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Abstract

Natural and human-made disasters can cause severe devastation and claim thousands of
lives worldwide. Therefore, developing efficient methods for disaster response and manage-
ment is a critical task for relief teams. One of the most essential components of effective
response is the rapid collection of information about affected areas, damages, and victims.
More data translates into better coordination, faster rescue operations, and ultimately,
more lives saved. However, in some disasters, such as earthquakes, the communication
infrastructure is often partially or completely destroyed, making it extremely difficult for
victims to send distress signals and for rescue teams to locate and assist them in time.
Unmanned Aerial Vehicles (UAVs) have emerged as valuable tools in such scenarios. In
particular, a fleet of UAVs can be dispatched from a mobile station to the affected area to
facilitate data collection and establish temporary communication networks. Nevertheless,
real-world deployment of UAVs faces several challenges, with adverse weather conditions–
especially wind–being among the most significant. To address such challenges, we develop
a novel mathematical framework to determine the optimal location of a mobile UAV sta-
tion while explicitly accounting for the heterogeneity of the UAVs and the effect of wind.
Our approach extends well-known single-facility location models by incorporating hetero-
geneous dynamic sets that represent different UAV operating speeds. In particular, we
extend the classical Fermat-Torricelli and Sylvester problems to introduce the generalized
Sylvester-Fermat-Torricelli (SFT) model and its remarkable specifications that capture
complex factors such as wind influence, UAV heterogeneity, and back-and-forth motion
within a unified framework. The proposed framework enhances the practicality of UAV-
based disaster response planning by accounting for major real-world factors including
wind and UAV heterogeneity. Experimental results demonstrate that our developments
can reduce wasted operational time by up to 84% while making post-disaster missions
significantly more efficient and effective in practical settings.

Keywords: location science, Facility location problems, Unmanned aerial vehicle (UAV).
Generalized Sylvester-Fermat-Torricelli models, Convex analysis, Nonsmooth optimization

1 Introduction

1.1 State-of-the-Art and Motivations

Natural and human-made disasters worldwide can have devastating consequences leading to
significant loss of life and extensive destruction, often resulting in substantial economic and
social costs. For instance, in 2023, the Emergency Events Database (EM-DAT) recorded 399
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disasters worldwide causing 86,473 fatalities and affecting approximately 93.1 million people
(centre for research on the epidemiology of disasters (CRED), 2024). Given the significant
costs associated with disasters, disaster management has become a critical field focused on
minimizing these costs. Effective disaster management strategies can be categorized into pre-
disaster activities (prevention and preparedness) and post-disaster (response and recovery)
ones (Erdelj, Król, & Natalizio, 2017).

In post-disaster actions, one of the most critical tasks is data collection. This data includes
the locations of victims trapped under debris, the extent of road destruction and accessibility,
and the damage levels across different parts of the region of interest. In this context, UAVs
offer significant advantages, including rapid area surveying, ease of deployment, low-cost main-
tenance, and the ability to reach inaccessible locations (Lyu et al., 2023), making them highly
effective for data gathering. Moreover, since natural disasters can damage or render network
infrastructure inoperable (Erdelj, Król, & Natalizio, 2017), UAVs can also serve as a vital tool
for establishing temporary communication networks. Therefore, several studies have explored
the use of UAVs to provide wireless or Delay-Tolerant Networks (DTNs) in such scenarios
(Arafat & Moh, 2018; Erdelj, Król, & Natalizio, 2017; Erdelj, Natalizio, et al., 2017; Khan et
al., 2022; Matracia et al., 2021; Shakhatreh et al., 2019; Wang et al., 2021; Zhao et al., 2019).

While UAVs can be valuable for providing network coverage, their main drawback is limited
energy capacity requiring them to return periodically for recharging (Shakhatreh et al., 2019).
Also, unlike other vehicles, UAVs are susceptible to wind due to their lighter weight, smaller
size, lower flight altitude, and lower speed (Gianfelice et al., 2022). These limitations create
significant challenges in deploying UAVs for post-disaster network provisioning. Erdelj, Król,
and Natalizio (2017) proposed a mobile first-response UAV station with a fleet of heterogeneous
UAVs that has a long-distance communication antenna, an electricity generator, and a system
for automatic UAV battery recharging. Motivated by this idea, we aim here to develop a reliable
mathematical model for determining the optimal location of a mobile UAV station, considering
UAV heterogeneity and the impact of wind, which are common factors in real-world scenarios.

Such a model can be regarded as a single-facility location problem previously studied in
the context of drone-assisted delivery, where drones launch from a truck, deliver parcels, and
subsequently return to the truck. There are studies (Betti Sorbelli et al., 2023; Chang & Lee,
2018; Mourelo Ferrandez et al., 2016; Salama & Srinivas, 2020) in the literature that examine
the location of launch points (location of truck) for drones in a delivery network, where a truck
and multiple drones operate in tandem. Scott and Scott (2017) considered a tandem delivery
strategy like Mourelo Ferrandez et al. (2016) to use in the healthcare application. However,
to the best of our knowledge, little attention has been given to addressing the impact of wind
on drone performance. This factor cannot be ignored as it causes delays in delivery time and
increases energy consumption. We also tried to consider the effect of wind in other applications
that are search and rescue (Kazemdehbashi & Liu, 2025), and package delivery (Liu, 2023).

The paper by Dukkanci et al. (2024a) provides a comprehensive review of drone-assisted
delivery and highlights future research directions. It emphasizes that weather conditions–
particularly wind–should be accurately accounted for in future studies. Moreover, as noted in
Dukkanci et al. (2024b), existing drone-based research has not fully leveraged advancements
from non-drone-related studies including the use of heterogeneous fleets. These observations
underscore a broader challenge: modern facility location problems in UAV applications demand
frameworks that can simultaneously address environmental uncertainties and fleet heterogene-
ity. To bridge this gap, our method explicitly considers a heterogeneous fleet of UAVs and
the effect of wind while making it more aligned with real-world applications. This forms yet
another aspect of our motivation for this work.

1.2 Contributions

To address the challenges discussed in the previous section, namely the effects of wind and UAV
heterogeneity, we focus on single-facility models of location science. Problems of this type have
strong theoretical foundations and have been studied using various techniques. To provide a
clear foundation for our approach, we first present a brief overview of the classical problems in
this area. The French mathematician Pierre de Fermat (1601–1665) proposed an optimization
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problem that seeks to identify a point in the plane that minimizes the total distance to
three other plane points. This problem was solved by the Italian physicist Augusto Torricelli
(1608–1647) and is now known as the Fermat-Torricelli problem. In the 19th century, the
English mathematician James Joseph Sylvester (1814–1897) introduced the smallest enclosing
circle problem, which seeks to determine the smallest circle capable of enclosing a given set
of points in a plane (Sylvester, 1857). This problem is formulated as a minimax location
problem and has been extended in several ways in the literature. Over the centuries, these
classical problems have continued to attract attention of researchers and practitioners for
their mathematical elegance and significant practical applications. Various generalizations of
Fermat-Torricelli, Sylvester and related problems (Steinitz, Weber, etc.) have been introduced
and studied in location science and practical areas by using different approaches and methods;
see, e.g., (Boltyanski et al., 1999; Borwein & Moser, 1990; Kuhn, 1976; Martini et al., 2002;
Plastria, 2009; Weiszfeld, 1937; Wesolowsky, 1993), and the references therein.

More recent years have witnessed the development of novel approaches to location science
models based on variational ideas with the usage of generalized differential tools of convex and
variational analysis. To the best of our knowledge, such an approach was first suggested in
(Mordukhovich & Nam, 2011) for the newly introduced generalized Fermat-Torricelli problem
and then was largely developed in (Jahn et al., 2015; Kupitz et al., 2013; Mordukhovich &
Nam, 2019, 2023; Mordukhovich et al., 2013; Nam, An, et al., 2014; Nam & Hoang, 2013;
Nam, Hoang, & An, 2014; Nam et al., 2017; Reich & Tuyen, 2022) and other publications for
various models of location science with algorithmic applications.

The major contributions of our work, including theoretical advances and practical
applications, are as follows.

• We introduce and investigate the generalized Sylvester-Fermat-Torricelli (SFT) problem,
a novel model of location science not previously explored in the literature. The general-
ized SFT problem belongs to the area of minimax optimization that incorporates multiple
Minkowski gauge functions rather than a single one. This generalization provides sufficient
flexibility to account for UAV heterogeneity and the influence of wind as a source of weather
uncertainty. Furthermore, the model extends from individual target points to convex sets,
which is particularly useful when UAVs are required to reach a target area rather than
a specific point. Finally, in this new minimax framework, the maximum of functions–each
potentially representing the sum of several Minkowski gauge functions–is minimized. This
approach enables modeling of UAV round-trip movements, a feature that is highly essential
for realistic operational scenarios.

• We further introduce and discuss an extended version of the generalized SFT model, as well
as extended counterparts of the generalized Fermat–Torricelli and Sylvester problems, by
incorporating two types of Minkowski gauge functions: the set-based Minkowski gauge (2.5)
and the maximal set-based Minkowski gauge (3.11). These extensions enable us modeling
scenarios in which UAVs enter a target area from the point closest to a facility and exit
from the point farthest from it. In Section 6, the practical applicability of the extended
formulations in real-world operations is demonstrated with providing extensive numerical
experiments.

• We develop a single facility location model for disaster relief by using UAVs that explic-
itly accounts for wind effects and UAV fleet heterogeneity, which therefore enhance its
applicability to real-world scenarios.

The reminder of the paper is organized as follows. In Section 2, we first review some back-
ground material from convex analysis needed below and then formulate the novel generalize
Sylvester-Fermat-Torricelli model with its major special cases. Section 3 is devoted to the
introduction and a detailed study of the set-based Minkowski gauge function, which plays a
crucial role in the paper. Section 4 verifies well-posedness issues (existence and uniqueness of
optimal solutions) for the generalized SFT. In Section 5, we discuss some extended and weight
versions of the generalized SFT. Section 6 contains the major applications of our theoreti-
cal developments to disaster relief operations by using UAVs with presenting the results of
numerical experiments. In Section 7, we summarize the main achievements of the paper and
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discuss some topics of our future research. The Appendix (Section 8) presents some additional
material of its own interest, which is used in the proofs of the obtained results.

2 Basic Definitions and Problem Formulation

This section is started with reviewing key concepts and tools of convex analysis, which serve as
a foundational framework for addressing the major challenges posed by the nonsmooth nature
of our model introduced in (2.6). These tools will be instrumental in revealing and analyzing
variational properties of the model, as well as in developing effective solution approaches.
Then essential definitions and the problem formulation are presented and discussed. We also
emphasize the key features introduced in our model, which extend the capabilities beyond
those of existing models in location science. These extensions allow us to address more complex
scenarios that are closer to real-world applications.

2.1 Tools of Convex Analysis

In this subsection, we present key definitions and results of convex analysis that are essential
for the main results of the paper; see, e.g., the books (Mordukhovich & Nam, 2022; Rockafellar,
1970) for more details, additional material, and references. Throughout the paper, we use the
standard notation from the aforementioned books. Recall that the symbol Ω1 ⊂ Ω2 means
that the set Ω1 is smaller than or equal to the set Ω2.

A nonempty subset Ω of Rq is convex if λx+ (1− λ)y ∈ Ω for all x, y ∈ Ω and λ ∈ (0, 1).
An extended-real-valued function f : Ω→ R̄ := (−∞,∞] is convex on a convex set Ω if

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y) for all x, y ∈ Ω and λ ∈ (0, 1). (2.1)

f is strictly convex if the inequality in (2.1) becomes strict for x ̸= y.
Given a nonempty convex set Ω ⊂ Rq and a point x̄ ∈ Ω, the normal cone to Ω at x̄ is

N(x̄; Ω) := {v ∈ Rq | ⟨v, x− x̄⟩ ≤ 0 for all x ∈ Ω}. (2.2)

If x̄ /∈ Ω, we have N(x̄; Ω) := ∅ by convention.

The convexity of functions is preserved under important operations.

Proposition 2.1. Let f, fi : Rq → R be convex functions for all i = 1, . . . ,m. Then the
following functions are also convex:

1. The scaled function αf for any α ≥ 0.
2. The sum function

∑m
i=1 fi.

3. The maximum function max1≤i≤m fi.

The next result shows that the maximum of strictly convex functions is strictly convex.

Proposition 2.2. Let fi : Rq → R be strictly convex function for all i = 1, . . . ,m. Then the
maximum function f(x) := max1≤i≤m fi(x), x ∈ Rq, is strictly convex on Rq.

Proof. Consider first the case where m = 2, i.e., f(x) = max{f1(x), f2)(x)}. Fix x, y ∈ Rq,
x ̸= y, and λ ∈ (0, 1) and suppose that f(λx+ (1− λ)y) = f1(λx+ (1− λ)y). It follows from
the strict convexity of f1 that

f1(λx+ (1− λ)y) < λf1(x) + (1− λ)f1(y) ≤ λf(x) + (1− λ)f(y),

which tells us therefore that

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y).

The remaining case where f(λx + (1 − λ)y) = f2(λx + (1 − λ)y) is treated similarly. For an
arbitrary m ∈ N, we proceed by induction.
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One of the central concepts in convex analysis is the subdifferential of convex functions,
which extends the classical derivative/gradient notion to nondifferentiable (nonsmooth) func-
tions. Given an extended-real-valued convex function f : Rq → R finite at x̄ (i.e., with
x̄ ∈ dom f), a subgradient v ∈ Rq of f at x̄ is defined by

⟨v, x− x̄⟩ ≤ f(x)− f(x̄) for all x ∈ Rq. (2.3)

The collection of all subgradients v of f at x̄ is called the subdifferential of f at this point
and is denoted by ∂f(x̄). It is well known that the subdifferential of any convex function is
nonempty at every point where the function is continuous.

The subdifferential of convex functions enjoys comprehensive calculus with respect to oper-
ations that keep the convexity. For the reader’s convenience, we present the two fundamental
calculus results used in what follows. The first result is the subdifferential maximum rule.

Theorem 2.3. Let fi : Rq → R, i = 1, . . . ,m, be convex functions with x̄ ∈
⋂m

i=1 dom fi.
Assume that all fi are continuous at x̄ and consider the maximum function

f(x) = max
{
fi(x)

∣∣ i = 1, . . . ,m
}
, x ∈ Rq.

Then the subdifferential of f at x̄ is calculated by

∂f(x̄) = co
{ ⋃

i∈I(x̄)

∂fi(x̄)
}
,

where I(x̄) := {i = 1, . . . ,m | f(x̄) = fi(x̄)} is the collection of active indexes at x̄, and where
the symbol “co” signifies the convex hull if the set in question.

Theorem 2.3 tells us that the subdifferential of f at x̄ is the convex hull of the subgradients
of the functions that achieve the maximum at x̄. Recall that the convex hull of a set Ω ⊂ Rn is

coΩ :=

{
k∑

i=1

λixi

∣∣∣∣∣xi ∈ Ω, λi ≥ 0,

k∑
i=1

λi = 1, k ∈ N

}
,

where k can be bounded by n+ 1 due to the classical Carathéodory theorem.

The following calculus result used below is the fundamental subdifferential sum rule known
also as the Moreau-Rockafellar theorem.

Theorem 2.4. Let fi : Rq → R for i = 1, . . . ,m be convex functions such that all but one of
fi are continuous at x̄ ∈

⋂m
i=1 dom fi. Then we have

∂
( m∑

i=1

fi

)
(x̄) =

m∑
i=1

∂fi(x̄).

2.2 Problem Formulation

Let F be a nonempty, closed, and convex subset of the space Rq. TheMinkowski gauge function
associated with the set F , is defined by

ρF (x) := inf
{
t ≥ 0

∣∣ x ∈ tF
}
, x ∈ Rq. (2.4)

The Minkowski gauge (2.4), which is common in the literature, plays a key role in convex anal-
ysis and its applications; see, e.g., (Mordukhovich & Nam, 2023). However, for our purposes
in this paper, we require a more flexible function as defined below.

Given a nonempty set Ω ⊂ Rq in addition to F , we define the set-based Minkowski gauge
function associated with the sets F and Ω by

ρΩF (x) := inf
{
t ≥ 0

∣∣ x ∈ Ω+ tF
}
, (2.5)
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x
( ) : inf{ 0| }, q

F x t x tF x =   
F

F



x

( )F x

(a) (b)

Fig. 1 (a) illustrates an example of the Minkowski gauge function (2.4) with a circle as its
dynamic set. (b) shows an example of the set-based Minkowski gauge function (2.5), where
both the reference set and the dynamic set are circles.

where Ω+ tF := {ω+ tf | for all ω ∈ Ω and f ∈ F}. In (2.5), the sets F and Ω are referred to
as the (constant) dynamic set and the reference set, respectively. In simple terms, if we view
F as a dynamic set representing possible speeds or directions of motion, then ρΩF (x) represents
the minimal time required to reach x starting from at least one point ω ∈ Ω. Moreover, ρF
can be interpreted in this context by noting that ρF (x) = ρ

{0}
F (x), see Fig. 1 for a graphical

illustration.
With these preliminaries in place, we now proceed to formulate the proposed model. Let

the index sets Ik ̸= ∅ for k = 1, . . . , n form a partition of the set I := {1, . . . ,m}, such that⋃n
k=1 Ik = I and Ik ∩ Il = ∅ for all k ̸= l with k, l ∈ {1, . . . , n}. For i ∈ Ik with k = 1, . . . n, let

Fi ⊂ Rq be a compact and convex set containing the origin in its interior point (i.e., 0 ∈ intFi).
Suppose also that Ωi and the constraint set Ω0 are nonempty, closed, and convex in Rq. Then
the proposed generalized Sylvester-Fermat-Torricelli (SFT) problem is formulated as follows:

minS(x) subject to x ∈ Ω0, (2.6)

where the cost function in (2.6) is defined by

S(x) := max
{∑

i∈Ik

ρΩi

Fi
(x)

∣∣ k = 1, , ..., n
}
. (2.7)

In the case where Ik = {k} and n = m, the novel generalized SFT problem is written as

minY (x) such that x ∈ Ω0 (2.8)

with the cost function given in the simple maximum form

Y (x) := max
{
ρΩi

Fi
(x)

∣∣ i = 1, . . . , n
}
. (2.9)

This extends the generalized Sylvester problem studied in (Mordukhovich & Nam, 2023), where
only one dynamic set F is under consideration, and where ρΩi

F is replaced by the “minimal

time function” TF
Ωi

that agrees with ρΩi

−F ; see Lemma 8.12 in the Appendix. Furthermore, if
k = 1 and |I1| = m for the cardinality of I1, then the proposed generalized SFT problem
reduces to the generalized Fermat–Torricelli one stated as follows:

minT (x) subject to x ∈ Ω0 (2.10)

with the cost function given in the summation form

T (x) :=

m∑
i=1

ρΩi

Fi
(x). (2.11)
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The latter extends the previous version explored in (Mordukhovich & Nam, 2023), where only
one dynamic set F is present in (2.11), and where ρΩi

F is replaced by TF
Ωi
.

This paper focuses on the generalized SFT problem (2.6), which encompasses both gener-
alized Sylvester and Fermat–Torricelli problems as special cases. Let us emphasize that, unlike
the previously considered version of the generalized Sylvester problem with a single identical
dynamic set, our new setting in (2.8), (2.9) accommodates multiple dynamic sets important
in practical applications. Moreover, another key generalization is using the sum

∑
i∈Ik

ρΩi

Fi
(x)

instead of a single term ρΩF (x), which enables us to model more complex movement patterns
such as, e.g., round-trip UAV flights under wind conditions between two points.

3 Properties of the Set-Based Minkowski Gauge Function

In this section, we establish some key properties of the set-based Minkowski gauge function
that include the following issues:

• The relationship between the functions ρΩF and ρF , which serves as a foundational tool for
deriving further properties and facilitating the computation of ρΩF .

• The convexity of ρΩF , which enables us to utilize tools of convex analysis.
• The Lipschitz continuity of ρΩF , which implies that its subdifferential is bounded.
• Characterizing the subdifferential of ρΩF in both settings of in-set points x ∈ Ω and out-of-set

points x /∈ Ω.
• Deriving an efficient upper estimate for the subdifferential of ρΩF .

In what follows, we use the support function

σF (v) := sup
{
⟨v, f⟩

∣∣ f ∈ F
}
, v ∈ Rq, (3.1)

associated with F ⊂ Rq, and the r-enlargement of Ω ⊂ Rq defined by

Ωr :=
{
x ∈ Rq

∣∣ ρΩF (x) ≤ r
}

for any r > 0. (3.2)

The first proposition reveals the precise relationship between the set-based Minkowsi gauge
function (2.5) and the classical Minkowski gauge (2.4).

Proposition 3.1. Let F ⊂ Rq be a nonempty, closed, and convex set. Given an nonempty
reference set Ω ⊂ Rq, we have the relationship

ρΩF (x) = inf
ω∈Ω

ρF (x− ω). (3.3)

Proof. Starting with the case where ρΩF (x) < ∞, pick ε > 0 and denote p := ρΩF (x). Choose
further t such that p ≤ t < p+ ε and x ∈ Ω + tF . Then there exists ω ∈ Ω with x− ω ∈ tF ,
which yields ρF (x− ω) ≤ t < p+ ε. Since ρΩF (x) = p, it follows that

inf
ω∈Ω

ρF (x− ω) ≤ ρF (x− ω) < ρΩF (x) + ε.

Passing to the limit as ε ↓ 0 gives us the estimate

inf
ω∈Ω

ρF (x− ω) ≤ ρΩF (x).

To verify the reverse inequality, denote q := infω∈Ω ρF (x − ω), pick α > 0, and choose d and
ω such that q ≤ d < q + α and that x− ω ∈ dF . This leads us to x ∈ ω + dF ⊂ Ω+ dF , and
hence ρΩF (x) ≤ d < q + α. Passing to the limit as α→ 0, we arrive at

ρΩF (x) ≤ inf
ω∈Ω

ρF (x− ω).

Combining both inequalities justifies the claimed representation (3.3) when ρΩF (x) <∞.
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It remains to consider the case where ρΩF (x) =∞. Then we get {t ≥ 0 | x ∈ Ω + tF} = ∅.
This implies that {t ≥ 0 | x− ω ∈ tF} = ∅ for every ω ∈ Ω and so ρF (x− ω) =∞. Therefore,

inf
ω∈Ω

ρF (x− ω) =∞ = ρΩF (x),

which completes the proof of the proposition.

The next proposition addresses the convexity of the set-based Minkowski gauge function.

Proposition 3.2. Let F ⊂ Rq be a nonempty, closed, and convex set. If the reference set
Ω ⊂ Rq is nonempty and convex, then ρΩF in (2.5) is a convex function.

Proof. Fix an arbitrary number ε > 0 and select t1 and t2 such that ρΩF (xi) ≤ ti < ρΩF (xi) + ε
and xi ∈ Ω + tifi where fi ∈ F as i = 1, 2. By xi − tifi ∈ Ω and the convexity of Ω, we have
λ(x1 − t1f1) + (1− λ)(x2 − t2f2) ∈ Ω for any λ ∈ (0, 1). Hence

λx1 + (1− λ)x2 ∈ Ω+ λt1f1 + (1− λ)t2f2 ⊂ Ω+ λt1F + (1− λ)t2F.

The convexity of F tells us that λt1F + (1− λ)t2F = (λt1 + (1− λ)t2)F , and so we have

λx1 + (1− λ)x2 ∈ Ω+ (λt1 + (1− λ)t2)F =⇒ ρΩF (λx1 + (1− λ)x2) ≤ λt1 + (1− λ)t2.

Since ε > 0 was chosen arbitrarily, this yields the implication

λt1 + (1− λ)t2 < λρΩF (x1) + (1− λ)ρΩF (x2) + ε
=⇒ ρΩF (λx1 + (1− λ)x2) ≤ λρΩF (x1) + (1− λ)ρΩF (x2),

which readily justifies the claimed convexity of the set-based Minkowski gauge ρΩF .

The following assertion establishes the global Lipschitz continuity of the function ρΩF on
the entire space Rq, which is a key property for our subsequent analysis.

Proposition 3.3. Let F ⊂ Rq be a closed and convex set with 0 ∈ intF . Then for any
nonempty set Ω ⊂ Rq, we have that ρΩF (·) is Lipschitz continuous on Rq.

Proof. It is well known that the Minkowski gauge ρF is subadditive and positively homoge-
neous; see, e.g., (Mordukhovich & Nam, 2023, Theorem 6.4). Therefore, for any x, y ∈ Rq, we
get by using Proposition 3.1 that

ρF (x− ω) ≤ ρF (x− y) + ρF (y − ω) for all ω ∈ Ω,

=⇒ inf
ω∈Ω

ρF (x− ω) ≤ ρF (x− y) + inf
ω∈Ω

ρF (y − ω)

=⇒ inf
ω∈Ω

ρF (x− ω)− inf
ω∈Ω

ρF (y − ω) ≤ ρF (x− y)

=⇒ ρΩF (x)− ρΩF (y) ≤ ρF (x− y).

The Lipschitz continuity of ρF by (Mordukhovich & Nam, 2023, Proposition 6.18) gives us a
constant l ≥ 0 such that ρF (x) ≤ l∥x∥ whenever x ∈ Rq. Therefore,

ρΩF (x)− ρΩF (y) ≤ ρF (x− y) ≤ l∥x− y∥,

which verifies the global Lipschitz continuity of the set-based Minkowski gauge.

Now we proceed with calculating the subdifferential of the function ρΩF at any point x̄ ∈ Rq

starting with the in-set case x̄ ∈ Ω.

Theorem 3.4. Let F ⊂ Rq be compact and convex with 0 ∈ intF , and let Ω be nonempty and
convex subset of Rq. Then the subdifferential of ρΩF (·) at x̄ ∈ Ω is calculated by

∂ρΩF (x̄) = N(x̄; Ω) ∩ V, (3.4)
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where V is defined via the support function (3.1) as

V :=
{
v ∈ Rq

∣∣ σF (v) ≤ 1
}
.

Proof. Fix any v ∈ ∂ρΩF (x̄). Then for x ∈ Ω with ρΩF (x) = 0, we get the conditions

⟨v, x− x̄⟩ ≤ ρΩF (x)− ρΩF (x̄) = 0,

which yield v ∈ N(x̄; Ω) by the normal cone definition (2.2). Fix x ̸∈ Ω and find t > 0. f ∈ F
with x̄+ tf = x, which means that ρΩF (x) ≤ t. Then we have the inequalities

⟨v, x̄+ tf − x̄⟩ ≤ ρΩF (x)− 0 ≤ t

and thus arrive at σF (v) ≤ 1 and therefore justify the inclusion “⊂” in (3.4).
To verify the reverse inclusion in (3.4), fix any v ∈ N(x̄; Ω) ∩ V and pick an arbitrary

number ε > 0. Given x ∈ Rq, select t > 0 such that ρΩF (x) ≤ t < ρΩF (x) + ε. Then find ω ∈ Ω
and f ∈ F such that ω + tf = x. Therefore, we get

⟨v, ω + tf − x̄⟩ = ⟨v, ω − x̄⟩+ t⟨v, f⟩ ≤ t < ρΩF (x) + ε = ρΩF (x)− ρΩF (x̄) + ε.

Passing to the limit therein as ε ↓ 0 gives us ⟨v, x − x̄⟩ ≤ ρΩF (x) − ρΩF (x̄), which justifies the
inclusion “⊃” in (3.4) and thus completes the proof of the theorem.

The next theorem provides the subdifferential calculation for ρΩF at out-of-set points x̄ /∈ Ω.

Theorem 3.5. Let F ⊂ Rq be a compact and convex set with 0 ∈ intF , let Ω ⊂ Rq be
nonempty and convex, and let x̄ /∈ Ω. Denote r := ρΩF (x̄) and consider the r-enlargement (3.2).
Then the subdifferential of ρΩF at x̄ is calculated by

∂ρΩF (x̄) = N(x̄; Ωr) ∩Υ with Υ := {v ∈ Rq | σF (v) = 1} (3.5)

Proof. Fix v ∈ ∂ρΩF (x̄) and consider the following three cases.
(a) Suppose that x /∈ Ωr. Then there exist t > 0 and f ∈ F such that x̄ + tf = x, which

yields ρΩF (x) ≤ t+ r by Lemma 8.6 in the Appendix. This brings us to the conditions

⟨v, x̄+ tf − x̄⟩ = ⟨v, tf⟩ ≤ ρΩF (x)− ρΩF (x̄) ≤ t+ r − r = t,

which imply in turn that ⟨v, f⟩ ≤ 1, and thus σF (v) ≤ 1.
(b) Supposing that x ∈ Ωr, we get

⟨v, x− x̄⟩ ≤ ρΩF (x)− ρΩF (x̄) ≤ 0,

which tells us that v ∈ N(x̄,Ωr).
(c) Consider finally the case where x ∈ Ω. Pick any ε > 0 and find x ∈ Ω and f ∈ F such

that x+ df = x̄, where r ≤ d < r + ε. Then we have the implications

⟨v, x− x̄⟩ = ⟨v, x̄− df − x̄⟩ ≤ ρΩF (x)− ρΩF (x̄)
=⇒ r ≤ ⟨v, df⟩ < (r + ε)⟨v, f⟩
=⇒ r

r + ε
< ⟨v, f⟩ ≤ σF (v).

Passing there to the limit asε ↓ 0 gives us σF (v) ≥ 1, and hence we conclude that

v ∈ N(x̄; Ωr) ∩ {v ∈ Rq | σF (v) ≤ 1} ∩ {v ∈ Rq | σF (v) ≥ 1} = N(x̄; Ωr) ∩Υ,

which justifies the inclusion “⊂” in (3.5).
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To verify the opposite inclusion in (3.5), pick any vector v ∈ N(x̄; Ωr) ∩ Υ. We aim to
check the fulfillment of the inequality

⟨v, x− x̄⟩ ≤ ρΩF (x)− ρΩF (x̄) for all x ∈ Rq. (3.6)

Applying Theorem 3.4 tells us that v ∈ ∂ρΩr

F (x̄), which yields

⟨v, x− x̄⟩ ≤ ρΩr

F (x)− ρΩr

F (x̄).

If x /∈ Ωr, we use Lemma 8.5 from the Appendix and get

⟨v, x− x̄⟩ ≤ ρΩr

F (x) = ρΩF (x)− r = ρΩF (x)− ρΩF (x̄),

which readily ensures that v ∈ ∂ρΩF (x̄). In the other case, suppose that x ∈ Ωr, i.e., ρ
Ω
F (x) =

p ≤ r. Fix any ε > 0 and deduce from σF (v) = 1 the existence of f ∈ F such that ⟨v, f⟩ ≥
1 − ε. Using Lemma 8.6 from the Appendix, we obtain y ∈ Ωr with y = x + (r − p)f . Since
v ∈ N(x̄; Ωr), it follows that ⟨v, y − x̄⟩ ≤ 0. Therefore,

⟨v, x− (p− r)f − x̄⟩ = ⟨v, x− x̄⟩ − (p− r)⟨v, f⟩ ≤ 0

=⇒ ⟨v, x− x̄⟩ ≤ (p− r)⟨v, f⟩ ≤ (1− ε)(p− r) = (1− ε)(ρΩF (x)− ρΩF (x̄)).

Passing to the limit as ε ↓ 0 gives us v ∈ ∂ρΩF (x̄). This shows that N(x̄; Ωr)∩Υ ⊂ ∂ρΩF (x̄) and
thus completes the proof of the theorem.

In what follows, we need yet another evaluation of the subdifferential of the set-based
Minkowski gauge function at out-of-set points. Given a compact and convex set F ⊂ Rq with
0 ∈ intF , and given a nonempty, closed, and convex set Ω ⊂ Rq, the generalized projection
from a point x ∈ Rq to the set Ω relative to F , denoted by ΠF (x; Ω), is defined by

ΠF (x; Ω) :=
{
ω ∈ Ω

∣∣ ρΩF (x) = ρF (x− w)
}
. (3.7)

The nonemptiness of ΠF (x; Ω) is established in Proposition 8.1 from the Appendix.

Proposition 3.6. Let F and Ω be the sets from definition (3.7) of the generalized projection
under the assumptions imposed therein, and let x̄ ∈ dom ρΩF . Then there is ω̄ ∈ ΠF (x̄; Ω) with

∂ρΩF (x̄) ⊂ ∂ρF (x̄− ω̄). (3.8)

If in addition we have x̄ ∈ int(dom ρΩF ) and the function ρF is differentiable at x̄− ω̄, then the
inclusion in (3.8) becomes the equality

∂ρΩF (x̄) = ∂ρF (x̄− ω̄) = {∇ρF (x̄− ω̄)}. (3.9)

Proof. Picking v ∈ ∂ρΩF (x̄), we deduce from Proposition 3.1 that

⟨v, x− x̄⟩ ≤ ρΩF (x)− ρΩF (x̄) = inf
ω∈Ω

ρF (x− ω)− inf
ω∈Ω

ρF (x̄− ω) ≤ ρF (x− ω̄)− ρF (x̄− ω̄)

which gives us v ∈ ∂ρF (x̄− ω̄) and thus verifies the inclusion in (3.8).
To prove the second part of the proposition, we deduce from the convexity of ρΩF by

Proposition 3.2 and basic convex analysis that ∂ρΩF (x̄) ̸= ∅ if x̄ ∈ int(dom ρΩF ). Furthermore,
the subdifferential ∂ρΩF (x̄ − ω̄) reduces to a singleton if ρF is differentiable at x̄ − ω̄. This
readily leads us to (3.9) and thus completes the proof of all the claimed statements.
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Alternative calculations of subgradients of the set-based Minkowski gauge functions at
out-of-state points, which involve the generalized projection (3.7) and the normal cone to the
r-enlargement (3.2), are given in Theorem 8.10.

The next proposition establishes the precise relationship between ρΩF and its multiplica-
tion by positive scalars while demonstrating how positive coefficients and weights can be
incorporated into the dynamic set.

Proposition 3.7. Let F ⊂ Rq be a nonempty, closed, and convex set, and let Ω ⊂ Rq be a
nonempty set. Then we have the relationship

λρΩF (x) = ρΩF
λ
(x) for any λ > 0. (3.10)

Proof. We begin with the case where ρΩF (x) <∞. Given ε > 0, choose t such that ρΩF (x) ≤ t <
ρΩF (x)+ε. Then there exist vectors ω ∈ Ω and f ∈ F with x = ω+tf . Rewrite the latter in the

form x = ω+λt· fλ and get x ∈ Ω+(λt)Fλ , which implies in turn that ρΩF
λ

(x) ≤ λt < λ(ρΩF (x)+ε).

Letting ε ↓ 0 gives us ρΩF
λ

(x) ≤ λρΩF (x).

To verify the reverse inequality in(3.10), pick α > 0 and choose a number β such that

ρΩF
λ
(x) ≤ β < ρΩF

λ
(x) + α.

Then there are ω ∈ Ω and λ−1f ∈ λ−1F with x = ω + λ−1βf . This yields x ∈ Ω + λ−1βF ,
which leads us to the inequalities

ρΩF (x) ≤ λ−1β < λ−1
(
ρΩF

λ
(x) + α

)
,

which yield λρΩF (x) < ρΩF
λ

(x)+α. Letting α ↓ 0 implies that λρΩF (x) ≤ ρΩF
λ

(x) and thus justifies

the claimed relationship in (3.10).
It remains to consider the case where ρΩF (x) =∞ and therefore {t ≥ 0 | x ∈ Ω+ tF} = ∅.

The latter readily implies that {t ≥ 0 | x ∈ Ω+ tFλ } = ∅ and thus

λρΩF (x) =∞ = ρΩF
λ
(x),

which completes the proof of the proposition.

To proceed further, we introduce a new function important in the subsequent applications.
Let F ⊂ Rn be a nonempty, closed, bounded, and convex set, and let Ω ⊂ Rq be nonempty
and bounded. The maximal set-based Minkowski gauge (MSMG) is defined by

ρ̄ΩF (x) := inf
{
t ≥ 0

∣∣ x− Ω ⊂ tF
}
, x ∈ Rq. (3.11)

In simple terms, the set x−Ω includes all vectors that start from a point in Ω and end in x. If
we view F as a dynamic set, then ρ̄ΩF (x) represents the minimal time required to reach x from
the farthest point in Ω, see Fig. 7(a) as an example. Lemma 8.13 from the Appendix provides
the connection between ρ̄ΩF (x) and the maximal time function CF

Ω (x) defined in (8.10), The
application of the MSMG function will be presented in Section 6. Now we derive a relationship
between (3.11) and the classical Minkowski gauge function ρF .

Proposition 3.8. Let F ⊂ Rq be a compact and convex set with 0 ∈ int F , and let Ω ⊂ Rq

be nonempty and bounded. Then we have the representation

ρ̄ΩF (x) = sup
ω∈Ω

ρF (x− ω). (3.12)

Proof. In the case where ρ̄ΩF (x) = 0, we clearly have Ω = {x}. Thus supω∈Ω ρF (x − ω) = 0,
which justifies the equality (3.12) in this case. If ρ̄ΩF (x) > 0, pick an arbitrary number ε > 0
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and put t := ρ̄ΩF (x) − ε > 0. It follows from the definition of ρ̄ΩF (x) that there exists ω ∈ Ω
such that x− ω /∈ tF , which implies that

t < ρF (x− ω) ≤ sup
ω∈Ω

ρF (x− ω).

Since t→ ρ̄ΩF (x) as ε ↓ 0, we arrive at ρ̄ΩF (x) ≤ supω∈Ω ρF (x− ω).
To verify the reverse inequality in (3.12), let β be such that ρ̄ΩF (x) ≤ β < ρ̄ΩF (x)+α, where

α > 0 is arbitrary. The definition of ρ̄ΩF (x) tells us that x− ω ∈ βF for all ω ∈ Ω, and hence
ρF (x− ω) ≤ β on Ω. Therefore, we get

sup
ω∈Ω

ρF (x− ω) ≤ β < ρ̄ΩF (x) + α,

which yields the claimed reverse estimate in (3.12) as α ↓ 0 and thus completes the proof.

The final theorem of this section reveals the key properties of the MSMG function (3.11)
that are fundamental for our practical applications given below.

Theorem 3.9. Let F ⊂ Rq be a compact and convex set with 0 ∈ intF , and let Ω ⊂ Rq be
nonempty, compact, and convex. Then we have the following assertions:

(i) The MSMG function is convex.
(ii) The MSMG function is Lipschitz continuous on Rq.
(iii) The subdifferential of the MSMG function at x̄ ∈ domρ̄ΩF satisfies the inclusion

∂ρF (x̄− ω′) ⊂ ∂ρ̄ΩF (x̄),

where ω′ ∈ ΠF (x̄; Ω) := {ω ∈ R | ρ̄ΩF (x̄) = ρF (x̄− ω)}.
(iv) The subdifferential of the MSMG function at x̄ ∈ dom ρ̄ΩF is represented by

∂ρ̄ΩF (x̄) = co

 ⋃
ω′∈ΠF (x̄;Ω)

N(ω′; x̄− rF ) ∩Υ′

 , (3.13)

where Υ′ := {v ∈ Rq | σ−F (v) = 1}, ω′ ∈ ΠF (x̄; Ω), and r := ρ
{x̄}
−F (ω

′).

Proof. It follows from Proposition 3.2 that ρF is convex. Then we deduce from Proposi-
tions 3.8 and 2.1 that ρ̄ΩF (·) is convex as well, which is claimed in (i). To verify (ii), we have
by (Mordukhovich & Nam, 2023, Theorem 6.14) that ρF is subadditive. Combining this with
Proposition 3.8 ensures the implications

ρF (x− ω) ≤ ρF (x− y) + ρF (y − ω) for all ω ∈ Ω

=⇒ sup
ω∈Ω

ρF (x− ω) ≤ ρF (x− y) + sup
ω∈Ω

ρF (y − ω)

=⇒ sup
ω∈Ω

ρF (x− ω)− sup
ω∈Ω

ρF (y − ω) ≤ ρF (x− y)

=⇒ ρ̄ΩF (x)− ρ̄ΩF (y) ≤ ρF (x− y).

It follows from (Mordukhovich & Nam, 2023, Proposition 6.18) that there exists a constant
i ≥ 0 such that ρF (x) ≤ l∥x∥. Therefore, we have

ρ̄ΩF (x)− ρ̄ΩF (y) ≤ ρF (x− y) ≤ l(x− y),

which justifies the Lipschitz continuity of ρ̄ΩF (·) on Rq due to the arbitrary choice of x and y.
To verify assertion (iii), observe that ΠF (x̄; Ω) ̸= ∅ as it follows from the classical Weier-

strass existence theorem due to the continuity of ρF and the imposed compactness of Ω.
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Picking any subgradient v ∈ ∂ρF (x̄− ω′), we have

⟨v, x− x̄⟩ ≤ ρF (x− ω′)− ρF (x̄− ω′) ≤ sup
ω∈Ω

ρF (x− ω)− sup
ω∈Ω

ρF (x̄− ω) = ρ̄ΩF (x)− ρ̄ΩF (x̄).

Therefore, v ∈ ∂ρ̄ΩF (x̄), which implies that ∂ρF (x̄− ω′) ⊂ ∂ρ̄ΩF (x̄) as claimed in (iii).
It remains to prove assertion (iv). Let us first show that

sup
ω∈Ω

ρ
{x̄}
−F (ω) = ρ

{x̄}
−F (ω

′), (3.14)

where ω′ ∈ ΠF (x̄; Ω). To this end, apply Proposition 3.1 to ρ
{x̄}
−F (ω), which gives us

supω∈Ω ρ
{x̄}
−F (ω) = supω∈Ω ρ−F (ω − x̄). Using Lemma 8.11 from the Appendix, we get

ρ−F (ω − x̄) = ρF (x̄− ω). It follows from the definition of ΠF (x̄; Ω) and Proposition 3.8 that
any fixed generalized projection vector ω′ ∈ Π̄F (x̄; Ω) satisfies the equality

ρF (x̄− ω′) = sup
ω∈Ω

ρF (x̄− ω),

which can be equivalently written as

ρ−F (ω
′ − x̄) = sup

ω∈Ω
ρ−F (ω − x̄)

and tells us therefore that
sup
ω∈Ω

ρ
{x̄}
−F (ω) = ρ

{x̄}
−F (ω

′). (3.15)

Employing Proposition 8.9 from the Appendix together with (3.15) leads us to the equalities

ρ̄ΩF (x̄) = sup
ω∈Ω

ρ
{x̄}
−F (ω) = ρ

{x̄}
−F (ω

′).

Finally, it follows from Theorem 3.5 that

∂ρ
{x̄}
−F (ω

′) = N(ω′; x̄− rF ) ∩Υ′.

This allows us to deduce from the subdifferential maximum rule in Theorem 2.3 the fulfillment
of representation (3.13) and thus complete the proof of this theorem.

4 Well-Posedness of the Generalized SFT Model

In this section, we verify the well-posedness of our main generalized SFT model and hence of
its specification, meaning by well-posedness the existence and uniqueness of optimal solutions.
Given two points x, y ∈ Rq, denote the straight line passing through them by

L(x, y) := {λx+ (1− λ)y | λ ∈ R}. (4.1)

The first theorem establishes the existence of optimal solutions to the generalized SFT
problem (2.6) under a simple assumption.

Theorem 4.1. In the setting of the generalized SFT problem (2.6), an optimal solution exists
if at least one of the sets Ω0 and Ωi as i ∈ Ik, k = 1, . . . , n, is bounded.

Proof. For any λ ≥ 0, define the sublevel set associated with the function S(x) from (2.7)
relative to the constraint set Ω0 in (2.6) by

Lλ(S) :=
{
x ∈ Ω0

∣∣ S(x) ≤ λ
}
.
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This implies that
∑

i∈Ik
ρΩi

Fi
(x) ≤ λ as k = 1, . . . , n whenever x ∈ Ω0. Therefore, we have

Lλ(S) ⊂ A with the set A given by

A :=
{
x ∈ Ω0

∣∣ ρΩi

Fi
(x) ≤ λ for all i ∈ Ik, k = 1, . . . , n

}
,

Since the sets Ωi are closed, it follows from ρΩi

Fi
(x) ≤ λ that x ∈ Ωi + λFi. Thus

A = Ω0 ∩

(
n⋂

k=1

(⋂
i∈Ik

(Ωi + λFi)

))
.

This tells us that the boundedness of one of the sets Ωi for some i ∈ Ik with k = 1, . . . , n yields
the boundedness of the set A, and hence this property of the sublevel set Lλ(S). The existence
of optimal solutions to (2.6) follows now from (Mordukhovich & Nam, 2023, Corollary 7.10)
due to the classical Weierstrass existence theorem.

Before deriving the uniqueness result for (2.6), we present the following lemma of its
independent interest, which is used in the proof of the uniqueness theorem below.

Lemma 4.2. In addition to the standing assumptions in the formulation of the generalized
SFT problem (2.6), suppose that the sets Fi and Ωi, i = 1, . . . ,m, are strictly convex. If
furthermore for any line L(x, y) from (4.1) with x, y ∈ Ω0 and x ̸= y, there exists j ∈
{1, . . . ,m} such that L(x, y) ∩ Ωj = ∅, then the function T (x) defined in (2.11) is strictly
convex on the set Ω0.

Proof. It follows from Propositions 2.1, 3.2 that T (x) is convex. Suppose on the contrary that
T (x) is not strictly convex. Then there exist x, y ∈ Ω0 with x ̸= y and λ ∈ (0, 1) such that

T (λx+ (1− λ)y) = λT (x) + (1− λ)T (y).

Since each ρΩi

Fi
is convex, we get by definition that

ρΩi

Fi
(λx+ (1− λ)y) ≤ λρΩi

Fi
(x) + (1− λ)ρΩi

Fi
(y) whenever i = 1, . . . , n.

As assumed, there exists j with L(x, y) ∩ Ωj = ∅. Pick ω ∈ ΠFj (x; Ωj), v ∈ ΠFj (y; Ωj) and

then write ρ
Ωj

Fj
(x) = ρFj

(x− ω) and ρ
Ωj

Fj
(y) = ρFj

(y − v). This gives us the relationships

λρFj
(x− ω) + (1− λ)ρFj

(y − v) = λρ
Ωj

Fj
(x) + (1− λ)ρ

Ωj

Fj
(y)

= ρ
Ωj

Fj
(λx+ (1− λ)y)

≤ ρFj (λx+ (1− λ)y − (λω + (1− λ)v))

≤ λρFj (x− ω) + (1− λ)ρFj (y − v),

which imply therefore that λω+(1−λ)v ∈ ΠFj
(λx+(1−λ)y; Ωj). We know by Proposition 8.2

that ω ∈ bd(Ωj), v ∈ bd(Ωj), and λω+ (1− λ)v ∈ bd(Ωj). Since the set Ωj is strictly convex,
it follows that ω = v. Furthermore, the function ρF is positively homogeneous, and hence

ρFj
(λx+(1−λ)y−ω) = λρFj

(x−ω)+(1−λ)ρFj
(y−ω) = ρFj

(λ(x−ω))+ρFj
((1−λ)(y−ω)).

By x, y /∈ Ωj we get x − ω, y − ω ̸= 0. Moreover, Proposition 8.3 tells us that α > 0 with
λ(x− ω) = α(1− λ)(y − ω). This brings us to the representation

x− ω = β(y − ω) for β =
α(1− λ)

λ
̸= 1,

which indicates that ω = 1
1−βx −

β
1−β y ∈ L(x, y). Since ω ∈ Ωj , we get L(x, y) ∩ Ωj ̸= ∅, a

contradiction that comoletes the proof of the theorem.
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Finally, we are ready to establish the uniqueness of optimal solutions to the generalized
SFT problem (2.6) under appropriate assumptions.

Theorem 4.3. In addition to the standing assumptions on the data of (2.6), suppose that:
(i) The sets Fi and Ωi are strictly convex for i ∈ Ik with k = 1, . . . , n.
(ii) For each index set Ik with k ∈ {1, . . . , n}, there exists a set Ωj among Ωi with i ∈ Ik

such that L(x, y) ∩ Ωj = ∅ whenever x, y ∈ Ω0 with x ̸= y.
(iii) At least one of the sets Ω0 and Ωi, i ∈ Ik, k = 1, . . . , n, is bounded.

Then problem (2.6) admits a unique optimal solution.

Proof. The existence of solutions to (2.6) is proved in Theorem 4.1. To verify the uniqueness,
we get from Lemma 4.2 that the sum

∑
i∈Ik

ρΩi

Fi
(x) is strictly convex for each k = 1, . . . , n.

Furthermore, Proposition 2.2 tells us that the function S(x) is strictly convex as well, which
therefore ensures the claimed solution uniqueness.

5 Weighted and Extended Formulations of the
Generalized SFT Problem

Motivated by prior works that studied the weighted generalized Fermat–Torricelli and
Sylvester problems (Mordukhovich et al., 2012; Nickel et al., 2003; Pelegrin et al., 1985;
Plastria, 2009, 2016), we conclude this section by presenting and discussing the weighted
formulation of the generalized SFT problem given, in the setting of (2.6), by

min S̃(x) subject to x ∈ Ω0,

where the objective function is defined, with the weights ωi > 0 for i ∈ Ik and k = 1, . . . , n, as

S̃(x) := max
{∑

i∈Ik

ωiρ
Ωi

Fi
(x)

∣∣∣ k = 1, . . . , n
}
. (5.1)

It is worth noting that the original formulation of the generalized SFT problem in (2.6)
inherently includes its weighted counterpart. Indeed, it follows from Proposition 3.7 that

ωiρ
Ωi

Fi
(x) = ρΩi

Fi
ωi

(x),

which allows us to express the weighted version in the same form as the original problem (2.6)
where the (modified) cost function is given by

S(x) := max
{∑

i∈Ik

ρΩi

F̃i
(x)

∣∣∣ k = 1, . . . , n
}

with F̃i := Fi/ωi.

This facilitates the investigation of well-posedness for the weighted generalized SFT problem
using Section 4.

Furthermore, we can explore the following extended version of the generalized SFT problem
that incorporates both the set-based Minkowski gauge and the MSMG functions. Let m̄ ∈ N
and the index sets Jk ̸= ∅ for k = 1, . . . , n form a partition of J := {1, . . . , m̄} such that

n⋃
k=1

Jk = J and Jk ∩ Jl = ∅ whenever k ̸= l with k, l ∈ {1, . . . , n}.

For j ∈ Jk with k = 1, . . . n, let F̄j ⊂ Rq be a compact and convex set with 0 ∈ int F̄j , and let
Θj be nonempty, compact, and convex subsets of Rq. The extension of (2.6) is formulated by

min Ŝ(x) subjet to x ∈ Ω0, (5.2)
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where the extended cost function is defined by

Ŝ(x) := max
{∑

i∈Ik

ρΩi

Fi
(x) +

∑
j∈Jk

ρ̄
Θj

F̄j
(x)

∣∣∣ k = 1, ..., n
}
. (5.3)

Applications of the generalized SFT problem in the extended form (5.2) are demonstrated in
a real-world scenario in Section 6.

In the case where k = 1, |I1| = m, and |J1| = m̄ in problem (5.2), the extended version of
the generalized Fermat-Torricelli problem is represented by

min T̂ (x) subject to x ∈ Ω0 (5.4)

with the cost function given in the summation form

T̂ (x) :=

m∑
i=1

ρΩi

Fi
(x) +

m̄∑
j=1

ρ
Θj

F j
(x). (5.5)

Applications of (5.4), (5.5) to disaster relief operations using UAVs are discussed in Section 6.3.
Finally in this section, we formulate an extended version of the generalized Sylvester

problem given by
min Ŷ (x) subject to x ∈ Ω0, (5.6)

where both components of the cost functions are represented in the maximun function form

Ŷ (x) =
{
Y1(x),Y2(x)

}
with Y1(x) := max

i=1,...,m
ρΩi

Fi
(x), Y2(x) := max

j=1,...,m̄
ρ
Θj

Fj
(x). (5.7)

Both versions of the generalized Sylvester problem proposed in (2.8) and (5.6) constitute novel
models whose applications to UAV-based disaster relief operations are discussed in Sections 6.2
and 6.3. Observe that the convexity of the functions Ŝ(x), T̂ (x), and Ŷ (x), defined in (5.3),
(5.5), and (5.7), respectively, follows directly from Propositions 3.2, 2.1 and Theorem 3.9.
Furthermore, their subgradient evaluations can be obtained by using Theorems 3.4, 3.5 and
Proposition 3.6 combined with Theorems 3.9, 2.3, and 2.4.

6 Applications of the New Location Science Models to
Disaster Relief Operations

After an earthquake, some people may be trapped under debris but still alive. If they have
access to their cell phones, one of the most effective ways they can help themselves is by
sending their location to family members or posting it on social media (see, e.g., (Toraman et
al., 2023) for a real case). This can greatly increase their chances of being found and rescued.
However, earthquakes often damage or destroy communication systems such as cell towers and
internet cables. As a result, even if someone has a working phone, it may not be possible to
send messages or connect to the Internet.

In such cases, UAVs may play a crucial role. By flying over the damaged area, UAVs
can provide wireless connections or DTNs (delay-tolerant networks) while allowing trapped
individuals to send their location information (see Fig. 2). This support is able make rescue
operations faster and more effective, and thus help saving more lives. Despite their advan-
tages, UAVs also present several challenges; in particular, they are limited by short battery
life and are vulnerable to environmental conditions, especially high winds. Moreover, rescue
teams often deploy a heterogeneous fleet consisting of UAVs with varying speeds, ranges, and
operational capabilities adding complexity to coordination and mission planning.

In this section, we examine several scenarios in which a truck serves as a mobile station for
deploying and recharging UAVs. The primary objective is to determine the optimal location of
the truck (see Fig. 2) to minimize the transition time, i.e., the period when the UAV is traveling
between the service area and the mobile station, resulting in a temporary loss of network
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Where is the best location 
for the truck?

Fig. 2 Providing a wireless network or DTNs after an earthquake is one of the important
applications of UAVs in disaster relief

service. Such models can be formulated via single-facility location problems, which have been
extensively studied in the literature by using the ℓ1 and ℓ2 norms. However, to model a more
realistic scenario, we incorporate the effect of wind that prevents us from employing these
common norms directly. Using the ℓ2 norm, for example, would ignore the wind’s influence,
leading us to a simplification that can result in significant time loss.

To minimize transition time, we use the set-based Minkowski gauge function (2.5) that cap-
tures the effects of wind, which are inherent in real-world conditions. In the first scenario, a
rescue team utilizes a single UAV, and we show how the generalized Fermat-Torricelli problem
can be applied to minimize transition time. In the second scenario, the rescue team operates a
heterogeneous fleet of UAVs, and we illustrate how the generalized Sylvester problem can effec-
tively address the complexities that arise. Finally, we consider the generalized SFT problem in
a scenario where the heterogeneous fleet of UAVs is first deployed to the affected area and then
returns to the truck for recharging and data transfer. This setup highlights the operational
challenges and the importance of strategic truck placement in dynamic rescue missions.

6.1 Applications of the Generalized Fermat-Torricelli Problem

Owing to constraints such as limited budget, it is often the case that a rescue team operates
with only a single UAV. In this section, we examine an operation in which the rescue team
employs a UAV to provide DTN support for three predetermined areas. To begin with, the UAV
is dispatched from the mobile station (e.g., a truck) and covers the first area. After collecting
data, the UAV returns to the station for recharging and transferring the collected data to
the rescue team. This pattern is then repeated for the remaining two areas. To determine the
optimal location of the truck in order to minimize transition time under windy conditions, we
apply the above generalized Fermat-Torricelli model. We present a step-by-step solution to
illustrate how our model is implemented in this context.

To formulate the aforementioned challenge (corresponding to Case 1 in Table 1) as a
generalized Fermat-Torricelli problem (2.10), we begin by specifying the reference and dynamic
sets. The reference sets are given as follows:

Ω0 = R2,

Ω1 =
{
(x, y) ∈ R2 | max{|x− 30|, |y − 350|} ≤ 15

}
,
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(a) (b)

(c) (d)

Fig. 3 Case 1 in Table 1: (a) Approximated optimal location of the truck when the wind
effect is neglected. (b) Dynamic set with ∥S∥ = 0. (c) Approximated optimal location of the
truck under windy conditions. (d) Dynamic sets of the UAV under wind conditions with
S = (−0.6, 0.6). The black arrow indicates the wind direction

Ω2 =
{
(x, y) ∈ R2 | max{|x− 210|, |y − 10|} ≤ 15

}
,

Ω3 =
{
(x, y) ∈ R2 | max{|x− 550|, |y − 200|} ≤ 15

}
.

The dynamic sets in the absence of wind, corresponding to the UAV’s nominal speed r (m/s),
are represented by the ball of the plane:

F0 =
{
(f1, f2) ∈ R2 | f2

1 + f2
2 ≤ r2

}
for i = 1, 2, 3.

Taking wind into account, with wind vector S = (s1, s2) ∈ R2, the effective dynamic set–
representing the UAV’s velocity under wind conditions–is given by

Fi = F =
{
(f1, f2) ∈ R2 | (f1 − s1)

2 + (f2 − s2)
2 ≤ r2

}
for i = 1, 2, 3. (6.1)

Dispatching the UAV from the mobile station involves movement in the opposite direction, so
the corresponding dynamic set is given by −Fi for i = 1, 2, 3, as stated in Proposition 8.8 from
the Appendix. We assume that the wind vector satisfies the condition ∥S∥2 < r, ensuring that
the UAV can still operate effectively under the given wind condition. Therefore, the generalized
Fermat-Torricelli problem is represented as (assuming for simplicity that F̄ = −F ):

min
x∈Ω0

T (x) with T (x) =

3∑
i=1

ρΩi

Fi
(x) +

3∑
i=1

ρΩi

−Fi
(x) =

3∑
i=1

ρΩi

F (x) +

3∑
i=1

ρΩi

F̄
(x), (6.2)

where x = (x1, x2) ∈ R2. To solve (6.2), we split the solution procedure into several steps.

Step 1: Computing the Minkowski gauge function ρF (x).
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The classical Minkowski gauge ρF (x) in (2.4) is the optimal value of the following problem:

min t subject to

(f1 − s1)
2 + (f2 − s2)

2 = r2,

x1 = tf1, x2 = tf2, t ≥ 0.

(6.3)

According to Proposition 8.7, the first constraint in (6.3) enforces that the velocity vector
(f1, f2) lies on the boundary of the dynamic set F . To derive a closed-form expression for
ρF (x), we substitute f1 = x1/t and f2 = x2/t into the first constraint in (6.3) and get(x1

t
− s1

)2
+
(x2

t
− s2

)2
= r2

=⇒ (x1 − ts1)
2 + (x2 − ts2)

2 = r2t2

=⇒ t2(s21 + s22 − r2)− 2(s1x1 + s2x2)t+ (x2
1 + x2

2) = 0.

(6.4)

Solving the quadratic equation from (6.4) gives us

ρF (x) = t =
(s1x1 + s2x2)−

√
x2
1(r

2 − s22) + x2
2(r

2 − s21) + 2s1s2x1x2

s21 + s22 − r2
. (6.5)

The value of t obtained from (6.5) is the optimal solution to the problem in (6.3), and it is
obviously nonnegative.

Step 2: Computing subgradients of the functions ρF (x) and ρΩF (x).
Here we compute subgradients of the functions ρF (x) and ρΩF (x), which are used below in the
subgradient algorithm (Algorithm 1) to solve problem (6.2). Define α := 1

s21+s22−r2
and

β(x1, x2) := x2
1(r

2 − s22) + x2
2(r

2 − s21) + 2s1s2x1x2.

Then for any x ̸= 0, the gradient of the function ρF (x) in (6.5) is calculated by

∇ρF (x) = α(s1 −
x1(r

2 − s22) + s1s2x2√
β(x1, x2)

, s2 −
x2(r

2 − s21) + s1s2x1√
β(x1, x2)

). (6.6)

Therefore, the subdifferential of the function ρΩi

F are calculated by Theorems 3.4 and
Proposition 3.6 as follows:

∂ρΩi

F (x) =

{
N(x; Ωi) ∩ V if x ∈ Ωi,

{∇ρF (x− ωi)} if x /∈ Ωi,
i = 1, 2, 3, (6.7)

where ωi ∈ ΠF (x; Ωi) and x− ωi ̸= 0 if x /∈ Ωi.

Step 3: Computing the optimal solution by subgradient algorithm.
To determine the optimal location of the mobile station, we apply the subgradient algorithm
(see Algorithm 1 below) allowing us to find an optimal solution to the generalized Fermat–
Torricelli problem under consideration in (6.2).

According to the structure of the subgradient algorithm, we need to compute a subgradient
of T (x). To do so, we calculate the subdifferential of T (x) by applying the subdifferential sum
rule from Theorem 2.4, which gives us the representation

∂T (x) =

3∑
i=1

∂ρΩi

F (x) +

3∑
i=1

∂ρΩi

F̄
(x). (6.8)

19



Table 1: Experimental Results for Generalized Fermat-Torricelli Cases

Case Parameters Wind Vector Wind Neglected Wind Included Absolute Relative
No. (Table 4) (S = (s1, s2)) x∗ ZN (s) x∗ ZI(s) Imp(s) Imp(%)
1 Info 1 (−0.6, 0.6) (252,117) 4039 (242,52) 3959 80 1.98
2 Info 1 (0.6, 0.6) (252,117) 3626 (225,171) 3575 53 1.46
3 Info 1 (0.7, 0.3) (252,117) 2746 (228,108) 2727 19 0.00
4 Info 1 (−0.1, 0.9) (252,117) 5214 (350,162) 5037 177 3.39
5 Info 1 (0.4,−0.1) (252, 117) 1605 (247, 102) 1604 1 0.00
6 Info 2 (0.8,−0.3) (604,265) 8305 (581,101) 8148 157 1.89
7 Info 2 (0,−0.2) (604,265) 2728 (605,270) 2728 0 0.00
8 Info 3 (0.4,−0.8) (166, 48) 3103 (175,35) 3061 42 1.35
9 Info 3 (0.3,0) (166,48) 896 (164,44) 896 0 0.00
10 Info 3 (0.4, 0.8) (166,48) 2742 (176,84) 2597 145 5.28

ZN and ZI denote the objective function values (transition time in seconds) for the cases ignoring
and considering wind, respectively. Absolute Imp (ZN − ZI) and Relative Imp ((ZN − ZI)/ZN )
denote the absolute and relative improvements.

Algorithm 1 Subgradient Method

1: Input: Initial point x1 ∈ Ω0, step size sequence {αk > 0}, maximum iterations K ∈ N.
2: Initialize: Set k = 1 (k ∈ N).
3: while k < K do
4: Choose a subgradient vk ∈ ∂f(xk).
5: Update: xk+1 = Π(xk − αkvk; Ω0) ▷ Π(.; Ω0) denotes Euclidean projection onto Ω0

6: k ← k + 1
7: end while
8: Output: xK

Note. {αk}∞
k=1 should satisfies (1) αk → 0 and (2)

∑∞
k=1 αk = ∞

Therefore, at each iteration k of the subgradient algorithm, a subgradient vk ∈ ∂T (xk) can be
calculated as follows:

vk =

3∑
i=1

vki +

3∑
i=1

v̄ki , (6.9)

where vki ∈ ∂ρΩi

F (xk) and v̄ki ∈ ∂ρΩi

F̄
(xk) are taken from (6.7) as

vki =

{
0 if xk ∈ Ωi,

∇ρF (xk − ωk
i ) if xk /∈ Ωi,

i = 1, 2, 3, (6.10)

with ωk
i ∈ ΠF (x

k; Ωi). Similarly we get

v̄ki =

{
0 if xk ∈ Ωi,

∇ρF (xk − ω̄k
i ) if xk /∈ Ωi,

i = 1, 2, 3, (6.11)

where ω̄k
i ∈ ΠF (x

k; Ωi). Note that by solving the problem in (6.3) with F replaced by F , we
can compute both ρF (x) and its gradient ∇ρF (x).

To illustrate the computation procedure, we focus for definiteness on Case 1 in Table 1
and evaluate vk ∈ ∂T (xk) for k = 1, where the dynamic sets are specified by Info 1 in Table 4
and the wind vector is given by S = (−0.6, 0.6). Therefore, the dynamic sets for this UAV,
corresponding to back-and-forth movements, are given by

F =
{
(f1, f2) ∈ R2

∣∣ (f1 + 0.6)2 + (f2 − 0.6)2 ≤ 1
}
,

F̄ =
{
(f1, f2) ∈ R2

∣∣ (f1 − 0.6)2 + (f2 + 0.6)2 ≤ 1
}
.

(6.12)
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Starting with x1 = (100, 100) /∈ Ω1, compute v11 by (6.10) With ω1
1 = (45, 335). This gives us

x1 − ω1
1 = (100− 45, 100− 335) = (55,−235).

Then it follows from (6.6) that

α = −3.57, β(55,−235) = 46586, and ∇ρF (55,−235) =

(−3.57)

(
−0.6− 55(0.64) + (−235)(−0.36)√

46586
, 0.6− (−235)(0.64) + 55(−0.36)√

46586

)
= (4.12,−4.95).

Using the same procedure, we get

v12 = (−0.46, 0.29), v13 = (−0.66,−0.98),
v̄11 = (−0.01,−0.62), v̄12 = (−4.74, 4.58), v̄13 = (−4.91, 3.11).

Finally, v1 can be computed by using (6.9), which brings us to

v1 = (−6.66, 1.43).

In the same way, we compute vk at each iteration. Then Algorithm 1 with the standard choice
of αk = 1

k allows us to solve the generalized Fermat-Torricelli problem (6.2).
To proceed with Case 1 in Table 1, we first simplify the problem by neglecting the wind

effect and considering the dynamic sets for the back-and-forth movement as F = F̄ = F0 as
illustrated in Fig. 3(b). In this scenario, the approximate solution is (252, 117) as shown in
Fig. 3(a). If this solution is applied in a real-world scenario with wind, the resulting transition
time is 4039 seconds. When the wind effect is incorporated, the dynamic sets are defined as
in (6.12); see Fig. 3(d). The optimal solution then shifts to (242, 52), depicted in Fig. 3(c),
reducing the objective value to 3960 seconds. Note that, since the sets Ωi for i = 1, 2, 3 are not
strictly convex, the uniqueness of solutions to this problem cannot be generally guaranteed.

Table 1 presents ten cases with varying settings and parameters to evaluate the efficiency
of the generalized Fermat–Torricelli problem in accounting for wind effects. For simplicity, all
the cases are conducted on a small scale, with the UAV’s nominal speed set to 1(m/s); these
parameters can be appropriately scaled to reflect the real scenarios. The results indicate that,
for single-UAV operations, the generalized Fermat–Torricelli problem reduces the transition
time by approximately 3.3%.

6.2 Applications of the Generalized Sylvester Problem

In the context of Section 6.1, we consider a scenario in which the rescue team deploys a
heterogeneous fleet of three UAVs. These UAVs are launched at the earliest possible time after
a disaster, and the goal is to determine an optimal location for a mobile station to collect them
as quickly as possible. Timely retrieval of the UAVs enables rapid access to critical data, which
is essential for effective response and decision-making in emergency situations. We consider
this problem in the following setting corresponding to Case 2 from Table 2:

Ω0 = R2,

Ω1 =
{
(x, y) ∈ R2

∣∣∣ (x− 30)2

102
+

(y − 350)2

102
≤ 1
}
,

Ω2 =
{
(x, y) ∈ R2

∣∣∣ (x− 210)2

102
+

(y − 10)2

102
≤ 1
}
,

Ω3 =
{
(x, y) ∈ R2

∣∣∣ (x− 550)2

102
+

(y − 200)2

102
≤ 1

}
.
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(a) (b)

(c) (d)

Fig. 4 Case 2 in Table 2: (a) Approximated optimal location of the truck when the wind
effect is neglected. (b) Dynamic sets with ∥S∥ = 0. (c) Approximated optimal location of the
truck under windy conditions. (d) Dynamic sets of the UAVs under windy conditions with
S = (−0.6, 0.6). The black arrow indicates the wind direction

For the dynamic sets, we have the following:

F1 =
{
(f1, f2) ∈ R2

∣∣ (f1 + 0.6)2 + (f2 − 0.6)2 ≤ 22
}
,

F2 =
{
(f1, f2) ∈ R2

∣∣ (f1 + 0.6)2 + (f2 − 0.6)2 ≤ 12
}
,

F3 =
{
(f1, f2) ∈ R2

∣∣ (f1 + 0.6)2 + (f2 − 0.6)2 ≤ 32
}
.

Let us set 1(m/s) as the nominal speed of the slowest UAV, which is represented by F2.
Consequently, the rescue team is equipped with two additional UAVs that are twice and three
times faster, respectively. In addition, consider the wind vector given by S = (−0.6, 0.6).

To find an optimal location of the UAV station, we formulate this model as the following
generalized Sylvester problem, which is a variant of the generalized SFT problem (2.6):

min
x∈Ω0

Y (x) with Y (x) := max
{
ρΩi

Fi
(x)

∣∣ i = 1, 2, 3
}
. (6.13)

Then Algorithm 1 allows us to determine an approximate minimizer of (6.13). To proceed, we
need to compute a subgradient of Y (x) at each iteration k. Following the procedure described
in Section 6.1 gives us the calculation of vki ∈ ∂ρΩi

Fi
(xk). Subsequently, vk ∈ ∂Y (xk) is obtained

by using the formula derived from Theorem 2.3:

∂Y (xk) = co

 ⋃
i∈I(xk)

∂ρΩi

Fi
(xk)

 .

Initially, we consider the case where the wind effect is ignored (S = 0) and the dynamic
sets are illustrated in Fig. 4(b). The approximated solution in this case is (175, 138), as shown
in Fig. 4(a), which corresponds to the transition time of 212 seconds in the real scenario
under windy conditions. When the wind effect is taken into account with S = (−0.6, 0.6), the
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Table 2: Experimental Results for Generalized Sylvester Cases

Case Parameters Wind Vector Wind Neglected Wind Included Absolute Relative
No. (Table 4) (S = (s1, s2)) x∗ ZN (s) x∗ ZI(s) Imp(s) Imp(%)
1 Info 4 (−0.7, 0.7) (175,138) 242 (95,228) 124 100 41.3
2 Info 4 (−0.6, 0.6) (175,138) 212 (108,216) 124 88 41.5
3 Info 4 (−0.5, 0.5) (175,138) 190 (116,202) 124 66 34.7
4 Info 4 (−0.4, 0.4) (175,138) 171 (122,188) 124 47 27.4
5 Info 4 (−0.3, 0.3) (175,138) 156 (146,179) 124 32 20.5
6 Info 4 (−0.2, 0.2) (175,138) 143 (151,163) 123 20 13.9
7 Info 4 (−0.1, 0.1) (175,138) 133 (175,139) 123 10 7.51
8 Info 4 (0.6,0.6) (175,138) 163 (261,217) 125 38 23.3
9 Info 4 (0.6,−0.6) (175,138) 721 (265,64) 126 595 82.5
10 Info 4 (−0.6,−0.6) (175,138) 481 (118,67) 128 353 73.3
11 Info 5 (0.6,−0.6) (239,163) 1401 (371,40) 212 1189 84.8
12 Info 6 (0.6,−0.6) (331,227) 525 (386,140) 315 210 40.0
13 Info 6 (−0.8, 0) (331,227) 1156 (161,124) 309 847 73.2
14 Info 6 (0.8, 0) (331,227) 432 (474,311) 306 126 29.1

ZN and ZI denote the objective function values (transition time in seconds) for the cases ignoring
and considering wind, respectively. Absolute Imp (ZN − ZI) and Relative Imp ((ZN − ZI)/ZN )
denote the absolute and relative improvements.

dynamic sets are modified as depicted in Fig. 4(d), which gives us the approximated optimal
location (108, 216) as illustrated in Fig. 4(c). The transition time for (108, 216) is 124 seconds,
representing a 41.5% reduction in transition time. This clearly demonstrates the effectiveness
of the generalized Sylvester problem in addressing this challenge.

To evaluate the performance of the generalized Sylvester problem in mitigating wind effects,
14 cases with varying settings and parameters are considered as summarized in Table 2. For
simplicity, all cases are performed on a small scale, assigning 1(m/s) to the slowest UAV
nominal speed; these values can be scaled to represent real-world scenarios. The results demon-
strate that the generalized Sylvester problem significantly reduces transition time, achieving
an approximate 84% improvement. In Cases 1–7 of Table 2, all parameters are identical except
for the length of the wind vector. The results of these cases are illustrated in Fig. 6(b), which
highlights the impact of wind speed. As expected, applying the generalized Sylvester model
at higher wind speeds resulted in greater efficiency and a larger reduction in transition time.

6.3 Applications of the Generalized SFT Problem

In the setting described in Section 6.2, the rescue team first determines the optimal location for
the mobile station and then deploys a fleet of three UAVs. After completing their missions, the
UAVs return to the mobile station for data transfer and recharging. To address this challenge
while accounting for wind conditions and fleet heterogeneity (corresponding to Case 1 in
Table 3), we employ the following generalized SFT model:

min
x∈Ω0

S(x), where S(x) := max
{
ρΩi

Fi
(x) + ρΩi

F i
(x)

∣∣ i = 1, 2, 3
}
. (6.14)

Assuming that F i = −Fi, compute ∂S(x) by applying Theorems 2.3 and 2.4. This gives us

∂S(x) = co

 ⋃
i∈I(x)

(
∂ρΩi

Fi
(x) + ∂ρΩi

F̄i
(x)
) ∣∣∣∣∣∣ i = 1, 2, 3

 , (6.15)

where ∂ρΩi

Fi
(x) and ∂ρΩi

F i
(x) are calculated similarly to Section 6.1. The subgradient algorithm

(Algorithm 1) can be utilized to compute an optimal solution to problem (6.14). In continua-
tion, we consider a more challenging case of this scenario, which has a real-world application.
In this case, UAVs are deployed from a point x (the location of the mobile station), first travel
to the nearest point in Ωi, and then return from the farthest point in Ωi back to x. Cases
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(a) (b)

(c) (d)

Fig. 5 Case 1 in Table 3: (a) Approximated optimal location of the truck when the wind
effect is neglected. (b) Dynamic sets with ∥S∥ = 0. (c) Approximated optimal location of the
truck under windy conditions. (d) Dynamic sets of the UAVs under windy conditions with
S = (−0.6, 0.6). The black arrow indicates the wind direction.

of this type commonly arise when UAVs are used to cover regions Ωi for tasks such as data
collection or aerial photography of affected areas, employing coverage path planning algo-
rithms (see, for example, Choset, 2000; Coombes et al., 2018; Kazemdehbashi and Liu, 2025;
Latombe, 1991). Then, in the worst-case situation, UAVs complete their coverage at the far-
thest point and then must return to the mobile station for recharging and data transfer. This
can be formulated via the extended version of the generalized SFT problem (5.2) as follows:

min
x∈Ω0

Ŝ(x), where Ŝ(x) := max
{
ρΩi

F i
(x) + ρΩi

Fi
(x)

∣∣ i = 1, 2, 3
}
. (6.16)

Assuming again that F i = −Fi gives us by Theorems 2.3 and 2.4 that

∂Ŝ(x) = co

 ⋃
i∈I(x)

(
∂ρΩi

F i
(x) + ∂ρΩi

Fi
(x)
) ∣∣∣∣∣∣ i = 1, 2, 3

 . (6.17)

Now we use Algorithm 1 to find an approximate minimizer of this problem. At each step of the
algorithm, a subgradient from ∂Ŝ(x) is required. To this end, we compute ∂ρΩi

F i
(x) similarly

to Section 6.1. To simplify the procedure, the lower estimate of ∂ρΩi

Fi
(x) from Theorem 3.9 can

be used instead of the full calculation of the subdifferential. In this way, we get

∇ρFi(x− ω′
i) ⊂ ∂ρΩi

Fi
(x) with ω′

i ∈ ΠFi
(x; Ωi)

Then determining a subgradient of ∂Ŝ(x) becomes straightforward from (6.17).

If in the case modeled by problem (6.16), UAVs are deployed at the earliest time and the
objective is to determine an optimal location of the mobile station for collecting the data
as described in Section 6.2, the extended generalized Sylvester problem (5.6) can be used to
optimize the location of the mobile station. Furthermore, if the rescue team employs a single
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Fig. 6 (a) Effect of wind direction on transition time at approximately similar wind speeds.
The gray line shows transition time without considering wind, while the yellow line reflects
results from the generalized SFT model accounting for wind. Results correspond to Cases
14–21 in Table 3. (b) Impact of wind vector norm (speed) on transition time. Results
correspond to Cases 1–7 in Table 2.

UAV instead of three (as in the scenario presented in Section 6.1), the UAV travels from the
mobile station to the closest point of Ωi and returns from the farthest point while repeating this
pattern for the subsequent reference sets. The extended generalized Fermat-Torricelli problem
(5.4) can then be used to determine the optimal location of the mobile station.

Table 3 summarizes 24 cases with different parameter settings to evaluate the efficiency of
the generalized SFT problem (extended variant) in accounting for wind effects. For simplicity,
all cases are conducted on a small scale, with the slowest UAV assigned a nominal speed
of 1(m/s); these values can be appropriately scaled to represent real-world scenarios. The
results show that the generalized SFT problem (extended variant) reduces the transition time
by approximately 66.8%. Furthermore, Cases 14–21 share identical settings except for the
direction of the wind vector. Fig. 6(a) illustrates these results that confirm the ability of the
generalized SFT formulation to address wind effects across varying directions.

For problem (6.16) associated with Case 1 in Table 3, the first step is to identify an
approximate optimal location of the UAV station under the condition ∥S∥ = 0 with the
corresponding dynamic sets shown in Fig. 5(b). The obtained solution is (171, 134) as shown
in Fig. 5(a) with the corresponding transition time of 905 s under real conditions but without
taking wind into account. When incorporating the wind vector S = (−0.6, 0.6), the dynamic
sets change accordingly as illustrated in Fig. 5(d). In this case, the approximate optimal
location of the UAV station shifts to (189, 56) as shown in Fig. 5(c), with a reduced transition
time of 401 s. This represents the 55.6% improvement and thus demonstrates the effectiveness
of the generalized SFT problem (extended variant) in addressing weather uncertainty. The
obtained results highlight that neglecting wind effects can result in a significant time loss of
nearly 500 s, which is an inefficiency that may be critical in time-sensitive rescue operations.

Finally in this section, we provide information about the reference sets and dynamic sets
used in the experiments as summarized in Table 4.
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Table 3: Experimental Results for Generalized SFT Cases (Extended Version)

Case Parameters Wind Vector Wind Neglected Wind Included Absolute Relative
No. (Table 4) (S = (s1, s2)) x∗ ZN (s) x∗ ZI(s) Imp(s) Imp(%)
1 Info 4 (−0.6, 0.6) (171,134) 905 (189,56) 401 504 55.6
2 Info 4 (0.6, 0.6) (171,134) 637 (175,78) 342 295 46.3
3 Info 4 (−0.6,−0.6) (171,134) 581 (181, 85) 340 241 41.4
4 Info 4 (0.6,−0.6) (171,134) 798 (214,88) 394 404 50.6
5 Info 4 (0.85, 0.0) (171,134) 528 (183,91) 344 184 34.8
6 Info 4 (0.0, 0.85) (171,134) 961 (160,50) 389 572 59.5
7 Info 4 (−0.85, 0.0) (171,134) 565 (188,88) 348 217 38.4
8 Info 4 (0.0,−0.85) (171,134) 844 (156,62) 384 460 54.5
9 Info 5 (0.4,0.8) (351,234) 1842 (300,90) 610 1232 66.8
10 Info 5 (0.1, 0.1) (351,234) 450 (333, 223) 441 9 2.0
11 Info 5 (−0.1,−0.1) (351,234) 447 (347,231) 444 3 0.0
12 Info 5 (0.1,−0.1) (351,234) 448 (336, 225) 443 5 1.11
13 Info 5 (−0.1, 0.1) (351,234) 453 (340,225) 444 9 1.98
14 Info 6 (0.8, 0) (333,220) 1442 (234,138) 829 613 42.5
15 Info 6 (0.56, 0.56) (333,220) 1648 (225,124) 877 771 46.7
16 Info 6 (0, 0.8) (333,220) 1364 (246,136) 819 545 39.9
17 Info 6 (−0.56, 0.56) (333,220) 981 (269,178) 734 247 25.1
18 Info 6 (−0.8, 0) (333,220) 1375 (245,141) 822 553 40.2
19 Info 6 (−0.56,−0.56) (333,220) 1564 (235,135) 869 695 44.4
20 Info 6 (0,−0.8) (333,220) 1307 (235,153) 819 488 37.3
21 Info 6 (0.56,−0.56) (333,220) 987 (267,178) 734 253 25.6
22 Info 7 (0.69, 0.4) (2265,1459) 4148 (2805,1335) 2028 2120 51.1
23 Info 7 (0.56, 0.56) (2265,1459) 3840 (2878,1295) 2064 1776 46.2
24 Info 7 (0.8, 0.0) (2265,1459) 4117 (2673,1456) 1955 2162 52.5

ZN and ZI denote the objective function values (transition time in seconds) for the cases ignoring and
considering wind, respectively. Absolute Imp (ZN −ZI) and Relative Imp ((ZN −ZI)/ZN ) denote the
absolute and relative improvements.

26



Table 4: Experimental Information and Parameters

No. Refrence sets Dynamic sets

Info 1 Ω0 = R2,
Ω1 =

{
(x, y) ∈ R2 | max{|x− 30|, |y − 350|} ≤ 15

}
, F1 =

{
(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 1

}
,

Ω2 =
{
(x, y) ∈ R2 | max{|x− 210|, |y − 10|} ≤ 15

}
, F2 =

{
(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 1

}
,

Ω3 =
{
(x, y) ∈ R2 | max{|x− 550|, |y − 200|} ≤ 15

}
F3 =

{
(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 1

}
Info 2 Ω0 = R2,

Ω1 =
{
(x, y) ∈ R2 | max{|x− 30|, |y − 750|} ≤ 20

}
, F1 =

{
(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 1

}
,

Ω2 =
{
(x, y) ∈ R2 | max{|x− 550|, |y − 10|} ≤ 10

}
, F2 =

{
(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 1

}
,

Ω3 =
{
(x, y) ∈ R2 | max{|x− 950|, |y − 400|} ≤ 15

}
F3 =

{
(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 1

}
Info 3 Ω0 = R2,

Ω1 =
{
(x, y) ∈ R2 | max{|x− 30|, |y − 200|} ≤ 5

}
, F1 =

{
(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 1

}
,

Ω2 =
{
(x, y) ∈ R2 | max{|x− 150|, |y − 10|} ≤ 5

}
, F2 =

{
(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 1

}
,

Ω3 =
{
(x, y) ∈ R2 | max{|x− 350|, |y − 90|} ≤ 5

}
F3 =

{
(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 1

}
Info 4 Ω0 = R2,

Ω1 = {(x, y) ∈ R2 | (x−30)2

102
+

(y−350)2

102
≤ 1}, F1 = {(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 22},

Ω2 = {(x, y) ∈ R2 | (x−210)2

102
+

(y−10)2

102
≤ 1}, F2 = {(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 12},

Ω3 = {(x, y) ∈ R2 | (x−550)2

102
+

(y−200)2

102
≤ 1} F3 = {(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 32}

Info 5 Ω0 = R2,

Ω1 = {(x, y) ∈ R2 | (x−40)2

102
+

(y−550)2

102
≤ 1}, F1 = {(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 22},

Ω2 = {(x, y) ∈ R2 | (x−410)2

102
+

(y−20)2

102
≤ 1}, F2 = {(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 12},

Ω3 = {(x, y) ∈ R2 | (x−750)2

102
+

(y−350)2

102
≤ 1} F3 = {(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 32}

Info 6 Ω0 = R2,

Ω1 = {(x, y) ∈ R2 | (x−40)2

102
+

(y−550)2

102
≤ 1}, F1 = {(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 22},

Ω2 = {(x, y) ∈ R2 | (x−110)2

102
+

(y−20)2

102
≤ 1}, F2 = {(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 12},

Ω3 = {(x, y) ∈ R2 | (x−650)2

102
+

(y−150)2

102
≤ 1}, F3 = {(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 32},

Ω4 = {(x, y) ∈ R2 | (x−750)2

102
+

(y−650)2

102
≤ 1} F4 = {(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 22}

Info 7 Ω0 = R2,

Ω1 = {(x, y) ∈ R2 | (x−10)2

102
+

(y−2000)2

102
≤ 1}, F1 = {(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 32},

Ω2 = {(x, y) ∈ R2 | (x−3000)2

102
+

(y−1700)2

102
≤ 1}, F2 = {(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 12},

Ω3 = {(x, y) ∈ R2 | (x−1700)2

102
+

(y−20)2

102
≤ 1} F3 = {(f1, f2) ∈ R2 | (f1 − s1)2 + (f2 − s2)2 ≤ 22}

Note that the dynamic sets in this table have two parameters, s1 and s2, which are obtained from the vector
S = (s1, s2) under the Wind Vector column in Tables 1, 2, and 3.
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7 Conclusion and Future Research

After a disaster such as, e.g., an earthquake, communication networks play a crucial role
in supporting rescue operations. However, these networks are often partially or completely
destroyed. In such scenarios, UAVs can serve as valuable tools, which offer large-scale WiFi
coverage or DTNs. To enable this, a fleet of UAVs can be deployed from a mobile station
(e.g., a truck). Given the operational constraints of UAVs—such as battery limitation and the
influence of external forces like wind—it becomes essential to determine the optimal location
for the mobile station that minimizes both time and energy consumption. This challenge can
be framed as a single facility location problem, which connects closely to two well-known
models in mathematical literature: the generalized Sylvester and Fermat–Torricelli problems.

The classical Sylvester and Fermat–Torricelli problems have long served as fundamental
models in geometry and optimization. In this paper, we extended these problems into a more
general framework that can include two types of gauge functions with several dynamic sets
in Rq, capturing the complexities of real-world facility location challenges. We introduced
the generalized Sylvester–Fermat–Torricelli (SFT) problem, a novel framework for modeling
single-facility location tasks in the presence of heterogeneous vehicle speeds, external forces
like wind, and multiple distance norms (e.g., ℓ1 and ℓ2).

Several cases were studied involving multiple UAVs, and we demonstrated how the gener-
alized SFT model effectively addresses fleet heterogeneity and environmental conditions. Our
results showed that this approach can reduce wasted operational time by up to 84%, highlight-
ing its practical efficiency. Overall, our findings demonstrate the versatility of the generalized
SFT problem in modeling practical optimization scenarios. Moreover, our proposed model can
serve as a foundational framework for modern facility location problems—particularly in UAV
applications—offering a basis for further development in future studies.

Future research will explore further generalizations, including stochastic elements and mul-
tiobjective formulations, to broaden the scope and applicability of this foundational model.
Furthermore, other scenarios—such as multifacility location problems and cases involving the
ℓ1 norm—can be considered in future studies. In addition, integrating the generalized SFT
problem with path planning algorithms can be investigated for last-mile delivery applications
to minimize time, energy consumption, and operational costs.
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8 Appendix: Auxiliary Statements and Proofs

In the appendix, we present some additional material of its own interest, which is used to
verify the main results above. We begin with providing some properties of the generalized
projection defined in (3.7).

Proposition 8.1. Let F ⊂ Rq be compact and convex set with 0 ∈ intF , and let Ω ⊂ Rq be
nonempty, closed, and convex. Then we have ΠF (x; Ω) ̸= ∅ for all x ∈ Rq.

Proof. Consider the sublevel set of the function ρΩF given by

Lλ(ρ
Ω
F ) :=

{
ω ∈ Ω

∣∣ ρΩF (x− ω) ≤ λ
}
, λ ∈ R.

By Proposition 3.3, the function ρΩF is continuous, and hence Lλ(ρ
Ω
F ) is a closed set. Since

ρΩF (x− ω)→∞ as ω →∞, we conclude that Lλ(ρ
Ω
F ) is also bounded, and hence Lλ(ρ

Ω
F ) is a

compact subset of Rq. Therefore, the nonemptiness of generalized projection ΠF (x; Ω) follows
from the classical Weierstrass existence theorem.
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The next proposition shows that a point belonging to the generalized projection of any
x̄ /∈ Ω lies on the boundary of the reference set.

Proposition 8.2. In addition to the assumptions of Proposition 8.1, suppose that x̄ /∈ Ω.
Then for any point ω̄ ∈ ΠF (x̄; Ω), we get that ω̄ ∈ bdΩ.

Proof. Arguing by contradiction, suppose that ω̄ ∈ intΩ. Then there exists ε > 0 such that
B(ω̄; ε) ⊂ Ω, where B(ω̄; ε) stands for the ball centered at ω̄ with radius ε > 0. Denoting
y := ω̄ + ε x̄−ω̄

∥x̄−ω̄∥ , we have the equalities

ρF

(
x̄− y) = ρF (x̄− ω̄− ε

x̄− ω̄

∥x̄− ω̄∥

)
= ρF

(
(x̄− ω̄

)
(1− ε

∥x̄− ω̄∥

))
= (1− ε

∥x̄− ω̄∥
)ρF (x̄− ω̄).

Since
(
1 − ε

∥x̄−ω̄∥
)
ρF (x̄ − ω̄) < ρF (x̄ − ω̄), this contradicts the definition of the generalized

projection in (3.7), and therefore ω̄ should be a boundary point of Ω.

Now we present sufficient conditions under which the inequality in the subadditivity
property of the classical Minkowski function ρF becomes an equality.

Proposition 8.3. Let F be a compact and strictly convex subset of Rq with 0 ∈ intF . Then

ρF (x+ y) = ρF (x) + ρF (y) whenever x, y ̸= 0 (8.1)

if and only if there exists λ > 0 such that x = λy.

Proof. It can be found in (Mordukhovich & Nam, 2023, Proposition 8.13).

The following lemma gives us sufficient conditions ensuring the equality in definition (3.2)
of the reference set enlargement.

Lemma 8.4. Let F be a closed and convex set with 0 ∈ intF , and let Ω ⊂ Rq be an arbitrary
nonempty set. Then we have the equality Ω+ rF = Ωr for any r > 0.

Proof. Whenever x ∈ Ω+ rF and r > 0, we have ρΩF (x) ≤ r and hence x ∈ Ωr. For the reverse
inclusion, picking x ∈ Ωr gives us ρΩF (x) ≤ r. Taking t ≤ r and ρΩF (x) = t, we get x ∈ Ω+ tF .
Since F with is convex with 0 ∈ intF , it follows that

t

r
F ⊂ F =⇒ Ω+ tF ⊂ Ω+ rF,

which tells us therefore that x ∈ Ω+ rF and thus completes the proof.

The next two lemmas establish the needed properties of the set-based Minkowski gauge ρΩF .

Lemma 8.5. Let F and Ω be a nonempty subsets of Rq. Assume that F is closed and convex
and take x ̸∈ Ωr with some r > 0 and ρΩF (x) <∞. Then we have the representation

ρΩF (x) = ρΩr

F (x) + r. (8.2)

Proof. Fix ε > 0 and take t with ρΩr

F (x) ≤ t < ρΩr

F (x) + ε. Then there exist u ∈ Ωr and
f ∈ F with u + tf = x. Since ρΩF (u) ≤ r, we can find α > 0, ω ∈ Ω, and f ′ ∈ F such
that ρΩF (u) ≤ t′ < ρΩF (u) + α and ω + t′f ′ = u. Substituting the latter into the expression
for x gives us the equality x = ω + t′f ′ + tf . Employing further the convexity of F , we have
t′f ′ + tf ∈ t′F + tF = (t′ + t)F , and hence x ∈ ω + (t′ + t)F . This yields ρΩF (x) ≤ t′ + t <
ρΩF (u) + ρΩr

F (x) + α+ ε. Passing to the limit as ε ↓ 0 and α ↓ 0 brings us to

ρΩF (x) ≤ ρΩF (u) + ρΩr

F (x) ≤ ρΩr

F (x) + r,

which therefore justifies the inclusion “⊂” in (8.2).
To verify the reverse inclusion in (8.2), suppose that ρΩF (x) = t meaning that x ∈ Ω+ tF .

This gives us r < t due to x /∈ Ωr. Using the convexity of F ensures that tF = (r+ t− r)F =
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rF +(t− r)F , and we have x ∈ Ω+ rF +(t− r)F . It follows from Lemma 8.4 by the convexity
of F that x ∈ Ωr + (t− r)F yielding the relationships

ρΩr

F (x) ≤ t− r = ρΩF (x)− r,

which readily justify the inclusion “⊃” in (8.2) and thus completes the proof.

Lemma 8.6. Under the assumptions of Lemma 8.5, let t ≥ 0, f ∈ F , and x ∈ dom ρΩF . Then

ρΩF (x+ tf) ≤ ρΩF (x) + t. (8.3)

Proof. Given ε > 0, choose s ≥ 0 such that ρΩF (x) ≤ s < ρΩF (x) + ε giving us x ∈ Ω + hF .
Since tf ∈ tF , it follows that

x+ tf ∈ Ω+ sF + tF = Ω+ (s+ t)F,

where the equality holds due to the convexity of F . Therefore, ρΩF (x+tf) ≤ s+t < ρΩF (x)+ε+t.
Taking the limit as ε ↓ 0, we arrive at (8.3) and thus complete the proof.

Yet another important property of the set-based Minkowski gauge is revealed below.

Proposition 8.7. Let F ⊂ Rq be a convex compact in Rq with 0 ∈ intF , and let Ω ⊂ Rq be a
nonempty, closed, and convex set. If ρΩF (x̄) = t > 0, then we have the decomposition x̄ = ω̄+tf
with some ω̄ ∈ bdΩ and f ∈ bdF .

Proof. It follows from definition (3.7) of the generalized projection that

ρΩF (x̄) = ρF (x̄− ω̄) = t for any x̄ /∈ Ω and ω̄ ∈ ΠF (x̄; Ω),

Employing Proposition 8.2 tells us that ω̄ ∈ bdΩ. Therefore, x̄ − ω̄ ∈ tF , i.e., x̄ ∈ ω̄ + tF .
Consequently, there exists f ∈ F such that x̄ = ω̄ + tf .

Suppose now on the contrary that f ∈ intF . Then there exists a number ε > 0 such that
B(f ; ε) ⊂ F . Consider the vector

v :=
x̄− ω̄

∥x̄− ω̄∥
and deduce from f + εv ∈ F that t(f + εv) ∈ tF . This leads us to the implication

[
tf + tεv ∈ tF

]
=⇒

[
x̄− ω̄ +

tε(x̄− ω̄)

∥x̄− ω̄∥
= (x̄− ω̄)

(
1 +

tε

∥x̄− ω̄∥

)
∈ tF

]
.

Therefore, we get the inclusion

x̄− ω̄ ∈ t

1 + tε
∥x̄−ω̄∥

F.

Since t > 0 and ε > 0, it follows that

t′ :=
t

1 + tε
∥x̄−ω̄∥

< t.

This is a contradiction, since we found a number t′ > 0 such that x̄− ω̄ ∈ t′F and t′ < ρΩF (x̄).
Thus we arrive at f ∈ bdF as claimed.

The following proposition establishes a relationship for the minimal time to reach from
a given point x̄ ∈ Rq to the closest point in the reference set Ω ⊂ Rq, see Fig. 7(c) for an
illustrative example.

Proposition 8.8. Let F ⊂ Rq be a closed and convex set with 0 ∈ intF , and let Ω be an
arbitrary nonempty subset of Rq. Then we have the relationship

inf
ω∈Ω

ρ
{x̄}
F (ω) = ρΩ−F (x̄). (8.4)
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Fig. 7 This figure presents three simple illustrative examples of different gauge functions in
the case where both the reference and dynamic sets are circles. (a) provides an example of
the MSMG function (3.11). (b) illustrates the MSMG function with −F , as investigated in
Proposition 8.9. (c) shows an example of the set-based Minkowski gauge function (2.5) with
−F , as studied in Proposition 8.8.

Proof. Fix any ε > 0 and choose t > 0 such that ρΩ−F (x̄) ≤ t < ρΩ−F (x̄)+ ε. We can find ω ∈ Ω
and f ∈ F with x̄ = ω + t(−f). Therefore, ω = x̄+ tf , and it follows that

inf
ω∈Ω

ρ
{x̄}
F (ω) ≤ ρ

{x̄}
F (ω) ≤ t < ρΩ−F (x̄) + ε.

Passing to the limit as ε ↓ 0 leads us to the inequality “≤” in (8.4). To verify the reverse inequal-

ity in (8.4), take α > 0, and choose a number s with infω∈Ω ρ
{x̄}
F (ω) ≤ s < infω∈Ω ρ

{x̄}
F (ω)+α.

This gives us ω ∈ Ω and f ∈ F such that ω = x̄+ sf . Therefore, x̄ = ω + s(−f), and we have

ρΩ−F (x̄) ≤< s < inf
ω∈Ω

ρ
{x̄}
F (ω) + α.

Passing to the limit α ↓ 0 verifies the inequality “≥” in (8.4) and thus completes the proof.

Next we derive an equality allowing us to calculate the minimal time of moving from a
point x̄ ∈ Rq to the farthest point in the reference set Ω ⊂ Rq, see Fig. 7(b) for an example.

Proposition 8.9. Suppose in addition to the assumptions of Proposition 8.8 that the set Ω
is bounded. Then we have the equality

sup
ω∈Ω

ρ
{x̄}
F (ω) = ρΩ−F (x̄) (8.5)

Proof. Fix ε > 0 and choose t ≥ 0 such that

ρΩ−F (x̄) ≤ t < ρΩ−F (x̄) + ε.

This tells us that x̄ − Ω ⊂ tF , or equivalently, we have x̄ − ω ∈ t(−F ) for all ω ∈ Ω, i.e.,
ω − x̄ ∈ tF . Thus ρF (ω − x̄) ≤ t whenever ω ∈ Ω. It follows from Proposition 3.1 that

ρ
{x̄}
F (ω) = ρF (ω − x̄). This leads us to the relationships

sup
ω∈Ω

ρF (ω − x̄) = sup
ω∈Ω

ρ
{x̄}
F (ω) ≤ t < ρΩ−F (x̄) + ε.

Letting ε ↓ 0, we arrive at the inequality “≤ in (8.5).

To verify the reverse inequality, denote s := supω∈Ω ρF (ω− x̄) = supω∈Ω ρ
{x̄}
F (ω). Then we

have ρF (ω− x̄) ≤ s, which implies in turn that ω− x̄ ∈ sF . Hence Ω− x̄ ⊂ sF , or equivalently,
x̄− Ω ⊂ s(−F ). This justifies the inequality “≥” in (8.5) and thus completes the proof.

The following result of its own interest provides new formulas, in comparison with
Theorem 3.5, to calculate the subdifferential of the set-based Minkowski gauge function at
out-of-set points by using generalized projections.
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Theorem 8.10. Let F be a convex and compact set in Rq with 0 ∈ intF , and let Ω ⊂ Rq be
nonempty, closed, and convex. Given x̄ /∈ Ω and ω̄ ∈ ΠF (x̄; Ω), denote r := ρΩF (x̄). Then we
have the subdifferential representations

∂ρΩF (x̄) = ∂ρF (x̄− ω̄) ∩N(x̄; Ωr), (8.6)

∂ρΩF (x̄) = ∂ρF (x̄− ω̄) ∩N(ω̄; Ω). (8.7)

Proof. Proposition 8.1 tells us that ΠF (x̄; Ω) ̸= ∅. It follows from Proposition 3.6 that
∂ρΩF (x̄) ⊂ ∂ρF (x̄−ω̄) and from Proposition 3.5 that ∂ρΩF (x̄) ⊂ N(x̄; Ωr). Combining the above,
we arrive at the inclusion “⊂” in (8.6).

To verify the reverse inclusion in (8.6), it suffices to show that ∂ρF (x̄− ω̄) ⊂ Υ, where Υ is

defined in Proposition 3.5. Note that ρ
{0}
F (x) = ρF (x), which implies that ∂ρ

{0}
F (x) = ∂ρF (x)

for all x ∈ dom ρF . Taking there the point x̄ − ω̄ with ρF (x̄− ω̄) = ρ
{0}
F (x̄− ω̄) = r, we pick

v ∈ ∂ρF (x̄− ω̄) and conclude that v ∈ ∂ρ
{0}
F (x̄− ω̄). Moreover, Proposition 3.5 tells us that

v ∈ N
(
x̄− ω̄; {0}+ rF

)
∩Υ

yielding v ∈ Υ and ∂ρF (x̄− ω̄)∩N(x̄; Ωr) ⊂ N(x̄; Ωr)∩Υ. It follows from Proposition 3.5 that

∂ρΩF (x̄) = N(x̄; Ωr) ∩Υ,

which justifies the fulfillment of the inclusion “⊃” in (8.6) and the equality therein.
To verify (8.7), let us first show that ∂ρΩF (x̄) ⊂ N(ω̄; Ω). Pick v ∈ ∂ρΩF (x̄) and fix ω̄ ∈

ΠF (x̄; Ω), which gives us x̄ − ω̄ ∈ rF and then f̄ ∈ F with x̄ − ω̄ = rf̄ . Select now any
y ∈ G(x̄), where the set G(x̄) is defined by

G(x̄) :=
{
ω + (x̄− ω̄)

∣∣ ω ∈ Ω, ω̄ ∈ ΠF (x̄; Ω)
}
.

Thus we get the representation y = ω + rf̄ with some ω ∈ Ω. Recalling that ρΩF (y) ≤ r and
using the subgradient definition for v ∈ ∂ρΩF (x̄) lead us to

⟨v, y − x̄⟩ = ⟨v, ω − ω̄⟩ ≤ ρΩF (y)− ρΩF (x̄) ≤ 0.

which shows that v ∈ N(ω̄; Ω) and hence justifies that ∂ρΩF (x̄) ⊂ N(ω̄; Ω). Taking into account
that ∂ρΩF (x̄) ⊂ ∂ρF (x̄− ω̄) by Proposition 3.6, we arrive at the inclusion “⊂” in (8.7).

It remains to verify the reverse inclusion “⊃” in (8.7), which would follow from

∂ρF (x̄− ω̄) ∩N(ω̄; Ω) ⊂ ∂ρF (x̄− ω̄) ∩N(x̄; Ωr) = ∂ρΩF (x̄). (8.8)

To get (8.8), it suffices to show that v ∈ ∂ρF (x̄− ω̄)∩N(ω̄; Ω) yields v ∈ N(x̄; Ωr). To proceed
with the latter, pick any x ∈ Ωr and recall that ΠF (x; Ω) ̸= ∅ by Proposition 8.1. Then find

f ∈ F and take x = ω + tf with w ∈ ΠF (x; Ω) and t ≤ r. Since v ∈ ∂ρF (x̄ − ω̄) = ∂ρ
{0}
F (x̄),

we get v ∈ Υ and ⟨v, f⟩ ≤ σF (v) ≤ 1. Therefore,

⟨v, x− x̄⟩ = ⟨v, ω + tf − x̄⟩
= t⟨v, f⟩+ ⟨v, ω − ω̄⟩+ ⟨v, ω̄ − x̄⟩
≤ t+ ⟨v, ω − ω̄⟩+ ⟨v, ω̄ − x̄⟩
≤ r + ⟨v, ω − ω̄⟩+ ⟨v, ω̄ − x̄⟩.

Since v ∈ N(ω̄; Ω), it follows that ⟨v, ω − ω̄⟩ ≤ 0, and v ∈ ∂ρF (x̄− ω̄) implies that

⟨v, ω̄ − x̄⟩ = ⟨v,−(x̄− ω̄)⟩ ≤ ρF (0)− ρF (x̄− ω̄) = −ρΩF (x̄) = −r.

Thus for all x ∈ Ωr, we get ⟨v, x− x̄⟩ ≤ 0 meaning that v ∈ N(x̄; Ωr). This brings us to (8.8)
and therefore completes the proof of the theorem.
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The following observation provides a property of ρF used in the proof of Theorem 3.9.

Lemma 8.11. Let F ⊂ Rq be a closed and convex set with 0 ∈ int F . Then the Minkowski
gauge function enjoys the property ρF (x) = ρ−F (−x) for all x ∈ Rq.

Proof. Denoting t := ρF (x), we get from the definition of the Minkowski gauge (2.4) that
x ∈ tF . This yields −x ∈ t(−F ), which ensures that ρ−F (−x) ≤ t = ρF (x). Conversely, letting
s := ρ−F (−x) gives us x ∈ dF , which tells us that ρF (x) ≤ s = ρ−F (−x). Combining both
inequalities verifies the claimed result.

Now we are ready to establish a precise relationship between the set-based Minkowski gauge
function ρΩF and the minimal time function TF

Ω , defined in (Mordukhovich & Nam, 2023) by

TF
Ω (x) := inf

{
t ≥ 0

∣∣ (x+ tF ) ∩ Ω ̸= ∅
}
, x ∈ Rq. (8.9)

Lemma 8.12. Let F ⊂ Rq be a closed and convex set with 0 ∈ intF , and let Ω ⊂ Rq be an
arbitrary nonempty set. Then we have the equality ρΩ−F (x) = TF

Ω (x) for x ∈ Rq.

Proof. It follows from Propositions 3.1 and 8.8 that

ρΩ−F (x) = inf
ω∈Ω

ρ
{x}
F (ω) = inf

ω∈Ω
ρF (ω − x).

By Theorem 6.19 in (Mordukhovich & Nam, 2023) tells us that TF
Ω (x) = infω∈Ω ρF (ω − x),

which justifiers the claimed relationship.

Finally in this section, we establish a precise relationship between the MSMG function
(3.11) of our interest and the maximal time function CF

Ω , which has been studied for some
versions of the generalized Fermat–Torricelli and generalized Sylvester models in (Nam &
Hoang, 2013; Nam et al., 2013) being defined by

CF
Ω (x) := inf

{
t ≥ 0

∣∣ Ω ⊂ x+ tF
}
, x ∈ Rq. (8.10)

Lemma 8.13. Let F ⊂ Rq be a closed, bounded, and convex set with 0 ∈ int F , and let
Ω ⊂ Rq be a nonempty bounded set. Then we have ρ̄Ω−F (x) = CF

Ω (x) for all x ∈ Rq.

Proof. It follows from Proposition 3.8 that ρ̄Ω−F (x) = supω∈Ω ρ−F (x−ω). We aim to show that

sup
ω∈Ω

ρ−F (x− ω) = sup
ω∈Ω

ρF (ω − x). (8.11)

To proceed, take ε > 0 and t := supω∈Ω ρ−F (x−ω)−ε with t > 0. There exists ω ∈ Ω such that
x− ω /∈ t(−F ), which gives us ω − x /∈ tF . Therefore, t < ρF (ω − x) ≤ supω∈Ω ρF (ω − x) and[

sup
ω∈Ω

ρ−F (x− ω)− ε < sup
ω∈Ω

ρF (ω − x)
]
=⇒

[
sup
ω∈Ω

ρ−F (x− ω) ≤ sup
ω∈Ω

ρF (ω − x)
]

as ε ↓ 0 while justifying the inequality “≤ in (8.11). Similarly to the above, we can derive
the reverse inequality in (8.11). Having this in hand and using (Mordukhovich et al., 2013,
Proposition 1) give us CF

Ω (x) = supω∈Ω ρF (ω − x) and leads us therefore to

ρ̄Ω−F (x) = sup
ω∈Ω

ρ−F (x− ω) = sup
ω∈Ω

ρF (ω − x) = CF
Ω (x),

which verifies (8.11) and thus completes the proof.

33



References

Arafat, M. Y., & Moh, S. (2018). Location-aided delay tolerant routing protocol in uav net-
works for post-disaster operation. IEEE Access, 6, 59891–59906. https://doi.org/10.
1109/ACCESS.2018.2875739
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