimization and Boolean satisfiability. While the primary contribution of
this paper lies in the nonlinear setting, the fact that these disparate results emerge as special
cases highlights the broader significance of projection-width, which provides a common structural
explanation for tractability across seemingly different problem classes and research communities.

In the remainder of this section, we present the definition of projection-width.

1.1 Projection-width

Translated separable system. Consider a separable system (X, D, C*, CZ), and let €' := CU
('~ . Although not strictly necessary, we begin by rewriting the constraints in C'. This reformulation
clarifies the intuition behind projection-width and simplifies the notation used throughout the

paper.
For every ¢ € C' we define

9y = fr—min{f(d) | d e D} Ve e X.
For every ¢ € C'S, we also define

I“:=A°— > min{fi(d)|de D},

reX

and for every ¢ € C'~, we set

7 i=6"= > min{f;(d)|de D}.

zeX



We then obtain the equivalent translated separable system

Z gy(z) e I“ ce ",
zeX

ngz(x) > 7" ceC>.
zeX

We now have g5 : D — Z>o and min{g;(d) | d € D} = 0 for every x € X and ¢ € C'. As a result,
we can assume ' C Zsq, for every ¢ € C'°. Similarly, we can assume v° > 0 for every ¢ € (',
since otherwise every assignment satisfies the constraint, and so the constraint can be discarded.
For every ¢ € C%, we define v as the largest element in I'°. From now on, we will mostly consider
the translated separable system instead of the original separable system.

Projections. For constraint ¢ € ', X’ C X, and 7 : X’ — D, we define the constraint bound of
c by T as

b (1) = 3 gilr(@)).

rzeX’

Note that cb” (1) € Z>¢. To build intuition, we observe that the constraint bound provides the
minimum possible left hand side of constraint ¢ over all assignments from X to D whose restriction
to X' is 7.

Given X' C X, ' C (', and 7 : X’ = D, we denote by (/7 the map from ' to Z>o defined
by

(C’/T)C := min {cb” (7),7°} Ve e .

Note that in this context, we use the word “map” to avoid confusion with our “assignments.” Since
¢ € Z>p and cb” (1) € Zs>p, we have (C'/7)" € {0,1,...,7°}, for every ¢ € C’. Note that, if
C" =0, then (/7 is the empty map € : ) = Z>p. On the other hand, if X’ = (), then 7 is the
empty assignment € : ) — D, and (/e is given explicitly by

(C'/e) =0 Vee (.

We observe that (/7 captures the contribution of the assignment 7 to the left hand sides of the
constraints in ', up to the threshold ~°.
Given X' C X and (' C ', we define

proj(C’, X") .= {C'/7 | 7: X" = D}.

As a result, proj(C’, X') encodes how all assignments from X’ to D can contribute to the left hand
sides of the constraints in C’, before the threshold ¢ is reached.

Projection-width. Consider now a branch decomposition 7" of X U (', which is a rooted binary
tree with a one-to-one correspondence between the leaves of T and the set X U C. We say that a
vertex of T is an inner vertex if it has children, and is a leaf if it has no children. Given a vertex v
of T', we denote by T, the subtree of T rooted in v, by C,, the set of constraints in C' such that the
corresponding vertex appears in the leaves of T}, and by X, the set of variables in X that similarly
appear in the leaves of T,,. We denote by (', :== C'\ (/;, and by X, := X \ X,. A key role is played
by the two projections

proj(v) := proj(Cy, X,) = {(7‘1,/7 | 7: Xy — D},
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proj(v) := proj(Cy, Xy) = {CU/T |7: X, — D} .

If we denote by V(T) the set of vertices of T, the projection-width of the separable system
(X, D,C¢, C>) and T is defined by

 hax, max (Iproj(v)|, [proj(v)]) .
The projection-width of the separable system (X ,D,C*<, CZ) is then defined as the minimum among

the projection-widths of the separable system (X ,D,C<,C Z) and 7', over all branch decompositions
Tof XUC.

Organization of the paper. The rest of the paper is organized as follows. In Section |2 we
study the relationship between the projections proj(v) and proj(v) in a branch decomposition, and
use these insights to efficiently construct all such sets throughout the decomposition. In Section [3]
we introduce the notion of shapes, which enables us to retain in the branch decomposition only
the assignments that satisfy all the constraints, effectively filtering out the others. In Section [4]
we present and analyze our algorithms for optimization, top-k, counting, and weighted constraint
violation. Finally, in Section [5, we obtain some corollaries of our main theorems, and we discuss
how our results subsume previously known tractability results in integer linear optimization, binary
polynomial optimization, and Boolean satisfiability.

2 Projections

In the following, given X1, X9 disjoint subsets of X, 71 : X1 — D, 79 : X9 — D, we denote by
71 U 79 the assignment from X1 U X9 to D defined by

m(x) ifze Xy,
TQ(SU) if z € Xo.

(mmUm)(z):= {

Observation 1. Consider a separable system (X, D,C€, CZ), and let c € CSUC~. The following

properties hold:

(i) Given X' C X and 7: X' — D, ¢b® (1) € Z>o.

(i) Given X1, Xo disjoint subsets of X, 7 : X1 — D, 179 : Xo — D, we have cb” (11 UTe) =
cb® (1) + cb® (72).

Proof. Follows directly from g (7(x)) € Z>¢ for every z € X.
(i1)} Follows directly from the definition of constraint bound. O

We will often use the next simple result. The first few times we will employ it, we will use it
with ¢ = 0. However, later on we will need the more general version presented below.

Lemma 1. For all nonnegative a, b, c,y, the following identity holds:
min {a + b,y — ¢} = min{a + min {b,v},y — c}.
Proof.

min {a 4+ min {b,v},y — ¢} = min{a + b,a + v,y — ¢}
=min{a+b,v—c}.



2.1 Structure of proj(v)
The next result is at the heart of the relationship between sets proj(v) in a branch decomposition.

Lemma 2. Consider a separable system (X,D,CG,CE), let C:= C“UC”, let T be a branch
decomposition of X UC', and let v be an inner vertex of T with children vi and vo. Let 7 : X, — D,
and let 7 and T denote the restrictions of T to X,, and X,,, respectively. Then,

(Co/r)° = min { (Tor /1) + (Coafm2) 2} Ve To
Proof. Let ¢ € (', and observe that (', = C,, N C,,. We have

(Co/r)" = min{eb () .7}
= min {cb® (11) + cb (12) , 7} (from Observation
= min {min {cb (71) ,7“} + min {cb” (12) , v}, 7} (from Lemma (1))
= min { ((fivl/ﬁ)c + ((771,2/7'2)[: , 7"} .
O

Lemma |2 suggests the following relationship between ® € proj(v), ®; € proj(vi), and ®9 €
proj(vs):

®° = min {®] + ®3,7°} ve e O, (1)

Lemma 3. Consider a separable system (X,D,CE,CZ), let C := CSUC=, let T be a branch
decomposition of X U C', and let v be an inner vertex of T with children vi and ve. If ® € proj(v),
then there exist ®1 € proj(vy) and ®9 € proj(vy) such that holds. Vice versa, if ®1 € proj(vi)
and @9 € proj(vy), then there is a unique ® € proj(v) such that holds.

Proof. Let ® € proj(v). Then, there exists 7 : X,, — D such that ® = ', /7. Observe that X, is
the disjoint union of sets X,, and X,,. Let 7 and 75 denote the restrictions of 7 to X,, and X,,,
respectively. Let @ := C,, /71 € proj(vi) and @9 := (', /72 € proj(va). Then, Lemma implies
that holds.

Let ®; € proj(vi1) and ®3 € proj(vz). Then, there exist 71 : X,,;, — D and 7 : X,, — D such
that ®; = 'y, /7 and @3 = ', /7. Let 7:= 71 UTe : X, — D, and define ® := C, /7 € proj(v).
Then, Lemma [2| implies that holds. From , ® is clearly unique. ]
2.2 Structure of proj(v)

The relationship between sets proj(v) in a branch decomposition is slightly more complex, since it
also involves maps from proj(v). The next result is at the heart of this relationship.

Lemma 4. Consider a separable system (X,D,C‘G,CZ), let C:= CSUC=, let T be a branch
decomposition of XUC, and let v be an inner vertex of T' with children vy and vy. Let T : Xy, — D,
and let T and T2 denote the restrictions of 71 to X, and X,,, respectively. Then,

(Coy /7)) =min {(Cy/7) + (Coy/72) 17"} Ve € C,.

Symmetrically, let o : X, — D, and let 7 and 7 denote the restrictions of T2 to X, and X,,,
respectively. Then,

(Cv2/7—2)(‘ = min {(OU/T)(j + (Civl/Tl)c s ’7“} Ve e CUQ.
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Proof. We only prove the first part of the statement, since the second part is symmetric. Let
c € (y, and observe that C',, = C,, N C,,. We have

(Cyy /1) = min {cb® (11),7°}
= min {cb" (1) + cb" (12) , 7} (from Observation
= min {min {cb” (7),7“} + min {cb® (12) , 7}, } (from Lemma [1)

=min {(Cy/7)" + (Civz/Tg)(t )
]

Lemma {4| suggests two more relationships. The first one between ¥ € proj(v), ¥y € proj(vy),
and P9 € proj(ve):

Uy = min {¥° + 5,7} Ve e Cu (L2)
The second one between ¥ € proj(v), ®; € proj(v1), and ¥ € proj(vz):
W5 = min {W° + 7,7} Ve € Con. (L3)

Lemma 5. Consider a separable system (X,D,CQ,CE), let C:= C“UC”, let T be a branch
decomposition of X UC', and let v be an inner vertez of T with children v1 and vy. If U1 € proj(v7),
then there exist U € proj(v) and ®o € proj(ve) such that holds. Vice versa, if ¥ € proj(v)
and ®y € proj(ve), then there is a unique V1 € proj(vy) such that holds. Symmetrically, if
Uy € proj(vz), then there exist ¥ € proj(v) and ®1 € proj(v1) such that holds. Vice versa, if
U € proj(v) and ®1 € proj(v1), then there is a unique Yo € proj(vz) such that holds.

Proof. We only prove the first part of the statement, since the second part is symmetric.

Let Uy € proj(v7). Then, there exists 71 : X,, — D such that ¥; = (', /71. Observe that X,
is the union of disjoint sets X, and X,,. Let 7 and 7 denote the restrictions of 71 to X, and X V25
respectively. Let ¥ := (/7 € proj(v) and ®3 := (', /7 € proj(v2). Then, Lemma 4| implies that
holds.

Let ¥ € proj(v) and ®5 € proj(ve). Then, there exist 7: X, — D and 73 : X,, — D such that
U =(C,/7 and & = Cy,/79. Let 1y := 17U : X,, = D, and define ¥; := 'y, /71 € proj(v7).
Then, Lemma implies that holds. From , U, is clearly unique. O

2.3 Constructing all projections

In this section, we use the structural results in Lemmas [3| and [5] to construct efficiently all sets
proj(v) and proj(v) in a branch decomposition. We begin with some projections that have a very
simple structure.

Remark 1. Consider a separable system (X, D,C*<, 02), let C:=CUC=, and let T be a branch

decomposition of X U C.

(i) proj(l), for a leaf I of T corresponding to a constraint c € C'. We have X; = 0, thus there is
only one assignment from X; to D, the empty assignment €. Therefore, proj(l) contains only
one map. Because Cp = C'\ {c}, this map is given by (C'\ {c})/e.

(i1) proj(l), for a leaf 1 of T corresponding to a variable x € X. We have X; = {x}, thus there are
|D| assignment from X; to D. Therefore, proj(l) contains at most |D| maps. Because C; = C,
they are of the form C/t, for every assignment T : {x} — D.

(i4i) proj(r), for the root r of T. Since C, = 0, proj(r) contains only the empty map € : ) — Z>o.




(iv) proj(7), for the root v of T. Since X, = ), proj(¥) contains only one map. Because C, = C,
this map is given by C'/e.

Proposition 1. Consider a separable system (X,D,C<,C=), let C := C“UC=, and let T be
a branch decomposition of X U C' of projection-width wpyroj. There is an algorithm that computes
proj(v) and proj(v), for every vertex v of T, in time

CW

O (wproj” l0g(wproj) (| X | + |C1) |C] + |X[|C][ D[ log (ID])) -

Proof. The construction of the sets proj(v), for every vertex v of T, is performed in a bottom up
manner.

Leaves corresponding to constraints. For every leaf [ of T' corresponding to a constraint
¢ € ', we know from Remark that proj(l) contains only one map, and it can be constructed
in time O (|C|). Since there are || leaves corresponding to constraints, they require O(|C'|?) time.

Leaves corresponding to variables. For every leaf [ of T' corresponding to a variable x € X,
we know from Remark that proj(l) contains at most |D| maps, and they can be constructed,
possibly with duplicates, in time O (|C||D|). We sort the obtained |D| maps lexicographically in
time O (|C'||D|log (|D])), and then we delete duplicates in time O (|C||D|). Therefore, for every
leaf [ of T', the set proj(l) can be constructed in time O (|C||D]log (] D])). Since there are | X | leaves
corresponding to variables, they require O (|X||C]|D|log (|D])) time.

Inner vertices. Consider an inner vertex v of T' with children v; and v2. From Lemma
every ¢ € proj(v) can be constructed from one ®; € proj(v1) and one ® € proj(vz) as in (L1)).
For each pair ®1, ®2, the construction requires O (|C'|) time. Since T is of projection-width wproj,
there are at most wpyroj® pairs, we can construct all maps in proj(v) in time O (wproj? |C']). We
then sort the obtained maps lexicographically in time O (wpmj2 log(wproj) |C' |), and then we delete
duplicates in time O (wproj2 C ) Therefore, for every inner vertex v of T, the set proj(v) can
be constructed in time O (wproj” log(wproj) |C]). Since there are |X| + [C| — 1 inner vertices, they
require O (Wproj? log(wproj) (| X| +|C[) [C]) time.

The construction of the sets proj(v), for every vertex v of T, is performed in a top down
manner. For the root r of T, the set proj(7) can be constructed, as in Remark in time
O (|C]). Next, consider a vertex v of T' with children v; and vy. From Lemma 5| every ¥; €
proj(vi) can be constructed from one ¥ € proj(v) and one ®» € proj(vs) as in (L2). For each
pair W, ®,, the construction requires O (|C'|) time. Since T is of projection-width wproj, there
are at most wpr0j2 pairs, and the total time required for vy, including deleting duplicates, is
O (Wproj? 10g(wproj) |C']).  Symmetrically, we can construct proj(vz) using (L3). Since the total
number of vertices of T"is 2 (| X| + |C'|) — 1, the construction of the sets proj(v), for every vertex v
of T, requires O (wWproj? 10g(wproj) (| X |+ |C])|C]) time. O

3 Shapes

Consider a separable system (X,D,C,C=), let C':= C'“ UC=, let T be a branch decomposition
of X U, and let v be a vertex of T. A shape (for v, with respect to T') is a pair

(@, )

such that ® € proj(v) and ¥ € proj(v). In other words, (®, V) is a shape if there exists 7 : X, = D
such that ® = (,T,/T, and there exists 7/ : X, — D such that ¥ = 'y /7. Observe that if T is of
projection-width wpyej, then proj(v) and proj(v) have cardinality at most wprj, thus there are at
most wproj2 different shapes for v.



Linked shapes. We now define the concept of “linked shapes”, which allows us to relate the
shapes for an inner vertex v to the shapes for its children v; and vo. Consider a separable system
(X,D,CG,CZ), let ' :== C<UC~, let T be a branch decomposition of X U (', and let v be an
inner vertex of T" with children v; and ve. We say that (®, W), (®1, ¥q), (Po, ¥s) are linked shapes
for v, vy, vy, if they can be constructed as follows: First, let ¥ € proj(v), ®1 € proj(vi), and
&y € proj(vz) such that

DY + By < A° Vee C,NCS, (L1)
@y < Ve e Oy NCE, (L)
U+ Pf < 4° Vee Oy NCS. (L37)

Then define ®, ¥, and ¥4 according to , , and , respectively. We also say that the
above linked shapes originated from ¥, ®1, ®5. Since ¢, ¥{, ¥5, € {0,1,...,~°}, , (L1%), ,
(L2%), , (L3*) are equivalent to

¢ = O + P Vee CynNCS, (L1€)

[ Ve € Cy NCE, (L2%)

=T+ Ve € Cy, N CS, (L3%)

O° = min {®] + 5,7} vee Cunee, (L1%)

Ui = min {¥° + 5,7} Ve € Oy NOZ, (L2%)

5 = min {T° + 7} Ve e Oy NC7. (L3%)

Note that linked shapes are indeed shapes. In fact, Lemma [3| implies that ® € proj(v), thus (®, ¥)
is a shape for v. On the other hand, Lemma [5]implies ¥; € proj(vy) and V5 € proj(vz), so (®1, 1)

is a shape for v; and (P2, ¥s) is a shape for vs.

Assignments of shape. Consider a separable system (X, D,C<,C7), let C:= C“UC", let T
be a branch decomposition of X U (', and let v be a vertex of T'. Given a shape (®, ¥) for v, we
say that 7 : X, — D has shape (®, V) if

®° = min {cb" (1),7°} Ve e Oy, (S1)
ch” (1) <~ Vee Oy, NOS, (S1%)
U +cb (1) e T Vee C,nCS, (S2€)
U +cb” (1) > - Yee C,NC=. (S22)

Note that can be written in the form ® = (', /7. Also, since ®° < ~°, and (S1*)) are
equivalent to

O = cb” (1) Vee C,NCS, (S1€)
®° = min {cb" (7),7} Yee C,NC=, (S12)

Note that an assignment 7 : X, — D can have more than one shape. If 7 has shape (®1,¥;) and
shape (@2, ¥5), then it only implies &1 = &y = (', /7.

The intuition behind the notion of “assignment of shape” is that if 7 : X, — D has shape
(@, W), then it can be extended to an assignment satisfying all constraints in ', by combining it
with 7/ : X, — D such that C, /7 > W. The next result details how the notion of shape allows us
to obtain the assignments that satisfy all the constraints in C.



Remark 2. Consider a separable system (X,D,C'e,OZ), let C:=CSUC”, let T be a branch
decomposition of X UC, and let r be the root of T. Consider the shape (e, /€) for r (see Remark

and|(iv)), and note that X, = X, C, = C, and C, = 0. Therefore, (S19)), (s1= ), (S29), (S22)

imply that an assignment 7 : X — D has shape (e,C'/€) if and only if

cb®(r) e I“ Ve e CF,
cbh” (1) >~ Ve e C=.
Since
cb (1) = Y gy (7(2)),
zeX
this happens if and only if T satisfies the constraints in C'.

In particular, Remark |2/ implies that there can be shapes (®, V) for v such that there is no
7: X, — D of shape (@, ¥).

3.1 From children to parent

Our next goal is to relate the “assignments of shape” for an inner vertex v to the “assignments
of shape” for its children v; and vs. First, we study this connection when traversing the tree in a
bottom up manner.

Lemma 6. Consider a separable system (X,D,CG,CZ), let C := CSUC”, let T be a branch
decomposition of X U C, and let v be an inner vertex of T with children vy and ve. Let (P, V),
(P1,¥1), (P2, V) be linked shapes for v,vy,va. If 71 Xy, — D has shape (P1,¥1) and 1o : Xy, —
D has shape (®2,¥3), then 7 := 71 U7y : X\, = D has shape (9, V).

Proof. Let 11 : X,,, — D of shape (®1,¥;) and 7o : X,,, — D of shape (®2, U3). To prove that 7
has shape (@, V), we need to show that 7 satisfies conditions (S1%)), (S1=)), (S29), (S22).
Condition (S1€). Let ¢ € ', N C<, and note that j € C',, N C,. We have

O° = P + @5 (from (L1%))

= cb” (11) + cb” (72) (from (S1)) for 7 and 7)
= cb“ (1) (from Observation [I][(ii)).

Therefore, T satisfies condition (S1€)).
Condition (S1=)). Let ¢ € (', N O~ and note that j € C,, N C,,. We have

& = min {®{ + 05,°} (from (L13))
= min {min {cb” (71) ,7“} + min {cb (172) , 7} ,7“} (from (S1=)) for 71 and )
= min {cb" (1) ,~} (from Lemma [2).

Therefore, T satisfies condition (S1=).
Condition (S2€)). Let ¢ € C,,NC<. Then ¢ € (', Ny, or ¢ € Cy, N, . We assume, without
loss of generality, that ¢ € C, N C,,, since the other case is symmetric. We get

U+ ¢cb (1) = U+ ¢b” (11) + ¢b” (12) (from Observation
= U’ 4 cb (1) + D5 (from (S1€) for 75)
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= U] +cb" () (from (L2%))
ere (from (S2) for 7).
Therefore, T satisfies condition (S2€)).

Condition (S22). Let c € C',NC=. Then ¢ € 'y, N, or ¢ € 'y, NC,,. We assume, without
loss of generality, that ¢ € C';,, N C,, since the other case is symmetric. We get

U+ cb (1) = ¥ 4 ¢cb” (11) + cb® (12) (from Observation
> V¢ 4 cb (1) 4+ min {cb” (72) ,7}
= U +cb (1) + D5 (from for 1)
> min {U° + &5, 7} + cb” (11)
= U] +cb" (11) (from )
>~ (from for ).

Therefore, 7 satisfies condition (S2=). O

3.2 From parent to children

Next, we study this connection among “assignments of shape” when traversing the tree in a top
down manner.

Lemma 7. Consider a separable system (X,D,CG,CE), let C:= C“UC”, let T be a branch
decomposition of X UC', and let v be an inner vertex of T with children vy and vy. Let (P, V) be a
shape for v, and let T : X, — D of shape (®,V). Let 71 and 2 denote the restrictions of T to X,
and X,,, respectively. There is a unique pair of shapes (1, V1) for vy and (P2, Vo) for vy such
that (®, W), (91, V1), (P2, ¥a) are linked shapes, 71 has shape (91, V1), and 1o has shape (Po, Us).

Proof. Since 71 : X, — D must have shape (®1,¥;), and 79 : X,, — D must have shape (®2, ¥s),
according to we need to set ® := (', /71 € proj(vy) and ®y := (', /7 € proj(vsy). Then,
Lemma |2[ implies that holds. Therefore, the only triple of linked shapes that we can consider
is the one originated from ¥, &1, ®5, which we denote by (®, V), (®1,¥y), (P2, ¥s). Note that,
according to Lemma [2[ and , the linked shape (®, V) that we obtained is indeed the shape for
v we started from.

To complete the proof, we only need to show that 7 has shape (®1,V;) and 7 has shape
(P2, ¥y). We only show it for 71, as the other one is symmetric. We already know that holds
for 71, thus to prove that 71 has shape (®1,W;), it suffices to show that 7; satisfies , ,
(1S2=)).

Condition . Let j € C',, N C°. We consider separately two cases. If ¢ € (', we have

cb” (1) = cb" (1) — cb" (1) (from Observation
< cb" (1) (from Observation
<" (from (S17) for 7).

If c € C,, we have

cb” (11) = ¢cb" (1) — cb" (1) (from Observation
< cb“(7) (from Observation
el —v° (from (S2€) for 7)
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< ,_y(‘,'

Therefore, T satisfies condition (S1%). o
Condition (S2). Let c € C',, N C<. Then ¢ € ', N C',. We have

{4 cb” (11) = min {¥° 4+ &5,7°} + cb” (1) (from (L2))
= min {¥° + cb” (12),7} + cb" (11) (from for )
=min {¥° + cb” (11) + cb” (12) , 7" + cb" (11)}
= min {U° + cb" (1) ,7" 4+ cb" (1)} (from Observation
= U+ cb (1) (from (S2€)) for 7)

el” (from (S2€)) for 7).

Therefore, 7 satisfies condition (S2€)).
Condition (S2=)). Let ¢ € C',;, N C=. Then ¢ € (', N C,. We have

{+cb(71) = min {¥° + &5, 4} + ¢b” (11) (from (L2))
= min {¥° + min {cb (12) , 7}, ¥} + cb" (11) (from for 79)
= min {U° + cb" (12) ,7°} + cb” (11) (from Lemma [1)
= min {¥" + cb” (71) 4+ cb" (12) ,¢b" (11) + 7"}
= min {U° + cb" (7),cb" (1) + 7} (from Observation
> ¢ (from for 7).
Therefore, 7 satisfies condition . O

3.3 Structure of shapes

The next key result is a direct consequence of Lemmas [6] and [7, and will play a major role in our
main algorithms. To state it, we define

Xy(®,¥) :={7: X, — D | 7 has shape (&, V)}.

Proposition 2. Consider a separable system (X, D,C*<, CZ), let C:=CUC~, let T be a branch
decomposition of X U C', and let v be an inner vertex of T with children v1 and vy. Let (®, W) be
a shape for v, and let P denote the set of pairs of shapes (®1,V1) for vy and (P2, Vo) for ve such
that (@, V), (®1,¥q), (P, Us) are linked shapes. Then Xv(q), W) is the union of disjoint sets

{7'1 U ’ T € le(q)l,\lf1),7'2 c XUQ(CI)Q,\IJQ)}, V((‘Iﬁ,\l’l), (‘132,\112)) ePp.

Proof. Containment D follows from Lemma [6] while containment C follows from Lemma [7] The
fact that the union is disjoint follows from the uniqueness in Lemma [7} O

4 Algorithms

4.1 Optimization

In this section, we consider our first problem defined over a separable system, and we show how
shapes can be used to solve it. In the optimization problem, we are given a separable system

12



(X, D,C¢, C7>) and v, : D — R for every z € X. For every assignment 7 : X — D, we define its
value

v(r) =) vy (r(2)). (1)

zeX

The goal is to find a highest-value assignment from X to D satisfying the constraints in C'S U C~,
or prove that no such assignment exists. In the next result, we show that we can solve efficiently
the optimization problem on separable systems with bounded projection-width.

Theorem 1 (Optimization). Consider a separable system (X, D,C*<, CZ), let C:==C“UC”, and
let T' be a branch decomposition of X U C' of projection-width wproj. Let v, : D — R for every
x € X. Then, the optimization problem can be solved in time

O (wproj” (IX[ +|C1) [C] + wproj || A+ X[ |C] | D]log (|DI)) - (2)

Proof. First, we apply Proposition [I| and compute proj(v) and proj(v), for every vertex v of 7', in
time O (wproi? 1og(wprog) (1X] + [C1) €] + X1 1C1 | D log (1D])).

Table. Next, our algorithm will construct, for each vertex v of T, a table Tab, indexed by the
shapes (®, ¥) for v. For every assignment 7 : X, — D, we define its value

vy(T) = Z v, (T(x)) .

ZL‘EXU

For a shape (®, V), the content of the table Tab, at this index, which we denote by Tab,(®, V),
should be a pair (7, v,(7)), where 7 is a highest-value assignment from X, to D of shape (®, V). If
no such assignment exists, we should have Tab, (®, ¥) = NA. We now explain how we can compute
the table Tab,, for every vertex v of T'. This is done in a bottom up manner.

Leaves corresponding to constraints. Consider a leaf [ of T' corresponding to a constraint
¢ € C. From Remark there is only one assignment from X; to D, the empty assignment
¢, which has value 0, and that can be constructed in time O(1). We now find all shapes (®, V)
for I such that e has shape (®,¥); We then set Tab;(®, V) := (¢,0) if € has shape (®, V), and
Tab;(®, ¥) := NA otherwise. Clearly, there is only one ® € proj(l), and it satisfies and
(S1Z). For every ® € proj(l), we need to check or , depending on whether ¢ is in (¢
or C~, and this can be done in time O (A) and O(1) respectively. Therefore, we can compute the
table Tab; in time O (wprojA) if ¢ € C', and in time O (wpyj) if ¢ € C'=. Since there are || leaves
corresponding to constraints in C'“, and ‘02! leaves corresponding to constraints in C'~, in total
they require O (Wproj |C'<| A + Wproj [C]) time.

Leaves corresponding to variables. Consider a leaf [ of T' corresponding to a variable
z € X. From Remark there are |D| assignment from X; to D, and they can be constructed,
with their values, in time O(|D]). We now fix one such assignment 7, and find all shapes (®, ¥) for
[ such that 7 has shape (®, V). There is at most one ® € proj(l) satisfying 1 ) and -, and
it can be constructed in time O(C'). We fix such ®, and observe that 7 has shape (®, ¥), for every
U ¢ proj(l), which are at most Wproj- This is because conditions , are always satisfied
since (', = (). Once we have considered all |D| assignments, for every shape (®, ¥) for [, which are
at most wpro;%, we set Taby(®, ¥) := (7,v,(7)), where 7 is the highest-value assignment of shape
(@, V), or Tab)(®,¥) := NA if no assignment has shape (®, V). Therefore, we can compute the
table Tab; in time O (|C||D| 4+ wpro;?). Since there are | X| leaves corresponding to variables, in
total they require O (|X||C||D| 4+ wproj® | X|) time.
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Inner vertices. Consider now an inner vertex v of T, with children vy,v2. We loop over all
triples (®, W), (®1,¥;), (Po, Us) of linked shapes for v,vy,v3. To do so, we pick ¥ € proj(v),
®, € proj(v1), and ®5 € proj(vz), we check (L1%), (L2%), (L1*)), and if they are satisfied, we define
®, Uy, and ¥y according to , , and , respectively. Note that we have at most wpmj?’
such triples, and for each the above check and construction requires O(|C'|) time. For each triple of
linked shapes with Tab,, (®1, ¥1) # NA and Tab,, (P2, Vo) # NA, let (11, vy, (11)) := Taby, (P71, V1)
and (72, Uy, (72)) := Taby, (P2, Uy). We then construct the value of the “candidate assignment for
(®,¥)” given by 71 U7y in time O(1) by summing vy, (71) and vy, (72).

For each shape (®, ¥) for v, we then set the highest-value assignment 71 U7s, among all candidate
assignments for (®, V), as the content of Tab,(®, V), together with its value. If there are no
candidate assignments for (®, V), we set Tab;(®, ¥) := NA. To improve runtime, here we do not
explicitly construct 71 U 79; instead, we store pointers to (1, V1) and (P2, ¥s) giving the highest-
value, so that this is done in time O(1) instead of O (| X|). Proposition [2| implies that we set Tab,
correctly, for every inner vertex v of T. Therefore, for each inner vertex v of T', the table Tab, can
be computed (partially implicitly) in time O(wpyo; |C|). Since there are | X|+|C|—1 inner vertices
of T, in total they require O(wproi® (|X| + |C])|C]) time.

Root. Once the table Tab, is computed, for every vertex v of T', we consider the root r of
T, and the shape (¢, C'/e) for r (see Remark and . From Remark [2| the assignments
7 : X — D that have this shape are precisely those that satisfy the constraints in . The table
Tab,, indexed by (e, C'/¢€), implicitly contains a highest-value assignment from X to D satisfying the
constraints in C. Following our pointers, we can construct it explicitly in time O (|X|+ |C|). O

4.2 Counting

In this section, we consider the counting problem. In this problem, we are given a separable system
(X,D, CC,CZ), and our goal is to return the number of assignments 7 : X — D satisfying the
constraints in C'© U C~. Next, in Theorem [2, we show how we can solve efficiently the counting
problem on separable systems with bounded projection-width.

Theorem 2 (Counting). Consider a separable system (X, D, C¢, C’Z), let C:=C UC=, and let
T be a branch decomposition of X U C' of projection-width wpoj. Then, the counting problem can
be solved in time (12)).

Proof. The proof follows the same structure as that of Theorem [l and we only highlight the
differences here.

Table. For a shape (®, V), the content of the table Tab, at this index should be the number
of assignments 7 : X, — D of shape (o, V).

Leaves corresponding to constraints. Here, we set Tab;(®, ) := 1 if € has shape (@, V),
and Tab;(®, ¥) := 0 otherwise.

Leaves corresponding to variables. Here, we set Tab;(®, ) to be the number of assignments
that have shape (®, V), among the |D| that we constructed.

Inner vertices. Here, we first initialize Tab, (®, V) := 0 for every shape (®, V) for v. Then,
for each triple (®,V), (®1,¥;), (P2, ¥2) of linked shapes for v,v1,vs, we let vy := Tab,, (®1,¥q)
and vy := Tab,, (®2, U3), and add v1v2 to Tab,(®, ¥) in time O(1).

Root. From Remark |2 the content of Tab,, indexed by (e, C'/€), is the number of assignments
7: X — D that satisfy the constraints in C. O
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4.3 Top-k

In this section, we consider the top-k problem. In this problem, we are given a separable system
(X, D, C*, Cz) and v, : D — R for every x € X. The value of an assignment is defined by ,
like for the optimization problem. The goal is to return a sorted list of k& highest-value assignments
from X to D that satisfy the constraints in C'. More formally, the output should be a list of k

assignments 71, 7o, ..., 7, from X to D satisfying the constraints in C' and such that
v(mk) < v(tp—1) <---<wv(n),
v(7") < v(ry) for every other 7/ : X — D satisfying the constraints in C,

with the understanding that, in case there are only h < k assignments from X to D satisfying
the constraints in C, the output should be a sorted list of only those h assignments. Next, in
Theorem |3, we show how we can solve efficiently the top-k£ problem on separable systems with
bounded projection-width.

Theorem 3 (Top-k). Consider a separable system (X, D,C,C=), let C := C<UC=, and let T
be a branch decomposition of X U C' of projection-width wprej. Let v, : D — R for every v € X.
Then, the top-k problem can be solved in time

0] (wpr0j3 (1X] 4+ [C)) (|C] + klog(k)) + wproj |C'

A+|X]|C[D]log (|D])) -

Proof. The proof follows the same structure as that of Theorem [I and we only highlight the
differences here.

Table. For a shape (®, V), the content of the table Tab, at this index should be a sorted list
of k highest-value assignments from X, to D of shape (®, V), with their respective values.

Leaves corresponding to constraints. Here, we set Tab;(®, V) := (¢,0) if € has shape
(®,¥), and we set Tab;(®, ¥) as an empty list otherwise.

Leaves corresponding to variables. Here, we set Tab;(®, V) to be a sorted list of k-highest
value assignments of shape (®, V), with their respective values, among the | D| that we constructed.
The only extra step required, after constructing the |D| assignments, is to order them according to
their value, which can be done in time O(|D|log (|D|)).

Inner vertices. Fix a triple (®, V), (®1, V), (P2, Vy) of linked shapes for v, vy, ve. It is well
known that we can find k largest values, in sorted order, in the Cartesian sum of two sorted arrays
in time O(klog(k)), using a best-first search strategy with a max-heap, and that only & largest
elements in each array need to be considered. We then construct the values of the k& highest-
value assignments, in sorted order, among all assignments of the form 71 U 75 with 7 of shape
(®1,¥;) and 79 of shape (P2, ¥s3), by only considering those with 71 in Tab,, (®1,¥;) and 72 in
Tab,, (P2, ¥o). We call these k highest-value assignments a “candidate top-k for (®,¥).” Since we
store the corresponding assignments implicitly, the total time for one triple is O(klog(k)). This is
done for each triple of linked shapes.

Now fix one shape (®, ¥) for v, consider all candidate top-k for (®, ¥), and denote by N ) <
wpr0j3 their number. It then follows from Propositionthat we can set the content of Tab, (®, ¥) by
finding the £ highest-value assignments, in sorted order, among all N4 ) candidate top-k for (®, ¥).
It is well known that we can find k largest values, in sorted order, in N sorted arrays of k£ elements
each in time O(N+klog(N)), using a k-way merge with a max-heap. Since we store the assignments
implicitly, the total time for the merge corresponding to (®, V) is O(N ¢ ) + klog(N(s v))). Using
Z(@, ) shape of v N@,w) < wpr0j3, we obtain that the total time for the merges corresponding to the
shapes of v is O(wpmj?’k:). Therefore, for each inner vertex v of T, the table Tab, can be computed
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in time O (Wproj® |C'| + wproj®k log(k)). Since there are | X| + [C] — 1 inner vertices of T, in total
they require O(wproj® (| X|+ |C1) (|C| + klog(k))) time.

Root. From Remark [2| the content of Tab,, indexed by (e, C'/¢€), implicitly contains a sorted
list of k highest-value assignments from X to D that satisfy the constraints in C'. Following our
pointers, we can construct them explicitly in time O (k (|X| + |C])). O

4.4 Weighted constraint violation

In this section we define a problem that significantly extends the weighted MaxSAT problem. This
problem is inherently defined on a separable system with C'S = (). We remark that this problem
can also be extended to general separable systems, but such an extension appears to offer little
value and practical relevance. In the weighted constraint violation problem, we are given a separable
system of the form (X, D, (), ), and w® € R for every ¢ € (. For every assignment 7: X — D, we
define its weight

w(r) = 3 min { 3 air(a)). 7}
ceC zeX
= Z w’min {cb® (1) ,~}
ceC

=) wi(C/7)".

ceC

The goal is to find a highest-weight assignment from X to D.

The name of the problem arises by considering the special case w® > 1, where for all ¢ € C,
we have w(r) < > . w™, for every 7 : X — D, and w(r) = > . w™" if and only if 7
satisfies all the constraints in (/. Compared to the problems considered in Sections and
the weighted constraint violation problem might seem more exotic. However, it contains as special
cases MaxSAT and weighted MaxSAT, and it will allows us to show how our techniques can be
used to significantly extend the known tractability of these problems for formulas with bounded
PS-width [STV14]. To write the weighted MaxSAT problem as a separable constraint problem, it
suffices to observe that each clause can be written as a constraint ¢ with D := {0,1}, 4 := 1, and
where w® is the (non-negative) weight of ¢ in the weighted MaxSAT problem.

While the approach that we use to solve the weighted constraint violation problem is still
based on the theory of shapes that we developed in Section [2] we will not be using the concept of
assignments of shape, which we introduced in Section [3] and that played a key role in Sections
and [4:2] Instead, we rely on the “weaker” notion of assignments of configuration, which we define
next.

Let T be a branch decomposition of X U (U, let v be a vertex of T, and let (®, ¥) be a shape
for v. We say that 7: X, — D has configuration ® if condition (S1=|) holds, that is,

o =C)/T
Furthermore, for 7: X, — D we define its W-weight

w¥(r) = Z wmin {cb® (1) ,7" — ¥} € Z.

ceCly

In our algorithm, for the shape (®, ¥), we will compute a highest-W-weight assignment from X, to
D of configuration ®. Such an assignment will be simple to compute in the leaves, and will yield
the solution to the problem in the root, as discussed below.
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Remark 3. Consider a separable system of the form (X, D,0,C), let T be a branch decomposition
of XUC, and let v be the root of T. Consider the shape (€,C'/€) forr (see Remark[1||(iii) and|(iv)),
and note that X, = X. Note that every assignment from X to D has configuration €. Furthermore,
C'/e is given explicitly by

(C/e) =0 Ve e C,

thus wy /6( ) = w(T) for every assignment T from X to D. Therefore, the set of highest-(C'/¢)-weight
assignments from X to D of configuration € coincides with the set of highest-weight assignments

from X to D.
The next result shows how w?¥ (71 UT) can be easily computed from w?t (r1) and w¥? (1);
It will be the key in computing the highest-W-weight assignments, traversing 7' in a bottom up

manner.

Lemma 8. Consider a separable system of the form (X, D,0,C"), and let w° € R for every ¢ € C.
Let T be a branch decomposition of X UC, and let v be an inner vertex of T" with children v1 and vs.
Let (®,V), (®1,V,), (Pg, Vo) be linked shapes for v,vi,ve. Let 71,7 : Xy, — D of configuration
Q1 and 19,7y : Xy, = D of configuration ®5. Then,

w? (MUm) =w (1) + w2 () + Z wmin {P5, 7" — ¥} + Z wmin {P7, v — ¥}

c€Cy, c€Cl,
Proof. 1t suffices to prove that, for every c € C,,
min {cb (11 U),7" — ¥} = min {cb" (11) ,7" — ¥{} + min {P5, v — U}. (3)
In fact, from and the symmetric identity for ve, we obtain

W (M Um) = Z wmin {cb” (1 UTg),~v" — U}

ceCly
= > w'min{ch (nUm),7 =¥} + > wmin{ch (nUm),y" — ¥}

c€Cly, c€Cy,
= Z wmin {cb” (m),7y" — ¥} + Z wmin {®5,~° — U}

c€Clyy c€Cyy

+ Z w”min {cb® (12),7y 5} + Z wmin {P],~° — U}
c€Chq c€Clyq

= w1 (7)) + w¥2 (m) Z wmin {P5, v — ¥} + Z wmin {®],~° — U}.

c€Cy, c€Cy,
In the remainder of the proof, we show . First, we simplify the left hand side.
min {cb” (11 Um),v" — ¥} = min {cb” (11) + cb” (12) ,7* — ¥} (from Observation
= min {cb® (71) + min {cb" (72) ,7},7" — ¥} (from Lemma I
(r) + (CU2/7_2) =0y
)+

— U} (12 of configuration ®3).

= min {Cb"' sl

= min {cb® (7}
Next, we rewrite the first minimum on the right hand side using (L2)).

min {cb (71) ,7" — ¥{} = min {cb” (71) ,7" — min {¥° + &5,7}}.
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We can then rewrite as follows:
min {cb® (11) + ®5,7° — ¥} — min {cb” (71) ,7" — min {¥° + &5,7°}} = min {P5, 7 — U°}. (4)

To check the identity , we first consider the case ®5 > v“ — ¥*. In this case, the right hand side
of equals v¢ — W¢ and the left hand side equals

(v = ¥°) —min{cb” (1) ,v" =7} =" — ¥

Next, we consider the case ®5 < v° — ¥°. In this case, the right hand side of equals @5 and the
left hand side equals

min {cb® (11) + ®5,7° — ¥} — min {cb® (71) ,7" — V° — d5} .
We add and subtract ®5, and bring —®5 inside the first minimum.

@5 + min {cb” (11) ,7" — ¥ — &5} — min {cb” (11) ,7" — ¥ — &5} = P5.

The following result is a direct consequence of Lemma

Lemma 9. Consider a separable system of the form (X, D,0,C'), and let w € R for every ¢ € C.
Let T be a branch decomposition of X UC', and let v be an inner vertex of T" with children vi and va.
Let (®,V), (®1,V,), (Pg, Vo) be linked shapes for v,vi,ve. Let 71,7 : Xy, — D of configuration
®1 and 12, 7h : Xy, — D of configuration ®y. If w¥1 (7)) < w¥ (11) and w¥? (15) < w¥2 (1), then
WY (rfum) <w?(rmum).

Proof. From Lemma [§]

w? (7‘{ U Té) =¥ (7‘{) +w?? (Té) + Z wmin {®5, v — ¥} + Z wmin {®7, v — ¥}

c€Clyy c€Clyqy

< (1) + w¥2 (12) + Z wmin {P5, v — U} + Z wmin {P],~° — U}
c€Clyy c€Cyq

v

=w (7'1 U 7'2) .

We are now ready to present our algorithm for weighted constraint violation.

Theorem 4 (Weighted constraint violation). Consider a separable system of the form (X, D, 0, ),
let w“ € R for every c € C, and let T' be a branch decomposition of X UC' of projection-width wproj.
Then, the weighted constraint violation problem can be solved in time

O (wproj” (IX[ +1C1) €] + X[ |C] | D[log (ID])) -

Proof. First, we apply Proposition [I| and compute proj(v) and proj(v), for every vertex v of T, in
titme O (wgrej? 08 (wpreg) (1X| + |C1) |C] + X1 C] D] log (| D).

Table. Next, our algorithm will construct, for each vertex v of T, a table Tab, indexed by
the shapes (®, ¥) for v. For a shape (®, V), the content of the table Tab, at this index, which we
denote by Tab,(®, ¥), should be a pair (7,w"¥ (7)), where 7 is a highest-W-weight assignment from
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X, to D of configuration ®. We now explain how we can compute the table Tab,,, for every vertex
v of T'. This is done in a bottom up manner.

Leaves corresponding to constraints. Consider a leaf [ of T corresponding to a constraint
c € C. From Remark there is only one assignment from X; to D, the empty assignment e,
that can be constructed in time O(1). Clearly, there is only one ® € proj(l), and it satisfies .
Hence, we set Tab;(®, ¥) := (¢,0) for every shape (®,V) for [. Therefore, we can compute the
table Tab; in time O (wproj). Since there are |C'| leaves corresponding to constraints in C, in total
they require O (wproj |C]) time.

Leaves corresponding to variables. Consider a leaf [ of T corresponding to a variable x € X.
From Remark there are |D| assignment from X; to D, and they can be constructed in time
O(|D|). We now fix one such assignment 7, and observe that there is precisely one ® € proj(l) such
that 7 has configuration ®, and it can be constructed in time O(C'). Once we have considered all
|D| assignments, for every shape (®, V) for I, which are at most wpye;?, we set Taby(®, ¥) := (7,0),
where 7 is any assignment of configuration ®. Therefore, we can compute the table Tab; in time
O (|C||D] + wproj?). Since there are | X| leaves corresponding to variables, in total they require
O (IX]|C]|D] + wproj® | X ) time.

Inner vertices. Consider now an inner vertex v of 7', with children v;,vs. We loop over
all triples (®, V), (®1, V), (P2, ¥s) of linked shapes for v,v1,vs, as described in the proof of
Theorem For each triple of linked shapes, let (71,w¥!(71)) := Tab,, (®1, ¥1) and (72, w¥2(72)) :=
Tab,, (P2, ¥o). We then construct the W-weight of the “candidate assignment for (®, ¥)” given by
71 U T2, and this can be done in time O(|C'|) due to Lemma (8]

For each shape (®, W) for v, we then set the highest-W-weight assignment 71 U 75, among all
candidate assignments for (®, V), as the content of Tab,(®, V), together with its W-weight. To
improve runtime, here we do not explicitly construct 71 U 79; instead, we store pointers to (®1, V1)
and (®y, ¥o) giving the highest-W-weight, so that this is done in time O(1) instead of O (|X]).
Therefore, for each inner vertex v of T, the table Tab, can be computed (partially implicitly)
in time O(wpro;® |C|). Since there are |X| + |C] — 1 inner vertices of T, in total they require
Olwproi® (1X] + ) | time.

We now show that we set Tab,, correctly, for every inner vertex v of T'. Since we already proved it
for the leaves of T', we now assume inductively that Tab,, and Tab,, have been set correctly, where
v1, o are the children of v. Let (®, ¥) be a shape for v, and let 7/ be an assignment from X, to D
of configuration ®. Let 7| and 75 denote the restrictions of 7/ to X,, and X,,, respectively, and set
@, := C,, /7] and &5 := ', /74. Consider now our procedure, when it considers the triple of linked
shapes (®,¥), (®1,¥;), (Pg, ¥y) originated from ¥, &1, 3. Note that, according to Lemma
and , the linked shape (®, ¥) that we just obtained is indeed the shape for v we started from.
Let 71 and 75 be the assignments in Tab,, (®1, V1) and Tab,, (P2, Us), respectively. So 7 U 1y is
a candidate assignment for (®,¥). By induction, w¥! (7]) < w¥ (7)) and w¥2 (75) < wW¥2 (1).
Lemma |§| then implies w¥(7') < w¥(7). Now let 7" : X, — D be the assignment in Tab,(®, ¥).
7 is a candidate assignment for (®,¥), so it has configuration ®, due to Lemma [2| and .
Furthermore, by construction, we have w¥ (1) < w¥(7"), therefore w¥ (1) < w¥(r").

Root. Once the table Tab, is computed, for every vertex v of T, we consider the root r of T',
and the shape (e, ('/€) for r (see Remark and [(iv)). From Remark 3] the table Tab,, indexed
by (e, C'/e), implicitly contains a highest-weight assignment from X to D. Following our pointers,
we can construct it explicitly in time O (| X| + |C]). O
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5 Some consequences

In this section, we obtain some corollaries of our main theorems, and we discuss how our results
subsume previously known tractability results in integer linear optimization, binary polynomial
optimization, and Boolean satisfiability.

5.1 Main consequences

In Section we specialize some of our main results to integer separable (nonlinear) optimization;
in Section [5.1.2] to integer linear optimization; in Section [5.1.3] to binary polynomial optimization;
and in Section to Boolean satisfiability. We focus in particular on the optimization problems,
emphasizing the consequences of Theorem All the results that we obtain are new, except for
Boolean satisfiability, where we recover precisely the tractability of weighted MaxSAT and #SAT
for CNF formulas with bounded PS-width in [STV14].

5.1.1 Integer separable optimization

The integer separable optimization problem is the special case of the optimization problem con-
sidered in this work (Section [4.1]), where the domain consists of the integer points in a bounded
interval, and only inequality constraints are allowed. Formally, a separable inequality system is a

quadruple (X , Dy, CE,, Cg), where X is a finite set of variables, Dy is a finite domain set of the

form Dy = {—Dmax, —Dmax + 1, ..., Dmax} for some Dyax € Z>0, and where CE, CSZ are sets of
separable inequality constraints of the form

D folz) <6 ceCyg,

zeX

Z fo(x) > 0° ce CE,,

zeX

where f.: Dr — Z for every € X and ¢ € (’f U CE, and where 0¢ € Z for every ¢ € CE U C?
Clearly, a constraint in CE can also be expressed as a constraint in CSSV, and vice versa. However,
we choose to keep both types of constraints, as moving one inequality from one set to the other
may affect the resulting projection-width of the system.

The definition of projection-width of a separable inequality system follows from our original
definition for separable systems in Section since every inequality constraint ¢ € (”SS can be

written as a set constraint in C' with I'“ = {0,1,...,7°}, where as usual
N =00 — Z min{fy(d) |d € Dr}.
zeX

In the integer separable optimization problem, we are given a separable inequality system
(X,DI,CE,,CSZV) and v, : D — R for every x € X. For every assignment 7 : X — D, we
define its value

()= v (r(z)).

zeX

The goal is to find a highest-value assignment from X to D satisfying the constraints in CSS U Cszv,
or prove that no such assignment exists.
Since |D;| = 2Dax + 1, our Theorem [I| directly implies the following result:
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Corollary 1 (Integer separable optimization). Consider a separable inequality system (X , Dy, C;, Cg),

let Cg := Cf U Cg, and let T' be a branch decomposition of X U Cs of projection-width wpro;. Let
vy D — R for every x € X. Then, the integer separable optimization problem can be solved in
time

O (wproj” (1X| +C51) |Cs] + |X]|Cs| Dimax 10g (Drmax)) - (5)

5.1.2 Integer linear optimization

The integer linear optimization problem is the special case of integer separable optimization con-
sidered in Section [5.1.1] where all functions are linear.

Formally, a linear inequality system is a separable inequality system (X , Dy, CLS, CE), where

for every c € CE U C'L2 and x € X, the function f{: D; — Z is of the form

fe (z) = ay T,
for some af, € Z. In the integer linear optimization problem, we are given a linear inequality system
(X , Dy, C%, C%) and v, € R for every © € X. For every assignment 7 : X — Dy, we define its
value

v(r) = Z vy - (1(x)).

zeX
The goal is to find a highest-value assignment from X to D satisfying the constraints in C% U C%,
or prove that no such assignment exists. Corollary [1] directly implies the following result:

Corollary 2 (Integer linear optimization). Consider a linear inequality system <X, Dy, C%, O%),

let Cp = Cf U C,%, and let T' be a branch decomposition of X U Cr of projection-width wpre;. Let
vy € R for every x € X. Then, the integer linear optimization problem can be solved in time

O (wproj® (IX] +[CL) [CL] + | X]

Cr,

Dmax log (Dmax)) . (6)

5.1.3 Binary polynomial optimization

Important applications of our results arise in binary polynomial optimization, an area that has
recently seen significant progress; see, for example, [DPK17, [DPK18bl [DPK18al, [DPK21l DPK24b].
In a binary polynomial optimization problem, we are given a hypergraph H = (V, E), together with
v, € R for every v € V, and v, € R for every e € E. Let Xy := {x, | v € V} denote the set of
variables. The goal is to find an assignment 7 : Xy — {0, 1} maximizing

Z vy T () + Z Ve H T(Zy).

veV eck veEe

The objective function above is, in general, not separable. However, it is well-known how the
binary polynomial optimization problem can be reformulated as an integer linear optimization
problem. To do so, we apply Fortet’s linearization [For59, [For60], introducing auxiliary variables
YE ={y.|e€ E}. Forevery assignment 7: Xy UY g — {0, 1}, we define its value by the linear
function

v(T) = Z VT (20) + Z VeT (Ye)-

veV eeE
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Consistency between the auxiliary variables and the original ones is then enforced through linear
inequalities. Among several possible formulations, we adopt the standard linearization, though
exploring alternative formulations could be an interesting direction in light of the results of this
paper.

As we discussed in Section each linear inequality can be placed in either C% or C%, and
this choice may affect the resulting projection-width. Here, we place all inequalities in (”[> This
yields the linear inequality system Sppo = (Xy UY g, {0,1},0, Czpo), where the constraints in
Cppo are given by

(1—y,)+x,>1 Vv ee, Vee E,

Z(l—xv)+ye >1 VeeE.

vee
The binary polynomial optimization problem is thus equivalent to the integer linear optimization
problem of finding a maximum-value assignment from Xy UY g to {0, 1} satisfying the constraints
in Cppo. We can then directly apply Corollary [2| to obtain the following tractability results for

binary polynomial optimization, where we denote by size(H) := . |e| the size of the hypergraph
H.

Corollary 3 (Binary polynomial optimization). Consider a hypergraph H = (V, E) and let T be a
branch decomposition of Xy UY g U Cppo of projection-width wpre;. Let v, € R for every v € V,
and ve € R for every e € E. Then, the binary polynomial optimization problem can be solved in
time

@) (wproj?’ (V| + size(H)) size(H)) .

Theorem [T also allows us to solve classes of constrained binary polynomial optimization, which is
the extension of binary polynomial optimization obtained by considering only assignments satisfying
some given additional separable constraints. E|

Formally, let (X vUYg, {0,1},CF, C(?) be a separable system representing these constraints.
We then define the constrained binary polynomial optimization problem as the problem of finding a
maximum-value assignment from Xy UY g to {0,1} satisfying the constraints in C'S U= U Cppo.
At this point, we can again directly apply Theorem [I] and obtain the following result.

Corollary 4 (Constrained binary polynomial optimization). Consider a hypergraph H = (V, E),
a separable system (XV UYpg, {0,1},CF, C?), and let T be a branch decomposition of Xy UY gU

CEuU C(? U Cgpo of projection-width wprej. Then, the constrained binary polynomial optimization
problem can be solved in time

O (Wproj® (|V'| + size(H)) size(H)) .

We remark that literals can be naturally incorporated into our framework, in both the uncon-
strained and constrained settings. The only modification required is that, in the constraints in
Cppo, some variables x,, may be replaced by 1 — z, and vice versa. Consequently, all results in this
section remain valid in this more general setting. We have excluded literals purely for notational
simplicity. For additional background on binary polynomial optimization with literals, also known
as pseudo-Boolean optimization, we refer the reader to [BH02, [CDPDG24, DPK24al, [DPK25].

Note that most known tractability results for binary polynomial optimization rely on structural
properties of the underlying hypergraph H. In contrast, Corollaries [3| and [4] are of a different

If the additional separable constraints are linear, it suffices to use Corollary [2| instead of Theorem
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nature, as they are based instead on properties of the constraint system. In Section [5.2.3] we
present an example illustrating how these these results can be leveraged to derive tractability
conditions expressed in terms of the hypergraph, thereby bringing them closer in spirit to existing
results in the literature.

5.1.4 Boolean satisfiability

In this section, we show that our main results subsume those of [STV14] on the tractability of
weighted MaxSAT and #SAT for CNF formulas with bounded PS-width. This influential result
accounts for nearly all known tractable cases of these SAT problems, including formulas with
bounded primal treewidth, bounded incidence treewidth, bounded signed incidence clique-width,
bounded incidence clique-width, bounded MIM-width, as well as y-acyclic formulas and disjoint-
branches formulas [STV14, [Cap16].

We begin by defining PS-width, where “PS” stands for precisely satisfiable. Our notation
closely parallels that used for projection-width, highlighting the structural similarity between the
two concepts. A CNF formula is a pair (X, F'), where X is a set of variables and F is a set of
clauses. Recall that a clause is the disjunction of literals, that is, variables or negation of variables
of X. Given X' C X, F/ C F,and 7: X' — {0,1}, we define F’/7, as the set of clauses in F’ that
are satisfied by 7. Given X’ C X and F’ C F, we denote by

proj(F', X"y ={F'/r | 7: X" — {0,1}}.

Given a branch decomposition 1" of X U F' and a vertex v of T', we denote by T, the subtree of T’
rooted in v, by F}, the set clauses of F' such that the corresponding vertex appears in the leaves of
T, and by X, the set of variables of F' that similarly appear in the leaves of T;,,. We denote by

proj(v) := proj (F'\ Fy, X,),
proj(v) := proj (F, X \ Xy).

If we denote by V(T) the set of vertices of T', the PS-width of the formula (X, F') and T is defined
by

a a 0j , |proj(v)|) .
e max ([proj(v)[, [proj(v))
The PS-width of a formula (X, F') is then defined as the minimum among the PS-widths of the
formula (X, F') and T, over all branch decompositions T" of X U F.

Observation 2. Let (X, F) be a CNF formula. Then, there exists a separable system (X, D, 0, Cr)
with |Cp| = |F|, and D = {0,1} such that an assignments 7 : X — {0,1} satisfies the constraints
in C'r if and only if it satisfies the clauses in F. Moreover, a branch decomposition of X U F of
PS-width wys yields a branch decomposition of X U Cr of projection-width wys. Furthermore, we
have g5 (z) € {0,z2,1 —z} for every x € X, c € Cr, and v =1 for every c € Cp.

Proof. For every clause in F', we write a constraint in C'» over variables X with domain D = {0,1}
defined by

Z x+ Z(l—x)Zl,

zeXt x€EX™

where X denotes the set of variables that appear in the positive literals in the clause, and X~
denotes the set of variables that appear in the negative literals in the clause. Clearly, an assignment
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7: X — {0, 1} satisfies the clause if and only if it satisfies the obtained constraint. It then suffices
to show that a branch decomposition of X U F' of PS-width wys yields a branch decomposition of
X U Cp of projection-width wps. To see this, let X' C X, F' C F, 7: X’ — {0,1}, and let ¢’ be
the set of constraints in 'z originating from the clauses in F’. Observe that (/1) € {0,1} for
every ¢ € ('p. Furthermore, a clause f € F” is in the set F'/7 if and only if (C'/7)° = 1, where ¢
is the constraint in ' corresponding to f. O

Thanks to Observation [2} in the special case where C'< = 0, D = {0,1}, g5(x) € {0,z,1 — z}
for every € X, ¢ € Cp, and v = 1 for every ¢ € Cp, Theorem [2| recovers the tractability of
#SAT on CNF formulas with bounded PS-width as established in [STV14]. Similarly, Theorem
subsumes the tractability of weighted MaxSAT for CNF formulas with bounded PS-width in the
same work. The running time we obtain for these two problems is comparable to that in [STV14],
and is given by

O (wls (1X] + [F) |FI).

where wps denotes the PS-width of the given branch decomposition.

5.2 Consequences for incidence treewidth

In this section, we show that our main results imply the tractability of optimization and counting
problems over separable systems whose incidence graph has bounded treewidth. Consider a sep-
arable system S = (X,D,CE,CE), and let C' := C'S U C~. The incidence graph of S, denoted
Gine (S), is the bipartite graph with vertex bipartition X U ', where an edge connects € X and
c € Cif and only if g5 # 0.

In the next result, we show that, given a tree decomposition of Giyc (S) with treewidth bounded
by a constant, one can efficiently construct a branch decomposition of X UC' whose projection-width
is polynomially bounded.

Lemma 10 (Treewidth and projection-width). Consider a separable system S = (X, D,C*<, CZ),
let C:= C“UC=, let y:=max{y°|ceC}, and let T be a tree decomposition of Ginc(S) of
treewidth winc. Then, in time O(|X| + |C|), we can construct a branch decomposition T" of X U C'
of projection-width at most

max {| D],y 4 1}t

Proof. Without loss of generality, we can assume that T is binary. In fact, for any vertex with
more than two children, we can replace it with a binary tree of new vertices, each associated with
the same bag, i.e., subset of X U C. This transformation does not increase the size of any bag and
therefore does not increase the treewidth. We can then construct a branch decomposition 7" of
X UC as follows. First, we add a vertex r as the father of the root of 7. Then, for every v € X U,
let ¢ be the vertex of T closest to the root of T such that v appears in the bag of ¢, and we hang
a leaf with label v on the edge between ¢ and its father. We then remove the leaves that have no
label. The resulting tree 7" is binary and for every v € X U (, there exists precisely one leaf of T”
with label v. Therefore, T” is a branch decomposition of X UC'. We claim that the projection-width
of S and T” is at most the one in the statement.

First, let [ be a leaf of T’ corresponding to a constraint ¢ in . Since X; = (), we have
|proj(1)| = 1. Moreover, C; = {c} implies ‘proj(i)} < ~°+1. Next, let I be aleaf of T' corresponding
to a variable z in X. Since X; = {z}, we have |proj(l)|] < |D|. Moreover, C'; = () implies
{proj(l)’ = 1.
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Next, let v be an inner vertex of 7. If v is also a vertex of T, let t := v. Otherwise, let ¢ be
the vertex of T' in T, closest to v. We observe that, by construction, the label of every leaf of T,
appears only in bags of T;. Moreover, the label of every leaf of T" \ T) either only appears in bags
of T'\ Ty, or it appears in the bag of t.

Let x € X, and ¢ € (', such that g} # 0. By the previous observation, x appears only in bags
of T; and ¢ only appears in bags of T'\ T} or in the bag of t. Since g; # 0, = and ¢ must appear
in a common bag, so ¢ must appear in the bag of t. Therefore, the constraints ¢ € ', with g5 #Z 0
for some x € X, all appear in the bag corresponding to ¢, so they are at most wi,. + 1. Hence,
proj(v)] < (3 + 1)"n .

Let ¢ € (', and = € X, such that g # 0. By the previous observation, ¢ appears only in bags
of T} and = only appears in bags of 7'\ T; or in the bag of ¢. Since g5 # 0,  and ¢ must appear
in a common bag, so # must appear in the bag of t. Therefore, the variables z € X, with g5 # 0
for some ¢ € C, all appear in the bag corresponding to t, so they are at most win. + 1. Hence,
[proj(v)| < | D[t

Thus the projection-width of 7" is at most max {|D|,~ 4 1}%ine™!, O

Lemma together with our main results Theorems [I] to [4] implies the tractability of prob-
lems defined over separable systems S whose incidence graph Giye (S) has bounded treewidth. In
particular, from Theorem [T] and Lemma [I0] we obtain the following result.

Corollary 5 (Optimization —incidence treewidth). Consider a separable system S = (X, D,C*<, O>),
let C:= C“UC=, let y:=max{y°|ceC}, and let T be a tree decomposition of Ginc (S) of
treewidth wine. Let v, : D — R for every x € X. Then, the optimization problem can be solved in
time (2)), where wyro; is replaced by max {|D|,~y + 1}Winetl

It is natural to ask whether one could design an algorithm with a running time similar to that
in Corollary [5, but where 7 is replaced by log(y). However, this is unlikely, as it would yield a
polynomial-time algorithm for the subset sum problem, or for the 0,1 knapsack problem, both of
which are well-known to be weakly NP-complete. Indeed, such problems can be naturally expressed
as optimization problems with D = {0,1} and wi,. = 1, since they involve only a single constraint.

It is worth emphasizing that the bounded incidence treewidth setting in Corollary [5] is sub-
stantially more restrictive than our main bounded projection-width setting in Theorem Even
within the more limited SAT framework discussed in Section several important classes of
formulas admit PS-width polynomially bounded, but incidence treewidth not bounded by a con-
stant, including those with bounded signed incidence clique width, bounded incidence clique-width,
bounded MIM-width, v-acyclic formulas, and formulas with disjoint branches [STVI14, [Cap16]. In
Observation [3] below, we present a family of linear inequality systems whose incidence treewidth
is not bounded by a constant, while the projection-width remains polynomially bounded. For this
family, Theorem [I] yields a polynomial-time algorithm, while Corollary [5] does not. To the best of
our knowledge, also Corollary [5|is new. The main reason we wrote Corollary [5|is that it allows us
to illustrate how our results subsume known tractability results in integer linear optimization (see

Section [5.2.2) and binary polynomial optimization (see Section [5.2.3)).

Observation 3. There exists a family of linear inequality systems Sp with 2n variables such that
the treewidth of Gine (SL) is at least n, and the projection-width of St, is at most 2n.

Proof. Consider the linear inequality system S; = <X . D1, 0, C%), with variables X = {x1,x9,..., 22},

domain D; = {0,1}, and linear inequality constraints Of = {c1,¢9,...,con}, where for k €
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Figure 1: Illustration of the branch decomposition 7" in the proof of Observation

T2 T

{1,2,...,2n}, ¢ is given by

where v* € {0,1,...,2n}. The subgraph of Giy. (Sr) induced by variables xi,zo,...,z, and

constraints ¢p41, Cny2, ..., Co, is complete bipartite, thus the treewidth of Gine (Sg) is at least n.
Now let T" be the linear branch decomposition of X U C% in Figure|l| It is simple to show that the
projection-width of Sy and T is bounded by 2n. O

We note that Corollary [5| immediately yields several classical tractability results. Given a
hypergraph H = (V, E), recall that the incidence graph of H, denoted Gin (H), is the bipartite
graph with vertex bipartition V U E, where an edge connects v € V and e € FE if and only if
v € e. Corollary [5 implies that, given a tree decomposition of the incidence graph Ginc(H) of
treewidth wiye, the weighted set cover and weighted set packing problems on H can be solved
in time O(23WinetD) (|E| +|V|)|V]), while the weighted hitting set and weighted independent set
problems on H can be solved in time O(23WinetD) (|V| + |E|) |E]).

Finally, we note that Corollary [p| remains valid when the incidence treewidth is replaced by
the primal treewidth. More precisely, the same result holds if, in its statement, the incidence
graph of the separable system Giyc (5) is replaced by the primal graph Gpi (S). The primal graph
of a separable system S is the graph Gpyi (S) with vertex set X, where two vertices z,2’ € X
are adjacent if and only if there exists a constraint ¢ € ' such that g; # 0 and g;, # 0. This
follows from the well-known fact that any tree decomposition of Gy (S) of treewidth wp,i can be
transformed into a tree decomposition of Ginc (S) of treewidth at most wpyi + 1.

5.2.1 Integer separable optimization

From Corollary [I] and Lemma 10| we obtain the following result.

Corollary 6 (Integer separable optimization — incidence treewidth). Consider a separable inequal-
ity system Sg = <X,D1, C§,C§>, let Cg := CE U Cg, let v := max {7y | c € Cs}, and let T be
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a tree decomposition of Gine (Sg) of treewidth win.. Let v, : D — R for every x € X. Then,

the integer separable optimization problem can be solved in time (5)), where wproj is replaced by
max {|Dg|,~y 4 1}Wnett

5.2.2 Integer linear optimization
From Corollary [2] and Lemma [10| we obtain the result below.

Corollary 7 (Integer linear optimization — incidence treewidth). Consider a linear inequality
system Sy = (X,D[,CE,CE), let Cp := (’LS U CE, let v :== max{y“|ceCr}, and let T
be a tree decomposition of Gine (S1) of treewidth wine.. Let v, € R for every x € X. Then,

the integer linear optimization problem can be solved in time @, where wproj s Teplaced by
max {2Dmax + 1,7 4 1}V

Bounding « in Corollary [7] allows us to compare our result with the literature in integer linear
optimization. We obtain the following result.

Corollary 8 (Integer linear optimization — incidence treewidth v2). Consider a linear inequality
system Sy, = (X,D], CE,OE), let Cp = C'E U CE, and let T be a tree decomposition of Gine (S1.)
of treewidth winc. Let vy € R for every x € X. Let Amax be the maximum absolute value of aj,, for

x € X and c € Cr. Then, the integer linear optimization problem can be solved in time @, where
Wproj 15 replaced by (2Amax Dimax | X | + 1)"me Tt

Proof. We apply Corollary m To bound 7 := max {7 | ¢ € C1}, recall (see Section that ~¢,
for ¢ € (1, is defined by:

vi=6 — Z min {ayd' | d' € D} .
zeX

As discussed in Section [I.I} we can assume v > 0 for every ¢ € (/. We can also assume §° <
AmaxDmax | X| for every ¢ € ;. For ¢ € Cf, this is because otherwise all assignments from X to
Dy satisfy the constraint c. For ¢ € C%, this is because otherwise no assignment from X to D;
satisfies the constraint ¢. We then obtain v < 2A 0% Dax | X | O

We observe that Corollary [§] recovers the tractability result for integer linear optimization
established in [GORI1T]. In fact, our running time is comparable to that of theorem 11 in [GORI1T],
which is

O((AmaxDmax |X’)2winc+2 winc(|X| + ‘CVL ’))

5.2.3 Binary polynomial optimization

For a hypergraph H, it is shown in [CDPDG24| that a tree decomposition of Giy (H) of treewidth
Wine yields a tree decomposition of Gine (Sppo) of treewidth at most 2(wine + 1). Combining this
result with Corollary [3| and Lemma [10] gives the following.

Corollary 9 (Binary polynomial optimization — incidence treewidth). Consider a hypergraph H =
(V,E) and let T be a tree decomposition of Gine (H) of treewidth wine. Let v, € R for everyv € V,
and v, € R for every e € E. Then, the binary polynomial optimization problem can be solved in
time

O (26wi"0+9 (|V| + size(H)) size(H)) ,
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Corollary |§| recovers the tractability result in [CDPDG24] for binary polynomial optimization
over hypergraphs with bounded incidence treewidth. Unlike the proof in [CDPDG24], ours does
not rely on knowledge compilation.

For constrained binary polynomial optimization, we can employ Corollary [5| and Lemma [10] to
obtain the following tractability result.

Corollary 10 (Constrained binary polynomial optimization — incidence treewidth). Consider a
hypergraph H = (V, E) and let T be a tree decomposition of Gine (H) of treewidth win.. Consider
a separable system S, = (XV UY g, {0, 1},(1(36,0(?) and let W be a vertex cover of Gine (Sc) of
cardinality k. Let v, € R for every v € V, and v, € R for every e € E. Then, the constrained
binary polynomial optimization problem can be solved in time

O (26w1nc+9+3’f (‘V‘ + size(H)) size(H)) .

Proof. From the proof of lemma 3 in [CDPDG24|, a tree decomposition of Giye (H) of treewidth
wine yields a tree decomposition of Giye (Sppo) of treewidth at most 2(wiye + 1). Now denote by
S’ the separable system obtained by putting together the separable systems Sgpo and S, that
is, §' = (XV UY g, {0,1},C5, Cppo U (*?) Note that Ginc (S’) is obtained by adding isolated
vertices to Gine (Sppo) and Ginc (Se¢), and then taking their union. Clearly, adding isolated vertices
does not increase the treewidth or the cardinality of a vertex cover. It then follows from lemma 3
in [ALQ724], that Giye (S’) has treewidth at most 2(wine + 1) + k. The result then follows from
Corollary O

Corollary is just one illustration of how Corollary [5| can be applied to constrained binary
polynomial optimization. Other results of the same type can be obtained by replacing lemma 3 in
[ALQ™24] with analogous bounds on the incidence treewidth of the combined system. In particular,
Corollary |10 is new and substantially extends the recent result of [CDPDG24], which establishes
tractability of binary polynomial optimization with a single “extended cardinality constraint.”
More general tractability statements can be obtained by applying directly Theorem [1| instead of
Corollary
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