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Abstract

We propose an active-set algorithm for smooth multiobjective optimization
problems subject to box constraints. The method works on one face of the feasi-
ble set at a time, treating it as a lower-dimensional region on which the problem
simplifies. At each iteration, the algorithm decides whether to remain on the
current face or to move to a different one, characterizing two types of itera-
tions: face-exploring and face-abandoning steps. Backtracking and extrapolation
strategies are combined, allowing the working set to be expanded or reduced by
multiple constraints in a single iteration. Global convergence to Pareto critical
points is established, and under a dual-nondegeneracy assumption we prove finite
identification of the active set. Implementation aspects are discussed in detail,
and numerical experiments on benchmark problems illustrate the practical per-
formance of the method in comparison with existing approaches.

Key words: Multiobjective optimization, box-constrained problems, active-set
method, global convergence.

1 Introduction

Many real-world problems involve the simultaneous optimization of multiple, often con-
flicting, objectives; see, for example, [34]. In this paper, we consider the box-constrained
multiobjective optimization problem

min
x

F (x) s. t. x ∈ B, (1)

where F : Rn → Rm is given componentwise by F (x) := (f1(x), . . . , fm(x)), and each
fj : Rn → R is continuously differentiable. The feasible region is the box

B := {x ∈ Rn : ℓ ≤ x ≤ u},
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with ℓ, u ∈ Rn, ℓ < u, and possibly ℓi = −∞ or ui =∞ for some components. Besides
their practical relevance, box-constrained problems also play an important role as sub-
problems in augmented Lagrangian and penalty methods for more general constrained
optimization; see, e.g., [3]. In the multiobjective setting, such inner subproblems arise
naturally in recent extensions of augmented Lagrangian schemes [5]. Therefore, the
development of numerical algorithms capable of efficiently solving (1) is of significant
importance for both theoretical advances and practical applications.

Several general methodologies have been developed for solving constrained multi-
objective optimization problems. Scalarization techniques constitute the classical ap-
proach, reducing the vector problem to a scalar one; see [24, 28]. Despite their versa-
tility, scalarization methods may fail to recover nonconvex regions of the Pareto front.
Heuristic and evolutionary schemes form another important class of approaches [10],
although such methods generally lack theoretical convergence guarantees. A third fam-
ily comprises descent-type schemes, which mimic classical iterative scalar optimization
algorithms by constructing common descent directions; a representative example is the
projected-gradient method of [18]. In addition, several algorithms have been developed
specifically for box-constrained multiobjective optimization. Hybrid schemes combin-
ing evolutionary components with descent-type steps have been proposed in [21, 33].
Interior-point–type strategies were investigated in [25, 32], while a derivative-free ap-
proach was considered in [8].

Active-set strategies play a central role in scalar box-constrained optimization. Their
development dates back to the seminal work of Polyak [29] in the 1960s and the later
contribution of Dembo and Tulowitzki [11], with numerous refinements introduced over
subsequent decades. The essential idea is to exploit the geometry of the feasible region
by treating each face of the box as a lower-dimensional region on which the problem
simplifies. An active-set algorithm operates on one face at a time, taking face-exploring
steps that seek progress within the current face and face-abandoning steps that leave it
whenever further progress becomes unproductive. Consequently, robust criteria are re-
quired to determine when to continue exploring a face and when abandoning it becomes
advantageous. Modern active-set schemes implement this idea by combining projected-
gradient-type steps used to abandon faces with efficient first or second-order procedures
to explore a face. Two of the most successful methods following this strategy are the
algorithm of Birgin and Mart́ınez [2], available in the Gencan software, and the method
of Hager and Zhang [19], which forms the basis of the ASA CG solver. These solvers are
widely regarded as state-of-the-art for bound-constrained scalar optimization, owing to
their efficiency, robustness, and strong theoretical guarantees.

Despite the success of active-set techniques in the scalar case, no analogous frame-
work has been developed for the box-constrained multiobjective problem (1). Given
the effectiveness of active-set ideas in exploiting the structure of bound constraints,
extending these techniques to the multiobjective setting is both natural and desirable.
This gap motivates the active-set algorithm proposed in this work.

The method developed here can be viewed as a multiobjective counterpart of the
active-set framework of Birgin and Mart́ınez [2]. The decision of whether to continue
exploring the current face or to switch to a different one is guided by comparing two opti-
mality measures: the optimality measure of the original problem and that of the problem
restricted to the current face. These quantities are computed through their projected-
gradient subproblems. The proposed algorithm integrates a projected-gradient-type
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mechanism for abandoning faces with a general face-exploring search direction. Back-
tracking and extrapolation strategies are incorporated into the iteration, allowing the
working set to be expanded or reduced by multiple constraints in a single iteration. We
establish global convergence to Pareto critical points and prove finite active-set iden-
tification under a dual-nondegeneracy assumption. After the correct face is identified,
the algorithm behaves like a reduced-space multiobjective descent method.

A detailed discussion of implementation aspects is also provided. In particular,
face-abandoning iterations may use a Barzilai–Borwein spectral projected-gradient di-
rection. Face-exploring iterations employ a truncated Newton–Gradient direction built
from a scalarized Hessian based on the Lagrange multipliers of the steepest-descent
subproblem. An Armijo backtracking line search based on quadratic interpolation is
used to select the step size, ensuring practical efficiency. Numerical experiments on
a broad collection of benchmark problems illustrate the practical behavior of the pro-
posed method. Comparisons with classical projected gradient schemes and the widely
used evolutionary algorithm NSGA-II [10] assess both computational efficiency and the
quality of the approximated Pareto fronts.

The remainder of the paper is organized as follows. Section 2 recalls fundamental
concepts of Pareto optimality, projected-gradient subproblems, and their dual charac-
terizations. Section 3 presents the proposed active-set method, hereafter referred to
as the Multiobjective Active-set Method for Box-constrained Optimization (MAMBO),
and discusses its main algorithmic components. Section 4 establishes the global con-
vergence analysis, while Section 5 introduces the notion of dual-nondegenerate Pareto
critical points and proves finite identification of the active set. Section 6 discusses imple-
mentation aspects. Section 7 reports numerical experiments on standard multiobjective
benchmark problems. Concluding remarks are presented in Section 8.

Notation. We denote by N the set of nonnegative integers numbers {0, 1, 2, . . .}, and
by R, R+, and R++ the set of real numbers, the set of nonnegative real numbers, and
the set of positive real numbers, respectively. As usual, Rn and Rn×m denote the set
of n-dimensional real column vectors and the set of n×m real matrices, respectively.
If u, v ∈ Rn, then u ≤ v (resp. u < v) is to be understood in a componentwise
sense, i.e., ui ≤ vi (resp. ui < vi) for all i ∈ {1, . . . , n}. ∥ · ∥ is the Euclidean norm.
Given S ⊂ Rn a set of points in Rn, conv(S) denotes the convex hull of S. We denote
by ∆m the m-dimensional simplex, i.e., ∆m := {λ ∈ Rm : λj ≥ 0,

∑
j λj = 1}. If

K = {k1, k2, . . .} ⊆ N, with kj < kj+1 for all j ∈ N, then we denote K⊂
∞
N.

2 Preliminaries

In this section, we recall the main concepts and tools used throughout the paper. We
consider the general multiobjective optimization problem

min
x

F (x) s. t. x ∈ Ω, (2)

where Ω ⊂ Rn is a nonempty closed convex set and F = (f1, . . . , fm) : Rn → Rm is
continuously differentiable.

A point x∗ ∈ Ω is said to be Pareto optimal (or efficient) for (2) if there exists no
x ∈ Ω such that F (x) ≤ F (x∗) and F (x) ̸= F (x∗). It is called weakly Pareto optimal
(or weakly efficient) if there is no x ∈ Ω such that F (x) < F (x∗). Local versions
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of both concepts are defined in the usual way by restricting the feasible region to a
neighborhood of x∗. A necessary condition for weak Pareto optimality of x∗ is

JF (x∗) (Ω− x∗) ∩ (−Rm
++) = ∅,

where JF (x∗) ∈ Rm×n is the Jacobian of F at x∗ and Ω − x∗ := {u − x∗ : u ∈ Ω}.
A point satisfying this condition is called a Pareto critical or stationary point of (2).
If x is nonstationary, then there exists d ∈ Ω − x such that ∇fj(x)⊤d < 0 for all
j ∈ {1, . . . ,m}. Every such d is a descent direction for F at x, i.e., there exists ε > 0
such that F (x + αd) < F (x) for all α ∈ (0, ε); see [18, Proposition 1].

Let us define D : Rn × Rn → R by

D(x, d) := max
j∈{1,...,m}

∇fj(x)⊤d. (3)

Note that x∗ ∈ Ω is Pareto critical of (2) if and only if D(x∗, d) ≥ 0 for all d ∈ Ω− x∗.
We recall the following basic properties.

Lemma 2.1. ([17, Lemma 2.2]) For all x ∈ Ω and d ∈ Rn:

(a) D(x, αd) = αD(x, d) for all α > 0;

(b) (x, d) 7→ D(x, d) is continuous.

We now introduce the projected gradient direction, following [18]. Given x ∈ Ω,
consider the constrained scalar-valued minimization problem:

min
d
D(x, d) + 1

2
∥d∥2 s. t. d ∈ Ω− x. (4)

Since the objective function is strongly convex and Ω is a closed and convex set, problem
(4) is well-defined and admits a unique optimal solution. Let us denote by (v(x), θ(x)) ∈
Rn × R the solution and optimal value of (4), i.e.,

v(x) := argmin
d∈Ω−x

D(x, d) + 1
2
∥d∥2 . (5)

and
θ(x) := D(x, v(x)) + 1

2
∥v(x)∥2 . (6)

The following proposition establishes continuity properties of v(·) and θ(·) and char-
acterizes stationary points of (2) in terms of these functions.

Proposition 2.2. Let v(·) and θ(·) be as in (5)–(6). Then:

(a) θ(x) ≤ 0 for all x ∈ Ω;

(b) v(·) and θ(·) are continuous on Ω;

(c) The following statements are equivalent: (i) x ∈ Ω is nonstationary; (ii) θ(x) < 0;
(iii) v(x) ̸= 0.

In particular, x is stationary for (2) if and only if θ(x) = 0 (equivalently, v(x) =
0).

Proof. See [18, Propositions 3 and 4], [16, Proposition 3.4] and [13, Theorem 1].
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Note that, whenever x is nonstationary, θ(x) < 0 and hence D(x, v(x)) < 0, so v(x)
is a descent direction for F at x. Introducing an auxiliary variable τ ∈ R, problem (4)
can be written in the differentiable form

min
τ,d

τ + 1
2
∥d∥2 s. t. ∇fj(x)⊤d ≤ τ (∀j ∈ {1, . . . ,m}), d ∈ Ω− x. (7)

The next result provides a dual representation for the projected gradient direction.
For this, define

J(x, d) := argmax
j∈{1,...,m}

∇fj(x)⊤d. (8)

the set of indices attaining the maximum in the definition of D.

Proposition 2.3. Let x ∈ Ω. Then v is the unique solution of (4), i.e., v = v(x), if
and only if there exists w ∈ conv{∇fj(x)}j∈J(x,v) such that

v = PΩ(x− w)− x.

Proof. See, for example, [13].

We finish this section by noting that, the vector w in Proposition 2.3 admits a
natural interpretation in terms of the differentiable formulation (7). Indeed, for such w
there exists λ ∈ ∆m with λj = 0 whenever j /∈ J(x, v) such that w =

∑m
j=1 λj∇fj(x).

Moreover, the coefficients λj coincide with the KKT multipliers associated with the
constraints ∇fj(x)⊤d ≤ τ in the differentiable problem (7); see [13, Remark 1].

3 The active-set algorithm

The core idea of an active-set strategy for solving (1) is to exploit the faces of the
feasible region, treating them as a lower-dimensional regions on which the problem can
be simplified. The feasible set B is partitioned into disjoint faces, each corresponding
to a specific subset of active bound constraints. Formally, for A ⊂ {1, . . . , 2n}, the
corresponding face is

FA :=


z ∈ B : zi = ℓi, if i ∈ A

zi = ui, if n + i ∈ A
ℓi < zi < ui, if i /∈ A and n + i /∈ A

 .

Given x ∈ B, the set of active constraints is

A(x) := {i : xi = ℓi} ∪ {n + i : xi = ui} (9)

so that x ∈ FA(x). We also define

I(x) := {i ∈ {1, . . . , n} : i /∈ A(x) and (n + i) /∈ A(x)}

to be the free coordinates of x. Let FA(x) denote the closure of FA(x) and aff(FA(x)) its
affine hull. The linear subspace parallel to that hull is

SA(x) := aff(FA(x))− x,
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which consists precisely of directions that keep all active coordinates fixed.
The active-set algorithm works on one face at a time, exploring it until the progress

within that face becomes insufficient. If xk is already a stationary point of (1), the
algorithm terminates successfully. Otherwise, it must decide whether it is worthwhile
to remain on the current face FA(xk) or to abandon it. To make this decision, we consider
the original problem (1) defined over the entire box B, and its restriction to the current
face, given by

min
x

F (x) s. t. x ∈ FA(xk). (10)

The variables in (10) are precisely the coordinates xi for i ∈ I(xk), corresponding to the
free components of x within the current face. Both problems admit projected-gradient
models of the form (4), which yield stationarity measures and descent directions. Specif-
ically, let

(vB(xk), θB(xk)) and (vF(xk), θF(xk))

denote the solutions and optimal values of (4) when Ω = B and Ω = FA(xk), respectively.
By Proposition 2.2 (c), the quantities θB(xk) and θF(xk) provide consistent measures of
stationarity for problems (1) and (10).

If θF(xk) = 0, then xk is Pareto critical for the problem restricted to the current face,
and no further improvement can be achieved by exploring that face. More generally,
following the scalar criteria of [2, 19], the face should also be abandoned whenever

|θF(xk)| ≤ ν |θB(xk)|,

where ν ∈ (0, 1) is a fixed algorithmic parameter. In this case, a face-abandoning
iteration is performed, taking the search direction as vB(xk) and determining the step
size by an Armijo-type backtracking line search.

Otherwise, the method performs a face-exploring iteration. As a first step, the
algorithm computes an auxiliary direction by solving the projected-gradient subproblem
restricted to the affine subspace associated with the current face, namely

min
x

F (x) s. t. x ∈ aff(FA(xk)),

whose projected-gradient model takes the form

min
d
D(xk, d) + 1

2
∥d∥2 s. t. d ∈ SA(xk).

Its solution provides a steepest-descent-type direction lying in the reduced space. A
face-exploring search direction is then selected by enforcing an angle-type condition with
the auxiliary vector, guaranteeing sufficient descent within the current face. Along this
direction, the algorithm applies either a backtracking or an extrapolation strategy,
depending on the observed descent behavior. The Armijo-type backtracking line search
enforces feasibility with respect to the box B, ensuring that the new iterate remains
within the current face. The extrapolation step, on the other hand, aims at improving
practical performance: whenever a satisfactory descent is detected, the step size is
enlarged, while each trial point is projected onto the box B to maintain feasibility. This
may result in faster progress along the current face and, in some cases, lead the iterate
to the boundary of that face, where additional bound constraints become active and
the algorithm moves to a lower-dimensional face. Through this mechanism, multiple
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constraints may become active in a single iteration, thus accelerating progress while
preserving feasibility.

In summary, there are two possible iteration types:

• Face-abandoning iteration: The next iterate is computed using the projected gra-
dient direction vB(xk) and an Armijo-type backtracking line search, which moves
the point away from the current face.

• Face-exploring iteration: The search direction is computed within the affine sub-
space of the current face and followed by either a backtracking or an extrapolation
step, depending on the observed descent behavior. In this case, the backtracking
step generates a new iterate that remains on the same face, preserving the active
set, whereas the extrapolation step may produce a point in the boundary of the
current face, activating additional constraints and moving to a lower-dimensional
one.

In the following, we formally present the algorithm.

Algorithm 1
MAMBO: Multiobjective Active-set Method for Box-constrained Optimization

Let x0 ∈ B and parameters ν ∈ (0, 1), Γ ∈ (0, 1), c1 ∈ (0, 1
2
), c2 ∈ (c1, 1), N > 1, and

0 < ω < ω̄ be given. Initialize k ← 0.

Step 1. Projected gradient computation
Compute (vB(xk), θB(xk)) ∈ Rn × R as

vB(xk) := argmin
d∈B−xk

D(xk, d) + 1
2
∥d∥2 (11)

and
θB(xk) := D(xk, vB(xk)) + 1

2

∥∥vB(xk)
∥∥2

.

If θB(xk) = 0, then STOP.

Step 2. Iteration type selection
Let A(xk) be the set of active constraints at xk as in (9). Compute (vF(xk), θF(xk)) ∈
Rn × R as

vF(xk) := argmin
d∈F

A(xk)
−xk

D(xk, d) + 1
2
∥d∥2 (12)

and
θF(xk) := D(xk, vF(xk)) + 1

2

∥∥vF(xk)
∥∥2

.

If
|θF(xk)| ≤ ν|θB(xk)|, (13)

then proceed to Step 3. Otherwise, go to Step 4.

Step 3. Face-abandoning iteration: leaving the current face
Define

dk := vB(xk). (14)

Set αtrial ← 1, and go to Step 5.
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Step 4. Face-exploring iteration: producing a point in the closure of the current face
Compute vS(xk) ∈ Rn as

vS(xk) := argmin
d∈S

A(xk)

D(xk, d) + 1
2
∥d∥2 , (15)

and a non-null direction dk ∈ Rn such that

dki = 0 if xk
i = ℓi or xk

i = ui, ∀i ∈ {1, . . . , n}, (16)

and
D(xk, dk) ≤ −Γ∥vS(xk)∥∥dk∥. (17)

Define αmax := max{α ≥ 0: xk + αdk ∈ B} and set αtrial ← min{1, αmax}. If
αmax > 1, then go to Step 4.1. Otherwise, go to Step 4.2.

Step 4.1. (At this point αtrial = 1 and xk + dk ∈ Int(B))
If

fj(x
k + dk) ≤ fj(x

k) + c1D(xk, dk), ∀j ∈ {1, . . . ,m}, (18)

and
D(xk + dk, dk) ≥ c2D(xk, dk), (19)

then set αk := 1, xk+1 := xk + dk, and go to Step 6. If (18) does not hold,
go to Step 5. If (19) does not hold, go to Step 4.3.

Step 4.2. (At this point αtrial = αmax and xk + dk /∈ Int(B))
If

fj(x
k + αmaxd

k) < fj(x
k), ∀j ∈ {1, . . . ,m}, (20)

then go to Step 4.3. Otherwise, go to Step 5.

Step 4.3. Extrapolation procedure
If

αtrial < αmax and Nαtrial > αmax,

then set αnew ← αmax; otherwise, set αnew ← Nαtrial. If

fj(PB(xk + αnewd
k)) ≥ fj(PB(xk + αtriald

k)), (21)

for some j ∈ {1, . . . ,m}, then set αk := αtrial, x
k+1 := PB(xk + αkd

k), and
go to Step 6. Otherwise, set αtrial ← αnew and repeat Step 4.3.

Step 5. Armijo-type backtracking
If

fj(x
k + αtriald

k) ≤ fj(x
k) + c1αtrialD(xk, dk), ∀j ∈ {1, . . . ,m}, (22)

then set αk := αtrial, x
k+1 := xk + αkd

k, and go to Step 6. Otherwise, compute
αnew ∈ [ωαtrial, ω̄αtrial], set αtrial ← αnew, and repeat Step 5.

Step 6. Iteration update
Set k ← k + 1 and go to Step 1.

The main steps of one iteration of the active-set algorithm are summarized in the
flowchart shown in Figure 1. In the following, we discuss some theoretical and algorith-
mic aspects of the method.
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1. Stopping criterion. At Step 1, the algorithm terminates when θB(xk) = 0. By
Proposition 2.2(c), this condition holds if and only if xk is Pareto critical for
problem (1), thus providing a stationarity test for the multiobjective case.

2. Relation between θB(xk) and θF(xk). Since (FA(xk) − xk) ⊂ (B − xk), the feasible
region of problem (12) is contained in that of (11). Consequently, the correspond-
ing optimal values satisfy θB(xk) ≤ θF(xk). Using Proposition 2.2 (a), we obtain
|θF(xk)| ≤ |θB(xk)|, which implies that |θF(xk)|/|θB(xk)| ≤ 1. The parameter
ν ∈ (0, 1) therefore acts as a threshold for this ratio, determining whether the
algorithm proceeds with a face-abandoning or a face-exploring iteration.

3. Relation with the scalar case. In the single-objective setting (m = 1), the vectors
vB(xk) and vF(xk) reduce, respectively, to the usual projected gradient gP (xk) :=
PB(xk−∇F (xk))−xk and the internal gradient gI(x

k) := PS
A(xk)

(gP (xk)). That is,

gI(x
k) coincides with gP (xk) on the free variables while its remaining components

are zero. Hence, the proposed framework generalizes the classical scalar active-set
scheme, recovering its behavior when m = 1; see [2].

Compute
(vB(x

k), θB(x
k))

θB(x
k) = 0? Stop: xk is

Pareto critical

Compute
(vF (x

k), θF (x
k))

|θF (xk)| ≤
ν|θB(xk)|?

Set
dk = vB(x

k)

Compute vS(x
k)

and dk satisfy-
ing (16)–(17)

Compute
αmax

Armijo
backtracking

αmax > 1?
fj(x

k + dk) ≤
fj(x

k) +
c1D(xk, dk),∀j?

fj(x
k+αmaxd

k)
< fj(x

k),∀j?

D(xk+dk, dk)
≥

c2D(xk, dk)?
Set αk = 1

Extrapolation

Set xk+1,
k ← k + 1,
End of
iteration

no

yes

yes

Face-abandoning
iteration

no
Face-
exploring
iteration

yes

no

yes

yes

yes

no

no

no

Figure 1: Flowchart of an iteration k of Algorithm 1.
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4. Leaving the current face. When the search direction is computed at Step 3, the
algorithm necessarily leaves the current face. Indeed, assume that condition (13)
holds and, by contradiction, that dk = vB(xk) belongs to FA(xk)−xk. Since vB(xk)
is feasible for (12) under the assumption, we have

θF(xk) ≤ D(xk, vB(xk)) + 1
2
∥vB(xk)∥2 = θB(xk).

Then, by Proposition 2.2 (a), |θB(xk)| ≤ |θF(xk)|, and combining this with (13)
yields |θB(xk)| ≤ ν|θB(xk)|, implying ν ≥ 1, obtaining a contradiction. Therefore,
dk /∈ FA(xk)−xk, meaning that dk has nonzero components corresponding to fixed

variables and xk+1 /∈ FA(xk). In this case, dk = vB(xk) is a descent direction for
F at xk, and the step size αk is determined by the Armijo rule (22).

5. Existence of a non-null direction. In Step 4, a non-null direction dk satisfying
conditions (16)–(17) always exists. Indeed, note first that vS(xk) ̸= 0. If vS(xk) =
0, then θF(xk) = 0, because the feasible region of problem (12) is contained in
that of (15). In this case, the test (13) would be satisfied (since θB(xk) ̸= 0, i.e.,
xk is not critical), and the algorithm would perform a face-abandoning iteration
(Step 3) instead of Step 4. Condition (17) was introduced in [17] and generalizes
the classical angle condition from scalar to multiobjective optimization, ensuring,
in particular, that dk is a descent direction at xk. It is straightforward to verify
that vS(xk) itself satisfies the required conditions (16)–(17).

6. Staying within the closure of the current face. When the search direction is com-
puted at Step 4, the new iterate remains in the closure of the current face. Con-
dition (16) enforces dki = 0 for every index i such that xk

i = ℓi or xk
i = ui, which

implies that all variables corresponding to active bounds stay fixed during the
update. Consequently, the next iterate satisfies xk+1

i = xk
i for these indices, so

xk+1 ∈ FA(xk).

7. Interior trial and Step 4.1. At Step 4, the test on αmax distinguishes whether
the trial step xk + dk remains strictly inside the box or reaches its boundary.
When αmax > 1, the unit step is feasible, meaning that the full direction dk can
be taken without violating the bounds. In this case, the algorithm proceeds to
Step 4.1, which attempts the unit step size αk = 1 and verifies the Armijo-type
condition (18) together with the curvature condition (19). These two inequali-
ties jointly constitute the standard Wolfe conditions for the unit step size in the
multiobjective setting, as introduced in [22] and further discussed in [23].

• If both (18) and (19) are satisfied, the unit step size is accepted. In this
case, condition (18) guarantees sufficient decrease, and (19) indicates that
no significant further improvement can be expected simultaneously in all
objectives along dk. The latter condition also ensures that the unit step size
is not unnecessarily conservative.

• If the Armijo condition (18) fails, the algorithm switches to the backtracking
procedure (Step 5), initially trying the unit step size.

• If only the curvature condition (19) fails, it reveals that all objectives can
still be reduced simultaneously by moving further along dk, which motivates
the use of the extrapolation strategy (Step 4.3) to explore larger step sizes.
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8. Boundary trial and Step 4.2. When αmax ≤ 1, the trial point xk + dk reaches the
boundary of the box, so the current direction cannot be followed further without
violating feasibility. In this case, Step 4.2 verifies condition (20), which tests
whether all objective functions decrease at the boundary point xk + αmaxd

k. If
this condition holds, it indicates that a simultaneous decrease in all objectives is
still possible by moving further along the same direction, motivating the use of
the extrapolation procedure (Step 4.3). In this situation, the next iterate remains
in the closure of the current face, and the algorithm typically moves to a lower-
dimensional one in the following iteration. Otherwise, if the boundary point does
not yield descent, the algorithm proceeds to the backtracking procedure (Step 5),
trying αmax first.

9. Extrapolation (Step 4.3). The extrapolation procedure aims to explore larger step
sizes along the current search direction, either from an interior point (coming
from Step 4.1) or from a boundary point (coming from Step 4.2). It performs
successive projections of xk +αtriald

k onto the box, with increasing values of αtrial.
Each projected point is accepted as long as all objective functions continue to
decrease, and the procedure terminates when no further improvement is observed.
Note that if xk + αtriald

k is interior but xk + Nαtriald
k is not, the boundary point

xk +αmaxd
k is tested first. When extrapolation is performed, the resulting iterate

may lie on the boundary of the current face, potentially activating multiple bound
constraints.

10. Backtracking (Step 5). The Armijo-type condition (22) is a typical descent con-
dition ensuring sufficient decrease in all objectives. When Step 5 is reached from
Step 3, the search direction vB(xk) points outside the current face, so the back-
tracking process leads the next iterate to a different face. In turn, when Step 5 is
reached from Step 4, the procedure successively reduces the step size so that all
trial points remain in the interior of the current face, and consequently the next
iterate also lies in the same face.

4 Convergence analysis

We now establish the convergence properties of Algorithm 1. The following assumption
ensures that the iterates remain in a bounded region.

Assumption 4.1. The level set L(x0) := {x ∈ B : F (x) ≤ F (x0)} is bounded.

The next result ensures that Algorithm 1 is well-defined, i.e., if the algorithm does
not stop at iteration k, then xk+1 is computed after finitely many inner steps.

Theorem 4.2. Suppose that Assumption 4.1 holds. Then, Algorithm 1 is well defined.

Proof. Subproblems (11), (12), and (15) are particular cases of (4) and, therefore,
admit unique solutions. Moreover, a direction satisfying (16)–(17) at Step 4 always
exists, since dk = vS(xk) is a trivial choice. Assume that xk is a nonstationary point.
Then, by Lemma 2.2(c), the algorithm does not terminate at iteration k. From (14)
and (17), dk is a descent direction for F at xk. We next show that, regardless of the
branch executed, the algorithm computes xk+1 after finitely many internal iterations.
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If Step 5 (Armijo-type backtracking) is executed, then by [23, Lemma 1] there
exists α∗ > 0 such that (22) holds for all αtrial ∈ (0, α∗). Hence, the backtracking
procedure terminates finitely. Now consider the case where Step 4.3 (Extrapolation
procedure) is executed. If all bounds in B are finite, there exists ᾱ > 0 such that
PB(xk + αdk) coincides with a corner of B for every α ≥ ᾱ. Therefore, for sufficiently
large αtrial and αnew, fj(PB(xk + αnewd

k)) = fj(PB(xk + αtriald
k)) for all j ∈ {1, . . . ,m},

and condition (21) holds with equality, ensuring finite termination. If some bounds
are infinite, Assumption 4.1 prevents αtrial → ∞ while all objectives decrease strictly.
Indeed, otherwise PB(xk +αtriald

k) ∈ L(x0) for all trials, with ∥PB(xk +αtriald
k)∥ → ∞,

contradicting the boundedness of L(x0). Hence, in all cases, the internal procedures
terminate finitely and xk+1 is well defined.

Algorithm 1 stops if and only if a Pareto critical point is found. Hence, from now
on we assume that θB(xk) ̸= 0 for all k, so that the algorithm generates an infinite
sequence {xk}. The following results establish the convergence properties by analyzing
the behavior of Algorithm 1 according to whether test (13) is satisfied infinitely often
or only finitely many times.

Theorem 4.3. Suppose that Assumption 4.1 holds and that {xk} is a sequence generated
by Algorithm 1. Assume that there exists an infinite sequence of indices K⊂

∞
N such

that the test (13) holds for all k ∈ K. Then, every limit point of {xk}k∈K is Pareto
critical of (1).

Proof. The proof follows from [18, Theorem 1].

Theorem 4.4. Suppose that Assumption 4.1 holds and that {xk} is a sequence generated
by Algorithm 1. Assume that the test (13) is satisfied only in finitely many iterations.
Then every limit point of {xk} is Pareto critical of (1).

Proof. Regardless of the branch executed, the algorithm enforces F (xk+1) ≤ F (xk) for
all k ∈ N. Hence, {F (xk)} is nonincreasing and {xk} ⊂ L(x0). By Assumption 4.1,
{xk} has at least one limit point in B. Let x∗ ∈ B be such a point, and let K1⊂

∞
N

be such that limk∈K1 x
k = x∗. Since {F (xk)} is monotone, by continuity, we have

limk∈N F (xk) = F (x∗).
Since the test (13) is satisfied only finitely many times, there exists k′ ∈ N such

that for all k ≥ k′ the algorithm executes Step 4. Consequently, for k ≥ k′, xk+1 lies
on the same face as xk or on a face of lower dimension. As the number of faces is
finite, there exists k0 ≥ k′ such that xk ∈ FA(xk0 ) for all k ≥ k0. For these indices,
Step 4.3 (Extrapolation) is never executed immediately following Step 4.2, because in
that case xk+1 would belong to the boundary of FA(xk0 ). Without loss of generality,
assume k ≥ k0 for all k ∈ K1.

Define sk := xk+1 − xk = αkd
k for all k ∈ N. We analyze two possibilities:

(A) ∥sk∥ ≥ δ > 0 for all k ∈ K1;

(B) lim inf
k∈K1

∥sk∥ = 0.

In both cases we will show that
vS(x∗) = 0. (23)
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Note first that, by Lemma 2.2(b), vS(·) is continuous on FA(xk0 ).
Consider case (A). Using conditions (18) or (22) together with (17), and applying

Lemma 2.1(a), we obtain for each j ∈ {1, . . . ,m}

fj(x
k+1) ≤ fj(x

k) + c1D(xk, sk) ≤ fj(x
k)− c1Γ∥vS(xk)∥∥sk∥ ≤ fj(x

k)− c1Γδ∥vS(xk)∥.

Hence
c1Γδ∥vS(xk)∥ ≤ fj(x

k)− fj(x
k+1), ∀j ∈ {1, . . . ,m}.

Taking limits for k ∈ K1, by the continuity of fj and vS(·), and the convergence of
{F (xk)}, we obtain (23).

If (B) takes place, then there exists K2⊂
∞
K1 such that limk∈K2 s

k = 0. Let

• K3 ⊂ K2: indices where αk is computed at Step 4.1;

• K4 ⊂ K2: indices where αk is computed at Step 4.3;

• K5 ⊂ K2: indices where αk is computed at Step 5.

At least one of these sets is infinite.
Case (B.1): If K3 is infinite. From (19) and Lemma 2.1(a),

D
(
xk + dk, dk

∥dk∥

)
≥ c2D

(
xk, dk

∥dk∥

)
, ∀k ∈ K3.

Since {dk/∥dk∥} is bounded, there exist a subsequence K′
3⊂∞K3 and d∗ ∈ Rn such that

limk∈K′
3
dk/∥dk∥ = d∗. Taking limits along K′

3 in the above inequality, noting that
limk∈K3 d

k = 0, and applying Lemma 2.1(b), we obtain D(x∗, d∗) ≥ c2D(x∗, d∗), which
implies

D(x∗, d∗) ≥ 0,

because c2 < 1. On the other hand, dividing (17) by ∥dk∥ and taking limits along K′
3,

we have
D(x∗, d∗) ≤ −Γ∥vS(x∗)∥.

Combining the two inequalities yields vS(x∗) = 0.
Case (B.2): If K4 is infinite. Let αk

trial and αk
new denote the last computed αtrial and

αnew at iteration k. Since, for every k ∈ K1, xk lies in a single face, it follows that
αk = αk

trial < αmax and hence PB(xk + αkd
k) = xk + αkd

k for all k ∈ K4. Moreover,
αk
new = min{Nαk, αmax} ∈ (αk, Nαk), and therefore PB(xk + αk

newd
k) = xk + αk

newd
k.

Consequently, by (21), there exists jk ∈ {1, . . . ,m} such that

fjk(xk + αk
newd

k) ≥ fjk(xk + αkd
k), ∀k ∈ K4.

By the mean value theorem, there exists εk ∈ (αk, α
k
new) such that

fjk(xk + αk
newd

k) = fjk(xk + αkd
k) + (αk

new − αk)∇fjk
(
xk + εkd

k
)⊤

dk, ∀k ∈ K4.

Combining the two relations and using (3), we obtain

D(xk + εkd
k, dk) ≥ ∇fjk(xk + εkd

k)⊤dk ≥ 0, ∀k ∈ K4.
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Since limk∈K4 αkd
k = 0, we also have limk∈K4 εkd

k = 0. Thus, dividing the above
inequality by ∥dk∥ and taking limits along a convergent subsequence of {dk/∥dk∥}, we
obtain

D(x∗, d∗) ≥ 0.

Hence, as in case (B.1), applying (17) yields vS(x∗) = 0.
Case (B.3): If K5 is infinite. Step 5 is executed after the failure of condition (18) in

Step 4.1 or (20) in Step 4.2, which in turn implies that the first trial step size is rejected
in the backtracking procedure of Step 5. Thus, for all k ∈ K5, there exist α̃k ∈ (0, αk/ω]
and jk ∈ {1, . . . ,m} such that

fjk(xk + α̃kd
k) > fjk(xk) + α̃kc1D(xk, dk).

By the mean value theorem, there exists εk ∈ (0, 1) such that

fjk(xk + α̃kd
k) = fjk(xk) + α̃k∇fjk(xk + εkα̃kd

k)⊤dk, ∀k ∈ K5.

Combining the above two inequalities and using (3), we obtain

D(xk + εkα̃kd
k, dk) ≥ ∇fjk(xk + εkα̃kd

k)⊤dk > c1D(xk, dk), ∀k ∈ K5.

Since limk∈K5 αkd
k = 0, we also have limk∈K5 εkα̃kd

k = 0. Dividing the above in-
equality by ∥dk∥ and taking limits along a convergent subsequence of {dk/∥dk∥} yields
D(x∗, d∗) ≥ c1D(x∗, d∗), hence

D(x∗, d∗) ≥ 0,

because c1 < 1. Using (17) as before, we conclude vS(x∗) = 0.
In all cases, (23) holds, and x∗ is stationary in the face FA(xk0 ). Finally, since

SA(xk) = aff(FA(xk))− xk, it follows that (FA(xk)− xk) ⊂ SA(xk). Therefore, the optimal
value of (15) is no larger than that of (12), i.e.,

D(xk, vS(xk)) + 1
2
∥vS(xk)∥ ≤ θF(xk) ≤ 0, ∀k ∈ K1,

where the second inequality follows from Proposition 2.2(a). Taking limits along K1 and
using (23) gives θF(x∗) = 0. Therefore, since |θF(xk)| > ν|θB(xk)| for all large k, taking
limits along K1 yields θB(x∗) = 0. Hence, by Proposition 2.2(c), x∗ is a stationary point
for problem (1).

Next, we present the main convergence result. In essence, it shows that Algorithm 1
is able to compute a Pareto critical point with any desired degree of accuracy.

Theorem 4.5. Suppose that Assumption 4.1 holds and that {xk} is a sequence generated
by Algorithm 1. Then, {xk} admits a limit point that is Pareto critical of (1).

Proof. The proof follows straightforwardly from Theorems 4.3 and 4.4.

We finish this section by showing that, under the assumption that F : Rn → Rm

is strongly convex on B, if Algorithm 1 produces an infinite sequence, then the entire
sequence {xk} converges to a Pareto optimal point. We say that the mapping F : Rn →
Rm is strongly convex on B if, for each j ∈ {1, . . . ,m}, there exists a scalar γj > 0 such
that

fj(x) ≥ fj(y) +∇fj(y)⊤(x− y) +
γj
2
∥x− y∥2, ∀x, y ∈ B. (24)
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Theorem 4.6. Assume that F : Rn → Rm is strongly convex on B. Suppose that {xk}
is a sequence generated by Algorithm 1. Then, the entire sequence {xk} converges to a
Pareto optimal point in B.

Proof. Since F is strongly convex, the level set L(x0) := {x ∈ B : F (x) ≤ F (x0)} is
bounded. Hence, by Theorem 4.5, the sequence {xk} admits a Pareto critical limit point
x∗ ∈ B. From the strongly convexity of F , it follows that x∗ is a Pareto optimal point
(see, for example, [15, Theorem 3.1]). To show that the entire sequence converges to
x∗, observe that {F (xk)} is nonincreasing and {xk} ⊂ L(x0), thus continuity arguments
imply that limk∈N F (xk) = F (x∗). Since x∗ is stationary, then for all x ∈ B there exists
at least one index j(x) ∈ {1, . . . ,m} for which

∇fj(x)(x∗)⊤(x− x∗) ≥ 0.

In particular,
∇fj(xk)(x

∗)⊤(xk − x∗) ≥ 0, ∀k ∈ N.

Then, by the strong convexity condition (24) of fj(xk), we obtain

fj(xk)(x
k)− fj(xk)(x

∗) ≥
γ
j(xk)

2
∥xk − x∗∥2 ≥ γmin

2
∥xk − x∗∥2, ∀k ∈ N,

where γmin := minj∈{1,...,m} γj. Taking limits for k ∈ N in the above inequality and using
that limk∈N fj(x

k) = fj(x
∗) for all j ∈ {1, . . . ,m}, we conclude that the entire sequence

{xk} converges to x∗.

5 Dual nondegeneracy and finite active-set identifi-

cation

In this section, we show that if every Pareto critical point of (1) is dual-nondegenerate,
then Algorithm 1 identifies in finitely many iterations the face of the feasible region
to which a limit point belongs. In other words, the iterates eventually remain on a
single face of B. Once the face is identified, the algorithm effectively behaves as an
unconstrained multiobjective method restricted to that face.

Definition 5.1. Let x∗ ∈ B be a Pareto critical point of (1). Let w∗ ∈ Rn be any vector
satisfying

vB(x∗) = PB
(
x∗ − w∗)− x∗,

whose existence follows from Proposition 2.3. We say that x∗ is dual-degenerate if there
exists an index i ∈ {1, . . . , n} such that x∗

i = ℓi or x∗
i = ui, while w∗

i = 0. Otherwise,
x∗ is called dual-nondegenerate.

Remark 1. From the KKT conditions of the differentiable formulation (7) at a Pareto
critical point x∗, one obtains w∗ = µℓ − µu, where µℓ, µu ∈ Rn

+ are the Lagrange multi-
pliers associated with the bound constraints d ≥ ℓ−x∗ and d ≤ u−x∗, respectively. For
any index i that is active at x∗, strict complementarity (x∗

i = ℓi with µℓ
i > 0 or x∗

i = ui

with µu
i > 0) is equivalent to w∗

i ̸= 0. Thus, dual-nondegeneracy of x∗ is precisely the
strict complementarity of the box constraints in the differentiable model (7).

We now formalize the finite identification result.
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Theorem 5.2. Assume that every Pareto critical point of (1) is dual-nondegenerate.
Suppose that Assumption 4.1 holds and that {xk} is a sequence generated by Algorithm 1.
Then the number of iterations for which (13) holds is finite. Consequently, after a finite
number of iterations all subsequent iterates xk lie on a single face of B.

Proof. Let K ⊂ N be the set of indices for which test (13) holds. Suppose, by contra-
diction, that K is infinite. Since the number of faces of B is finite, there exists a face
FA and an infinite subset K1⊂

∞
K such that xk ∈ FA and xk+1 /∈ FA for all k ∈ K1. Let

x∗ ∈ B be a limit point of the subsequence {xk}k∈K1 . By Theorem 4.3, it follows that
x∗ is a stationary point and hence vB(x∗) = 0.

For each k, from Proposition 2.3, there exists a vector wk ∈ conv{∇fj(xk)}mj=1 such
that

vB(xk) = PB(xk − wk)− xk. (25)

Writing wk =
∑m

j=1 λ
k
j∇fj(xk) with λk ∈ ∆m, compactness of ∆m ensures that there

exist K2⊂
∞
K1 and λ∗ ∈ ∆m such that limk∈K2 λ

k = λ∗. Let w∗ :=
∑m

j=1 λ
∗
j∇fj(x∗).

Taking limits along K2 in (25), and using the continuity of both vB(·) and the projection
operator, we obtain

vB(x∗) = PB(x∗ − w∗)− x∗.

Without loss of generality, assume that on FA the first p coordinates of x are free
and the remaining coordinates satisfy xi = ℓi, i ∈ {p + 1, . . . , n}. Dual nondegeneracy
of x∗ implies w∗

i > 0 for all i ∈ {p + 1, . . . , n}, see Remark 1. Hence, for all sufficiently
large k ∈ K2, we also have wk

i > 0 for these indices. Since xk
i = ℓi and wk

i > 0, we have
xk
i − wk

i < ℓi and hence [PB(xk − wk)]i = ℓi for all i ∈ {p + 1, . . . , n}, which implies

[vB(xk)]i = 0, ∀i ∈ {p + 1, . . . , n}.

Therefore, for all sufficiently large k ∈ K2,

vB(xk) ∈ FA − xk.

By the definitions of θB(xk) and θF(xk), the above inclusion implies

θF(xk) ≤ θB(xk), for all sufficiently large k ∈ K2.

On the other hand, since it is always true that θB(xk) ≤ θF(xk), we obtain

θF(xk) = θB(xk), for all sufficiently large k ∈ K2.

For such indices, test (13) cannot hold, contradicting the fact that K2 ⊂ K. Therefore,
K must be finite, and from some iteration onward the algorithm never abandons the
current face. Thus all subsequent iterates lie on a single face of B.

6 Implementation aspects

We now describe the key implementation components of Algorithm 1, covering the
projected gradient subproblems, the face-abandoning and face-exploring directions, and
the line search procedure.
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6.1 Projected gradient subproblems

We first observe that, when Ω = Rn, problem (4) reduces to the steepest descent sub-
problem. Introducing multipliers λ ∈ ∆m yields the dual problem

min
λ

1
2

∥∥∥ m∑
j=1

λj∇fj(x)
∥∥∥2

s. t. λ ∈ ∆m, (26)

whose solution λSD gives dSD(x) = −
∑m

j=1 λ
SD
j ∇fj(x). In practice, this dual form is

preferable to the primal formulation (7), especially for large n; moreover, for m = 2 it
admits a closed-form solution.

A practical shortcut for computing the projected gradient direction v(x) follows
from Proposition 2.3; see also [13, Remark 3]. After evaluating dSD(x) via the dual
formulation (26), we define

vtrial(x) := PΩ

(
x + dSD(x)

)
− x.

By Proposition 2.3, v(x) = vtrial(x) if and only if

{j ∈ {1, . . . ,m} : λSD
j > 0} = J

(
x, vtrial(x)

)
,

where J(·, ·) is defined in (8). In particular, this condition always holds when x +
dSD(x) ∈ Ω. Otherwise, the projected gradient v(x) is obtained by solving the primal
differentiable formulation (7). Thus, in many iterations v(x) is computed from a single
projection, avoiding the solution of (7) and reducing the computational cost.

The projected gradient directions required at Steps 3 and 4 of Algorithm 1 are
obtained by solving instances of problem (4) for different feasible sets Ω:

• In the full-space subproblem (11), Ω = B, so all n components of d are decision
variables.

• In the face-restricted subproblem (12), Ω = FA(xk), and only the free coordinates
di, i ∈ I(xk), are decision variables; the remaining components are set to zero.

• In the affine-restricted subproblem (15), Ω = aff(FA(xk)), so the optimization is
unconstrained in the free coordinates; again, the full vector is obtained by inserting
zeros in the active coordinates. Subproblem (15) is precisely the unconstrained
version of (12).

Subproblem (15) is always solved using the dual steepest descent formulation (26), after
restricting each gradient ∇fj(xk) to the free index set I(xk). The resulting direction
is then embedded into Rn by setting di = 0 for i /∈ I(xk), yielding the affine-restricted
steepest descent direction vS(xk). For the full-space and face-restricted subproblems
(11) and (12), the shortcut described above is employed: we compute dSD, project
it, and verify the active set condition; if it fails, we solve the primal differentiable
formulation (7).
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6.2 Face-abandoning direction: Barzilai–Borwein spectral vari-
ant

For the face-abandoning step (Step 3), instead of always using the standard projected
gradient direction vB(xk), we employ a Barzilai–Borwein spectral variant of the pro-
jected gradient subproblem, following [1, 31]; see also [4]. Spectral scalings are known
to substantially accelerate gradient-based schemes, and this idea has been used success-
fully in active-set algorithms for scalar minimization [2, 19]. More recently, it has also
been applied in the multiobjective setting [6, 7, 26].

We compute the Barzilai–Borwein parameter as

βk =


s⊤k sk

D(xk, sk)−D(xk−1, sk)
, if D(xk, sk)−D(xk−1, sk) > 0,

max
{

1, ∥xk∥∞/∥vB(xk)∥∞
}
, otherwise,

where sk := xk − xk−1. The parameter βk is then safeguarded by projection onto the
interval [βmin, βmax], with 0 < βmin ≤ 1 ≤ βmax. We then solve

dBB(xk) := argmin
d∈B−xk

βkD(xk, d) + 1
2
∥d∥2. (27)

We define the face-abandoning direction as

dk :=

{
dBB(xk), if ∃ i /∈ I(xk) such that [dBB(xk)]i ̸= 0,

vB(xk), otherwise.

Thus the algorithm uses the spectral direction whenever it produces a component point-
ing outside the current face; otherwise, it falls back to the classical projected gradient
direction.

Note that when βk = 1, problem (27) reduces to the standard projected gradient
subproblem (11). Moreover, for any value of βk the structure of the projected gradient
subproblem is preserved, so the same procedure described in Section 6.1 applies directly
here. Finally, the spectral strategy preserves all theoretical properties required for our
analysis. In particular, the convergence results for the projected gradient framework
remain valid, and Theorem 4.3 follows directly from [14, Theorem 1].

6.3 Face-exploring direction: truncated Newton-Gradient

In Step 4, we compute the search direction as a truncated Newton-Gradient direction.
The Newton-Gradient direction, introduced in [17], combines the steepest-descent La-
grange multipliers of subproblem (15) with second-order information of the objective
functions. In order to guarantee that the search direction satisfies the angle condi-
tion (17), we adopt a truncated variant of this scheme, in the spirit of the truncated
Newton approach of [2], as discussed next.

Let λ ∈ ∆m be the Lagrange multiplier associated with the solution of subprob-
lem (15) (see Section 6.1). Recall that vS(xk) = −

∑m
j=1 λj∇fj(xk), and [vS(xk)]i = 0

for every i /∈ I(xk) (fixed variables). Using the same multipliers, we build the scalarized
gradient and Hessian

g :=
m∑
j=1

λj∇fj(xk), H :=
m∑
j=1

λj∇2fj(x
k).
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Restricting these quantities to the free variables, we define

gred := (gi) i∈I(xk), Hred := (Hij) i,j∈I(xk).

We then consider the reduced quadratic model

min
s

qk(s) := 1
2
s⊤Hreds + g⊤reds.

This problem is solved approximately by a truncated conjugate-gradient (CG) proce-
dure as in [2, Algorithm 4.1], initialized with s = 0. The first CG iterate is a multiple of
−gred, and since −gred = [vS(xk)] i∈I(xk), the angle condition (17) holds trivially. During
the CG iterations we test condition (17): if it is violated, the CG process is truncated
and the last iterate satisfying the condition is taken as the reduced search direction.
Finally, the search direction dk is obtained by extending the final CG iterate to Rn by
setting the components corresponding to the fixed variables to zero. By construction,
this guarantees that condition (16) holds automatically.

6.4 Armijo backtracking line search

The backtracking procedure used in Step 5 employs a safeguarded quadratic interpo-
lation strategy. Given a trial step size αtrial, the Armijo condition (22) is evaluated
componentwise. If all components satisfy (22), the step size is accepted. Otherwise,
let j be an index for which (22) fails, and define φ(α) := fj(x

k + αdk). We compute
the minimizer of the quadratic model that interpolates φ(0), φ′(0), and φ(αtrial), which
yields

αq = −1
2
φ′(0)α2

trial/ [φ(αtrial)− φ(0)− φ′(0)αtrial] .

If αq ∈ [ω αtrial, ω̄ αtrial], we set αnew = αq; otherwise, we set αnew = αtrial/2. The trial
stepsize is then replaced by αnew. Once such an index j is selected, the corresponding
function fj is kept as the reference during the backtracking loop, and the step size is
refined until this function satisfies the Armijo condition, after which all objectives are
retested.

7 Numerical experiments

This section presents numerical results aimed at assessing the reliability and practical
performance of MAMBO. All experiments were conducted using the Julia programming
language (version 1.12.3) on a computer equipped with a 3.7 GHz Intel Core i5 6-
Core processor and 8 GB of 2667 MHz DDR4 RAM, running macOS Sequoia 15.7.2.
All source codes used in the experiments are publicly available https://github.com/

lfprudente/MAMBO-paper.
The following methods are considered in the reported numerical tests:

• MAMBO: the active-set algorithm described in Algorithm 1, incorporating all
implementation aspects discussed in Section 6.

• PG: the classical projected gradient method with Armijo line search, originally
proposed in [18]. We use our own implementation.
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• PG-BB: the Barzilai–Borwein projected gradient method with Armijo line search,
proposed in [6]. We use our own implementation.

• NSGA-II: the Nondominated Sorting Genetic Algorithm II proposed in [10]. It is
a population-based evolutionary metaheuristic widely regarded as a state-of-the-
art method in multiobjective optimization. We employ the Julia implementation
provided by the Metaheuristics package [9].

All deterministic algorithms (MAMBO, PG, and PG-BB) employ the same stopping
criterion to declare convergence. Specifically, an iterate xk is considered Pareto critical
when

|θB(xk)| ≤ 5×√eps,

where eps ≈ 2.22 × 10−16 denotes the machine precision. In addition, a maximum of
2000 iterations is imposed. If this limit is reached, the algorithm is declared to have
failed.

The projected gradient subproblems arising in the algorithms, either in their pri-
mal or dual formulations, were solved using the RipQP package [27] from the JuliaS-
moothOptimizers organization. The algorithmic parameters used by MAMBO (and,
when applicable, by PG and PG-BB) are fixed throughout all experiments and are
given by: ν = 0.1, Γ = 10−6, c1 = 10−4, c2 = 0.5, N = 2, ω = 0.05, and ω̄ = 0.95.

7.1 Test problems

The numerical evaluation was carried out on a collection of 63 box-constrained mul-
tiobjective optimization problems commonly used in the literature. Except for the
problems of the F1–F9 family (see [20]), the test problems considered in this work are
summarized in [30], where their original references are provided. For conciseness, in-
dividual references are omitted here. Table 1 summarizes the test problems used in
the experiments, reporting the number of variables n, the number of objectives m, and
the corresponding box constraints. Some problems in the F1–F9 and ZDT test suites
are not differentiable at x1 = 0. Therefore, since the deterministic methods rely on
first-order information, the lower bound of the first variable was slightly modified to
x1 ∈ [10−6, 1].

7.2 Performance metrics

The performance of the algorithms was assessed using standard metrics for evaluating
approximations of the Pareto front. To account for numerical inaccuracies, dominance
relations were evaluated using combined relative and absolute tolerances. Given two
objective vectors u, v ∈ Rm, u is said to dominate v if ui ≤ vi + εi for all i ∈ {1, . . . ,m}
and uj < vj − εj for some j ∈ {1, . . . ,m}, where εi :=

√
eps×max(1,max{|ui|, |vi|}) .

Vectors satisfying |ui − vi| ≤ εi for all i are considered numerically equivalent.

Purity Purity measures the proportion of solutions produced by an algorithm that
belong to a reference non-dominated set. Given a set of solutions A generated by an
algorithm and a reference set R, Purity is defined as

Purity(A,R) = |A ∩R|/|A|.
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Problem n m Bounds
AP1 2 3 [−10, 10]n

AP3 2 2 [−100, 100]n

AP4 3 3 [−10, 10]n

DD1 5 2 [−20, 20]n

F1 10 2 [10−6, 1] × [0, 1]n−1

F2 30 2 [10−6, 1] × [−1, 1]n−1

F3 30 2 [10−6, 1] × [−1, 1]n−1

F4 30 2 [10−6, 1] × [−1, 1]n−1

F5 30 2 [10−6, 1] × [−1, 1]n−1

F6 10 3 [0, 1]2 × [−2, 2]n−2

F7 10 2 [10−6, 1]n

F9 30 2 [0, 1] × [−1, 1]n−1

FA1 3 3 [0, 1]n

Far1 2 2 [−1, 1]n

FDS 200 3 [−2, 2]n

FF1 2 2 [−1, 1]n

Hil1 2 2 [0, 1]n

IKK1 2 3 [−50, 50]n

IM1 2 2 [1, 4] × [1, 2]
JOS1 100 2 [−100, 100]n

KW2 2 2 [−3, 3]n

LE1 2 2 [−5, 10]n

Lov1 2 2 [−10, 10]n

Lov2 2 2 [−0.75, 0.75]n

Lov3 2 2 [−20, 20]n

Lov4 2 2 [−20, 20]n

Lov5 3 2 [−2, 2]n

Lov6 2 2 [0.1, 0.425]×[−0.16, 0.16]n−1

LTDZ 3 3 [0, 1]n

MGH9 3 15 [−2, 2]n

MGH16 4 5 [−25, 25] × [−5, 5]2 × [−1, 1]
MGH26 4 4 [−1, 1]n

Problem n m Bounds
MGH33 10 10 [−1, 1]n

MHHM2 2 3 [0, 1]n

MLF2 2 2 [−100, 100]n

MMR1 2 2 [0.1, 1] × [0, 1]
MMR3 2 2 [−1, 1]n

MMR4 3 2 [0, 4]n

MOP2 2 2 [−1, 1]n

MOP3 2 2 [−π, π]n

MOP5 2 3 [−1, 1]n

MOP6 2 2 [0, 1]n

MOP7 2 3 [−400, 400]n

PNR 2 2 [−2, 2]n

QV1 100 2 [−5, 5]n

SD 4 2 [1, 3] × [
√

2, 3]2 × [1, 3]

SK2 4 2 [−10, 10]4

SLCDT1 2 2 [−1.5, 1.5]n

SLCDT2 100 3 [−1, 1]n

SP1 2 2 [−100, 100]n

TKLY1 4 2 [0.1, 1] × [0, 1]n−1

Toi4 4 2 [−2, 5]4

Toi8 3 3 [−1, 1]4

Toi9 4 4 [−1, 1]4

Toi10 4 3 [−2, 2]4

VU1 2 2 [−3, 3]n

VU2 2 2 [−3, 3]n

ZDT1 30 2 [10−6, 1] × [0, 1]n−1

ZDT2 30 2 [0, 1]n

ZDT3 30 2 [10−6, 1] × [0, 1]n−1

ZDT4 10 2 [10−6, 1] × [−5, 5]n−1

ZDT6 10 2 [0, 1]n

ZLT1 100 5 [−1000, 1000]n

Table 1: List of test problems.

In our experiments, R is defined as the collection of all non-dominated points obtained
by all considered algorithms.

Γ-Spread The Γ-Spread metric evaluates the uniformity of the distribution of solu-
tions along the Pareto front. It is computed as the maximum gap between consecutive
solutions after sorting them according to one objective.

Hypervolume The Hypervolume (HV) metric quantifies the volume of the objec-
tive space dominated by a given approximation of the Pareto front and bounded by
a reference point. As commonly adopted, a normalized hypervolume was considered.
Let zideal and znadir denote the ideal and nadir points estimated from the reference
non-dominated set. Each objective vector z was normalized componentwise as

z̃j = (zj − zidealj )/(znadirj − zidealj ), j = 1, . . . ,m.

The reference point was set to r = (1.1, . . . , 1.1), and the resulting hypervolume value
was divided by 1.1m, ensuring that the final value lies in [0, 1].

Covering metric The Covering metric, also known as the C-metric, compares the
dominance relations between two approximation sets. Given two sets A and B, the
covering of B by A is defined as

C(A,B) = |{ b ∈ B : ∃a ∈ A such that a dominates b }|/|B|.

The metric is asymmetric and quantifies the dominance of A over B.

7.3 Comparison with projected gradient methods

This subsection compares MAMBO with two classical deterministic descent-type algo-
rithms, namely the projected gradient method (PG) and its Barzilai–Borwein variant
(PG-BB). For each test problem, all three algorithms were executed from the same set
of 300 initial points uniformly sampled from the feasible box. Performance profiles in
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the sense of Dolan and Moré [12] were employed to compare the algorithms across all
problems and initial points.

Performance profiles based on CPU time were constructed by comparing the algo-
rithms on a run-to-run for each initial point. For a given problem and initial point, an
algorithm was considered to have successfully solved the instance if the final solution
obtained was not dominated by those produced by the other algorithms starting from
the same initial point. Figure 2 reports the resulting performance profile with respect
to CPU time. The results show that MAMBO consistently outperforms the classical
projected gradient method and its Barzilai–Borwein variant in terms of computational
efficiency, exhibiting a higher probability of being the fastest method across the test set.
Moreover, the right-hand side of the performance profile indicates that MAMBO also
achieves the highest overall success rate, meaning that it most frequently produces final
solutions that are not dominated by those obtained by the competing methods. The
PG-BB method generally improves upon the classical PG approach but remains less
competitive than MAMBO both in terms of speed and success rate in most instances.

Figure 2: Performance profile comparing MAMBO, PG, and PG-BB with respect to
CPU time.

For each algorithm and each test problem, the approximation of the Pareto front
was defined as the union of all non-dominated solutions obtained over the 300 runs
of the algorithm. A reference Pareto front was then constructed as the union of all
non-dominated solutions generated by MAMBO, PG, and PG-BB across all runs. The
quality of the approximated Pareto fronts was assessed using the Purity, Γ-Spread, and
Hypervolume metrics. Since larger values of Purity and Hypervolume indicate better
performance, their reciprocals were considered when constructing the corresponding
performance profiles.

The results in Figure 3 indicate that MAMBO achieves superior or comparable
Pareto front quality relative to PG and PG-BB. In particular, MAMBO tends to gener-
ate approximation sets with higher purity and larger hypervolume. With respect to the
Γ-Spread metric, MAMBO and PG-BB exhibit very similar performance and both out-
perform the classical projected gradient method, indicating a more uniform distribution
of solutions along the Pareto front. Although not reported explicitly, we also evaluated
the ∆-Spread metric as an alternative measure of distribution. For this metric, all
three algorithms exhibited comparable performance across the test set, suggesting that
differences in solution spread are mainly captured by the Γ-Spread results.

22



Figure 3: Performance profiles comparing MAMBO, PG, and PG-BB with respect to
Purity, Γ-Spread, and Hypervolume. For Purity and Hypervolume, inverse values are
used so that smaller values indicate better performance.

In order to provide a qualitative illustration of the behavior of MAMBO, Figure 4
depicts the Pareto front approximations obtained for the problems F1, Hil1, and ZDT3.
In the graphics, a filled circle represents a final iterate, while the starting point of each
straight segment corresponds to the associated initial point. Pareto-optimal solutions
are highlighted using square markers. The plots illustrate how different initial points
are driven toward the Pareto front, yielding well-distributed non-dominated solutions
across the objective space.

F1 Hil1 ZDT3

Figure 4: Illustrative Pareto front approximations obtained by MAMBO for F1, Hil1,
and ZDT3 test problems.

Overall, the performance profile analysis indicates that MAMBO attains a favor-
able balance between computational efficiency and solution quality when compared
with classical projected gradient methods. While PG-BB improves upon the basic pro-
jected gradient scheme through the use of spectral step-size information, it remains less
competitive in several instances. The observed performance of MAMBO reflects the
combined effect of its algorithmic components, including active-set identification and
the exploitation of second-order information, which together contribute to its robustness
and efficiency across a wide range of problems.

7.4 Comparison with NSGA-II

This section compares MAMBO with the evolutionary algorithm NSGA-II, which rep-
resents a fundamentally different class of methods. While MAMBO is a deterministic
descent-type algorithm, NSGA-II is a population-based stochastic metaheuristic. As a
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consequence, the comparison is necessarily indirect and focuses on the quality of the
Pareto front approximations obtained within comparable computational budgets.

NSGA-II was executed using the default parameter settings provided by the Me-

taheuristics package, including an initial population size of 100 individuals and 500
generations. Due to its stochastic nature, NSGA-II was run five independent times
for each selected test problem, producing different populations at each execution. All
solutions generated throughout the five runs were collected, including all intermediate
populations, rather than restricting the analysis to the final populations.

The final Pareto front approximation associated with NSGA-II was then defined as
the set of non-dominated points obtained from the union of these solutions. The total
CPU time reported for NSGA-II corresponds to the sum of the execution times of the
five independent runs. In order to ensure a fair comparison in terms of computational
effort, MAMBO was then executed for the same total CPU time using multiple initial
points sampled from the feasible box.

The comparison was carried out on a subset of test problems selected from Table 1,
focusing on problems originally designed for multiobjective optimization and with di-
mension n ≥ 10. In particular, the selected instances include well-known benchmark
problems from the F1–F9 and ZDT test suites, which are widely used in the literature
and are known to pose difficulties for deterministic descent-type methods.

Table 2 reports the comparative results between MAMBO and NSGA-II in terms
of Purity, Γ-Spread, Hypervolume, and the Covering metric. All values are reported
in percentage form, except for the Γ-Spread metric, for which smaller values indicate a
more uniform distribution of solutions.

Purity (%) Γ-Spread Hypervolume (%) Covering (%)
Problem

MAMBO NSGA-II MAMBO NSGA-II MAMBO NSGA-II (M,N) (N,M)
F1 100.00 0.21 0.005 0.025 72.42 72.09 99.79 0.00
F2 100.00 4.81 0.022 0.157 72.39 69.22 95.19 0.00
F3 100.00 0.00 0.004 0.108 72.41 69.99 100.00 0.00
F4 100.00 0.00 0.006 0.220 72.41 69.50 100.00 0.00
F5 100.00 0.00 0.004 0.101 72.41 69.95 100.00 0.00
F6 98.75 88.36 3.833 2.773 92.08 69.47 11.64 1.25
F7 10.00 100.00 0.825 1.535 82.17 94.27 0.00 90.00
F9 100.00 15.52 0.006 0.266 44.86 40.19 84.48 0.00
FDS 100.00 77.79 4.292e+5 2.665e+6 41.50 28.84 22.21 0.00
JOS1 100.00 0.00 0.237 2.238 85.80 68.15 100.00 0.00
QV1 100.00 75.26 0.380 0.005 25.95 43.47 24.74 0.00
SLCDT2 100.00 9.96 10.162 9.935 49.52 36.61 90.04 0.00
ZDT1 80.00 99.75 0.983 0.002 20.71 72.36 0.25 20.00
ZDT2 100.00 99.86 1.000 0.009 9.09 44.85 0.14 0.00
ZDT3 99.86 44.69 0.171 0.171 60.08 60.06 55.31 0.14
ZDT4 0.00 100.00 30.420 0.002 0.00 72.39 0.00 100.00
ZDT6 33.33 99.73 2.729 0.003 23.25 50.87 0.27 66.67

Table 2: Comparison between MAMBO and NSGA-II using Purity, Γ-Spread, Hyper-
volume, and the Covering metric. For the Covering metric, (M,N) denotes the percent-
age of solutions generated by NSGA-II that are dominated by solutions obtained by
MAMBO, while (N,M) denotes the converse. Best values are highlighted in bold.

Overall, the results indicate that MAMBO is able to produce Pareto front approx-
imations that are competitive with those obtained by NSGA-II within the same com-
putational time budget. In several instances, MAMBO attains higher Purity and Hy-
pervolume values, suggesting a closer agreement with the reference non-dominated set.
The Covering metric further shows that a significant portion of the solutions gener-
ated by NSGA-II are dominated by those obtained by MAMBO in a number of test
problems.

The favorable performance of MAMBO in terms of Purity and Covering is consis-
tent with its theoretical properties. MAMBO is designed to converge to Pareto critical
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points, whereas NSGA-II, as a stochastic evolutionary algorithm, does not explicitly
enforce first-order optimality conditions. As a consequence, although NSGA-II is effec-
tive at approximating the geometry of the Pareto front, the solutions it generates are
not guaranteed to satisfy Pareto criticality. This distinction is naturally reflected in
metrics such as Purity and Covering, which favor solutions that lie closer to the set of
Pareto critical points.

With respect to solution distribution, the results obtained using the Γ-Spread met-
ric indicate a balanced performance between MAMBO and NSGA-II across the test
set. This outcome is noteworthy, given that NSGA-II explicitly incorporates diversity-
preservation mechanisms as part of its population-based framework, whereas the diver-
sity of the solutions generated by MAMBO in the present experiments is solely induced
by the initial points, which were sampled in a naive manner from the feasible box.

It is also worth noting that MAMBO exhibits more limited performance on some
ZDT test problems, with the exception of ZDT3. These problems are known to admit
a large number of Pareto critical and weakly Pareto-optimal points. While MAMBO
correctly converges to Pareto critical solutions in accordance with the theoretical results,
many of these points are subsequently discarded during the dominance filtering step
used to construct the final Pareto front approximation. As a result, the quality of
the final non-dominated set may be adversely affected, despite the correct convergence
behavior of the algorithm.

Taken together, these results suggest that, despite relying on fundamentally differ-
ent optimization paradigms, MAMBO is capable of generating high-quality Pareto front
approximations within a comparable computational effort, even on problems tradition-
ally considered challenging for deterministic methods. At the same time, the results
highlight the importance of initialization strategies for descent-type multiobjective al-
gorithms, motivating the investigation of more effective ways to generate initial points,
potentially by combining heuristic exploration mechanisms with subsequent refinement
using MAMBO.

8 Final remarks

In this paper, we proposed a deterministic active-set framework for smooth multiob-
jective optimization problems subject to box constraints, referred to as the Multiob-
jective Active-set Method for Box-constrained Optimization (MAMBO). The method
alternates between face-exploring and face-abandoning iterations, combining first and
second-order information with adaptive working-set updates. Global convergence to
Pareto critical points was established, and finite identification of the active set was
proved under a dual nondegeneracy assumption. Numerical experiments demonstrated
that MAMBO achieves a favorable balance between computational efficiency and the
quality of the approximated Pareto fronts when compared with classical projected gra-
dient methods and NSGA-II.

An important consequence of the convergence analysis, particularly of Theorem 4.4,
is the modular nature of the proposed framework. Specifically, any method employed
during face-exploring iterations that satisfies the following property can be incorpo-
rated into MAMBO: if {xk} is an infinite sequence of iterates generated on a fixed
face FA(xk) by an internal unconstrained algorithm, then limk→∞ vS(xk) = 0, where
vS is defined in (15). This observation implies that advances in unconstrained multi-
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objective optimization methods can be directly incorporated into MAMBO to improve
its performance, without requiring modifications to its overall structure. The pro-
posed algorithm is already flexible with respect to the choice of search directions during
face-exploring iterations, as characterized by conditions (16)–(17). While a truncated
Newton–gradient-type direction was used in the present implementation, alternative
first or second-order strategies satisfying these conditions may be explored.

Several directions for future research naturally arise from this work. One promising
extension is the development of an augmented Lagrangian-type method for multiob-
jective optimization with general constraints, using MAMBO as an internal solver for
the resulting box-constrained subproblems. Such an approach would extend the appli-
cability of the proposed framework beyond simple bound constraints. In addition, the
numerical results highlight that, as a deterministic descent-type method, the diversity
of the Pareto front approximations generated by MAMBO is inherently influenced by
the choice of initial points, particularly for problems admitting a large number of Pareto
critical or weakly Pareto-optimal solutions. This motivates the investigation of more
effective initialization strategies. A particularly interesting direction is the combination
of heuristic exploration mechanisms, such as those employed by NSGA-II, with subse-
quent refinement using MAMBO. Hybrid strategies of this type may offer an effective
way to exploit the complementary strengths of deterministic descent-based methods
and population-based evolutionary algorithms.
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