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Abstract. Suppose we wish to determine the quality of a candidate solution to a convex stochastic pro-
gram in which the objective function is a statistical functional parameterized by the decision variable
and known deterministic constraints may be present. Inspired by stopping criteria in primal-dual and
interior-point methods, we develop cancellation theorems that characterize the convergence of appropri-
ately resampled and standardized primal and dual objective values to a weak limit. The resampled weak
limit is distribution free, meaning it does not depend on the data-generating distribution. Furthermore, it
is expressed as a functional of the standard Brownian motion, facilitating its implementation and valid use
in optimality gap confidence interval construction and KKT point statistical testing. Since our results are
general, we anticipate their use in iterative algorithm termination criteria for stochastic linear programs,
two-stage convex stochastic programs, and a variety of finite- and infinite-dimensional problems arising
in maximum likelihood estimation, nonlinear regression, classification, and portfolio management.
Keywords. statistical inference; statistical testing; confidence interval; bootstrap; batching; resampling;
cancellation; self-normalization.

1. INTRODUCTION

Suppose a decision-maker or an iterative algorithm suggests a candidate solution to a stochas-
tic program, and we wish to statistically assess its quality. This classic problem of assessing
solution quality, or solution validation, usually involves constructing a confidence interval on the
candidate solution’s optimality gap. Such methods can be crucial for algorithm termination and
decision-making in a variety of contexts such as stochastic linear programs [30, 42], two-stage
convex stochastic programs [33], scalarized two-stage stochastic multi-objective linear programs
[11, 17], and maximum likelihood estimation, nonlinear regression, classification, and portfolio
management [23, 36, 57].

We consider a version of the solution validation problem in which the stochastic program’s
objective function is convex but need not be an expectation, and known deterministic constraints
may be present. Specifically, we consider the problem of statistically testing the optimality of a
given candidate solution to a deterministically constrained convex stochastic program in which
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the objective function is a statistical functional, e.g., a nonlinear function of an expectation, a
quantile, or a conditional value-at-risk (CVaR), that is “parameterized” by a decision variable.
As in classical semiparametric theory [5, 22, 59], we handle such generalization by relying on
notions of asymptotic linearity (and functional delta) from empirical processes theory [12, 15,
60]. Empirical process theory tools are especially relevant in the current stochastic programming
setting, where the objective function can be seen as a functional of an unknown probability
measure that can be sampled to produce a stochastic function estimator. Statistical optimality
testing and KKT point validation then become questions of inference in which the estimator is a
stochastic function that admits an expansion with a leading term that is a simple sample mean of
observations obtained from a dataset or a stochastic oracle. A similar perspective of stochastic
programming has been adopted recently in the context of assessing robustness [25].

1.1. Perspective. The traditional starting point for solution validation in stochastic program-
ming is a classical central limit theorem (CLT), obtained by appropriately standardizing the
objective function estimator. When considering the objective value, the standardization uses a
scalar variance parameter, and when considering the solution, the standardization uses a covari-
ance matrix — see, for instance, Shapiro et al. [56, Section 5.1.2], Mak et al. [33, equations
(3) and (6)], Bayraksan and Morton [2, Assumption A.5], Morton [34], and Royset [45]. A
substantial portion of the literature on M-estimation, e.g., [14], has also proceeded along this
route. In all of these cases, when using the established (or assumed) CLT for confidence interval
construction, one of two things typically happens. Either the unknown variance parameter is
simply assumed to be known (explicitly or implicitly), or a consistent estimator is constructed
and “plugged in” for the unknown variance parameter.

In settings where the estimator in question is something different from a simple sample
mean, one can estimate the variance parameter by employing resampling techniques such as
bootstrap, subsampling, or batching [13, 40, 41, 51, 57]. Resampling, loosely speaking, amounts
to constructing multiple estimates of a quantity of interest, e.g., a variance parameter or an
optimality gap, which are then appropriately used toward solution validation. In stochastic
programming, Higle and Sen [19, 20] incorporated bootstrapping into decomposition methods
in the 1990s, with later work by Bayraksan et al. [4], Chen and Woodruff [9], Lam and Qian
[26, 27], Love and Bayraksan [32] using resampling and batching methods as a tool for solution
validation.

A powerful technique called cancellation, introduced by Schruben [49] and analyzed much
further in the seminal paper by Glynn and Iglehart [16], sits alongside resampling methods.
The essential idea behind cancellation is that if the objective function estimator is standardized
using an appropriately chosen functional satisfying specific properties, which we call the resam-
pling functional ψ , then there is no need to estimate the variance parameter consistently: an
appropriately chosen ψ “cancels out” the variance parameter in a manner reminiscent of the
distribution-free t statistic. Cancellation exemplifies the idea that variance estimation and con-
fidence interval construction are different problems, even though good variance estimates help
to construct good confidence intervals. Parallel to the original ideas of cancellation introduced
in [16, 49], there has been a steady development of similar ideas within mainstream statistics
under the term self-normalization [24, 31, 52, 53].
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1.2. Primal-dual resampling and cancellation. Our fundamental premise is that cancellation
as an idea can be especially powerful in stochastic programming because of its ability to relieve
the need to consistently estimate the variance parameter. Crucially, for computation-heavy
optimization contexts, cancellation allows for the use of just a few large (potentially overlapping)
batches of data when constructing estimates of the variance parameter in the service of optimality
validation. As we show, the resulting limits may be non-normal, but are always distribution-free.

And yet, apart from some general treatment [37] in the context of statistical functionals, we
are unaware of any development of cancellation that is tailored to constrained convex stochastic
programming, especially when the objective function is not necessarily an expectation. It has
been commented, for instance in Shapiro [54, Sections 5.6.1, 5.6.2], that in the presence of con-
straints, one might construct statistical upper and lower bounds on the primal and (Lagrangian)
dual objective values at a candidate saddle point, respectively, when constructing a confidence
interval on the optimality gap. This idea, when combined with resampling and cancellation,
presents an interesting and powerful method for optimality validation.

Cancellation theorems for constrained convex stochastic programming naturally suggest meth-
ods for (i) statistically validating candidate KKT points and (ii) stopping an algorithm with prob-
abilistic guarantees. Regarding (i), statistically validating candidate KKT points, or “KKT point
testing,” is the problem of constructing a test statistic (with a known and computable weak limit)
in the service of testing whether a given point is a KKT point. The challenge, however, is that the
necessary conditions for a KKT point require it to satisfy a vector equation, which implies the
need for appropriate modification of the cancellation ideas, including generalizing the definition
of resampling functional ψ . To the best of our knowledge, no work exists on this topic. Regard-
ing (ii), stopping an algorithm in the stochastic programming context refers to terminating an
algorithm with some probabilistic guarantee on the quality of the returned solution. The question
of stopping has a long history within stochastic programming [3, 18, 20, 28, 34, 35, 38, 39].
However, as noted in Bayraksan and Pierre-Louis [3], their treatment and analysis as stopping
times has been somewhat limited, with Patel [38] being an exception. With a view toward
implementation, our interest lies in incorporating primal-dual resampling within stopping ideas,
especially when constraints are present. This idea is reminiscent of duality gap stopping criterion
in primal-dual and interior-point methods [44]. Such incorporation, along with major recent
developments on time-uniform confidence sequences [21, 46, 58], provides a way to rigorously
quantify the complexity of stopping and assessing the quality of stopped solutions.

1.3. Paper organization. In the remainder of the paper, we first provide a detailed problem
setup with example problem formulations in Section 2 and summarize our results and con-
tributions in Section 3. Section 4 contains mathematical preliminaries including notational
conventions and standing assumptions. Our main results appear in Section 5. We provide ex-
ample resampling functionals in Section 6, and Section 7 contains concluding remarks and a
discussion of future research directions.
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2. PROBLEM SETTING

To fix ideas, first, we formally define our problem setting. We begin by defining the “true”
deterministic primal and dual problems, followed by their sample-path versions. Then, we pro-
vide two example formulations for the stochastic programming problems we consider. Finally,
we define a linearly interpolated estimator for the objective function which is relevant to the
discussion of our main results and contributions.

2.1. The true primal and dual problems. First, consider the true primal version of the sto-
chastic program in which the uncertainty has been resolved by a statistical functional,

minimize f0(x)

subject to x ∈ X := {x ∈D : fi(x)≤ 0, i = 1, . . . ,r} (P)

for domain D := (∩r
i=0 dom fi)⊆Rq, D ̸= /0 where the feasible set X is nonempty, closed, and

known. Let a global solution and the optimal value be, respectively,

x∗ ∈ X∗ := argmin{ f0(x) : x ∈ X} ̸= /0, p∗ = min{ f0(x) : x ∈ X} ∈ (−∞,∞). (2.1)

The (Lagrangian) dual problem corresponding to (P) is

maximize g(y) := infx∈D
{

f0(x)+∑
r
i=1 yi fi(x)

}
subject to y ≥ 0, y ∈Rr,

(D)

with solution set Y∗ := argsup{g(y) : y ≥ 0} and optimal value d∗ = sup{g(y) : y ≥ 0}. A given
point ȳ ≥ 0 is dual feasible if g(ȳ)>−∞. Let the set of all dual feasible points be denoted Y,

Y := {y ∈Rr : y ≥ 0, g(y)>−∞}.
Duality theory guarantees that g(y) is concave in y even if (P) is not convex, and that if x̄ ∈ X is
primal feasible and ȳ ∈ Y is dual feasible, then

f0(x̄)≥ p∗ ≥ d∗ ≥ g(ȳ) (2.2)

where the dual feasibility of ȳ ensures the right-most bound is meaningful. The inequality
in (2.2) allows us to define the duality gap at (x̄, ȳ) as f0(x̄)−g(ȳ). We formalize the standing
assumptions on (P) in Assumption 4.1; importantly, we assume (P) is convex and Slater’s
condition holds so that p∗ = d∗ in (2.2). The assumption that (P) is convex allows affine equality
constraints [8], however, for simplicity, we do not explicitly include them. Finally, the set of
allowable statistical functionals in f0 is determined by the properties of its estimator; these
properties are detailed in Assumption 4.2.

2.2. The sample-path primal and dual problems. The stochastic programming context in-
volves an objective function that can only be estimated with stochastic error; that is, f0 appearing
in (P) is unknown but can be estimated using n observations from a stochastic oracle which takes
the form of a dataset or a Monte Carlo simulation model. The estimation of f0 leads to the
following sample-path approximations of (P) and (D), constructed using the sample-path ap-
proximating function F0,n:

minimize F0,n(x) subject to x ∈ X (Pn)
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where we assume the domain D in (Pn) is the same as that in (P). Since the objective function
f0 in (P) does not necessarily involve an expectation, F0,n(x) is not necessarily expressed as
a simple sample mean for given x ∈ X and may be biased. We denote a global solution and
optimal value for (Pn) by the respective estimators

X∗
n ∈ X∗

n := arginf{F0,n(x) : x ∈ X} ⊆ X, p∗n = inf{F0,n(x) : x ∈ X}. (2.3)

Likewise, the sample-path dual problem is formed by replacing f0 in (D) with the corresponding
sample-path approximating function F0,n,

maximize Gn(y) := infx∈D
{

F0,n(x)+∑
r
i=1 yi fi(x)

}
subject to y ≥ 0, y ∈Rr (Dn)

having solution set Y∗
n = argsup{Gn(y) : y ≥ 0} and optimal value d∗

n = sup{Gn(y) : y ≥ 0}. Let
the set of all sample-path dual feasible points be denoted Yn,

Yn := {y ∈Rr : y ≥ 0, Gn(y)>−∞}.

As in (2.2), duality theory also guarantees that if x̄ ∈ X is primal feasible and ȳ ∈ Yn is sample-
path dual feasible, then

F0,n(x̄)≥ p∗n ≥ d∗
n ≥ Gn(ȳ) (2.4)

with a meaningful right-side bound. We formalize the standing assumptions on (Pn) in Assump-
tion 4.2; in particular, we assume F0,n is almost surely convex. Therefore, (Pn) is almost surely
convex and it inherits Slater’s condition from (P), which implies p∗n = d∗

n in (2.4). Further, in
what follows, we shall require ȳ ∈ Y∩Yn to be both dual feasible and sample-path dual feasible
with probability one (w.p.1) for all n. For given n, a sufficient condition to ensure Y= Yn w.p.1
is that supx∈D|F0,n(x)− f0(x)|< ∞ w.p.1.

2.3. Example formulations. Two common example problems that fall into our framework are
risk-neutral optimization and optimization of risk measures:

Example 2.1 (Risk-neutral optimization). In risk-neutral optimization, the objective function
f0 appearing in (P) takes the form of an expectation, f0(x) = E[F0(x,ξ )] =

∫
Ξ

F0(x,u)dP(u) for
all x ∈ X, where ξ : Ω → Ξ is a random variable, F0 : Rq ×Ξ →R is a random function defined
with respect to the probability space induced by ξ , (Ξ,A,P), and R :=R∪{−∞,∞}. To solve
(P) in a sample average approximation (SAA) framework [55], the random functions appearing
in (Pn) are formed using sample means; that is, for ξ1, . . . ,ξn identically distributed to ξ and all
x ∈ X, we set F0,n(x) = n−1

∑
n
j=1 F0(x,ξ j). □

Example 2.2 (Optimization of risk measures). The objective function f0 may take the form of a
risk measure [47], such as the CVaR [48], also called a superquantile. To define the CVaR, using
the notation from Example 2.1, for all x ∈X, let the probability that the random variable F0(x,ξ )
does not exceed the threshold τ be P(F0(x,ξ ) ≤ τ) =

∫
Ξ

F0(x,u)I{F0(x,u) ≤ τ}dP(u), where
I is the indicator function and for simplicity, we assume P is nonatomic. Then for all x ∈ X,
the value-at-risk (VaR) is the quantile VaRα(x) = inf

{
τ ∈ R : P

(
F0(x,ξ ) ≤ τ

)
≥ α

}
. If f0(x)
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takes the form of CVaRα(x) = E
[
F0(x,ξ ) |F0(x,ξ ) ≥ VaRα(x)

]
for all x ∈ X, then following

Rockafellar and Uryasev [43], we have

f0(x) = CVaRα(x) = minτ∈R
{

τ +(1−α)−1 ∫
u∈Ξ

[F0(x,u)− τ]+dP(u)
}

where [x]+ = x when x > 0 and [x]+ = 0 when x ≤ 0. Then for ξ1, . . . ,ξn identically distributed
to ξ , one estimator for f0(x) is

F0,n(x) = minτ∈R
{

τ +
(
n(1−α)

)−1
∑

n
j=1[F0(x,ξ j)− τ]+

}
.

Other estimators may be possible; see [10]. □

2.4. Linearly interpolated estimators. In what follows, we shall require the linearly interpo-
lated versions of estimators which follow the classic construction in [7]. Specifically, let

∆ :=
{
(s, t) ∈ [0,1]2 : 0 ≤ s ≤ t

}
(2.5)

and for the objective function estimator F0,n, define

F0,n(x,0, t) :=


0 t = 0
F0,nt(x) t ∈ (0,1], nt ∈ Z
F0,⌊nt⌋(x)+(nt −⌊nt⌋)F0,⌈nt⌉(x) t ∈ (0,1], nt /∈ Z,

F0,n(x,s, t) := F0,n(x,0, t)−F0,n(x,0,s), (s, t) ∈ ∆,

and define the corresponding analogues for f0,

f0(x,0, t) := t f0(x),

f0(x,s, t) := f0(x,0, t)− f0(x,0,s) = (t − s) f0(x), (s, t) ∈ ∆.

We also require the linearly interpolated version of Gn the corresponding analogue for g, which
are defined similarly. Recalling from (2.1) and (2.3) that p∗ and p∗n are the infima of the true and
sample-path problems, respectively, the corresponding sample-path minimum process is

p∗n(s, t) := inf
{

F0,n(x,s, t) : x ∈ X
}
, (s, t) ∈ ∆.

Conceptually, given appropriate values of (s, t), the quantity p∗n(s, t) represents the infimum of
the sample-path problem analogous to (Pn) but constructed using only the observations ⌊ns⌋,
ns+1, ns+2, . . ., ⌈nt⌉.

3. SUMMARY OF MAIN RESULTS AND CONTRIBUTIONS

Given the problem setting from Section 2, we are interested in statistically validating a candi-
date solution’s optimality for (P). Toward this end, we wish to construct the following desired
quantities:

(1) Given primal and dual feasible points x̄ ∈ X and ȳ ∈ Y, respectively, we seek a valid
confidence interval on the optimality gap at x̄, that is, a random quantity Ugap

n such that
P( f0(x̄)− p∗ ≤Ugap

n )→ 1−α as n → ∞.
(2) Given a primal feasible point x̄ ∈ X, we seek a test statistic that can be used to conduct

a valid hypothesis test to check whether x̄ satisfies the first-order (KKT) conditions.
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(3) Given a primal-feasible (and possibly sample-path optimal) sequence {x̄n ∈ X,n ≥ 1}
revealed in a “streaming” context, we seek to characterize the classical stopping time Nε
described as the time n ≥ 1 when the width of a confidence interval on the true optimal
value p∗ first falls below a specified threshold ε . In particular, we seek a guarantee on
the stopped solution x̄Nε , and the magnitude of Nε as a function of ε .

To construct the desired quantities, we propose a primal-dual resampling framework as a way
to systematically use solutions to sub-sampled problems having the structure of (Pn) and (Dn),
alongside a chosen resampling functional ψ : Cq(∆) → Sq

++ defined on the space Cq(∆) of
continuous Rq-valued functions on ∆, defined in (2.5), and mapping into the set of all q-by-q
symmetric positive definite matrices, Sq

++. The proposed primal-dual resampling framework
is made possible by our main contribution (Theorem 5.1), which is a general cancellation
theorem of the type introduced by Glynn and Iglehart [16]. Theorem 5.1 characterizes the weak
convergence of primal and dual objective sequences, standardized using a chosen resampling
functional ψ , to a distribution-free limit that depends only on the standard Brownian motion.
In particular, for given primal feasible x̄ ∈ X and dual feasible ȳ ∈ Y, the cancellation theorem
demonstrates the weak convergence limits

F0,n(x̄)− f0(x̄)
ψ
(
F0,n(x̄, ·, ·)

) d−→ δW (0,1)
ψ
(
δW (·, ·)

) and
Gn(ȳ)−g(ȳ)
ψ
(
Gn(ȳ, ·, ·)

) d−→ δW (0,1)
ψ
(
δW (·, ·)

) , (3.1)

where the linearly interpolated estimators appearing in the denominators are defined in Subsec-
tion 2.4, δW (s, t) :=W (t)−W (s), (s, t) ∈ ∆, and W (t), t ∈ [0,1] is the 1-dimensional standard
Brownian motion.

The weak limits in (3.1) suggest asymptotically exact statistical upper and lower bounds
Un,Ln on f0(x̄) and g(ȳ), respectively, which we use to construct the desired valid confidence
interval on the optimality gap at x̄ ∈ X (Corollary 5.1). Letting Tψ be the distribution of the
right-side weak limit in (3.1) and defining γψ,α := T−1

ψ (α) := inf{γ : Tψ(γ)≥ α},α ∈ (0,1) as
its corresponding critical value, the upper and lower bounds take the form

Un := F0,n(x̄)+ γψ,1−αpψ
(
F0,n(x̄, ·, ·)

)
and Ln := Gn(ȳ)− γψ,αd ψ

(
Gn(ȳ, ·, ·)

)
for given αp,αd ∈ (0,0.5). Depending on the choice of ψ , the distribution Tψ may be non-normal
but is always distribution free and can be calculated “offline” without the need to estimate any
problem-specific nuisance parameters. For any given α ∈ (0,1), choosing αp+αd = α suggests
Ugap

n = Un −Ln and [0,Ugap
n ] as a candidate (1−α) confidence interval on the optimality gap

f0(x̄)− p∗. Figure 1 shows Ugap
n in relation to other relevant quantities used to construct the

confidence interval.
Toward obtaining a valid hypothesis test for checking whether a given primal feasible point

x̄ ∈ X is a KKT point, under suitable regularity conditions, Theorem 5.2 demonstrates that a
certain computable to-be-defined test statistic χ2

ψ,n(x̄) converges weakly to

χ2
ψ := δWq(0,1)⊺ψ2(δWq(·, ·)

)
δWq(0,1).

Here, χ2
ψ,n(x̄) is a function of the sample-path gradient at x̄, denoted ∇F0,n(x̄). Again, the weak

limit χ2
ψ is distribution-free and computable offline, allowing for robust implementation of the
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Un ≥ f0(x̄)≥ p∗ = d∗ w.p. 1−αp

F0,n(x̄)

p∗n = d∗
n

Gn(ȳ)

Ln ≤ g(ȳ)≤ p∗ = d∗ w.p. 1−αd

Ugap
n =Un −Ln

FIGURE 1. Illustration of Ugap
n =Un−Ln in relation to the sample-path optimal

value p∗n = d∗
n and the true optimal value p∗ = d∗ for given sample-path primal

and dual feasible x̄ ∈ X, ȳ ∈ Y∩Yn, respectively. All probabilistic statements
hold as n → ∞.

hypothesis test with null hypothesis that x̄ satisfies the KKT conditions versus the alternative
that it does not.

Finally, suppose that we terminate a sample-path optimal primal sequence {x̄n ∈ X∗
n,n ≥ 1}

when the confidence interval on p∗ falls below a given tolerance ε , that is,

Nψ,ε := inf{n ≥ 1: Ugap
n ≤ ε}.

Theorem 5.3 demonstrates that under certain regularity conditions, P
(

f0(x̄Nψ,ε (n))− p∗ > ε
)
<

αp +αd , and that the stopping time Nψ,ε = O(ε−2) as ε → 0.
As noted in Section 1, with the aim of subsuming a large swathe of useful stochastic op-

timization problems, the main results appearing in Theorems 5.1–5.3 are stated for objective
functions f0 that are not necessarily expectations. However, in Subsection 4.2, we assume F0,n
is asymptotically linear [50, Section 6.1.2], meaning that F0,n allows a functional expansion
involving a sample-mean as the first term. We provide two concrete examples of resampling
functionals ψ in Section 6.

4. PRELIMINARIES

Before stating the main results, we provide notational conventions and formally state and
discuss standing assumptions that hold throughout the remainder of the paper.

4.1. Notation and terminology. Z is the set of all integers. Sd
++ is the set of all d×d symmetric

positive definite matrices, and Sd
+ is the set of all d×d symmetric positive semi-definite matrices.

Id is the d ×d identity matrix. The Lp norm of x ∈Rq is ∥x∥p := (∑
q
i=1|xi|p)1/p, and ∥x∥ refers

to the Euclidean norm (p = 2). For A ∈ Sd
++, ∥x∥A =

√
x⊺Ax is the A-norm or the Mahalanobis

norm. For a random sequence {Xn,n ≥ 1}, we write Xn
wp1−→X , Xn

p−→X , and Xn
d−→X to refer

to convergence with probability one (also called almost sure convergence), convergence in
probability, and convergence in distribution (also called weak convergence), respectively. For
positive-valued sequences {an,n ≥ 1} and {bn,n ≥ 1}, we say: (i) an ∼ bn to mean an/bn → 1
as n → ∞; (ii) an ≲ bn to mean an/bn = O(1); and (iii) an ≳ bn to mean bn ≲ an. For a sequence
of positive-valued random variables {An,n ≥ 1}, we say An = op(1) if An

p−→0 as n → 0. The
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space Cd(∆) refers to the set of Rd-valued continuous functions on ∆, where ∆ is defined in
(2.5); C(∆) refers to C1(∆). A differentiable function h : D⊆Rq →R is called L-smooth, if its
gradient ∇h : D→Rq is L-Lipschitz, that is, ∀x,y ∈D,∥∇h(x)−∇h(y)∥ ≤ L∥x− y∥.

An Rd-valued stochastic process {Y (t), t ≥ 0} defined on some probability space (Ω,F,P) is
called a Gaussian process if for any 0 ≤ t0 < t1 < · · ·< tn <+∞, (Y (t1),Y (t2), . . . ,Y (tn)) has a
multivariate Gaussian [50, p. 4] distribution. The d-dimensional Wiener process, or Brownian
motion, {Wd(t), t ≥ 0} ⊂Rd is a special type of Gaussian process satisfying the following four
properties:

(1) Wd(0) = 0;
(2) with probability one, the map t 7→Wd(t) is continuous in t;
(3) for 0 ≤ t0 < t1 < · · ·< tn <+∞, the increments

Wd(t1)−Wd(t0),Wd(t2)−Wd(t1), . . . ,Wd(tn)−Wd(tn−1)

are independent; and
(4) for all 0 ≤ s < t, Wd(t)−Wd(s) is multivariate Gaussian having mean 0 and covariance

matrix Σ ∈ Sd
+.

A d-dimensional Wiener process is called a standard Wiener process if Σ = Id . For simplicity,
throughout the paper, the one-dimensional case {W1(t), t ≥ 0} is denoted by {W (t), t ≥ 0}.

4.2. Standing Assumptions. We now formalize our standing assumptions on the functions
appearing in (P) and (Pn), as well as the required regularity conditions on the estimator and
error field structures. We begin with regularity conditions associated with the true problem,
coinciding with Shapiro [54, Theorem 5.11, conditions (i)–(iii)].

Assumption 4.1 (True problem regularity). The following hold for the true problem (P):
(a) the problem is convex, that is, the feasible region X is a convex set, and the objective

function f0 : D→R is convex;
(b) the solution set X∗ = arginf{ f0(x) : x ∈ X} is nonempty and bounded;
(c) the functions f j, j = 0,1, . . . ,r are finite-valued on a neighborhood of X∗; and
(d) Slater’s condition holds: There exists x ∈ X such that f j(x)< 0 for all j = 1,2, . . . ,r.

Recall that the objective function f0 in (P) need not be an expectation, and accordingly the
sample-path objective estimator F0,n need not be a sample mean constructed from unbiased esti-
mators of f0. However, we do require the estimator F0,n to exhibit certain regularity conditions
including asymptotic linearity [50, 60], as detailed in the following Assumption 4.2.

Assumption 4.2 (Sample-path function regularity). Let ξ1, . . . ,ξn be independent and identically
distributed (iid) copies of ξ used to construct the sample-path function F0,n : D→R.

(a) F0,n is asymptotically linear [50, Section 6.1.2]. That is, for all x ∈D, we can write

F0,n(x) = f0(x)+n−1
∑

n
j=1 ε(x,ξ j)+bn(x) (4.1)

where E[ε(x,ξ )] = 0, Var(ε(x,ξ ))< ∞, and supx∈D |bn(x)|= op(n−1/2).
(b) There exists measurable κ(ξ ) with E[κ(ξ )]< ∞ such that ε(·,ξ ) is a.s. κ(ξ )-Lipschitz,

that is, for all x,x′ ∈D we have that |ε(x,ξ )− ε(x′,ξ )| ≤ κ(ξ )∥x− x′∥.
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(c) F0,n is convex w.p.1.

Assumption 4.2 is satisfied in a wide variety of stochastic optimization contexts. For instance,
Assumption 4.2 is trivially satisfied in the classical case where the objective f0 is an expectation
that can be estimated as a sample mean which is constructed from unbiased observations, as
in Example 2.1. Assumption 4.2 is also satisfied in other biased contexts such as when f0 is a
quantile, a CVaR as in Example 2.2, or indeed any smooth functional of the probability measure
P; see [23, 57] for further discussion.

Assumption 4.2 serves to ensure that the field F0,n(·)− f0(·) is well-behaved. Specifically,
suppose X is compact. Then f0 is κ0-Lipschitz for some κ0 < ∞ and Assumption 4.2 implies the
following two key observations: (i) there exists x0 ∈X such that E[( f0(x0)+ε(x0,ξ ))2]<∞; and
(ii) f0(·)+ε(·,ξ ) is (κ(ξ )+κ0)-Lipschitz, where E [κ(ξ )]<∞. Due to (i) and (ii), the functional
central limit theorem [1, Corollary 7.17] guarantees that

√
n(F0,n − f0) converges weakly to a

random element of C(X), and in particular to a Gaussian process in the current context due to
the assumed asymptotic linear structure (Assumption 4.2) of F0,n. This observation will play an
important role in proving the structure of the limits in the cancellation theorem. (Also see [56,
Assumptions A.1 and A.2, pp. 164].)

Finally, while we have assumed that ξ1,ξ2, . . . in Assumption 4.2 is an iid sequence, all three
theorems that we prove in this paper extend to stationary sequences [6, Chapter 20] with mild
additional assumptions.

5. MAIN RESULTS

In this section, we develop cancellation and stopping results that form the linchpins for
constructing confidence bounds and early algorithm termination in stochastic programming.
While cancellation as an idea exists in the literature [16, 23, 57], our stochastic programming
context requires the development of new results that, to the best of our knowledge, do not
currently exist.

5.1. General Cancellation Theorem. In this section, we present the main theorem which
forms the basis for confidence interval construction and for KKT statistical testing, as detailed
further in Subsection 5.2. Akin to the seminal idea in Glynn and Iglehart [16], carrying out the
cancellation procedure implied by the following Theorem 5.1 involves choosing a resampling
functional ψ : C(∆)→R that resides in a class M1 of measurable real-valued functions, which
is a special case of the general class Md defined in Definition 5.1.

Definition 5.1. The resampling class Md is the set of all functionals ψ : Cd(∆)→ Sd
++ that are

Borel-measurable, continuous under the sup norm, and satisfying the following four properties.
(a) (positively homogeneous) ψ(c1y) = c1ψ(y) for c1 ∈ Sd

++, y ∈Cd(∆);
(b) (shift invariant) ψ(y+ c0k) = ψ(y) for c0 ∈ Rd×d , y ∈ Cd(∆), and k(s, t) = (t − s)1d

where 1d refers to the d-dimensional (column) vector of ones.
(c) (positive valued) P(ψ(Wd) ∈ Sd

++) = 1, where Wd is the d-dimensional standard Brown-
ian motion (Wiener process) on [0,1] (see Section 4).

The following cancellation theorem, Theorem 5.1, holds under Assumptions 4.1 and 4.2,
assuming a functional ψ ∈ M1 has been chosen. We make several observations about the
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following Theorem 5.1. First, all of the limits in Theorem 5.1 involve distribution-free statistics,
in the sense that the right-side limits do not depend on the problem-specific data-generating
distributions appearing on the respective left-hand sides. As we make explicit in the proof of
Theorem 5.1, the distribution-free nature of these limits is the result of standardization using ψ ,
leading to a cancellation of the problem-specific variance parameters. For the statistician, these
limits are reminiscent of the classical Student’s t distribution obtained as the standardized weak
limit of sample means. Second, Parts 2 and 3 of Theorem 5.1 play direct roles in constructing
upper and lower confidence bounds on the optimality gap at a candidate, using distribution-free
limits. Finally, many choices of the function ψ ∈M1 are possible. While all feasible choices
result in asymptotically valid confidence intervals, the quality of the confidence intervals and
the amount of computation required to construct them depend on the nature of ψ , where we
measure the quality of a confidence interval by its rate of convergence to the nominal coverage
probability 1−α and its expected half-width. We provide a specific recommendation for ψ in
Section 6.

Theorem 5.1 (Cancellation). Suppose Assumptions 4.1 and 4.2 hold, that ψ ∈M1, and Y= Yn
for all n. Define

δW (s, t) :=W (t)−W (s), (s, t) ∈ ∆,

and δW :=
{

W (t)−W (s), (s, t) ∈ ∆
}

.
(1) (Resampled limit) If x ∈D, then as n → ∞,

ψ
(√

nF0,n(x, ·, ·)
) d−→σ(x)ψ

(
δW (0,1)

)
. (5.1)

(2) (Primal candidate) If x̄ is primal feasible, that is, x̄ ∈ X, then as n → ∞,

F0,n(x̄,0,1)− f0(x̄)
ψ
(
F0,n(x̄, ·, ·)

) d−→ δW (0,1)
ψ
(
δW (·, ·)

) . (5.2)

(3) (Dual candidate) If ȳ is dual feasible, then as n → ∞,

Gn(ȳ,0,1)−g(ȳ)
ψ
(
Gn(ȳ, ·, ·)

) d−→ δW (0,1)
ψ
(
δW (·, ·)

) ; (5.3)

(4) (Sample optimal value) As n → ∞,

p∗n(0,1)− p∗

ψ
(

p∗n(·, ·)
) d−→ δW (0,1)

ψ
(
δW (·, ·)

) . (5.4)

Proof. We start by establishing (5.2), after which the proof of (5.1) will be evident. To prove
(5.2), first, recall that solution set X∗ is nonempty and bounded by Assumption 4.1. Since
the problem in (P) is convex and Slater’s condition holds, we have strong duality and the set
Y∗ of optimal solutions to the dual problem (D) is also nonempty and compact. Throughout
what follows, we can thus assume (without loss of generality) that the feasible primal and dual
sets X and Y are compact. Then, the asymptotic linearity and finite variance assumption in
Assumption 4.2(a) and Assumption 4.2(b), respectively, imply that the process convergence
limit {√

n(F0,n(x̄,0, t)− t f0(x̄)), t ∈ [0,1]
} d−→ σ(x̄)W
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holds, where σ(x̄) ∈ (0,∞). It can be shown that this process convergence limit implies{√
n(F0,n(x̄,0, t)− t f0(x̄)),

√
n(F0,n(x̄,0,s)− s f0(x̄)),(s, t) ∈ ∆

}
d−→

{
(σ(x̄)W (t),σ(x̄)W (s)),(s, t) ∈ ∆

}
,

and therefore that {√
n(F0,n(x̄,s, t)− (t − s) f0(x̄)), (s, t) ∈ ∆

} d−→σ(x̄)δW. (5.5)

Now define the functional

h(y) :=
y(0,1)
ψ(y)

, y ∈C(∆), (5.6)

and write

F0,n(x̄,0,1)− f0(x̄)
ψ
(
F0,n(x̄, ·, ·)

) =

√
n
(
F0,n(x̄,0,1)− f0(x̄,0,1)

)
ψ
(√

n
(
F0,n(x̄, ·, ·)− f0(x̄, ·, ·)

)) (5.7)

=: h
(√

n(F0,n(x̄, ·, ·)− f0(x̄, ·, ·))
) d−→h(σ(x̄)δW )

=
σ(x̄)δW (0,1)

ψ(σ(x̄)δW (·, ·)) =
�

��σ(x̄)δW (0,1)

���σ(x̄)ψ(δW (·, ·)) , (5.8)

where the equality in (5.7) follows from the shift and scale invariance properties of ψ , and the
weak limit follows from the application of the mapping theorem [7, p. 20] which is allowed
because

√
n(F0,n(x̄, ·, ·)− f0(x̄, ·, ·)) ∈ C(∆) by Assumption 4.1, ψ is positive valued and a.s.

continuous, and (5.5) holds. The last equality in (5.8) follows by (again) applying the assumed
scale invariance of ψ . The weak limit implied by (5.8) proves the assertion in (5.2).

Next, we prove the limit in (5.4). First, start by defining

p̃(φ) := inf
x∈X

sup
y∈Y

φ(x,y), φ ∈C(X×Y).

By Assumptions 4.1 and 4.2, and since Y= Yn the true and sample-path Lagrangian functions

L̃(x,y) := f0(x)+∑
r
i=1 yi fi(x),

L̃n(x,y) := F0,n(x)+∑
r
i=1 yi fi(x)

reside in K⊂C(X×Y) formed by convex-concave on X×Y functions. Furthermore, Shapiro
[54, Theorem 7.24] assures us that p̃ is Hadamard directionally differentiable at any h0 ∈ K

tangentially to the set K along any u ∈ TK(L̃), where the contingent (Bouligand) cone is

TK(L̃) :=
{

h ∈C(X×Y) : ∃ tk ↓ 0 with L̃+ tkh ∈K
}
,

and the derivative at h0 along u is given by

D1 p̃(h0;u) = inf
x∈X∗

sup
y∈Y∗

u(x,y).

Now notice that K is convex and apply the Delta Theorem [56, Theorem 7.61] to write an
expansion of p̃(L̃n(·,s, t)) around (t − s)L̃, where the linearly interpolated estimator for L̃n is
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defined as in Subsection 2.4:

p̃
(
L̃n(·,s, t)

)
= p̃

(
(t − s)L̃

)
+D1 p̃

(
(t − s)L̃; L̃n(·,s, t)− (t − s)L̃

)
+op

(
1/
√

n
)

= p̃
(
(t − s)L̃

)
+ inf

x∈X∗
sup
y∈Y∗

{
L̃n((x,y),s, t)− (t − s)L̃(x,y)

}
+op

(
1/
√

n
)
. (5.9)

Then,
√

n(p∗n(s, t)− (t − s)p∗) =
√

n
(

p̃
(
L̃n(·,s, t)

)
− p̃

(
(t − s)L̃

))
= inf

x∈X∗
sup
y∈Y∗

{√
n(F0,n(x,s, t)− (t − s) f0(x))

}
+op(1)

d−→ inf
x∈X∗

Y (x),

where the first equality holds because of the strong duality of the sample-path and true problems,
the second equality holds from (5.9), and distributional limit to the random element Y ∈C(X)
holds from Assumptions 4.1 and 4.2 and since we have assumed X is compact. (See the func-
tional CLT [1, Corollary 7.17].) If X∗ is a singleton, then infx∈X∗ Y (x) = Y (x∗) has a Gaussian
distribution with mean zero and finite variance. (See the comments that follow Assumption 4.2.)
Now use the functional h, defined in (5.6), and retrace steps leading to (5.8) to get

p∗n(0,1)− p∗

ψ(p∗n(·, ·))
= ����σ(x∗)δW (0,1)

��
��σ(x∗)ψ(δW (·, ·)) ,

thus proving the primal weak limit in (5.4).
The dual limit in (5.3) follows along lines similar to what we have adopted for proving the

limit in (5.4), but only more simply since y = ȳ is fixed. □

5.2. Confidence interval construction. Suppose (x̄, ȳ) is a candidate saddle point, that is,
x̄∈X is primal feasible, ȳ∈Y∩Yn is dual feasible, and we wish to construct a (1−α) confidence
interval on the optimality gap f0(x̄)− p∗. Then, given a resampling functional ψ chosen to lie in
the resampling class M1 (see Definition 5.1 and guidance in Section 6), Theorem 5.1 suggests
the following upper and lower statistical bounds on the gap f0(x̄)− p∗:

Un := F0,n(x̄,0,1)+ γψ,1−αp ψ
(
F0,n(x̄, ·, ·)

)
;

Ln := Gn(ȳ,0,1)− γψ,αd ψ
(
Gn(ȳ, ·, ·)

)
,

(5.10)

(5.11)

where

γψ,α := T−1
ψ (α) = inf

{
γ : P

(
δW (0,1)

ψ(δW (·, ·)) ≥ γ
)
≥ 1−α

}
, α ∈ [0,1]. (5.12)

The following Corollary 5.1 asserts asymptotic validity of the constructed intervals.

Corollary 5.1. Let all postulates of Theorem 5.1 hold, and let αp,αd ∈ [0,0.5). Then as n → ∞:
(1) P( f0(x̄)≥Un)→ αp;
(2) P(g(ȳ)≤ Ln)→ αd, and
(3) P( f0(x̄)− p∗ ≥Un −Ln)≲ αp +αd, and
(4) P

(
−γψ,1−αpψ(p∗n(·, ·))≤ p∗− p∗n ≤ γψ,αd ψ(p∗n(·, ·))

)
→ 1− (αp +αd).
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Proof. The proofs of Parts 1, 2, and 4 follow from the assertions in (5.2), (5.3), and (5.4),
respectively. For proving part (3), notice since

P( f0(x̄)− p∗ ≥Un −Ln)≤ P( f0(x̄)≥Un)+P(p∗ ≤ Ln)

≤ P( f0(x̄)≥Un)+P(g(ȳ)≤ Ln)

→ αp +αd as n → ∞, (5.13)

where the second inequality above follows because ȳ ∈ Y∩Yn is dual feasible, and the weak
limit is from the first two parts of the theorem. □

5.3. KKT Testing. Suppose now that we wish to statistically check whether the first-order
optimality conditions associated with (P) hold at a given candidate solution x̄. Formally, recall
that if x̄ is an optimal solution to (P), f0 is differentiable at x̄, and f j, j = 1,2, . . . ,r are smooth
at x̄, then under a constraint qualification, the first-order optimality (KKT) conditions hold at x̄,
that is, there exist Lagrange multipliers λ j ≥ 0 such that

∇ f0(x̄)+ ∑
j∈J(x̄)

λ j∇ f j(x̄) = 0,

where J(x̄) := { j : f j(x̄) = 0, j = 1,2, . . . ,r} represents the index set of active constraints at x̄.
Alternatively, we say x̄ satisfies the KKT conditions if

∇ f0(x̄) ∈ K(x̄) :=
{

z ∈Rq : z+ ∑
j∈J(x̄)

λ j∇ f j(x̄) = 0 for some λ j ≥ 0
}
. (5.14)

Assuming sample-path differentiability, a natural estimator for the gradient ∇ f0 is simply the
gradient ∇F0,n of F0,n. Then, under an analogue of Assumption 4.2 that assures the asymptotic
linearity of the gradient sample paths, we can obtain a weak convergence limit that can be used
in statistically testing (5.14).

Theorem 5.2 (Cancellation for KKT testing). Suppose that f0 is differentiable in D, that each
f j, j = 1,2, . . . ,r is smooth in D, and that ψ ∈Mq. Suppose also that

(a) ∇F0,n is asymptotically linear, that is, for each x ∈D,

∇F0,n(x) = ∇ f0(x)+n−1
∑

n
j=1 ε1(x,ξ j)+b1,n(x),

where E[ε1(x,ξ )] = 0, Cov(ε(x,ξ )) exists, and supx∈X |b1,n(x)|= op(n−1/2); and
(b) there exists measurable κ1(ξ ) with E[κ1(ξ )]<∞ such that ε1(·,ξ ) is a.s. κ1(ξ )-Lipschitz,

that is, ∀x,x′ ∈ X we have that |ε1(x,ξ )− ε1(x′,ξ )| ≤ κ1(ξ )∥x− x′∥.
For a primal feasible point x̄ ∈ X, denoting

Tψ,n(x̄) :=
[
ψ(

√
n∇F0,n(x̄, ·, ·))

]−1{√n
(
∇F0,n(x̄,0,1)−∇ f0(x̄)

)}
,

we have as n → ∞,
Tψ,n(x̄)

d−→
[
ψ(δWq(·, ·))

]−1 δWq(0,1). (5.15)
Suppose further that x̄ is a KKT point, that is, ∇ f0(x̄) ∈ K(x̄). Defining

χ2
ψ,n(x̄) := inf

z∈K(x̄)

{
n
∥∥∇F0,n(x̄,0,1)− z

∥∥2
[ψ2(

√
n∇F0,n(x̄,·,·))]

−1

}
,
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we have as n → ∞,

χ2
ψ,n(x̄)

d−→
∥∥δWq(0,1)

∥∥2
[ψ2(δWq(·,·))]−1 =: χ2

ψ . (5.16)

Proof. The asymptotic linearity assumption of ∇F0,n, and the existence of the covariance Σx :=
cov(ε1(x,ξ (·)) imply that the process convergence limit

{√
n(∇F0,n(x̄,0, t)− t∇ f0(x̄)), t ∈ [0,1]

} d−→ Σ
1
2
x̄ Wd.

It can then be shown that this process convergence limit implies

{√
n(∇F0,n(x̄,0, t)− t∇ f0(x̄)),

√
n(∇F0,n(x̄,0,s)− s∇ f0(x̄)),(s, t) ∈ ∆

}
d−→

{
(Σ

1
2
x̄ Wd(t),Σ

1
2
x̄ Wd(s)),(s, t) ∈ ∆

}
,

and therefore that

{√
n(∇F0,n(x̄,s, t)− (t − s)∇ f0(x̄)), (s, t) ∈ ∆

} d−→Σ
1
2
x̄ δWd. (5.17)

Now generalize the definition of the functional h from (5.6) so that

h(y) := ψ(y)−1 y(0,1), y ∈Cq(∆),

and write

[
ψ
(
∇F0,n(x̄, ·, ·)

)]−1
(∇F0,n(x̄,0,1)−∇ f0(x̄))

=
[
ψ
(√

n
(
∇F0,n(x̄, ·, ·)−∇ f0(x̄, ·, ·)

))]−1√n
(
∇F0,n(x̄,0,1)−∇ f0(x̄,0,1)

)
(5.18)

=: h
(√

n(∇F0,n(x̄, ·, ·)−∇ f0(x̄, ·, ·))
)

d−→h(Σ
1
2
x̄ δWq) :=

[
ψ(Σ

1
2
x̄ δWq(·, ·))

]−1
Σ

1
2
x̄ δWq(0,1) (5.19)

=
[
ψ(δWq(·, ·))

]−1
�
���

Σ
− 1

2
x̄ Σ

1
2
x̄ δWq(0,1), (5.20)

where the equality in (5.18) follows from the shift and scale invariance properties of ψ , the
weak limit in (5.19) follows from the application of the mapping theorem [7, p. 20] which is
allowed because

√
n(∇F0,n(x̄, ·, ·)−∇ f0(x̄, ·, ·)) ∈ Cq(∆) by assumption, ψ is positive-definite

matrix valued and a.s. continuous, and (5.17) holds. The last equality in (5.20) follows by
(again) applying the assumed scale invariance of ψ . The weak limit implied by (5.20) proves
the assertion in (5.15).
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To prove (5.16), we write

χ2
ψ,n(x̄) := inf

z∈K(x̄)

{
n
∥∥∇F0,n(x̄,0,1)− z

∥∥2
[ψ2(

√
n∇F0,n(x̄,·,·))]

−1

}
= inf

z∈K(x̄)

{
n (∇F0,n(x̄,0,1)− z)⊤

[
ψ2(

√
n∇F0,n(x̄, ·, ·))

]−1
(∇F0,n(x̄,0,1)− z)

}
= n

∥∥∇F0,n(x̄,0,1)−∇ f0(x̄)
∥∥2
[ψ2(

√
n∇F0,n(x̄,·,·))]

−1

+n inf
z∈K(x̄)

{
2(∇F0,n(x̄,0,1)−∇ f0(x̄))

⊤ [
ψ2(

√
n∇F0,n(x̄, ·, ·))

]−1
(∇ f0(x̄)− z)

+∥∇ f0(x̄)− z∥2
[ψ2(

√
n∇F0,n(x̄,·,·))]

−1

}
(5.21)

d−→
∥∥δWq(0,1)

∥∥2
[ψ2(δWq(·,·))]−1 as n → ∞, (5.22)

where the weak limit in (5.22) follows since the second term on the right-hand side of (5.21)
goes to zero a. s. as n → ∞, and using (5.15) with the mapping theorem [7, p. 20]. □

Notice that χ2
ψ in (5.16) is a quadratic form in a Gaussian limit of the gradient residual; hence

it is a form of generalized χ2 that can be used to test KKT optimality. To set up this test formally,
consider conducting the following hypothesis test associated with checking whether x̄ ∈ X is a
KKT point:

H0 : ∇ f0(x̄) ∈ K(x̄) against the alternative H1 : ∇ f0(x̄) /∈ K(x̄), (5.23)

using the statistic

χ2
ψ,n(x̄) := inf

z∈K(x̄)

{
n
∥∥∇F0,n(x̄,0,1)− z

∥∥2
[ψ2(

√
n∇F0,n(x̄,·,·))]

−1

}
.

Theorem 5.2 is especially useful two reasons. First, as in the more classical context that does
not use resampling [54, p. 213], the test statistic χ2

ψ,n(x̄) can be calculated efficiently since it
can be seen as the optimal value associated with the problem of optimizing a convex quadratic
objective (since ψ2(·)−1 is positive definite) over the polyhedral cone K(x̄). Second, as can
be seen in (5.16), χ2

ψ,n(x̄) has a distribution-free weak limit χ2
ψ whose critical values can be

calculated, in principle — Section 6 provides two example ψ functionals for which such critical
values have been tabulated extensively. A final useful observation is that the (1−α) confidence
region on ∇ f0(x̄) given by{

z ∈Rq : n
∥∥∇F0,n(x̄,0,1)− z

∥∥2
[ψ2(

√
n∇F0,n(x̄,·,·))]

−1 ≤ (χ2
ψ)

−1(1−α)

}
, (5.24)

is exactly the complement of the rejection region associated with the hypothesis test in (5.23).
In (5.24), (χ2

ψ)
−1(1−α) refers to the (1−α) quantile associated with the weak limit χ2

ψ .

5.4. Stopping Theorem. Consider now a “streaming” context where a fixed sample-path opti-
mal sequence {x̄n ∈ X∗

n,n ≥ 1} is revealed sequentially. This setting is hypothetical in that we
assume the sample-path problems are solved to optimality, whereas this may not be possible
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in reality. Nevertheless, the analysis that follows sheds much light on the solution quality and
effort implied by some natural stopping heuristics.

Suppose we wish to “stop” the sequence {x̄n,n ≥ 1} at some (random) time Nψ,ε with an
appropriate guarantee on the solution x̄Nψ,ε . Precisely, suppose we continue to observe the
sample-path optimal sequence {x̄n,n ≥ 1} until the (1−α) confidence interval on the true
optimal value p∗ drops below a fixed threshold ε, that is,

Nψ,ε = inf{n ≥ max(1,− logε) : U∗
n −L∗

n ≤ ε} ,

where

U∗
n = p∗n + γψ,1−αpψ(p∗n(·, ·)) and L∗

n = p∗n − γψ,αd ψ(p∗n(·, ·)), (5.25)

γψ,α := T−1
ψ (α),α ∈ [0,1], Tψ is the distribution of δW (0,1)/ψ(δW (·, ·)), and αp,αd are cho-

sen so that αp,αd < 0.5,αp +αd = α. We know from Corollary 5.1 that

P
(

p∗n − γψ,αd ψ(p∗n(·, ·))≤ p∗ ≤ p∗n + γψ,1−αpψ(p∗n(·, ·))
)
≳ 1−α.

The following result characterizes the nature of Nψ,ε by asserting that the sequential procedure
will stop almost surely and that the (asymptotic) complexity of Nψ,ε = O(ε−2).

Theorem 5.3 (Stopping Theorem). Suppose Assumptions 4.1 and 4.2 hold, and that ψ ∈M1.
Suppose further that the following two assumptions hold.

(a) The sequence {x̄n,n ≥ 1} satisfies x̄n ∈ X∗
n for all n.

(b) ψ satisfies ψ
(√

n p∗n(·, ·)
) wp1−→ψ

(
p∗(·, ·)

)
.

Then, as ε → 0,

Nψ,ε → ∞ and Nψ,εε2 = O(1).

Proof. Notice that from (5.25),

U∗
n −L∗

n = (γψ,1−αp − γψ,αd)ψ(p∗n(·, ·))

= (γψ,1−αp − γψ,αd)
1√
n

ψ(
√

n(p∗n(·, ·)− p∗)), (5.26)

where the second equality in (5.26) follows from the shift and scale invariance of ψ. Since the
expression for Nψ,ε implies that Nψ,ε ≥− logε , Nψ,ε → ∞ (trivially) as ε → 0.

From (5.26) and the assumption in (b), we get that as n → ∞,
√

n(U∗
n −L∗

n)
wp1−→(γψ,1−αp − γψ,αd)ψ

(
p∗(·, ·)

)
. (5.27)

In particular, we see that (5.27) implies that for large enough n (independent of ε),

1
4n

(γψ,1−αp − γψ,αd)
2ψ2(p∗(·, ·))≤ (U∗

n −L∗
n)

2 ≤ 4
n
(γψ,1−αp − γψ,αd)

2ψ2(p∗(·, ·)). (5.28)

From (5.28) and since we have proved Nψ,ε → ∞ as ε → 0, we conclude that the assertion
limε→0 Nψ,εε2 = O(1) holds. □
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Two observations pertaining to Theorem 5.3 are interesting. First, as is common in adaptive
stopping, the lower bound − logε in the expression for Nψ,ε has been introduced to coerce Nψ,ε
to diverge without interfering with the rate at which such divergence occurs. Second, and more
important, notice that nothing has been said about the quality of the solution x̄Nψ,ε at stopping.
For example, since the interval [L∗

n,U
∗
n ] is a (1−αp−αd) confidence interval on p∗, and U∗

Nψ,ε
−

L∗
Nψ,ε

≤ ε , it seems logical to wonder if P(|p∗Nψ,ε
− p∗| ≥ ε) ≤ α. However, such a guarantee

does not hold in general — whereas [L∗
n,U

∗
n ] is a confidence interval on p∗, the key ingredient to

enable a guarantee such as P(|p∗Nψ,ε
− p∗| ≥ ε)≤ α is that [U∗

n ,L
∗
n] be a time-uniform confidence

sequence which covers p∗ with probability exceeding 1−αp −αd for all n ≥ k0, where k0 is a
constant independent of ε . In the current context, a time-uniform confidence sequence follows
after imposing the additional assumption that supx∈X |F0,n(x)− f0(x)| ≤ φ(n,α,d), where the
underlying empirical process class has finite complexity (VC or pseudo-dimension d). See
[21, 46, 58] for further detail.

6. EXAMPLE RESAMPLING FUNCTIONALS

It should be clear from Subsection 5.1 that the resampling functional ψ plays a crucial role
in our construction. In effect, the resampling functional ψ is the analogue of the chi random
variable with ν degrees of freedom, denoted χν , that appears in the formulation of the Student’s
t distribution in classical statistics [29, pp. 75]. In our context, ψ features prominently when
constructing Un,Ln in (5.10) and (5.11), respectively, and in particular when computing the
critical value γψ,q in (5.12). The potential choices of ψ are vast since it is stipulated (only)
by the four conditions appearing in Definition 5.1. In what follows, we describe two specific
choices that have recently demonstrated good performance in a variety of settings. We provide
concrete expressions in each case, and briefly discuss properties.

6.1. OB-I resampling functional. The OB-I resampling functional ψOB-I : C(∆) → R is a
two-parameter (β ∈ [0,1);b∞ ∈ {N∪∞}\{1}) family of functions given by:

ψ2
OB-I(y;β ,b∞) :=


1

1−β
∫ 1−β

0 (y(s,s+β )− y(0,1))2 ds β = 0,b∞ = ∞;
1

κ1(β ,b∞)
1

β (1−β )
∫ 1−β

0 (y(s,s+β )− y(0,1))2 ds β ∈ (0,1),b∞ = ∞;
1

κ1(β ,b∞)
1
β ∑

b∞

j=1
(
y(c j,c j +β )− y(0,1)

)2 b∞ ∈N\{1},
(OB-I)

where

κ1(β ,b∞) := 1−β ; c j := ( j−1)
1−β
b∞ −1

.

The quantity ψOB-I(y;β ,b∞) should be interpreted as the positive square-root of ψ2
OB-I(y;β ,b∞)

appearing in (OB-I). Also, it can be shown that ψOB-I(y;β ,b∞) indeed satisfies the stipulations
(1)–(4) of Subsection 5.1.

The expression for ψ2
OB-I(y;β ,b∞) in (OB-I) can be understood as the (well-defined) con-

tinuous time limit of the bias-corrected squared standard deviation of overlapping batch esti-
mates obtained from a function y : ∆ → R. To see this more concretely, consider computing
ψOB-I(F0,n(x̄, ·, ·);β ,b∞) and ψOB-I(p∗n(·, ·);β ,b∞) for “plugging in” the expressions of Un and
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batch 1

batch 2

batch 3
1 mn

dn +1 dn +mn

2dn +1

FIGURE 2. The figure, adapted from [57], depicts partially overlapping batches.
Batch 1 consists of observations X j, j = 1,2, . . . ,mn; batch 2 consists of ob-
servations X j, j = dn + 1,dn + 2, . . . ,dn + mn, and so on, where batch i con-
sists of X j, j = (i− 1)dn + 1,(i− 1)dn + 2, . . . ,(i− 1)dn +mn. There are bn :=
d−1

n (n−mn)+1 batches in total, where n is the size of the dataset.

Ln appearing in (5.10). Figure 2 depicts the process implicit in such calculation — partition
the available observations ξ1,ξ2, . . . ,ξn into bn potentially overlapping batches of size mn, with
the i-th batch consisting of observations (i−1)dn +1,(i−1)dn +2, . . . ,(i−1)dn +mn. Choose
β ,b∞ to be the asymptotic batch size and number of batches, respectively, that is:

β := lim
n→∞

mn

n
; b∞ := lim

n→∞
bn.

For instance, we might fix β ∈ (0,1) and choose b∞ = β−1. If we assume for ease of exposition
that β−1 and nβ are integers, then this choice corresponds to partitioning the available data into
bn = β−1 non-overlapping batches each having size mn = nβ , and thus (OB-I) gives

ψ2
OB-I(F0,n(x̄, ·, ·);β ,b∞) :=

1
κ1(β ,b∞)

1
β (1−β )

∫ 1−β

0
(F0,n(x̄,s,s+β )−F0,n(x̄,0,1))

2 ds (6.1)

=
1

κ1(β ,b∞)

mn

bn

bn

∑
i=1

(
F0,n

(
x̄,(i−1)

mn

n
, i

mn

n

)
−F0,n(x̄,0,1)

)2
, (6.2)

and

ψ2
OB-I(p∗n(·, ·);β ,b∞) =

1
κ1(β ,b∞)

mn

bn

bn

∑
i=1

(
p∗n

(
(i−1)

mn

n
, i

mn

n

)
− p∗n(0,1)

)2
. (6.3)

Expressions for ψOB-I(F0,n(x̄, ·, ·);β ,b∞) and ψOB-I(p∗n(·, ·);β ,b∞) for other choices of β ∈
[0,∞),b∞ ∈ {N∪∞} \ {1} are similarly calculated with ease, modulo the effort due to the
nuisance of nβ or β−1 not being integers. Tables and code for the α-critical value (see 5.12)
specific to the OB-I resampling functional are available — see for instance [57].

6.2. OB-II resampling functional. The OB-I resampling functional ψOB-I from Subsection 6.1
can be computationally intensive. To see this precisely, suppose c0(n(t−s)) is the computational
cost of calculating infx∈XF0,n(s, t), that is, solving a sample-path optimization problem with
n(t − s) observations. Then since calculating ψ2

OB-I(p∗n(·, ·);β ,b∞) in (6.3) involves solving bn
optimization problems of size mn, and one optimization problem of size n, the computation
complexity becomes bnc0(mn)+ c0(n).
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Toward mitigating the computational burden of OB-I, the OB-II resampling functional, de-
noted ψOB-II : C(∆)→R, is a two-parameter (β ∈ [0,1);b∞ ∈ {N∪∞}\{1}) family:

ψ2
OB-II(y;β ,b∞) :=


1

κ2(β ,∞)

β−1

1−β

∫ 1−β

0

(
yu(β )− 1

1−β

∫ 1−β

0
ys(β )ds

)2

du b∞ = ∞;

1
κ2(β ,b∞)

1
β

1
b∞

b∞

∑
j=1

(
yc j(β )−

1
b∞

b∞

∑
i=1

yci(β )
)2

b∞ ∈N\1,

where yx(β ) := y(x+β )− y(x),x ∈ [0,1−β ], ci := (i−1) 1−β
b∞−1 , i = 1,2, . . . ,b∞, and κ2(β ,b∞)

is the “bias-correction" factor given by

κ2(β ,b∞) :=


1 β = 0;

1−2
( β

1−β ∧1
)
+

1
β

( β
1−β ∧1

)2
− 2

3
1−β

β

( β
1−β ∧1

)3
β > 0,b∞ = ∞;

1− 1
b∞

− 2
b∞

b∞

∑
h=1

(
1− h

b∞ −1
1−β

β

)+(
1− h

b∞

)
β > 0,b∞ ∈N\1.

ψOB-II(y;β ,b∞) differs from ψOB-I(y;β ,b∞) mainly in its choice of the “centering” variable,
the quantity about which the deviations of y or ys are integrated. Specifically, notice that the
centering variable for ψOB-II(y;β ,b∞) is (1−β )−1 ∫ 1−β

0 ys(β )ds (or the analogous average when
b∞ is finite), whereas for ψOB-I(y;β ,b∞) the centering is simply y(0,1). See [57] for more details
on this calculation and an analysis of how these resampling functionals compare in terms of
computation. Like ψOB-I(y;β ,b∞), the resampling functional ψOB-I(y;β ,b∞) can also be shown
to satisfy the stipulations (1)–(4) of Section 5.1.

7. CONCLUDING REMARKS AND FUTURE RESEARCH

This paper outlines methods to systematically incorporate primal-dual resampling when as-
sessing solution quality within deterministically constrained convex stochastic programs. The
key enabling mathematical machinery is a primal-dual cancellation theorem for ensuring that the
resampled weak limit (whose critical values are used for confidence interval construction and for
hypothesis testing) is distribution free, that is, no parameters associated with the data-generating
distribution need be estimated explicitly or consistently. The primal-dual cancellation theorems
characterized in this paper might provide a principled path for analogous resampling based
solution quality assessment within useful but even more challenging settings like multistage
stochastic programs [54]. Indeed, they may also provide a principled basis, e.g., through a
hypothesis test, for checking if strong duality holds for the true problem. We have assumed
throughout the paper that the constraints underlying the problem are deterministic and known.
Such assumption avoids the well-recognized challenge that comes with having stochastic con-
straints — dealing with solutions that are sample-path dual feasible but not truly dual feasible.
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