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aDepartamento de Ingenieŕıa Eléctrica, Universidad de Chile, Santiago, Chile
bInstitute of Engineering Sciences, Universidad de O’Higgins, Rancagua, Chile

cInstituto Sistemas Complejos de Ingenieŕıa, Santiago, Chile
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Abstract

Capacity Planning problems are a class of optimization problems used in diverse in-

dustries to improve resource allocation and make investment decisions. Solving real-

world instances of these problems typically requires significant computational effort. To

tackle this, we propose machine-learning-aided column generation methods for solving

large-scale capacity planning problems. Our goal is to accelerate column generation

by approximating the pricing subproblems while preserving the ability to certify so-

lution quality. We investigate two strategies embedded within the column generation

framework: (i) a surrogate-based pricing approach that replaces the operational com-

ponent of the pricing problem with a pre-trained multi-layer neural network with ReLU

activations, incorporated through a mixed-integer linear (MILP) encoding of the net-

work; and (ii) end-to-end approaches that learn to directly propose new columns. To

retain performance guarantees, we adopt a two-phase procedure: an initial surrogate

phase rapidly generates valid columns and approximate bounds, followed by a stan-

dard column generation phase that solves the original pricing subproblems to recover

valid bounds and compute the optimality gap. Computational results show that the

intermediate surrogate phase is beneficial in practice: it yields substantial runtime im-

provements, and the columns produced during the approximate phase are of sufficient
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quality to significantly speed up convergence in the subsequent exact phase.

Keywords: Column Generation, Machine Learning, Capacity Planning

1. Introduction

Capacity planning problems require making strategic decisions over long-term hori-

zons—such as investments in new facilities, capacity upgrades, or storage assets—while

simultaneously accounting for short-term operational constraints needed to satisfy de-

mand that varies over time. A fundamental challenge in these problems is the presence

of multiple temporal scales: long-term investment decisions, taken at coarse planning

stages, must be consistently coordinated with fine-grained operational decisions. This

interaction often leads to large-scale optimization models whose size and complexity

grow rapidly with the temporal resolution of operational decisions.

A representative example arises in power system capacity expansion planning, where

investment decisions must be integrated with short-term operational requirements such

as unit commitment and dispatch over planning horizons that may span several decades

[1, 2, 3, 4, 5, 6]. Despite this intrinsic complexity, capacity planning problems ex-

hibit a structure that naturally lends itself to decomposition: while operational de-

cisions and constraints are numerous, the constraints linking decisions across plan-

ning stages—typically associated with investment—are comparatively few. This prop-

erty has motivated the use of decomposition techniques such as Progressive Hedging,

Nested Benders decomposition, Stochastic Dual Dynamic Integer Programming, and

Dantzig–Wolfe (DW) decomposition.

Within this context, column generation (CG) has emerged as a powerful approach

for solving large-scale capacity planning problems [7, 8, 9]. However, in many appli-

cations, the pricing subproblems are computationally intensive, as they involve solving

detailed operational models. Since CG does not require pricing subproblems to be

solved to optimality at every iteration [10], reducing their computational burden can

yield substantial performance gains. This observation motivates the use of machine

learning models as a means to generate high-quality candidate columns at a lower
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computational cost.

In this work, we investigate how neural networks can be leveraged to accelerate

column generation for capacity expansion problems with challenging operational sub-

problems. We propose two ML-aided CG approaches. The first, replaces the pricing

subproblem with a surrogate optimization model that approximates the operational

component while preserving the structure of the subproblems and retaining perfom-

rance guarantees. The second, inspired by [11], adopts an end-to-end strategy in which

a neural network directly predicts candidate columns and their reduced costs. We eval-

uate both approaches in a real-world case study on power system capacity expansion,

and provide a comparative analysis of their computational performance, strengths, and

limitations.

The contributions of this paper are:

• Proposal of a surrogate model of the pricing subproblem using a neural network

to represent the operational part of the subproblem, exploiting the problem struc-

ture. This surrogate enables to generate valid columns with lower computational

effort.

• Integration of the approximate solutions to the overall CG algorithm to maintain

the validity of columns and bound, and achieve optimality.

• Inspired by the work of [11], we adapt, study, and compare an end-to-end Neural

network approach that directly learns the solution of the pricing subproblem.

• In depth analysis of advantages and disadvantages of both methods.

2. Literature Review

Solving multi-stage capacity planning problems remains computationally demanding

and typically requires tailored solution methods. A substantial body of literature has

addressed two-stage and multi-stage capacity planning problems using decomposition-

based approaches, including Progressive Hedging [12, 13], Nested Benders Decomposi-
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tion [14, 15], Stochastic Dual Dynamic Integer Programming [16, 17], and Dantzig–Wolfe

decomposition [9, 1, 7, 8]. These methods exploit the weak coupling between long-term

investment decisions and short-term operational decisions to improve scalability.

Within this class of methods, column generation (CG) has shown strong compu-

tational performance for large-scale power system capacity planning problems, partic-

ularly when pricing subproblems involve integer decisions [1]. Nevertheless, in many

capacity planning applications, pricing subproblems remain computationally expensive

and often dominate the overall solution time. Importantly, CG does not require pricing

subproblems to be solved to optimality at every iteration; any column with sufficiently

negative reduced cost can improve the master problem. This observation opens the

door to approximate solution strategies, motivating the use of machine learning tech-

niques to reduce the computational burden of pricing while still generating high-quality

columns.

An emerging line of research in operations research explores the integration of ma-

chine learning within decomposition algorithms, including column generation. One

stream of work focuses on replacing the pricing subproblem with a learned model that

directly predicts candidate columns. For instance, [18] employs reinforcement learning

to learn a policy that outputs new columns for the cutting stock and vehicle routing

problems, bypassing the explicit solution of the pricing problem. Similarly, [11] trains

a transformer-based pointer network to generate job sequences with negative reduced

cost for parallel machine scheduling, effectively approximating the pricing subproblem.

A second line of research aims at accelerating CG by predicting dual variables or

improving algorithm initialization. In [19], [20], and [21], machine learning models

are used to estimate dual prices to improve convergence and reduce oscillations in

graph coloring, workforce scheduling, and cutting stock problems, respectively. Related

approaches focus on warm-starting CG, as in [22], where ML models predict initial

dual values for unit commitment problems. A third stream of work leverages ML to

reduce the size or complexity of the pricing problem itself. Examples include [23] and

[24], which use deep learning and graph neural networks to reduce pricing problem
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size in personalized crew rostering and electric bus scheduling, respectively. In vehicle

routing and bus driver scheduling, [25] employs reinforcement learning to select among

pricing heuristics that generate reduced networks solved via optimization. Collectively,

these studies demonstrate that ML-enhanced CG can achieve substantial reductions in

computational time while maintaining solution quality.

Despite the growing body of work on integrating machine learning into column

generation, important gaps remain when addressing large scale multi stage capacity

planning problems with complex operational subproblems. Most existing approaches

focus on combinatorial scheduling or routing settings, or rely on end to end predictions

of pricing solutions without explicitly preserving the operational structure of the prob-

lem. In capacity expansion settings such as power system planning, pricing subproblems

typically involve detailed operational models with network constraints, temporal cou-

pling and integer decisions, making them particularly expensive to solve and difficult

to approximate reliably. Moreover, only a limited number of studies address how to

integrate machine learning into column generation while preserving valid bounds and

convergence guarantees.

This work addresses these limitations by proposing two machine learning aided col-

umn generation approaches specifically tailored to multi stage capacity planning prob-

lems with complex operational subproblems. The first approach introduces a surrogate

based pricing formulation in which the operational component of the pricing problem

is approximated using a neural network, while the investment structure is kept explicit.

This enables the generation of valid columns and the computation of certified opti-

mality gaps through a two phase algorithm. The second approach adapts an end to

end learning framework to directly predict pricing solutions for capacity planning prob-

lems, serving as a benchmark to evaluate the trade off between computational speed

and solution guarantees. A detailed computational study on a realistic power system

expansion problem is used to assess the performance, advantages and limitations of

both approaches.
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3. Column Generation for Solving Capacity Planning Problems

3.1. Multi-Stage Capacity Expansion Planning Problem

We consider a deterministic multi-stage capacity expansion problem defined over a

discrete planning horizon. The problem consists of determining when and how much

capacity to invest in, as well as how to operate the system over time to satisfy opera-

tional constraints and minimize total cost. We follow the general multi-stage capacity

planning formulation proposed in [7] and focus on its deterministic counterpart.

The planning horizon is partitioned into a finite set of stages S. For each stage

s ∈ S, the model includes investment decisions and operational decisions. Investment

decisions, represented by integer variables xs, determine the set (or number) of capacity

units added at stage s. The cumulative units available at stage s, accounting for all

investments up to and including stage s, are represented by zs. Given zs, operational

decisions ys specify the system operation so as to satisfy system requirements and

operational constraints.

Problem (1) defines the deterministic multi-stage capacity expansion problem. The

objective function (1a) minimizes the total discounted cost over the planning horizon,

including both investment and operational costs. In (1a), the vector cs denotes the

discounted investment cost at stage s, whereas qs denotes the discounted operational

cost at stage s.

Constraint (1b) couples decisions across stages by linking the cumulative number

of available units zs to the initial units v̄ and the investments made up to stage s.

Constraint (1c) restricts operational decisions according to the number of units available

at stage s, where matrices As and V s relate operational decisions to unit availability.

Constraint (1d) bounds the cumulative number of installed units at each stage, reflecting

technological or policy constraints on capacity expansion. Constraint (1e) represents

the set of operational constraints involving only the operational variables ys. Finally,

constraint (1f) enforces the integrality of the investment decisions.
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min
∑
s∈S

(
c⊤s xs + q⊤

s ys

)
(1a)

s.t.: zs≤ v̄ +
∑s

i=0
xi, ∀ s ∈ S, (1b)

Asys≤ V szs, ∀ s ∈ S, (1c)

zs≤ z̄s, ∀ s ∈ S, (1d)

ys∈ Ys, ∀ s ∈ S, (1e)

xs∈ Z+, ∀ s ∈ S. (1f)

3.2. Dantzig-Wolfe reformulation of the Capacity Expansion Planning Problem

Problem (1) is decomposed using the Dantzig–Wolfe decomposition, following the

discretization approach proposed in [7]. For each stage s ∈ S, the set of feasible vectors

of cumulative installed units zs is defined as

Ψs =
{
zs ∈ Z+

∣∣ ∃ys ∈ Ys such that Asys ≤ V szs, zs ≤ z̄s

}
.

Since investment decisions are bounded and integer, Ψs is finite and can be enumerated

as Ψs = {ẑk
s}k∈Ks , where Ks is cardinality of Ψs. Any feasible vector zs ∈ Ψs is therefore

represented as

zs =
∑
k∈Ks

λk
s ẑ

k
s , (2a)∑

k∈Ks

λk
s = 1, λk

s ∈ {0, 1}. (2b)

Moreover, for each cumulative investment vector ẑk
s , there exists at least one optimal

operational plan ŷk
s . Substituting zs and ys in (1) using (2) yields the Dantzig–Wolfe
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master problem (MP) in (3).

min
∑
s∈S

(
c⊤s xs +

∑
k∈Ks

q⊤
s ŷ

k
sλ

k
s

)
(3a)

s.t. :
∑
k∈Ks

ẑk
sλ

k
s ≤

s∑
i=0

xi, ∀ s ∈ S, [πs] (3b)∑
k∈Ks

λk
s = 1, ∀ s ∈ S, [µs] (3c)

xs ≤ bs, ∀ s ∈ S, (3d)

xs ∈ Z+, ∀ s ∈ S, (3e)

λk
s ∈ {0, 1}, ∀ s ∈ S ∀ k ∈ Ks. (3f)

Problem (3) is solved using a column-generation (CG) algorithm [26], as outlined in

Algorithm 1. The procedure starts by initializing a Restricted Master Problem (RMP)

with the same structure as the master problem, but restricted to a limited subset of

columns (ẑsk, ŷsk). After solving the linear relaxation of the RMP, the dual variables

(πs, µs) associated with constraints (3b) and (3c) are obtained. These dual variables

are then used to identify improving columns by solving the pricing subproblem (4) for

each stage s ∈ S.

sp(s): ZSP
s = min q⊤

s ys − zsπs − µs (4a)

s.t.: Asys ≤ V szs, , (4b)

ys ∈ Ys, (4c)

zs ≤ z̄s, zs ∈ Z+. (4d)

The subproblem is a one-stage investment and operation problem, where installed

units zs for stage s are determined. The objective of subproblem (4) is to find the

column with most negative reduced cost, as described in (4a). Constraints (4b) and (4c)

correspond to the operational constraints of stage s of the capacity planning problem,
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and constraint (4d) impose the maximum number of units available for investment.

At each iteration of the algorithm, upper (UB) and lower (LB) bounds on the

optimal value of the linear relaxation of problem (3) are computed. The upper bound is

given by the optimal objective value of the current Restricted Master Problem (RMP),

namely ZMP
LP . The lower bound is obtained as ZMP

LP +
∑

s∈S Z
SP
s . Based on these

bounds, the relative optimality gap for the linear relaxation is computed as UB−LB
LB

. If

this gap falls below a predefined tolerance, the integer master problem is subsequently

solved to compute a feasible solution, together with the corresponding MIP optimality

gap, and the algorithm terminates.

Algorithm 1 Column generation algorithm

1: Set UB =∞, LB = −∞, Initialize Master Problem (3) with initial set of columns
2: Solve the linear relaxation of Master Problem (3) and objective value ZMP

LP and
prices (π,µ)

3: Update upper bound:
UB ← ZMP

LP

4: for m ∈M do
5: Solve subproblem (4) with dual prices (πm, µm), and collect objective value

ZSP
m and column (ẑm, ŷm)

6: Update lower bound:

LB ← ZMP
LP +

∑
s∈S

ZSP
s

7: Compute LP gap:
δLP ← (UB − LB)/LB)

8: if δLP ≤ ϵLP then
9: Solve Integer Master Problem (3)
10: Collect objective value ZMP

IP and compute MIP gap:

δIP ← (ZMP
IP − LB)/(LB)

11: else
12: go to 2

Note that, in capacity planning problems, the pricing subproblem itself can be a

difficult MILP and is often the most computationally intensive component of the algo-

rithm [1]. Therefore, reducing the time required to solve these subproblems can yield
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a significant reduction in overall runtime of the algorithm. In the following section, we

aim to overcome this computational burden by the approximation of the subproblems.

4. ML-enhanced heuristics for solving the pricing subproblem

This section presents an ML-enhanced column generation framework designed to

reduce the computational burden of pricing subproblems while maintaining performance

guarantees. The key observation is that, in column generation, it suffices to produce

columns with negative reduced cost; consequently, the pricing subproblems need not be

solved to optimality at every iteration. This insight enables the use of approximate, fast-

to-evaluate pricing routines, which can substantially accelerate the overall algorithm.

Building on this idea, we investigate two ways to approximate the (computationally

demanding) pricing subproblem using pre-trained neural networks. First, we propose a

surrogate-based approach for column generation, where we replace the operational com-

ponent of each pricing subproblem with a neural-network representation that estimates

the operational cost as a function of the investment decisions and the problem struc-

ture. We then embed this estimator within an optimization-based surrogate problem.

This constitutes the main contribution of our work and is detailed in Section 4.1. Sec-

ond, Section 4.2 presents an alternative end-to-end strategy, inspired by [11], in which

a neural network is trained to directly predict approximate solutions to the pricing

subproblems.

4.1. Proposed Surrogate-based Column Generation

This section presents the proposed Surrogate-based column generation framework.

Specifically, the operational component of the pricing subproblem is approximated using

a neural network trained to predict operational costs as a function of installed capac-

ity assets, which can then be embedded within the pricing problem. This surrogate-

based approach significantly reduces computational time while preserving the quality of

the generated columns. Importantly, the algorithm maintains performance guarantees

through a two-phase procedure. In the first phase, surrogate-based pricing problems
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are used to efficiently generate valid columns and compute approximate bounds. In the

second phase, iterations with the original pricing subproblems are performed to recover

valid lower bounds and compute a certified optimality gap. Section 4.1.1 describes

the neural-network-based approximation of the pricing subproblem, while Section 4.1.2

explains how the surrogate model is integrated into the column generation algorithm

following this two-phase approach.

4.1.1. A Surrogate Optimization Model for the Pricing Subproblem

We construct the surrogate pricing problem by approximating only the operational

component of (4) (associated with ys), while keeping the investment variables (xs, zs)

and the constraint set unchanged. We learn a function that maps investment decisions

to the corresponding optimal operational cost and embed it into the optimization model.

Following [27], this function is represented by a pre-trained multi-layer ReLU network,

trained to predict the optimal operational cost for a given investment vector. Using the

mixed-integer linear encoding of ReLU networks from [28], we integrate the network

into the pricing problem, obtaining a surrogate model that retains the original structure

but is significantly cheaper to solve.

For each stage s, we define the operational cost ϕs(zs,θs) as the optimal objective

value of the single-stage operational problem in (5), given the cumulative installed-

capacity vector zs and an instance-specific vector of correlated parameters θs. The

parameters in θs capture the information required to specify a given operational in-

stance—namely, coefficients appearing in the objective function and constraints, as

well as additional contextual features that may be useful for training. Accordingly,

for a realization θs, we denote by qs(θs), As(θs), and Υs, d(θs) the instantiated co-

efficients of the model. We then train a neural network to approximate the mapping

zs 7→ ϕs(zs,θs), yielding a predictor ϕ̂s(zs,θs), which is used to replace the operational

component of the pricing subproblem. The network architecture, for n investment vari-

ables and n′ parameters, is illustrated in Figure 1(a).
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(a) Surrogate model Neural Network (b) End-to-End Neural Network

Figure 1: Two neural network structures for both approaches.

ϕs(zs) = min qs(θ)
⊤ys (5a)

s.t.: As(θ)ys ≤ v̄ + V szs (5b)

ys,d ∈ Υs,d(θ) (5c)

Once trained, the network is incorporated into the pricing subproblem using the

MILP encoding of ReLU networks from [28]. This allows us to replace the operational

block by the network while keeping the investment block intact: zs and constraints (6i)

are preserved, whereas ys, constraints (4b)–(4c), and the operational cost are replaced

by the network output.

For a neural network withM layers, the MILP encoding introduces auxiliary con-

tinuous variables ĥm
j and ȟm

j , along with binary variables amj , to model the ReLU

activations through a mixed-integer formulation. Here, the parameters w and b of the

neural network are obtained after training, so in the MILP representation, they are

fixed. Constraints (6b)–(6h) encode the network and map the input vector (s, zs,θ) to
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an estimate of the operational cost, where [s, zs,θ]i denotes the ith component of the

concatenated input. Including the stage index s enables a single network to be used

throughout the planning horizon, while θ promotes generalization in different system

configurations.

ŝp(s) : min ϕ̂s − zsπs − µs (6a)

s.t. :

d0∑
i=1

w0
i,k [s, zs,θ]i + b0j = ĥ1

j − ȟ1
j , ∀ j ∈ D1, (6b)

dm−1∑
i=1

wm−1
i,k ĥm−1

j + bm−1
j = ĥm

j − ȟm
j , ∀m ∈M, ∀j ∈ Dm, (6c)

dℓ∑
i=1

wℓ
i,kĥ

ℓ
j ≤ ϕ̂y, (6d)

ĥm
j ≤M+(1− amj ), ∀m ∈M, ∀j ∈ Dm, (6e)

ȟm
j ≤M−amj , ∀m ∈M, ∀j ∈ Dm, (6f)

ĥm
j , ȟ

m
j ≥ 0, ∀m ∈M, ∀j ∈ Dm, (6g)

amj ∈ {0, 1}, ∀m ∈M, ∀j ∈ Dm, (6h)

zs ≤ z̄s, zs ∈ Z+. (6i)

To train the neural network, we generate one dataset per stage. For each dataset,

we sample feasible investment decisions and corresponding parameter values, compute

their operational costs, and repeat until reaching the desired dataset size. All datasets

are merged and used to train a ReLU-based neural network. Training is performed

using an L1 loss function, dropout and early stopping to prevent overfitting, and the

Adam optimizer. Hyperparameter are selected sequentially, first tuning the learning

rate, then the network architecture, and finally the dropout probability.
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4.1.2. Integrating Approximated Subproblems into Column Generation

The proposed surrogate-based column generation algorithm preserves performance

guarantees through a two-phase procedure. Figure 2(a) illustrates the overall frame-

work. In the first phase, surrogate pricing problems are used to quickly generate valid

columns and compute approximate bounds. In the second phase, the algorithm switches

to the original pricing subproblems to recover valid bounds and evaluate the optimality

gap.

The proposed Surrogate-based column generation algorithm preserves performance

guarantees through a two-phase procedure. Figure 2(a) illustrates the overall frame-

work. In the first phase, surrogate pricing problems are used to quickly generate valid

columns and compute approximate bounds. In the second phase, we switch to the orig-

inal pricing subproblems to recover valid bounds and evaluate the optimality gap. To

enable this two-phase scheme, the algorithm maintains two master problems. In the

first phase, the Approximated Restricted Master Problem (ARMP), is used in the first

phase and is built from columns generated by the surrogate pricing problems, together

with their estimated operational costs. The second phase is the standard Restricted

Master Problem (RMP), which contains only columns with exact operational costs and

is used to compute valid bounds and certify optimality.

In the first phase, the ARMP is solved at each iteration to obtain dual variables.

These dual prices are then used in the surrogate pricing problems to generate new

columns. For each decision stage s, the surrogate pricing problem is solved to obtain a

candidate investment vector ẑs together with an estimated operational cost ϕ̂s(ẑs). The

resulting columns are added to the ARMP. To generate valid columns for the RMP, the

true operational cost ϕs(ẑs) is evaluated for each candidate investment vector ẑs. The

corresponding columns, now associated with exact operational costs, are then added

to the RMP. Since only the operational variables are optimized, this step is usually

significantly faster than solving the full pricing subproblem.

Note that, within this first phase, the ARMP corresponds to the restricted mas-

ter problem associated with an approximated version of the Dantzig–Wolfe master
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problem (3), in which operational costs are represented through the surrogate model.

Consequently, a valid lower bound for the linear relaxation of this approximated master

problem can be obtained using the reduced costs from the surrogate pricing problems.

In parallel, an upper bound ÛB is obtained by solving the ARMP. Surrogate-based

column generation iterations are performed until the optimality gap of the approxi-

mated master problem, denoted by L̂P gap, falls below a predefined threshold. Since

an approximation of the master problem is solved in the first phase (3), the resulting

bounds and optimality gap provide estimates of the corresponding quantities for the

original problem, and may not be valid for the latter.

Thus, once this condition is met, the algorithm transitions to the second phase.

This phase starts by solving the RMP populated with the valid columns generated

during the first phase. New columns are then generated by solving the original pricing

subproblem (4) and the lower and upper bounds are computed as in Algorithm 1.

Thus, these exact CG iterations enable recovering valid upper and lower bounds and to

compute a certified optimality gap. While these iterations are costly, in practice, only

a small number of traditional CG iterations are required, as the first phase typically

produces high-quality columns that are already close to optimal.

4.2. An End-to-End Approach

This section presents an End-to-End learning approach to accelerate column gener-

ation by directly approximating the pricing subproblems. Unlike the surrogate-based

framework, which approximates only the operational cost while preserving the struc-

ture of the pricing problem, the End-to-End approach replaces each pricing subproblem

with a neural network that directly predicts candidate investment decisions. As in the

surrogate-based approach, performance guarantees are recovered by subsequently run-

ning iterations of the original column generation algorithm.

4.2.1. End-to-End Subproblem Approximation

In the End-to-End approach, each pricing subproblem is replaced by a neural net-

work trained to directly predict an investment decision vector zs for stage s. The
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(a) Surrogate CG. (b) End-to-End CG.

Figure 2: Two frameworks for ML-Aided CG algorithms.

network takes as input the dual prices (πs, µs) obtained from the RMP, the stage index

s, and a set of problem parameters θ, and outputs an investment vector. Figure 1(b)

illustrates the structure of the End-to-End neural network.

Training data is generated by sampling dual prices and parameter values, and solving

the corresponding pricing subproblems to optimality. Each training sample consists

of dual prices, stage index, and parameters as inputs, and the optimal investment

decision as the target output. The network is trained using a binary cross-entropy loss

with logits, and hyperparameters are selected sequentially by tuning the learning rate,

network architecture, and dropout probability.

This approach is inspired by the work proposed in [11], adapted to the capacity

planning problem. Unlike the original work, which employs a transformer-based ar-

chitecture, we adopt a feedforward ReLU-based neural network to predict subproblem

solutions. We chose this option to keep the parsimony of the neural networks trained

equal for both approaches. Additionally, instead of extracting dual prices from multi-

ple column generation executions, we generate training data by sampling random dual

price values from a uniform distribution.
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4.2.2. Integrating the End-to-End NN into Column Generation

The End-to-End approach follows a two-phase procedure, analogous in spirit to

the Surrogate-based column generation framework, in order to balance computational

efficiency and solution quality. In contrast to the surrogate-based approach, only a

single Restricted Master Problem (RMP) is maintained, which always contains valid

columns evaluated with the true operational cost.

At each CG iteration of the first phase, the trained End-to-End neural network is

used to predict a candidate investment vector ẑs for each stage s, given the current

dual variables obtained from the RMP. To construct a valid column, the operational

problem (5) is then solved for the predicted investment vector ẑs, yielding the corre-

sponding operational decision ŷs and its true operational cost. The column (ẑs, ŷs) is

subsequently added to the RMP, preserving primal feasibility.

Note that the upper bound obtained from the RMP remains valid throughout the

End-to-End phase. However, a valid lower bound cannot be computed during this

phase, as the neural network may predict suboptimal investment decisions. Instead, an

estimated lower bound is obtained from the reduced costs associated with the predicted

columns, yielding an estimated optimality gap.

End-to-End CG iterations are performed until this estimated gap falls below a pre-

defined threshold. Since this stopping criterion is based on an estimated gap, it is

possible that L̂P gap does not reach the prescribed tolerance. For this reason, a maxi-

mum number of iterations may be imposed as an alternative termination criterion. At

that point, the algorithm transitions to the second phase, in which traditional column

generation iterations are executed by solving the original pricing subproblems. This sec-

ond phase recovers lower bounds and allows the computation of a certified optimality

gap. Figure 2(b) illustrates the overall End-to-End CG procedure.
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5. Computational Results and Discussion

This section applies the proposed methodologies to instances of a capacity expansion

planning model for electric power systems. We consider a deterministic formulation of

a power system expansion problem with operational constraints, based on the formula-

tion presented in [1]. We report results on dataset generation, neural network training,

and performance comparisons among the traditional column generation, the proposed

it surrogate column generation, and the end-to-end benchmark approach.

All algorithms were implemented in Python v3.9.0. Optimization models were for-

mulated using Pyomo v6.0.1 [29] and solved with Gurobi v9.5.0 [30]. Supervised learn-

ing models were trained using PyTorch v1.10.0 [31] and Scikit-learn v1.0.1 [32]. All

computational experiments were executed on the NLHPC computing cluster.

5.1. Test System and Problem Setup

The case study considers a multi-stage expansion planning problem for an electrical

power system. Investment is made in generation assets. The operation is represented

by the unit commitment model. The test system is based on a realistic representation of

the Chilean power system, consisting of 26 buses, 42 transmission lines, and 86 existing

generators, with a planning horizon of 10 years. All data was obtained from the Chilean

National Electric Coordinator (CEN) [33].

The objective is to minimize the total system cost, combining investment and opera-

tional costs, by jointly selecting investment and operational decisions over the planning

horizon, subject to demand satisfaction and operational constraints. Demand evolves

deterministically according to the growth rate Rdem. Load shedding is permitted at a

high penalty cost, which guarantees the feasibility of the operational problem for any

investment decision.

The problem considers binary investment variables accounting for the installation of

new generation assets into the system, and mixed-integer operational variables, account-

ing for the hourly system operation. The operational variables include power outputs
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of the generator, its commitment state, power flows through transmission lines, etc.

To reduce the computational burden of computing the operation of each hour of the

year, we select a set of representative days using the approach presented in [34]. The

complete formulation of the generation and transmission planning problem is presented

in Appendix A.

We consider different system configurations by varying the number of investment

decisions and the number of representative operational days. A total of three configura-

tions are analyzed, denoted as EPSX Y , where X represents the number of investment

decisions and Y the number of representative days. Specifically, we study the configu-

rations EPS15 4, EPS15 12, and EPS52 4. Additionally, for both ML-based approaches,

the demand growth rate of the system is used as the input parameter θ. The tested

algorithm was subsequently evaluated under three demand growth scenarios for each

network configuration: 3%, 5%, and 8%. Accordingly, each instance used to test the

algorithm is denoted by EPSX Y Z , where Z represents the demand growth rate.

5.2. Dataset Generation and Neural Network Training

For each network configuration EPSX Y , we generated dedicated datasets to train

the neural networks associated with each ML-based approach by repeatedly solving

optimization problems under different input configurations. We consider multilayer

perceptron (MLP) architectures with ReLU activations. The number of hidden layers

and neurons per layer, dropout rate, and learning rate are selected via hyperparameter

tuning using a sequential grid search. Detailed results for each neural network are

reported in Appendix B.

In the End-to-End approach, training samples are obtained by solving the pricing

problem (4) for a wide range of sampled inputs. Specifically, for each decision stage s,

dual variables (πs, µs) and system parameters θ are sampled, where θ corresponds to

the demand growth rate. For each sampled input, the corresponding pricing problem

is solved to optimality to obtain the investment decision zs. These optimal investment

19



vectors are used as labels to train a neural network that directly predicts candidate

columns from dual information. The dual variables are sampled from a uniform dis-

tribution over the interval [0, 500], while the demand growth rate is sampled from a

uniform distribution between 1% and 7%.

In contrast, the surrogate approach does not require solving the full pricing problem

during data generation. Instead, for fixed investment decisions zs, decision stages

s, and demand growth rates, the operational problem (5) is solved to compute the

corresponding optimal operational cost. These costs are used as training targets for a

neural network that approximates the operational component of the pricing problem.

During dataset generation, the demand growth rate is sampled from the same uniform

distribution between 1% and 7%.

Using the resulting datasets, hyperparameter search and neural network training

were performed for each network configuration EPSX Y . The average time required

to generate a single training sample for each instance, as well as the total training

time (including hyperparameter tuning plus training of the best network) for both the

surrogate and End-to-End networks, are reported in Table 1.

Network configuration
Avg. Dataset Generation

Time per Sample [s]
Total NN

Training Time [s]
Surrogate End-to-End Surrogate End-to-End

EPSP A 15 4 44.21 109.16 621.42 601.28
EPSP A 15 12 145.52 2184.18 506.66 483.85
EPSP A 52 4 69.42 843.45 669.50 719.16

Table 1: Average time required to generate a single dataset sample and total neural
network training time (in seconds) for each problem instance under both proposed
approaches.

The computational cost per training sample differs substantially across approaches.

Generating End-to-End training data requires solving the full pricing problem to opti-

mality, whereas the surrogate approach only involves solving the operational subprob-

lem. This leads to significantly lower data-generation times for the proposed surrogate-

based approach.
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For both approaches, we generated 5000 samples per decision stage, yielding a total

of 50000 samples over the 10-stage planning horizon. Dataset generation was paral-

lelized using up to 160 cores. While data generation is computationally intensive, this

cost can be spread across multiple planning studies, since capacity expansion prob-

lems are typically solved repeatedly for scenario and sensitivity analyses with similar

network structures and parameter ranges, allowing training datasets to be reused or

incrementally extended. In contrast, neural network training times were relatively low

compared to data generation times.

The results of the neural network performance are summarized in Tables 2 and

3 for the End-to-End and Surrogate approaches, respectively. For the End-to-End

approach, the neural network predictions are evaluated in terms of accuracy, defined as

the percentage of correct predictions for each investment candidate across the training,

validation, and test sets. For the Surrogate approach, the performance of the neural

network is measured using Mean Absolute Error (MAE) and Mean Absolute Percentage

Error (MAPE) on the training, validation, and test set.

For the Surrogate approach, prediction errors remain below 2% across all instances

and across the training, validation, and test sets. Higher MAE values are observed

for instances with 52 investment decisions, reflecting larger operational costs; however,

relative errors remain small. Low prediction errors support the surrogate model in

identifying negative reduced-cost columns, which can reduce the number of iterations

required by the traditional column generation algorithm to reach the optimal solution.

For the End-to-End approach, the neural network achieves an accuracy above 96%

across all datasets.

Instance
MAE MAPE [%]

Train Valid Test Train Valid Test
EPSP 15 4 5.57 5.67 5.62 0.31 0.32 0.32
EPSP 15 12 5.92 6.04 7.14 0.33 0.33 0.35
EPSP 52 4 86.09 136.83 105.87 1.70 1.95 1.87

Table 2: Surrogate neural network prediction results: performance of the proposed NN
across all problem instances for train, validation and test sets.
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Instance
Accuracy [%]

Train Valid Test
EPSP 15 4 98.92 98.51 98.589
EPSP 15 12 98.78 98.44 98.455
EPSP 52 4 97.22 96.97 97.033

Table 3: End-to-End neural network prediction results: performance of the proposed
NN across all problem instances for train, validation and test sets.

5.3. Performance Comparison

To evaluate performance across different system configurations, each problem in-

stance EPSX Y Z was solved using three approaches: traditional column generation

(CG), the proposed Surrogate-based CG, and the End-to-End CG. For all algorithms,

an optimality gap of 0.5% was required. For the ML-based approaches, which follow a

two-phase procedure, the first phase was terminated when an estimated optimality gap

of ε1 = 0.25% was reached. Afterwards, traditional CG iterations were executed until

the final optimality gap of 0.5% was reached.

Table 4 reports the average computational time and the number of iterations per

instance for the three algorithms. For the two ML-based approaches, the iteration

count is reported as a tuple, with the number of ML-driven iterations and the number

of subsequent traditional CG iterations. Overall, the proposed Surrogate-based CG

achieves lower computational times than both traditional CG and the End-to-End CG

across all tested instances.
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Instance Rdem
Surrogate End-to-End Traditional

Time Iters Time Iters Time Iters
EPSP 15 4 3% 00:14:44 (12, 1) 00:54:35 (12, 5) 01:08:42 10
EPSP 15 4 5% 00:15:55 (12, 1) 01:03:52 (12, 5) 01:12:41 10
EPSP 15 4 8% 00:46:40 (14, 3) 01:22:44 (4, 11) 01:15:05 11
EPSP 15 12 3% 02:12:04 (15, 1) 19:54:29 (6, 7) 1-05:06:15 10
EPSP 15 12 5% 03:42:34 (14, 1) 15:59:12 (8, 6) 1-03:35:35 12
EPSP 15 12 8% 04:52:32 (14, 3) 17:03:27 (4, 10) 20:18:49 12
EPSP 52 4 3% 06:43:22 (57, 9) 16:26:06 (50, 26) 1-08:09:48 58
EPSP 52 4 5% 10:18:46 (64, 9) 1-06:33:34 (8, 56) 2-04:00:18 52
EPSP 52 4 8% 16:24:06 (51, 16) 1-19:00:31 (4, 58) 1-10:16:18 51

Table 4: Three column generation Algorithms results in terms of number of iteration
and time [dd-hh:mm:ss] for all instances and different demand growth rates.

The time required to predict the investment decision, either by solving the surrogate

model or by evaluating the End-to-End neural network, is several orders of magnitude

smaller than the time required to compute the true operational cost at each iteration.

Similarly, solving the subproblems with fixed investment decisions is significantly faster

than solving the complete subproblem. This behavior is illustrated in Figures 3(a)

and 3(b), which show the cumulative runtime of the surrogate-based and End-to-End

algorithms for two representative instances: EPSP 15 12 with a demand growth of

5% and EPSP 52 4 with a demand growth of 3%. The total computational time is

decomposed into three main components: the time required to predict the investment

plan using the machine learning model, the time required to compute the operational

cost, and the time required to solve the original subproblems.
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(a) Instance EPSP 15 12 with 5% demand growth.

(b) Instance EPSP 52 4 with 3% demand growth.

Figure 3: Cumulative runtime decomposition of the surrogate-based and End-to-End
algorithms. Each bar represents the cumulative time spent in different algorithmic
components, grouped by iterations.
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Most of the computational effort of the algorithms is spent in solving traditional

CG iterations. Consequently, the proposed Surrogate-based CG achieves lower overall

computational time across all tested instances by requiring fewer traditional CG itera-

tions to reach the optimality threshold. For instances with 15 investment candidates,

the algorithm requires three or fewer traditional CG iterations, which yields a signifi-

cant reduction in runtime. For the 52-investment cases, a larger number of traditional

iterations is needed; nevertheless, the number remains substantially lower compared to

the traditional approach, resulting in large time savings.

For the End-to-End approach, computational time is reduced in most instances, but

the performance is worse compared to the Surrogate method. Furthermore, the End-

to-End method took more time compared to the traditional CG for EPSP 15 4 with

8% growth and EPSP 52 4 with 8% growth instances. Although the ML iterations can

help by decreasing the number of traditional iterations, the time savings are sometimes

small. The poorer performance is due to the larger number of traditional CG iterations

required to reach the optimality threshold, while only a few ML iterations are executed

in some cases.

The reason for the smaller number of ML iterations is an overestimation of the lower

bound in the End-to-End scheme. In this approach, the upper bound is computed by

solving the RMP with the true operational cost and thus remains valid; however, the

lower bound is estimated from the reduced costs associated with the subproblems solved

using the investment decision predicted by the End-to-End model. Because the End-

to-End model predicts investment decisions without explicitly accounting for the true

operational cost, the actual operational cost for a predicted decision can be much larger

than anticipated. This may lead to reduced costs that are higher (or even positive) than

expected, causing the estimated lower bound to exceed the upper bound and producing

an early termination of the ML iterations.

Therefore, the Surrogate-based algorithm constitutes a more effective strategy for

predicting negative reduced-cost columns to be added to the RMP. By directly modeling

the operational cost, the surrogate approach explicitly accounts for both the investment

25



and operational components of the reduced cost. This leads to a more accurate esti-

mation of the lower bound, preventing an early termination of ML iterations, yielding

to superior computational performance.

Figure 4 illustrates the evolution of the upper and lower bounds obtained by the

three column generation approaches—Surrogate-based, End-to-End, and Traditional—for

six representative instances: EPSP15 4 3, EPSP15 4 5, EPSP15 12 3, EPSP15 12 5, EPSP52 4 3,

and EPSP52 4 8. Dotted lines indicate the iterations performed using ML-enhanced sub-

problems in the Surrogate and End-to-End approaches, while solid lines correspond to

traditional CG iterations.

The surrogate-based approach produces estimated bounds that closely follow the

valid bounds, which explains why only a limited number of traditional CG iterations

are required after the ML phase. In contrast, the End-to-End approach frequently

overestimates the lower bound, leading to premature termination of the ML iterations.

As a consequence, additional traditional CG iterations are needed to recover valid

bounds and guarantee optimality. This behavior can be attributed to the fact that the

End-to-End model does not explicitly account for the operational cost when predicting

investment decisions. As a result, columns associated with high operational costs may

be generated, yielding reduced costs that are large or even positive. This overestimates

the lower bound and limits the effectiveness of the ML-enhanced phase.

Finally, Tables 5 and 6 summarize the computational time and the achieved opti-

mality gap after a single traditional CG iteration and after full convergence to a 0.5%

optimality threshold, for the Surrogate-based and End-to-End approaches respectively.

For the Surrogate-based method we observe that a single traditional iteration typically

yields a low relative optimality gap (often below 5%) within a short runtime, indicating

that surrogate iterations successfully generate high-quality columns before performing

traditional CG iterations. After full convergence, all instances reach the target gap of

0.5% with moderate additional time in the few cases that required more traditional

iterations. The End-to-End approach performed worse for all tested instances; after

one traditional iteration the reported gaps are generally larger and, in some instances,
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Figure 4: Evolution of upper and lower bounds for six EPSP instances using the
Surrogate-based, End-to-End, and Traditional column generation approaches. Dot-
ted lines represent ML-enhanced iterations, while solid lines correspond to traditional
CG iterations.

considerably above acceptable levels.

Instance Rdem
After one traditional CG iteration After convergence
Time [hh:mm:ss] Gap [%] Time [hh:mm:ss] Gap [%]

EPSP 15 4 3% 00:14:44 0.186 00:14:44 0.186
EPSP 15 4 5% 00:15:55 0.227 00:15:55 0.227
EPSP 15 4 8% 00:32:18 2.025 00:46:40 0.086

EPSP 15 12 3% 02:12:04 0.161 02:12:04 0.161
EPSP 15 12 5% 03:42:34 0.182 03:42:34 0.182
EPSP 15 12 8% 02:52:05 14.955 04:52:32 0.477

EPSP 52 4 3% 02:38:38 1.734 06:43:22 0.378
EPSP 52 4 5% 02:38:34 2.225 10:18:46 0.494
EPSP 52 4 8% 03:11:43 4.036 16:24:06 0.485

Table 5: Computational time and relative optimality gap obtained after a single tradi-
tional iteration of the Surrogate-based column generation algorithm and after conver-
gence to a 0.5% optimality gap.
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Instance Rdem
After one traditional CG iteration After convergence
Time [hh:mm:ss] Gap [%] Time [hh:mm:ss] Gap [%]

EPSP 15 4 3% 00:28:23 3.047 00:54:35 0.272
EPSP 15 4 5% 00:31:38 3.122 01:03:52 0.423
EPSP 15 4 8% 00:16:38 70.957 01:22:44 0.316

EPSP 15 12 3% 02:41:53 5.428 19:54:29 0.254
EPSP 15 12 5% 04:01:22 5.685 15:59:12 0.194
EPSP 15 12 8% 01:55:32 > 100% 17:03:27 0.401

EPSP 52 4 3% 03:28:01 10.112 06:43:22 0.298
EPSP 52 4 5% 00:32:45 > 100% 1-06:33:34 0.410
EPSP 52 4 8% 01:11:26 > 100% 1-19:00:31 0.489

Table 6: Computational time and relative optimality gap obtained after a single tra-
ditional iteration of the End-to-End-based column generation algorithm and after con-
vergence to a 0.5% optimality gap.

6. Conclusions

In this article, we studied ML-aided column generation methods for solving large-

scale capacity planning problems. We consider two ways of approximating or replacing

the pricing problem within the column generation framework: (i) a surrogate-based ap-

proach, where the operational component is replaced by a pre-trained multi-layer ReLU

network embedded via its MILP encoding, and (ii) end-to-end approaches that learn

to directly propose new columns. To preserve performance guarantees, our method

follows a two-phase procedure: it first solves an approximate optimization problem to

quickly generate informative columns, and then switches to standard column generation

with the original pricing subproblems to recover valid bounds and compute the opti-

mality gap. Our findings indicate that incorporating an intermediate surrogate phase

is worthwhile: it improves computational efficiency, and the columns produced in the

approximate phase are sufficiently high-quality to significantly accelerate convergence

in the subsequent exact phase.
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Appendix A. Generation Expansion Planning Problem

This section presents the mixed-integer optimization model used for long-term gener-

ation expansion planning while explicitly accounting for short-term operational schedul-

ing. The short-term operation is modeled using a standard mixed-integer unit commit-

ment formulation based from [1]. The model determines optimal investment decisions

in conventional and renewable generation units, together with hourly unit commitment

and dispatch decisions, over a multi-year planning horizon. Investment decisions affect

the available generation capacity in future years, whereas operational decisions ensure

feasibility with respect to power balance, ramping limits, and network constraints.

The multi-stage power system planning model is presented in (A.1). We consider

sets of candidate conventional and renewable generation units, denoted by Gi and Ri,

respectively, which can be installed over the planning years Y . To represent system

operation within each year, a set of representative days D is used, each associated with

a weight wd. Each representative day is modeled with an hourly resolution, with hours

indexed by the set T = {1, . . . , 24}.

The objective function (A.1a) minimizes the total system cost, which consists of

investment costs and operational costs. Investment costs, account for the installation

of new generation units in each year y. New investments, represented by the variables

IGy,g, are annualized using the corresponding annuity cost cinvy,g and a discount rate

Rcost. Operational costs, include the variable generation costs cvary,g and start-up costs

cEg of conventional generators in the set G. In addition, a load-shedding penalty cUD
b

is introduced at each bus b ∈ B to ensure feasibility when demand cannot be fully

supplied.

System operation is modeled at an hourly resolution through a set of operational

constraints. Constraint (A.1b) enforces power balance at each bus b and hour t, ensuring

that the demand dy,b,t is met by the power output of conventional generators Py,g,t and

renewable generators PRES
y,r,t , net power flows into and out of the bus through transmission

lines in the sets Lin
b and Lout

b , and load shedding LSy,b,t. Constraint (A.1c) limits the
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power flow transmitted over each transmission line l ∈ L according to its capacity f y,l.

The operation of conventional generators is modeled through constraints (A.1d)–

(A.1i). Binary variables uy,g,d,t ∈ {0, 1} represent the on/off commitment status of

each generator at each hour. Variables XON
y,g,t and XOFF

y,g,t indicate generator start-up

and shutdown events, respectively, and are linked to the commitment variables through

the unit commitment state equation (A.1e). Constraint (A.1d) enforces the minimum

and maximum power output limits of each conventional generator, given by p
g
and

pg. Constraints (A.1f) and (A.1g) model ramping limitations by restricting changes in

power output between consecutive hours according to ramp-up (Rupg) and ramp-down

(Rdng) limits. Finally, constraints (A.1h) and (A.1i) impose minimum up-time τON
g

and minimum down-time τOFF
g requirements.

Constraint (A.1l) restricts the commitment of conventional generators to those units

that have been previously built. Renewable generation availability is modeled by con-

straint (A.1m), which limits the renewable power output using the availability factor

αr,t, the installed renewable capacity pr, and the number of renewable units that have

been built. Finally, constraints (A.1n)–(A.1r) define the domains of the decision vari-

ables, specifying non-negativity constraints for continuous variables and binary restric-

tions for commitment and investment variables.
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min
∑
y∈Y

1

(1 +Rcost)(y−1)

[ ∑
g∈Gconv

new

y∑
l=1

cinvg IGconv
g,y +

∑
r∈Grenw

new

y∑
l=1

cinvr IGrenw
g,y

+
∑
d∈D

∑
t∈T

(∑
g∈G

(cvarg Pg,y,d,t + cON
g XON

g,y,d,t) +
∑
b∈B

cLb LLb,y,d,t

)]
(A.1a)

s.t.
∑
g∈Gb

Pg,y,d,t +
∑
l∈Lin

b

Fl,y,d,t −
∑

l∈Lout
b

Fl,y,d,t = Db,y,d,t − LLb,y,d,t, ∀y, d, b, t (A.1b)

−F l ≤ Fl,y,d,t ≤ F l, ∀y, d, l, t (A.1c)

Ug,y,d,t · P g ≤ Pg,y,d,t ≤ P g · Ug,y,d,t, ∀y, d, g, t (A.1d)

Ug,y,d,t − Ug,y,d,t−1 = XON
g,y,d,t −XOFF

g,y,d,t, ∀y, d, g, t (A.1e)

Pg,y,d,t − Pg,y,d,t−1 ≤ Ug,y,d,t ·Rg +XON
g,y,d,t · P g, ∀y, d, g, t (A.1f)

Pg,y,d,t−1 − Pg,y,d,t ≤ Ug,y,d,t ·Rg +XOFF
g,y,d,t · P g, ∀y, d, g, t (A.1g)

Ug,y,d,t ≥
t∑

t′=t−τON
g

XON
g,y,d,t′ , ∀y, d, g, t (A.1h)

1− Ug,y,d,t ≥
t∑

t′=t−τOFF
g

XOFF
g,y,d,t′ , ∀y, d, g, t (A.1i)

Ug,y,d,t ≤
y∑

l=1

IGconv
g,l , ∀y, d, g ∈ Gconvnew , t(A.1j)

Pr,y,d,t ≤ αr,d,t · P r, ∀y, d, r, t (A.1k)

Pr,y,d,t ≤ αr,d,t · P r ·
y∑

l=1

IGconv
r,l , ∀y, d, r ∈ Grenwnew , t(A.1l)

Ug,y,d,t, X
ON
g,y,d,t, X

OFF
g,y,d,t ∈ {0, 1}, ∀y, d, g, t (A.1m)

copy,d, c
inv
y ≥ 0, ∀y, d (A.1n)

Pg,y,d,t ≥ 0, ∀y, d, g, t (A.1o)

LLb,y,d,t ≥ 0, ∀y, d, b, t (A.1p)

IGconv
g,y ∈ {0, 1}, ∀y, g ∈ Gconvnew (A.1q)

IGrenw
g,y ∈ {0, 1}, ∀y, g ∈ Grenwnew (A.1r)
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Appendix B. Hyperparameter Search

To perform the hyperparameter search, a grid search strategy was adopted. For both

ML-based approaches, three neural network architectures were evaluated, represented

by the lists [64], [64, 32], and [64, 32, 16], which indicate the number of units in each

hidden layer. In addition, five learning rates were tested: 10−4, 5×10−4, 10−3, 5×10−3,

and 10−2, together with three dropout probabilities: 0, 0.05, and 0.1.

The hyperparameter search was conducted sequentially. First, the learning rate was

selected while keeping the remaining hyperparameters fixed. Then, the network archi-

tecture was varied, and finally, the dropout probability was tuned. Tables B.7, B.8, and

B.9 report the results of the hyperparameter search for the surrogate-based approach

across all instances. Similarly, Tables B.10, B.11, and B.12 present the corresponding

results for the End-to-End approach.

Instance Architecture Learning Rate Dropout MAE

EPSP 15 4 [64, 32] 1e-4 0 180.777
EPSP 15 4 [64, 32] 5e-4 0 33.747
EPSP 15 4 [64, 32] 1e-3 0 17.115
EPSP 15 4 [64, 32] 5e-3 0 11.715
EPSP 15 4 [64, 32] 1e-2 0 14.168
EPSP 15 4 [64] 5e-3 0 14.428
EPSP 15 4 [64, 32, 16] 5e-3 0 12.610
EPSP 15 4 [64, 32] 5e-3 0.05 82.451
EPSP 15 4 [64, 32] 5e-3 0.1 105.983

Table B.7: Hyperparameter search results for the surrogate-based approach on instance
EPSP 15 4. The table reports the mean absolute error (MAE) obtained for different
combinations of network architectures, learning rates, and dropout probabilities.
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Instance Architecture Learning Rate Dropout MAE

EPSP 15 12 [64, 32] 1e-4 0 157.691
EPSP 15 12 [64, 32] 5e-4 0 67.651
EPSP 15 12 [64, 32] 1e-3 0 18.318
EPSP 15 12 [64, 32] 5e-3 0 16.935
EPSP 15 12 [64, 32] 1e-2 0 12.897
EPSP 15 12 [64] 1e-2 0 21.368
EPSP 15 12 [64, 32, 16] 1e-2 0 16.432
EPSP 15 12 [64, 32] 1e-2 0.05 75.224
EPSP 15 12 [64, 32] 1e-2 0.1 103.930

Table B.8: Hyperparameter search results for the surrogate-based approach on instance
EPSP 15 12. The table reports the mean absolute error (MAE) obtained for different
combinations of network architectures, learning rates, and dropout probabilities.

Instance Architecture Learning Rate Dropout MAE

EPSP 52 4 [64, 32] 1e-4 0 788.352
EPSP 52 4 [64, 32] 5e-4 0 658.064
EPSP 52 4 [64, 32] 1e-3 0 348.139
EPSP 52 4 [64, 32] 5e-3 0 133.617
EPSP 52 4 [64, 32] 1e-2 0 160.351
EPSP 52 4 [64] 5e-3 0 494.872
EPSP 52 4 [64, 32, 16] 5e-3 0 151.352
EPSP 52 4 [64, 32] 5e-3 0.05 248.921
EPSP 52 4 [64, 32] 5e-3 0.1 309.949

Table B.9: Hyperparameter search results for the surrogate-based approach on instance
EPSP 52 4. The table reports the mean absolute error (MAE) obtained for different
combinations of network architectures, learning rates, and dropout probabilities.
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Instance Architecture Learning Rate Dropout BCE

EPSP 15 4 [64, 32] 1e-4 0 0.0729
EPSP 15 4 [64, 32] 5e-4 0 0.0620
EPSP 15 4 [64, 32] 1e-3 0 0.0557
EPSP 15 4 [64, 32] 5e-3 0 0.0754
EPSP 15 4 [64, 32] 1e-2 0 0.1258
EPSP 15 4 [64] 1e-3 0 0.0585
EPSP 15 4 [64, 32, 16] 1e-3 0 0.0534
EPSP 15 4 [64, 32, 16] 1e-3 0.05 0.0872
EPSP 15 4 [64, 32, 16] 1e-3 0.1 0.1079

Table B.10: Hyperparameter search results for the End-to-End-based approach on in-
stance EPSP 15 4. The table reports the Binary Cross-Entropy with Logits loss (BCE-
with-logits) obtained for different combinations of network architectures, learning rates,
and dropout probabilities.

Instance Architecture Learning Rate Dropout BCE

EPSP 15 4 [64, 32] 1e-4 0 0.0624
EPSP 15 4 [64, 32] 5e-4 0 0.0482
EPSP 15 4 [64, 32] 1e-3 0 0.0436
EPSP 15 4 [64, 32] 5e-3 0 0.0653
EPSP 15 4 [64, 32] 1e-2 0 0.1090
EPSP 15 4 [64] 1e-3 0 0.0474
EPSP 15 4 [64, 32, 16] 1e-3 0 0.0459
EPSP 15 4 [64, 32] 1e-3 0.05 0.0531
EPSP 15 4 [64, 32] 1e-3 0.1 0.0649

Table B.11: Hyperparameter search results for the End-to-End-based approach on in-
stance EPSP 15 12. The table reports the Binary Cross-Entropy with Logits loss (BCE-
with-logits) obtained for different combinations of network architectures, learning rates,
and dropout probabilities.

34



Instance Architecture Learning Rate Dropout BCE

EPSP 15 4 [64, 32] 1e-4 0 0.1144
EPSP 15 4 [64, 32] 5e-4 0 0.1386
EPSP 15 4 [64, 32] 1e-3 0 0.1712
EPSP 15 4 [64, 32] 5e-3 0 0.2549
EPSP 15 4 [64, 32] 1e-2 0 0.2698
EPSP 15 4 [64] 1e-4 0 0.0916
EPSP 15 4 [64, 32, 16] 1e-4 0 0.1729
EPSP 15 4 [64] 1e-4 0.05 0.1450
EPSP 15 4 [64] 1e-4 0.1 0.1615

Table B.12: Hyperparameter search results for the End-to-End-based approach on in-
stance EPSP 52 4. The table reports the Binary Cross-Entropy with Logits loss (BCE-
with-logits) obtained for different combinations of network architectures, learning rates,
and dropout probabilities.
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