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Abstract

This work considers polynomial optimization problems where the objective admits a low-
rank canonical polyadic tensor decomposition. We introduce LRPOP (low-rank polynomial
optimization), a new hierarchy of semidefinite programming relaxations for which the size of
the semidefinite blocks is determined by the canonical polyadic rank rather than the number
of variables. As a result, LRPOP can solve low-rank polynomial optimization problems that
are far beyond the reach of existing sparse hierarchies. In particular, we solve problems with
up to thousands of variables with total degree in the thousands. Numerical conditioning
for problems of this size is improved by using the Bernstein basis. The LRPOP hierarchy
converges from below to the global minimum of the polynomial under standard assumptions.

1 Introduction

Polynomial optimization problems (POPs), which involve minimizing a polynomial function
subject to polynomial constraints, are fundamental in many fields. However, they are gener-
ally non-convex and difficult to solve globally. A powerful approach to solving these problems
is the moment-sum-of-squares (SOS) hierarchy, a.k.a. the Lasserre hierarchy, proposed origi-
nally in [22]. This method recasts the non-convex POP into a sequence of convex semidefinite
programming (SDP) relaxations of increasing size. The quality of the relaxation, and its compu-
tational cost, is governed by a parameter called the relaxation order. The primal SDP problems
are relaxations of the moment formulation of the POP, whereas the dual SDP problems generate
guaranteed bounds on the global minimum from polynomial SOS decompositions of increasing
degrees. Under mild assumptions, the sequence of SOS bounds converges to the true global
optimum of the original problem, and the minimizers can be extracted from the moments. See
e.g. the recent overviews [18,30,33] and references therein.

Despite its theoretical convergence, the primary drawback of the moment-SOS hierarchy is its
scalability. The size of the largest semidefinite block in the SDP relaxations (corresponding to
the moment matrix in the primal or the Gram matrix for the SOS decomposition in the dual)
grows rapidly. This size scales polynomially in the relaxation order, but the exponent in this
scaling is the number of variables of the POP, rendering the method computationally infeasi-
ble for problems with a moderate number of variables. To address this scalability challenge,
significant research has focused on exploiting problem structure, most notably sparsity. One
prominent approach is correlative sparsity. This technique constructs a graph where vertices
represent the problem variables, and an edge connects two vertices if their product appears in
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a common monomial in the problem data. By computing a chordal extension of this graph,
one can find a clique tree decomposition satisfying the running intersection property (RIP).
This concept was originally developed for general sparse SDPs, building on matrix completion
theory [16], see the survey [34]. It has been adapted e.g. for operator-splitting and first order
optimization algorithms [41].

When applied to the moment-SOS hierarchy, this correlative sparsity pattern allows for a sig-
nificant reduction in complexity [23, 36], provided the cliques are small. Instead of a single,
large semidefinite block corresponding to all POP variables, the problem is decomposed. In the
primal formulation, this involves introducing a separate measure for each clique in the graph
decomposition. Linear constraints are then enforced to ensure that the marginal moments of
these measures are consistent on the intersections of the cliques. This decomposition effectively
replaces the single large SDP block with multiple, smaller SDP blocks, one for each clique.
Chordality of the graph ensures that the running intersection property holds and that the Cor-
relative Sparse moment-SOS hierarchy (CSSOS), converges [15, 23]. This structured approach
has been successfully implemented in software packages like SparsePOP [37]. It has been ex-
tended and applied to various problems, such as minimizing rational functions in computer
vision [10] or structural engineering design [17]. Further refinements have been explored, such
as decomposed structured subsets [28] and extensions to polynomial matrix inequalities [40].

A more recent approach is term sparsity, which is detailed in [26]. In this framework, the
graph vertices correspond to the monomials (terms) appearing in the problem data, rather
than the variables. An adjacency graph is constructed based on the terms arising in the input
polynomials. This method, referred to as the TSSOS (Term Sparsity SOS), generates a new
converging hierarchy of SDP relaxations [38]. The key feature is the iterative construction of
block-diagonal matrices by completing connected components of these term-based graphs. This
hierarchy of hierarchies has been implemented in libraries such as TSSOS for Julia [25] and it
has seen various extensions. These include refinements to reduce block sizes using combinatorial
optimization [32], the development of minimal sparsity frameworks for specific applications like
the AC-OPF problem [24], and hybrid approaches that combine both correlative and term
sparsity (CS-TSSOS) to exploit all available problem structures [39].

In this paper we propose a new kind of sparsity in polynomial optimization which is motivated
by tensor decomposition techniques: low-rank sparsity. A polynomial p ∈ R[x] in the n variables
x = (x1, . . . , xn) has rank r if it can be written as

f(x) =
r∑

l=1

n∏
i=1

fl,i(xi)

where each fl,i ∈ R[xi] is a univariate polynomial in the scalar variable xi. We say that f has
low-rank if r is significantly smaller than n.

This representation is a direct application of a fundamental concept from multilinear algebra.
A polynomial can be viewed as a tensor within a high-dimensional space formed by the tensor
product of spaces of univariate polynomials (e.g., V1 ⊗ V2 ⊗ . . . ⊗ Vn, where Vi = R[xi]). In
this framework, a polynomial is rank-one or separable if it can be written as a single product
of univariate functions, i.e.

∏n
i=1 fl,i(xi). Consequently, the definition of a rank-r polynomial

is an exact statement that f can be decomposed into a sum of r separable (rank-one) tensors.
The smallest such r is known as the tensor rank of f . This decomposition is not unique and
it is widely known in the literature as the Canonical Polyadic (CP) decomposition, also called
CANDECOMP (Canonical Decomposition) and PARAFAC (Parallel Factors Analysis), see [19]
for a comprehensive overview of tensor decompositions and their applications. The premise of
low-rank polynomial optimization is therefore to exploit cases where the polynomial f , when
viewed as a tensor, has a rank r that is significantly smaller than its ambient dimensions. The
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CP decomposition has a wide range of applications, from neuroscience [29] to the multiparti-
cle Schrödinger operator [7], and in this work we apply it to efficient global optimization of
polynomials.

Unlike matrices, the best rank-r approximation to a given tensor can fail to exist (sequences
of factors can diverge while the fit improves). Regularization, warm starts, or switching
formats typically resolves this in practice [11]. Mature toolboxes make these models practi-
cal: Tensorlab (Matlab), the Matlab Tensor Toolbox, and TensorLy (Python) provide
CP/Tucker/TT implementations with many options [4, 21,35].

The main contribution of this paper is to introduce LRPOP, a moment-SOS hierarchy for global
minimization of low-rank polynomials. The outline of the paper is as follows. In Section 2 we
recall the standard (dense) moment-SOS hierarchy for POP and its sparse variants CSSOS and
TSSOS. These are based on standard graph theory concepts that we recall. In Section 3 we
introduce the LRPOP hierarchy, prove its convergence, and show that it scales linearly with
respect to the number of variables. Numerical experiments and comparisons with existing sparse
hierarchies are reported in Section 4. We show that we can solve routinely low-rank POPs with
number of variables and degree scaling by the thousands, provided the polynomial exhibits good
numerical conditioning. Extensions to other tensor factorizations and rational optimization are
described in the concluding Section 5.

2 Moment-SOS hierarchy and sparsity

Sums of squares. Let x = (x1, . . . , xn) be a tuple of variables and f(x) a polynomial in R[x].
We say a polynomial is a sum of squares (SOS) if there exist polynomials q1(x), . . . , qL(x) such
that

f(x) =
L∑
i=1

qi(x)2. (1)

If we can write a polynomial in this form, we automatically have a certificate of non-negativity.
If f(x) is a polynomial of degree 2d, then we can define the vector of monomials of degree at most
d as zd(x). Then, checking the existence of the SOS decomposition is equivalent to checking if
there exists a positive semi-definite (PSD) matrix Q, called the Gram matrix, satisfying

f(x) = zTd (x)Qzd(x). (2)

Moments. Take a monomial basis {xα} of R[x] indexing a sequence y = (yα), with α ∈ Nn a
vector of powers. Now define the linear functional Ly : R[x] → R as

f(x) =
∑
α

fαx
α 7→ Ly(f(x)) =

∑
α

fαyα. (3)

We define the moment matrix Mk(y) as the matrix indexed by the monomials up to degree k,
such that the matrix entries are

Mk(y)βγ = Ly(xβxγ) = yβ+γ . (4)

Similarly, with g =
∑

α gαx
α, we can define the localizing matrix Mk(gy) as

Mk(gy)βγ = Ly(gxβxγ) =
∑
α

gαyα+β+γ . (5)
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2.1 Dense hierarchy

Let us consider the polynomial optimization problem (POP)

inf
x∈Rn

f(x)

s.t. gj(x) ≥ 0, j = 1, . . . ,m.
(6)

We can rewrite the problem as

(P ) : p∗ = inf {f(x) | x ∈ K}, (7)

for the basic semialgebraic set K = {x ∈ Rn | gj(x) ≥ 0 }. Equivalently, we can also write the
dual of problem (P ) as

(D) : λ∗ = sup{λ | f(x) − λ ≥ 0, ∀x ∈ K }. (8)

Letting g0 = 1, the moment relaxation of the POP (6) is the primal SDP problem

(Pk) : pk = inf
y

Ly(f)

s.t. Ly(1) = 1

Mk−dj (gjy) ⪰ 0, j = 0, . . . ,m;

(9)

where dj = ⌈deg(gj)2 ⌉ and d ≥ max(⌈deg(f)2 ⌉, d1, . . . , dm). Then, the dual SDP yields the SOS
optimization problem

(Dk) : λk = sup
λ,Qj

λ

s.t. f(x) − λ =
m∑
j=0

σj(x)gj(x)

σj(x) = zk−dj (x)TQjzk−dj (x), Qj ⪰ 0, j = 1, . . . ,m.

(10)

Note that the constraint can also be expressed as f(x) − λ ∈ Q(g), where

Q(g) = {
m∑
j=0

σj(x)gj(x) : σj SOS}

is the quadratic module generated by the constraints g. Assume the Archimedean condition
holds, i.e. there exists R such that R2−∥x∥2∈ Q(g). Then, Putinar’s Positivstellensatz implies
that the relaxations converge to the global minimum monotonically [22]:

pk ↑ p∗, λk ↑ p∗. (11)

We call this the dense moment-SOS hierarchy because it couples all the variables together,
creating PSD matrices of size

(
n+k
k

)
. If the problem has sparsity, f and gj only couple specific

subsets of variables or monomials, we can design more efficient SDP relaxations, the sparse
hierarchies.
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2.2 Sparse hierarchies

Given the problem (6), build the correlative sparsity graph G(V,E), where V = {1, . . . , n}, such
that each vertex corresponds to a variable, and (i, i′) ∈ E if xi and xi′ appear in the same
monomial in f or in the same constraint gj . Let us define some concepts of graph theory before
describing the sparse hierarchies.

A graph G is a chordal graph if all the cycles of four or more vertices have a chord, an edge
connecting two vertices of the cycle but which is not part of it. A clique is a subset of vertices
of a graph G such that all pairs of vertices in the clique are connected by an edge.

Let G̃ be a chordal extension of G, built by adding chords (edges) until there are no remaining
cycles of four (or more) vertices without a chord. Then there exist cliques I = {I1, . . . , IN} that
satisfy the running intersection property (RIP): for each pair of cliques that share a specific
variable, there is a path of cliques connecting them, all of which contain the variable. Equiva-
lently, if we pick all the cliques that contain a certain variable, this forms a connected graph.
If the cliques are maximal (cliques that are not subsets of any other clique), then the clique
decomposition is a tree, an undirected graph that is connected and without cycle. This is what
we call a clique tree. Throughout this work, whenever referring to cliques I1, . . . , IN of a chordal
graph, we assume that the cliques are maximal and hence form a clique tree.

For each edge (a, b) of the clique tree, we define the separator Sab = Ia∩Ib. Assign the constraints
gj to some clique Ia, containing all of its variables, and index them with Ja ⊂ {1, . . . ,m}, which
assigns inequalities to clique a. And finally, group the monomials of f by cliques of the clique
tree such that f(x) =

∑N
a=1 fa(xIa), for fa(xIa) ∈ R[xIa ]. Then the correlative sparse moment

relaxation [23] reads

(P cs
k ) : pcsk = inf

{y(a)}Na=1

N∑
a=1

Ly(a)(fa)

s.t. M Ia
k (y(a)) ⪰ 0, a = 1, . . . , N,

M Ia
k−dj

(gj y
(a)) ⪰ 0, a = 1, . . . , N, j ∈ Ja,

y(a)|Sab
= y(b)|Sab

, a, b = 1, . . . , N,

y
(a)
0 = 1, a = 1, . . . , N,

(12)

where y(a) ∈ Rε for ε =
(|Ia|+2k

2k

)
. Note that in the moment SDP we have to add overlap

equalities, to ensure that moments corresponding to shared variables coincide in different cliques.
The dual SOS problem is

(Dcs
k ) : λcs

k = sup
λ, {Qa,0}, {Qa,j}

λ

s.t.

N∑
a=1

fa(xIa) − λ −
N∑
a=1

∑
j∈Ja

σa,j(xIa) gj(xIa) =

N∑
a=1

σa,0(xIa),

σa,0(xIa) = zk,Ia(x)⊤Qa,0 zk,Ia(x), a = 1, . . . , N,

σa,j(xIa) = zk−dj ,Ia(x)⊤Qa,j zk−dj ,Ia(x), a = 1, . . . , N, j ∈ Ja,

Qa,0 ⪰ 0, Qa,j ⪰ 0, a = 1, . . . , N, j ∈ Ja,

(13)

where we let zk,Ia(x) be the vector of monomials in variables xIa up to degree k.

Assume a sparse Archimedean condition holds: there exists R > 0 and polynomials {qa(xIa)}Na=1

in the clique variables such that R−∥x∥22=
∑N

a=1 qa(xIa) with each qa belonging to the quadratic
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module generated by {gj : j ∈ Ja} on xIa . Together with the chordal construction (so that
the cliques {Ia} admit a clique tree and the overlap equalities in (12) are enforced), the correl-
ative sparse SOS (CSSOS) hierarchy bounds the sparse hierarchy from below pcsk ≤ pk, and is
monotone and convergent:

pcsk ↑ p∗, λcs
k ↑ p∗, (14)

as k → ∞ [23, 36].

Besides correlative sparsity, we can also have a sparse polynomial due to the reduced number
of monomials appearing, the so called term sparsity [38]. In this case, we build a term sparsity
graph, take the chordal extension and consider the cliques in a similar manner. Term sparsity
yields a convergent hierarchy under analogous conditions, called term sparsity SOS (TSSOS),
although they follow from a different type of graph construction.

In essence, CSSOS groups by variables, while TSSOS groups by monomials. When a polynomial
has a small number of terms, TSSOS often yields smaller blocks; when variable interactions
are localized but dense within cliques, CSSOS is preferable. The hybrid CS-TSSOS combines
both [39]. There are also other sparse variants like ideal sparsity [20], where the structure of
the constraints is exploited.

3 LRPOP hierarchy

Any polynomial can be written as f(x) =
∑r

l=1

∏n
i=1 fl,i(xi) for some rank r, and number of

variables n. Let us consider the POP (6). We can define a new set of variables, t ∈ Rnr, defined
recursively for l = 1, . . . , r, as

tl,1 = fl,1(x1) for i = 1, tl,i = tl,i−1fl,i(xi) for i = 2, . . . n.

The equality constraints can be rewritten as hl,i(t, xi) = 0 with hl,1(t, xi) = tl,1 − fl,1(x1), and
hl,i(t, xi) = tl,i − tl,i−1fl,i(xi) for i = 2, . . . n. Then f(x) =

∑r
l=1 tl,n, so now we can set the

POP as

inf
x∈Rn,t∈Rrn

r∑
l=1

tl,n

s.t. hl,i(t, xi) = 0, l = 1, . . . , r; i = 1, . . . , n

gj(xj) ≥ 0, j = 1, . . . , n.

(15)

With these variables, we can build a correlative sparsity graph that will have a symmetric
structure which can be exploited to get a clique decomposition of small maximal clique size.
Let us illustrate this with an example for r = 2, n = 5.

Example 3.1. Consider the objective function

f(x) = 12x3 + 24x1x3 − 6x2x3 + 4x3x4 + 2x2x4 − 18x3x5

− 12x1x2x3 + 8x1x3x4 − 2x1x2x4 − 36x1x3x5 + 4x2x3x4 + 9x2x3x5 − 2x2x4x5 − 6x3x4x5

− 10x1x2x3x4 + 18x1x2x3x5 + 2x1x2x4x5 − 12x1x3x4x5

+ 12x1x2x3x4x5

= (1 + 2x1)(−2 + x2)(−x3)(3 + x4)(2 − 3x5) + (−1 + x1)(2x2)(1 + 3x3)(−x4)(1 − x5)

The initial correlative sparsity graph is depicted in Figure 1.
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x1

x2

x3

x4

x5

Figure 1: Correlative sparsity graph of the original problem.

This is the complete graph K5, so we cannot decompose it efficiently into small cliques. Similarly,
the monomial graph will be quite complicated and very dense in edges, as the degree of the
largest monomial is

∏n
i=1 dl,i. Therefore both the CSSOS and TSSOS hierarchies do not bring

about a significant reduction in problem size.

Definition 3.1. Let Gr,n = (V,E) be the correlative sparsity graph of problem (15), where the
set of vertices is given by the set of variables, and two vertices are connected by an edge if they
appear in the same constraint. The graph Gr,n depends only on the rank r, and the number of
variables, n, of f(x).

t1,1

x1

t2,1

t1,2

x2

t2,2

t1,3

x3

t2,3

t1,4

x4

t2,4

t1,5

x5

t2,5

Figure 2: Correlative sparsity graph, G2,5, with chords corresponding to a chordal extension
shown in dashed lines.

Now we take this new graph, Gr,n, we find a chordal extension as in Figure 2, and then compute
a clique decomposition to obtain the decomposition with the smallest maximal clique (depicted
in Figure 3). For our example we have the largest clique of size 4, which is smaller than the
maximal clique size with the other sparse methods. Note that this is a minimal example where
one obtains a speedup. Far more significant speedup is obtained if the number of variables
grows while the rank is kept fixed. This will be formalized in Theorem 3.3.
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{x3, t12, t22, t23}

{x2, t11, t12, t22}

{x2, t11, t21, t22}

{x1, t11, t21}

{x3, t12, t13, t23}

{x4, t13, t14, t23}

{x4, t14, t23, t24}

{x5, t14, t24}

{x5, t14, t15} {x5, t24, t25}

Figure 3: Clique tree decomposition of G2,5.

These cliques, named I1, . . . , IN , are used to form the moment and Gram matrices. The inequal-
ities and equalities of the problem must now belong to a single clique. We define the inequalities
at clique Ia as g(x, t; Ia) ≥ 0, and we let the index set Ja ⊂ {1, . . . , n} assign the inequalities
for each clique. Similarly, we let the index set Ha ⊂ {(l, i) | l = 1, . . . , r, i = 1, . . . , n} assign the
equalities for each clique.

Let us define qa as the monomials in the variables {xIa}, such that we have, for a relaxation
order k, the relaxed moment SDP problem

(PLR
k ) : pLRk = min

{y(a)}Na=1

N∑
a=1

Ly(a)(fa)

s.t. M Ia
k (y(a)) ⪰ 0, a = 1, . . . , N,

M Ia
k−dj

(gj y
(a)) ⪰ 0, a = 1, . . . , N, j ∈ Ja,

Ly(a)(qahl,i) = 0, (l, i) ∈ Ha, deg(qahl,i) < 2k,

y(a)|Sab
= y(b)|Sab

, a, b = 1, . . . , N,

y
(a)
0 = 1, a = 1, . . . , N.

(16)
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The dual SOS SDP problem is

(DLR
k ) : λLR

k = sup
λ, {Qa,0}, {Qa,j}, {τa,l,i}

λ

s.t.

N∑
a=1

fa(xIa) − λ −
N∑
a=1

∑
j∈Ja

σa,j(xIa) gj(xIa)

−
N∑
a=1

∑
(l,i)∈Ha

τa,l,i(xIa)hl,i(xIa) =
N∑
a=1

σa,0(xIa),

σa,0(xIa) = zk,Ia(x)⊤Qa,0 zk,Ia(x), ∀a
σa,j(xIa) = zk−dj ,Ia(x)⊤Qa,j zk−dj ,Ia(x), ∀a j ∈ Ja,

Qa,0 ⪰ 0, Qa,j ⪰ 0, ∀a j ∈ Ja,

τa,l,i(xIa) ∈ R[xIa ], deg(τa,l,ihl,i) < 2k, ∀a,∀l,∀i, (l, i) ∈ Ha.

(17)

We call this type of moment-SOS hierarchy LRPOP, for low-rank polynomial optimization.

3.1 Convergence

To prove the convergence of this hierarchy, we follow the same steps as for the correlative-sparse
hierarchy. First, we prove an auxiliary proposition related to the Archimedean property of the
problem with the lifted variables.

Proposition 3.1. If K = {x ∈ Rn | gj(x) ≥ 0 } satisfies the Archimedean condition, then the
lifted set K ′ = {x ∈ Rn, t ∈ Rrn | gj(x) ≥ 0, hl,i(t, xi) = 0 } also satisfies the Archimedean
condition.

Proof. Let R[x, t] denote the ring of polynomials in the variables x and the lifted variables t.
We define the quadratic module generated by the inequality constraints g = {g1, . . . , gm} as

Q(g) =

σ0 +
∑
j=1

σjgj | σ0, . . . , σj ∈ Σ[x, t]

 ,

where Σ[x, t] is the set of sum-of-squares polynomials. Similarly, we define the ideal generated
by the equality constraints h = {hl,i | l = 1, . . . , r; i = 1, . . . , n} as

I(h) =

∑
l,i

ϕl,ihl,i |ϕl,i ∈ R[x, t]

 .

Take the polynomial f and assume K = {x ∈ Rn | gj(x) ≥ 0 } satisfies the Archimedean
condition, i.e. the quadratic module Q(g) generated by the gj contains the polynomial R2−∥x∥2
for R > 0 large enough.

Assume that K satisfies the Archimedean condition. This implies that for R > 0 large enough,
the quadratic module generated by g, restricted to R[x], contains the polynomial R2 − ∥x∥2.

For the lifting variables tl,j , let us define the bound Bl,j := supx∈K |
∏j

k fl,k(xk)|+ε for some
ε > 0. Since K is compact (implied by the Archimedean property), this bound is finite. By
Putinar’s Positivstellensatz, we have:

B2
l,j −

(
j∏
k

fl,k(xk)

)2

∈ Q(g).
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Note that the equality constraints are hl,j = tl,j −
∏j

k fl,k(xk) = 0. We can write:

B2
l,j − t2l,j = B2

l,j −

(
j∏
k

fl,k(xk)

)2

︸ ︷︷ ︸
∈Q(g)

+

( j∏
k

fl,k(xk)

)2

− t2l,j


︸ ︷︷ ︸

∈I(h)

.

The second term belongs to the ideal I(h) because a2−b2 = (a−b)(a+b), and (a−b) is exactly
our equality constraint hl,j .

Summing over all indices (l, j), and adding the bound for ∥x∥2, we obtain:

R′ − ∥x∥2−∥t∥2 ∈ Q(g) + I(h)

for some sufficiently large R′. Thus, the quadratic module associated with the lifted set K ′ is
Archimedean.

Corollary 3.1.1. Let Qa denote the quadratic module generated by the inequality constraints
{gj}j∈Ja and the ideal of equality constraints {hl,i}(l,i)∈Ha

restricted to the variables of clique
Ia. If the set K satisfies the Archimedean condition, then for every clique a = 1, . . . , N , the
associated quadratic module Qa also satisfies the Archimedean condition.

Proof. Since the lifted set K ′ is Archimedean by Proposition 3.1, take the variables associated
with clique Ia to be xIa , then there exists an R > 0 such that

R− ∥x∥2= R−
(
∥xIa∥2+∥xIca∥

2

)
∈ Q(g) + I(h).

Now, as ∥xIca∥
2 is a sum of squares polynomial, we can add it to this expression to get

R−
(
∥xIa∥2+∥xIca∥

2

)
+ ∥xIca∥

2= R− ∥xIa∥2 ∈ Q(g) + I(h).

Therefore, the quadratic module generated by the constraints restricted to the variables in Ia
is Archimedean.

Theorem 3.2. Assume a sparse Archimedean condition holds: there exists R and polynomials
{qa(xIa)}Na=1 in the clique variables such that R2−∥x∥22=

∑N
a=1 qa(xIa) with each qa belonging to

the quadratic module generated by {gj : j ∈ Ja} on xIa . Together with the chordal construction
(so that the cliques {Ia} admit a clique tree and the overlap equalities in (16) are enforced),
the low-rank hierarchy is monotone and convergent:

pLRk ↑ p∗, λLR
k ↑ p∗, (18)

as k → ∞.

Proof. Follows directly from the proposition that ensures the Archimedean condition holds for
the lifted problem and the corollary that ensures the Archimedean condition holds for each
clique, and the proofs in [23,36].
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3.2 Maximal clique size

The graph Gr,n is fully determined by the rank and number of variables of f(x). We are
interested in the size of the largest positive semidefinite (PSD) block. For this let us introduce
the notion of tree decomposition, and treewidth, see; e.g. [12].

A tree decomposition of a graph G = (V,E) is a tree T where each node (vertex of the tree)
is associated with a subset of vertices, a bag. Each bag of vertices X1, . . . , XL satisfies the
following properties

• Each vertex of the graph is contained in at least one bag and
⋃

iXi = V .

• The bags containing vertex v form a connected subtree of T .

• For every edge in the graph (v, w), there is at least one bag containing both v and w.

The width of a tree decomposition is the size of its largest bag minus one. The treewidth tw(G)
of a graph G is the minimum width among all possible tree decompositions of G.

As described for the sparse hierarchies, for each graph Gr,n we can find a chordal graph con-
taining it, that gives a clique tree decomposition. We are interested in a chordal extension that
allows for a clique tree decomposition with its largest clique being as small as possible. The
size of the largest clique in this optimal clique tree decomposition is given by the treewidth as

max clique size of Gr,n = tw(Gr,n) + 1.

Let us now show that, for low-rank polynomials (with rank less than n), the treewidth of the
Gr,n graphs is fully determined by the rank r, and not the number of variables n, in sharp
contrast with the dense and sparse hierarchies.

Theorem 3.3. The variable graph Gr,n has treewidth

tw(Gr,n) = min(n, r + 1).

In particular, when r + 1 ≤ n, the maximal clique size in a chordal extension is at most r + 2.

Proof. For the upper bound we consider vertex elimination orders, which give us clique decom-
positions. If we find decompositions with maximal cliques of the size we want we will have an
upper bound, as we cannot be sure it is the minimal decomposition.

A graph is chordal if and only if there exists a Perfect Elimination Ordering (PEO). A PEO
is an ordering of vertices v1, v2, . . . , vm of the graph such that eliminating vertices in this order
always leaves the remaining neighbors of the eliminated vertex forming a clique. Since a graph
is chordal if and only if it has a PEO, we can use the definition of PEO to construct chordal
graphs by considering a vertex eliminating ordering and adding edges at each step. This will
ensure we have a PEO, therefore making the graph chordal.

First let r + 1 ≤ n, we show tw(Gr,n) ≤ r + 1. We want to build a PEO, so we consider the
elimination ordering starting from the vertex t1,n, we take all its neighbors and fully connect
them. This forms a clique. Now we eliminate t1,n from the graph and keep the new edges. We
then go to the second vertex of the elimination ordering, t2,n, and do the same. We repeat this
for each tl,n with l = 3, . . . , r, and then we do it for xn. When we reach xn we notice that it is
connected to all tl,n−1 for l = 1, . . . r, so to r many nodes. This creates a clique of size r + 1.
After connecting all of them we eliminate xn and move to t1,n−1, and here we now have r + 1
neighbors, making a clique of size r + 2. We illustrate this for the first steps of the graph G2,5

in Appendix A.
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The graph Gr,n presents translational invariance across the columns so, by considering an adja-
cent pair of columns i, i + 1, we know how the rest of the graph will work. The maximal clique
for this vertex elimination ordering will be the one of t1,n−1 with r + 2 variables.

Now let n ≤ r + 1, we show tw(Gr,n) ≤ n. For this we now do the elimination row by row
instead of column by column. Start from the vertex t1,n and connect all its neighbors between
them, then eliminate the vertex. Keep going along the row t1,i, and once we reach t1,2 we note
the vertex is connected to all xi for i = 2, . . . n, so n− 1 many of them, and to t1,1. This makes
a clique of size n + 1. Following this elimination order and leaving the xi vertices for last we
get a maximal clique of size n + 1.

With this, we finalized the proof of the upper bound. Let us move to the lower bound. First,
let n ≤ r + 1,, we use the fact that minors of a graph cannot have larger treewidth than the
full graph [9]. We can build a graph minor by contracting each of the r rows into a single
vertex. This creates a central set of vertices xi that are fully connected to each row vertex
independently, but disconnected with each other. This has the form of a complete bipartite
graph Kn,r, as we illustrate in Appendix B. The tree-width of a complete bipartite graph is
Kn,r = min(n, r) = n, therefore we have tw(Gr,n) ≥ n.

Now let r + 1 ≤ n, and consider any chordal extension, G′, of Gr,n. We show that G′ must
contain a clique of size r + 2 or bigger. Take the set of variables Si = {t1,i, . . . , tr,i}, then if we
remove Si from Gr,n we separate xi from xi+1. Every minimal vertex separator has to induce a
clique in any chordal extension [6], so Si will induce a clique in G′. Now consider the adjacent
’columns’ Si−1 and Si, and the variable xi, which is connected to all the elements in Si−1 and
Si. We want to find the cliques follwowing from G′ so let us take a prefect elimination ordering
of G′, and let v be the first vertex of Si−1 ∪ Si to appear in the ordering. Without loss of
generality assume v ∈ Si−1 (the same holds for v ∈ Si).

Let v = tl,i−1, then when v is eliminated it will form a clique with its neighbors in G′ that
appear later in the ordering. Since Si−1 is a clique in G′ and v is the first element in Si−1 to be
eliminated, it is connected to the remaining r − 1 elements in the set. In Gr,n, v is connected
to xi, so it will also be a neighbor in Si ∪ Si−1 ∪ {xi}. In the original graph, there is the
edge (tl,i−1, tl,i), so tl,i ∈ Si is also a neighbor of v still present in the graph. Therefore, the
elimination of vertex v requires a clique containing at least Si−1 ∪ {xi} ∪ {tl,i}, of size r + 2.
Since any chordal extension will have a clique of at least size r + 2, the treewidth has to be
bounded as tw(Gr,n) ≥ r + 1. We illustrate this in Appendix C.

Combining the four segments of the proof, for the lower and upper bounds, we conclude
tw(Gr,n) = min(n, r + 1).

From this theorem we conclude that the graphs arising from polynomials of low rank (lower
than the number of variables) give rise to a clique tree decomposition with maximal clique size
r+ 2. This implies that the size of the PSD matrices is independent of the number of variables.

Note that the vertex elimination order we have used directly gives us a clique decomposition,
so we can build the cliques from any of such graphs by following the same steps.

3.3 Complexity

We estimate the complexity of LRPOP by (i) counting the number and sizes of the PSD blocks,
and (ii) counting linear equalities (overlap/separator constraints and lifting equalities). The
LRPOP constraints are imposed clique-wise over a chordal extension of the low-rank graph Gr,n.
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Throughout this section we will assume r + 1 ≤ n, such that tw(Gr,n) = r + 1. In particular,
the maximal clique size is determined by the rank, not by n: maxa|Ia|= tw(Gr,n) + 1 = r + 2,
and separators have size |Sab|≤ r+ 1. This is the key structural reason why LRPOP scales well
in n.

PSD blocks. Let {Ia}Na=1 be the cliques of a chordal extension of Gr,n. Each clique produces
a Gram/moment block of dimension

sa =

(
|Ia|+k

k

)
≤
(
r + 2 + k

k

)
, (19)

for relaxation order k. The total number of nodes of Gr,n is n(r + 1), so the number of cliques
must be lower or equal to it, therefore we have N = O(nr) many PSD blocks for the given sizes.

Overlap (separator) equalities. For each edge (a, b) in the clique tree we enforce moment
consistency on the separator Sab = Ia ∩ Ib. Matching the restricted moments up to degree 2k is
equivalent to matching the shared moments between both moment matrices, which is equivalent
to a restricted moment matrix of size

sh =

(
|Sab|+k

k

)
≤
(
r + 1 + k

k

)
. (20)

This introduces
1

2
sh(sh+1) scalar equalities per separator. Since a clique tree has N−1 = O(nr)

edges (one edge per node, except the root node), we obtain the count

O
(
nr

(
r + 1 + k

k

)2)
.

At the minimal k = ⌈d+1
2 ⌉, O(

(
r+1+k

k

)
) = O(rk), so the initial relaxation order scales like

O(n rd+2).

Lifting equalities. The lifted problem contains rn polynomials hl,i = 0. In the moment
side we impose Ly(a)(q hl,i) = 0 for all monomials q supported on a specific clique Ia with
deg(q hl,i) ≤ 2k. If deg fl,i = d, then deg hl,i = d + 1, so the number of monomials per equality
is

th =

(
|Ia|+(2k − (d + 1))

2k − (d + 1)

)
≤
(
r + 1 + 2k − d

2k − d− 1

)
. (21)

With nr equalities hl,i, this yields a total of

O(nr th) = O
(
nr

(
r + 1 + 2k − d

2k − d− 1

))
.

At the minimal k above, th = Θ(r2), so the initial relaxation order scales like O(n r3). Therefore,

in total we have O
(
nrd+2

)
equalities for the initial relaxation order.

The cost of the LRPOP hierarchy scales only linearly with the number of variables, while the
rank is the main driver of the cost. For the dense and sparse hierarchies, the number of variables
(or monomials) of the cliques drive the cost.

4 Numerical examples

Let us consider examples for varying parameters. We want to study both how LRPOP compares
to the dense hierarchy as we scale the parameters of the polynomials as well as how far we can
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go in the number of variables while keeping the rank low. For both studies we use the box
constraints x2i ≤ 1. The numerical experiments were performed using the Julia [8] packages
LRPOP [5] and TSSOS [25]. The SDP solver Mosek [1] and CliqueTrees [31] package were also
a fundamental part of the code. The computer was a laptop with a CPU AMD Ryzen 7 PRO
7840U w/ Radeon 780M, 8 cores, base speed 3.30 GHz, and 32.0 GB of RAM.

4.1 Comparison to dense hierarchy

Starting with rank-1 polynomials, f(x) =
∏n

i=1 fi(xi), for fi a univariate polynomial of degree d.
We pick the coefficients of the polynomials randomly: the coefficient for the k-th degree term is
drawn from a normal distribution N (0, 0.72k), and each fi is subsequently normalized such that∑d

k=0|ci,k|= 1. The decay in the larger-degree coefficients will induce better conditioning for the
numerical study. We fix a degree d, then vary n and the relaxation order of the hierarchy, and
we compare this to the dense hierarchy by using the TSSOS [25] Julia package. The relaxation
order of the low-rank method, kLR, will go from ⌈d+1

2 ⌉, and we run TSSOS with the minimal

relaxation order, kdense = ⌈nd2 ⌉. For the rank-1 example we fix the degree of the polynomials
to d = 3, with varying n ≥ 2. If the computation takes more than 300 seconds we stop it and
report a blank space in the tables of results.

Table 1: Optimal values for rank r = 1, single polynomial degree d = 3, and relaxation orders
kLR, for LRPOP, and kdense = ⌈nd2 ⌉, for the dense hierarchy with TSSOS.

# variables n 2 3 4 5 6

kLR = 2 -0.710558 -3.692186 -3.238414 -2.445621 -7.363192

kLR = 3 -0.710559 -0.305038 -0.178236 -0.030005 -0.020383

Dense -0.710559 -0.305039 -0.178236

Table 2: Running times (seconds) for rank r = 1, single polynomial degree d = 3, and relaxation
orders kLR, for LRPOP, and kdense = ⌈nd2 ⌉, for the dense hierarchy with TSSOS.

# variables n 2 3 4 5 6

kLR = 2 0.016 0.069 0.061 0.086 0.190

kLR = 3 0.052 0.070 0.082 0.141 0.106

Dense 0.011 0.373 10.33

In Table 1 we see that we can reach the dense approximate value with a much lower relaxation
order, and therefore also much faster. The SDP for the dense hierarchy does not solve it in
less than 5 minutes for d = 3, n = 5, which we try to compute with the minimal relaxation
order kdense = 8, while we get what seems the optimal value for the LRPOP method with a
relaxation order kLR = 3 within very short time, as we see in Table 2. The main advantage of
the low-rank method is that we can get lower bounds with very little computational cost and
for very large problems.

Now let us look at a polynomial with rank r = 2 and degree d = 2, and varying n. We show
the results for the optimum values in Table 3 and the running times in Table 4.
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Table 3: Optimal values for rank r = 2, single polynomial degree d = 2, and relaxation orders
kLR, for LRPOP, and kdense = ⌈nd2 ⌉, for the dense hierarchy with TSSOS.

# variables n 2 3 4 5 6

kLR = 2 -1.280796 -0.567000 -1.083653 -0.624894 -0.610669

kLR = 3 -1.280796 -0.482480 -1.016807 -0.234330 -0.512391

Dense -1.280796 -0.482480 -1.016815 -0.213803

Table 4: Running times (seconds) for rank r = 2, single polynomial degree d = 2, and relaxation
orders kLR, for LRPOP, and kdense = ⌈nd2 ⌉, for the dense hierarchy with TSSOS.

# variables n 2 3 4 5 6

kLR = 2 0.027 0.571 0.075 0.108 0.133

kLR = 3 0.180 0.502 0.621 0.865 1.098

Dense 0.008 0.065 0.328 10.36

We further extend this to higher rank, r = 4, in Table 5 and see that we still converge for
low relaxation orders. However, the complexity is reflected in the running times to obtain the
optimum, which are depicted in Table 6.

Table 5: Optimal values for rank r = 4, single polynomial degree d = 2, and relaxation orders
kLR, for LRPOP, and kdense = ⌈nd2 ⌉, for the dense hierarchy with TSSOS.

# variables n 2 3 4 5 6

kLR = 2 -1.321912 -1.070262 -1.725488 -2.777503 -1.597545

kLR = 3 -1.321909 -0.867154 -0.918308 -0.372227 -0.512062

Dense -1.321913 -0.867158 -0.918311 -0.372247

Table 6: Running times (seconds) for rank r = 4, single polynomial degree d = 2, and relaxation
orders kLR, for LRPOP, and kdense = ⌈nd2 ⌉, for the dense hierarchy with TSSOS.

# variables n 2 3 4 5 6

kLR = 2 0.029 0.596 1.093 1.489 2.480

kLR = 3 0.233 1.305 11.29 32.84 80.39

Dense 0.009 0.032 0.455 12.33

These examples all indicate that, for LRPOP, increasing the rank of the polynomial is the main
driver of the complexity of the problem.

4.2 Large-scale examples

We can further test the scalability of LRPOP by seeing how far we can increase the number
of variables. Increasing n can generate ill-conditioned problems that are very challenging to
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solve without the use of higher precision arithmetic. To mitigate these effects, we use Bernstein
polynomials [13] to represent the POP. This allows for more stability in the numerics; see
Appendix D for details.

For d ∈ N, the univariate Bernstein polynomials on [0, 1] are

Bj,d(s) =

(
d

j

)
sj(1 − s)d−j , j = 0, . . . , d. (22)

They satisfy
∑d

j=0Bj,d(s) = 1 for all s and are nonnegative; therefore if we take any polynomial

q(s) =

d∑
j=0

bjBj,d(s) (23)

then it satisfies minj bj ≤ q(s) ≤ maxj bj for all s ∈ [0, 1]. For our numerical experiment we
have the box constraints x2i ≤ 1 so we define the variables si = (xi + 1)/2 ∈ [0, 1]. We can

write our univariate polynomials as fl,i(xi) =
∑d

j=0 bl,i,jBj,d(si). For each rank l, we pick the
coefficients

bl,i,0 = 1, bl,i,j ∈ [1 +
δ

n
, 1 +

2δ

n
],

uniformly at random for j = 1, . . . , d, and we let δ = 1. Picking bl,i,0 = 1 ensures that the
minimum of each univariate polynomial fl,i is 1 and is attained at a common point xi = −1.
Therefore, the minimum of the full rank-r polynomial is

∑r
l=1 1 = r. For example, for a

polynomial of rank 2 we expect a global minimum p∗ = 2.

Table 7: Optimal values and computation times for r = 2, d = 2, kLR = 2 and varying numbers
of variables n using LRPOP.

# variables n 10 50 200 500 1000

kLR = 2 2.000016 2.000174 2.002931 2.015252 2.014466

time (sec) 1.141 5.980 26.44 49.33 112.6

Table 7 summarizes the results. We note that even if theoretically we have proven that LRPOP
converges to the global optimum via lower bounds, we get values higher than the optimum.
This is due to the numerical conditioning of the problem for large number of variables. In the
case n = 1000 these numerical errors are less than 1%. The running time of LRPOP scales
linearly with n, as expected from our complexity study.

Table 8: Optimal values and computation times for r = 3, d = 2, kLR = 2 and varying numbers
of variables n using LRPOP.

# variables n 10 50 200 500 1000

kLR = 2 3.000053 3.000692 3.019781 3.268124 3.284973

time (sec) 3.934 16.50 65.75 173.2 373.8

In this last example, summarized in Table 8, we expect a global minimum of p∗ = 3, and for
n = 1000 variables we see we have a 10% error. This indicates the limits of LRPOP in terms of
numerical conditioning.
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These examples show how, for low-rank polynomials (e.g. r = 1, 2, 3), LRPOP can compute the
global minimum of polynomials with large number of variables and total degree. Our examples
show this for 1000 variables and total degree of 2000, considering these are polynomials tailored
specifically to have both low rank and good numerical conditioning.

5 Conclusions and perspectives

In this paper, we introduced a novel approach to polynomial optimization by identifying and
exploiting a low-rank tensor structure. This structure, distinct from correlative or term sparsity,
provides a new avenue for tackling the scalability of the moment-SOS hierarchy. By tailoring
the relaxations to this low-rank format, we open the door to solving a new class of large-scale
problems where the underlying model, while dense with respect to existing notions of sparsity,
possesses a low-rank structure of this kind. There are other rank-structured ways of writing
polynomials, but not all may allow for moment-SOS hierarchies of this type. Exploring other
low-rank structures by considering alternative tensor decompositions is a natural way to continue
this work and may widen the range of applications.

Another interesting direction for future research is to extend this low-rank approach from poly-
nomial optimization to the broader class of rational optimization. Minimizing rational functions
is fundamental in many areas, including control theory, economics, and engineering design.
While the moment-SOS hierarchy can be adapted for rational problems, it faces the same scala-
bility issues. How to address correlative sparsity for rational optimization was addressed in [10].
A promising perspective lies in bridging our low-rank optimization framework with modern data-
driven approximation techniques that natively generate low-rank rational models. The Loewner
framework has emerged as a powerful, data-driven method for system identification and func-
tion approximation [2, 27]. Its extensions to the multivariate case are particularly relevant, as
they construct rational approximations directly from function samples or data [3,14]. The core
idea of this framework is to build a low-rank rational interpolant that, by construction, often
takes a separable, low-rank tensor form analogous to the CP decomposition:

f(x) ≈
r∑

l=1

n∏
i=1

fl,i(xi)

where the fl,i are now univariate rational functions. A natural research question is, therefore,
to develop a dedicated moment-SOS hierarchy that can efficiently solve optimization problems
where the objective function or constraints are given in this low-rank rational form.
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A Vertex elimination ordering

Here we illustrate the vertex elimination order defined in the proof of Theorem 3.3 for r =
2, n = 5.

t1,1

x1

t2,1

t1,2

x2

t2,2

t1,3

x3

t2,3

t1,4

x4

t2,4

t1,5

x5

t2,5

Step 0: original G2,5

t1,1

x1

t2,1

t1,2

x2

t2,2

t1,3

x3

t2,3

t1,4

x4

t2,4

t1,5

x5

t2,5

t1,5

Step 1: eliminate t1,5
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t1,1

x1

t2,1

t1,2

x2

t2,2

t1,3

x3

t2,3

t1,4

x4

t2,4

t1,5

x5

t2,5

t1,5

t2,5

Step 2: eliminate t2,5

t1,1

x1

t2,1

t1,2

x2

t2,2

t1,3

x3

t2,3

t1,4

x4

t2,4

t1,5

x5

t2,5

t1,5

t2,5

x5

Step 3: eliminate x5, add edge (t1,4, t2,4)

t1,1

x1

t2,1

t1,2

x2

t2,2

t1,3

x3

t2,3

t1,4

x4

t2,4

t1,5

x5

t2,5

t1,5

t2,5

x5

t1,4

Step 4: eliminate t1,4, add edge (t1,3, t2,4)

t1,1

x1

t2,1

t1,2

x2

t2,2

t1,3

x3

t2,3

t1,4

x4

t2,4

t1,5

x5

t2,5

t1,5

t2,5

x5

t1,4

t2,4

Step 5: eliminate t2,4, add edge (t1,3, t2,3)
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t1,1

x1

t2,1

t1,2

x2

t2,2

t1,3

x3

t2,3

t1,4

x4

t2,4

t1,5

x5

t2,5

t1,5

t2,5

x5

t1,4

t2,4

x4

Step 6: eliminate x4

We proceed in a similar manner until there are no vertices left in the graph.

B Bipartite graph minor

We illustrate the bipartite graph minor defined in the proof of Theorem 3.3 for r = 3, n = 4.
We can visualize Gr,n as a series of rows of tl,i for i = 1, . . . , n with a bottom row of xi. Note
that this is different from the pictures we did until now because when the rank is larger than
two the following is a more natural arrangement of the vertices.

x1

t3,1

t2,1

t1,1

x2

t3,2

t2,2

t1,2

x3

t3,3

t2,3

t1,3

x4

t3,4

t2,4

t1,4 contract to R1

contract to R2

contract to R3

G3,4
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R1

R2

R3

x1

x2

x3

x4

K3,4 minor

C Clique from separator

We examine the elimination of vertex v = t2,i−1 (yellow). Solid black lines indicate edges
present in the original graph Gr,n. Blue dashed lines indicate fill-in edges required because
column Si−1 is a minimal separator. When v is eliminated, it must form a clique with all its
current neighbors (blue background). The gray dashed lines represent the new edges from this
elimination. Consequently, the set Si−1 ∪ {xi} ∪ {t2,i} forms a clique of size at least r + 2 (5 in
this example).

t1,i−1

t3,i−1

t2,i−1

t1,i

t2,i

t3,i

xi

Si−1 Si

Si−1 ∪ Si ∪ {xi}

D Bernstein polynomials and ill-conditioning

When minimizing polynomials that are sums of products of univariate factors (our low-rank
format) the choice of basis matters numerically. The monomial basis {1, x, . . . , xd}, while alge-
braically simple, tends to be numerically ill-conditioned for high-degree optimization problems
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on intervals. The Bernstein basis [13] avoids this poor scaling by its structure and total nonneg-
ativity. We analyze the sensitivity of the mapping Φ from the coefficient space to the function
values. A large Lipschitz constant for Φ implies that small numerical errors in the SDP variables
correspond to large deviations in the objective, leading to solver failure.

We consider the map Φ : b 7→ f where f is a polynomial in our low-rank form (CP decompo-
sition). We bound the Lipschitz constant induced by the ℓ∞ norm on coefficients and the L∞

norm on functions:

Λ(Φ) = sup
b̸=b′

∥fb − fb′∥L∞

∥b− b′∥∞
.

The Bernstein basis offers optimal stability independent of degree d. For x ∈ [−1, 1], via the
map s(x) = (x+ 1)/2 ∈ [0, 1], the basis is Bj,d(x) =

(
d
j

)
s(x)j(1− s(x))d−j . Due to the partition

of unity and non-negativity, it satisfies the following.

Lemma D.1 (Univariate Stability). Let q(x) =
∑d

j=0 bjBj,d(x). The mapping b 7→ q has a
Lipschitz constant of 1:

∥qb − qb′∥L∞≤ ∥b− b′∥∞.

Proof. For any x ∈ [−1, 1]:

|qb(x) − qb′(x)|=

∣∣∣∣∣∣
d∑

j=0

(bj − b′j)Bj,d(x)

∣∣∣∣∣∣ ≤ max
j

|bj − b′j |
d∑

j=0

Bj,d(x) = ∥b− b′∥∞.

In contrast, the monomial basis is exponentially unstable (O(2d)). Representing bounded func-
tions often requires coefficients of magnitude 2d (the cancellation phenomenon), destroying the
conditioning of the moment matrices.

Now, we consider the full objective function in the low-rank sum-of-products format:

f(x) =

r∑
l=1

n∏
i=1

fl,i(xi)︸ ︷︷ ︸
Tl(x)

.

The stability of the mapping from the coefficient vector b to f depends on the dimension n,
the rank r, and the coefficient bound M = ∥b∥∞.

Lemma D.2 (LR Coefficient Stability). If the coefficients of every univariate factor fl,i are
bounded by M , the Lipschitz constant of the map b 7→ f satisfies:

ΛLR ≤ rnMn−1.

Proof. Let f̃l,i be factors with perturbed coefficients (∥δ∥∞≤ ϵ). First, for a single rank-1 term
Tl, using the univariate stability and ∥fl,i∥∞≤ M , we bound the product error via a telescoping
sum:

∥Tl − T̃l∥∞≤
n∑

k=1

∥fl,k − f̃l,k∥∞
∏
j ̸=k

∥fl,j∥∞≤
n∑

k=1

ϵMn−1 = nMn−1ϵ.

Finally, summing over the rank r:

∥f − f̃∥∞≤
r∑

l=1

∥Tl − T̃l∥∞≤
r∑

l=1

(nMn−1ϵ) = rnMn−1ϵ.
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Linear growth with n is the theoretical lower bound for product structures. However, exponen-
tial growth in n must be avoided. This is achieved by our initialization strategy.

By choosing Bernstein coefficients with gaps of O(1/n), specifically 1 ≤ bj ≤ 1 + 2δ
n , we ensure

that the coefficient bound M depends on n. Substituting M = 1 + 2δ
n into the stability lemma

yields:

ΛLR ≤ rn

(
1 +

2δ

n

)n−1

.

Using the limit definition of the exponential function, (1 + 2δ
n )n−1 ≤ e2δ. Thus:

ΛLR ≤ (re2δ)n.

This certifies that the conditioning of our large-n instances scales linearly with dimension (the
term e2δ is constant with respect to n), ensuring numerical solvability but still limited by the
number of variables. This is exactly what we see in the results of Table 7 and 8, where the error
of the minimum obtained increases with n, but not in an exponential way.
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