Machine Learning-Enhanced Column Generation for
Large-Scale Capacity Planning Problems

Felipe Keim?®, Victor Bucarey™®, Qi Zhang?®, Angela Flores-Quiroz®®*

¢ Departamento de Ingenieria Eléctrica, Universidad de Chile, Santiago, Chile

b Institute of Engineering Sciences, Universidad de O’Higgins, Rancagua, Chile
¢Instituto Sistemas Complejos de Ingenieria, Santiago, Chile

4 Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis,
MN 55455, USA

Abstract

Capacity Planning problems are a class of optimization problems used in diverse in-
dustries to improve resource allocation and make investment decisions. Solving real-
world instances of these problems typically requires significant computational effort. To
tackle this, we propose machine-learning-aided column generation methods for solving
large-scale capacity planning problems. Our goal is to accelerate column generation
by approximating the pricing subproblems while preserving the ability to certify so-
lution quality. We investigate two strategies embedded within the column generation
framework: (i) a surrogate-based pricing approach that replaces the operational com-
ponent of the pricing problem with a pre-trained multi-layer neural network with ReLLU
activations, incorporated through a mixed-integer linear (MILP) encoding of the net-
work; and (ii) end-to-end approaches that learn to directly propose new columns. To
retain performance guarantees, we adopt a two-phase procedure: an initial surrogate
phase rapidly generates valid columns and approximate bounds, followed by a stan-
dard column generation phase that solves the original pricing subproblems to recover
valid bounds and compute the optimality gap. Computational results show that the
intermediate surrogate phase is beneficial in practice: it yields substantial runtime im-

provements, and the columns produced during the approximate phase are of sufficient

*Corresponding author
Email address: angflores@uchile.cl (Angela Flores-Quiroz)

quality to significantly speed up convergence in the subsequent exact phase.

Keywords: Column Generation, Machine Learning, Capacity Planning

1. Introduction

Capacity planning problems require making strategic decisions over long-term hori-
zons—such as investments in new facilities, capacity upgrades, or storage assets—while
simultaneously accounting for short-term operational constraints needed to satisfy de-
mand that varies over time. A fundamental challenge in these problems is the presence
of multiple temporal scales: long-term investment decisions, taken at coarse planning
stages, must be consistently coordinated with fine-grained operational decisions. This
interaction often leads to large-scale optimization models whose size and complexity
grow rapidly with the temporal resolution of operational decisions.

A representative example arises in power system capacity expansion planning, where
investment decisions must be integrated with short-term operational requirements such
as unit commitment and dispatch over planning horizons that may span several decades
[1, 2, 3, 4, 5, 6]. Despite this intrinsic complexity, capacity planning problems ex-
hibit a structure that naturally lends itself to decomposition: while operational de-
cisions and constraints are numerous, the constraints linking decisions across plan-
ning stages—typically associated with investment—are comparatively few. This prop-
erty has motivated the use of decomposition techniques such as Progressive Hedging,
Nested Benders decomposition, Stochastic Dual Dynamic Integer Programming, and
Dantzig—Wolfe (DW) decomposition.

Within this context, column generation (CG) has emerged as a powerful approach
for solving large-scale capacity planning problems [7, 8, 9]. However, in many appli-
cations, the pricing subproblems are computationally intensive, as they involve solving
detailed operational models. Since CG does not require pricing subproblems to be
solved to optimality at every iteration [10], reducing their computational burden can
yield substantial performance gains. This observation motivates the use of machine

learning models as a means to generate high-quality candidate columns at a lower

computational cost.

In this work, we investigate how neural networks can be leveraged to accelerate
column generation for capacity expansion problems with challenging operational sub-
problems. We propose two ML-aided CG approaches. The first, replaces the pricing
subproblem with a surrogate optimization model that approximates the operational
component while preserving the structure of the subproblems and retaining perfom-
rance guarantees. The second, inspired by [11], adopts an end-to-end strategy in which
a neural network directly predicts candidate columns and their reduced costs. We eval-
uate both approaches in a real-world case study on power system capacity expansion,
and provide a comparative analysis of their computational performance, strengths, and
limitations.

The contributions of this paper are:

e Proposal of a surrogate model of the pricing subproblem using a neural network
to represent the operational part of the subproblem, exploiting the problem struc-
ture. This surrogate enables to generate valid columns with lower computational

effort.

e Integration of the approximate solutions to the overall CG algorithm to maintain

the validity of columns and bound, and achieve optimality.

e Inspired by the work of [11], we adapt, study, and compare an end-to-end Neural

network approach that directly learns the solution of the pricing subproblem.

e In depth analysis of advantages and disadvantages of both methods.

2. Literature Review

Solving multi-stage capacity planning problems remains computationally demanding
and typically requires tailored solution methods. A substantial body of literature has
addressed two-stage and multi-stage capacity planning problems using decomposition-

based approaches, including Progressive Hedging [12, 13], Nested Benders Decomposi-

tion [14, 15], Stochastic Dual Dynamic Integer Programming [16, 17], and Dantzig—Wolfe
decomposition [9, 1, 7, 8]. These methods exploit the weak coupling between long-term
investment decisions and short-term operational decisions to improve scalability.

Within this class of methods, column generation (CG) has shown strong compu-
tational performance for large-scale power system capacity planning problems, partic-
ularly when pricing subproblems involve integer decisions [1]. Nevertheless, in many
capacity planning applications, pricing subproblems remain computationally expensive
and often dominate the overall solution time. Importantly, CG does not require pricing
subproblems to be solved to optimality at every iteration; any column with sufficiently
negative reduced cost can improve the master problem. This observation opens the
door to approximate solution strategies, motivating the use of machine learning tech-
niques to reduce the computational burden of pricing while still generating high-quality
columns.

An emerging line of research in operations research explores the integration of ma-
chine learning within decomposition algorithms, including column generation. One
stream of work focuses on replacing the pricing subproblem with a learned model that
directly predicts candidate columns. For instance, [18] employs reinforcement learning
to learn a policy that outputs new columns for the cutting stock and vehicle routing
problems, bypassing the explicit solution of the pricing problem. Similarly, [11] trains
a transformer-based pointer network to generate job sequences with negative reduced
cost for parallel machine scheduling, effectively approximating the pricing subproblem.

A second line of research aims at accelerating CG by predicting dual variables or
improving algorithm initialization. In [19], [20], and [21], machine learning models
are used to estimate dual prices to improve convergence and reduce oscillations in
graph coloring, workforce scheduling, and cutting stock problems, respectively. Related
approaches focus on warm-starting CG, as in [22], where ML models predict initial
dual values for unit commitment problems. A third stream of work leverages ML to
reduce the size or complexity of the pricing problem itself. Examples include [23] and

[24], which use deep learning and graph neural networks to reduce pricing problem

size in personalized crew rostering and electric bus scheduling, respectively. In vehicle
routing and bus driver scheduling, [25] employs reinforcement learning to select among
pricing heuristics that generate reduced networks solved via optimization. Collectively,
these studies demonstrate that ML-enhanced CG can achieve substantial reductions in
computational time while maintaining solution quality.

Despite the growing body of work on integrating machine learning into column
generation, important gaps remain when addressing large scale multi stage capacity
planning problems with complex operational subproblems. Most existing approaches
focus on combinatorial scheduling or routing settings, or rely on end to end predictions
of pricing solutions without explicitly preserving the operational structure of the prob-
lem. In capacity expansion settings such as power system planning, pricing subproblems
typically involve detailed operational models with network constraints, temporal cou-
pling and integer decisions, making them particularly expensive to solve and difficult
to approximate reliably. Moreover, only a limited number of studies address how to
integrate machine learning into column generation while preserving valid bounds and
convergence guarantees.

This work addresses these limitations by proposing two machine learning aided col-
umn generation approaches specifically tailored to multi stage capacity planning prob-
lems with complex operational subproblems. The first approach introduces a surrogate
based pricing formulation in which the operational component of the pricing problem
is approximated using a neural network, while the investment structure is kept explicit.
This enables the generation of valid columns and the computation of certified opti-
mality gaps through a two phase algorithm. The second approach adapts an end to
end learning framework to directly predict pricing solutions for capacity planning prob-
lems, serving as a benchmark to evaluate the trade off between computational speed
and solution guarantees. A detailed computational study on a realistic power system
expansion problem is used to assess the performance, advantages and limitations of

both approaches.

3. Column Generation for Solving Capacity Planning Problems

3.1. Multi-Stage Capacity FExpansion Planning Problem

We consider a deterministic multi-stage capacity expansion problem defined over a
discrete planning horizon. The problem consists of determining when and how much
capacity to invest in, as well as how to operate the system over time to satisfy opera-
tional constraints and minimize total cost. We follow the general multi-stage capacity
planning formulation proposed in [7] and focus on its deterministic counterpart.

The planning horizon is partitioned into a finite set of stages §. For each stage
s € §, the model includes investment decisions and operational decisions. Investment
decisions, represented by integer variables @, determine the set (or number) of capacity
units added at stage s. The cumulative units available at stage s, accounting for all
investments up to and including stage s, are represented by z,. Given z,, operational
decisions y, specify the system operation so as to satisfy system requirements and
operational constraints.

Problem (1) defines the deterministic multi-stage capacity expansion problem. The
objective function (la) minimizes the total discounted cost over the planning horizon,
including both investment and operational costs. In (1a), the vector ¢, denotes the
discounted investment cost at stage s, whereas g, denotes the discounted operational
cost at stage s.

Constraint (1b) couples decisions across stages by linking the cumulative number
of available units z, to the initial units ¥ and the investments made up to stage s.
Constraint (1c) restricts operational decisions according to the number of units available
at stage s, where matrices A; and V4 relate operational decisions to unit availability.
Constraint (1d) bounds the cumulative number of installed units at each stage, reflecting
technological or policy constraints on capacity expansion. Constraint (le) represents
the set of operational constraints involving only the operational variables y,. Finally,

constraint (1f) enforces the integrality of the investment decisions.

min) (c;rws + quys> (1a)
SES

st zs< DA+ Z;Owi, VseS, (1b)
Ay < V,z, VseS, (1c)
z,< Z, VsesS, (1d)

Y€ Vs, VseS, (le)

x €L, VseS. (1f)

3.2. Dantzig-Wolfe reformulation of the Capacity Fxpansion Planning Problem

Problem (1) is decomposed using the Dantzig-Wolfe decomposition, following the
discretization approach proposed in [7]. For each stage s € S, the set of feasible vectors

of cumulative installed units z, is defined as
U, ={z,€Z" ‘ Jy, € Vs such that Ay, < V,z,, 2z, < Z,} .

Since investment decisions are bounded and integer, ¥, is finite and can be enumerated
as¥, = {Ef}ke;cs, where /K, is cardinality of ¥,. Any feasible vector z, € W, is therefore

represented as

zZs = Z PL (2a)

kel

doAr=1, Ae{o1}. (2b)
kEIC.s

. . ~k . .
Moreover, for each cumulative investment vector z_, there exists at least one optimal

operational plan 3. Substituting z, and y, in (1) using (2) yields the Dantzig-Wolfe

master problem (MP) in (3).

min Z (CSTa:S + Z qI@?Af) (3a)

s€S keKs
s.t. :22];/\]; < Zwi, Vse S, [m] (3b)
keKs =0
STA=1, VseS, [u] (3¢)
ke’Cs
wS S bS7 vs e S? <3d)
x, €ZT, VseS, (3e)
MNe{0,1}, VseSVEkek,. (3f)

Problem (3) is solved using a column-generation (CG) algorithm [26], as outlined in
Algorithm 1. The procedure starts by initializing a Restricted Master Problem (RMP)
with the same structure as the master problem, but restricted to a limited subset of
columns (zs*,gys*). After solving the linear relaxation of the RMP, the dual variables
(7s, us) associated with constraints (3b) and (3c) are obtained. These dual variables
are then used to identify improving columns by solving the pricing subproblem (4) for

each stage s € S.

sp(s): 277 = mingy, — 2w, — (4a)
s.t.: Ay, < V,z,,, (4b)
Y, € Vs, (4c)
2, < Z5,2, €L7. (4d)

The subproblem is a one-stage investment and operation problem, where installed
units z, for stage s are determined. The objective of subproblem (4) is to find the
column with most negative reduced cost, as described in (4a). Constraints (4b) and (4c)

correspond to the operational constraints of stage s of the capacity planning problem,

and constraint (4d) impose the maximum number of units available for investment.
At each iteration of the algorithm, upper (UB) and lower (LB) bounds on the
optimal value of the linear relaxation of problem (3) are computed. The upper bound is
given by the optimal objective value of the current Restricted Master Problem (RMP),
namely Z}4. The lower bound is obtained as Z}% + Y., s Z>". Based on these
bounds, the relative optimality gap for the linear relaxation is computed as %. If
this gap falls below a predefined tolerance, the integer master problem is subsequently

solved to compute a feasible solution, together with the corresponding MIP optimality

gap, and the algorithm terminates.

Algorithm 1 Column generation algorithm
1: Set UB = 00, LB = —o0, Initialize Master Problem (3) with initial set of columns
2: Solve the linear relaxation of Master Problem (3) and objective value ZMF and

prices (7, u)
3: Update upper bound:

UB + ZMF

4: for m € M do
5: Solve subproblem (4) with dual prices (7,,, p,,), and collect objective value
Z5F and column (2,,,9,,)
6: Update lower bound:
LB« Z}i + Y Z5°
seS
7. Compute LP gap:
drp < (UB — LB)/LB)
8 if d;p < €r,p then
9: Solve Integer Master Problem (3)
10: Collect objective value ZMF and compute MIP gap:

Sip < (Z5F — LB)/(LB)

11: else
12: go to 2

Note that, in capacity planning problems, the pricing subproblem itself can be a
difficult MILP and is often the most computationally intensive component of the algo-

rithm [1]. Therefore, reducing the time required to solve these subproblems can yield

a significant reduction in overall runtime of the algorithm. In the following section, we

aim to overcome this computational burden by the approximation of the subproblems.

4. ML-enhanced heuristics for solving the pricing subproblem

This section presents an ML-enhanced column generation framework designed to
reduce the computational burden of pricing subproblems while maintaining performance
guarantees. The key observation is that, in column generation, it suffices to produce
columns with negative reduced cost; consequently, the pricing subproblems need not be
solved to optimality at every iteration. This insight enables the use of approximate, fast-
to-evaluate pricing routines, which can substantially accelerate the overall algorithm.

Building on this idea, we investigate two ways to approximate the (computationally
demanding) pricing subproblem using pre-trained neural networks. First, we propose a
surrogate-based approach for column generation, where we replace the operational com-
ponent of each pricing subproblem with a neural-network representation that estimates
the operational cost as a function of the investment decisions and the problem struc-
ture. We then embed this estimator within an optimization-based surrogate problem.
This constitutes the main contribution of our work and is detailed in Section 4.1. Sec-
ond, Section 4.2 presents an alternative end-to-end strategy, inspired by [11], in which
a neural network is trained to directly predict approximate solutions to the pricing

subproblems.

4.1. Proposed Surrogate-based Column Generation

This section presents the proposed Surrogate-based column generation framework.
Specifically, the operational component of the pricing subproblem is approximated using
a neural network trained to predict operational costs as a function of installed capac-
ity assets, which can then be embedded within the pricing problem. This surrogate-
based approach significantly reduces computational time while preserving the quality of
the generated columns. Importantly, the algorithm maintains performance guarantees

through a two-phase procedure. In the first phase, surrogate-based pricing problems

10

are used to efficiently generate valid columns and compute approximate bounds. In the
second phase, iterations with the original pricing subproblems are performed to recover
valid lower bounds and compute a certified optimality gap. Section 4.1.1 describes
the neural-network-based approximation of the pricing subproblem, while Section 4.1.2
explains how the surrogate model is integrated into the column generation algorithm

following this two-phase approach.

4.1.1. A Surrogate Optimization Model for the Pricing Subproblem

We construct the surrogate pricing problem by approximating only the operational
component of (4) (associated with y,), while keeping the investment variables (x;, z5)
and the constraint set unchanged. We learn a function that maps investment decisions
to the corresponding optimal operational cost and embed it into the optimization model.
Following [27], this function is represented by a pre-trained multi-layer ReLU network,
trained to predict the optimal operational cost for a given investment vector. Using the
mixed-integer linear encoding of ReL.U networks from [28], we integrate the network
into the pricing problem, obtaining a surrogate model that retains the original structure
but is significantly cheaper to solve.

For each stage s, we define the operational cost ¢s(zs, 05) as the optimal objective
value of the single-stage operational problem in (5), given the cumulative installed-
capacity vector z, and an instance-specific vector of correlated parameters @,. The
parameters in @, capture the information required to specify a given operational in-
stance—namely, coefficients appearing in the objective function and constraints, as
well as additional contextual features that may be useful for training. Accordingly,
for a realization 6, we denote by q,(0s), As(6s), and Ts,d(0) the instantiated co-
efficients of the model. We then train a neural network to approximate the mapping
zs > ¢z, 05), yielding a predictor QASS(zS, 6.), which is used to replace the operational
component of the pricing subproblem. The network architecture, for n investment vari-

ables and n’ parameters, is illustrated in Figure 1(a).

11

\>

o;o}o“
7
Sio

<7

ey
=)

o

2
O

eioli
K

&
Iy
&
r

(a) Surrogate model Neural Network (b) End-to-End Neural Network

Figure 1: Two neural network structures for both approaches.

¢s(25) = ming,(6) y, (5a)
s.t.: A (O)y, < v+ Vz (5b)
Yoa € Ysal0) (5¢)

Once trained, the network is incorporated into the pricing subproblem using the
MILP encoding of ReLU networks from [28]. This allows us to replace the operational
block by the network while keeping the investment block intact: z, and constraints (6i)
are preserved, whereas y,, constraints (4b)—(4c), and the operational cost are replaced
by the network output.

For a neural network with M layers, the MILP encoding introduces auxiliary con-
tinuous variables ﬁ;” and ﬁ;”, along with binary variables aJ*, to model the ReLU
activations through a mixed-integer formulation. Here, the parameters w and b of the

neural network are obtained after training, so in the MILP representation, they are

fixed. Constraints (6b)—(6h) encode the network and map the input vector (s, 25, 80) to

12

an estimate of the operational cost, where [s, z;, 8], denotes the ith component of the
concatenated input. Including the stage index s enables a single network to be used

throughout the planning horizon, while @ promotes generalization in different system

configurations.
@: min ¢Es — 25T — s (68‘)
do R
sto: > wly[s 2,0+) =hi —hi, VjeD, (6b)
=1
dm—l
S wl T b = A= B Vm e M, V)€ Dy, (6¢)
=1
dg
AN 1
Zwi,kh]’ < ¢y7 <6d)
i=1
' < M*(1—adj'), YmeM, Vjc Dy, (6e)
WP <M~al', YmeM, VjeED,, (6f)
RIRT >0, YmeM, VjE Dy, (6g)
aj' €{0,1}, VYme M, VjeD,, (6h)
)

2s < Zg,2s €L, (61

To train the neural network, we generate one dataset per stage. For each dataset,
we sample feasible investment decisions and corresponding parameter values, compute
their operational costs, and repeat until reaching the desired dataset size. All datasets
are merged and used to train a ReLU-based neural network. Training is performed
using an L1 loss function, dropout and early stopping to prevent overfitting, and the
Adam optimizer. Hyperparameter are selected sequentially, first tuning the learning

rate, then the network architecture, and finally the dropout probability.

13

4.1.2. Integrating Approzimated Subproblems into Column Generation

The proposed surrogate-based column generation algorithm preserves performance
guarantees through a two-phase procedure. Figure 2(a) illustrates the overall frame-
work. In the first phase, surrogate pricing problems are used to quickly generate valid
columns and compute approximate bounds. In the second phase, the algorithm switches
to the original pricing subproblems to recover valid bounds and evaluate the optimality
gap.

The proposed Surrogate-based column generation algorithm preserves performance
guarantees through a two-phase procedure. Figure 2(a) illustrates the overall frame-
work. In the first phase, surrogate pricing problems are used to quickly generate valid
columns and compute approximate bounds. In the second phase, we switch to the orig-
inal pricing subproblems to recover wvalid bounds and evaluate the optimality gap. To
enable this two-phase scheme, the algorithm maintains two master problems. In the
first phase, the Approximated Restricted Master Problem (ARMP), is used in the first
phase and is built from columns generated by the surrogate pricing problems, together
with their estimated operational costs. The second phase is the standard Restricted
Master Problem (RMP), which contains only columns with exact operational costs and
is used to compute valid bounds and certify optimality.

In the first phase, the ARMP is solved at each iteration to obtain dual variables.
These dual prices are then used in the surrogate pricing problems to generate new
columns. For each decision stage s, the surrogate pricing problem is solved to obtain a
candidate investment vector 2, together with an estimated operational cost ¢,(2,). The
resulting columns are added to the ARMP. To generate valid columns for the RMP, the
true operational cost ¢s(25) is evaluated for each candidate investment vector 2;. The
corresponding columns, now associated with exact operational costs, are then added
to the RMP. Since only the operational variables are optimized, this step is usually
significantly faster than solving the full pricing subproblem.

Note that, within this first phase, the ARMP corresponds to the restricted mas-

ter problem associated with an approximated version of the Dantzig—Wolfe master

14

problem (3), in which operational costs are represented through the surrogate model.
Consequently, a valid lower bound for the linear relaxation of this approximated master
problem can be obtained using the reduced costs from the surrogate pricing problems.
In parallel, an upper bound UB is obtained by solving the ARMP. Surrogate-based
column generation iterations are performed until the optimality gap of the approxi-
mated master problem, denoted by I/A\DW,, falls below a predefined threshold. Since
an approximation of the master problem is solved in the first phase (3), the resulting
bounds and optimality gap provide estimates of the corresponding quantities for the
original problem, and may not be valid for the latter.

Thus, once this condition is met, the algorithm transitions to the second phase.
This phase starts by solving the RMP populated with the valid columns generated
during the first phase. New columns are then generated by solving the original pricing
subproblem (4) and the lower and upper bounds are computed as in Algorithm 1.
Thus, these exact CG iterations enable recovering valid upper and lower bounds and to
compute a certified optimality gap. While these iterations are costly, in practice, only
a small number of traditional CG iterations are required, as the first phase typically

produces high-quality columns that are already close to optimal.

4.2. An End-to-End Approach

This section presents an End-to-End learning approach to accelerate column gener-
ation by directly approximating the pricing subproblems. Unlike the surrogate-based
framework, which approximates only the operational cost while preserving the struc-
ture of the pricing problem, the End-to-End approach replaces each pricing subproblem
with a neural network that directly predicts candidate investment decisions. As in the
surrogate-based approach, performance guarantees are recovered by subsequently run-

ning iterations of the original column generation algorithm.

4.2.1. End-to-End Subproblem Approzimation
In the End-to-End approach, each pricing subproblem is replaced by a neural net-

work trained to directly predict an investment decision vector zg for stage s. The

15

| Generate duals ‘ | Generate duals ‘

Solve 55 ‘ Solve sp (
4>|‘ Aty | L T —>| Solve 5p

49

; g Compute real ¢
Compute real ¢
Compute LF,,

—>| Solve ap]4—

l | Solve RMP ‘ Compute LP,,,
| Sclve ARMP fh et T i
T —
g Compute LP,,, No
Compute LP,,, Yes LPyy < &2
l | Solve RMP l
Mo Yes lYes
No Yes =
P LPpy <21
o z2 " | Solve RMP |
(a) Surrogate CG. (b) End-to-End CG.

Figure 2: Two frameworks for ML-Aided CG algorithms.

network takes as input the dual prices (7, ps) obtained from the RMP, the stage index
s, and a set of problem parameters 8, and outputs an investment vector. Figure 1(b)
illustrates the structure of the End-to-End neural network.

Training data is generated by sampling dual prices and parameter values, and solving
the corresponding pricing subproblems to optimality. Each training sample consists
of dual prices, stage index, and parameters as inputs, and the optimal investment
decision as the target output. The network is trained using a binary cross-entropy loss
with logits, and hyperparameters are selected sequentially by tuning the learning rate,
network architecture, and dropout probability.

This approach is inspired by the work proposed in [11], adapted to the capacity
planning problem. Unlike the original work, which employs a transformer-based ar-
chitecture, we adopt a feedforward RelLU-based neural network to predict subproblem
solutions. We chose this option to keep the parsimony of the neural networks trained
equal for both approaches. Additionally, instead of extracting dual prices from multi-
ple column generation executions, we generate training data by sampling random dual

price values from a uniform distribution.

16

4.2.2. Integrating the End-to-End NN into Column Generation

The End-to-End approach follows a two-phase procedure, analogous in spirit to
the Surrogate-based column generation framework, in order to balance computational
efficiency and solution quality. In contrast to the surrogate-based approach, only a
single Restricted Master Problem (RMP) is maintained, which always contains valid
columns evaluated with the true operational cost.

At each CG iteration of the first phase, the trained End-to-End neural network is
used to predict a candidate investment vector z, for each stage s, given the current
dual variables obtained from the RMP. To construct a valid column, the operational
problem (5) is then solved for the predicted investment vector 2z, yielding the corre-
sponding operational decision gy, and its true operational cost. The column (2, y,) is
subsequently added to the RMP, preserving primal feasibility.

Note that the upper bound obtained from the RMP remains valid throughout the
End-to-End phase. However, a valid lower bound cannot be computed during this
phase, as the neural network may predict suboptimal investment decisions. Instead, an
estimated lower bound is obtained from the reduced costs associated with the predicted
columns, yielding an estimated optimality gap.

End-to-End CG iterations are performed until this estimated gap falls below a pre-
defined threshold. Since this stopping criterion is based on an estimated gap, it is
possible that I/j’gap does not reach the prescribed tolerance. For this reason, a maxi-
mum number of iterations may be imposed as an alternative termination criterion. At
that point, the algorithm transitions to the second phase, in which traditional column
generation iterations are executed by solving the original pricing subproblems. This sec-
ond phase recovers lower bounds and allows the computation of a certified optimality

gap. Figure 2(b) illustrates the overall End-to-End CG procedure.

17

5. Computational Results and Discussion

This section applies the proposed methodologies to instances of a capacity expansion
planning model for electric power systems. We consider a deterministic formulation of
a power system expansion problem with operational constraints, based on the formula-
tion presented in [1]. We report results on dataset generation, neural network training,
and performance comparisons among the traditional column generation, the proposed

it surrogate column generation, and the end-to-end benchmark approach.

All algorithms were implemented in Python v3.9.0. Optimization models were for-
mulated using Pyomo v6.0.1 [29] and solved with Gurobi v9.5.0 [30]. Supervised learn-
ing models were trained using PyTorch v1.10.0 [31] and Scikit-learn v1.0.1 [32]. All

computational experiments were executed on the NLHPC computing cluster.

5.1. Test System and Problem Setup

The case study considers a multi-stage expansion planning problem for an electrical
power system. Investment is made in generation assets. The operation is represented
by the unit commitment model. The test system is based on a realistic representation of
the Chilean power system, consisting of 26 buses, 42 transmission lines, and 86 existing
generators, with a planning horizon of 10 years. All data was obtained from the Chilean
National Electric Coordinator (CEN) [33].

The objective is to minimize the total system cost, combining investment and opera-
tional costs, by jointly selecting investment and operational decisions over the planning
horizon, subject to demand satisfaction and operational constraints. Demand evolves
deterministically according to the growth rate Rgen. Load shedding is permitted at a
high penalty cost, which guarantees the feasibility of the operational problem for any
investment decision.

The problem considers binary investment variables accounting for the installation of
new generation assets into the system, and mixed-integer operational variables, account-

ing for the hourly system operation. The operational variables include power outputs

18

of the generator, its commitment state, power flows through transmission lines, etc.
To reduce the computational burden of computing the operation of each hour of the
year, we select a set of representative days using the approach presented in [34]. The
complete formulation of the generation and transmission planning problem is presented

in Appendix A.

We consider different system configurations by varying the number of investment
decisions and the number of representative operational days. A total of three configura-
tions are analyzed, denoted as FPSyx y, where X represents the number of investment
decisions and Y the number of representative days. Specifically, we study the configu-
rations £ PS54, EPSi5.12, and EPSs55 4. Additionally, for both ML-based approaches,
the demand growth rate of the system is used as the input parameter 6. The tested
algorithm was subsequently evaluated under three demand growth scenarios for each
network configuration: 3%, 5%, and 8%. Accordingly, each instance used to test the
algorithm is denoted by FPSx y z, where Z represents the demand growth rate.

5.2. Dataset Generation and Neural Network Training

For each network configuration EPSx y, we generated dedicated datasets to train
the neural networks associated with each ML-based approach by repeatedly solving
optimization problems under different input configurations. We consider multilayer
perceptron (MLP) architectures with ReLU activations. The number of hidden layers
and neurons per layer, dropout rate, and learning rate are selected via hyperparameter
tuning using a sequential grid search. Detailed results for each neural network are
reported in Appendix B.

In the End-to-End approach, training samples are obtained by solving the pricing
problem (4) for a wide range of sampled inputs. Specifically, for each decision stage s,
dual variables (7, ps) and system parameters 6 are sampled, where 6 corresponds to
the demand growth rate. For each sampled input, the corresponding pricing problem

is solved to optimality to obtain the investment decision z,. These optimal investment

19

vectors are used as labels to train a neural network that directly predicts candidate
columns from dual information. The dual variables are sampled from a uniform dis-
tribution over the interval [0,500], while the demand growth rate is sampled from a
uniform distribution between 1% and 7%.

In contrast, the surrogate approach does not require solving the full pricing problem
during data generation. Instead, for fixed investment decisions z,, decision stages
s, and demand growth rates, the operational problem (5) is solved to compute the
corresponding optimal operational cost. These costs are used as training targets for a
neural network that approximates the operational component of the pricing problem.
During dataset generation, the demand growth rate is sampled from the same uniform
distribution between 1% and 7%.

Using the resulting datasets, hyperparameter search and neural network training
were performed for each network configuration EPSx y. The average time required
to generate a single training sample for each instance, as well as the total training
time (including hyperparameter tuning plus training of the best network) for both the

surrogate and End-to-End networks, are reported in Table 1.

Avg. Dataset Generation Total NN
Network configuration Time per Sample [s] Training Time [s]

Surrogate End-to-End Surrogate End-to-End
EPSP_A 154 44.21 109.16 621.42 601.28
EPSP_A_15_12 145.52 2184.18 506.66 483.85
EPSP_A 52 4 69.42 843.45 669.50 719.16

Table 1: Average time required to generate a single dataset sample and total neural
network training time (in seconds) for each problem instance under both proposed
approaches.

The computational cost per training sample differs substantially across approaches.
Generating End-to-End training data requires solving the full pricing problem to opti-
mality, whereas the surrogate approach only involves solving the operational subprob-
lem. This leads to significantly lower data-generation times for the proposed surrogate-

based approach.

20

For both approaches, we generated 5000 samples per decision stage, yielding a total
of 50000 samples over the 10-stage planning horizon. Dataset generation was paral-
lelized using up to 160 cores. While data generation is computationally intensive, this
cost can be spread across multiple planning studies, since capacity expansion prob-
lems are typically solved repeatedly for scenario and sensitivity analyses with similar
network structures and parameter ranges, allowing training datasets to be reused or
incrementally extended. In contrast, neural network training times were relatively low
compared to data generation times.

The results of the neural network performance are summarized in Tables 2 and
3 for the End-to-End and Surrogate approaches, respectively. For the End-to-End
approach, the neural network predictions are evaluated in terms of accuracy, defined as
the percentage of correct predictions for each investment candidate across the training,
validation, and test sets. For the Surrogate approach, the performance of the neural
network is measured using Mean Absolute Error (MAE) and Mean Absolute Percentage
Error (MAPE) on the training, validation, and test set.

For the Surrogate approach, prediction errors remain below 2% across all instances
and across the training, validation, and test sets. Higher MAE values are observed
for instances with 52 investment decisions, reflecting larger operational costs; however,
relative errors remain small. Low prediction errors support the surrogate model in
identifying negative reduced-cost columns, which can reduce the number of iterations
required by the traditional column generation algorithm to reach the optimal solution.
For the End-to-End approach, the neural network achieves an accuracy above 96%

across all datasets.

MAE MAPE [%]
Train Valid Test Train Valid Test
EPSP_15_4 5.57 5.67 5.62 0.31 0.32 0.32
EPSP_15.12 5.92 6.04 714 033 0.33 0.35
EPSP. 524 86.09 136.83 105.87 1.70 1.95 1.87

Instance

Table 2: Surrogate neural network prediction results: performance of the proposed NN
across all problem instances for train, validation and test sets.

21

Accuracy (%]
Train Valid Test
EPSP_ 154 9892 98.51 98.589
EPSP_15.12 98.78 98.44 98.455
EPSP. 524 97.22 96.97 97.033

Instance

Table 3: End-to-End neural network prediction results: performance of the proposed
NN across all problem instances for train, validation and test sets.

5.3. Performance Comparison

To evaluate performance across different system configurations, each problem in-
stance EPSx y 7 was solved using three approaches: traditional column generation
(CG), the proposed Surrogate-based CG, and the End-to-End CG. For all algorithms,
an optimality gap of 0.5% was required. For the ML-based approaches, which follow a
two-phase procedure, the first phase was terminated when an estimated optimality gap
of g1 = 0.25% was reached. Afterwards, traditional CG iterations were executed until
the final optimality gap of 0.5% was reached.

Table 4 reports the average computational time and the number of iterations per
instance for the three algorithms. For the two ML-based approaches, the iteration
count is reported as a tuple, with the number of ML-driven iterations and the number
of subsequent traditional CG iterations. Overall, the proposed Surrogate-based CG
achieves lower computational times than both traditional CG and the End-to-End CG

across all tested instances.

22

Surrogate End-to-End Traditional
Time Iters Time Iters Time Iters
EPSP_15_4 3% | 00:14:44 () 00:54:35 (12, 5) 01:08:42 10
EPSP_15_4 5% | 00:15:55 () 01:03:52 (12, 5) 01:12:41 10
EPSP_15_4 8% | 00:46:40 () 01:22:44 (4, 11) 01:15:05 11
EPSP_1512 | 3% | 02:12:04 (15, 1) 19:54:29 (6, 7) | 1-05:06:15 10

(14, 1)
(14, 3)
(57, 9)

Instance Rdem

EPSP 1512 | 5% | 03:42:34 15:59:12 (8,6) | 1-03:35:35 12
EPSP 1512 | 8% | 04:52:32 17:03:27 (4, 10) 20:18:49 12
EPSP_52 4 3% | 06:43:22 16:26:06 (50, 26) | 1-08:09:48 58
EPSP 52 4 5% | 10:18:46 (64, 9) | 1-06:33:34 (8, 56) | 2-04:00:18 52
EPSP 52 4 8% | 16:24:06 (51, 16) | 1-19:00:31 (4, 58) | 1-10:16:18 51

Table 4: Three column generation Algorithms results in terms of number of iteration
and time [dd-hh:mm:ss| for all instances and different demand growth rates.

The time required to predict the investment decision, either by solving the surrogate
model or by evaluating the End-to-End neural network, is several orders of magnitude
smaller than the time required to compute the true operational cost at each iteration.
Similarly, solving the subproblems with fixed investment decisions is significantly faster
than solving the complete subproblem. This behavior is illustrated in Figures 3(a)
and 3(b), which show the cumulative runtime of the surrogate-based and End-to-End
algorithms for two representative instances: EPSP_1512 with a demand growth of
5% and EPSP_52_4 with a demand growth of 3%. The total computational time is
decomposed into three main components: the time required to predict the investment
plan using the machine learning model, the time required to compute the operational

cost, and the time required to solve the original subproblems.

23

mmm Surrogate solving time W Operational cost computing time s Original subproblem solving time
Surrogate-based algorithm

12000
10000
—
——
I
—
—
I
|
2000 —
—_—
0 -
“\ >
&

@
3
3
3

Time (seconds)
3
8
8

2
S
3
3

v > > g © A \ > > > ¥ ~ ~ ~ ~ @
¢ ¢ ¢ ¢ ¢ ¢ < ¢ ¢ & & & & & & &
End-to-End algorithm
60000
3 o000 — I
c
o
9
§ 30000
3
E 20000
o .
0
N v < » o © A > J ’VQ ,;\, ,\:L O xb- >
& & & & & & & & & & & & & & &
Algorithm iterations
(a) Instance EPSP_15_12 with 5% demand growth.
Wl Surrogate solving time W Operational cost computing time s Original subproblem solving time
Surrogate-based algorithm
25000
20000 - L
3 |
T
£ 1500 =
o
] |
2 |
“E* 10000 |]
F —
—
5000 — —
0
f ~ > 2 2 7 k 3 s ¢ ¢ ¢ & & & & & & & &
> v o o L F EE ¢ ©
B
60000

Time (seconds)

|
- |
50000 m™
-
-—
-_—
40000 —— f—
L
-
-
30000 -_
-
-
-
E 20000 —
|
-_—
-—
10000 e
—
0 ——
o

FPIFIF SIS FLLEEOSEEEEQDNDDD D ND
P IO

Algorithm iterations

(b) Instance EPSP_52_4 with 3% demand growth.

Figure 3: Cumulative runtime decomposition of the surrogate-based and End-to-End
algorithms. FEach bar represents the cumulative time spent in different algorithmic
components, grouped by iterations.

24

Most of the computational effort of the algorithms is spent in solving traditional
CG iterations. Consequently, the proposed Surrogate-based CG achieves lower overall
computational time across all tested instances by requiring fewer traditional CG itera-
tions to reach the optimality threshold. For instances with 15 investment candidates,
the algorithm requires three or fewer traditional CG iterations, which yields a signifi-
cant reduction in runtime. For the 52-investment cases, a larger number of traditional
iterations is needed; nevertheless, the number remains substantially lower compared to
the traditional approach, resulting in large time savings.

For the End-to-End approach, computational time is reduced in most instances, but
the performance is worse compared to the Surrogate method. Furthermore, the End-
to-End method took more time compared to the traditional CG for EPSP_15_4 with
8% growth and EPSP_52_4 with 8% growth instances. Although the ML iterations can
help by decreasing the number of traditional iterations, the time savings are sometimes
small. The poorer performance is due to the larger number of traditional CG iterations
required to reach the optimality threshold, while only a few ML iterations are executed
in some cases.

The reason for the smaller number of ML iterations is an overestimation of the lower
bound in the End-to-End scheme. In this approach, the upper bound is computed by
solving the RMP with the true operational cost and thus remains valid; however, the
lower bound is estimated from the reduced costs associated with the subproblems solved
using the investment decision predicted by the End-to-End model. Because the End-
to-End model predicts investment decisions without explicitly accounting for the true
operational cost, the actual operational cost for a predicted decision can be much larger
than anticipated. This may lead to reduced costs that are higher (or even positive) than
expected, causing the estimated lower bound to exceed the upper bound and producing
an early termination of the ML iterations.

Therefore, the Surrogate-based algorithm constitutes a more effective strategy for
predicting negative reduced-cost columns to be added to the RMP. By directly modeling

the operational cost, the surrogate approach explicitly accounts for both the investment

25

and operational components of the reduced cost. This leads to a more accurate esti-
mation of the lower bound, preventing an early termination of ML iterations, yielding
to superior computational performance.

Figure 4 illustrates the evolution of the upper and lower bounds obtained by the
three column generation approaches—Surrogate-based, End-to-End, and Traditional—for
six representative instances: EPSPi5 43, EPSPi5 45, EPSPi5123, EPSPi5 125, EPSPss 4 3,
and FPS Psy 4 5. Dotted lines indicate the iterations performed using ML-enhanced sub-
problems in the Surrogate and End-to-End approaches, while solid lines correspond to
traditional CG iterations.

The surrogate-based approach produces estimated bounds that closely follow the
valid bounds, which explains why only a limited number of traditional CG iterations
are required after the ML phase. In contrast, the End-to-End approach frequently
overestimates the lower bound, leading to premature termination of the ML iterations.
As a consequence, additional traditional CG iterations are needed to recover valid
bounds and guarantee optimality. This behavior can be attributed to the fact that the
End-to-End model does not explicitly account for the operational cost when predicting
investment decisions. As a result, columns associated with high operational costs may
be generated, yielding reduced costs that are large or even positive. This overestimates
the lower bound and limits the effectiveness of the ML-enhanced phase.

Finally, Tables 5 and 6 summarize the computational time and the achieved opti-
mality gap after a single traditional CG iteration and after full convergence to a 0.5%
optimality threshold, for the Surrogate-based and End-to-End approaches respectively.
For the Surrogate-based method we observe that a single traditional iteration typically
yields a low relative optimality gap (often below 5%) within a short runtime, indicating
that surrogate iterations successfully generate high-quality columns before performing
traditional CG iterations. After full convergence, all instances reach the target gap of
0.5% with moderate additional time in the few cases that required more traditional
iterations. The End-to-End approach performed worse for all tested instances; after

one traditional iteration the reported gaps are generally larger and, in some instances,

26

—— Surrogate —— End-to-End —— Traditional
15-4 3% 15-4 5% 15-12 3%
175001 < W 20000 |
SO 1
150004 1 20000 K m=== 1
1 1 { e
" oy N — 15000 {~¢= ——
o 125001 |, v H oy i
1 = 150007 = 1
o 10000+ 11 " 1 - 1
° i o " 5 100001 |
C 75009 51 | 1es00y I € 100001 |, 20250 ¥ =]
3 1 (el 8 T “ ~ g [o 1 l
& soo0d i [] NS 2 i o0 g W \Q 2 1 15250 {
1 16400 - 1n 1 5000 4 1 }
n '?E 5000 1 19750 H / Y B i
25004 ¢ | 60 1 / 1 o A 1 [s dt
[TH I 1 1]] [A 1
01 " (I) 15‘00 30‘00 01 " é 15‘00 30‘00 Asloo 01 ! 0 30(‘)00 ao«;oo 90(‘)00
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 25000 50000 75000 100000
Time [s] Time [s] Time [s]
15-12 5% 52-4 3% 52-4 8%
25000 y 160000 1,
] [1
:‘, 60000 1 140000 1 1 1
20000 1 v 1 Sooo 1
>— 50000 - 1= 120000 7 ! 1
— 1 —_ [; — 1]
W H v ' wr | i
= 150001 ¥ = 40000 - 26000 | = 100000 40000 1
= - = . r . = I f ; v T
" H 0 o oo w00 20|) goeQQ 4 o 50000 100000 15000]
B 100004 " "2 30000 + 2 \
3 i i \\ 3 7 3 60000
ooooo _ 20000
m H L m ! 0 40000 17
50009y / aeseo Hn 10000 4 1 1
1] 1 20000 1
: woo {8 7/ ! 1
01 0 30000 60000 90000 01 01
0 25000 50000 75000 100000 0 30000 60000 90000 120000 0 40000 80000 120000 160000
Time [s] Time [s] Time [s]

Figure 4: Evolution of upper and lower bounds for six EPSP instances using the
Surrogate-based, End-to-End, and Traditional column generation approaches. Dot-
ted lines represent ML-enhanced iterations, while solid lines correspond to traditional
CG iterations.

considerably above acceptable levels.

Instance Ry After one traditional CG iteration After convergence
% | Time [hh:mm:ss]| Gap [%] Time [hh:mm:ss] Gap [%)]
EPSP_ 154 3% 00:14:44 0.186 00:14:44 0.186
EPSP_154 5% 00:15:55 0.227 00:15:55 0.227
EPSP_154 8% 00:32:18 2.025 00:46:40 0.086
EPSP_15.12 3% 02:12:04 0.161 02:12:04 0.161
EPSP_15.12 5% 03:42:34 0.182 03:42:34 0.182
EPSP_ 1512 8% 02:52:05 14.955 04:52:32 0.477
EPSP 524 3% 02:38:38 1.734 06:43:22 0.378
EPSP 524 5% 02:38:34 2.225 10:18:46 0.494
EPSP.52.4 8% 03:11:43 4.036 16:24:06 0.485

Table 5: Computational time and relative optimality gap obtained after a single tradi-
tional iteration of the Surrogate-based column generation algorithm and after conver-
gence to a 0.5% optimality gap.

27

Instance Ry After one traditional CG iteration After convergence
% | Time [hh:mm:ss]| Gap [%] Time [hh:mm:ss] Gap [%)]
EPSP_ 154 3% 00:28:23 3.047 00:54:35 0.272
EPSP_15_4 5% 00:31:38 3.122 01:03:52 0.423
EPSP_154 8% 00:16:38 70.957 01:22:44 0.316
EPSP_15.12 3% 02:41:53 5.428 19:54:29 0.254
EPSP_15.12 5% 04:01:22 5.685 15:59:12 0.194
EPSP_ 1512 8% 01:55:32 > 100% 17:03:27 0.401
EPSP 524 3% 03:28:01 10.112 06:43:22 0.298
EPSP.52.4 5% 00:32:45 > 100% 1-06:33:34 0.410
EPSP.524 8% 01:11:26 > 100% 1-19:00:31 0.489

Table 6: Computational time and relative optimality gap obtained after a single tra-
ditional iteration of the End-to-End-based column generation algorithm and after con-
vergence to a 0.5% optimality gap.

6. Conclusions

In this article, we studied ML-aided column generation methods for solving large-
scale capacity planning problems. We consider two ways of approximating or replacing
the pricing problem within the column generation framework: (i) a surrogate-based ap-
proach, where the operational component is replaced by a pre-trained multi-layer ReLLU
network embedded via its MILP encoding, and (ii) end-to-end approaches that learn
to directly propose new columns. To preserve performance guarantees, our method
follows a two-phase procedure: it first solves an approximate optimization problem to
quickly generate informative columns, and then switches to standard column generation
with the original pricing subproblems to recover valid bounds and compute the opti-
mality gap. Our findings indicate that incorporating an intermediate surrogate phase
is worthwhile: it improves computational efficiency, and the columns produced in the
approximate phase are sufficiently high-quality to significantly accelerate convergence

in the subsequent exact phase.

Acknowledgments

Support was given by Chile/MAGISTER/2025, Fondef 1D23110277. This research
was partially supported by the supercomputing infrastructure of the NLHPC (CCSS210001).

28

Appendix A. Generation Expansion Planning Problem

This section presents the mixed-integer optimization model used for long-term gener-
ation expansion planning while explicitly accounting for short-term operational schedul-
ing. The short-term operation is modeled using a standard mixed-integer unit commit-
ment formulation based from [1]. The model determines optimal investment decisions
in conventional and renewable generation units, together with hourly unit commitment
and dispatch decisions, over a multi-year planning horizon. Investment decisions affect
the available generation capacity in future years, whereas operational decisions ensure
feasibility with respect to power balance, ramping limits, and network constraints.

The multi-stage power system planning model is presented in (A.1). We consider
sets of candidate conventional and renewable generation units, denoted by G¢ and R?,
respectively, which can be installed over the planning years). To represent system
operation within each year, a set of representative days D is used, each associated with
a weight w,. Each representative day is modeled with an hourly resolution, with hours
indexed by the set 7 = {1,...,24}.

The objective function (A.la) minimizes the total system cost, which consists of
investment costs and operational costs. Investment costs, account for the installation
of new generation units in each year y. New investments, represented by the variables

inv

il and a discount rate

IG, 4, are annualized using the corresponding annuity cost c

var

g and start-up costs

R®*. Operational costs, include the variable generation costs c
cf of conventional generators in the set G. In addition, a load-shedding penalty ¢y
is introduced at each bus b € B to ensure feasibility when demand cannot be fully
supplied.

System operation is modeled at an hourly resolution through a set of operational

constraints. Constraint (A.1b) enforces power balance at each bus b and hour ¢, ensuring

that the demand d, ;; is met by the power output of conventional generators P, ,; and

PRES

it » net power flows into and out of the bus through transmission

renewable generators

lines in the sets £;" and £*, and load shedding LS, ;. Constraint (A.lc) limits the

29

power flow transmitted over each transmission line [€ £ according to its capacity 7%[.

The operation of conventional generators is modeled through constraints (A.1d)—
(A.li). Binary variables w, 44 € {0,1} represent the on/off commitment status of
each generator at each hour. Variables X;?gt and ngtF indicate generator start-up
and shutdown events, respectively, and are linked to the commitment variables through
the unit commitment state equation (A.le). Constraint (A.1d) enforces the minimum
and maximum power output limits of each conventional generator, given by P, and
p,- Constraints (A.1f) and (A.1g) model ramping limitations by restricting changes in
power output between consecutive hours according to ramp-up (Rup,) and ramp-down
(Rdng) limits. Finally, constraints (A.1h) and (A.1li) impose minimum up-time 79N

and minimum down-time 7OFF

, requirements.

Constraint (A.11) restricts the commitment of conventional generators to those units
that have been previously built. Renewable generation availability is modeled by con-
straint (A.1m), which limits the renewable power output using the availability factor
a1, the installed renewable capacity p,, and the number of renewable units that have
been built. Finally, constraints (A.1n)—(A.1r) define the domains of the decision vari-
ables, specifying non-negativity constraints for continuous variables and binary restric-

tions for commitment and investment variables.

30

min Z (1+Rcost y 1)[Z ZCIHVIGCOHV+ Z ZcvaGrenw

yey

gegconvl 1 Tegrenwl 1

DHNPICTIRE SR

EDY chLb,y,d,t>] (A.1a)

deD teT \geg beB
Z 9,y,d,t + Z E,y,d,t - Z E,y,d,t = Db,y,d,t - LLb,y,d,ta V?J, d7 bat (Alb)
9€G leci lecyut
—F < Flya: < F, Yy, d, 1t (A.1c)
Ug,y,d,t ' Bg S Pg,y,d,t S Fg ' Ug,y,d,tu Vy, d7 g, 13 (A1d>
Ugyat — Ugyat—1 = Xy, gl;fdt X?;Sm Yy, d, g,t (A.le)
Pg,y,d,t - Pg,y,d,tfl S Ug,y,d,t R + X;)}jdt : Eg, Vy, d, g,t (Alf)
Pg,y,d,t—l - Pg,y,d,t S Ug,y,d,t : Fg + XOyFZt Fga Vy7 d7 g, 13 (Alg)
t
Ugyar > Z X;);Td v, vy, d, gt (A.1h)
t
1 —=Ugyar = Z X;?;gtu Yy,d, g,t (A.1i)

t=t—7PFF
Yy
E : conv
Ug7y7d7t S IGg,l Y
=1
Prydt < Qrdt - Pr)

Prydt<ardt P ZI oy

=1
Ug,y,dt’X;)ganOFSt € {0 1},
Czpd’ 1ynv >0,
Pyyat 20,
LLyya: >0,

1GE™ € {0, 1},
1GI™ ¢ {0,1},

31

Vy,d, g € G, H(A.L))

new

Yy, d,r,t (A.1k)

Vy,d,r € GI™ t(A.11)

new

Yy, d, g,t (A.1m)
Yy, d (A.1n)
Yy, d, g,t (A.10)
Vy,d, bt (A.1p)
VY,9 € Grew (Alq)
Vy,g € Gimv - (A.lr)

Appendix B. Hyperparameter Search

To perform the hyperparameter search, a grid search strategy was adopted. For both
ML-based approaches, three neural network architectures were evaluated, represented
by the lists [64], [64, 32], and [64, 32, 16], which indicate the number of units in each
hidden layer. In addition, five learning rates were tested: 1074, 5x 1074, 1073, 5 x 1073,
and 1072, together with three dropout probabilities: 0, 0.05, and 0.1.

The hyperparameter search was conducted sequentially. First, the learning rate was
selected while keeping the remaining hyperparameters fixed. Then, the network archi-
tecture was varied, and finally, the dropout probability was tuned. Tables B.7, B.8, and
B.9 report the results of the hyperparameter search for the surrogate-based approach
across all instances. Similarly, Tables B.10, B.11, and B.12 present the corresponding

results for the End-to-End approach.

Instance Architecture Learning Rate Dropout MAE

EPSP_154 [64, 32] le-4 0 180.777
EPSP_154 [64, 32] Se-4 0 33.747
EPSP_154 [64, 32] le-3 0 17.115
EPSP_154 [64, 32] 5e-3 0 11.715
EPSP_154 [64, 32] le-2 0 14.168
EPSP_15.4 [64] 5e-3 0 14.428
EPSP_154 [64, 32, 16] 5e-3 0 12.610
EPSP_154 [64, 32] 5e-3 0.05 82.451
EPSP_154 [64, 32] 5e-3 0.1 105.983

Table B.7: Hyperparameter search results for the surrogate-based approach on instance
EPSP_15_4. The table reports the mean absolute error (MAE) obtained for different
combinations of network architectures, learning rates, and dropout probabilities.

32

Instance Architecture Learning Rate Dropout MAE

EPSP 1512 [64, 32] le-d 0 157.691
EPSP_15.12 [64, 32] Se-4 0 67.651
EPSP_15.12 [64, 32] le-3 0 18.318
EPSP_15.12 [64, 32] 5e-3 0 16.935
EPSP_15.12 [64, 32] le-2 0 12.897
EPSP_15_12 [64] le-2 0 21.368
EPSP_15.12 [64, 32, 16] le-2 0 16.432
EPSP_15.12 [64, 32] le-2 005 75.224
EPSP_15.12 [64, 32] le-2 01 103.930

Table B.8: Hyperparameter search results for the surrogate-based approach on instance
EPSP_15_12. The table reports the mean absolute error (MAE) obtained for different
combinations of network architectures, learning rates, and dropout probabilities.

Instance Architecture Learning Rate Dropout MAE

EPSP 524 [64, 32] le-4 0 788.352
EPSP.52.4 [64, 32] Be-4 0 658.064
EPSP.52.4 [64, 32 le-3 0 348.139
EPSP.52.4 [64, 32] 5e-3 0 133.617
EPSP.52.4 [64, 32] le-2 0 160.351
EPSP_52.4 [64] 5e-3 0 494.872
EPSP_52.4 [64, 32, 16] 5e-3 0 151.352
EPSP.52.4 [64, 32 5e-3 0.05 248.921
EPSP.52.4 [64, 32] 5e-3 01 309.949

Table B.9: Hyperparameter search results for the surrogate-based approach on instance
EPSP_52_4. The table reports the mean absolute error (MAE) obtained for different
combinations of network architectures, learning rates, and dropout probabilities.

33

Instance Architecture Learning Rate Dropout BCE
EPSP_154 [64, 32] le-4 0 0.0729
EPSP_154 [64, 32] 5e-4 0 0.0620
EPSP_154 [64, 32] le-3 0 0.0557
EPSP_15 4 (64, 32] 5e-3 0 0.0754
EPSP_154 [64, 32] le-2 0 0.1258
EPSP_15 4 [64] le-3 0 0.0585
EPSP_154 [64, 32, 16] le-3 0 0.0534
EPSP_15.4 [64, 32, 16] le-3 0.05 0.0872
EPSP_154 [64, 32, 16] le-3 0.1 0.1079

Table B.10: Hyperparameter search results for the End-to-End-based approach on in-
stance EPSP_15_4. The table reports the Binary Cross-Entropy with Logits loss (BCE-
with-logits) obtained for different combinations of network architectures, learning rates,
and dropout probabilities.

Instance Architecture Learning Rate Dropout BCE
EPSP_154 [64, 32] le-4 0 0.0624
EPSP_15 4 [64, 32] 5e-4 0 0.0482
EPSP_154 [64, 32] le-3 0 0.0436
EPSP_154 [64, 32] 5e-3 0 0.0653
EPSP_154 [64, 32] le-2 0 0.1090
EPSP_15 4 [64] le-3 0 0.0474
EPSP_154 [64, 32, 16] le-3 0 0.0459
EPSP_15 4 (64, 32] le-3 0.05 0.0531
EPSP_154 [64, 32] le-3 0.1 0.0649

Table B.11: Hyperparameter search results for the End-to-End-based approach on in-
stance EPSP_15_12. The table reports the Binary Cross-Entropy with Logits loss (BCE-
with-logits) obtained for different combinations of network architectures, learning rates,
and dropout probabilities.

34

Instance Architecture Learning Rate Dropout BCE

EPSP_154 [64, 32] le-d 0 0.1144
EPSP_154 [64, 32] Se-4 0 0.1386
EPSP_154 [64, 32] le-3 0 0.1712
EPSP_154 [64, 32] 5e-3 0 0.2549
EPSP_154 [64, 32] le-2 0 0.2698
EPSP_15.4 [64] le-4 0 0.0916
EPSP_154 [64, 32, 16] le-4 0 0.1729
EPSP_15.4 [64] le-4 0.05 0.1450
EPSP_15.4 [64] le-4 01 0.1615

Table B.12: Hyperparameter search results for the End-to-End-based approach on in-
stance EPSP_52_4. The table reports the Binary Cross-Entropy with Logits loss (BCE-
with-logits) obtained for different combinations of network architectures, learning rates,
and dropout probabilities.

References

[1]

A. Flores-Quiroz, K. Strunz, A distributed computing framework for multi-stage
stochastic planning of renewable power systems with energy storage as flexibility

option, Applied Energy 291 (2021) 116736.

J. Ma, V. Silva, R. Belhomme, D. S. Kirschen, L. F. Ochoa, Evaluating and Plan-
ning Flexibility in Sustainable Power Systems, IEEE Transactions on Sustainable
Energy 4 (1) (2013) 200-209. doi:10.1109/TSTE.2012.2212471.

URL http://ieeexplore.ieee.org/document/6313967/

A. F. Abdin, E. Zio, An integrated framework for operational flexibility assessment
in multi-period power system planning with renewable energy production, Applied
Energy 222 (2018) 898-914. doi:10.1016/j.apenergy.2018.04.009.

URL https://linkinghub.elsevier.com/retrieve/pii/S0306261918305518

Z. Tian, X. Li, J. Niu, R. Zhou, F. Li, Enhancing operation flexibility of dis-
tributed energy systems: A flexible multi-objective optimization planning method
considering long-term and temporary objectives, Energy 288 (2024) 129612.
do0i:10.1016/j.energy.2023.129612.

URL https://linkinghub.elsevier.com/retrieve/pii/S0360544223030062

35

[5]

[11]

[12]

T. Rathi, B. P. Riley, A. Flores-Quiroz, Q. Zhang, Column generation for mul-
tistage stochastic mixed-integer nonlinear programs with discrete state variables,
Journal of Global Optimization (2025). doi:10.1007/s10898-025-01480-x.

URL https://doi.org/10.1007/s10898-025-01480-x

A. Flores-Quiroz, J. M. Pinto, Q. Zhang, A column generation approach to mul-
tiscale capacity planning for power-intensive process networks, Optimization and
Engineering 20 (4) (2019) 1001-1027. doi:10.1007/s11081-019-09435-4.

URL https://doi.org/10.1007/s11081-019-09435-4

K. J. Singh, A. B. Philpott, R. K. Wood, Dantzig-wolfe decomposition for solv-
ing multistage stochastic capacity-planning problems, Operations Research 57 (5)

(2009) 1271-1286.

C. Saldarriaga-Cortés, H. Salazar, R. Moreno, G. Jiménez-Estévez, Stochastic
planning of electricity and gas networks: An asynchronous column generation ap-

proach, Applied energy 233 (2019) 1065-1077.

P. Apablaza, S. Piischel-Lgvengreen, R. Moreno, S. Mhanna, P. Mancarella, As-
sessing the impact of der on the expansion of low-carbon power systems under deep

uncertainty, Electric Power Systems Research 235 (2024) 110824.

M. E. Liibbecke, J. Desrosiers, Selected Topics in Column Generation, Operations
Research 53 (6) (2005) 1007-1023. doi:10.1287 /opre.1050.0234.
URL https://pubsonline.informs.org/doi/10.1287/opre.1050.0234

A. Hijazi, O. Ozaltin, R. Uzsoy, All you need is an improving column: Enhancing
column generation for parallel machine scheduling via transformers, version Num-

ber: 1. doi:10.48550/ARXIV.2410.15601.
URL https://arxiv.org/abs/2410.15601

Y. Liu, R. Sioshansi, A. J. Conejo, Multistage stochastic investment planning

36

[13]

[15]

[16]

[17]

[18]

[19]

[20]

with multiscale representation of uncertainties and decisions, IEEE Transactions

on Power Systems 33 (1) (2017) 781-791.

F. D. Munoz, J.-P. Watson, A scalable solution framework for stochastic trans-

mission and generation planning problems, Computational Management Science

12 (4) (2015) 491-518.

P. Falugi, I. Konstantelos, G. Strbac, Planning with multiple transmission and
storage investment options under uncertainty: A nested decomposition approach,

IEEE Transactions on Power Systems 33 (4) (2017) 3559-3572.

C. Li, A. J. Conejo, P. Liu, B. P. Omell, J. D. Siirola, I. E. Grossmann, Mixed-
integer linear programming models and algorithms for generation and transmission
expansion planning of power systems, European Journal of Operational Research

297 (3) (2022) 1071-1082.

C. L. Lara, J. D. Siirola, I. E. Grossmann, Electric power infrastructure plan-
ning under uncertainty: stochastic dual dynamic integer programming (sddip) and

parallelization scheme, Optimization and Engineering 21 (4) (2020) 1243-1281.

J. Zou, S. Ahmed, X. A. Sun, Stochastic dual dynamic integer programming,
Mathematical Programming 175 (1) (2019) 461-502.

C. Chi, A. Aboussalah, E. Khalil, J. Wang, Z. Sherkat-Masoumi, A deep reinforce-
ment learning framework for column generation, Advances in Neural Information

Processing Systems 35 (2022) 9633-9644.

Y. Shen, Y. Sun, X. Li, A. Eberhard, A. Ernst, Enhancing column generation by
a machine-learning-based pricing heuristic for graph coloring, in: Proceedings of

the AAAI conference on artificial intelligence, Vol. 36, 2022, pp. 9926-9934.

P. Sarkar, V. B. Khanapuri, M. K. Tiwari, Accelerating the stabilized column
generation using machine learning, Computers & Industrial Engineering 200 (2025)

110837.

37

[21]

[22]

23]

[24]

[25]

[27]

28]

S. Kraul, M. Seizinger, J. O. Brunner, Machine learning—supported prediction
of dual variables for the cutting stock problem with an application in stabilized

column generation, INFORMS Journal on Computing 35 (3) (2023) 692-7009.

N. Sugishita, A. Grothey, K. McKinnon, Use of machine learning models to warm-

start column generation for unit commitment, INFORMS Journal on Computing

36 (4) (2024) 1129-1146.

F. Quesnel, A. Wu, G. Desaulniers, F. Soumis, Deep-learning-based partial pricing
in a branch-and-price algorithm for personalized crew rostering, Computers &

Operations Research 138 (2022) 105554.

J. Gerbaux, G. Desaulniers, Q. Cappart, A machine-learning-based column gener-

ation heuristic for electric bus scheduling, Computers & Operations Research 173

(2025) 106848.

K. Xu, L. Shen, L. Liu, Enhancing column generation by reinforcement learning-
based hyper-heuristic for vehicle routing and scheduling problems, Computers &

Industrial Engineering (2025) 111138.

F. Vanderbeck, Implementing mixed integer column generation, in: G. Desaulniers,
J. Desrosiers, M. M. Solomon (Eds.), Column Generation, Springer-Verlag, pp.
331-358. doi:10.1007/0-387-25486-2_12.

URL http://link.springer.com/10.1007/0-387-25486-2_12

J. Dumouchelle, R. Patel, E. B. Khalil, M. Bodur, Neur2SP: Neural
Two-Stage Stochastic ProgrammingArXiv:2205.12006 [cs, math] (Oct. 2022).
doi:10.48550/arXiv.2205.12006.

URL http://arxiv.org/abs/2205.12006

M. Fischetti, J. Jo, Deep neural networks and mixed integer linear optimization,
Constraints 23 (3) (2018) 296-309. doi:10.1007/s10601-018-9285-6.
URL https://doi.org/10.1007/s10601-018-9285-6

38

[29]

[32]

[33]

M. L. Bynum, G. A. Hackebeil, W. E. Hart, C. D. Laird, B. L. Nicholson, J. D.
Siirola, J.-P. Watson, D. L. Woodruff, Pyomo—optimization modeling in python,
3rd Edition, Vol. 67, Springer Science & Business Media, 2021.

Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual (2023).
URL https://www.gurobi.com

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An
imperative style, high-performance deep learning library, in: Advances in Neural

Information Processing Systems 32, Curran Associates, Inc., 2019, pp. 8024-8035.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learn-

ing in Python, Journal of Machine Learning Research 12 (2011) 2825-2830.

C. E. Nacional, Coordinador eléctrico nacional (cen), official electricity system data
for the Chilean power system (2025).
URL https://www.coordinador.cl/

I. J. Scott, P. M. Carvalho, A. Botterud, C. A. Silva, Clustering representative
days for power systems generation expansion planning: Capturing the effects
of variable renewables and energy storage, Applied Energy 253 (2019) 113603.
d0i:10.1016/j.apenergy.2019.113603.

URL https://linkinghub.elsevier.com/retrieve/pii/S0306261919312772

39

