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optimization are also reviewed, highlighting how machine learning and rein-
forcement learning enhance classical solvers through warm-starting, constraint
screening, branching strategies, policy approximation, and scenario generation.
The paper provides a consolidated reference for scalable and reliable optimiza-
tion methods in complex agriculture and energy systems.
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1 Introduction

This section introduces the scope and objectives of the study, situating it at
the intersection of Operations Research (OR), agriculture, and energy systems.
We outline the class of optimization problems considered, motivate the need for
scalable solution techniques, and frame the role of learning-based methods as en-
hancements to classical optimization rather than substitutes. The introduction
provides the conceptual foundation required for the formal problem definitions
and application-driven models developed in the subsequent sections.

1.1 Background and Motivation

OR provides the mathematical foundation for decision-making in complex sys-
tems involving logistics, scheduling, allocation of scarce resources, and net-
worked infrastructures. In agriculture and energy systems, OR models govern
decisions such as crop selection, production scheduling, water allocation, power
system operation, unit commitment, and market participation. These applica-
tions inherently involve discrete decisions, nonlinear physical relationships, and
combinatorial structures.

A large class of these problems can be expressed as integer or mixed-integer
optimization problems. Due to their combinatorial nature, obtaining globally
optimal solutions often scales exponentially with problem dimension when no
exploitable structure is present. This presents severe practical limitations for
real-time or large-scale applications, particularly when decisions must be recom-
puted repeatedly under changing external conditions.

Machine Learning (ML) and Reinforcement Learning (RL), which scale fa-
vorably with problem dimension and data availability, offer a complementary
paradigm. Rather than replacing optimization models, learning-based methods
can exploit repeated structure across problem instances to accelerate solution
procedures while preserving feasibility and interpretability.

1.2 Problem Setting and Research Question

This work studies optimization problems that are discrete or mixed discrete—
continuous in nature and arise repeatedly under varying external conditions.
We begin by defining the decision space through simple bound constraints:

X:={xeR"|z<z<7T}, (1)

where z, 7T € R" with x < T.



Integer Nonlinear Programming (INLP). The Integer Nonlinear Pro-
gramming problem is formulated as

min  f(z) @)

s.t.  x € Cyy,

where the integer nonlinear feasible set is
Cin:={z€X|g(x)=0, h(z) <0, z; € 8;,Z Vi € [n]}. (3)

Here, f is a possibly non-convex objective, g(x) and h(z) denote equality and
inequality constraints, and s; > 0 are resolution factors. Moreover, for integers
1 <i < q, we define

[i:q] :=={d,i+1,...,q}.

In the special case i = 1, we recover the standard notation

lg] == [L:g] ={1,...,q}.

Mixed-Integer Nonlinear Programming (MINLP). When only a subset
of variables is constrained to be integer-valued, the problem becomes a MINLP:

min  f(z)
s.t.  x € Chuy, (4)
with feasible set
Cmi i ={reX|glx)=0, h(z) <0, x; € ,Z Vi€ I}, (5)

where T C [n] indexes integer decision variables.

Combinatorial Set Optimization (CSO). Many OR problems are more
naturally expressed as set selection problems. The generic CSO formulation is

min  f(S)
st. SeF, (6)

where F is a family of feasible subsets defined by logical, structural, or relational
constraints.

Dynamic Programming (DP). A further important class of problems aris-
ing in agriculture and energy systems is naturally formulated using DP. These
problems are characterized by sequential decision-making over a finite or infi-
nite horizon, with system dynamics governed by state-transition equations. Let



st € S denote the system state at stage t, and let a; € A(s;) denote the control
action. A generic DP formulation can be written as

Vi(s) = min  {€(s¢,ar) + Vig1(si41)}, (7)
ar€A(st)

where £(s, a;) is the stage cost and the next state s;y1 is given by a system dy-
namics equation s;y1 = F(s¢, at). The function V;(-) denotes the value function
at stage t, encoding the optimal cost-to-go.

Dynamic programming formulations arise prominently in multi-stage schedul-
ing, inventory control, hydropower reservoir operation, and long-horizon plan-
ning problems. While DP avoids explicit combinatorial enumeration, its com-
putational complexity typically grows exponentially with the dimension of the
state space, a phenomenon known as the curse of dimensionality. As a re-
sult, DP problems are often combined with approximation, decomposition, or
learning-based methods in large-scale applications.

Research Question. The central question addressed in this work is:

How can ML and RL be integrated with classical operations re-
search algorithms to enhance the tractability and scalability of INLP,
MINLP, CSO, and DP formulations arising in agriculture and energy
systems, without compromising feasibility, correctness, or physical
interpretability?

1.3 Challenges in Enhancing OR of Agriculture and En-
ergy

Several challenges arise when enhancing OR methods for agriculture and energy
applications. First, many constraints are derived from nonlinear physical laws,
such as power flow equations or reservoir dynamics, which induce nonconvex
feasible regions. Second, discrete operational decisions introduce combinatorial
explosion, particularly in large-scale scheduling and network problems. Third,
many applications involve temporal coupling and uncertainty, requiring repeated
solution of structurally identical problems under varying exogenous parameters.

These challenges imply that purely data-driven methods are insufficient, as fea-
sibility, safety, and interpretability must be maintained. Any learning-based
enhancement must therefore respect the underlying optimization structure de-

fined by (2), (4), and (6).



1.4 Scope and Methodology

The scope of this work spans the full range of optimization problems defined
above, including their linear, nonlinear, deterministic, and stochastic variants.
We consider both static and multi-stage formulations, as well as problems de-
fined on lattices, graphs, and logical structures.

Our methodology follows a learning-to-optimize paradigm. Classical solvers
are treated as the primary mechanism for enforcing feasibility and optimality,
while ML and RL models are used to accelerate solver components, approximate
policies in sequential settings, and generate realistic scenarios. The learning
models exploit repeated structure across instances parameterized by exogenous
variables, while the mathematical formulation remains unchanged.

1.5 Contributions

The contributions of this work are summarized as follows:

e A unified mathematical treatment of INLP, MINLP, CSO, and DP formu-
lations arising in agriculture, energy, and water—energy systems.

e A comprehensive survey of classical optimization models and solver ar-
chitectures used in these domains, highlighting their shared structural
properties and computational challenges.

e A structured synthesis of learning-based enhancement strategies—
including ML, RL, and generative models—as augmentations to classical
OR algorithms, with explicit emphasis on preserving feasibility, correct-
ness, and interpretability.

e An application-driven perspective that systematically connects abstract
optimization formulations to representative real-world problems in agri-
culture, power systems, hydropower, and market operations.

Unlike existing surveys that primarily organize the literature by application
domain (e.g., optimal power flow or unit commitment [1,29,33]) or by algo-
rithmic paradigm (e.g., convex relaxations or learning-based methods [6,29]),
this work adopts a structural optimization perspective. Specifically, we view
energy system decision problems as members of parametric families of large-
scale, nonconvex optimization problems, and we review solution methodologies
according to how they exploit structure in the feasible set, objective function,
and repeated solution requirements. This viewpoint allows classical global op-
timization techniques, convex relaxations, and learning-enhanced methods to
be discussed within a unified mathematical framework, highlighting both their
theoretical relationships and their complementary roles in practice.



2 Applications of Interest

This section illustrates how the optimization models and algorithmic frameworks
introduced earlier arise in a range of practical application domains. The selected
applications span OR, energy systems, agriculture, and water—energy coordi-
nation, and are chosen to highlight the diversity of mathematical structures
encountered in real-world decision-making problems. Despite their different
physical interpretations, these applications can be expressed using a common
set of optimization paradigms—including linear and nonlinear programming,
mixed-integer formulations, and dynamic programming—thereby demonstrat-
ing the unifying role of optimization theory across disciplines. The formulations
presented below serve both as canonical examples and as motivation for the
advanced solver techniques and learning-enhanced methods discussed in subse-
quent sections.

2.1 OR - Background

OR is a field that uses mathematical modeling, statistical analysis, and opti-
mization techniques to make better decisions in complex systems. It is widely
applied in logistics, supply chain management, finance, and resource allocation
(cf. [15]). Many OR problems can be expressed in the general form of (4), which
can be reduced to NLP, CNLP, INLP, and DP problems. Here, we introduce
three simple practical examples.

LP (Production Planning Problem). A company produces n different prod-
ucts using limited resources in the form of

n
max JZ = E CiT;
i=1

s.t. Zaﬁxi <b; forjeml,
i=1
x; >0 forie€ [n],

where ¢; is profit per unit of product ¢, a;; is resource j needed per unit of
product i, b; is availability of resource j, and x; is decision variable (units of
product i to produce). The constraints of this LP, known as resource ca-
pacity constraints, ensure that production does not exceed available resource
capacities. They are critical to maintaining feasibility by preventing resource
overuse, thereby guaranteeing that production plans remain realistic and exe-
cutable within available resource limitations.

CNLP (Portfolio Optimization with Risk). This problem allocates capital
among assets to minimize risk (variance of return), while ensuring a minimum



expected return, i.e.,

n n
min Z = E E L0455,

i=1 j=1

n
s.t. Zrixi >R,
i=1

P Yiwi=1,
x; >0 forallie€[n],

where z; is the proportion of investment in asset i, r; is the expected return of
asset i, 0;; is the covariance of returns between assets 4 and j, and R is the re-
quired lower expected return. The constraints in this CNLP model serve distinct
financial goals. The expected return constraint (the first constraint) ensures
the portfolio achieves at least a minimum desired return, safeguarding investor
objectives. The budget constraint (the second constraint) enforces that the
full investment capital is allocated among the assets, maintaining completeness
of the portfolio. Finally, the non-negativity constraint (the third constraint)
prohibits short-selling by ensuring only non-negative allocations, which reflects
many practical investment settings.

DP (Knapsack Problem). Given n items, each with value v; and weight
w;, this problem chooses a subset to maximize value without exceeding total

capacity W, i.e.,
n
max E VL5
i=1

s.t. Z w;x; < W,
i=1
x; € {0,1} for all i € [n],

where v; is the value of item ¢, w; is the weight of item ¢, w is the knapsack
capacity, and x; is the decision variable (include item or not). DP solves this
problem by defining V; ,, as the maximum value achievable with the first ¢ items
and total weight < w. The recursive relation is

0 ifi=0o0rw=0,
Viw = Vvifl,w if w; > w,

5

max (Vi_Lw, Vic1,w—w; + Ui> otherwise.

The final result is V;, %, which gives the maximum value without exceeding the
capacity. The capacity constraint (the first constraint) ensures that the total
weight of selected items does not exceed the knapsack’s weight limit, preserving
feasibility. The binary decision constraint (the second constraint) enforces
that each item is either included entirely or excluded, modeling the classic 0-1
knapsack scenario where fractional selection is not allowed.



2.2 Energy Grid Optimization

The energy grid optimization problem aims to minimize the total cost, con-
taining both generation and transmission costs while ensuring that the grid con-
straints, including power balance, generation limits, transmission limits, power
flow relationships, binary facility assignments, and non-negativity are satisfied.
This problem can be formulated as

min f(S):ZFg(Pg)"‘ZFl(PI)
geG leL
st. Se€F={SC N |power flow and grid constraints},

where N is the set of all nodes (generation plants, consumer nodes, and transmis-
sion lines), G C N is the set of generation nodes (e.g., power plants), L C N x N
is the set of transmission lines connecting generation plants and consumer nodes,
P, is the power generated at generation node g € G, P, is the power flowing

through transmission line [ € L, F,(P,) is the generation cost function at plant
g € G, and F;(P,) is the transmission cost function for line I € L. Let

zq €{0,1}, forallge G, leL

be the set of binary decision variables, where x4 is true if the transmission
line [ is used for transmitting power from the generation plant g, and it is false
otherwise. Indeed, this binary decision variable indicates whether a transmission
line [ is used to transmit power from the generation node g.

Let us describe the constraints that F contains. The first constraint is the

power balance
S R=Y DY

geG ceC leL

whose goal is to ensure that the total power generated equals the total power
demand plus the power transmitted, where C' C N is the set of consumer nodes
(e.g., load centers) and D, is the power demand at a consumer node ¢ € C. The
second constraint is the generation limits

Pt < Py < PP, forallge G

whose goal is to ensure that the power generated at each plant is within its
specified limits (P"™ and P;***). The third constraint is the transmission
limits

PRt < p < P foralll € L
whose goal is to ensure that the power flow through each transmission line is

within its specified limits (P and P8%). The fourth constraint is the power
flow relationships

Pi=> agPy— Y BieD., foralllel
geG ceC

10



that express the power flow through each transmission line [ in terms of the
generation at plant g and the demand at consumer node c¢. Here oy denotes
the fraction of power generated at node g € G transmitted through line [ € L
and (. denotes the fraction of demand at consumer node ¢ € C supplied by
transmission line [ € L.

The fifth constraint is the facility allocation constraint

ngl <1, forallle L
geG

whose goal is to ensure that each transmission line is used by at most one
generation plant. The sixth constraint is the non-negativity constraint

P;>0, P >0, forallgeG,leclL

whose goal is to ensure that power generation P, and transmission F; are non-
negative.

2.3 Production Scheduling for Agriculture

Production scheduling in agriculture involves optimizing the allocation of re-
sources (e.g., labor, machinery, water) to maximize crop yield, minimize costs,
and meet demand. Below is an example of a MILP for Agriculture:

n m
min C = Zcixi + Zdjyj
i=1 j=1

n m
s.t. Zai]‘.ﬁi + Zbijyj > for all j € [m],
i=1 j=1
xT; € Z+, Y; € RJr,

where C' is the total cost, x; are integer decision variables like the number of
workers, y; are continuous decision variables like the amount of fertilizer, c;
and d; are cost coefficients, a;; and b;; are resource usage coeflicients, and 7;
are resource requirements. The constraints in this model, known as resource
requirements constraints, ensure that allocated resources such as labor, ma-
chinery, and materials meet or exceed the minimum levels necessary for pro-
duction activities. They guarantee feasibility by preventing the insufficient al-
location of essential inputs, thereby ensuring adequate resource availability to
achieve targeted agricultural outputs.

2.4 Optimal Crop Selection

Efficient crop selection and scheduling play a crucial role in maximizing the
economic return from farmland while considering resource and operational con-

11



straints. This problem can be formulated as an optimization model that deter-
mines the optimal crop mix and tool allocation to maximize the net profit of
cultivation. The profit is defined as the difference between the expected rev-
enues from selling the harvested crops and the production costs incurred during
the entire sequence of operations required for cultivation [13].

The mathematical formulation of the problem is as follows:

E Ty E az,j, § Zi,1,1

i€[m] j€ln 1€[uy]
- Z Z Z @i,j,k Z Cij,l Z Yi kot
i€[m] k€[q;] j€[n] 1€[uy] te€[si n:fikl
s.t.
Z Zai,jl Z ziag < H,
i€[m] j€[n] l€]uy)
Z @i,j,k—1 Z Zik—1,0
jEn leluy] Vi e [m]’ I c [2qz])
Z Qi g,k Z Zik, =
J€E[n] l1€[uy]
Z Z Z @i,j.k Z Cijl Z Yiklt +FC =B,
i€[m] kelqs] j€[n] 1€[uy] t€lsinfikl
Zikl S Z i gk Mgl Z Yi k1t
J€[n] telsik:fi k]

Vi€ [m], k€ [ai], 1€ [ujin),

SN aijkvines <1, Vi€ n], L€ [uy], t €[0T,
i€1(jt) kelai]

Z Z Zai,j,k Zyzklt <w, Vtel0:T],

i€[m] jEI(j,t) kE€[qs) leluy]
Yikie €10,1}, Vie [m], k€ [q], 1 € [ujjim], t € [sir:firl,

Zigy >0, Vie[m], kelg], € ujnl

The formulation uses the following notation. The integer m denotes the total
number of candidate crops, and n denotes the total number of tool types required
across all agricultural operations. For each tool type j € [n], u; represents the
number of identical tools of that type available. Each crop ¢ € [m] requires a
sequence of ¢; operations, indexed by k € [g;], and j[i, k] denotes the index of
the tool type required for the k-th operation of crop ¢. The planning horizon is
discrete and has length T, with time indexed by ¢ € [0:T]. For each crop i and
operation k, the interval [s; i, fi x] specifies the admissible time window during
which the operation must be executed.

The parameter H denotes the total number of hectares available for cultivation.
For each crop i, 7; represents the expected revenue per hectare. The binary

12



parameter a;;j equals 1 if tool type j is required for the k-th operation of
crop 4, and 0 otherwise. The parameter h; ;; denotes the number of hectares
that tool [ of type j can process per unit time when assigned to crop ¢, while
ci,j,1 denotes the cost per unit time of using that tool. Fixed cultivation costs
are captured by FC, and B denotes the total budget available. The set I(j,t)
contains the crops whose operations requiring tool type j may be active at time
t. The parameter w denotes the number of identical tractor machines available.

The decision variables consist of binary variables y; ,;:, which take value 1
if tool I of type j[i, k] is assigned to the k-th operation of crop i at time ¢
and 0 otherwise, and continuous variables z; 1 ;, which represent the number of
hectares processed by tool [ for the k-th operation of crop i.

The optimization model maximizes total net profit, defined as the difference
between cultivation revenues and operational costs. For each crop i, revenue is
computed as the expected return per hectare multiplied by the cultivated area,
which is fixed by the first operation and enforced to remain identical across
all subsequent operations of that crop. The first constraint ensures that the
total cultivated area does not exceed the available farmland H. The second
constraint enforces inter-operation consistency by requiring that the number of
hectares assigned to the first operation of a crop is equal to the number assigned
to each subsequent operation, such as ploughing, seeding, and harvesting. The
third constraint imposes a budget limitation, ensuring that the total variable
cultivation costs together with the fixed costs F'C do not exceed the available
budget Bj; although not strictly required for feasibility, this constraint is often
imposed as an equality to allow fair comparison between solutions with identical
expenditure levels.

The fourth constraint links the continuous cultivated-area variables to the binary
assignment variables and tool productivity, ensuring that each crop operation
receives sufficient time allocation for a feasible crop—operation—tool assignment.
The fifth constraint restricts each tool to be assigned to at most one operation
at any given time period. The sixth constraint limits the total number of si-
multaneously active tool-tractor pairs at any time ¢ to not exceed the available
number w. The seventh constraint enforces the binary nature of the assignment
variables, while the final constraint imposes non-negativity on the continuous
variables representing cultivated hectares.

2.5 Optimal Power Flow and Unit Commitment

Optimal Power Flow (OPF) determines the most efficient way to distribute
electricity in a power grid while minimizing costs and satisfying constraints.
Unit Commitment (UC) determines the optimal schedule for power generation
units to meet demand at minimum cost (cf. [47]).
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Three main classic ML methods are used in optimal power flow and unit com-
mitment. Namely, Quadratic Programming (QP), which is used for OPF with
quadratic cost functions. MIP is used for Unit Commitment with binary vari-
ables like on/off states of turbines in power plants or when to use one source of
power production, like solar, and stop using another source of power production,
like hydropower. Deep Reinforcement Learning (DRL) is used for real-time OPF
and UC in dynamic environments, like when the power plants and the trans-
mission grid have multiple Internet of Things Sensors that are sending data
regularly (cf. [43]).

OPF (economic dispatch). This problem is introduced as

min C = Z(cin +d; P; +e;)
i=1

s.t. Z P, =D,

=1
P < P < PP for all i € [n],

where C is the total power generation cost, P; is the power output of the genera-
tor i, ¢;, d;, e; are cost coeflicients, and D is the total power demand. Moreover,
Pmin and PMaX are the minimum and maximum power outputs of the genera-
tor i. The demand-supply balance constraint (the first constraint) ensures
that the total power generated meets the total demand exactly, thereby main-
taining the stability of the power system. The generation limits constraint
(the second constraint) guarantees that power generation stays within safe and
efficient operational limits.

14



OPF (AC-OPF). This problem is introduced as

min Z (CiP;i + dinJ‘ + 6i)
iEN,
S.t.

P, =F; Z (A”Ej — Bl‘ij) + F; Z (Aiij + B”EJ) , VieN \ {5}7

JEN JEN
Qi =Ei Y (AyF;+ ByE)) — F; Y (AijEj — BiFy), Vi€ Ny,
JEN JEN

PMr < P, < PMX, Vie N,

min . max .
g,i < QQ# < g,i Vi€ Nga

|Sk| <SP, Vk € N,

Qlcl,lzm S Qc,i é Qmax Vl S Nca

c,i
Tmin < T, < TReX, Yk € Ny,
‘/imin < ‘/1 < ‘/irnax’ Vi € N.

In the formulation of the OPF problem, P; and @Q; denote the active and reactive
powers at node ¢, while P,, and 4, represent the active and reactive power
generation at node i. The voltage magnitude at node i is denoted by V;. The
quantities G;; and B;; are the real and imaginary parts of the (i, j)-th element
of the nodal admittance matrix, whereas E; and F; are the real and imaginary
components of the nodal voltage at node i. The coefficients a;, b;, and ¢;
represent the cost parameters of the i-th generator. The parameter IV, gives
the total number of PQ nodes, and N, is the set of branches with switchable
shunt capacitors or reactors. The line flow in branch ¢ is denoted by .S;, and
T; indicates the tap setting of transformer branch ¢ in per unit. The reactive
power of the shunt capacitor or reactor at bus i is represented by Q.,. The set

N‘l}‘;jq contains those PQ buses at which voltages violate their prescribed limits,

while Ngg‘ represents the buses where reactive power generation exceeds its

bounds, and N 39‘2“ includes the branches in which apparent power flows violate
their limits. The set N denotes all buses in the system, N; refers to transformer
branches with tap settings, N, is the set of all branches, and N, is the set of
generator buses. Finally, P, denotes the real power generation at the slack bus,
expressed in per unit.

15



UC. This problem is formed as

T
min C:Z

t=1 1

n
s.t. Z Py, > D, forallte [T],

(cittir + 8;vit + fiPit)
1

n

i=1
ui € {0,1}, vz €{0,1} forall¢t e [T] and i € [n],

where C' is the total cost over time horizon T, u; is a binary variable indicating
if generator 4 is on at time ¢, v; is a binary variable indicating if generator
1 is started at time ¢, and P;; is the power output of the generator i at time
t. Moreover, c¢;, s;, f; are cost coefficients for operation, startup, and fuel, re-
spectively, and D, is the power demand at time t. The demand fulfillment
constraint (the first constraint) ensures that total generation meets or exceeds
demand at every time period. The operational and startup status con-
straints (the second constraint) define the binary nature of generator statuses,
capturing operational decisions such as starting up or shutting down generators.

2.6 Ancillary Services and Water Pricing Hydropower
Dynamic Programming

This section introduces three optimization problems of central importance to
water—energy systems: Water Pricing (WP), Hydropower Optimization
(HO), and Ancillary Services Optimization (ASO). These problems ad-
dress the efficient management of water resources, the determination of econom-
ically and socially sound pricing structures, the maximization of hydropower
generation value under physical and environmental constraints, and the provi-
sion of essential grid stability services. All three formulations naturally exhibit
an inter-temporal structure and are most naturally posed within a dynamic
optimization or dynamic programming framework, in which decisions and sys-
tem states evolve over a discrete planning horizon ¢ € [T] and state-transition
constraints enforce physical conservation laws. For further background and ap-
plications, see [4].

In the water pricing model, Q4(p) and Q4(p) denote, respectively, the demanded
and supplied quantities of water at price p, and C(Qs(p)) denotes the total cost
of supplying quantity Qs(p). The resulting welfare function therefore follows
the standard surplus formulation, defined as the difference between aggregate
willingness-to-pay and supply cost.

In the hydropower optimization model, the generation function g(Qy, H) rep-
resents the electrical power produced as a function of turbine discharge Q); and
hydraulic head Hy, while the storage balance constraint enforces water conser-
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vation across time. The hydraulic head H; is fully determined by the reservoir
storage level through the functional relationship H; = f(.S:).

In the ancillary services optimization model, the cost function ¢(Qy, R;) cap-
tures efficiency losses or opportunity costs associated with the simultaneous
provision of energy and reserve capacity. The index set J denotes the collection
of hydropower units contributing to system-wide ancillary services, and the final
constraint enforces aggregate frequency regulation requirements at the system
level.

WP. This aims to determine optimal tariffs for water resources, balancing eco-
nomic efficiency, social equity, and environmental sustainability. Proper water
pricing signals scarcity, influences water usage patterns, and ensures the alloca-
tion of water resources to their highest-valued uses. This problem is formulated

s Qa(p)
max, Wi(p)= / D_l(Q) dq — C(Qs(p))

0
s.t. Qa(p) < Qs(p), for all p,
Pmin S p S Pmax;

where W(p) is social welfare, D~!(q) is inverse demand function (marginal
willingness-to-pay), C(Qs) is the cost of supplying water Qu(p), Qs(p), and
demand and supply at price p. Moreover, pni, denotes the minimum allowable
price, typically reflecting policy constraints or regulatory standards ensuring
affordability or maintaining social equity. pmax denotes the maximum allowable
price, ensuring economic fairness or political acceptability, protecting consumers
from excessively high pricing, which could be socially or economically disrup-
tive. The first constraint is the demand-supply balance constraint, which
ensures water resource sustainability by not exceeding available supply and pre-
venting resource overconsumption, promoting long-term availability. The second
constraint is the price bound constraints, ensuring social equity and afford-
ability (the lower bound pp,in) and protecting consumers from excessively high
costs (the upper bound pyax)-

HO. This involves determining the best operating strategy for hydropower fa-
cilities to maximize electricity generation or economic returns, given constraints
such as reservoir storage limits, inflow uncertainty, environmental regulations,
and downstream water usage needs. HO can be formulated as

T
giaéi Zﬁt - 9(Qr, Hy)

Se
s.t. St+1 =S +4+1;—Q,—FE;, forallte [T],
Smin < St < Smax, for all t € [TL
Qmin < Qt < Qma)m for all t € [T‘]7
Qt > Qenva for all t € [T],
H, = f(Sy), for all ¢t € [T],
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where @, is the water release at time ¢, S; is the reservoir storage volume at time
t, I; is the reservoir inflow at time ¢, F; is the evaporation or losses at time ¢,
9(Qq, Hy) is the power generation function, and 7 is the electricity price at time
t. The reservoir storage balance constraint (the first constraint) maintains
the physical continuity of water and ensures conservation by accurately account-
ing for inflows, releases, and losses. The reservoir storage limits constraint
(the second constraint) ensures the reservoir operates safely by preventing struc-
tural risks associated with overfilling or excessive depletion. The generation
limits constraint (the third constraint) guarantees operational feasibility and
protects power-generating equipment from potential damage or inefficiencies.
The downstream water usage constraint (the fourth constraint) secures
the minimum required environmental flows or meets downstream agricultural
and municipal water needs. Lastly, the hydraulic head definition constraint
(the fifth constraint) represents the relationship between reservoir storage levels
and hydropower production capacity, ensuring accurate computation of gener-
ated electricity.

ASO. Hydropower plants can provide ancillary services—such as frequency reg-
ulation, spinning reserve, and voltage control—to ensure grid stability. ASO
involves determining optimal operational adjustments of hydropower facilities
to maximize grid reliability and economic returns without jeopardizing water
usage obligations. This problem can be formulated as

T

max > R — ¢(Qu, Ry))]
t=1
s.t. Sir1 =8+ 1 —Qr — E;, foralltelT],
Qmin S Qt + Rt S Qmax for all ¢ S [T]7
[T]
[T]

0 < Ry < Rpax, for all t € [T,
> R;; > FRy, for all t € [T],
JjeJ

where R; is the ancillary service provided at time ¢, p; is the market price for
ancillary services at time ¢, ¢(Qy, R:) is the cost of ancillary service adjust-
ments, Rpax 1S the maximum ancillary service capacity, F'R; is the required
frequency regulation at time ¢, and J is the set of hydropower plants or units.
The reservoir continuity constraint (the first constraint) ensures accurate
tracking and consistent management of reservoir storage, effectively capturing
water availability over time during the provision of ancillary services. The op-
erational discharge limits constraint (the second constraint) safeguards the
operational feasibility of the plant and protects its infrastructure by restricting
allowable adjustments to the base water discharge levels necessary for ancillary
service provision. The ancillary service capacity constraint (the third con-
straint) guarantees that ancillary services remain within realistic operational
boundaries, dictated by the turbine capacities and grid specifications. Finally,
the system stability constraint (the fourth constraint) ensures that sufficient
frequency regulation capacity is provided to meet grid stability requirements,
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thus maintaining the reliability and security of the power system.

2.7 Optimization-Based Bidding Strategy for HPP in En-
ergy and Ancillary Markets

In this subsection, we present the optimization model developed by Perekhodt-
sev and Lave [36], which addresses efficient bidding strategies for hydropower
plants participating in joint energy and ancillary services markets. The objec-
tive of the model is to maximize the expected revenue of a hydropower producer
by optimally distributing available water resources between energy generation
and reserve provision, while adhering to physical and market constraints. The
formulation explicitly incorporates reservoir dynamics, turbine output limits,
and temporal variations in both energy and ancillary service prices.

The optimization problem to maximize the hydro profit is formulated as follows
(using a discrete-time approximation over N intervals of size At):

N
max Z YDk At
Yk
k=1
s.t.
0< Yk < Ymax; Vk,
Smin S Sk S Smax Vk7

SN = ST, ST € [Smin7smax]7

where y;, denotes the hydropower plant’s output in interval k, ypyax is the max-
imum generation capacity, and py is the energy market price at interval k. The
reservoir storage s is constrained between Spi, and Spmax, and the terminal
storage level sy = s is fixed within this range.

Over any interval [k1, k2] C [1, N] in which the reservoir constraints are non-
binding, the optimization problem simplifies to:

k2
max At
e Z YkPk
k=k1
s.t.
Ogykgymaxa k1§k§k27
]CQ k2
> Uk At <sp, — sk, + Y ek At = Spy gy,
k::k‘l k:kl

where S, ,) is the total volume of water available for generation over the
interval [kq, k2], and ey represents the natural inflow during interval k. Within
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such an interval where the storage constraints are not binding, the optimal
solution results in a constant water shadow price y;. Conversely, if the reservoir
constraints are binding at time step k, then y, = py, as shown in [17].

The outflow from the reservoir is given by:
Tk =Yk — ek,

under the assumption that ymax is larger than sup |ex|, ensuring that spillage
does not occur. Given an initial reservoir level sg, the reservoir level at any time
step k evolves according to the balance equation:

k
sk:so—ZfiAt.

=1

Ancillary services provision by river dams Ancillary services such as reg-
ulation and spinning reserve can be provided by hydroelectric power plants due
to their fast ramping capability and operational flexibility. Consider a hydro
unit that participates simultaneously in the energy, regulation, and spinning
reserve markets over a time interval [k, k2]. Let yj denote the energy output,
r the regulation capacity, and si the spinning reserve provision, priced at py,
Dr.k, and pg i, respectively.

The profit maximization problem over [kq, ko], assuming that the reservoir ca-
pacity constraint is not binding, can be formulated as

ko
max +7r +s At
e kZ}; [yk:pk EPr.k kps,k]
=R1

subject to: 0 < yx < Ymax, Vk,
0 <7k <7Tmax, Vk,
0 < sk < Smax, Vk,
Yk + 7k + Sk < Ymax, VK,
Tk + Sk < Smax, VK,

Yk > T, VK,

ko ko

Z Yk At < Sk, — Sky T Z er At = S[klxk2]'
k=Fk; k=k1

The first three constraints enforce the physical upper and lower bounds on gen-
eration, regulation, and spinning reserve. The fourth constraint guarantees that
the sum of energy production and ancillary service allocations does not exceed
the total generator capacity. The fifth constraint ensures that the combined
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provision of regulation and spinning reserve does not exceed the plant’s spin-
ning reserve capability. The sixth constraint maintains enough headroom for
downward regulation by requiring the energy output to exceed the regulation
allocation. Finally, the last constraint enforces the water balance: the total
water released for energy production during [k1, ko] must be less than or equal
to the available water, which includes initial storage sy, , final storage s,, and
cumulative natural inflow eg.

In the referenced study [36], they assume Spyax = Ymax, reflecting the operational
capability of hydro units to ramp up to their full capacity within 10-15 minutes.
They also impose rmax < 0.5 Ymax to account for the requirement that regulation
capacity must allow for symmetric upward and downward movements. Further-
more, their analysis is based on empirical data from the New York Independent
System Operator (NYISO), where it was observed that energy, regulation, and
reserve prices satisfy p(t) > p,-(t) > ps(t) > 0 for more than 95% of the operating
hours in the study period.

2.8 Demand Aggregation and Virtual Power Plant Oper-

ation

Demand Aggregation (DA) and Virtual Power Plant (VPP) Operation are two
critical approaches in modern energy management, enhancing operational flex-
ibility and economic efficiency within power systems. DA combines individual
consumer demands or production units into a unified, manageable energy profile,
enabling effective market participation and optimized energy utilization. VPP
Operation coordinates distributed energy resources to function collectively as
a single, flexible power plant, optimizing performance by balancing generation,
storage, and flexible demand.

DA. This involves grouping multiple distributed energy consumers or producers
to create a single, manageable load or generation profile. This aggregation allows
efficient energy market participation and enhanced operational flexibility. This
problem can be formulated as The mathematical formulation can be stated as:

T
min C = Z(pt - L3®8)

t=1
n
st L=y, for all t € [T,
_ i=1
[ < gy <imex for all i € [n], ¢ € [T,
where C' is the total aggregated energy cost, p; represents the energy price at

time ¢, and L;®® is the aggregated load at time ¢. The decision variable l;; is the
individual load for consumer i at time ¢, bounded by minimum and maximum
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and

min
Z'L'

allowable consumption
straint (the first constraint) ensures accurate aggregation of individual loads
into a single manageable profile. The individual load limits constraint (the
second constraint) guarantees that each consumer operates within realistic and
predefined consumption limits.

max
li

, respectively. The aggregation con-

VPP Operation. This coordinates diverse distributed energy resources
(DERSs) such as renewable generators, storage units, and demand response to
operate collectively as a single flexible power plant. The goal is typically to
maximize economic returns or minimize costs while satisfying technical and op-
erational constraints. This problem can be formulated as:

T
max R = Z (ptGyPP — ctEyPP)

t=1
st.  GYPP = Zgjt, for all ¢t € [T,
j=1
EYPP = Zekt, for all t € [T7,
_ k=1
g™ < gje < g, for all j € [m], t € [17,
e <epy < e, for all k € [¢], t € [T],

where R is the total operational revenue, p, represents market prices at time ¢,
GYFF and EYFF are the aggregated generation and energy consumption at time
t. Variables g;; and ey represent generation and consumption of DER j and
storage or flexible load k, respectively. The aggregation constraints (the first
and second constraints) ensure accurate aggregation of distributed generation
and flexible energy consumption. The operational limits constraints (the
third and fourth constraints) guarantee the DERs and loads operate within their

specified minimum and maximum technical limits, maintaining feasibility and
reliability of the VPP.

2.9 Summary of Application Models

The following table provides a high-level overview of the optimization prob-
lems discussed in Section 2. These formulations demonstrate the diversity of
mathematical structures—from simple Linear Programming to complex Mixed-
Integer Nonlinear Programming—that serve as the foundation for the learning-
to-optimize methods proposed in this work.
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Table 1: Summary of Optimization Problems and Literature References.

Problem Domain Model Type Objective Refs.
OR

Production Planning LP Maximize Profit [15]
Portfolio Optimization CNLP Minimize Risk/Variance [15]
Knapsack Problem DP/ILP Maximize Item Value [15]
Agriculture

Production Scheduling MILP Minimize Resource Cost [13]
Optimal Crop Selection MINLP Maximize Cultivation Profit  [13]
Energy Systems

Economic Dispatch QP/NLP Minimize Generation Cost [47]
AC-OPF NLP Minimize Total System Cost  [43]
Unit Commitment MILP Minimize Startup & Ops Cost [47]
VPP /Demand Aggregation LP Minimize Operational Costs  [43]
Water—Energy

Water Pricing (WP) NLP /Integral Maximize Social Welfare [4]
Hydropower Opt. (HO) DP/NLP Maximize Energy Revenue [4,17]
Ancillary Services (ASO) MILP/DP Maximize Stability Returns  [4, 36]
Bidding Strategy LP/NLP Maximize Joint Revenue [36]

While the models above capture the physical and economic complexity of agri-
culture and energy, their solution requires specialized software architectures
capable of handling non-convexities and large-scale discretization, which are
reviewed in Section 3.

3 Existing Software

While general-purpose optimization solvers provide the numerical backbone for
many large-scale problems, the specific requirements of energy systems—such
as physical network structures and temporal coupling—have motivated the de-
velopment of specialized frameworks. The general-purpose solvers summarized
in Table 2 represent the state-of-the-art in numerical optimization, each special-
izing in distinct mathematical structures:

e Gurobi and CPLEX: Gurobi [16] and IBM ILOG CPLEX [21] are the industry
standards for Linear Programming (LP) and Mixed-Integer Linear Pro-
gramming (MILP), essential for large-scale Unit Commitment (UC).

e Ipopt: For large-scale Nonlinear Programming (NLP), Ipopt [44] imple-
ments a primal-dual interior-point method, serving as the de facto choice
for local AC-OPF studies.

e BARON: The Branch-And-Reduce Optimization Navigator [40] is designed
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for non-convex Mixed-Integer Nonlinear Programs (MINLP), providing
global optimality guarantees.

e HiGHS: A high-performance open-source alternative, HiGHS [20] provides
robust serial and parallel solvers for LP and MILP.

e SCIP: The SCIP Optimization Suite [7] is a versatile framework for Con-
straint Integer Programming and MINLP, serving as a primary vehicle for
research into ML-assisted algorithmic components.

Despite their strong theoretical foundations, these solvers often face scalability
challenges when applied to large-scale, highly non-convex, or mixed discrete—
continuous problems such as hydropower scheduling and integrated energy sys-
tem optimization. Consequently, recent research has focused on augmenting
exact classical solvers with ML techniques—rather than replacing them—to im-
prove solver components such as branching, node selection, and cut generation.
Comprehensive surveys [24] demonstrate that these learning-assisted branch-
and-bound frameworks can significantly accelerate convergence while preserving
global optimality guarantees, particularly for MILP and MINLP problems.

Table 2: Capabilities of existing optimization solvers for problem classes dis-
cussed in Sections 2—4

Solver LP ILP MILP NLP MINLP CSO /DP

Gurobi Vv v v v
CPLEX v v v - - v
HiGHS v v v - -
Ipopt - - - v - -
BARON v v v v v -
SCIP v v v v v v

The remainder of this section reviews energy-specific optimization solvers. Un-
like general-purpose software, these tools embed power-system physics, uncer-
tainty, and market mechanisms directly into their mathematical formulations,
enabling scalable and reliable solutions to large-scale energy problems.
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3.1 Power Flow and Grid-Centric Solvers

The following subsubsections review specialized tools designed to handle the
nonlinear physics of power networks, ranging from high-fidelity transmission
models to convex relaxations and distribution-level agent simulations.

3.1.1 Transmission-Level Solvers: MATPOWER and Related Tools

MATPOWER [49] is an extensively utilized open-source toolbox for steady-state
power system analysis and optimization. Designed primarily for transmission-
level studies, it provides native support for solving both AC and DC Opti-
mal Power Flow (OPF) problems by explicitly embedding nonlinear power flow
equations into the optimization framework. In particular, MATPOWER primarily
addresses AC-OPF problems of the form

Pq}gil}m;gcg(f’g)’ (8)
g

where P, and ()4 represent the active and reactive power outputs of generator
g, V and 0 denote the voltage magnitudes and phase angles at all buses, and
Cy(-) is the generation cost function. This optimization is subject to nonlinear
nodal power balance equations derived from Kirchhoff’s laws, generator active

and reactive capacity limits, voltage magnitude constraints, and transmission
line thermal limits.

The resulting optimization problem is a large-scale, sparse nonlinear pro-
gram (NLP). MATPOWER solves this problem using a Newton-based primal-dual
interior-point method known as the MATPOWER Interior Point Solver (MIPS). The
algorithmic foundation of MIPS is detailed in [45], which presents a primal-dual
interior-point method specifically tailored for the optimal power flow dispatch.
The solver employs a pure-solver implementation that avoids the overhead of
commercial modeling environments, utilizing a predictor-corrector mechanism
and a direct sparse linear solver to handle the KKT (Karush-Kuhn-Tucker) con-
ditions efficiently. This specialized implementation is what allows MATPOWER to
maintain high performance even as the network scale increases. MIPS achieves
high computational efficiency by exploiting the sparsity and structured Jacobian
and Hessian matrices induced by the network admittance topology, substantially
reducing computational cost relative to generic NLP solvers applied to power
grid problems.

The principal strength of MATPOWER lies in its high-fidelity representation of AC
power system physics. By directly solving the full nonlinear AC-OPF formula-
tion—rather than relying on convex relaxations—it produces solutions that are
feasible with respect to voltage, power flow, and network constraints, albeit with
local optimality guarantees inherent to nonconvex optimization. This level of
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physical accuracy makes MATPOWER an essential tool for transmission planning,
congestion management, and reliability studies where precise modeling of grid
behavior is critical.

3.1.2 PowerModels. jl and Convex OPF Relaxation Frameworks

PowerModels. j1 [11] is a Julia-based modeling framework that generalizes OPF
formulations and automatically generates multiple mathematical representa-
tions of the same physical problem. Rather than prescribing a single solution
approach, PowerModels. j1 enables systematic comparison of nonlinear, convex-
relaxed, and hybrid formulations for AC power flow optimization.

To address the inherent non-convexity of AC power flow equations,
PowerModels. j1 implements several convex relaxation techniques. One widely
used approach is the second-order cone programming (SOCP) relaxation, which
is typically derived from the bus injection model. In this formulation, bilinear
voltage product terms are relaxed into rotated second-order cone constraints,
yielding a convex approximation that can be solved efficiently using modern
conic solvers. While computationally attractive, this relaxation may become
weak for meshed transmission networks or under heavy loading conditions.

To improve tightness, PowerModels. j1 also supports the quadratic convex (QC)
relaxation, which applies McCormick envelopes to bilinear voltage magnitude
terms and convex relaxations to trigonometric angle constraints expressed in
polar coordinates. The QC relaxation generally provides stronger bounds than
SOCP, at the cost of increased problem size and computational complexity.
In addition, PowerModels. jl integrates optimization-based bound tightening
(OBBT) procedures, which iteratively solve auxiliary optimization problems to
refine variable bounds. This bound tightening significantly improves relaxation
quality and reduces optimality gaps in global OPF analysis [30].

3.1.3 Distribution System Solvers: GridLAB-D and pandapower

Distribution networks differ fundamentally from transmission systems due to
radial topology, phase imbalance, and the presence of numerous heterogeneous
loads and distributed energy resources. As a result, specialized solvers are re-
quired to capture these characteristics accurately.

GridLAB-D is an agent-based simulation and optimization environment designed
to model large-scale distribution systems at high temporal and spatial resolu-
tion [32]. Each device—such as loads, photovoltaic units, storage systems, or
controllers—is represented as an autonomous agent governed by local physical
or behavioral dynamics. GridLAB-D employs quasi-static time-series (QSTS)
simulation to resolve interactions across time scales ranging from seconds to
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years. This framework is particularly well-suited for Volt—VAR optimization,
demand response coordination, and large-scale studies of distributed energy re-
source integration.

pandapower [41] is a Python-based framework that combines the power flow
capabilities of PYPOWER [25] with modern data analysis tools. It implements
accelerated Newton—Raphson algorithms with optional just-in-time compilation
to achieve eflicient power flow and OPF calculations. pandapower is designed for
automated studies of balanced distribution and transmission networks, making
it attractive for scenario analysis, network planning, and integration with data-
driven workflows.

3.2 Operational Scheduling and Stochastic Solvers

Moving beyond static grid snapshots, the following tools address the temporal
and uncertain nature of energy systems, ranging from unit commitment to multi-
stage stochastic scheduling.

3.2.1 MOST and Unit Commitment Solvers

The MATPOWER Optimal Scheduling Tool (MOST [48]) extends the steady-state
capabilities of MATPOWER [49] to include multi-period scheduling, market clear-
ing, and reliability assessment problems.MOST is specifically designed to address
Unit Commitment (UC) and related market dispatch formulations.

MOST formulates UC as a time-expanded mixed-integer optimization problem of
the form

T
minz Z (cqg,t + Sgvgt + foPyt),

t=1 geG

where ug ; is the binary on/off status, v, is the binary startup decision, Py ; is
the active power dispatch, and cg4, s4, fq are the fixed, startup, and variable cost
coefficients, respectively. The model is subject to inter-temporal constraints
including demand balance, generator ramping limits, minimum up and down
times, reserve requirements, and network constraints. The resulting large-scale
MILP captures the essential operational complexity of electricity markets and
power system scheduling.

3.2.2 Stochastic Dual Dynamic Programming (SDDP) and PySP

Many energy optimization problems, particularly those involving hydropower,
renewable generation, and long-term planning, are inherently stochastic. This
uncertainty motivates the use of decomposition-based stochastic solvers.
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Stochastic Dual Dynamic Programming (SDDP) is a specialized algorithm for
multistage stochastic optimization problems with convex substructure. It is
based on Bellman recursions of the form:

Vi(Se) = max {mg(Qr, St) + E[Vig1(Se41)] }

where V; represents the cost-to-go (value) function at stage ¢, Sy is the state
vector (e.g., reservoir storage levels), @; denotes the decision variables (e.g.,
water release or power generation), m; is the probability of a given scenario,
and g¢(-) is the immediate stage cost. The value function is approximated us-
ing cutting planes derived from dual information. By avoiding explicit enu-
meration of all scenarios, SDDP scales efficiently to long planning horizons and
high-dimensional uncertainty, making it the dominant approach for large-scale
hydropower scheduling [35].

The theoretical underpinnings and convergence properties of the SDDP algorithm
are rigorously analyzed by Shapiro [37], who provides a formal framework for
the method’s performance in multistage stochastic settings. By characterizing
SDDP as a sampling-based decomposition approach, Shapiro demonstrates how
the algorithm constructs lower-bound approximations of the cost-to-go functions
through the recursive accumulation of Benders cuts. This mathematical char-
acterization is particularly significant for energy applications as it addresses the
“curse of dimensionality” inherent in large-scale reservoir management, proving
that the algorithm’s complexity grows linearly with the number of stages—a
crucial property for the long-horizon scheduling problems discussed herein.

3.2.3 Energy System Planning Models

Energy system planning tools such as TIMES [26], MESSAGE [28], and 0SeMOSYS
[18] are designed for long-term capacity expansion and policy analysis over
multi-decade horizons [27]. Complementing these frameworks, 0SeMOSYS pro-
vides an accessible, open-source alternative designed to lower the barrier for
energy system modeling in developing regions. Unlike the more complex, data-
intensive proprietary models, 0SeMOSYS emphasizes a modular structure that
allows for the rapid integration of new technologies and policy constraints,
making it a standard tool for exploring long-term decarbonization pathways
and resource-constrained energy planning. These models typically solve large-
scale linear or mixed-integer linear programs that minimize discounted system
costs subject to technology availability, emissions constraints, resource limits,
and policy targets. Their strength lies in capturing cross-sector interactions and
long-term investment trade-offs rather than short-term operational detail.
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3.2.4 Agricultural Operations and Supply Chain Scheduling

While energy-sector software is primarily designed to address high-frequency
grid stability and short-term operational constraints, agricultural scheduling is
characterized by biological latency, seasonal labor availability, and strictly lim-
ited operational windows. These characteristics shift the modeling focus from
continuous, physics-based dynamics to phenological processes and resource-
constrained decision frameworks, as summarized in Table 3.

e Irrigation and Resource Management: The FAO-developed tools
CROPWAT [38] and AquaCrop [39] support irrigation planning based on
discrete-time soil water balance formulations driven by evapotranspira-
tion and rainfall dynamics. A canonical formulation tracks the root-zone
soil moisture deficit Dy as

Diy1 =Dy + ET.; — I, — RS" + DP,,

where ET, ; denotes crop evapotranspiration, I; is the applied irrigation

depth, R$T is effective rainfall, and D P; represents deep percolation losses.
Irrigation decisions are constrained to maintain soil moisture within an
admissible regime,

0 < D, < RAW,

where RAW (readily available water) defines the threshold beyond which
crop water stress occurs. This decision structure is analogous to energy
storage management, with soil moisture acting as a state variable, albeit
evolving over substantially longer time scales.

¢ Farm Management Information Systems (FMIS): Platforms such
as AgWorld [3] and Trimble Ag Software [42] are widely used for opera-
tional planning and scheduling at the farm level. The underlying decision
problems can be abstracted as resource-constrained scheduling models.
Let A denote the set of agricultural activities and K the set of resources.
A standard formulation introduces binary variables x; ; € {0, 1} indicating
whether activity ¢ € A starts at time ¢, with resource feasibility enforced

through
t

>orik Y. @ir <Ry, VEEK teT,

€A T=t—d;+1

where 7; 1 is the requirement of resource k by activity 4, d; is the activity
duration, and Rj: denotes the availability of resource k at time ¢. The
objective typically minimizes makespan or operational cost, subject to
weather-dependent field accessibility constraints.

¢ Bio-Economic Planning: For long-term, multi-period decision mak-
ing, bio-economic farm planning models address large-scale optimization
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problems that jointly consider crop rotation, soil quality, and economic
performance [22], consistent with the agricultural planning scope summa-
rized in Table 3. A representative formulation maximizes the discounted
net present value over a planning horizon Y,

Y

max Y BYY " (PuyYey — VCey) Acy, 9)
Yy

=1 ceC

subject to inter-temporal crop rotation constraints
Ac,y S ZTj,c A]ﬂ,yfla (10)
jec

where A., denotes the land area allocated to crop c in year y and 7} .
encodes admissible crop succession rules. These constraints ensure agro-
nomic feasibility while linking operational decisions to long-term soil and
economic outcomes.

Table 3: Cross-Sector Mapping of Optimization Software and Applications

Sector Representative Tools Primary Optimization
Focus

Energy MATPOWER, PowerModels.jl, | Physics-based constraints,

PySP grid stability, and stochas-

tic power flow.

Agriculture | CROPWAT, AgWorld Biological growth cycles,
labor logistics, and multi-
period planning.

3.3 Summary of Solver—Algorithm Mapping

Table 4 summarizes the principal energy-specific optimization frameworks dis-
cussed in this section, highlighting their underlying algorithmic paradigms and
the classes of problems they are designed to address. A clear methodological
stratification emerges. Physics-based solvers such as MATPOWER and pandapower
focus on accurate steady-state representations of power flow, prioritizing feasi-
bility with respect to network constraints. In contrast, PowerModels.jl em-
phasizes formulation flexibility and convex relaxation, enabling systematic ex-
ploration of tractability—accuracy trade-offs in nonconvex OPF problems.

At the distribution level, GridLAB-D departs from centralized optimization al-
together, adopting an agent-based and quasi-static time-series paradigm that
captures device-level dynamics and control interactions across multiple time
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scales. For inter-temporal and market-oriented problems, MOST and PySP [46]
formulate large-scale mixed-integer and stochastic programs that explicitly rep-
resent commitment decisions, uncertainty, and non-anticipativity constraints.
Finally, long-term planning tools such as TIMES, MESSAGE, and 0SeMOSYS ab-
stract away short-term network physics in favor of macro-scale investment and
policy analysis.

This diversity of solver architectures reflects the structural heterogeneity of en-
ergy optimization problems, spanning nonlinear continuous physics, discrete
operational decisions, and stochastic dynamics. While these tools are highly
specialized and effective within their intended domains, their computational
performance can degrade for large-scale, highly nonconvex, or real-time appli-
cations. This observation motivates recent research on ML-assisted optimiza-
tion, which seeks to augment—rather than replace—these established solvers by
accelerating key algorithmic components such as initialization, branching, and
constraint handling.

Table 4: Energy-specific optimization frameworks and problem classes

Solver Algorithmic Paradigm Target Problem Classes
MATPOWER Newton-based PD-IPM AC/DC OPF, Feasibility
Powerlodels.jl NLP, SOCP, QC, OBBT AC-OPF Relaxations,

Benchmarking
. Distribution Dynamics,

GridLAB-D Agent-based, QSTS Volt-VAR

sandapower Newton-Raphson PF/OPF Automated Grid Analysis,
Planning

) Unit Commitment,
MOST Time-expanded MILP Market Dispatch
] . Hydropower,
SDDP Multistage Stochastic DP Stochastic Dispatch
PySP Progressive Hedging Srochastic UG,

Market Clearing
Capacity Expansion,
Policy

TIMES/MESSAGE  LP/MILP (Long-horizon)

31



4 ML Enhancement

The computational challenges associated with the problem classes introduced
above— namely integer nonlinear programs (INLP), mixed-integer nonlinear
programs (MINLP), combinatorial set optimization (CSO), and dynamic pro-
gramming (DP) formulations—are particularly pronounced in large-scale energy
system applications such as non-convex AC Optimal Power Flow (AC-OPF),
time-expanded Unit Commitment (UC), and multistage hydropower schedul-
ing. As discussed in the preceding sections, these problems combine nonlin-
ear continuous physics, discrete decision spaces with lattice or graph structure,
and, in many cases, inter-temporal or stochastic coupling. In particular, unit
commitment induces a temporal lattice structure through binary on/off deci-
sions across time periods, while multistage hydropower operation is naturally
expressed through dynamic or stochastic dynamic programming recursions. Op-
timal power flow problems, by contrast, are defined on the spatial graph of the
transmission network. While classical solution methods exploit problem struc-
ture to restrict otherwise intractable enumeration, their computational cost can
still grow rapidly with problem size and repeated solution requirements.

Throughout this work, we denote by p € R? the vector of exogenous param-
eters (e.g., weather data, price signals, demand profiles, renewable generation
levels, water inflows, fuel prices, or network states) that characterize a spe-
cific optimization instance. Accordingly, the objective function f(x;u) and the
constraint functions g(z;p) and h(z;p) are understood to be parametrically
dependent on pu.

In practical energy and agricultural system operation and planning, the same
underlying mathematical formulations—such as the INLP and MINLP prob-
lems defined in (2) and (4), or the CSO formulation in (6)—are solved re-
peatedly under varying realizations of p. Although each realization induces
a distinct numerical instance, the algebraic structure of the feasible sets Ciy,
Chi, and F remains unchanged. This repeated solution setting motivates the
use of learning-based methods, which treat p as an input feature vector while
exploiting structural regularities across instances.

The diverse optimization paradigms reviewed in this work—ranging from exact
mathematical programming solvers to learning-enhanced heuristics, reinforce-
ment learning, and generative models—exhibit complementary strengths and
limitations. Classical solvers provide strong feasibility and optimality guaran-
tees but may struggle with scalability and repeated-solution demands. Learning-
in-the-loop methods preserve solver correctness while accelerating critical algo-
rithmic components in parametric settings. Reinforcement learning and gener-
ative approaches, by contrast, trade formal guarantees for flexibility and scal-
ability in long-horizon or highly uncertain environments. Understanding these
trade-offs is essential for selecting appropriate solution architectures in large-
scale energy and agricultural applications.
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This repeated-solution setting has motivated the emergence of a learning-to-
optimize paradigm, in which ML and RL are employed to augment classical
optimization algorithms rather than replace them [19]. From this perspective,
learning methods are used to extract latent regularities across families of INLP,
MINLP, and CSO instances—such as recurring active constraints, typical integer
patterns, or frequently optimal subsets—that are not explicitly encoded in the
mathematical formulation but nonetheless govern solver behavior.

Rather than predicting solutions in isolation, learning-to-optimize approaches
intervene at specific stages of established algorithms, including warm-start
initialization for nonlinear solvers, branching and node selection in branch-
and-bound for mixed-integer problems, cut selection and bound tightening in
relaxation-based methods, or policy approximation in multistage stochastic dy-
namic programming. By guiding these algorithmic components using informa-
tion learned from previously solved instances with similar values of p, learning-
assisted methods aim to preserve the feasibility and optimality guarantees of
the original INLP, MINLP, and CSO formulations, while significantly reduc-
ing the computational effort required to navigate large discrete spaces, complex
nonlinearities, and long planning horizons.

In this sense, ML serves as a data-driven mechanism for uncovering and exploit-
ing structural regularities that are implicit in the combinatorial and algebraic
foundations of the optimization problems themselves, thereby complementing
the classical emphasis on structure-driven algorithm design developed in this
section.

4.1 Software with Learning in the Loop

The computational challenges associated with integer nonlinear programs
(INLP), mixed-integer nonlinear programs (MINLP), and combinatorial set
optimization (CSO) problems—particularly in large-scale energy system ap-
plications such as non-convex AC Optimal Power Flow (AC-OPF) and time-
expanded Unit Commitment (UC)—have motivated the integration of ML com-
ponents directly into classical optimization software. In this learning-in-the-
loop paradigm, learning-based models augment specific stages of established
solvers rather than replacing the underlying mathematical formulations or al-
gorithms [19].

In practical operation and planning, the same INLP, MINLP, and CSO formula-
tions defined in (2), (4), and (6) are solved repeatedly under varying exogenous
conditions, denoted by p, such as changes in demand, renewable generation,
inflows, prices, or network states. While each realization of p yields a distinct
numerical instance, the algebraic structure of the feasible sets Cj,, Cp;, and
F remains unchanged. Learning-in-the-loop methods exploit this repetition to
extract latent regularities that govern solver behavior.
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Throughout this section, ¢, v, and 0 are used to denote the learnable weights
and biases of the respective neural network architectures.

Neural warm-starting for nonlinear programming. Interior-point
solvers for nonlinear programming, such as those used for AC-OPF in MATPOWER
or Ipopt, generate a sequence of iterates {x(k)} converging to a Karush—Kuhn—
Tucker (KKT) point. Their convergence rate depends critically on the proximity

of the initial iterate z(®) to the optimal solution z*. In parametric settings where
successive instances differ primarily through slowly varying p, this sensitivity
can be exploited via data-driven initialization.

The Ipopt solver, based on the implementation described in [44], utilizes a
primal-dual interior-point filter line-search algorithm. This approach is partic-
ularly effective for large-scale nonlinear programs (NLPs) because it does not
require a penalty parameter for the objective function, instead using a “fil-
ter” to ensure progress toward both feasibility and optimality. Its robustness
in handling non-convexities has made it the de facto standard for solving the
physics-heavy equations of AC-OPF in a local optimization context.

A neural network fy is trained offline to approximate the parametric solution
mapping
x*(u) = argmin{ f(z; p) | g(a; u) =0, h(x;u) < 0}.
xr

At run time, the predicted solution

2 = fu(n)

is supplied as a warm start to the interior-point solver. Training data
{(ps, z¥)} Y, are generated using high-fidelity solvers, and the loss function com-
bines regression accuracy with feasibility penalties:

L(¢) =By |l1£5(12) — & ()13 + Ml max(0, ~(fo (1); )3 + nllg(fo (1); u)ll%]-

Here, A > 0 and n > 0 are penalty coefficients that balance regression ac-
curacy against satisfaction of inequality and equality constraints, respectively.
Such warm-starts significantly reduce iteration counts and factorization costs in
AC-OPF solvers [5,19]. Moreover, ¢ represents the vector of learnable weights
and biases of the neural network f,, while  denotes the optimization decision
vector. The functions g(x; u) and h(z; 1) represent the equality and inequality
constraints of the optimization problem, respectively. The coefficients A and
n are strictly positive penalty hyperparameters that weight the relative impor-
tance of feasibility satisfaction against regression accuracy during training.

Active constraint screening and set reduction. In large-scale energy op-
timization problems, only a small subset of inequality constraints is active at
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optimality. Let £ denote the full set of candidate inequality constraints. A
classifier Cy, is trained to estimate

Given a threshold 7, the predicted active set
Aprea = {i € €| Cy(p)i = 7}

is used to restrict the solver to a reduced constraint set, with lazy enforce-
ment preserving feasibility; this means that constraints predicted to be inactive
are initially omitted but are checked a posteriori and reintroduced if viola-
tions occur. This reduces problem dimension and accelerates NLP and MINLP
solvers [19]. Here, 7 serves as an index for individual constraints within the
candidate set £, and ¢ denotes the parameters of the classification network Ci.
The threshold 7 € [0, 1] is a hyperparameter that determines the aggressiveness
of the set reduction; higher values of 7 result in smaller, more computationally
efficient reduced sets at the risk of potentially excluding active constraints.

Learning-assisted branching and node selection for MIP. For mixed-
integer problems such as UC, solved via branch-and-bound, the dominant cost
arises from exploring the search tree 7. At each node n € T, a relaxation
provides a lower bound L,,, while the incumbent solution yields an upper bound
U. Learning-assisted approaches introduce a policy 7y that maps node features
¢(n)—derived from fractional variables, dual information, and bound gaps—to
branching or node-selection decisions,

mo(p(n)) € L.

Here, Z denotes the index set of integer decision variables eligible for branching
at node n. Training uses data from solved instances, either via imitation of
strong branching or RL. Classical safeguards remain intact, ensuring that global
optimality guarantees of the MILP or MINLP formulation are preserved [19].
In this context, 6 represents the parameters of the policy network 7y, while
the feature mapping ¢(n) extracts node-specific information such as variable
integrality gaps and dual values to inform the decision-making process.

Physics-guided neural networks for feasibility enhancement. Physics-
guided neural networks embed power system constraints directly into learning
objectives, producing near-feasible approximations for rapid screening or solver
initialization. Let F'(x; 1) = 0 denote the AC power flow equations and h(x; p) <
0 operational limits. A neural network fy predicts & = fs(1) and minimizes

L(¢) =E, [||f¢(u) — 2" (Wl + allF(fo(p); w13 + Bl max(0, A fo (1); )11 |-
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Such models improve feasibility and generalization relative to purely data-driven
regressors, while remaining complementary to classical solvers [5,19]. The pa-
rameters « and [ serve as regularization weights that penalize violations of
the physical power flow residuals and operational limits, respectively. By ad-
justing these weights, the training process can be tuned to prioritize physical
consistency over pure data-driven regression.

Learning-Based Prediction and Confidence-Aware Solver Integration.
Early learning-in-the-loop approaches for AC-OPF focused on directly predict-
ing optimal operating points using supervised learning, with the explicit goal
of accelerating repeated nonlinear solves. A representative example is the work
of Fioretto et al. [14], which trains deep neural networks to approximate the
parametric solution map

po xt(p)

for AC-OPF instances. Rather than replacing the optimization problem, the
learned predictor is used to provide high-quality initializations and feasibility
screening for classical solvers.

Building on this idea, Chen and Zhang [10] introduce control-confidence sets
to explicitly quantify the uncertainty of learning-based OPF predictions. In
their framework, the neural network outputs both a candidate solution &(u)
and a confidence region within which the true optimal solution is guaranteed to
lie with high probability. Classical optimization solvers are then invoked only
when the predicted confidence set fails to certify feasibility or optimality.

Mathematically, this approach augments the warm-start paradigm by learning
a set-valued mapping

po+ Xeont(p) with (1) € Xeont (1)

with high probability. This guarantees that solver acceleration does not com-
promise feasibility, thereby preserving the correctness of the underlying INLP
formulation while significantly reducing average solution time. These works ex-
emplify how learning models can be embedded into solver pipelines in a provably
safe manner, aligning closely with the learning-in-the-loop philosophy adopted
in modern power system optimization software.

4.2 Learning to Optimize and Heuristic Acceleration

The integration of data-driven parameterization into the combinatorial struc-
ture of optimization problems in energy and agriculture can be formalized using
the methodological framework of Bengio et al. [6]. In this framework, a family
of optimization problems is modeled as a distribution D over instances. Each
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instance Z ~ D is characterized by a triplet (f,C, ), where f denotes the objec-
tive function, C the feasible set, and u a vector of instance-specific parameters
such as demand profiles or weather conditions.

Within this setting, statistical models are employed to approximate computa-
tionally expensive decision rules that arise repeatedly during the solution pro-
cess. A prominent example is branching-variable selection in Branch-and-Bound
(B&B) algorithms for mixed-integer optimization. At any node n of the search
tree T, the solver must select a branching action a € A(n) from the set of
fractional candidate variables. While Full Strong Branching (FSB) produces
high-quality decisions by explicitly evaluating candidate branches, its computa-
tional cost is prohibitive for large-scale instances.

Heuristic acceleration formulates branching as a mapping 7y : ®(n) — a, where
®(n) denotes a feature representation of the node state, including local bounds,
objective coeflicients, and constraint activity. The parameters 6 are determined
by minimizing a loss function that approximates the expert FSB decision a*(n):

L) = Z Z loss(mg (®(n)),a*(n)) .

I~DneTr

Approximating this mapping using graph-based or feedforward function classes
yields branching decisions that are comparable in quality to FSB while main-
taining a computational cost similar to classical heuristics such as pseudocost
branching. Since these components are embedded within the B&B framework,
feasibility and global optimality guarantees of the solver are preserved. Such
approaches have been applied successfully to mixed-integer structures arising in
unit commitment and multi-period agricultural planning.

Beyond heuristic acceleration, recent work has developed a more formal treat-
ment of parameter selection within iterative optimization algorithms. Ochs et
al. [31] formulated algorithm parameter tuning as a bilevel optimization problem
of the form

géiél Ez.p [ﬁouter(xT(H;I),I)] st w1 = Folay, ), t€[0: T —1],

where Fy denotes the update mapping of an iterative optimization algorithm,
x; is the iterate at step ¢, and T is a fixed unrolling horizon. The outer loss
Louter measures solution quality or convergence speed. By differentiating the
unrolled dynamics {z;}}_, with respect to 6, gradients or subgradients can be
computed even when the underlying problem is nonsmooth, enabling systematic
tuning of step sizes, preconditioners, or proximal parameters while preserving
the structure of the original solver.

Subsequent work by Fadili, Sucker, and Ochs [12] established a PAC-Bayesian
framework for analyzing parameterized optimization algorithms. In this setting,
an algorithm is modeled as a random variable 8 ~ @ drawn from a posterior
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distribution over a hypothesis space ©. For bounded loss functions £(0,7) €
[0,1], the expected population performance satisfies, with probability at least
1 — § over the draw of a training sample S,

KL(Q|P) + log%
2|S] ’

Eo~q,z~p[l(0,1)] < EGNQ,ZNSWH,I)]“‘\/

where P is a prior distribution over © and KL(:||-) denotes the Kullback—Leibler
divergence. This bound characterizes the trade-off between empirical perfor-
mance on the training set and generalization to unseen problem instances.

Related results further demonstrate that restricting the hypothesis space © to
algorithm classes that satisfy structural invariances—such as equivariance under
affine or rotational transformations—reduces effective model complexity and
improves generalization across heterogeneous problem families [8]. Together,
these contributions provide a rigorous foundation for incorporating data-driven
parameter selection into optimization algorithms while maintaining stability and
robustness.

4.3 Ensuring Feasibility via Differentiable Layers

A persistent challenge in applying RL to physical systems is ensuring that con-
trol actions satisfy hard operational and physical constraints. Following the
framework introduced by Agrawal et al. [2], optimization problems can be em-
bedded as differentiable layers within a policy network. This is achieved by
viewing a constrained optimization problem as a mapping f() from parame-
ters 6 to an optimal solution z*.

Specifically, consider a convex optimization problem in the form:

x*(0) = argmin  f(z,0) st. g(z,0) <0, h(z,0)=0 (11)

T

Using the theory of disciplined parametrized programming (DPP), these layers
expose the solution map as a differentiable operator. During the backward pass
of the neural network, the gradient of the loss £ with respect to the input
parameters 0 is computed by differentiating through the Karush-Kuhn-Tucker
(KKT) optimality conditions:

oL oL dz*(6)
90 ~ 9z 90

(12)
The term %—””9* is obtained via implicit differentiation of the KKT conditions

at the optimal point. This construction enables gradients to be propagated
through the optimization solver during training, thereby guiding the learning
process toward feasible decisions.
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In effect, the RL agent learns a policy my(s) that outputs raw parameters 6.
These parameters are then passed through the differentiable layer to produce
an action a = x*(#) that is guaranteed to be a projection onto the feasible set
defined by system constraints, such as power flow limits in energy networks or
water balance and capacity constraints in irrigation systems. Consequently, fea-
sibility with respect to the underlying physical model is enforced by construction
rather than through penalties or post hoc correction.

4.4 Application: Feasibility-Optimized AC-OPF

In the specific context of power systems, Pan et al. [34] demonstrate the utility of
a ”prediction-and-reconstruction” approach known as DeepOPF. To solve the
non-convex AC-OPF problem efficiently, the framework exploits the physical
structure of the power flow equations to reduce the dimensionality of the learning
task.

Mathematically, let the optimization vector x be partitioned into independent
variables Zinq (e.g., active power generations P, and voltage magnitudes |V,| at
generator buses) and dependent variables zqep (e.g., reactive power generations
Qg4 and voltage angles §). The AC-OPF equality constraints, representing the
nodal power balance, can be viewed as a mapping gep = ¥(Zing,p). The
DeepOPF approach proceeds as follows:

1. Prediction: A deep neural network f, is trained to predict only the
independent variables:

Fina = fo(1) (13)

2. Reconstruction: The dependent variables £4o, are obtained by solv-
ing the power flow equations ¥(Zinq, ) = 0 using traditional numerical
methods (e.g., Newton-Raphson).

This hybrid approach ensures that the high-dimensional power-balance equality
constraints are strictly satisfied by construction. Furthermore, by predicting
only zinq, the number of output neurons in the DNN is significantly reduced,
which decreases training complexity and the volume of required data. To handle
the remaining inequality constraints (e.g., thermal limits on lines), the train-
ing loss function incorporates a penalty term based on a zero-order gradient
estimation to adjust the predicted Zj,q toward the feasible region:

L(¢) =By |[Eina — ahall® + XY max(0, by (i, 1) (14)
J
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where h; represents the operational inequality constraints. This ensures that the
model remains computationally efficient while providing high-quality, physically
consistent solutions for real-time grid operations.

4.5 RL as Solution Technique

In contrast to learning-in-the-loop methods, RL is employed as an approximate
solution technique for multi-stage and sequential energy optimization problems,
such as hydropower reservoir operation and long-horizon market bidding. These
problems are traditionally formulated using Dynamic Programming (DP)
or Stochastic Dual Dynamic Programming (SDDP), which rely on the re-
cursive Bellman equation to find the optimal value function V;(s;):

Vi(se) = geirjl{r(st, at) + YE[Vit1 (se+1)]}- (15)

While DP provides exact optimal policies, it suffers from the “curse of dimen-
sionality” as the state space S grows. RL addresses this by using deep neural
networks to approximate V' (s) or the policy 7(s), effectively acting as a Neural
DP solver that scales to complex systems. RL formulates these problems as a
Markov Decision Process (MDP) defined by the quintuple:

(87 AJ), T, 7)3

where S and A represent the state and action spaces, respectively. At any time
t, the state s; € S encodes system conditions (e.g., reservoir levels, current
demand), while the action a; € A represents a control decision (e.g., water
discharge, power setpoints). The state transition probability kernel p defines
the system dynamics, and r denotes the reward function capturing operational
profit or cost.

In this MDP context, the state s; is a composite vector s; = (x¢, u¢), where x;
represents internal system variables (e.g., current reservoir levels) and py rep-
resents the exogenous parameters (e.g., forecast inflows or demand) previously
defined in Section 4.1.

The discount factor v € [0,1) determines the present value of future rewards,
ensuring the convergence of the infinite reward sum. In this context, the no-
tation a; | s; denotes that the action selected is conditioned on the observed
state at time ¢, and mg(a¢|s¢) represents the stochastic policy parameterized by
the learnable weights 6, which is optimized to maximize the expected cumula-
tive reward. Policy-based methods parameterize a stochastic policy mg(als) and
optimize

J(0) =E,, lz 'ytr(st,at)l )
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with gradients
VoJ (6) = E [Volog moalse) Ay

Here, A, denotes an estimator of the advantage function, measuring the relative
quality of action a; compared to a baseline value at state s;.

Unlike classical DP, which requires an exhaustive sweep of discretized state
spaces, RL utilizes stochastic policies my and entropy-regularized objectives to
facilitate exploration of non-convex regions, significantly improving sample effi-
ciency in high-dimensional hydropower systems.

A key advantage of RL is its ability to incorporate nonlinear and nonconvex
physical relationships directly into the system dynamics. For example, hy-
dropower production may follow

P=n(Q,H)pgHQ,

without linearization, where n(Q, H) denotes turbine efficiency as a function
of discharge @ and hydraulic head H, p is the density of water, and g is the
gravitational acceleration constant. From a theoretical standpoint, RL policies
approximate solutions to Bellman equations, trading optimality guarantees for
scalability and modeling flexibility. Consequently, RL is often deployed in hybrid
architectures that combine policy learning with optimization-based feasibility
layers [19,23].

Relation to Learning-Based OPF and Sequential Decision Policies.
While RL is primarily used for sequential and multi-stage decision problems, its
conceptual relationship to learning-based OPF methods is increasingly recog-
nized. In particular, learning-based OPF predictors such as those proposed by
Fioretto et al. [14] and Chen and Zhang [10] can be interpreted as approxima-
tions of one-step optimal control policies conditioned on the system state.

From this perspective, static AC-OPF can be viewed as a single-stage Markov
Decision Process with deterministic transitions, whereas multi-period OPF, unit
commitment, and hydropower scheduling naturally induce multi-stage MDPs.
RL generalizes these approaches by learning policies

T ((Zt | St)

that map system states directly to control actions over time, without explicitly
solving a sequence of optimization problems at each stage.

However, unlike learning-in-the-loop OPF methods, RL does not generally pro-
vide feasibility or optimality guarantees for each action. As a result, recent
research emphasizes hybrid architectures in which RL policies generate candi-
date actions that are subsequently filtered or corrected by optimization-based
feasibility layers. In these hybrid architectures, the RL policy my(s;) acts as a

41



proposal distribution. The candidate action a; is passed to a projection opera-
tor Il¢(a:)—often implemented as a differentiable layer as described in Section
4.3—which solves a local quadratic program to find the nearest feasible ac-
tion a; € C before the reward r(s¢,a;) is calculated. This mirrors the role of
confidence-aware learning in static OPF and reinforces the complementary re-
lationship between RL and classical stochastic optimization techniques such as
SDDP.

4.6 Role of Generative AI

Beyond solver acceleration and policy learning, generative artificial intelligence
(AI) plays a complementary role in energy optimization workflows by supporting
scenario simulation, model exploration, and solution proposal. Unlike learning-
in-the-loop methods or RL policies, generative models are not embedded di-
rectly within the optimization algorithm. Instead, they operate at the interface
between data, models, and decision-making, providing structured inputs that
enhance stochastic optimization, robustness analysis, and human-in-the-loop
design.

Scenario generation for stochastic optimization. Many energy optimiza-
tion problems introduced earlier—such as stochastic unit commitment, hy-
dropower scheduling, and energy market bidding—depend critically on exoge-
nous uncertain parameters, collectively denoted by u (e.g., demand trajectories,
renewable generation, inflows, and prices). Classical stochastic optimization
approaches assume that p follows a known probability distribution or is repre-
sented through a finite scenario tree. Generative models provide a data-driven
mechanism to approximate this distribution.

Formally, let ;1 € R? denote the vector of uncertain parameters. A generative
model parameterized by 6 seeks to learn an approximation pg(u) to the un-
known data-generating distribution p(x) from historical observations {u;}Y .
Sampling from py yields synthetic scenarios

1) ~ po(p), Vs € [S],

which can be used as inputs to stochastic optimization problems such as SDDP
or scenario-based MILP formulations. Compared to handcrafted scenario trees,
generative models can capture complex temporal correlations, non-Gaussian
behavior, and extreme events, thereby improving stress testing and robustness
evaluation [19,23].

Model and formulation proposal. Generative Al can also assist in propos-
ing candidate optimization models, relaxations, or constraint formulations by
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learning from collections of previously solved problem instances. Let M de-
note a space of admissible optimization models or formulations (e.g., different
OPF relaxations, constraint subsets, or approximation levels). Given historical
pairs {(u;, M;)}, where M; denotes the formulation that performed well under
conditions pu;, a generative model can propose new candidates

MPEP ~ gp(M | ),

which can then be evaluated and validated using classical solvers. This approach
does not alter the mathematical structure of the optimization problem but ac-
celerates model selection and exploration in large design spaces, particularly in
planning and exploratory studies.

Solution proposal and human-in-the-loop decision support. Finally,
generative models can be used to propose candidate solutions or operating points
that serve as initial conditions or reference policies. For example, a generative
model may learn an approximate distribution over feasible or near-optimal so-
lutions,

x ~ qo(z | p),

which can be used to initialize optimization solvers, guide scenario analysis,
or support operator decision-making. Importantly, these proposals are always
subject to verification and refinement through exact optimization or feasibil-
ity checks, ensuring that operational constraints and safety requirements are
respected.

In all these roles, generative AI functions as a decision-support and model-
discovery layer rather than a replacement for mathematical optimization. Its
primary contribution lies in accelerating scenario exploration, enriching un-
certainty representations, and facilitating interaction between domain experts
and complex optimization software. When combined with learning-in-the-loop
solvers and RL policies, generative AI further enhances the efficiency, robust-
ness, and adaptability of large-scale energy optimization workflows [19,23].

Generative Models for Renewable Scenario Construction. A central
application of generative Al in energy optimization is the construction of re-
alistic stochastic scenarios for uncertain renewable generation. Chen et al. [9]
demonstrate that generative adversarial networks (GANSs) can be trained to
learn the joint spatiotemporal distribution of renewable power outputs directly
from historical data, without relying on explicit probabilistic assumptions.

Formally, let p; denote a time-indexed vector of renewable generation across
multiple locations. A generative model learns an implicit distribution pg(u1.7)
such that samples

(:ugg)avu’(;)) Nﬁ@
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exhibit the same temporal dynamics, spatial correlations, and extreme-event
behavior as historical observations. The integer d defines the dimensionality
of the uncertain parameter space, while 6 represents the parameters of the
generative model py. The index s denotes a specific realization out of the total
number of sampled scenarios S, and the subscript 1 : T in pi.7 denotes the
temporal sequence of parameters over a time horizon of T" steps. These generated
scenarios can be directly embedded into stochastic optimization frameworks,
including stochastic unit commitment, SDDP-based hydropower scheduling, and
robust planning models.

Compared to traditional scenario generation techniques based on paramet-
ric time-series models or copulas, generative models scale naturally to high-
dimensional settings and capture nonlinear dependencies across space and time.
Importantly, the generated scenarios remain external inputs to the optimization
problem, ensuring that feasibility and optimality are still enforced by classical
solvers. In this sense, generative Al enhances the expressiveness and realism of
uncertainty modeling while preserving the mathematical rigor of the underlying
INLP, MINLP, and CSO formulations.

5 Current Challenges, Limitations, and Future

Directions

Despite substantial progress in optimization theory and solver technology, sig-
nificant challenges remain in the practical deployment of OR methods for large-
scale agriculture, energy, and water—energy systems. These challenges arise
primarily from the interaction of nonlinear physical laws, discrete decision struc-
tures, inter-temporal coupling, and uncertainty, all of which are central features
of the INLP, MINLP, and CSO formulations surveyed in this work.

5.1 Scalability and Computational Limitations

A fundamental challenge is scalability. While state-of-the-art solvers such as
SCIP, Ipopt, BARON, and energy-specific tools including MATPOWER and MOST
provide robust solution frameworks, their computational performance can de-
teriorate rapidly as problem size, time horizon, or combinatorial complexity
increases. This limitation is particularly acute in applications that require re-
peated solution under varying exogenous conditions, such as real-time grid op-
eration, rolling-horizon scheduling, and stochastic hydropower planning.

From a practical standpoint, these scalability limitations constrain the deploy-
ment of exact or high-fidelity optimization models in time-critical settings. As
a result, operators often rely on simplified formulations, restricted horizons,
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or heuristic approximations, potentially sacrificing optimality or robustness in
exchange for computational tractability.

5.2 Nonconvexity and Global Optimality

Nonconvexity remains another persistent obstacle. Problems such as AC Opti-
mal Power Flow, hydropower generation with nonlinear efficiency characteris-
tics, and reservoir dynamics induce feasible regions with multiple local optima.
Although convex relaxations, decomposition techniques, and bound-tightening
methods can provide useful approximations and bounds, guaranteeing global
optimality or tight feasibility in large-scale settings remains computationally
demanding. Balancing solution accuracy with tractability therefore continues
to be a central concern in both theory and practice.

In many operational contexts, locally optimal solutions are acceptable or even
unavoidable; however, the lack of global optimality certificates complicates per-
formance assessment, sensitivity analysis, and policy evaluation. This limitation
highlights an inherent trade-off between theoretical rigor and operational feasi-
bility in complex energy and agricultural systems.

5.3 Inter-Temporal Coupling and Uncertainty

Inter-temporal and stochastic coupling further complicate solution procedures.
Dynamic constraints linking decisions across time periods, as encountered in
unit commitment, reservoir operation, and ancillary service provision, substan-
tially expand the effective decision space. While approaches such as dynamic
programming, stochastic dual dynamic programming, and scenario-based MILP
formulations provide systematic solution frameworks, they are sensitive to di-
mensionality and scenario growth, necessitating careful model design and ap-
proximation.

Moreover, uncertainty modeling itself introduces additional limitations. Sce-
nario sets may fail to capture rare but impactful events, while overly rich sce-
nario representations can render problems computationally intractable. Estab-
lishing a principled balance between uncertainty representation, robustness, and
computational efficiency remains an open methodological challenge.

5.4 Limitations of Learning-Enhanced Optimization

Within this context, learning-enhanced optimization offers several promising
directions for future research, but also introduces new limitations that merit
careful consideration. Learning-based components rely on historical data and

45



implicit assumptions about stationarity and representativeness. When oper-
ating conditions deviate significantly from the training distribution—due to
extreme weather, structural system changes, or rare contingencies—the per-
formance benefits of learned heuristics may degrade, for example by producing
ineffective warm-starts or misleading branching decisions that increase solver
runtimes.

Furthermore, while many learning-enhanced methods preserve feasibility by em-
bedding predictions within classical solver frameworks, their impact on conver-
gence behavior, robustness, and worst-case performance is not yet fully under-
stood. In particular, aggressive constraint screening or biased branching policies
may interact nontrivially with solver heuristics, complicating validation, inter-
pretability, and certification in safety-critical applications such as power system
operation and water resource management.

5.5 Future Research Directions

Despite these limitations, learning-enhanced optimization offers several promis-
ing directions for future research. One important avenue is the deeper integra-
tion of learning-based components into solver architectures, including adaptive
branching, constraint management, and bound-tightening strategies that ex-
ploit repeated problem structure without modifying the underlying mathemat-
ical models. Ensuring that such enhancements preserve feasibility, optimality
guarantees, and solver robustness remains a key methodological requirement.

Another important direction concerns the principled treatment of uncertainty.
Data-driven scenario construction and generative modeling approaches provide
new opportunities to improve the realism and efficiency of stochastic optimiza-
tion, particularly in renewable energy forecasting and hydrological inflow mod-
eling. Future research should focus on establishing systematic links between
scenario quality, computational performance, and decision robustness.

Finally, the interaction between approximate decision policies and exact op-
timization methods warrants further investigation. Hybrid architectures that
combine sequential decision policies with optimization-based feasibility correc-
tion appear particularly well-suited for long-horizon and real-time applications.
Developing theoretical guidelines and empirical benchmarks for when and how
such hybrid methods should be deployed remains an open research question.

Overall, advancing optimization methods for agriculture and energy systems will
require continued progress at the intersection of mathematical modeling, algo-
rithm design, and data-driven enhancement. The formulations, solver frame-
works, and application domains reviewed in this survey provide a structured
foundation for addressing these challenges while maintaining the rigor and reli-
ability required for operational deployment.
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6 Conclusion

This work has presented a unified treatment of optimization problems arising
in agriculture, energy, and water—energy systems through the lens of OR. By
formalizing a broad class of applications within integer nonlinear, mixed-integer
nonlinear, and combinatorial optimization frameworks, the paper highlights the
common mathematical structures that underlie diverse real-world decision prob-
lems.

Building on this foundation, the study reviewed state-of-the-art optimization
software and solver architectures, emphasizing their strengths and limitations
when applied to large-scale, nonconvex, and inter-temporal problems. The anal-
ysis demonstrates that while classical solvers remain indispensable for enforcing
feasibility and optimality, their computational performance can be significantly
enhanced by exploiting problem repetition and structural regularities.

The learning-enhanced methodologies discussed in this work illustrate how data-
driven techniques can be integrated into existing optimization pipelines to accel-
erate convergence, improve scalability, and support real-time decision making,
without altering the underlying mathematical formulations. Together, these
results establish a principled pathway for advancing OR methods in complex
agriculture and energy systems, while preserving the rigor, interpretability, and
reliability required for practical deployment.
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