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Abstract

In this paper, we propose an extension of the classical weight reduction inequal-
ities for the binary knapsack polytope for settings where the maximum-weight
item in the associated pack is not unique. We derive sufficient conditions under
which the extended inequalities are facet-defining and identify conditions under
which they strictly dominate the original weight reduction inequalities. In addi-
tion, we introduce a new class of valid inequalities for the binary knapsack
polytope, named weight division inequalities. For the special class of binary knap-
sack set in which all items weighing less than half the knapsack capacity have
the same weight, we show that its convex hull is completely characterized by
weight reduction inequalities and weight division inequalities, along with the
trivial nonnegativity constraints.

Keywords: 0/1 Knapsack, Knapsack polytope, (S, d) item inequalities, Weight
division inequalities, Facets, Convex hull

1 Introduction

A 0/1 knapsack problem is defined as follows. Given a set of items N = {1,2,--- ,n}
with weights a; and profits p; Vi € N, select a subset of N to pack in a knapsack
of limited capacity b that maximizes the total profit. Corresponding to a 0/1 knap-
sack problem, the knapsack set X is defined as X = {z € B" : > ,_ya;w; < b}
and the knapsack polytope is represented by its convex hull K = conv(X). Since a
0/1 knapsack problem is known to be A'P-hard (Johnson and Garey, 1979), a par-
tial characterization of K using a subset of its facets is of significant interest and has
been extensively studied in the literature. Cover inequalities are among the initial



categories of valid inequalities for K, which under certain conditions become facet-
defining (Balas, 1975). For cover inequalities that are not facet-defining for a given K,
there are several procedures to strengthen them, such as (sequential) up-lifting (Balas,
1975; Balas and Zemel, 1978; Padberg, 1975; Wolsey, 1975), (sequential) down-lifting
(Wolsey and Nemhauser, 2014) and simultaneous lifting (Gu et al, 2000; Wolsey, 1977).
Weismantel proposed another class of inequalities, called weight inequalities. He also
provided a way to strengthen weight inequalities using a reduction parameter and con-
ditions under which the strengthened inequalities, called weight reduction inequalities,
become facet-defining (Weismantel, 1997). Padberg (1980) proposed another class of
inequalities based the idea of (1,k) configurations, which was generalized in Del Pia
et al (2023).

Despite the difficulty of characterizing knapsack polytopes in general, a stream of
literature provides complete characterization of special classes of the knapsack poly-
tope. A complete linear description of graphic knapsack polytope (Wolsey, 1975),
weakly super-increasing knapsack polytope (Laurent and Sassano, 1992), special-
weight knapsack polytope (where the weights of the items belong to a set containing
only two elements) (Weismantel, 1996), and sequential knapsack polytope (Pochet
and Weismantel, 1998) are well known. For a comprehensive review on the knapsack
polytope, we refer the reader to Hojny et al (2020).

In Section 2, we briefly talk about the weight inequalities and weight reduction
inequalities, which form the basis for our proposed inequalities. In Section 3, we extend
the weight reduction inequalities (Weismantel, 1997), which are based on the idea of
a pack (of items), to make them stronger when the maximum weighted item in the
pack in not unique. Furthermore, we prove that our proposed inequalities, which we
refer to as (S,d) inequalities, are facet defining for a knapsack polytope under some
conditions. In Section 4, we introduce another set of valid inequalities, namely, weight-
division inequalities for knapsack polytope. Lastly in Section 5, we show that (S, )
inequalities, weight-division inequality, along with the trivial nonnegative inequalities,
completely characterize the convex hull of a special class of knapsack set, wherein the
first few least weighted items have the same weight, while the remaining items have
weights exceeding half the knapsack capacity.

2 Weight inequalities

Consider a 0/1 knapsack set X = {z € B" : ), v a;x; < ap,a; > 0 Vi € N,ap >
0} and its polytope K = Conv(X). Given X, we define a pack P C N : a(P) :=
> iep @i < ag and its associated slack r := ag —a(P). For a pack P, a weight inequality

is defined as:
Z a;r;+ Z max {a; —r,0} z; < a(P) (1)
jEP JEN\P
(1) was proposed by Weismantel (1997), who proved it to be valid for K. For a given
k € P such that a; > a; Vi € P, and a non-negative integer § € [0, r] (referred to as the
weight reduction parameter) with ay — & > 0, Weismantel (1997) further strengthened



(1) as follows:

Z a;z; + (ag — 0) Tp + Z cjz; < a(P)—46 (2)

i€eP\{k} JEN\P
where
(aj — 1), ifr<a; <ap+r—94,
cj = q (ax —9), if ap +r—0 <a; <ap+r,

(aj —r—0), ifa;>ap+r.
(2) is referred to as weight reduction inequality. Weismantel (1997) provided the follow-
ing sufficient (but not necessary) conditions for weight reduction inequality to define
facets of K:
() Nuysr—s \ P #0

(i) Noyir \ P40 € P\ {k}
(iii) a; < ap — 0 < |L| Vi € P\ {k}
where N; :={i € N :qa; =j} and L := PN Nj.

In the following section, we propose a generalization of (2), which provides addi-
tional valid inequalities for K when k is not unique. Further, we provide conditions
under which our proposed inequalities define facets of K.

3 (S, d) inequality

Given a pack P,let S:={k € P:ay > a; Vi€ P}.In other words, S is the subset of
items in the pack P with the largest weight, and aj is the largest weight in the pack.
For a non-negative integer ¢ € [0, 7] with ax —J > 0, we define an (S, ¢) inequality as:

Z alxl—l—z (ag — 0) xp + Z cjxj < —1S]é (3)

i€P\S kes JEN\P
where
0, if a; <,
(a; — 1), ifr<a; <ap+r—94,
(ag, — 0), ifap+r—d<aj <ap+r,
(aj —r—9), if ap +r <a; <2ap+71 -9,
c; =< 2(ap — 0), if 2ar +r —6 < a; < 2ar +,

(a]frf%) if 2ar +r < a; <3ap +1 -4,

|S\(ak—5), if |Slax + 7 — 6 < a; < [S|lax + T,
(a; —r—|S|9), if aj > |S|ag +r.

Remark 1. When |S| =1, (3) reduces to (2).

Proposition 1. (3) is valid for K.

Proof. As remarked earlier, when [S| = 1, (3) reduces to (2), the proof for validity of
which can be found in Weismantel (1997). So, we only provide the proof for |S| = 2;



the steps for |S| > 2 are the same. For the convenience of proof, (3) can be rewritten
as:

S ami+ > (an -0zt Y Y cm<a(P)—[S[s (4)

ieP\S kes j>r+14ieN;\P
where N; := {i € N : a; = j}. Observe that ¢; < a; —r for all i € J;5, ., N; \ P
and ¢; < ap — 06 forall¢ € Ur<j<ak+T N; \ P. Now, consider the following mutually
exclusive and exhaustive cases:

1. If Zkes T + Zj2r+1 ZieNj\P x; > |S| +1=23, then

Z aixi—&—Z(ak—é)xk—F Z Z CiTi

i€P\S k€S §>r+1i€N;\P
< g a;x; — T g T + g g x; —l—(r—é)g Tk
iEN k€S j>r+1ieN;\P k€S

<ag—3r+2(r—9)
<ag—r—20 =a(P)— 20.

2. 183 i ZieNj\P x; 2 1, then consider the following cases
o If Zj>2ak+T ZieNj\P x; > 1, then

Z aixi—l—Z(ak—(S)xk—F Z Z CiT;

ieP\S kes jer+lieN;\P
< E a;T; + E apTy + E E Ci%i
i€eP\S kes j2r+lieN;\P
< E a;T; + E g a;T; + g g CiT;
ieP r+1<j<2ar+7ri€N;\ P Jj>2ak+ri€N;\ P
< E a;x; — (r 4 20) E E: T
iEN Jj>2ak+rieN;\ P

<ap—r1—20 =a(P)—20.

o If 2j>2ak+7‘ ZieNj\P z; = 0 and Zak+r<j<2ak+r ZieNj\P z; = 1, then
consider the following sub-cases:

(@) IE> 0, 4 rcicoapir ZieNj\P x; > 3, then we are done as it follows case 1.
(b) If DkesTh T Xrpi<i<aptr 2uieN,\p i - 0,
Zak+r<j<2ak+r ZiENj\P r; =2, and Zj>2ak+r EieNj\P x; =0, then

Z aixi—i—Z(ak—(S)xk—&— Z Z CiTi

i€eP\S kes jzr+lieN;\P
<ap—aj—(2ap+r—35+1)4+a; —r—35+2(ar —9)
<ag—2r—26 <a(P)— 24



(C) If ZkES Tk = 1, Zr+1gj<ak+r ZiENJ\P i = 0,
Zak+r<j<2ak+r ZieNj\P z; =1, and Zj>2ak+T ZieNj\P z; =0, then

Z aia:i—i—Z(ak—(S)xk—F Z Z CiTi

i€P\S kes j2r+1ieN;\P
éao—ak—(2ak+r—5+1)+ak—5+2(ak—6)
=ag—r—20—1<a(P)— 2.

(d) Similarly, we can prove the same by taking different combina-
tions such that > .q@k + X 1gjcaptr 2oien,\pTi S 1 and
D aptr<i<2antr ZiGN]-\P zi < 2,and 300, 4r ZiGNj\P x; = 0 such
that >y cq @k + 305,41 2ien,\p i < 2, otherwise we will be done by
case 1.

3 I it ZieNj\P zi=0and Y g+ 55,0 ZieNj\P x; < [S] =2, then

Z aixiJrZ(akfé)xqu Z Z Cix;

ieP\S keS j>r+1ieN;\P

S SRS SN P S o
i€ P\S kes r+l<j<ak+ri€eN;\ P

Y wtY@-dnr Y Y w-in
i€P\S kes r+1<j<ag+ri€N;\P

<Y -9 (Yar Y Y«
i€P\S k€S r41<j<a,+ri€N;\P

< Z a;z; + 2(ap — ) < a(P) — 26.
i€P\S

O

Example 1. Consider the 0/1 knapsack set X = {x € B : x1 + 2o + 23+ 24 + 425 +
4xe + D7 + 6x8 + Txg + 810 + 9211 + 10212 + 11213 + 12214 + 14715 < 15}
Now, consider a pack P ={1,2,3,4,5,6}, in which case r =15—(14+1+1+1+
44+4)=3,0€10,3],S:={5,6}, and k=5 or k =6.
(a) The weight inequality is given as: x1 + xo + T3 + x4 + 4x5 + 4a6 + 227 + 38 +
4xg + 5x10 + 6211 + 7212 + 8213 + 9214 + 11215 < 12.
(b) Taking k =5 and 6 = 2, the weight reduction inequality is given as: x1+x2+ 3+
Ta+225+426+227+228+229+3x10+4211 +5212+6213+T214+9215 < 12—-2 = 10.
(c) Taking k = 6 and 6 = 2, the weight reduction inequality is given as: x1+x2+ 3+
Ta+425+226+227+228+229+3x10+4211 +5212+6213+T214+9215 < 12—-2 = 10.
(d) Taking 6 = 2, the (S, §) inequality is given as: x1 + xo + 23 + x4 + 225 + 226 +
2x7 + 2x8 + 2209 + 3110 + 4211 + 4212 + 413+ 5r14 + 7215 < 12— 2 X 2 = 8, which
is different from the above weight reduction inequalities (b) and (c).



(e) Taking k =5 and 6 = 3, the weight reduction inequality is given as: x1+xo+ s+
o+ rs+4xs+x7+rs+T9+ 2010+ 32011 +4x12+ 5213+ 6214+ 8215 < 12—-3 =9.
(f) Taking k = 6 and § = 3, the weight reduction inequality is given as: x1+x2+2x3+
ra+4xs+xg+x7+rs+T9+ 2010+ 32011 4212+ 5213+ 6214+ 8215 < 12—-3 =9.
(9) Taking 6 = 3, the (S, 0) inequality is given as: x1 + xo + 3+ x4 + x5 + 6 + 7 +
T8+ T9+ 2210+ 2211 + 22012 + 2213 + 3214 + 5x15 < 12—2 X 3 = 6, which is again
different from the above weight reduction inequalities (e¢) and (f).
Proposition 2. (3) is facet-defining for K if the following conditions hold:
(i) Nagirs\ P #0
(“) Na]+r\P7AQ) V] EP\(LUS)
(iii) aj < (ar —06) < |L| Vje P\ (LUS)
where Nj :={i € N :a;, =3}, L:= PN Ny, and |L| > 2.

Proof. We have already shown in Proposition 1 that (S, d) inequalities are valid for
K. Next, we prove that (S,d) inequalities are facet-defining for K for |S| = 2, and
one can easily extend the proof for |S| > 2. We assume that L is a strict subset of
P; otherwise, the inequality reduces to a 1-weight inequality (Weismantel, 1997). We
denote by cx < 7 the weight-reduction inequality. Let us further assume that dx < ¢
is a facet defining inequality of the knapsack polyhedron K such that F := {z € K |
cx =~} C{z € K| der = (}. We will show that both inequalities are equal upto a
scalar multiplication by proving Claim 2.1 to Claim 2.9. For this, let 2% := Y vep o

Claim 2.1. d; =0 for alli € N; \ P with j <.

Proof. Clearly, a:OEFandx::a:O—i—eieFViENj\P:jgr(Sincecizov
i€ Nj\ P:j<r). Hence, dv = dz® = d; =0 for all i € N; \ P with j <. O

Claim 2.2. d, = d, for allu,v € L:|L| > 2.

Proof. x:=2°+e, —e, € FYu,v € L. Hence, do = d2* = d, =d,Yu,v€ L. O
In the following claims, we assume d,, = A Vu € L.

Claim 2.3. d, = A(a, — 1) for allu € N\ P such thatr+ 1< a, <ap+7r—9.

Proof. Consider x := 2%+ e, — >, o/ €w, where I C L,|I| = a, — r (such an I exists
since by condition (iii) |L| > ax — 3 = (ax +7 —06) —r = a, —r = |I]). Clearly,
x € FYu e N\ P such that r + 1 < ay, < a +r — 6 (since, a(P) + a,, — a(I) =
a(P)+ ay — (ay —7) = ap and cx = ca® +c, — c(I) =7+ (ay — 1) — (ay — 1) = 7).
As 20 € F, dz = dz® holds and implies that dy, = Y, c; dw = d(I) = A (a, — ) since
dy = A for all w e L. O

Claim 2.4. dy = A (ax, — 0) forallk € S.

Proof. Let i € Ng,yr—s \ P (such an ¢ exists due to condition (i)) and choose I C
L,|I| = ax — 6. Then, 2! := 2° + ¢; —ex, € F Vk € S (since, a(P) + a; — a =
a(P)+ar+r—5—(ar—0) = ag and cx = ca’+c;—cp = v+ (ap —9) — (ap —J) = v) and
22 :=a%e;— Y, oy ew € F (since, a(P)+a; —al) = a(P)+ar+r—38—(ar—06) = ag
and cx =cx® +¢; —c—k =7+ (ax — ) — (ax — ) = 7). Now da! = dz? = d;, =
d(I) = X (ax — 0) (since, d,, = A for all u € L). O



Claim 2.5. d,, = Aa — 0) for allu € N such that a, +7 — 06 < a, < ap + 7.

Proof. Immediately follows from the fact that 2 + e, — e, € F Yu € N such that
ap + 17— < ay < ap +r (since, a(P) + ay, — ar < a(P) + ap + 7 — ar = ap and
cx =cx’+c, —cp =7+ (ap — ) — (a —§) =) and 2° € F. Hence, dx = dz° holds
which implies that d,, = dj. Now due to Claim 2.4, d,, = A (a, — ) for allu € N\ P
such that r +1 < ay < ap +7 —96. O
Claim 2.6. d, = A\a, for allu € P\ (LUS).

Proof. Condition (ii) (i.e., Ny, 4, \ P # 0 for all u € P\ (L US)) guarantees that for
every u € P\ (LUS), there exists j € N, 1, \ P. Moreover, due to condition (iii), we
get § < ap—a,, for allu € P\(LUS). Hence, r < a,+7r = ap+r—(ar — a,,) < ap+r—0.
Now, z° € F and z := 2° —e, +¢; € FYu € P\ (LUS) (since, a(P) — ay + a; <
Ofqurcj =7 —ay+ (ay +7r—r) =+). Hence,
dz = da® holds. This implies d, = d;. Now, by Claim 2.3, d; = A (a5 — 1) = Aay = d,
for all u € P\ (LUS).

Claim 2.7. d, = A(a, — 7 —9) for allu € N such that ap, +r < a,, < 2ap +71 — 0.

a(P) — ay + ay + 1 =ag and cx = cx

Proof. Choose any I C L with |I| = a, — 7 — ay for all w € N such that a +r <
a, < 2ay, +r — 0. The set I exists since by condition (iii), |L| > ar — 6 = 2a, + 7 —
§—r—ap > a,—1—a, = |I. Now, 2° € F and x := xo—ek—zwelew—i-eu €
F Yu € N such that ap + 7 < ay < 2ap + 7 — 0 (since a(P) —ap —a(l) + a, =
ap — 1 —ag — (@, —r — ag) + a, = ag and cx:cxo—ck—zwejcw—i—cu:'y—(ak—
§) — (ay — 7 —ag) + (ay — 7 — 8) = 7). Hence, dz = d2° = d, = dp + A x |I| =
AMag — 0 + ay — r — ax) = A(a, —r — §), where the second last equality holds due to
Claim 2.4 and |I| = ay — r — ay. O

Claim 2.8. d, =2\ (ax —9) for allu € N such that 2a, +1r — 6 < a,, < 2a + 7.

Proof. Since, 2z° € F and 2 := 2% — Zkes er + e, € F for all u € N such that 2a; +
r—0 < ay < 2ap+7 (since a(P) =), cqar+ay = ag =7 —2 X ap +ay < ag and cx =
ca® =Yg+ =7 —2x% (ag —0) +2 % (ax — 0) = 7). Hence, dz = da® =
dy, = Zkes di = 2d, = 2X(ar — 0) where the second last equality holds due to
Claim 2.4. O

Claim 2.9. d, = A(a, — 7 —29) for allu € N such that 2a; +r < a,.

Proof. Choose any I C P\ S with a(I) = a,, —r — 2ay. The set I exists since a, —r —
2a, < ap — 1 — 2a), = a(P) — 2ap, = a(P\ S) and due to condition (iii) a; < |L|. Now,
20 € Fand x := xo—zkes ek— e Cwtey € F for all u € N such that 2ap+7 < ay
(since a(P) = cgar —a(l)+ay = ag—r—2 X ap+ay —r—2ax +a, = ap and cx =
cx® = es Ok — D wer CwtCu =7 —=2% (ap—8) = [I|+cy =7 —2x (a, —6) —ay —7 —
2ay, + (ay —r —26) = 7). Hence, doz = da® = dy = Y, cqdi + Yoy = 2di + A|[I| =
2X (ar, — 6) + Aay — 7 — 2ax) = A a, — r — 2§) where the second last equality holds
due to Claim 2.4 and d,, = X for all u € L. O

Moreover, cx = v implying dz = (. This completes the proof. Thus it remains a
facet for the original polyhedron. O



Example 2. For Example 1: The (S, ¢) inequality in (d) is given as: x1 + xo + x3 +
Ty +205+2x6 4+ 227+ 208+ 209 + 3210 +4211 F4x 12+ 4013 +DT 14+ T2s < 12-2Xx2 =38
is facet defining for K since |L| = 4 > 2 and in Proposition 2:

(i) Najtr—s \ P = N5\ P={7} #0.

(i) Na,4r \P #0 Vj € P\ (LUS) is trivially satisfied since P\ (L US) = 0.
(iii) a; < (ax—0) < |L| Vj e P\(LUS) is also trivially satisfied since P\ (LUS) = 0.
hence, these inequality is facet-defining for K = conv(X).
Remark 2. Note that the conditions in Proposition 2 are only sufficient and many
other facets which are (S, §) inequalities violate these conditions.
Proposition 3. For a given pack P such that |S| > 1 and Ngak+r,5 ={ieN:a; >
2a +r =0} =0 Vo€ [l,r] s ap — >0, (3) strictly dominates (2) Vk € S.

Proof. By definitions of (2) and (3) it is clear that the coefficients of the items with
weight different from a; have exactly same values in both the cases. So, eventually the
dominance depends on the coeflicient of the items with the weights aj i.e., the items
with maximum weights inside a pack. Now, it is obvious that (3) strictly dominates
(2) when [S] > 1 and Nog, 4,5 :={i € N:a; >2ap+r—0} =0 Vo € [1,7] : a, — 6 >
0. O

Example 3. Let us consider the following 0/1 knapsack set:
X ={x €B®: ) + x5+ 23 + 324 + 325 + 416 + 527 + 628 < 12}

For the pack P = {1,2,3,4,5}, it is easy to see that S := {4,5}. Corresponding to P:
(i) The weight inequality is given by x1 + x2 + x3 + 3x4 + 325 + 26 + 227 + 325 < 9.
(i) For k = {4} and § = 2, the weight reduction inequality is given by x1 + x2 + x5+
Ts+3r5+axg+ar7+rsg<9—2=7T7.
(i) For k = {5} and § = 2, the weight reduction inequality is given by x1 + x2 + x5+
3xa+ x5 t+axgt+arr+rsg<9—2=7T7.
(iv) For d =2, the (S, §) inequality is given by 1+ xo+ o3+ x4+ x5+ 26+ 27+ 28 <
9 — 2 x 2 =5, which strictly dominates the weight reduction inequalities given in
(i) and (iii).
(v) Again, For k = {4} and 0 = 1, the weight reduction inequality is given by x1 +
To + 3+ 224 + 325 + 26 + 2207 + 228 <9 —1=8.
(vi) For k = {5} and 6 = 1, the weight reduction inequality is given by x1 + xo + x3 +
3x4 + 205 + g + 227 + 22 <9 —1=8.
(vii) For$ =1, the (S, §) inequality is given by x1+xo+ws+2x4+205+x6+2x7+228 <
9 —1x 2 =17, which strictly dominates the weight reduction inequalities given in
(v) and (vi).
Remark 3. In Example 3, the (S, §) inequalities define facets of Conv(X), whereas
the weight reduction inequalities do not.
Remark 4. The separation problem for the (S, ¢ ) inequality is the same as that for the
weight reduction inequalities. We refer the readers to Weismantel (1997), and Kaparis
and Letchford (2010) for details on the separation of weight reduction inequalities.



4 Weight-division inequalities

Consider a 0/1 knapsack set X = {z € B" : ),y a;z; < ag,a; > 0Vi € Nya;1 <
a; ¥Yi = 2,3,--- |N|,ap > 0} and its polytope K = Conv(X). We define weight-
division inequality for any m > 0 as:

a; o Ao — a; @o
DRI S (L R L) S LG
jEN:ajgt{%OJ jEN:aj>[070J

Proposition 4. (5) is valid for K.

Proof. For the binary knapsack set X note that ZjeN:apL%"J z; < 1. Then, consider
these two mutually exclusive and exhaustive cases:
1. If ZjeN:aj>L"70J x; = 1, then let ;. = 1, hence

E ;5 + E ;T < aon

JEN:a; |52 | JEN:a;>| %0 |
= E ajxj < aopg — aj*
jGN:a_ngGTOJ
a; ag — a;
J J*
— > Ty g L
m m

jEN:a; <[ %]

— Y 1Hy<l

JEN:wa; < %2

ag — Gjx

]

m

Then,
aj Ao, G0 —aj
Z LmJ$J+ Z (LmJ | m Dz;
JEN:a; <[ %2 ] JEN:a;>| 3]
g — Ajx ag ag — Gjx ago
< |20 % =] - =< =
| I+ === <]

2. If ZjeN;aj>L%0J z; =0, then

Z a;r; + Z a;xj < ag

JEN:a; <] JEN:a;>| 2]
— E a;T; < ag
JEN:a;<| %2
a; an
Z : J
m m

jEN:ang"'TUJ

= > [P

jGN:a_ngQTOJ

ag

]

m



Then,

5 Convex Hull of a special class of binary knapsack
polyhedra
In this section, we provide a complete characterization of the convex hull for a special

class of binary knapsack sets, defined as X = {z € B" : dien @iTi < ag, a; €
{w} U B Vi € N,ag > 0}, where B := [[%] + 1,a0] and w € [1,[%|] N Z. Let

2

JEN:a; <[P

K = conv(X).

Proposition 5. For P C W := {i:a; = w} and ), pa;

o
[ Ja; +

(S, d) inequality reduces to

where

Proof. Given P C W := {i : a; = w} and a(P) = ) ;cpa; < ap —w = 71 =
ap — a(P) > w. Then, for a non-negative integer § € [0,r] with w — ¢ > 0, (S,9)

inequality is

where

> 1 - 2y <

m

JEN:a;> P

Z:EkJrZ Z Cx; < |S|

kesS

L,
2,

¢ =143

1S,

jEBIEN;

ifr<a; <w-+r,
ifw+r<a; <2w-+r,
if2w+r <a; <3w+r,

if (IS|—1) xw+r < aj.

> (ak—08)z+ Y iz <a(P)—8[s

keP

07

(aj _T)v

(ak _5)3

(aj -r-= 5)7
2(a‘k _5)7

(aj —r —29),
IS|(ax —0),
(a; —r —1S]0),

JEN\P

if a; <,

ifr<a; <arp+r—4,
ifap+r—9d<a; <ap+r,
if ap +r <a; <2ap+1r -9,
if 2ar +1r — 6 <a; < 2a, +,
if 2ar +r <a; <3ap +1 -4,

if |Slar + 17— 0 < a; < [Slax + 1,
if a; > |Slax + 7.

10
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Notice that, in this case P = S. Hence, a(P) = |S| X aj. Considering the case 6 = w—1
and ag = w, (7) reduces to

dat Y, ey <8 (8)

kesS JEN\P
where
07 ifajér,
(a; — 1), ifr<a;<w+r—(w-1),
(w— (w=1)), fw+r—(w—-1)<a; <w-+r,
(a; —r—(w—1)), fw+r<a; <2w+r—(w-1),
¢ =1 2w—(w-1)), if2w+r—(w—-1)<a; <2w+r,

—

a; —r —2(w — 1)), if2w+r<a; <3w+r—(w-—1),

[S|(w — (w — 1)), if |Sjw+7r—(w—-1) <a; <|S|lw+r,
(a;j —r—|S|(w—1)), ifa; > |Slw+r

On simplifying the expressions for for different ¢; and their respective ranges, we get
the following;:

ifa; <7,

ifr<a; <r+1,
ifr+l<a; <w-+r,
fw+r<a <w4+r+1,
ifr+w+1l<a; <2w+r,
, if2w+r<a; <2w+r+1,

W NN~ RO

IS, i (S|-Dw+r+1<a; <|Slw+r.

Note that in the above expressions, ¢; disappears for the range a; > |S|w + r since
there exists no j : a; > [S|w +r = a(P) +r = a¢ (by assumption). On combining the
different ranges for the same c; value, we get the following:

ifr<a; <w+r,
ifw+r<a; <2w+r,
if2w+r <a; <3w+r,

W N

Cj =

S|, if (|S|-1) xw+r <aj.

11



Proposition 6. The weight-division inequality (5) for X reduces to

S+ 3 (%) 12 e < |2 )

keW JEBYEN;

Proof. For X, after putting m = w the proof is trivial. O

Theorem 7. The system of inequalities

z; >0, VieN, (10)
PSR! )
JEBIEN;
Zxk+ZZcixi<|S|, VSQW:ZaiSaO—w, (12)
keS JEBIEN; €S

ao ag—J ao

D122y < | 22
IR DD (TR Y (13)
keW JjEBIEN;

are enough to completely describe the polyhedron K.

Proof. Let, the inequality cz < 7 induces a non-trivial facet F of K. We define T' :=
{j € W:¢; >0}, and w.lo.g. we assume that 7' = {1,2,--- ,;t}and ¢y > c2 > - -+ > .
Now, consider the following mutually exclusive and exhaustive cases 7.1 to 7.4:

case 7.1. t = 0. In this case, it is easy to check that F' is induced by the inequality

ZjO_LQOJ_H ZieNj x; < 1, since F is non-trivial and all the roots of this kind will
— L2

certainly satisfy Z’;O:L%OJ_H Zz‘eN_,» z; <1 at equality.

case 7.2. < Y0, ¢,. Then, t xw > ag (otherwise t x w < ag implies that >, _, e,
is a feasible solution vector implying n > Zi:l ¢y, a contradiction.) and consequently,
every x € F satisfies c; = c; Vi, j € T because ), . g-p €y 5 a feasible and tight vector
and ), cgcr v —€i+ej wherei € S and j € T\ S is also feasible and tight vector. As
txw>ag andc; =c; Vi, j €T, everyx € F satisfies 3 -, ey T+ e Dien, (152] -
L%j Jxi = | 52], because the number of items of weight w with positive coefficients
exceeds the quantity [ %2 |. So, the tight points for this inequality are those that satisfy

the inequality 3, cw @t + 32 jep Dien, (L52] — La‘)w;]J)xz < [%2] at equality.

case 7.3. n = Zf}:l ¢y Since cx < n is not the knapsack inequality, we conclude that
txw < ag and we set r := ag — t x w. Moreover, we define z° := 22:1 e,. From
case 7.2, we know that ¢; = ¢; Vi,j € T. Also, since n = Zf;:1 co = T2 the relation
ci =0 for alli € N; withw+1<j <r holds.
_qi=r
Leti € Nj,r < j < r+w be given. Since x := Zf,zrl w | eyte; 1s feasible, we obtain

¢ < ¢

12



On the other hand, there exists a root x' with x; =1. Sincer < j < r+ w, there
ezists S C T, |S| = [2=1] with 2, = 0 for all s € S. So, 2’ —e; + 3, g €5 is feasible
and this yields

Ci 2> ¢

and hence ¢; = c;. Similarly, this can be shown that,

Ct, ifr<a; <w-+r,
ct+ -1, ifw4+r<a; <2w+r,
c;=4qc+c—1+ca, if2w4r <a; <3w+r,

cteo1t+c_ot-Fa, fEt-1)xw+r<a;.
Since c; =c¢; Vi,j €T,

ct, ifr<a; <w+r,
2c, ifw+r<a; <2w+r,
cj =43¢, f2w+r<a; <3w+r,

tey, if(t—1)xw+r<a,.

After proper scaling, it follows that the inequality cx < n is of the type Y p Ty +
2jeB ZieNj ciz; <t =S|, where

1, ifr <a; <w-+r,
2, ifw4+r<a; <2w+r,
3, if 2w4r <a; <3w+r,

t, if(t—1) xw+r <aj.

case 7.4. n > Zf}zl ¢y. Since F ¢ {x €K: diew Tit D jen ZieNj jr; = ao},
there exists a root x° with ;. ©9 + > ien ZieNj ja¥ < ag. This root satisfies the
condition 9 =1 for allt € T. Now, n > 22:1 ¢y implies that there exists ig € Nj,,

jo>w+1 and j € B such that n = 22:1 ¢y + Ci. This further signifies that every
root x € F' satisfies the equation Z;O*L@JH ZieNj x; =1, and hence does not define
—L 2

a facet with T # (.
O

Example 4. Let us consider a 0/1 knapsack inequality

3$1+3I2+3I3+3I4+31’5+6I6+71‘7+85E8+9I9 < 10
;€ {0,1} Vi=1,2,---,9
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Table 1 Facets of Example 4 generated from PORTA

SL. No. Facets of Example 4 Type

1 120 (10) in Theorem 7 when ¢ = {1}
2 2 >0 (10) in Theorem 7 when ¢ = {2}
3 z3 >0 (10) in Theorem 7 when ¢ = {3}
4 x4 20 (10) in Theorem 7 when ¢ = {4}
5 x5 >0 (10) in Theorem 7 when ¢ = {5}
6 z6 20 (10) in Theorem 7 when ¢ = {6}
7 720 (10) in Theorem 7 when ¢ = {7}
8 zg >0 (10) in Theorem 7 when ¢ = {8}
9 9 >0 (10) in Theorem 7 when ¢ = {9}
10 T6 +x7 +x8 +T9 < 1 (11) in Theorem 7

11 1+ 28+ a9 <1 (12) in Theorem 7 when S = {1}
12 T2+ xg + 29 < 1 (12) in Theorem 7 when S = {2}
13 T3 + 28 +x9 < 1 (12) in Theorem 7 when S = {3}
14 T4+ 28+ 29 <1 (12) in Theorem 7 when S = {4}
15 T5 + 8+ 19 < 1 (12) in Theorem 7 when S = {5}
16 r1 +x2 + x6 + 27 + 228 + 2729 < 2 (12) in Theorem 7 when S = {1,2}
17 T1 + 23 + 26 + T7 + 278 + 279 < 2 (12) in Theorem 7 when S = {1, 3}
18 T1 + T4 + 26 + 7 + 228 + 229 < 2 (12) in Theorem 7 when S = {1,4}
19 T1 + x5 + 26 + 7 + 278 + 279 < 2 (12) in Theorem 7 when S = {1,5}
20 To + x3 + 6 + T7 + 278 + 279 < 2 (12) in Theorem 7 when S = {2, 3}
21 To + x4 + x6 + 7 + 228 + 229 < 2 (12) in Theorem 7 when S = {2,4}
22 To + x5 + 16 + T7 + 278 + 279 < 2 (12) in Theorem 7 when S = {2,5}
23 T3 + x4 + x6 + 27 + 228 + 229 < 2 (12) in Theorem 7 when S = {3,4}
24 T3 + x5 + 26 + T7 + 278 + 279 < 2 (12) in Theorem 7 when S = {3,5}
25 T4 + x5 + 6 + T7 + 228 + 229 < 2 (12) in Theorem 7 when S = {4,5}
26 r1 +x2 + x3 + x4 + x5 + 226 + 227 + 328 + 319 < 3 (13) in Theorem 7

For Example 4 these 26 inequalities describe the complete convex hull of the
polyhedron (obtained from PORTA (Christof et al, 1997)).

6 Conclusions and future directions

In this paper, we have proposed a strengthening of well known weight reduction
inequalities (Weismantel, 1997), when the maximum weighted item in the pack is
not unique. We provide some sufficient conditions under which these inequalities are
facet-defining. Furthermore we provide some conditions under which the strength-
ened inequality strictly dominates the weight reduction inequality. We also introduce
another set of valid inequalities named weight division inequalities to prove that these
two classes of valid inequalities, along with the trivial nonnegative inequalities, com-
pletely characterize the convex hull of a special class of binary knapsack set, wherein
the first few least weighted items have the same weight while the remaining have
weights exceeding half the knapsack capacity.
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