

1 **A Proximal-Gradient Method for Solving Regularized Optimization**
 2 **Problems with General Constraints** *

3 FRANK E. CURTIS[†], XIAOYI QU[†], AND DANIEL P. ROBINSON[†]

4 **Abstract.** We propose, analyze, and test a proximal-gradient method for solving regularized
 5 optimization problems with general constraints. The method employs a decomposition strategy to
 6 compute trial steps and uses a merit function to determine step acceptance or rejection. Under various
 7 assumptions, we establish a worst-case iteration complexity result, prove that limit points are first-
 8 order KKT points, and show that manifold identification and active-set identification properties hold.
 9 Preliminary numerical experiments on a subset of the CUTEst test problems and sparse canonical
 10 correlation analysis problems demonstrate the promising performance of our approach.

11 **Key words.** proximal-gradient method, nonlinear optimization, nonconvex optimization, worst-
 12 case iteration complexity, regularization, composite optimization, constrained optimization

13 **AMS subject classifications.** 49M37, 65K05, 65K10, 65Y20, 68Q25, 90C30, 90C60

14 **1. Introduction.** We consider the constrained optimization problem

15 (1.1)
$$\min_{x \in \mathbb{R}^n} f(x) + r(x) \text{ subject to (s.t.) } c(x) = 0, x \in \Omega,$$

16 where $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is continuously differentiable, $r : \mathbb{R}^n \rightarrow [0, \infty)$ is a nonnegative-
 17 valued convex function (possibly nonsmooth), $c : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is continuously differentiable with $m \leq n$, and Ω is the nonnegative orthant in \mathbb{R}^n (i.e., the vectors in \mathbb{R}^n with all nonnegative components). We note that general inequality constraints can
 18 be converted to the form (1.1) by using slack variables. Thus, problem (1.1) is impor-
 19 tant to a range of application areas such as data science (e.g., principal component
 20 analysis [55] and canonical correlation analysis [52, 53]), finance (e.g., portfolio selec-
 21 tion [1, 14]), signal processing (e.g., sparse blind deconvolution [54] and array beam-
 22 former design [27, 30]), and image processing (e.g., hyperspectral unmixing [12]).

23 When the constraints in (1.1) are not present, the problem reduces to a nonsmooth
 24 unconstrained regularized optimization problem, for which proximal-gradient (PG)
 25 methods and their variants are among the most widely used algorithms [3, 4, 11, 10, 32,
 26 36]. The basic PG method proceeds by solving a sequence of proximal subproblems.
 27 Given the k th iterate $x_k \in \mathbb{R}^n$ and proximal parameter $\alpha_k > 0$, the next iterate x_{k+1}
 28 is computed as the unique solution to the optimization problem
 29 Given the k th iterate $x_k \in \mathbb{R}^n$ and proximal parameter $\alpha_k > 0$, the next iterate x_{k+1}
 30 is computed as the unique solution to the optimization problem

31 (1.2)
$$\min_{x \in \mathbb{R}^n} \left\{ \frac{1}{2\alpha_k} \|x - (x_k - \nabla f(x_k))\|_2^2 + r(x) \right\}.$$

32 A notable property of PG methods is that as $\alpha_k \rightarrow 0$, the vector $x_{k+1} - x_k$ con-
 33 verges to zero. PG methods are also well-known for their *structure identification*
 34 property [35, 42, 47], whereby the sequence of iterates eventually identifies the mani-
 35 fold associated with a solution (e.g., the zero-nonzero structure of an optimal solution
 36 when $r(x) = \|x\|_1$). This property is particularly advantageous in structured opti-
 37 mization problems for at least three reasons. First, identifying the correct solution
 38 structure can have significant computational savings. For example, when $r(x) = \|x\|_1$,

*This material is based upon work supported by the U.S. National Science Foundation, Division of Mathematical Sciences, Computational Mathematics Program under Award Number DMS-1016291.

[†]Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA;
 E-mail: {frank.e.curtis, xiq322, daniel.p.robinson}@lehigh.edu

39 it is well known that optimal solutions tend to be sparser, and in the context of statistical
40 modeling sparser solutions offer simpler models that can be employed more efficiently [28, 29]. Second, in certain other applications, the zero-nonzero values of
41 the variables can have a physical meaning that is lost if the solutions do not have the
42 true zero-nonzero structure [20, 22, 49]. Third, if the manifold of the solution can
43 be identified, then one can consider hybrid methods that combine PG calculations
44 with those of more advanced (usually higher-order) optimization algorithms designed
45 for *smooth* optimization problems (here restricted to the smooth manifold identified
46 by the PG iterates). Such an approach aims to exploit local smoothness to achieve
47 accelerated convergence rates, and has great success in many settings [2, 35, 39].

48 When the regularization function r is not present in problem (1.1), it reduces to a
49 traditional nonlinear program. An important concept in the nonlinear programming
50 literature is *active-set identification*. An algorithm has the active-set identification
51 property if, under certain reasonable assumptions, it can identify from an iterate near
52 an optimal solution which inequality constraints are active (i.e., hold at equality)
53 at that optimal solution. For a comprehensive overview of active-set identification
54 strategies in nonlinear programming, see [21, 43] and the references therein.

55 Little research has considered the case when the regularization function r and
56 nonlinear constraints are present. Two primary challenges arise in this setting. First,
57 the computation of projections onto the feasible points satisfying $c(x) = 0$ (or perhaps
58 the intersection of this region with Ω) is typically computationally intractable. Second,
59 conventional techniques such as penalty-based methods [17] may fail to preserve the
60 structure of the solution (see [16, Section 5]), therefore limiting their effectiveness in
61 this setting. Our work is motivated by the need to address these challenges.

62 **1.1. Related work.** We restrict our attention to work that considers regularized
63 optimization problems with smooth nonlinear constraints, where both the smooth part
64 of the objective and the constraints may be nonconvex. Most approaches are penalty-
65 function-based, where constrained problems are transformed into unconstrained ones
66 (or ones with simple constraints) by combining the objective function with a penalty
67 function that measures constraint violation. The resulting subproblems are then typ-
68 ically solved using the PG method or its variants. Penalty-based methods generally
69 fall into two main categories: augmented Lagrangian methods and penalty-barrier
70 methods. Among these, [8, 38, 46] propose inexact augmented Lagrangian meth-
71 ods and show that an ϵ -KKT point can be found within $\mathcal{O}(\epsilon^{-3})$ iterations under
72 suitable constraint qualifications. The constraint qualifications in [38, 46] are identi-
73 cal, whereas [8] uses a slightly different condition, replacing the subdifferential with
74 the horizon subdifferential. In contrast, the augmented Lagrangian method in [26]
75 adopts a transversality condition and establishes a better complexity bound of $\mathcal{O}(\epsilon^{-2})$.
76 In [18], an augmented Lagrangian method is proposed for solving regularized problems
77 with general constraints. The authors use an AM-regularity condition to establish con-
78 vergence, but no complexity result is provided. To the best of our knowledge, [17] is
79 the only penalty-barrier approach designed for our problem setting. Instead of assum-
80 ing any constraint qualification, they directly assume the existence and boundedness
81 of Lagrange multipliers, which is typically implied by a constraint qualification.

82 Three non-penalty approaches for solving regularized problems with constraints
83 include [7, 16, 51]. In [51], the authors combine ideas from PG methods and se-
84 quential quadratic programming methods. In particular, their method formulates a
85 quadratic approximation to f , linearizes the constraint function, and keeps the regu-
86 larizer explicitly in each subproblem. This nonsmooth subproblem is solved using a

88 semi-smooth Newton method. The weakness of this approach is that each subproblem
 89 is assumed to be feasible and no structure identification result is provided. In [7], a
 90 feasible proximal-gradient method is proposed that reformulates a nonconvex problem
 91 into convex surrogate subproblems with quadratic regularization, but it cannot handle
 92 problems that involve equality constraints due to the infeasibility of each subproblem.
 93 Our work builds upon on [16], which only considers the equality-constrained case. Al-
 94 though limited in relevance here, we mention that some work has considered problems
 95 with only simple bound constraints [5, 34] or only linear constraints [25, 31, 33].

96 **1.2. Contributions.** Our contributions relate to the proposal, analysis, and
 97 testing of a new PG algorithm for solving problem (1.1), as we now discuss.

- 98 • We propose a new PG method (Algorithm 3.1) for solving problem (1.1). Un-
 99 like most work in the literature, our method has the following characteristics:
 100 (i) it uses the regularization function explicitly (as opposed to approximating
 101 it) when computing the trial step, (ii) it avoids using a penalty function to
 102 handle the constraints, and (iii) every subproblem is feasible.
- 103 • We establish various convergence results. (i) Without assuming any con-
 104 straint qualification, we prove that the number of iterations required to re-
 105 duce a stationarity measure related to minimizing the constraint violation
 106 below $\epsilon > 0$ is $O(\epsilon^{-2})$ (see Theorem 5.8). (ii) Under the linear independence
 107 constraint qualification (LICQ), we show that all limit points of the iterate
 108 sequence are first-order KKT points (see Theorem 5.25). (iii) Under a se-
 109 quential constraint qualification that is stronger than the LICQ, we prove
 110 that the worst-case iteration complexity needed to reduce a KKT measure
 111 below $\epsilon > 0$ is $O(\epsilon^{-2})$ (see Theorem 5.12). (iv) When strict complementarity
 112 holds in addition, we prove that our method possesses an optimal active-set
 113 identification property (see Theorem 5.26). (v) Under partial smoothness of
 114 the regularization function r and a certain non-degeneracy assumption, we es-
 115 tablish a manifold identification property for our method (see Theorem 5.27).
- 116 • We numerically test the performance of our method on CUTEst test prob-
 117 lems and a sparse canonical correlation analysis problem. In addition, we
 118 demonstrate the competitive performance of our algorithm by comparing it
 119 to an augmented Lagrangian approach named Bazinga [18].

120 **1.3. Organization.** In Section 2, we introduce notations and definitions. In
 121 Section 3, we propose our method as Algorithm 3.1. In Section 4, we derive pre-
 122 liminary results for the subproblems used in our method, which are critical for the
 123 theoretical analysis we provide in Section 5. In Section 6, we illustrate our algorithm’s
 124 performance through numerical tests, and final comments are provided in Section 7.

125 **2. Preliminaries.** Let \mathbb{R} denote the set of real numbers, $\mathbb{R}_{\geq 0}$ (resp., $\mathbb{R}_{>0}$) de-
 126 note the set of nonnegative (resp., positive) real numbers, \mathbb{R}^n denote the set of n -
 127 dimensional real vectors, and $\mathbb{R}^{m \times n}$ denote the set of m -by- n -dimensional real ma-
 128 trices. The set of natural numbers is $\mathbb{N} := \{0, 1, 2, \dots\}$. For a given natural number
 129 $n \in \mathbb{N}$, let $[n] := \{1, \dots, n\}$. The index sets of active and inactive variables at $x \in \mathbb{R}^n$
 130 is $\mathcal{A}(x) := \{i \in [n] : x_i = 0\}$ and $\mathcal{I}(x) := \{i \in [n] : x_i \neq 0\}$, respectively. The
 131 ϵ -neighborhood ball of a point $x \in \mathbb{R}^n$ is $\mathcal{B}(x, \epsilon) := \{z \in \mathbb{R}^n : \|x - z\|_2 < \epsilon\}$. Given
 132 a nonempty set \mathcal{C} that is either compact, or closed and convex, and a point $\bar{x} \in \mathbb{R}^n$,
 133 the distance from \bar{x} to \mathcal{C} is $\text{dist}(\bar{x}, \mathcal{C}) := \min_{x \in \mathcal{C}} \|x - \bar{x}\|_2$.

134 For convenience, we define $g(x) := \nabla f(x)$ and $J(x) := \nabla c(x)^T$. We append a
 135 natural number as a subscript for a quantity to denote its value during an iteration

136 of an algorithm; i.e., we let $f_k := f(x_k)$, $g_k := g(x_k)$, $c_k := c(x_k)$, and $J_k := J(x_k)$.

137 We now introduce several key concepts from convex analysis that will be used
138 throughout the paper. We start with the normal cone [45, Theorem 6.9].

139 **DEFINITION 2.1** (normal cone). *The normal cone of a convex set \mathcal{C} at $x \in \mathcal{C}$ is*

140
$$N_{\mathcal{C}}(x) = \{v \in \mathbb{R}^n : v^T(y - x) \leq 0 \text{ for all } y \in \mathcal{C}\}.$$

141 We define the tangent cone using its polarity with the normal cone [45, Theorem 6.28].

142 **DEFINITION 2.2** (tangent cone). *The tangent cone of a convex set \mathcal{C} at $x \in \mathcal{C}$ is*

143
$$T_{\mathcal{C}}(x) = \{d \in \mathbb{R}^n : v^T d \leq 0 \text{ for all } v \in N_{\mathcal{C}}(x)\}.$$

144 Next, we define the projection onto a closed convex set [6, Proposition 1.1.9].

145 **DEFINITION 2.3** (Projection). *Let $\mathcal{C} \subseteq \mathbb{R}^n$ be a nonempty closed convex set. The
146 projection of $x \in \mathbb{R}^n$ onto \mathcal{C} is $\text{Proj}_{\mathcal{C}}(x) := \arg \min_{y \in \mathcal{C}} \|x - y\|_2$.*

147 Finally, we define the projection of the steepest descent direction of a function
148 onto the tangent cone [9, Equation (3.1)] associated with Ω at a point x .

149 **DEFINITION 2.4.** *Given a differentiable function $h : \mathbb{R}^n \rightarrow \mathbb{R}$, a convex set \mathcal{C} , and
150 $x \in \mathcal{C}$, the projection of the steepest descent direction of h at x onto $T_{\mathcal{C}}(x)$ is*

151
$$\nabla_{\mathcal{C}} h(x) = \arg \min_{v \in T_{\mathcal{C}}(x)} \|v + \nabla h(x)\|_2 \equiv \text{Proj}_{T_{\mathcal{C}}(x)}(-\nabla h(x)).$$

152 **3. Algorithm Framework.** The algorithm that we propose for solving prob-
153 lem (1.1) is stated as Algorithm 3.1. Given the k th iterate $x_k \in \Omega$, the k th proximal
154 parameter α_k , and constant $\kappa_v \in \mathbb{R}_{>0}$, we first compute a direction v_k that reduces
155 linearized infeasibility within Ω . In particular, the vector v_k is computed as an ap-
156 proximate solution to the bound-constrained trust-region subproblem

157 (3.1)
$$\min_{v \in \mathbb{R}^n} m_k(v) \text{ s.t. } \|v\|_2 \leq \kappa_v \alpha_k \delta_k, \quad x_k + v \in \Omega \quad \text{with} \quad m_k(v) := \frac{1}{2} \|c_k + J_k v\|_2^2,$$

158 where

159 (3.2)
$$\delta_k := \|\nabla_{\Omega} \psi(x_k)\|_2 \equiv \|\text{Proj}_{T_{\Omega}(x_k)}(-J_k^T c_k)\|_2 \quad \text{with} \quad \psi(x) := \frac{1}{2} \|c(x)\|_2^2.$$

160 If $\delta_k = 0$, then $v_k \leftarrow 0$ solves (3.1). In this case, if $\|c_k\|_2 \neq 0$, we terminate our
161 algorithm in Line 7 since x_k is an infeasible stationary point, i.e., x_k is infeasible for
162 $c(x) = 0$ and is a first-order stationary point for the problem

163 (3.3)
$$\min_{x \in \Omega} \frac{1}{2} \|c(x)\|_2^2.$$

164 If $\delta_k \neq 0$, we compute an approximate solution v_k to (3.1) satisfying

165 (3.4)
$$\|v_k\|_2 \leq \kappa_v \alpha_k \delta_k, \quad x_k + v_k \in \Omega, \quad \text{and} \quad m_k(v_k) \leq m_k(v_k^c),$$

166 where v_k^c is a Cauchy point computed using a projected line search along the steepest
167 descent direction of m_k at $v = 0$. In particular, by defining

168 (3.5)
$$v_k(\beta) \leftarrow \text{Proj}_{\Omega}(x_k - \beta \nabla m_k(0)) - x_k \equiv \text{Proj}_{\Omega}(x_k - \beta J_k^T c_k) - x_k,$$

169 we define the Cauchy point as

170 (3.6) $v_k^c := v_k(\beta_k) \equiv \text{Proj}_\Omega(x_k - \beta_k J_k^T c_k) - x_k$

171 where, for some chosen $\gamma \in (0, 1)$,

172 (3.7) $\beta_k = \gamma^{i_k}$

173 with i_k being the smallest nonnegative integer such that β_k in (3.7) satisfies

174 (3.8) $\|v_k(\beta_k)\|_2 \leq \kappa_v \alpha_k \delta_k$ and $m_k(v_k(\beta_k)) \leq m_k(0) + \eta_m \nabla m_k(0)^T v_k(\beta_k)$

175 for some constant $\eta_m \in (0, 1)$. (It follows from Lemma 4.2 later on that this procedure
176 is well defined.) Note from the definition of v_k^c (see (3.6) which ensures $x_k + v_k^c \in \Omega$)
177 and (3.8) that v_k^c itself satisfies the conditions required of v_k in (3.4).

Algorithm 3.1 PG method for solving problem (1.1)

```

1: Input:  $x_0 \in \Omega$ ,  $\{\alpha_0, \tau_{-1}, \kappa_\tau, \kappa_v\} \subset \mathbb{R}_{>0}$ , and  $\{\xi, \eta_\Phi, \sigma_c, \epsilon_\tau, \gamma, \eta_m\} \subset (0, 1)$ 
2: for  $k = 0, 1, 2, \dots$  do
3:   compute  $\delta_k$  in (3.2)
4:   if  $\delta_k = 0$  then
5:     set  $v_k \leftarrow 0$ 
6:     if  $\|c_k\|_2 \neq 0$  then
7:       return  $x_k$  (infeasible stationary point)
8:     end if
9:   else ( $\delta_k \neq 0$ )
10:    compute  $v_k$  as an approximate solution to (3.1) satisfying (3.4)
11:   end if
12:   compute  $u_k$  as the unique solution to subproblem (3.9)
13:   set  $s_k \leftarrow v_k + u_k$ 
14:   if  $\|s_k\|_2/\alpha_k = 0$  then
15:     return  $x_k$  (first-order KKT point for problem (1.1))
16:   end if
17:   compute  $\tau_k$  using (3.10)
18:   if  $\Phi_{\tau_k}(x_k + s_k) - \Phi_{\tau_k}(x_k) \leq -\eta_\Phi \left( \frac{\tau_k}{4\alpha_k} \|s_k\|_2^2 + \sigma_c (\|c_k\|_2 - \|c_k + J_k s_k\|_2) \right)$  then
19:     set  $x_{k+1} \rightarrow x_k + s_k$  and  $\alpha_{k+1} \rightarrow \alpha_k$ 
20:   else
21:     set  $x_{k+1} \rightarrow x_k$  and  $\alpha_{k+1} \rightarrow \xi \alpha_k$ 
22:   end if
23: end for

```

178 Next, we compute a direction u_k that maintains the level of linearized infeasibility
179 achieved by v_k while also reducing a model of the objective function. In particular,
180 we compute u_k as the unique solution to the strongly convex subproblem

181 (3.9)
$$\begin{aligned} & \min_{u \in \mathbb{R}^n} g_k^T u + \frac{1}{2\alpha_k} \|u\|_2^2 + \frac{1}{\alpha_k} v_k^T u + r(x_k + v_k + u) \\ & \text{s.t. } J_k u = 0, \quad x_k + v_k + u \in \Omega. \end{aligned}$$

182 Concerning subproblem (3.9), note that $u = 0$ is feasible and that its solution is unique
183 since it is a convex optimization problem with a strongly convex objective function.
184 The overall trial step s_k is defined as $s_k = v_k + u_k$.

To determine whether the trial step s_k is accepted, we adopt the ℓ_2 merit function, which for merit parameter $\tau \in \mathbb{R}_{>0}$ is defined as

$$\Phi_\tau(x) := \tau(f(x) + r(x)) + \|c(x)\|_2.$$

185 During each iteration, the merit parameter is updated so that s_k is a descent direction
186 for the merit function. To ensure that this holds, note that the directional derivative
187 of Φ_τ at x_k along s_k , denoted as $D_{\Phi_\tau}(x_k, s_k)$, satisfies (see [16, Lemma 3.3])

$$\begin{aligned} 188 \quad & D_{\Phi_\tau}(x_k, s_k) \\ 189 \quad & \leq \tau(g_k^T s_k + r(x_k + s_k) - r_k) + \|c_k + J_k s_k\|_2 - \|c_k\|_2 \\ 190 \quad & = -\frac{\tau}{2\alpha_k} \|s_k\|_2^2 + \tau \underbrace{(g_k^T s_k + \frac{1}{2\alpha_k} \|s_k\|_2^2 + r(x_k + s_k) - r_k)}_{A_k} + \|c_k + J_k s_k\|_2 - \|c_k\|_2. \end{aligned}$$

191 Next, for a chosen parameter $\sigma_c \in (0, 1)$, we set

$$192 \quad \tau_{k,\text{trial}} \leftarrow \begin{cases} \infty & \text{if } A_k \leq 0, \\ \frac{(1-\sigma_c)(\|c_k\|_2 - \|c_k + J_k s_k\|_2)}{g_k^T s_k + \frac{1}{2\alpha_k} \|s_k\|_2^2 + r(x_k + s_k) - r_k} & \text{otherwise,} \end{cases}$$

193 and then set, for some chosen $\epsilon_\tau \in (0, 1)$, the value of the k th merit parameter as

$$194 \quad (3.10) \quad \tau_k \leftarrow \begin{cases} \tau_{k-1} & \text{if } \tau_{k-1} \leq \tau_{k,\text{trial}}, \\ \min\{(1 - \epsilon_\tau)\tau_{k-1}, \tau_{k,\text{trial}}\} & \text{otherwise.} \end{cases}$$

195 This merit parameter update strategy ensures that

$$196 \quad D_{\Phi_{\tau_k}}(x_k, s_k) \leq -\frac{\tau_k}{2\alpha_k} \|s_k\|_2^2 - \sigma_c (\|c_k\|_2 - \|c_k + J_k s_k\|_2),$$

197 meaning that the negative directional derivative is lower bounded by critical measures
198 of problem (1.1). The k th iteration is completed by checking whether the merit
199 function achieves sufficient decrease (see Line 18), and then defining the next iterate
200 and proximal parameter accordingly. Specifically, if sufficient decrease in the merit
201 function is achieved, the trial step is accepted (i.e., $x_{k+1} \leftarrow x_k + s_k$) and the proximal
202 parameter value is maintained (i.e., $\alpha_{k+1} \leftarrow \alpha_k$); otherwise, the trial step is rejected
203 (i.e., $x_{k+1} \leftarrow x_k$) and the proximal parameter value is decreased (i.e., $\alpha_{k+1} \leftarrow \xi \alpha_k$
204 for some $\xi \in (0, 1)$). This update strategy motivates the definition of the index set

$$205 \quad (3.11) \quad \mathcal{S} := \{k \in \mathbb{N} : x_{k+1} = x_k + s_k\},$$

206 which contains the indices of the successful iterations associated with Algorithm 3.1.
207 The following assumption is assumed to hold throughout the paper.

208 ASSUMPTION 3.1. *Let $\mathcal{X} \subseteq \mathbb{R}^n$ be an open convex set containing the iterate se-
209 quences $\{x_k\}$ and $\{x_k + v_k\}$ generated by Algorithm 3.1. The function $f : \mathbb{R}^n \rightarrow \mathbb{R}$
210 is bounded over \mathcal{X} , and its gradient function $\nabla f : \mathbb{R}^n \rightarrow \mathbb{R}$ is Lipschitz continuous
211 and bounded in norm over \mathcal{X} . Similarly, for all $i \in [m]$, the constraint function
212 $c_i : \mathbb{R}^n \rightarrow \mathbb{R}$ is bounded over \mathcal{X} , and its gradient function $\nabla c_i : \mathbb{R}^n \rightarrow \mathbb{R}$ is Lipschitz
213 continuous and bounded in norm over \mathcal{X} . Finally, the function $r : \mathbb{R}^n \rightarrow \mathbb{R}_{\geq 0}$ is
214 convex, and has bounded subdifferential $\partial r : \mathbb{R}^n \rightarrow \mathbb{R}^n$ over \mathcal{X} .*

215 Under Assumption 3.1, there exist constants $(f_{\inf}, f_{\sup}, \kappa_{\nabla f}, \kappa_{\partial r}, \kappa_c, \kappa_J, L_g, L_J) \in$
 216 $\mathbb{R} \times \mathbb{R} \times \mathbb{R}_{>0} \times \mathbb{R}_{>0} \times \mathbb{R}_{>0} \times \mathbb{R}_{>0} \times \mathbb{R}_{>0}$ such that for all $x \in \mathcal{X}$ one has

217 (3.12)
$$\begin{aligned} f_{\inf} \leq f(x) \leq f_{\sup}, \quad \|\nabla f(x)\|_2 \leq \kappa_{\nabla f}, \quad \|\partial r(x)\|_2 \leq \kappa_{\partial r}, \\ \|c(x)\|_2 \leq \kappa_c, \quad \|\nabla c(x)^T\|_2 \leq \kappa_J, \end{aligned}$$

218 and for all $(x, \bar{x}) \in \mathcal{X} \times \mathcal{X}$ one has

219 (3.13)
$$\|\nabla f(x) - \nabla f(\bar{x})\|_2 \leq L_g \|x - \bar{x}\|_2 \text{ and } \|\nabla c(x)^T - \nabla c(\bar{x})^T\|_2 \leq L_J \|x - \bar{x}\|_2.$$

220 **4. Preliminary Properties Related to the Subproblems.** In this section,
 221 we discuss properties related to the subproblems used in Algorithm 3.1.

222 **4.1. Subproblem (3.1).** In this section, we present properties related to the
 223 computation of the Cauchy point of subproblem (3.1), following by a final result
 224 related to the computed feasibility steps. Recall that the Cauchy point is defined
 225 in (3.6). Our first lemma summarizes properties of $v_k(\cdot)$ (recall (3.5)).

226 LEMMA 4.1. *Consider $v_k(\cdot)$ defined in (3.6). For all $0 < \beta_2 \leq \beta_1$, it holds that*

227 (4.1a)
$$\|v_k(\beta_2)\|_2 \leq \|v_k(\beta_1)\|_2 \text{ and}$$

 228 (4.1b)
$$\|v_k(\beta_1)/\beta_1\|_2 \leq \|v_k(\beta_2)/\beta_2\|_2.$$

229 For all $\beta \in \mathbb{R}_{>0}$ it holds that

230 (4.2a)
$$-\nabla m_k(0)^T v_k(\beta) \geq \|v_k(\beta)\|_2^2 / \beta \text{ and}$$

 231 (4.2b)
$$\delta_k \equiv \|\nabla_{\Omega} \psi(x_k)\|_2 \geq \|v_k(\beta)/\beta\|_2.$$

232 Finally, the following limit holds:

233 (4.3)
$$\lim_{\beta \rightarrow 0^+} v_k(\beta)/\beta = \nabla_{\Omega} \psi(x_k).$$

234 *Proof.* Parts (4.1a)–(4.2a) follow from [48, Lemma 2], part (4.3) follows from [40,
 235 Proposition 2], and part (4.2b) follows by combining (4.3), (4.1b), and (3.2). \square

236 The next result is a special case of [41, Lemma 4.3].

237 LEMMA 4.2. *Suppose that $\delta_k \neq 0$. If $\beta \in \mathbb{R}_{>0}$ satisfies $m_k(v_k(\beta)) > m_k(0) +$
 238 $\eta_m \nabla m(0)^T v_k(\beta)$, then $\beta \geq (1 - \eta_m) / \|J_k^T J_k\|_2$.*

239 We now bound the decrease in m_k by using the argument in [41, Theorem 4.4].

240 LEMMA 4.3. *Suppose that $\delta_k \neq 0$. Then, with respect to the constant $\bar{\kappa}_1 :=$
 241 $\min\{1, \gamma(1 - \eta_m), \gamma\} \equiv \gamma(1 - \eta_m) \in (0, 1)$, the Cauchy point $v_k^c \equiv v_k(\beta_k)$ satisfies*

242
$$-\nabla m_k(0)^T v_k(\beta_k) \geq \bar{\kappa}_1 \left[\frac{\|v_k(\beta_k)\|_2}{\beta_k} \right] \min \left\{ \frac{1}{1 + \|J_k^T J_k\|_2} \left[\frac{\|v_k(\beta_k)\|_2}{\beta_k} \right], \kappa_v \alpha_k \delta_k \right\}.$$

243 Moreover, with respect to the constant $\kappa_1 := \bar{\kappa}_1 \eta_m \equiv \gamma \eta_m (1 - \eta_m) \in (0, 1)$, it satisfies

244
$$m_k(0) - m_k(v_k(\beta_k)) \geq \kappa_1 \left[\frac{\|v_k(\beta_k)\|_2}{\beta_k} \right] \min \left\{ \frac{1}{1 + \|J_k^T J_k\|_2} \left[\frac{\|v_k(\beta_k)\|_2}{\beta_k} \right], \kappa_v \alpha_k \delta_k \right\}.$$

245 *Proof.* We begin by proving the first inequality by considering three cases.
246 **Case 1:** $\beta_k = 1$. It follows from (4.2a) and $\beta_k = 1$ that

$$247 \quad -\nabla m_k(0)^T v_k(\beta_k) \geq \beta_k \left[\frac{\|v_k(\beta_k)\|_2}{\beta_k} \right]^2 = \left[\frac{\|v_k(\beta_k)\|_2}{\beta_k} \right]^2$$

$$248 \quad \geq \frac{\|v_k(\beta_k)\|_2}{\beta_k} \min \left\{ \frac{\|v_k(\beta_k)\|_2}{\beta_k}, \kappa_v \alpha_k \delta_k \right\}.$$

249 Combining this result with $1/(1 + \|J_k^T J_k\|_2) \leq 1$ shows that the first inequality holds.
250 **Case 2:** $\beta_k < 1$ and $\|v_k(\gamma^{-1} \beta_k)\|_2 \leq \kappa_v \alpha_k \delta_k$. Since $\gamma \in (0, 1)$, $\|v_k(\gamma^{-1} \beta_k)\|_2 \leq$
251 $\kappa_v \alpha_k \delta_k$, and the step size $\gamma^{-1} \beta_k$ was not accepted by the search procedure, the suffi-
252 cient decrease condition must not have held, i.e., it must hold that $m_k(v_k(\gamma^{-1} \beta_k)) >$
253 $m_k(0) + \eta_m \nabla m_k(0)^T v_k(\gamma^{-1} \beta_k)$. Combining this inequality with Lemma 4.2 gives
254 $\gamma^{-1} \beta_k \geq (1 - \eta_m)/\|J_k^T J_k\|_2$. Combining this with (4.2a) gives

$$255 \quad -\nabla m_k(0)^T v_k(\beta_k) \geq \beta_k \left[\frac{\|v_k(\beta_k)\|_2}{\beta_k} \right]^2 \geq \gamma \frac{(1 - \eta_m)}{1 + \|J_k^T J_k\|_2} \left[\frac{\|v_k(\beta_k)\|_2}{\beta_k} \right]^2$$

$$256 \quad \geq \gamma (1 - \eta_m) \frac{\|v_k(\beta_k)\|_2}{\beta_k} \min \left\{ \frac{1}{1 + \|J_k^T J_k\|_2} \left[\frac{\|v_k(\beta_k)\|_2}{\beta_k} \right], \kappa_v \alpha_k \delta_k \right\}$$

257 so that the first inequality again holds, and completes the proof for this case.

258 **Case 3:** $\beta_k < 1$ and $\|v_k(\gamma^{-1} \beta_k)\|_2 > \kappa_v \alpha_k \delta_k$. It follows from (4.1b) and the fact
259 that $\gamma \in (0, 1)$ that $\frac{\|v_k(\beta_k)\|_2}{\beta_k} \geq \frac{\|v_k(\gamma^{-1} \beta_k)\|_2}{\gamma^{-1} \beta_k}$. After rearrangement and using the fact
260 that $\|v_k(\gamma^{-1} \beta_k)\|_2 > \kappa_v \alpha_k \delta_k$ in this case, we obtain $\gamma^{-1} \|v_k(\beta_k)\|_2 \geq \|v_k(\gamma^{-1} \beta_k)\|_2 >$
261 $\kappa_v \alpha_k \delta_k$, which combined with (4.2a) yields

$$262 \quad -\nabla m_k(0)^T v_k(\beta_k) \geq \|v_k(\beta_k)\|_2 \left[\frac{\|v_k(\beta_k)\|_2}{\beta_k} \right] > \gamma \kappa_v \alpha_k \delta_k \left[\frac{\|v_k(\beta_k)\|_2}{\beta_k} \right]$$

$$263 \quad \geq \gamma \left[\frac{\|v_k(\beta_k)\|_2}{\beta_k} \right] \min \left\{ \frac{1}{1 + \|J_k^T J_k\|_2} \left[\frac{\|v_k(\beta_k)\|_2}{\beta_k} \right], \kappa_v \alpha_k \delta_k \right\},$$

264 so that the first inequality again holds, and completes the proof for this case.

265 The second inequality follows from the first inequality and (3.8). \square

266 Combining the previous result with Lemma 4.1 gives new lower bounds.

267 **LEMMA 4.4.** For $\kappa_1 \in (0, 1]$ in Lemma 4.3, the Cauchy point $v_k^c \equiv v_k(\beta_k)$ yields

$$268 \quad (4.4a) \quad m_k(0) - m_k(v_k^c) \geq \kappa_1 \left[\frac{\|v_k(\beta_k)\|_2}{\beta_k} \right]^2 \min \left\{ \frac{1}{1 + \|J_k^T J_k\|_2}, \kappa_v \alpha_k \right\}$$

$$269 \quad (4.4b) \quad \geq \kappa_1 \|v_k(1)\|_2^2 \min \left\{ \frac{1}{1 + \|J_k^T J_k\|_2}, \kappa_v \alpha_k \right\}$$

270 and

$$271 \quad (4.5) \quad \|c_k\|_2 - \|c_k + J_k v_k^c\|_2 \geq \frac{\kappa_1}{\kappa_c} \|v_k(1)\|_2^2 \min \left\{ \frac{1}{1 + \|J_k^T J_k\|_2}, \kappa_v \alpha_k \right\}.$$

272 *Proof.* Inequality (4.4a) follows from Lemma 4.3, $v_k^c = v_k(\beta_k)$, and (4.2b) with
273 $\beta = \beta_k$. Inequality (4.4b) follows from (4.1b) since $\beta_k \leq 1$.

274 It follows from (4.4a) that $\|c_k + J_k v_k^c\|_2 \leq \|c_k\|_2$. If $\|c_k\|_2 = 0$, then (4.5) follows
275 trivially. Otherwise, it follows from $\|c_k + J_k v_k^c\|_2 \leq \|c_k\|_2$ that

$$276 \quad (4.6) \quad \begin{aligned} \|c_k\|_2^2 - \|c_k + J_k v_k^c\|_2^2 &= (\|c_k\|_2 + \|c_k + J_k v_k^c\|_2)(\|c_k\|_2 - \|c_k + J_k v_k^c\|_2) \\ &\leq 2\|c_k\|_2(\|c_k\|_2 - \|c_k + J_k v_k^c\|_2). \end{aligned}$$

277 Combining (4.6) and (4.4) we have

$$278 \quad 2\|c_k\|_2(\|c_k\|_2 - \|c_k + J_k v_k^c\|_2) \geq \|c_k\|_2^2 - \|c_k + J_k v_k^c\|_2^2 = 2(m_k(0) - m_k(v_k^c)) \\ 279 \quad \geq 2\kappa_1\|v_k(1)\|_2^2 \min \left\{ \frac{1}{1 + \|J_k^T J_k\|_2}, \kappa_v \alpha_k \right\}.$$

280 Diving both sides by $2\|c_k\|_2$ and using (3.12) gives (4.5). \square

281 Our next lemma relates the computation of v_k to the measure δ_k . We suspect the
282 first result is well-known in the literature but we could not find a suitable reference.

283 **LEMMA 4.5.** *The following results hold.*

- 284 (i) *If $\|v_k(1)\|_2 = 0$, then $\delta_k = 0$.*
- 285 (ii) *$\|v_k\|_2 = 0$ if and only if $\delta_k = 0$.*
- 286 (iii) *If $\delta_k = 0$, then x_k is a first-order KKT point for problem (3.3).*

287 *Proof.* To prove part (i), we suppose that $\|v_k(1)\|_2 = 0$. Note that $0 = \|v_k(1)\|_2 =$
288 $\|\text{Proj}_\Omega(x_k - J_k^T c_k) - x_k\|_2$ implies that $\text{Proj}_\Omega(x_k - J_k^T c_k) = x_k$. Using this fact, we
289 can apply the projection theorem [6, Proposition 1.1.9] to obtain

$$290 \quad (-J_k^T c_k)^T (z - x_k) = (x_k - J_k^T c_k - x_k)^T (z - x_k) \leq 0 \text{ for all } z \in \Omega,$$

291 which is equivalent to $-J_k^T c_k \in N_\Omega(x_k)$. It now follows from Definition 2.2 that

$$292 \quad (4.7) \quad (-J_k^T c_k)^T v \leq 0 \text{ for all } v \in T_\Omega(x_k).$$

293 Using (4.7) and nonnegativity of norms, we find that

$$294 \quad \frac{1}{2}\|v + J_k^T c_k\|_2^2 = \frac{1}{2}(\|v\|_2^2 + 2v^T J_k^T c_k + \|J_k^T c_k\|_2^2) \geq \frac{1}{2}\|J_k^T c_k\|_2^2 \text{ for all } v \in T_\Omega(x_k).$$

It follows from this inequality and $\frac{1}{2}\|v + J_k^T c_k\|_2^2$ being strongly convex in v that

$$0 = \arg \min_{v \in T_\Omega(x_k)} \frac{1}{2}\|v + J_k^T c_k\|_2^2 = \arg \min_{v \in T_\Omega(x_k)} \|v + J_k^T c_k\|_2 = \text{Proj}_{T_\Omega(x_k)}(-J_k^T c_k) = \nabla_\Omega(\psi(x_k)).$$

295 It now follows from (3.2) that $\delta_k = 0$, which completes the proof of part (i).

296 To prove part (ii), we first observe from Algorithm 3.1 that if $\delta_k = 0$ then $v_k = 0$.
297 Thus, it remains to prove that if $v_k = 0$, then $\delta_k = 0$. To do this, let us assume that
298 $v_k = 0$. It follows from the third condition in (3.4) and Lemma 4.4 that

$$299 \quad 0 = m_k(0) - m_k(v_k) \geq m_k(0) - m_k(v_k^c) \geq \kappa_1\|v_k(1)\|_2^2 \min \left\{ \frac{1}{1 + \|J_k^T J_k\|_2}, \kappa_v \alpha_k \right\}.$$

300 Since κ_1 , κ_v , and α_k are strictly positive, it follows that $\|v_k(1)\|_2 = 0$. We can combine
301 this result with part (i) to conclude that $\delta_k = 0$, which completes the proof.

302 The proof of part (iii) is provided in [9, Lemma 3.1(c)]. \square

303 **4.2. Subproblem (3.9).** With respect to subproblem (3.9), we recall that $u = 0$
 304 is feasible, the constraints are linear (meaning that the feasible region is convex and
 305 that a constraint qualification holds), and the objective function is strongly convex.
 306 Therefore, the unique solution u_k to subproblem (3.9) satisfies, for some $g_{r,k} \in \partial r(x_k +$
 307 $v_k + u_k)$, $y_k \in \mathbb{R}^m$, and $z_k \in \mathbb{R}^n$, the following conditions:

308 (4.8a) $g_k + \frac{1}{\alpha_k} u_k + \frac{1}{\alpha_k} v_k + g_{r,k} + J_k^T y_k + z_k = 0,$

309 (4.8b) $J_k u_k = 0, \text{ and}$

310 (4.8c) $\| \min\{x_k + v_k + u_k, -z_k\} \|_2 = 0,$

311 where the minimum of two vectors is taken componentwise. These conditions charac-
 312 terize u_k and will play a critical role in the analysis of Section 5. In particular, they
 313 allow us to establish the following bound on the size of the trial step.

314 LEMMA 4.6. *The trial step s_k satisfies $\|s_k\|_2 \geq \|\min\{x_k, -z_k\}\|_2$.*

315 *Proof.* It follows from $s_k = v_k + u_k$ and (4.8) that

316 (4.9) $-\frac{1}{\alpha_k} s_k = g_k + g_{r,k} + J_k^T y_k + z_k \text{ and } \|\min\{x_k + s_k, -z_k\}\|_2 = 0.$

317 The latter equality and min-inequalities give, for each $i \in \{1, 2, \dots, n\}$, that

318 $0 = \min\{[x_k + s_k]_i, -[z_k]_i\} \geq \min\{[x_k]_i, -[z_k]_i\} + \min\{[s_k]_i, 0\}.$

319 Combining this inequality with $\min\{[x_k]_i, -[z_k]_i\} \geq 0$ gives $0 \leq \min\{[x_k]_i, -[z_k]_i\} \leq$
 320 $-\min\{[s_k]_i, 0\}$. It follows from this inequality that

321
$$\begin{aligned} \|\min\{x_k, -z_k\}\|_2^2 &= \sum_{i=1}^n |\min\{[x_k]_i, -[z_k]_i\}|^2 \\ 322 &\leq \sum_{i=1}^n |\min\{[s_k]_i, 0\}|^2 \leq \sum_{i=1}^n |[s_k]_i|^2 = \|s_k\|_2^2. \end{aligned}$$

323 Taking the square-root of both sides of this inequality completes the proof. \square

324 **5. Analysis.** In this section, we present a complete convergence analysis for
 325 Algorithm 3.1 in both the finite termination case and infinite iteration case.

326 **5.1. Finite termination.** Our first result shows that the solutions to our sub-
 327 problems that define the trial step are both zero precisely when the trial step is zero.

328 LEMMA 5.1. *$s_k = 0$ if and only if $v_k = u_k = 0$.*

329 *Proof.* Since $s_k = v_k + u_k$, it follows that if $v_k = u_k = 0$, then $s_k = 0$. Thus,
 330 it remains to prove that if $s_k = 0$, then $v_k = u_k = 0$. For a proof by contradiction,
 331 suppose that $s_k = 0$ and $v_k \neq 0$. It follows from Lemma 4.5(i)(ii) that $v_k(1) \neq 0$, so
 332 that Lemma 4.4 gives $v_k^c \neq 0$. We may now combine this result with (4.2a) to obtain

333 $c_k^T J_k v_k^c = (J_k^T c_k)^T v_k^c = \nabla m_k(0)^T v_k^c \leq -\|v_k^c\|_2^2 / \beta_k < 0,$

334 which implies that $J_k v_k^c \neq 0$, i.e., that v_k^c is not in the nullspace of J_k . At the
 335 same time, we know from (4.8b) that u_k is in the nullspace of J_k . The previous two
 336 statements cannot both be true since $s_k = v_k + u_k = 0$ implies that $v_k = -u_k$, which
 337 is a contradiction. Therefore, we must conclude that $v_k = 0$. Combining this result
 338 with $s_k = v_k + u_k = 0$ shows that $u_k = 0$, and completes the proof. \square

339 We can now state our finite termination results for Algorithm 3.1.

340 **THEOREM 5.2.** *The following finite termination results hold for Algorithm 3.1.*

341 (i) *If Algorithm 3.1 terminates at Line 7, then x_k is an infeasible stationary*
 342 *point, i.e., x_k is a first-order KKT point for problem (3.3) and $\|c_k\|_2 \neq 0$.*
 343 (ii) *If Algorithm 3.1 terminates at Line 15, then x_k is a first-order KKT point*
 344 *for problem (1.1).*

345 *Proof.* We first prove part (i). If Algorithm 3.1 terminates at Line 7, then it
 346 follows from Lines 4 and 6 that $\delta_k = 0$ and $\|c_k\|_2 \neq 0$. It now follows from $\delta_k = 0$ and
 347 Lemma 4.5(iii) that x_k is a first-order KKT point for problem (3.3), as claimed.

348 For part (ii), we know that if Algorithm 3.1 terminates in Line 15 then $s_k = 0$,
 349 which from Lemma 5.1 implies that $u_k = v_k = 0$, and then Lemma 4.5(ii) implies
 350 that $\delta_k = 0$. Since termination did not occur in Line 7 of Algorithm 3.1, we know
 351 that $\|c_k\|_2 = 0$. It follows from $v_k = u_k = 0$ and (4.8) that there exists $g_{r,k} \in \partial r(x_k)$,
 352 $y_k \in \mathbb{R}^m$, and $z_k \in \mathbb{R}^n$ satisfying $g_k + g_{r,k} + J_k^T y_k + z_k = 0$ and $\|\min\{x_k, -z_k\}\|_2 = 0$.
 353 These equations and $\|c_k\|_2 = 0$ show that x_k is a first-order KKT point for (1.1). \square

354 **5.2. Infinite iterations.** We now consider the scenario where finite termination
 355 does not occur, meaning that Algorithm 3.1 performs an infinite number of iterations.

356 **5.2.1. Analysis under no constraint qualification.** In this section, we an-
 357 alyze properties of the iterate sequence $\{x_k\}$ generated by Algorithm 3.1 when no
 358 constraint qualification is assumed to hold. The key metric we consider is

359 (5.1)
$$\bar{\chi}_k := \max \{ \|g_k + g_{r,k} + J_k^T y_k + z_k\|_2, \|v_k(1)\|_2, \|\max\{x_k, -z_k\}\|_2 \},$$

360 where $g_{r,k} \in \mathbb{R}^n$, $y_k \in \mathbb{R}^m$, and $z_k \in \mathbb{R}^n$ are defined as those quantities satisfying (4.8).
 361 The first quantity in the max is a measure of stationarity for problem (1.1), the second
 362 quantity is a stationarity measure for problem (3.3), and the third quantity measures
 363 feasibility with respect to $x_k \in \Omega$, the sign of the Lagrange multiplier estimate z_k , and
 364 complementarity. In particular, we emphasize that $\|v_k(1)\|_2$ is used here in place of
 365 $\|c_k\|_2$ since a constraint qualification is not assumed to hold in this section, meaning
 366 that it is possible that the iterates do not converge toward feasibility.

367 Our first result gives a uniform upper bound on the sequence $\{\delta_k\}$ defined in (3.2).

368 **LEMMA 5.3.** *For all iterations $k \in \mathbb{N}$, we have that*

369 (5.2)
$$\delta_k \equiv \|\nabla_{\Omega} \psi(x_k)\|_2 \leq 2\kappa_J \|c_k\|_2 \leq 2\kappa_J \kappa_c.$$

370 *Proof.* Recall that $\nabla_{\Omega} \psi(x_k) = \arg \min \{ \|v + J_k^T c_k\|_2 : v \in T_{\Omega}(x_k) \}$. It follows
 371 from this fact, the triangle inequality, and $0 \in T_{\Omega}(x_k)$ that

372
$$\|\nabla_{\Omega} \psi(x_k)\|_2 - \|J_k^T c_k\|_2 \leq \|\nabla_{\Omega} \psi(x_k) + J_k^T c_k\|_2 \leq \|J_k^T c_k\|_2.$$

373 It follows from this inequality, how δ_k is defined in (3.2), and Assumption 3.1 that
 374 $\delta_k \equiv \|\nabla_{\Omega} \psi(x_k)\|_2 \leq 2\|J_k^T c_k\|_2 \leq 2\kappa_J \|c_k\|_2 \leq 2\kappa_J \kappa_c$, which completes the proof. \square

375 We can now prove an upper bound on A_k that is defined for $\tau_{k,\text{trial}}$.

376 **LEMMA 5.4.** *For all $k \in \mathbb{N}$, we have that*

377
$$g_k^T s_k + \frac{1}{2\alpha_k} \|s_k\|_2^2 + r(x_k + s_k) - r_k \leq 2(\kappa_{\nabla f} + \kappa_{\partial r}) \kappa_v \kappa_J \alpha_k \|c_k\|_2 + 2\kappa_v^2 \kappa_J^2 \kappa_c \alpha_k \|c_k\|_2.$$

378 *Proof.* By convexity of r , we know that

379 (5.3)
$$r(x_k + v_k) - r_k \leq (g_{r,k}^v)^T v_k \text{ for all } g_{r,k}^v \in \partial r(x_k + v_k).$$

380 It now follows that

$$\begin{aligned}
381 \quad & g_k^T s_k + \frac{1}{2\alpha_k} \|s_k\|_2^2 + r(x_k + s_k) - r_k \\
382 \quad & \stackrel{(i)}{\leq} g_k^T v_k + \frac{1}{2\alpha_k} \|v_k\|_2^2 + r(x_k + v_k) - r_k \\
383 \quad & \stackrel{(ii)}{\leq} g_k^T v_k + \frac{1}{2\alpha_k} \|v_k\|_2^2 + (g_{r,k}^v)^T v_k \\
384 \quad & \stackrel{(iii)}{\leq} (\|g_k\|_2 + \|g_{r,k}^v\|_2) \|v_k\|_2 + \frac{1}{2\alpha_k} \|v_k\|_2^2 \\
385 \quad & \stackrel{(iv)}{\leq} (\|g_k\|_2 + \|g_{r,k}^v\|_2) \kappa_v \alpha_k \delta_k + \frac{1}{2\alpha_k} \kappa_v^2 \alpha_k^2 \delta_k^2 \\
386 \quad & \stackrel{(v)}{=} (\|g_k\|_2 + \|g_{r,k}^v\|_2) \kappa_v \alpha_k \delta_k + \frac{1}{2} \kappa_v^2 \alpha_k \delta_k^2 \\
387 \quad & \stackrel{(vi)}{\leq} (\|g_k\|_2 + \|g_{r,k}^v\|_2) 2\kappa_v \alpha_k \kappa_J \|c_k\|_2 + 2\kappa_v^2 \alpha_k \kappa_J^2 \kappa_c \|c_k\|_2 \\
388 \quad & \stackrel{(vii)}{\leq} (\kappa_{\nabla f} + \kappa_{\partial r}) 2\kappa_v \kappa_J \alpha_k \|c_k\|_2 + 2\kappa_v^2 \kappa_J^2 \kappa_c \alpha_k \|c_k\|_2,
\end{aligned}$$

389 where (i) follows from substituting $s_k = v_k + u_k$ and using the fact that $u_k = 0$ is a
390 feasible solution to the tangential subproblem (3.9), (ii) follows from (5.3), (iii) follows
391 from the Cauchy-Schwartz inequality, (iv) follows from $\|v_k\|_2 \leq \kappa_v \alpha_k \delta_k$ in (3.4), (v)
392 follows from canceling an α_k from the second term, (vi) follows from Lemma 5.3
393 and (3.12), and (vii) follows from (3.12). This completes the proof. \square

394 The first part of the next lemma establishes that the merit parameter never needs
395 to be decreased for any iteration $k \in \mathbb{N}$ such that $v_k(1) = 0$. On the other hand, for
396 all $k \in \mathbb{N}$ satisfying $v_k(1) \neq 0$, the second part of the lemma provides a lower bound
397 on how small the previous merit parameter τ_{k-1} could have been when decreased.

398 **LEMMA 5.5.** *The following merit parameter update results hold.*

399 (i) *For each $k \in \mathbb{N} \setminus \{0\}$, if $v_k(1) = 0$, then $\tau_{k,\text{trial}} = \infty$ and $\tau_k \leftarrow \tau_{k-1}$.*
400 (ii) *There exists a constant $\epsilon_\tau > 0$ such that, for all $k \in \mathbb{N}$ satisfying $\|v_k(1)\|_2 \neq 0$
401 and $\tau_k < \tau_{k-1}$, it holds that $\tau_{k-1} \geq \epsilon_\tau \|v_k(1)\|_2^2$.*

402 *Proof.* We first prove part (i). To this end, first observe that $v_k(1) = 0$ and
403 Lemma 4.5(i) imply that $\delta_k = 0$, and therefore $v_k = 0$ holds as a consequence of
404 Lemma 4.5(ii). Next, since $u = 0$ is feasible for subproblem (3.9) we know that

$$g_k^T u_k + \frac{1}{2\alpha_k} \|u_k\|_2^2 + \frac{1}{\alpha_k} v_k^T u_k + r(x_k + v_k + u_k) \leq r(x_k + v_k),$$

402 which may be combined with $v_k = 0$ to obtain $g_k^T s_k + \frac{1}{2\alpha_k} \|s_k\|_2^2 + r(x_k + s_k) \leq r(x_k)$.
403 This inequality and the definition of $\tau_{k,\text{trial}}$ gives $\tau_{k,\text{trial}} = \infty$, so that $\tau_k \leftarrow \tau_{k-1}$.

404 Next, we prove part (ii). It follows from the merit parameter update rule (3.10),
405 $J_k u_k = 0$ (see (4.8b)), the third condition in (3.4), (4.5), (3.12), Lemma 5.4, and
406 monotonicity of the proximal parameter sequence $\{\alpha_k\}$ that if $\tau_k < \tau_{k-1}$, then

$$\begin{aligned}
407 \quad & \tau_{k-1} > \frac{(1 - \sigma_c)(\|c_k\|_2 - \|c_k + J_k v_k\|_2)}{g_k^T s_k + \frac{1}{2\alpha_k} \|s_k\|_2^2 + r(x_k + s_k) - r_k} \\
408 \quad & \geq \frac{(1 - \sigma_c)(\|c_k\|_2 - \|c_k + J_k v_k^c\|_2)}{g_k^T s_k + \frac{1}{2\alpha_k} \|s_k\|_2^2 + r(x_k + s_k) - r_k} \\
409 \quad & \geq \frac{(1 - \sigma_c) \frac{\kappa_1}{\kappa_c} \|v_k(1)\|_2^2 \min \left\{ \frac{1}{1 + \|J_k^T J_k\|_2}, \kappa_v \alpha_k \right\}}{2(\kappa_{\nabla f} + \kappa_{\partial r}) \kappa_v \kappa_J \alpha_k \|c_k\|_2 + 2\kappa_v^2 \kappa_J^2 \kappa_c \alpha_k \|c_k\|_2}
\end{aligned}$$

410
$$\geq \frac{(1 - \sigma_c)\kappa_1\|v_k(1)\|_2^2 \min\left\{\frac{1}{1 + \|J_k^T J_k\|_2}, \kappa_v \alpha_k\right\}}{2(\kappa_{\nabla f} + \kappa_{\partial r})\kappa_v \kappa_J \kappa_c^2 \alpha_k + 2\kappa_v^2 \kappa_J^2 \kappa_c^2 \alpha_k} \geq \epsilon_\tau \|v_k(1)\|_2^2,$$

411 where $\epsilon_\tau := \frac{(1 - \sigma_c)\kappa_1 \min\left\{\frac{1}{1 + \kappa_J^2 \alpha_0}, \kappa_v\right\}}{2(\kappa_{\nabla f} + \kappa_{\partial r})\kappa_v \kappa_J \kappa_c^2 + 2\kappa_v^2 \kappa_J^2 \kappa_c^2} > 0$, thus completing the proof. \square

412 Next, under the assumption that the merit parameter sequence stays bounded
413 away from zero, we give a positive lower bound on $\{\alpha_k\}$.

414 LEMMA 5.6. *Assume that there exists $\tau_{\min} > 0$ such that $\tau_k \geq \tau_{\min}$ for all $k \in \mathbb{N}$.
415 If $\alpha_k \leq \frac{\tau_{\min}}{2(\tau_{\min} L_g + L_J)}$, then $k \in \mathcal{S}$. Thus, for all $k \in \mathbb{N}$,*

416 (5.4)
$$\alpha_k \geq \alpha_{\min} := \min\{\alpha_0, \frac{\xi \tau_{\min}}{2(\tau_{\min} L_g + L_J)}\} > 0$$

417 and a bound on the number of unsuccessful iterations is given by

418 (5.5)
$$|\{k \in \mathbb{N} : x_k \notin \mathcal{S}\}| \leq \max\left(0, \left\lceil \frac{\log\left(\frac{\tau_{\min}}{2\alpha_0(\tau_{\min} L_g + L_J)}\right)}{\log(\xi)} \right\rceil\right).$$

419 *Proof.* It follows from (3.13) and the merit parameter update rule (3.10) that

420 (5.6)
$$\begin{aligned} & \Phi_{\tau_k}(x_k + s_k) - \Phi_{\tau_k}(x_k) \\ &= \tau_k(f(x_k + s_k) + r(x_k + s_k)) + \|c(x_k + s_k)\|_2 - \tau_k(f_k + r_k) - \|c_k\|_2. \\ &\leq \tau_k g_k^T s_k + \tau_k(r(x_k + s_k) - r_k) + \|c_k + J_k s_k\|_2 - \|c_k\|_2 + \frac{1}{2}(\tau_k L_g + L_J) \|s_k\|_2^2 \\ &\leq -\frac{\tau_k}{4\alpha_k} \|s_k\|_2^2 - \sigma_c(\|c_k\|_2 - \|c_k + J_k s_k\|_2) + \frac{1}{2}(-\frac{\tau_k}{2\alpha_k} + \tau_k L_g + L_J) \|s_k\|_2^2. \end{aligned}$$

421 Suppose that $k \in \mathbb{N}$ satisfies $\alpha_k \leq \frac{\tau_{\min}}{2(\tau_{\min} L_g + L_J)}$. It follows from the fact that $\frac{\tau}{2(\tau L_g + L_J)}$
422 is a monotonically increasing function on the nonnegative real line as a function
423 of τ that $\alpha_k \leq \frac{\tau_{\min}}{2(\tau_{\min} L_g + L_J)} \leq \frac{\tau_k}{2(\tau_k L_g + L_J)}$, which after rearrangement shows that
424 $-\frac{\tau_k}{2\alpha_k} + \tau_k L_g + L_J \leq 0$. The previous inequality, $\|s_k\|_2 \neq 0$ (since finite termination
425 does not occur), (4.5), $\|c_k + J_k v_k\|_2 \leq \|c_k + J_k v_k^c\|_2$, $J_k u_k = 0$, and $\eta_\Phi \in (0, 1)$ give

426
$$(1 - \eta_\Phi)(\frac{\tau_k}{4\alpha_k} \|s_k\|_2^2 + \sigma_c(\|c_k\|_2 - \|c_k + J_k s_k\|_2)) > 0 \geq \frac{1}{2}(-\frac{\tau_k}{2\alpha_k} + \tau_k L_g + L_J) \|s_k\|_2^2.$$

427 Combining this inequality with (5.6) shows that $k \in \mathcal{S}$, as claimed. This result and
428 the update strategy for the proximal parameter α_k ensures that the bound in (5.4)
429 holds. Finally, the first result we proved in this lemma and the update strategy
430 for $\{\alpha_k\}$ shows that the maximum number of unsuccessful iterations is the smallest
431 nonnegative integer n_u such that $\xi^{n_u} \alpha_0 \leq \frac{\tau_{\min}}{2(\tau_{\min} L_g + L_J)}$, which gives the final result. \square

432 It will be convenient for our analysis to define the shifted merit function

433 (5.7)
$$\bar{\Phi}_\tau(x) := \tau(f(x) - f_{\inf} + r(x)) + \|c(x)\|_2,$$

434 where f_{\inf} is defined in (3.12). We stress that the (typically) unknown value f_{\inf} is
435 never used in the algorithm statement or its implementation, only in our analysis.

436 LEMMA 5.7. *The following properties hold for the shifted merit function.*

437 (i) *For all $\{x, y\} \subset \mathbb{R}^n$ and $\tau \in \mathbb{R}_{>0}$, it holds that $\bar{\Phi}_\tau(x) - \bar{\Phi}_\tau(y) = \Phi_\tau(x) - \Phi_\tau(y)$.*
438 (ii) *For all $x \in \mathbb{R}^n$ and $0 < \tau_2 \leq \tau_1$, it holds that $\bar{\Phi}_{\tau_2}(x) \leq \bar{\Phi}_{\tau_1}(x)$.*

439 (iii) The sequence $\{\bar{\Phi}_{\tau_k}(x_k)\}$ is monotonically decreasing.

440 *Proof.* See [16, Lemma 3.14] for a proof. \square

441 We can now state our main convergence result for this section.

442 THEOREM 5.8. *Let Assumption 3.1 hold. One of the following two cases occurs.*

443 (i) *There exists $\tau_{\min} > 0$ such that $\tau_k \geq \tau_{\min}$ for all $k \in \mathbb{N}$. In this case, the*
 444 *following hold: (a) $\alpha_k \geq \alpha_{\min} := \min\{\alpha_0, \frac{\xi \tau_{\min}}{2(\tau_{\min} L_g + L_J)}\}$ for all $k \in \mathbb{N}$; (b) If*
 445 *$\{k_1, k_2\} \subset \mathbb{N}$ are two iterations with $k_1 < k_2$ such that $k \in \mathcal{S}$ and $\bar{\chi}_k > \epsilon$ for*
 446 *all iterations $k_1 \leq k < k_2$, then it follows that*

$$447 (5.8) \quad k_2 - k_1 \leq \left\lceil \frac{\tau_0(f(x_0) + r(x_0) - f_{\inf}) + \|c(x_0)\|_2}{\bar{\kappa}_\Phi \epsilon^2} \right\rceil$$

448 with $\bar{\kappa}_\Phi = \eta_\Phi \min \left\{ \frac{\tau_{\min} \alpha_{\min}}{8}, \frac{\tau_{\min}}{8\alpha_0}, \frac{\sigma_c \kappa_1}{\kappa_c} \min \left\{ \frac{1}{1+\kappa_J^2}, \kappa_v \alpha_{\min} \right\} \right\}$; and (c) for any
 449 given $\epsilon > 0$, the maximum number of iterations before $\bar{\chi}_k \leq \epsilon$ is

$$450 \quad \left(\max \left\{ 0, \left\lceil \frac{\log \left(\frac{\tau_{\min}}{2\alpha_0(\tau_{\min} L_g + L_J)} \right)}{\log(\xi)} \right\rceil \right\} + 1 \right) \left\lceil \frac{\tau_0(f(x_0) - f_{\inf} + r(x_0)) + \|c(x_0)\|_2}{\bar{\kappa}_\Phi \epsilon^2} \right\rceil.$$

451 (ii) *The merit parameter values converge to zero, i.e., $\lim_{k \rightarrow \infty} \tau_k = 0$. In this*
 452 *case, there exists a subsequence $\mathcal{K} \subseteq \mathbb{N}$ such that $\lim_{k \in \mathcal{K}} \|v_k(1)\|_2 = 0$.*

453 *Proof.* To prove part (i), let us assume there exists $\tau_{\min} > 0$ such that $\tau_k \geq \tau_{\min}$
 454 for all $k \in \mathbb{N}$. Using this fact, Lemma 5.6 ensures that both (5.4) and (5.5) hold.
 455 Since (5.4) holds, part (i)(a) is proved. To prove part (i)(b), let $\{k_1, k_2\}$ be as in
 456 the statement of the theorem. Then, for all $k \in \mathcal{S}$ and $k_1 \leq k < k_2$, it follows from
 457 Lemma 5.7(i)–(ii), $k \in \mathcal{S}$, (3.12), $J_k u_k = 0$, (4.5), and Lemma 5.6 that

$$458 (5.9) \quad \begin{aligned} \bar{\Phi}_{\tau_k}(x_k) - \bar{\Phi}_{\tau_{k+1}}(x_{k+1}) &\geq \bar{\Phi}_{\tau_k}(x_k) - \bar{\Phi}_{\tau_k}(x_{k+1}) = \Phi_{\tau_k}(x_k) - \Phi_{\tau_k}(x_{k+1}) \\ &\geq \eta_\Phi \left(\frac{\tau_k}{4\alpha_k} \|s_k\|_2^2 + \sigma_c (\|c_k\|_2 - \|c_k + J_k s_k\|_2) \right) \\ &\geq \eta_\Phi \left[\frac{\tau_k \alpha_k}{4} \left(\frac{\|s_k\|_2}{\alpha_k} \right)^2 + \frac{\sigma_c \kappa_1}{\kappa_c} \|v_k(1)\|_2^2 \min \left\{ \frac{1}{1+\|J_k^T J_k\|_2}, \kappa_v \alpha_k \right\} \right] \\ &= \eta_\Phi \left[\frac{\tau_k \alpha_k}{8} \left(\frac{\|s_k\|_2}{\alpha_k} \right)^2 + \frac{\tau_k \|s_k\|_2^2}{8\alpha_k} + \frac{\sigma_c \kappa_1}{\kappa_c} \|v_k(1)\|_2^2 \min \left\{ \frac{1}{1+\|J_k^T J_k\|_2}, \kappa_v \alpha_k \right\} \right]. \end{aligned}$$

459 Lemma 4.6, (5.9), (4.8), (5.4), and $\tau_k \geq \tau_{\min}$ and $\alpha_k \leq \alpha_0$ for all $k \in \mathbb{N}$ give

$$460 \quad \begin{aligned} \bar{\Phi}_{\tau_k}(x_k) - \bar{\Phi}_{\tau_{k+1}}(x_{k+1}) &\geq \eta_\Phi \left[\frac{\tau_k \alpha_k}{8} \|g_k + g_{r,k} + J_k^T y_k + z_k\|_2^2 + \frac{\tau_k}{8\alpha_k} \|\min\{x_k, -z_k\}\|_2^2 \right. \\ 461 &\quad \left. + \frac{\sigma_c \kappa_1}{\kappa_c} \|v_k(1)\|_2^2 \min \left\{ \frac{1}{1+\|J_k^T J_k\|_2}, \kappa_v \alpha_k \right\} \right] \\ 462 &\geq \eta_\Phi \left[\frac{\tau_{\min} \alpha_{\min}}{8} \|g_k + g_{r,k} + J_k^T y_k + z_k\|_2^2 + \frac{\tau_{\min}}{8\alpha_0} \|\min\{x_k, -z_k\}\|_2^2 \right. \\ 463 &\quad \left. + \frac{\sigma_c \kappa_1}{\kappa_c} \|v_k(1)\|_2^2 \min \left\{ \frac{1}{1+\kappa_J^2}, \kappa_v \alpha_{\min} \right\} \right] \\ 464 &\geq \bar{\kappa}_\Phi \bar{\chi}_k^2 \end{aligned}$$

465 where $\bar{\kappa}_\Phi$ is defined in the statement of the current theorem. Using this inequality,
 466 Lemma 5.7(iii), and nonnegativity of $\bar{\Phi}_\tau$ for all $\tau \in \mathbb{R}_{>0}$, we find that

$$468 \quad \bar{\Phi}_{\tau_0}(x_0) \geq \bar{\Phi}_{\tau_{k_1}}(x_{k_1}) \geq \bar{\Phi}_{\tau_{k_1}}(x_{k_1}) - \bar{\Phi}_{\tau_{k_2}}(x_{k_2})$$

469

$$= \sum_{k=k_1}^{k_2-1} (\bar{\Phi}_{\tau_k}(x_k) - \bar{\Phi}_{\tau_{k+1}}(x_{k+1})) \geq \sum_{k=k_1}^{k_2-1} \bar{\kappa}_\Phi \bar{\chi}_k^2,$$

470 which may be combined with $\bar{\chi}_k > \epsilon$ for all $k_1 \leq k \leq k_2$ to conclude that $\bar{\Phi}_{\tau_0}(x_0) \geq$
471 $(k_2 - k_1)\bar{\kappa}_\Phi \epsilon^2$, from which (5.8) follows. The result (i)(c), namely the claimed upper
472 bound on the maximum iterations before $\bar{\chi}_k \leq \epsilon$, follows from what we just proved
473 and the fact that maximum number of unsuccessful iterations is bounded as in (5.5).

474 We prove part (ii) by contradiction. Thus, suppose that there exists $\epsilon \in \mathbb{R}_{>0}$ and
475 $\bar{k}_1 \in \mathbb{N}$ such that $\|v_k(1)\|_2 \geq \epsilon$ for all $k \geq \bar{k}_1$. It then follows from Lemma 5.5 that
476 there exists $\tau_{\min} \in \mathbb{R}_{>0}$ such that $\tau_k \geq \tau_{\min}$ for all $k \in \mathbb{N}$, which is a contradiction. \square

5.2.2. Analysis under a sequential constraint qualification. In this section, we assume that a sequential constraint qualification holds (all results from Section 5.2.1 still hold). To state this assumption, we define the index set of active variables after taking the Cauchy step v_k^c as

$$\mathcal{A}_k^v := \mathcal{A}(x_k + v_k^c) \equiv \{i \in [n] : [x_k + v_k^c]_i = 0\}.$$

477 We can now formally state the assumption we make throughout this section.

478 **ASSUMPTION 5.1.** *The matrix $[J_k^T, I_{\mathcal{A}_k^v}^T]^T$ has full row rank and its smallest singular value is uniformly bounded away from zero for all $k \in \mathbb{N}$, where $I_{\mathcal{A}_k^v}$ denotes the subset of rows of the identity matrix that correspond to the elements in \mathcal{A}_k^v , i.e., there exists $\sigma_{\min} \in \mathbb{R}_{>0}$ such that $\sigma_{\min}([J_k^T, I_{\mathcal{A}_k^v}^T]^T) \geq \sigma_{\min}$ for all $k \in \mathbb{N}$ with $\sigma_{\min}(A)$ denoting the smallest singular value of a matrix A .*

483 Under the above assumption, our aim is to prove a worst-case iteration complexity
484 result for Algorithm 3.1. Our result uses the KKT-residual measure

485 (5.10) $\chi_k := \max \{ \|g_k + g_{r,k} + J_k^T y_k + z_k\|_2, \|c_k\|_2, \|\min\{x_k, -z_k\}\|_2 \}.$

486 Note that (5.10) differs from the definition of $\bar{\chi}_k$ in (5.1) by using the measure $\|c_k\|_2$
487 instead of $\|v_k(1)\|_2$, which is reasonable because of the constraint qualification.

488 We begin by establishing a key connection between $\|v_k(\beta_k)\|_2$ and $\|c_k\|_2$.

489 **LEMMA 5.9.** *For all $k \in \mathbb{N}$, it holds that $\|v_k(\beta_k)\|_2 / \beta_k \geq \sigma_{\min} \|c_k\|_2$.*

490 *Proof.* Let us define the vector $w_k \in \mathbb{R}^n$ componentwise as

491 (5.11) $[w_k]_i = \begin{cases} 0 & i \in [n] \setminus \mathcal{A}_k^v, \\ -[J_k^T c_k]_i - [v_k(\beta_k)]_i / \beta_k & i \in \mathcal{A}_k^v. \end{cases}$

492 We claim that the following holds:

493 (5.12) $\text{Proj}_\Omega(x_k - \beta_k J_k^T c_k) - x_k = -\beta_k J_k^T c_k - \beta_k w_k,$

494 which we verify by considering its coordinates. If $i \in \mathcal{A}_k^v$, then (3.6) and (5.11) give

495 (5.13) $\begin{aligned} [\text{Proj}_\Omega(x_k - \beta_k J_k^T c_k) - x_k]_i &= [v_k(\beta_k)]_i \\ &= [-\beta_k J_k^T c_k]_i - [-\beta_k J_k^T c_k - v_k(\beta_k)]_i = [-\beta_k J_k^T c_k]_i - [\beta_k w_k]_i, \end{aligned}$

496 so that (5.12) holds in this case. On the other hand, if $i \in [n] \setminus \mathcal{A}_k^v$, then $[\text{Proj}_\Omega(x_k -$
497 $\beta_k J_k^T c_k)]_i = [x_k + v_k(\beta_k)]_i = [x_k + v_k^c]_i > 0$ and $[w_k]_i = 0$. It follows that

498 (5.14) $0 < [\text{Proj}_\Omega(x_k - \beta_k J_k^T c_k)]_i = \max \{ [x_k - \beta_k J_k^T c_k]_i, 0 \},$

499 which implies that $[x_k - \beta_k J_k^T c_k]_i > 0$. Combining this with $[w_k]_i = 0$ shows that

500 (5.15)
$$\begin{aligned} [\text{Proj}_\Omega(x_k - \beta_k J_k^T c_k) - x_k]_i &= [(x_k - \beta_k J_k^T c_k) - x_k]_i \\ &= [-\beta_k J_k^T c_k]_i = [-\beta_k J_k^T c_k - \beta_k w_k]_i \end{aligned}$$

501 so that (5.12) again holds for this case. This establishes that (5.12) holds, as claimed.
502 It follows from the definition of $v_k(\beta_k)$, (5.12), and Assumption 5.1 that

503
$$\begin{aligned} \left\| \frac{v_k(\beta_k)}{\beta_k} \right\|_2 &= \left\| \frac{\text{Proj}_\Omega(x_k - \beta_k J_k^T c_k) - x_k}{\beta_k} \right\|_2 = \left\| \frac{-\beta_k J_k^T c_k - \beta_k w_k}{\beta_k} \right\|_2 \\ &= \|J_k^T c_k + w_k\|_2 = \left\| \begin{bmatrix} J_k^T & I_{\mathcal{A}_k^v} \end{bmatrix} \begin{bmatrix} c_k \\ [w_k]_{\mathcal{A}_k^v} \end{bmatrix} \right\|_2 \\ &\geq \sigma_{\min}([J_k^T, I_{\mathcal{A}_k^v}]^T) \left\| \begin{bmatrix} c_k \\ [w_k]_{\mathcal{A}_k^v} \end{bmatrix} \right\|_2 \geq \sigma_{\min}\|c_k\|_2 \text{ for all } k \in \mathbb{N}, \end{aligned}$$

504 which completes the proof. \square

505 We now give a bound on the improvement in linearized infeasibility at x_k .

506 LEMMA 5.10. *For all $k \in \mathbb{N}$, it holds that*

507
$$\|c_k\|_2 - \|c_k + J_k s_k\|_2 = \|c_k\|_2 - \|c_k + J_k v_k\|_2 \geq \kappa_1 \sigma_{\min}^2 \|c_k\|_2 \min \left\{ \frac{1}{1 + \|J_k^T J_k\|_2}, \kappa_v \alpha_k \right\}.$$

and

$$\|c_k\|_2 - \|c_k + J_k s_k\|_2 = \|c_k\|_2 - \|c_k + J_k v_k\|_2 \geq \frac{\kappa_1}{\kappa_c} \sigma_{\min}^2 \|c_k\|_2^2 \min \left\{ \frac{1}{1 + \|J_k^T J_k\|_2}, \kappa_v \alpha_k \right\}.$$

508 *Proof.* It follows from (3.4) and Lemma 4.3 that $\|c_k + J_k v_k\|_2 \leq \|c_k\|_2$. It follows
509 from this inequality and a difference-of-squares computation that

510 (5.16)
$$\begin{aligned} \|c_k\|_2^2 - \|c_k + J_k v_k\|_2^2 &= (\|c_k\|_2 + \|c_k + J_k v_k\|_2)(\|c_k\|_2 - \|c_k + J_k v_k\|_2) \\ &\leq 2\|c_k\|_2(\|c_k\|_2 - \|c_k + J_k v_k\|_2). \end{aligned}$$

511 Combining (5.16), the third condition in (3.4), Lemma 4.4, and Lemma 5.9 we have

512
$$2\|c_k\|_2(\|c_k\|_2 - \|c_k + J_k v_k\|_2) \geq \|c_k\|_2^2 - \|c_k + J_k v_k\|_2^2 = 2(m_k(0) - m_k(v_k))$$

513
$$\geq 2(m_k(0) - m_k(v_k^c)) \geq 2\kappa_1 \left[\frac{\|v_k(\beta_k)\|_2}{\beta_k} \right]^2 \min \left\{ \frac{1}{1 + \|J_k^T J_k\|_2}, \kappa_v \alpha_k \right\}$$

514
$$\geq 2\kappa_1 \sigma_{\min}^2 \|c_k\|_2^2 \min \left\{ \frac{1}{1 + \|J_k^T J_k\|_2}, \kappa_v \alpha_k \right\}.$$

515 The proof of the first inequality follows by dividing through the previous inequality
516 by $2\|c_k\|_2$ and using the fact that $J_k u_k = 0$ (see (4.8b)). The second inequality follows
517 from the first inequality and the fact that $\|c_k\|_2/\kappa_c \leq 1$ because of (3.12). \square

518 We now establish that the merit parameter sequence is bounded away from zero.

519 LEMMA 5.11. *For all $k \in \mathbb{N}$, it holds that*

520 (5.17)
$$\tau_{k,trial} \geq \tau_{\min,trial} := \frac{(1 - \sigma_c) \kappa_1 \sigma_{\min}^2 \min \left\{ \frac{1}{(1 + \kappa_J^2) \alpha_0}, \kappa_v \right\}}{2(\kappa_{\nabla f} + \kappa_{\partial r}) \kappa_v \kappa_J + 2\kappa_v^2 \kappa_J^2 \kappa_c} > 0 \text{ and}$$

521 (5.18)
$$\tau_k \geq \tau_{\min} := \min\{\tau_0, (1 - \epsilon_\tau) \tau_{\min,trial}\} > 0.$$

522 *Proof.* We first prove (5.17). If $A_k \leq 0$ in the definition of $\tau_{k,\text{trial}}$, then $\tau_{k,\text{trial}} = \infty$
523 so that (5.17) trivially holds. If $A_k > 0$, then it follows from the definition of $\tau_{k,\text{trial}}$,
524 $s_k = v_k + u_k$, $J_k u_k = 0$ (see (4.8b)), Lemma 5.10, Lemma 5.4, the fact that $\alpha_k \leq \alpha_0$
525 for all k by construction of Algorithm 3.1, and (3.12) that

$$\begin{aligned}
526 \quad \tau_{k,\text{trial}} &= \frac{(1 - \sigma_c)(\|c_k\|_2 - \|c_k + J_k v_k\|_2)}{g_k^T s_k + \frac{1}{2\alpha_k} \|s_k\|_2^2 + r(x_k + s_k) - r_k} \\
527 \quad &\geq \frac{(1 - \sigma_c)\kappa_1 \sigma_{\min}^2 \|c_k\|_2 \min\left\{\frac{1}{1 + \|J_k^T J_k\|_2}, \kappa_v \alpha_k\right\}}{2(\kappa_{\nabla f} + \kappa_{\partial r})\kappa_v \kappa_J \alpha_k \|c_k\|_2 + 2\kappa_v^2 \kappa_J^2 \kappa_c \alpha_k \|c_k\|_2} \\
528 \quad &= \frac{(1 - \sigma_c)\kappa_1 \sigma_{\min}^2 \min\left\{\frac{1}{1 + \|J_k^T J_k\|_2}, \kappa_v \alpha_k\right\}}{2(\kappa_{\nabla f} + \kappa_{\partial r})\kappa_v \kappa_J \alpha_k + 2\kappa_v^2 \kappa_J^2 \kappa_c \alpha_k} \\
529 \quad &\geq \frac{(1 - \sigma_c)\kappa_1 \sigma_{\min}^2 \min\left\{\frac{1}{(1 + \kappa_J^2)\alpha_0}, \kappa_v\right\}}{2(\kappa_{\nabla f} + \kappa_{\partial r})\kappa_v \kappa_J + 2\kappa_v^2 \kappa_J^2 \kappa_c},
\end{aligned}$$

530 which proves (5.17). The merit parameter update rule (3.10) and (5.17) give (5.18). \square

531 We may now state our worst-case complexity result for Algorithm 3.1.

532 **THEOREM 5.12.** *Suppose that Assumption 3.1 and Assumption 5.1 hold. Let $\epsilon \in$
533 $\mathbb{R}_{>0}$ be given. If $\{k_1, k_2\} \subset \mathbb{N}$ are two iterations with $k_1 < k_2$ such that $k \in \mathcal{S}$ and
534 $\chi_k > \epsilon$ for all iterations $k_1 \leq k < k_2$, then it follows that*

$$535 \quad (5.19) \quad k_2 - k_1 \leq \left\lfloor \frac{\tau_0(f(x_0) + r(x_0) - f_{\inf}) + \|c(x_0)\|_2}{\kappa_{\Phi} \epsilon^2} \right\rfloor$$

536 with $\kappa_{\Phi} = \eta_{\Phi} \min\left\{\frac{\tau_{\min} \alpha_{\min}}{8}, \frac{\tau_{\min}}{8\alpha_0}, \frac{\sigma_c \kappa_1}{\kappa_c} \sigma_{\min}^2 \min\left\{\frac{1}{1 + \kappa_J^2}, \kappa_v \alpha_{\min}\right\}\right\}$. Moreover, the max-
537 imum number of iterations before $\chi_k \leq \epsilon$ for some iteration $k \in \mathbb{N}$ is

$$538 \quad \left(\max \left\{ 0, \left\lceil \frac{\log\left(\frac{\tau_{\min}}{2\alpha_0(\tau_{\min} L_g + L_J)}\right)}{\log(\xi)} \right\rceil \right\} + 1 \right) \left\lfloor \frac{\tau_0(f(x_0) - f_{\inf} + r(x_0)) + \|c(x_0)\|_2}{\kappa_{\Phi} \epsilon^2} \right\rfloor.$$

539 *Proof.* Let $\{k_1, k_2\}$ be as in the statement of the theorem. Then, for all $k \in \mathcal{S}$ and
540 $k_1 \leq k < k_2$, it follows from Lemma 5.7(i)–(ii), $k \in \mathcal{S}$, (3.12), the second inequality
541 of Lemma 5.10, and Lemma 5.6 that

$$\begin{aligned}
542 \quad (5.20) \quad &\bar{\Phi}_{\tau_k}(x_k) - \bar{\Phi}_{\tau_{k+1}}(x_{k+1}) \geq \bar{\Phi}_{\tau_k}(x_k) - \bar{\Phi}_{\tau_k}(x_{k+1}) = \Phi_{\tau_k}(x_k) - \Phi_{\tau_k}(x_{k+1}) \\
&\geq \eta_{\Phi} \left(\frac{\tau_k}{4\alpha_k} \|s_k\|_2^2 + \sigma_c (\|c_k\|_2 - \|c_k + J_k s_k\|_2) \right) \\
&\geq \eta_{\Phi} \left[\frac{\tau_k \alpha_k}{4} \left(\frac{\|s_k\|_2}{\alpha_k} \right)^2 + \sigma_c \left(\frac{\kappa_1}{\kappa_c} \sigma_{\min}^2 \|c_k\|_2^2 \min\left\{\frac{1}{1 + \kappa_J^2}, \kappa_v \alpha_k\right\} \right) \right] \\
&= \eta_{\Phi} \left[\frac{\tau_k \alpha_k}{8} \left(\frac{\|s_k\|_2}{\alpha_k} \right)^2 + \frac{\tau_k \|s_k\|_2^2}{8\alpha_k} + \sigma_c \left(\frac{\kappa_1}{\kappa_c} \sigma_{\min}^2 \|c_k\|_2^2 \min\left\{\frac{1}{1 + \kappa_J^2}, \kappa_v \alpha_{\min}\right\} \right) \right].
\end{aligned}$$

543 Lemma 4.6, (5.20), (4.8), (5.18), (5.4), and $\alpha_k \leq \alpha_0$ for all $k \geq 0$ give

$$\begin{aligned}
544 \quad &\bar{\Phi}_{\tau_k}(x_k) - \bar{\Phi}_{\tau_{k+1}}(x_{k+1}) \\
545 \quad &\geq \eta_{\Phi} \left[\frac{\tau_k \alpha_k}{8} \|g_k + g_{r,k} + J_k^T y_k + z_k\|_2^2 + \frac{\tau_k}{8\alpha_k} \|\min\{x_k, -z_k\}\|_2^2 \right]
\end{aligned}$$

$$\begin{aligned}
& + \sigma_c \left(\frac{\kappa_1}{\kappa_c} \sigma_{\min}^2 \|c_k\|_2^2 \min \left\{ \frac{1}{1+\kappa_J^2}, \kappa_v \alpha_{\min} \right\} \right) \Big] \\
& \geq \eta_\Phi \left[\frac{\tau_{\min} \alpha_{\min}}{8} \|g_k + g_{r,k} + J_k^T y_k + z_k\|_2^2 + \frac{\tau_{\min}}{8\alpha_0} \|\min\{x_k, -z_k\}\|_2^2 \right. \\
& \quad \left. + \sigma_c \left(\frac{\kappa_1}{\kappa_c} \sigma_{\min}^2 \|c_k\|_2^2 \min \left\{ \frac{1}{1+\kappa_J^2}, \kappa_v \alpha_{\min} \right\} \right) \right] \\
& \geq \kappa_\Phi \chi_k^2
\end{aligned}$$

550 where κ_Φ is defined in the statement of the current theorem. Using this inequality,
551 Lemma 5.7(iii), and nonnegativity of $\bar{\Phi}_\tau$ for all $\tau \in \mathbb{R}_{>0}$, we find that

$$\begin{aligned}
552 \quad & \bar{\Phi}_{\tau_0}(x_0) \geq \bar{\Phi}_{\tau_{k_1}}(x_{k_1}) \geq \bar{\Phi}_{\tau_{k_1}}(x_{k_1}) - \bar{\Phi}_{\tau_{k_2}}(x_{k_2}) \\
553 \quad & = \sum_{k=k_1}^{k_2-1} (\bar{\Phi}_{\tau_k}(x_k) - \bar{\Phi}_{\tau_{k+1}}(x_{k+1})) \geq \sum_{k=k_1}^{k_2-1} \kappa_\Phi \chi_k^2,
\end{aligned}$$

which may be combined with $\chi_k > \epsilon$ for all iterations $k_1 \leq k \leq k_2$ to conclude that

$$\bar{\Phi}_{\tau_0}(x_0) \geq (k_2 - k_1) \kappa_\Phi \epsilon^2,$$

554 from which (5.8) follows. The final result in the theorem, namely the claimed upper
555 bound on the maximum iterations before $\chi_k \leq \epsilon$, follows from what we just proved
556 and the fact that maximum number of unsuccessful iterations is bounded as in (5.5). \square

557 **5.2.3. Analysis under a limit-point constraint qualification.** The analysis
558 in this section is performed under Assumption 3.1 and the following two assumptions.
559 Before stating them, we remark that all of the results from Section 5.2.1 still hold.

560 **ASSUMPTION 5.2.** *The set \mathcal{X} in Assumption 3.1 is bounded.*

561 **ASSUMPTION 5.3.** *Let \mathcal{L} denote the set of limit points of the sequence $\{x_k\}$ generated
562 by Algorithm 3.1. Every $x_* \in \mathcal{L}$ satisfies the LICQ, i.e., if $x_* \in \mathcal{L}$, then
563 $[J(x_*)^T, I_{\mathcal{A}(x_*)}^T]^T$ has full row rank with $I_{\mathcal{A}(x_*)}$ denoting the subset of the rows of the
564 identity matrix I that corresponds to the index set $\mathcal{A}(x_*) := \{i \in [n] : [x_*]_i = 0\}$.*

565 The previous assumption has important consequences in terms of a certain type
566 of infeasible point (see Lemma 4.5(ii)), as we now define.

567 **DEFINITION 5.13.** *We say that $\bar{x} \in \mathbb{R}^n$ is an infeasible stationary point (ISP) for
568 problem (1.1) if and only if $\bar{x} \in \Omega$, $\bar{x} = \text{Proj}_\Omega(\bar{x} - J(\bar{x})^T c(\bar{x}))$, and $c(\bar{x}) \neq 0$.*

569 We now show that any limit point of the sequence of iterates cannot be an ISP.

570 **LEMMA 5.14.** *If x_* is a limit point of $\{x_k\}$, then x_* cannot be an ISP.*

571 *Proof.* Let $x_* \in \mathbb{R}^n$ be a limit point of $\{x_k\}$. Suppose that $x_* \in \Omega$ and $x_* =$
572 $\text{Proj}_\Omega(x_* - J(x_*)^T c(x_*))$. The proof will be complete if we can show that $c(x_*) = 0$
573 since this would prove that x_* is not an ISP. Thus, we now prove that $c(x_*) = 0$.

574 It follows using the same proof as in Lemma 4.5 with x_k replaced by x_* that
575 $x_* = \text{Proj}_\Omega(x_* - J(x_*)^T c(x_*))$ implies that x_* is a first-order KKT point for the
576 feasibility problem (3.3). Therefore, there exists $z_* \in \mathbb{R}_{\geq 0}^n$ satisfying $x_* \cdot z_* = 0$
577 (componentwise), and $J(x_*)^T c(x_*) = z_*$. It follows from these equations and $\mathcal{I}(x_*) =$
578 $[n] \setminus \mathcal{A}(x_*)$ that $[J(x_*)^T c(x_*)]_{\mathcal{I}(x_*)} = 0$, where we also note that $\mathcal{I}(x_*) \neq \emptyset$ as a
579 consequence of Assumption 5.3. Letting $J_{\mathcal{I}(x_*)}(x_*)$ denote the columns of $J(x_*)$ that
580 correspond to the indices in $\mathcal{I}(x_*)$, it follows from above that $0 = [J(x_*)^T c(x_*)]_{\mathcal{I}(x_*)} =$
581 $[J_{\mathcal{I}(x_*)}(x_*)^T c(x_*)]$. Since $J_{\mathcal{I}(x_*)}(x_*)$ must have full row rank (see [44, Lemma 2.1.3]),
582 it follows that $c(x_*) = 0$, which completes the proof. \square

583 The next result bounds $\|v_k(1)\|_2$ by the infeasibility of the equality constraints.

584 LEMMA 5.15. *For all $k \in \mathbb{N}$, it holds that $\|v_k(1)\|_2 \leq \kappa_J \|c_k\|_2$.*

585 *Proof.* It follows from the definition of $v_k(1)$ in (3.6), $x_k \in \Omega$ for all $k \in \mathbb{N}$ by how

586 Algorithm 3.1 is designed, non-expansivity of the projection operator, and (3.12) that

$$587 \|v_k(1)\|_2 = \|\text{Proj}_\Omega(x_k - J_k^T c_k) - x_k\|_2 = \|\text{Proj}_\Omega(x_k - J_k^T c_k) - \text{Proj}_\Omega(x_k)\|_2 \\ 588 \leq \|J_k^T c_k\|_2 \leq \kappa_J \|c_k\|_2,$$

589 which completes the proof. \square

590 We can now prove that our infeasiblity measure converges to zero.

591 LEMMA 5.16. *The iterate sequence $\{x_k\}$ satisfies $\lim_{k \rightarrow \infty} \|v_k(1)\|_2 = 0$.*

592 *Proof.* From Theorem 5.12, it follows that there exists a subsequence $\mathcal{K}_1 \subseteq \mathbb{N}$ such
593 that $\lim_{k \in \mathcal{K}_1} \|v_k(1)\|_2 = 0$. Now, for the purpose of reaching a contradiction, assume
594 that there exists a subsequence of iterations $\mathcal{K}_2 \subseteq \mathbb{N} \setminus \mathcal{K}_1$ and a scalar $v_{\min} \in \mathbb{R}_{>0}$
595 such that $\|v_k(1)\|_2 \geq v_{\min}$ for all $k \in \mathcal{K}_2$. We now proceed by considering two cases.

596 **Case 1:** $\{\tau_k\} \rightarrow 0$. The definitions of \mathcal{K}_1 and \mathcal{K}_2 allow us to define, for each $k \in \mathcal{K}_1$,
597 the quantity $\hat{k}(k)$ as the smallest iteration in \mathcal{K}_2 that is strictly larger than k . We can
598 use this definition, Lemma 5.15, $\{\tau_k\} \rightarrow 0$, (3.12), Lemma 5.7(iii), and nonnegativity
599 of r to conclude that the following holds for each sufficiently large $k \in \mathcal{K}_1$:

$$600 \frac{v_{\min}}{2\kappa_J} \leq \frac{\|c(x_{\hat{k}(k)})\|_2}{2} \leq \tau_{\hat{k}(k)}(f_{\hat{k}(k)} - f_{\inf} + r(x_{\hat{k}(k)})) + \|c(x_{\hat{k}(k)})\|_2 = \bar{\Phi}_{\tau_{\hat{k}(k)}}(x_{\hat{k}(k)}) \\ 601 \leq \bar{\Phi}_{\tau_k}(x_k) = \tau_k(f_k - f_{\inf} + r(x_k)) + \|c(x_k)\|_2 \leq 2\|c_k\|_2.$$

It follows from this inequality and the definition of \mathcal{K}_1 that

$$\lim_{k \in \mathcal{K}_1} \|v_k(1)\|_2 = 0 \text{ and } \liminf_{k \in \mathcal{K}_1} \|c_k\|_2 \geq \frac{v_{\min}}{2\kappa_J} > 0.$$

602 Therefore, every limit point of $\{x_k\}_{k \in \mathcal{K}_1}$ must be an ISP, and at least one such limit
603 point must exist as a consequence of Assumption 5.2. This contradicts Lemma 5.14.

604 **Case 2: $\{\tau_k\}$ is bounded away from zero.** In this case, it follows from The-
605 orem 5.8(i) that the proximal parameter sequence $\{\alpha_k\}$ is also bounded away from
606 zero. Given the manner in which both sequences are defined in Algorithm 3.1, we can
607 conclude that there exists $\hat{k} \in \mathbb{N}$ such that $\tau_k = \tau_{\hat{k}} > 0$ and $\alpha_k = \alpha_{\hat{k}} > 0$ for all $k \geq \hat{k}$.
608 We may now use the same logic as in the proof of Lemma 5.8(i) and (3.12) to obtain

$$609 \infty > \bar{\Phi}_{\tau_0}(x_0) \geq \sum_{k=0}^{\infty} (\bar{\Phi}_{\tau_k}(x_k) - \bar{\Phi}_{\tau_{k+1}}(x_{k+1})) \\ \geq \sum_{\hat{k} \leq k \in \mathcal{S}} (\bar{\Phi}_{\tau_k}(x_k) - \bar{\Phi}_{\tau_{k+1}}(x_{k+1})) \\ \geq \sum_{\hat{k} \leq k \in \mathcal{S}} \eta_{\Phi} \frac{\sigma_c \kappa_1}{\kappa_c} \alpha_{\hat{k}} \|v_k(1)\|_2^2 \min \left\{ \frac{1}{1+\kappa_J^2}, \kappa_v \alpha_{\hat{k}} \right\},$$

610 which implies that $\lim_{k \in \mathcal{S}} \|v_k(1)\|_2 = 0$. Combining this result with the fact that
611 $x_{k+1} = x_k$ whenever $k \notin \mathcal{S}$ and that the definition of $v_k(1)$ depends only on x_k , the
612 projection onto Ω (which is continuous), and the continuous functions c and J , it
613 follows that $\lim_{k \rightarrow \infty} \|v_k(1)\|_2 = 0$. This contradicts the definition of \mathcal{K}_2 .

614 Since we have shown that both **Case 1** and **Case 2** cannot occur, and these are
615 the only cases that can possibly occur, we must conclude that our original assumption
616 was incorrect, namely the existence of the set \mathcal{K}_2 . This completes the proof. \square

617 Next, we formally establish that \mathcal{L} is a compact set.

618 **LEMMA 5.17.** *The set \mathcal{L} in Assumption 5.3 is compact.*

Proof. By Assumption 5.2, the set \mathcal{L} is bounded. It remains to show that \mathcal{L} is closed. To this end, suppose that $\{x_j^{\mathcal{L}}\}_{j \geq 1} \subseteq \mathcal{L}$ and $x^{\mathcal{L}} \in \mathbb{R}^n$ satisfy $\lim_{j \rightarrow \infty} x_j^{\mathcal{L}} = x^{\mathcal{L}}$; we prove that $x^{\mathcal{L}} \in \mathcal{L}$. Let us define a sequence $\mathcal{K} = \{k_1, k_2, \dots\} \subseteq \mathbb{N}$. In particular, let k_1 be the smallest integer such that the iterate x_{k_1} satisfies $\|x_1^{\mathcal{L}} - x_{k_1}\|_2 \leq 1$. We then iteratively define k_j for $j \geq 2$ as the smallest integer k_j such that $k_j > k_{j-1}$ and the iterate x_{k_j} satisfies $\|x_j^{\mathcal{L}} - x_{k_j}\|_2 \leq 1/j$. In summary, $\mathcal{K} = \{k_1, k_2, \dots\} \subseteq \mathbb{N}$ is a strictly monotonically increasing subsequence of \mathbb{N} such that $\|x_j^{\mathcal{L}} - x_{k_j}\|_2 \leq 1/j$ for all j . It follows from this inequality and the triangle inequality that

$$\|x^{\mathcal{L}} - x_{k_j}\|_2 \leq \|x^{\mathcal{L}} - x_j^{\mathcal{L}}\|_2 + \|x_j^{\mathcal{L}} - x_{k_j}\|_2 \leq \|x^{\mathcal{L}} - x_j^{\mathcal{L}}\|_2 + \frac{1}{j} \text{ for all } j \geq 1.$$

619 Combining this inequality with $\lim_{j \rightarrow \infty} x_j^{\mathcal{L}} = x^{\mathcal{L}}$, it follows that $\lim_{j \rightarrow \infty} x_{k_j} = x^{\mathcal{L}}$,
620 which proves that $x^{\mathcal{L}} \in \mathcal{L}$ as claimed, thus completing the proof. \square

621 The next key lemma uses the function $\delta(\cdot) : \mathbb{R}^n \rightarrow \mathbb{R}_{>0}$ defined as

$$622 \quad (5.21) \quad \delta_{\min}(x) := \min_{i \in \mathcal{I}(x)} [x]_i,$$

623 which gives a measure for how far the inactive variables at x are from being active.

624 **LEMMA 5.18.** *The following hold for the set of limit points \mathcal{L} :*

625 (i) *There exist $n_{\mathcal{L}} \in \mathbb{N}$, $\{x_i^{\mathcal{L}}\}_{i=1}^{n_{\mathcal{L}}} \subseteq \mathcal{L}$, and $\{\epsilon_i^{\mathcal{L}}\}_{i=1}^{n_{\mathcal{L}}} \subset \mathbb{R}_{>0}$ such that*
626 (a) *$\mathcal{L} \subset \bigcup_{i=1}^{n_{\mathcal{L}}} \mathcal{B}(x_i^{\mathcal{L}}, \epsilon_i^{\mathcal{L}})$, and*
627 (b) *if, for some j , it holds that $x \in \mathcal{B}(x_j^{\mathcal{L}}, \epsilon_j^{\mathcal{L}})$, then*

$$628 \quad (5.22a) \quad \|x - x_j^{\mathcal{L}}\|_2 \leq \frac{1}{3} \delta_{\min}(x_j^{\mathcal{L}}),$$

$$629 \quad (5.22b) \quad \mathcal{A}(x) \subseteq \mathcal{A}(x_j^{\mathcal{L}}), \text{ and}$$

$$630 \quad (5.22c) \quad \sigma_{\min}([J(x)^T, I_{\mathcal{A}(x_j^{\mathcal{L}})}^T]^T) \geq \frac{1}{2} \sigma_{\min}([J(x_j^{\mathcal{L}})^T, I_{\mathcal{A}(x_j^{\mathcal{L}})}^T]^T).$$

631 (ii) *For the objects in part (i), there exists $\epsilon_{\min}^{\mathcal{L}} \in \mathbb{R}_{>0}$ such that if $\bar{x} \in \mathbb{R}^n$ satisfies
632 $\text{dist}(\bar{x}, \mathcal{L}) \leq \epsilon_{\min}^{\mathcal{L}}$, then $\bar{x} \in \bigcup_{i=1}^{n_{\mathcal{L}}} \mathcal{B}(x_i^{\mathcal{L}}, \epsilon_i^{\mathcal{L}})$ and there exists $j \in [n_{\mathcal{L}}]$ such that*

$$633 \quad \sigma_{\min}([J(\bar{x})^T, I_{\mathcal{A}(x_j^{\mathcal{L}})}^T]^T) \geq \min_{i \in [n_{\mathcal{L}}]} \frac{1}{2} \sigma_{\min}([J(x_i^{\mathcal{L}})^T, I_{\mathcal{A}(x_i^{\mathcal{L}})}^T]^T) =: \sigma_{\min}^{\mathcal{L}} > 0,$$

634 where the inequality $\sigma_{\min}^{\mathcal{L}} > 0$ is a consequence of Assumption 5.3.

635 *Proof.* For $x^{\mathcal{L}} \in \mathcal{L}$, let $\epsilon(x^{\mathcal{L}}) \in \mathbb{R}_{>0}$ satisfy that if $x \in \mathcal{B}(x^{\mathcal{L}}, \epsilon(x^{\mathcal{L}}))$ then $\mathcal{I}(x^{\mathcal{L}}) \subseteq \mathcal{I}(x)$, $\|x - x^{\mathcal{L}}\|_2 \leq \frac{1}{3} \delta_{\min}(x^{\mathcal{L}})$, and $\sigma_{\min}([J(x)^T, I_{\mathcal{A}(x^{\mathcal{L}})}^T]^T) \geq \frac{\sigma_{\min}}{2} ([J(x^{\mathcal{L}})^T, I_{\mathcal{A}(x^{\mathcal{L}})}^T]^T)$,
636 where satisfying the third condition is possible because of the continuity of singular values of a matrix with respect to its entries and Assumption 5.3. It follows
637 that $\bigcup_{x^{\mathcal{L}} \in \mathcal{L}} \mathcal{B}(x^{\mathcal{L}}, \epsilon(x^{\mathcal{L}}))$ is an open cover of the compact set \mathcal{L} (see Lemma 5.17).
638 Using this fact and the definition of a compact set, it follows that there exists a
639 finite subcover, i.e., there exist $n_{\mathcal{L}} \in \mathbb{N}$, $\{x_i^{\mathcal{L}}\}_{i=1}^{n_{\mathcal{L}}} \subseteq \mathcal{L}$, and $\{\epsilon_i^{\mathcal{L}}\}_{i=1}^{n_{\mathcal{L}}} \subset \mathbb{R}_{>0}$ such
640 that $\mathcal{L} \subset \bigcup_{i=1}^{n_{\mathcal{L}}} \mathcal{B}(x_i^{\mathcal{L}}, \epsilon_i^{\mathcal{L}})$ and if, for some $j \in \{1, 2, \dots, n_{\mathcal{L}}\}$, it holds that $x \in$
642

643 $\mathcal{B}(x_j^{\mathcal{L}}, \epsilon_j^{\mathcal{L}})$ then $\mathcal{I}(x_j^{\mathcal{L}}) \subseteq \mathcal{I}(x)$, $\|x - x_j^{\mathcal{L}}\|_2 \leq \frac{1}{3}\delta_{\min}(x_j^{\mathcal{L}})$, and $\sigma_{\min}([J(x)^T, I_{\mathcal{A}(x_j^{\mathcal{L}})}^T]^T) \geq$
644 $\frac{1}{2}\sigma_{\min}([J(x_j^{\mathcal{L}})^T, I_{\mathcal{A}(x_j^{\mathcal{L}})}^T]^T)$. Since $\mathcal{I}(x_j^{\mathcal{L}}) \subseteq \mathcal{I}(x)$ is equivalent to $\mathcal{A}(x) \subseteq \mathcal{A}(x_j^{\mathcal{L}})$, we
645 have completed the proof of part (i).

646 We now prove part (ii). First, using the *finite* subcover computed in part (i)
647 and the fact that \mathcal{L} is compact, there exists $\epsilon_{\min}^{\mathcal{L}} \in \mathbb{R}_{>0}$ such that if $x \in \mathbb{R}^n$ sat-
648 isfies $\text{dist}(x, \mathcal{L}) \leq \epsilon_{\min}^{\mathcal{L}}$, then $x \in \cup_{i=1}^{n_{\mathcal{L}}} \mathcal{B}(x_i^{\mathcal{L}}, \epsilon_i^{\mathcal{L}})$. Let \bar{x} be an arbitrary point that
649 satisfies $\text{dist}(\bar{x}, \mathcal{L}) \leq \epsilon_{\min}^{\mathcal{L}}$. Then, it follows that there exists $j \in \{1, 2, \dots, n_{\mathcal{L}}\}$
650 such that $\bar{x} \in \mathcal{B}(x_j^{\mathcal{L}}, \epsilon_j^{\mathcal{L}})$, which combined with part (i)(b) gives $\mathcal{A}(\bar{x}) \subseteq \mathcal{A}(x_j^{\mathcal{L}})$ and
651 $\sigma_{\min}([J(\bar{x})^T, I_{\mathcal{A}(x_j^{\mathcal{L}})}^T]^T) \geq \frac{1}{2}\sigma_{\min}([J(x_j^{\mathcal{L}})^T, I_{\mathcal{A}(x_j^{\mathcal{L}})}^T]^T) \geq \sigma_{\min}^{\mathcal{L}} > 0$, as claimed. \square

652 The next result shows that iterates of the algorithm eventually satisfy the prop-
653 erties of the previous lemma.

654 LEMMA 5.19. *There exists $\bar{k} \in \mathbb{N}$ such that, for each $k \geq \bar{k}$, there exists a corre-
655 sponding $j \in [n_{\mathcal{L}}]$ that satisfies, with $\sigma_{\min}^{\mathcal{L}}$ defined in Lemma 5.18(ii), the following:*
656

$$657 \quad (5.23a) \quad \|x_k - x_j^{\mathcal{L}}\|_2 \leq \frac{1}{3}\delta_{\min}(x_j^{\mathcal{L}}),$$

$$658 \quad (5.23b) \quad \mathcal{A}(x_k) \subseteq \mathcal{A}(x_j^{\mathcal{L}}), \text{ and}$$

$$659 \quad (5.23c) \quad \sigma_{\min}([J_k^T, I_{\mathcal{A}(x_j^{\mathcal{L}})}^T]^T) \geq \frac{1}{2}\sigma_{\min}([J(x_j^{\mathcal{L}})^T, I_{\mathcal{A}(x_j^{\mathcal{L}})}^T]^T) \geq \sigma_{\min}^{\mathcal{L}} > 0.$$

660 *Proof.* Let $\epsilon_{\min}^{\mathcal{L}} > 0$ be defined as in Lemma 5.18(ii). Since \mathcal{L} is the set of all limit
661 points, there exists an iteration \bar{k} such that $\text{dist}(x_k, \mathcal{L}) \leq \epsilon_{\min}^{\mathcal{L}}$ for all $k \geq \bar{k}$ (this \bar{k}
662 is now the \bar{k} whose existence is claimed in the statement of the current lemma). For
663 the remainder of the proof, consider arbitrary $k \geq \bar{k}$. It follows from the definition
664 of \bar{k} that $\text{dist}(x_k, \mathcal{L}) \leq \epsilon_{\min}^{\mathcal{L}}$, and then from Lemma 5.18(ii) that there exists $j \in [n_{\mathcal{L}}]$
665 such that $x_k \in \mathcal{B}(x_j^{\mathcal{L}}, \epsilon_j^{\mathcal{L}})$. Conditions (5.23a)–(5.23c) now follow from Lemma 5.18. \square

666 We now give a lower bound on $\|v_k(1)\|_2$ in terms of $\|c_k\|_2$, which is crucial to
667 giving a lower bound on the merit parameter sequence. The result uses the constant

$$668 \quad (5.24) \quad \delta_{\min}^{\mathcal{L}} := \min_{j \in [n_{\mathcal{L}}]} \delta_{\min}(x_j^{\mathcal{L}}) > 0.$$

669 LEMMA 5.20. *For all sufficiently large $k \in \mathbb{N}$, it holds that $\|v_k(1)\|_2 \geq \sigma_{\min}^{\mathcal{L}} \|c_k\|_2$,
670 where the positive constant $\sigma_{\min}^{\mathcal{L}}$ is defined in Lemma 5.18(ii).*

671 *Proof.* With $\delta_{\min}^{\mathcal{L}}$ in (5.24), Lemma 5.16 ensures the existence \bar{k}_1 such that

$$672 \quad (5.25) \quad \|v_k(1)\|_2 = \|\text{Proj}_{\Omega}(x_k - J_k^T c_k) - x_k\|_2 \leq \frac{1}{3}\delta_{\min}^{\mathcal{L}} \quad \text{for all } k \geq \bar{k}_1.$$

673 Let $\{\epsilon_{\min}^{\mathcal{L}}, \sigma_{\min}^{\mathcal{L}}\} \subset \mathbb{R}_{>0}$ be as stated in Lemma 5.18, and let \bar{k}_2 play the role of \bar{k} from
674 Lemma 5.19. For the remainder of the proof, consider arbitrary $k \geq \max\{\bar{k}_1, \bar{k}_2\}$. It
675 follows from the definition of \bar{k}_2 that x_k satisfies (5.23a)–(5.23c) for some $j \in [n_{\mathcal{L}}]$.
676 Using (5.25), (5.23a), and definitions of $\delta_{\min}(x_j^{\mathcal{L}})$ and $\delta_{\min}^{\mathcal{L}}$, each $i \in \mathcal{I}(x_j^{\mathcal{L}})$ satisfies

$$\begin{aligned} 677 \quad [\text{Proj}_{\Omega}(x_k - J_k^T c_k)]_i &\geq [x_k]_i - \frac{1}{3}\delta_{\min}^{\mathcal{L}} \geq [x_j^{\mathcal{L}}]_i - \frac{1}{3}\delta_{\min}(x_j^{\mathcal{L}}) - \frac{1}{3}\delta_{\min}^{\mathcal{L}} \\ &\geq \delta_{\min}(x_j^{\mathcal{L}}) - \frac{1}{3}\delta_{\min}(x_j^{\mathcal{L}}) - \frac{1}{3}\delta_{\min}^{\mathcal{L}} = \frac{2}{3}\delta_{\min}(x_j^{\mathcal{L}}) - \frac{1}{3}\delta_{\min}^{\mathcal{L}} \\ &\geq \frac{2}{3}\delta_{\min}^{\mathcal{L}} - \frac{1}{3}\delta_{\min}^{\mathcal{L}} = \frac{1}{3}\delta_{\min}^{\mathcal{L}}. \end{aligned}$$

678 Hence, for all $i \in \mathcal{I}(x_j^{\mathcal{L}})$ it holds that $[x_k - J_k^T c_k]_i > 0$. Now, define $w_k \in \mathbb{R}^n$ as

$$679 \quad (5.26) \quad [w_k]_i = \begin{cases} 0 & \text{if } i \in \mathcal{I}(x_j^{\mathcal{L}}), \\ -[J_k^T c_k]_i - [v_k(1)]_i & \text{if } i \in \mathcal{A}(x_j^{\mathcal{L}}). \end{cases}$$

680 The definition of w_k , the fact that $[x_k - J_k^T c_k]_i > 0$ for all $i \in \mathcal{I}(x_j^{\mathcal{L}})$, and (5.23c) give

$$681 \quad \begin{aligned} \|v_k(1)\|_2 &= \|\text{Proj}_{\Omega}(x_k - J_k^T c_k) - x_k\|_2 = \|-J_k^T c_k - w_k\|_2 \\ &= \left\| \begin{bmatrix} J_k^T, I_{\mathcal{A}(x_j^{\mathcal{L}})}^T \end{bmatrix} \begin{bmatrix} c_k \\ [w_k]_{\mathcal{A}(x_j^{\mathcal{L}})} \end{bmatrix} \right\|_2 \geq \sigma_{\min}^{\mathcal{L}} \|c_k\|_2, \end{aligned}$$

682 which completes the proof. \square

683 Our next result gives a new bound on the model decrease.

684 LEMMA 5.21. *For $\kappa_1 \in (0, 1]$ in Lemma 4.3, all sufficiently large $k \in \mathbb{N}$ satisfy*

$$685 \quad (5.27) \quad \|c_k\|_2 - \|c_k + J_k v_k^c\|_2 \geq \kappa_1 (\sigma_{\min}^{\mathcal{L}})^2 \|c_k\|_2 \min \left\{ \frac{1}{1 + \kappa_J^2}, \kappa_v \alpha_k \right\}.$$

686 *Proof.* If $\delta_k = 0$, then either $\|c_k\|_2 = 0$ and the inequality holds trivially, or
687 $\|c_k\|_2 \neq 0$ and the algorithm terminates finitely, which is a contradiction to our overall
688 setting in this subsection that the algorithm does not terminate finitely. Therefore, we
689 may proceed assuming $\delta_k \neq 0$. It follows from Lemma 4.3 that $\|c_k + J_k v_k^c\|_2 \leq \|c_k\|_2$.
690 Using this inequality and a difference-of-squares computation, we have that

$$691 \quad (5.28) \quad \begin{aligned} \|c_k\|_2^2 - \|c_k + J_k v_k^c\|_2^2 &= (\|c_k\|_2 + \|c_k + J_k v_k^c\|_2)(\|c_k\|_2 - \|c_k + J_k v_k^c\|_2) \\ &\leq 2\|c_k\|_2(\|c_k\|_2 - \|c_k + J_k v_k^c\|_2). \end{aligned}$$

692 Combining (5.28), (4.4), Lemma 5.20, and (3.12), all sufficiently large $k \in \mathbb{N}$ satisfy

$$693 \quad \begin{aligned} 2\|c_k\|_2(\|c_k\|_2 - \|c_k + J_k v_k^c\|_2) &\geq \|c_k\|_2^2 - \|c_k + J_k v_k^c\|_2^2 = 2(m_k(0) - m_k(v_k^c)) \\ 694 &\geq 2\kappa_1 \|v_k(1)\|_2^2 \min \left\{ \frac{1}{1 + \|J_k^T J_k\|_2}, \kappa_v \alpha_k \right\} \\ 695 &\geq 2\kappa_1 (\sigma_{\min}^{\mathcal{L}})^2 \|c_k\|_2^2 \min \left\{ \frac{1}{1 + \kappa_J^2}, \kappa_v \alpha_k \right\}. \end{aligned}$$

696 If $\|c_k\|_2 = 0$, then again the desired inequality holds trivially. Otherwise, dividing the
697 above inequality by $2\|c_k\|_2$ gives (5.27), and thus completes the proof. \square

698 We now bound the merit and proximal parameter sequences away from zero.

699 LEMMA 5.22. *Let $\bar{k} > 0$ be sufficiently large that the results in Lemma 5.20 and
700 Lemma 5.21 hold. Then, each $k \geq \bar{k}$ yields*

$$701 \quad (5.29) \quad \tau_{k,\text{trial}} \geq \bar{\tau}_{\min,\text{trial}} := \frac{(1 - \sigma_c)\kappa_1 (\sigma_{\min}^{\mathcal{L}})^2 \min \left\{ \frac{1}{(1 + \kappa_J^2)\alpha_0}, \kappa_v \right\}}{2(\kappa_{\nabla f} + \kappa_{\partial r})\kappa_v \kappa_J + 2\kappa_v^2 \kappa_J^2 \kappa_c} > 0.$$

702 *The merit parameter sequence itself satisfies, for all $k \in \mathbb{N}$, the inequality*

$$703 \quad (5.30) \quad \tau_k \geq \bar{\tau}_{\min} := \min\{\tau_{\bar{k}-1}, (1 - \epsilon_{\tau})\bar{\tau}_{\min,\text{trial}}\} > 0.$$

704 *Finally, the proximal parameter sequence satisfies, for all $k \in \mathbb{N}$, the inequality*

$$705 \quad (5.31) \quad \alpha_k \geq \bar{\alpha}_{\min} := \min\{\alpha_0, \frac{\xi \bar{\tau}_{\min}}{2(\bar{\tau}_{\min} L_g + L_J)}\} > 0.$$

706 *Proof.* We first prove (5.29). If $A_k \leq 0$ in the definition of $\tau_{k,\text{trial}}$, then $\tau_{k,\text{trial}} = \infty$
707 so that (5.29) trivially holds. If $A_k > 0$, then it follows from the definition of $\tau_{k,\text{trial}}$,

708 $s_k = v_k + u_k$, $J_k u_k = 0$ (see (4.8b)), Lemma 5.4, Lemma 5.21, the fact that $\alpha_k \leq \alpha_0$
709 for all k by construction of Algorithm 3.1, and (3.12) that each $k \geq \bar{k}$ yields

$$\begin{aligned} 710 \quad \tau_{k,\text{trial}} &= \frac{(1 - \sigma_c)(\|c_k\|_2 - \|c_k + J_k v_k\|_2)}{g_k^T s_k + \frac{1}{2\alpha_k} \|s_k\|_2^2 + r(x_k + s_k) - r_k} \\ 711 \quad &\geq \frac{(1 - \sigma_c)\kappa_1(\sigma_{\min}^{\mathcal{L}})^2 \|c_k\|_2 \min\left\{\frac{1}{1+\kappa_J^2}, \kappa_v \alpha_k\right\}}{2(\kappa_{\nabla f} + \kappa_{\partial r})\kappa_v \kappa_J \alpha_k \|c_k\|_2 + 2\kappa_v^2 \kappa_J^2 \kappa_c \alpha_k \|c_k\|_2} \\ 712 \quad &\geq \frac{(1 - \sigma_c)\kappa_1(\sigma_{\min}^{\mathcal{L}})^2 \min\left\{\frac{1}{(1+\kappa_J^2)\alpha_0}, \kappa_v\right\}}{2(\kappa_{\nabla f} + \kappa_{\partial r})\kappa_v \kappa_J + 2\kappa_v^2 \kappa_J^2 \kappa_c}, \end{aligned}$$

713 which proves that (5.29) holds for all $k \geq \bar{k}$, as claimed. The merit parameter update
714 rule (3.10) and (5.29) give (5.30). Finally, (5.31) follows from (5.30) and Lemma 5.6. \square

715 The next result establishes that the norm of the search direction converges to zero
716 along the sequence of successful iterations.

717 **LEMMA 5.23.** *The search direction sequence $\{s_k\}_{k \in \mathcal{S}}$ satisfies $\lim_{k \in \mathcal{S}} \|s_k\|_2 = 0$.*

718 *Proof.* We first note that the derivation of (5.20) still holds under the assumptions
719 of this section, and therefore we know that

$$720 \quad (5.32) \quad \bar{\Phi}_{\tau_k}(x_k) - \bar{\Phi}_{\tau_{k+1}}(x_{k+1}) \geq \sum_{k \in \mathcal{S}} \eta_{\Phi} \frac{\tau_k}{8\alpha_k} \|s_k\|_2^2.$$

721 Using nonnegativity of $\bar{\Phi}_{\tau}$ in (5.7), Lemma 5.7(ii)-(iii), and (5.32), we have that

$$722 \quad \infty > \sum_{k \in \mathcal{S}} (\bar{\Phi}_{\tau_k}(x_k) - \bar{\Phi}_{\tau_{k+1}}(x_{k+1})) \geq \sum_{k \in \mathcal{S}} \eta_{\Phi} \frac{\tau_k}{8\alpha_k} \|s_k\|_2^2.$$

723 Lemma 5.22 gives $\tau_k \geq \bar{\tau}_{\min} > 0$ for all $k \in \mathbb{N}$, where $\bar{\tau}_{\min}$ is defined in (5.30), so that
724 $\sum_{k \in \mathcal{S}} \eta_{\Phi} \frac{\bar{\tau}_{\min}}{8\alpha_0} \|s_k\|_2^2 < \infty$, which implies $\lim_{k \in \mathcal{S}} \|s_k\|_2 = 0$, and completes the proof. \square

725 We next prove that the sequence of Lagrange multiplier estimates generated by
726 subproblem (3.9) during successful iterations are bounded.

727 **LEMMA 5.24.** *There exists $\kappa_{yz} \in \mathbb{R}_{>0}$ so that $\max_{k \in \mathcal{S}} \max\{\|y_k\|_{\infty}, \|z_k\|_{\infty}\} \leq \kappa_{yz}$.*

728 *Proof.* Let \bar{k}_1 serve the role of \bar{k} in Lemma 5.19 so that the results of Lemma 5.19
729 hold for each $k \geq \bar{k}_1$. Let \bar{k}_2 be sufficiently large so that $\|s_k\|_2 \leq \frac{1}{3}\delta_{\min}^{\mathcal{L}}$ for all
730 $\bar{k}_2 \leq k \in \mathcal{S}$, which is possible because of how $\delta_{\min}^{\mathcal{L}}$ is defined and Lemma 5.23.

731 For the remainder of the proof, consider an arbitrary k with $\max\{\bar{k}_1, \bar{k}_2\} \leq k \in \mathcal{S}$.
732 Let $j \in [n_{\mathcal{L}}]$ be the value guaranteed by Lemma 5.19 to exist so (5.23a)–(5.23c) hold.

Next, consider $i \in \mathcal{I}(x_j^{\mathcal{L}})$. It follows from (5.23a), the triangle inequality, the
definition of \bar{k}_2 , and the definition of $\delta_{\min}^{\mathcal{L}}$ (see (5.24)) that

$$\|x_k + s_k - x_j^{\mathcal{L}}\|_2 \leq \|x_k - x_j^{\mathcal{L}}\|_2 + \|s_k\|_2 \leq \frac{1}{3}\delta_{\min}(x_j^{\mathcal{L}}) + \frac{1}{3}\delta_{\min}^{\mathcal{L}} \leq \frac{2}{3}\delta_{\min}(x_j^{\mathcal{L}}).$$

This inequality, the definition of $\delta_{\min}(x_j^{\mathcal{L}})$ (see (5.21)), and $i \in \mathcal{I}(x_j^{\mathcal{L}})$ imply that

$$[x_k + s_k]_i \geq [x_j^{\mathcal{L}}]_i - \frac{2}{3}\delta_{\min}(x_j^{\mathcal{L}}) \geq \delta_{\min}(x_j^{\mathcal{L}}) - \frac{2}{3}\delta_{\min}(x_j^{\mathcal{L}}) = \frac{1}{3}\delta_{\min}(x_j^{\mathcal{L}}) > 0,$$

733 so that $i \in \mathcal{I}(x_k + s_k)$. Thus, $\mathcal{I}(x_j^{\mathcal{L}}) \subseteq \mathcal{I}(x_k + s_k)$, or equivalently $\mathcal{A}(x_k + s_k) \subseteq \mathcal{A}(x_j^{\mathcal{L}})$.

734 Now, let us introduce the notation $\mathcal{A}_k^s = \mathcal{A}(x_k + s_k)$. It follows from $s_k = v_k + u_k$,
 735 (4.8a), $[z_k]_i = 0$ for all $i \notin \mathcal{A}_k^s$ (see (4.8c)), and $\mathcal{A}_k^s \subseteq \mathcal{A}(x_j^{\mathcal{L}})$ (see above) that

$$736 \quad g_k + \frac{1}{\alpha_k} s_k + g_{r,k} = [J_k^T, I_{\mathcal{A}_k^s}^T] \begin{bmatrix} y_k \\ (z_k)_{\mathcal{A}_k^s} \end{bmatrix} = [J_k^T, I_{\mathcal{A}(x_j^{\mathcal{L}})}^T] \begin{bmatrix} y_k \\ (z_k)_{\mathcal{A}(x_j^{\mathcal{L}})} \end{bmatrix}.$$

Combining this result with (5.23c) and $\mathcal{A}_k^s \subseteq \mathcal{A}(x_j^{\mathcal{L}})$ it follows that

$$\left\| g_k + \frac{1}{\alpha_k} s_k + g_{r,k} \right\|_2 \geq \sigma_{\min}^{\mathcal{L}} \left\| \begin{bmatrix} y_k \\ (z_k)_{\mathcal{A}(x_j^{\mathcal{L}})} \end{bmatrix} \right\|_2 = \sigma_{\min}^{\mathcal{L}} \left\| \begin{bmatrix} y_k \\ z_k \end{bmatrix} \right\|_2.$$

Combining this inequality with the triangle inequality, (3.12), $\|s_k\|_2 \leq \frac{1}{3}\delta_{\min}^{\mathcal{L}}$, and $\alpha_k \geq \bar{\alpha}_{\min}$ (see (5.31)) it follows that

$$\left\| \begin{bmatrix} y_k \\ z_k \end{bmatrix} \right\|_2 \leq \frac{1}{\sigma_{\min}^{\mathcal{L}}} (\kappa_{\nabla f} + \frac{\delta_{\min}^{\mathcal{L}}}{3\bar{\alpha}_{\min}} + \kappa_{\partial r}).$$

737 Since the right-hand side of this inequality is a constant and independent of k , we know
 738 that the sequence of Lagrange multipliers over the successful iterations is bounded. \square

739 **THEOREM 5.25.** *Let Assumption 3.1 and Assumption 5.3 hold. Any limit point
 740 x_* of the sequence $\{x_k\}_{k \in \mathcal{S}}$ is a first-order KKT point for problem (1.1).*

741 *Proof.* Let x_* be a limit point of $\{x_k\}_{k \in \mathcal{S}}$, i.e., there exists infinite $\mathcal{K}_1 \subseteq \mathcal{S}$
 742 satisfying $\{x_k\}_{k \in \mathcal{K}_1} \rightarrow x_*$. From Lemma 5.16 and Lemma 5.20, we have that

$$743 \quad (5.33) \quad 0 = \lim_{k \rightarrow \infty} \|v_k(1)\|_2 \geq \lim_{k \rightarrow \infty} \sigma_{\min}^{\mathcal{L}} \|c_k\|_2 \geq 0,$$

744 which implies that $0 = \lim_{k \rightarrow \infty} \|c_k\|_2 = \lim_{k \in \mathcal{K}_1} \|c_k\|_2$. Combining this with continuity
 745 of c and $\{x_k\}_{k \in \mathcal{S}} \rightarrow x_*$ it follows that $c(x_*) = 0$.

Next, Lemma 5.24 ensures the existence of a vector pair $(y_*, z_*) \in \mathbb{R}^m \times \mathbb{R}^n$ and infinite subsequence $\mathcal{K}_2 \subseteq \mathcal{K}_1$ such that $\{(y_k, z_k)\}_{k \in \mathcal{K}_2} \rightarrow (y_*, z_*)$. Also, it follows from Lemma 5.23 and Lemma 4.6 that

$$0 = \lim_{k \in \mathcal{K}_2} \|s_k\|_2 \geq \lim_{k \in \mathcal{K}_2} \|\min\{x_k, -z_k\}\|_2 \geq 0,$$

746 which implies that $\lim_{k \in \mathcal{K}_2} \|\min\{x_k, -z_k\}\|_2 = 0$. Combining this with the continuity
 747 of the \min operator and $\{(y_k, z_k)\}_{k \in \mathcal{K}_2} \rightarrow (y_*, z_*)$ it follows that $\min\{x_*, -z_*\} = 0$.

It follows from Lemma 5.23 and (5.31) that $\lim_{k \in \mathcal{K}_2} (1/\alpha_k) \|s_k\|_2 = 0$. This fact, (4.8a), $\{(x_k, y_k, z_k)\}_{k \in \mathcal{K}_2} \rightarrow (x_*, y_*, z_*)$, and continuity of g and J give

$$g_{r,*} := -g(x_*) - J(x_*)^T y_* - z_* = \lim_{k \in \mathcal{K}_3} (-g_k - J_k^T y_k - z_k) = \lim_{k \in \mathcal{K}_3} g_{r,k},$$

748 so that $g(x_*) + g_{r,*} + J(x_*)^T y_* + z_* = 0$. It follows from this equality, $c(x_*) = 0$, and
 749 $\min\{x_*, -z_*\} = 0$ that x_* is a first-order KKT point for problem (1.1), as claimed. \square

750 **5.3. Active set Identification.** Our result in this section shows, under suitable
 751 assumptions, that our method can successfully identify the optimal active set.

752 **THEOREM 5.26.** *Let x_* be a first-order KKT point for problem (1.1) with La-
 753 grange multiplier vectors $y_* \in \mathbb{R}^m$ and $z_* \in \mathbb{R}_{\leq 0}^n$ for the equality constraints and
 754 bound constraints, respectively. Suppose that strict complementarity holds, i.e., that
 755 $\max\{x_*, -z_*\} > 0$. Let $\mathcal{S}_1 \subseteq \mathcal{S}$ be such that $\{x_k\}_{k \in \mathcal{S}_1} \rightarrow x_*$, $\{s_k\}_{k \in \mathcal{S}_1} \rightarrow 0$, and
 756 $\{z_k\}_{k \in \mathcal{S}_1} \rightarrow z_*$. Then, $\mathcal{A}(x_{k+1}) = \mathcal{A}(x_*)$ for all sufficiently large $k \in \mathcal{S}_1$.*

757 *Proof.* We have from the optimality conditions in (4.8) that

758 (5.34) $\|\min\{x_k + s_k, -z_k\}\|_2 = 0 \text{ for all } k \in \mathbb{N}.$

759 It follows from strict complementarity that $\epsilon := \min\{[-z_*]_j : j \in \mathcal{A}(x_*)\} > 0$. Com-
760 bining this with $\{z_k\}_{k \in \mathcal{S}_1} \rightarrow z_*$ gives the existence of $\bar{k} \in \mathbb{N}$ such that $\|z_k - z_*\|_\infty < \epsilon/2$
761 for all $\bar{k} \leq k \leq \mathcal{S}_1$. Thus, all $\bar{k} \leq k \in \mathcal{S}_1$ and $j \in \mathcal{A}(x_*)$ satisfy $[-z_k]_j > \frac{\epsilon}{2}$. Combining
762 this with (5.34) shows that $[x_{k+1}]_i = [x_k + s_k]_i = 0$ for all $\bar{k} \leq k \in \mathcal{S}_1$ and $i \in \mathcal{A}(x_*)$.
763 Finally, it follows from $\{x_k\}_{k \in \mathcal{S}_1} \rightarrow x_*$ and $\{s_k\}_{k \in \mathcal{S}_1} \rightarrow 0$ that $[x_{k+1}]_i = [x_k + s_k]_i > 0$
764 for all $i \notin \mathcal{A}(x_*)$ and $k \in \mathcal{S}_1$ sufficiently large, which completes the proof. \square

765 **5.4. Manifold Identification.** In this section, we establish a manifold iden-
766 tification property for Algorithm 3.1 under certain assumptions. For the definition
767 of a C^2 -smooth manifold $\mathcal{M} \subset \mathbb{R}^n$ at a given point in \mathbb{R}^n , see [37, Definition 2.3].
768 Our result assumes that the regularizer r is partly smooth relative to a manifold at a
769 first-order KKT point; see [37, Definition 3.2].

770 To motivate our assumption that the regularizer is partly smooth, consider $r(x) =$
771 $\|x\|_1$ and $x_* \in \mathbb{R}^n \setminus \{0\}$. Define the set $\mathcal{M} = \{x \in \mathbb{R}^n : \text{sgn}(x_i) = \text{sgn}([x_*]_i) \text{ for } i \in$
772 $\mathcal{I}(x_*)$, and $x_i = 0$ for $i \in \mathcal{A}(x_*)\}$, which is a $(|\mathcal{I}(x_*)|)$ -dimensional C^2 -smooth mani-
773 fold around the point x_* . Then, r is partly smooth at x_* relative to \mathcal{M} .

774 We are now ready to present our manifold identification property of Algorithm 3.1.
775 The proof borrows ideas from [35, Lemma 1] and relies on [37, Theorem 4.10].

776 **THEOREM 5.27.** *Let x_* be a first-order KKT point to problem (1.1) with Lagrange
777 multiplier vectors y_* and z_* , and suppose that r is convex and partly smooth at x_*
778 relative to a C^2 -smooth manifold \mathcal{M} . Assume that the proximal parameter sequence
779 $\{\alpha_k\}_{k \in \mathbb{N}}$ is bounded away from zero, that there exists a subsequence $\mathcal{S}_1 \subseteq \mathcal{S}$ such that
780 $\{(x_k, s_k, y_k, z_k)\}_{k \in \mathcal{S}_1} \rightarrow (x_*, 0, y_*, z_*)$, and that the non-degeneracy condition*

781 (5.35) $0 \in \{g(x_*) + J(x_*)^T y_* + z_*\} + \text{relint}(\partial r(x_*))$

782 holds, where *relint* denotes the relative interior of a convex set. Then, it follows that
783 $x_{k+1} \in \mathcal{M}$ for all sufficiently large $k \in \mathcal{S}_1$.

784 *Proof.* Let us define $\bar{y} = -(g(x_*) + J(x_*)^T y_* + z_*)$, and note from (5.35) that
785 $\bar{y} \in \text{relint}(\partial r(x_*))$. Next, since r is convex, it is prox-regular [37, Definition 3.6] at x_*
786 with \bar{y} . It also follows from r being convex (thus continuous), $\{x_k\}_{k \in \mathcal{S}_1} \rightarrow x_*$, and
787 $\{s_k\}_{k \in \mathcal{S}_1} \rightarrow 0$ that $\{x_k + s_k\}_{k \in \mathcal{S}_1} \rightarrow x_*$ and $\{r(x_k + s_k)\}_{k \in \mathcal{S}_1} \rightarrow r(x_*)$. Combining
788 these observations with the assumption in the statement of the theorem that r is partly
789 smooth at x_* relative to a C^2 -smooth manifold \mathcal{M} , means that every assumption
790 in [37, Theorem 4.10] holds (with r and x_* here playing the role of f and \bar{x} in [37,
791 Theorem 4.10]). To use [37, Theorem 4.10]) to establish our manifold identification
792 result, it remains to prove that $\{\text{dist}(\bar{y}, \partial r(x_k + s_k))\}_{k \in \mathcal{S}_1} \rightarrow 0$, as we now show.

793 It follows from the triangle inequality, (3.12), and (3.13) that

794 (5.36)
$$\begin{aligned} & \|J(x_k + s_k)^T y_* - J(x_k)^T y_k\|_2 \\ & \leq \|J(x_k + s_k)^T y_* - J(x_k)^T y_* + J(x_k)^T y_* - J(x_k)^T y_k\|_2 \\ & \leq L_J \|s_k\|_2 \|y_*\|_2 + \kappa_J \|y_k - y_*\|_2 \text{ for all } k \in \mathbb{N}. \end{aligned}$$

795 Using (4.8a), $g_{r,k} \in \partial r(x_k + s_k)$, (3.12), and (5.36), we have that

$$\begin{aligned}
& \text{dist}(-g(x_k + s_k) - J(x_k + s_k)^T y_* - z_*, \partial r(x_k + s_k)) \\
& \leq \| -g(x_k + s_k) - J(x_k + s_k)^T y_* - z_* - g_{r,k} \|_2 \\
796 & = \left\| g(x_k + s_k) - g(x_k) + (J(x_k + s_k)^T y_* - J(x_k)^T y_k) + (z_* - z_k) - \frac{1}{\alpha_k} s_k \right\|_2 \\
& \leq \| g(x_k + s_k) - g(x_k) \|_2 + \| J(x_k + s_k)^T y_* - J(x_k)^T y_k \|_2 + \| z_* - z_k \|_2 + \frac{1}{\alpha_k} \| s_k \|_2 \\
& \leq L_g \| s_k \|_2 + L_J \| s_k \|_2 \| y_* \|_2 + \kappa_J \| y_k - y_* \|_2 + \| z_k - z_* \|_2 + \frac{1}{\alpha_k} \| s_k \|_2 \quad \text{for all } k \in \mathbb{N}.
\end{aligned}$$

797 This inequality, $\{(x_k, s_k, y_k, z_k)\}_{k \in \mathcal{S}_1} \rightarrow (x_*, 0, y_*, z_*)$, and $\{\alpha_k\}$ bounded from 0 give

$$798 (5.37) \quad \{\text{dist}(-g(x_k + s_k) - J(x_k + s_k)^T y_* - z_*, \partial r(x_k + s_k))\}_{k \in \mathcal{S}_1} \rightarrow 0.$$

799 Next, for all $k \in \mathbb{N}$, it follows from [15, Theorem 6.2] that

$$\begin{aligned}
800 & |\text{dist}(\bar{y}, \partial r(x_k + s_k)) - \text{dist}(-g(x_k + s_k) - J(x_k + s_k)^T y_* - z_*, \partial r(x_k + s_k))| \\
801 & \leq \| \bar{y} + g(x_k + s_k) + J(x_k + s_k)^T y_* + z_* \|_2,
\end{aligned}$$

802 which immediately implies that

$$\begin{aligned}
803 & \text{dist}(\bar{y}, \partial r(x_k + s_k)) \leq \text{dist}(-g(x_k + s_k) - J(x_k + s_k)^T y_* - z_*, \partial r(x_k + s_k)) \\
804 & \quad + \| \bar{y} + g(x_k + s_k) + J(x_k + s_k)^T y_* + z_* \|_2.
\end{aligned}$$

805 Combining this inequality with (5.37), $\{(x_k, s_k, y_k, z_k)\}_{k \in \mathcal{S}_1} \rightarrow (x_*, 0, y_*, z_*)$, and
806 continuity of g and J shows that $\{\text{dist}(\bar{y}, \partial r(x_k + s_k))\}_{k \in \mathcal{S}_1} \rightarrow 0$, which was our goal.
807 We can now apply [37, Theorem 4.10] to conclude that $x_k + s_k \in \mathcal{M}$ for all sufficiently
808 large $k \in \mathcal{S}_1$. Since $x_{k+1} = x_k + s_k$ for all $k \in \mathcal{S}_1$, the proof is completed. \square

809 **6. Numerical Results.** We present results from numerical experiments con-
810 ducted using our Python implementation of Algorithm 3.1. The test problems employ
811 the ℓ_1 regularizer, a widely adopted choice to induce sparse solutions. Our numerical
812 evaluation has two primary objectives: to demonstrate the numerical performance of
813 our method using standard optimization metrics, and to assess its capability to cor-
814 rectly identify the zero-nonzero structure of the solution. Our test problems include
815 special instances of ℓ_1 -regularized optimization problems from the CUTEst [23] test
816 environment, and instances of sparse canonical correlation analysis.

817 **6.1. Implementation details.** Given v_k^c in (3.6) as the Cauchy point for sub-
818 problem (3.1), to find a v_k satisfying the conditions in (3.4), we first compute

$$819 (6.1) \quad v_k^\infty := \arg \min_{v \in \mathbb{R}^n} m_k(v) \quad \text{s.t. } \|v\|_\infty \leq \kappa_v^\infty \alpha_k \delta_k, \quad x_k + v \in \Omega$$

with $\kappa_v^\infty \in \mathbb{R}_{>0}$, which differs from (3.1) only in its use of the infinity-norm. Our motivation for using subproblem (6.1) is that the feasible region only consists of simple bound constraints, which can be handled efficiently by solvers. As long as $\kappa_v^\infty \leq \frac{1}{\sqrt{n}} \kappa_v$ (which we choose to hold), the solution v_k^∞ to (6.1) satisfies $\|v_k^\infty\|_2 \leq \sqrt{n} \|v_k^\infty\|_\infty \leq \sqrt{n} \kappa_v^\infty \alpha_k \delta_k \leq \kappa_v \alpha_k \delta_k$, meaning that v_k^∞ satisfies the first two conditions in (3.4). To ensure that the third condition is also satisfied, we set

$$v_k \leftarrow \begin{cases} v_k^c & \text{if } m_k(v_k^c) < m_k(v_k^\infty), \\ v_k^\infty & \text{otherwise.} \end{cases}$$

820 To solve subproblem (6.1), we use the barrier method in Gurobi version 11.0.3 [24].
 821 Next, to solve subproblem (3.9) (as needed in Line 12 of Algorithm 3.1), we exploit
 822 the structure of the ℓ_1 -norm. By introducing variables $(p, q) \in \mathbb{R}_{\geq 0}^n \times \mathbb{R}_{\geq 0}^n$ and using
 823 e to denote a ones vector of appropriate dimension, we solve the equivalent problem

$$824 \quad (6.2) \quad \begin{aligned} & \min_{(u,p,q) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n} g_k^T u + \frac{1}{2\alpha_k} \|u\|_2^2 + \frac{1}{\alpha_k} v_k^T u + \lambda e^T (p + q) \\ & \text{s.t. } J_k u = 0, \quad x_k + v_k + u \in \Omega, \quad p \geq 0, \quad q \geq 0. \end{aligned}$$

825 Problem (6.2) is a convex QP that we solve using the dual active-set QP solver
 826 in Gurobi. In Algorithm 3.1, the proximal parameter α_k remains unchanged, i.e.,
 827 $\alpha_{k+1} \leftarrow \alpha_k$ (Line 19), whenever the sufficient decreasing condition at Line 18 is
 828 satisfied; in our implementation, we instead update it as $\alpha_{k+1} \leftarrow \max\{\xi^{-1}\alpha_k, 10\}$,
 829 which allows the proximal parameter to possibly take larger values. We found this
 830 update strategy to work better in our testing, all of the analysis of Section 5.2.3
 831 still holds, and the analysis of Section 5.2.2 still holds if this modified update is only
 832 allowed a finite (possibly large) number of times.

833 The parameters used and initial proximal parameter value are presented in Ta-
 834 ble 6.1. The starting point x_0 and initial proximal-parameter value α_0 used for the
 835 test problems will be specified in Section 6.2–6.3.

TABLE 6.1
Parameters used by Algorithm 3.1. Recall that κ_v^∞ appears in (6.1).

τ_{-1}	κ_v	κ_v^∞	σ_c	ϵ_τ	ξ	γ	η_Φ	η_m
1	10^3	10^{-2}	0.1	0.1	0.5	0.5	10^{-4}	10^{-4}

836 Algorithm 3.1 is terminated when one of the following conditions is satisfied.

- **Approximate KKT point.** Algorithm 3.1 is terminated during the k th iteration with x_k considered an approximate KKT point if $\|c_k\|_2 \leq 10^{-6}$,
 $\|g_k + g_{r,k} + J_k^T y_k + z_k\|_2 \leq 10^{-4}$, and $\|\min\{x_k, -z_k\}\|_2 \leq 10^{-4}$.

- **Time limit.** Algorithm 3.1 is terminated if the running time exceeds 1 hour.

841 As is common in the literature, we scale the problem functions. In particular, the
 842 objective and its gradient are scaled by the scaling factor

$$843 \quad (6.3) \quad \text{scale_factor} = \begin{cases} \frac{100}{\|\nabla f(x_0)\|_\infty} & \text{if } \|\nabla f(x_0)\|_\infty > 100, \\ 1 & \text{otherwise.} \end{cases}$$

844 A similar scaling strategy is applied to each constraint c_i for $1 \in [m]$.

845 For comparison, we consider the solver Bazinga,¹ which is a safeguarded aug-
 846 mented Lagrangian method and, to the best of our knowledge, the only open source
 847 code that can solve problem (1.1); see [18] for more details. The Bazinga algorithm
 848 is terminated when one of the following conditions is satisfied.

- **Approximate KKT point.** Bazinga is terminated if a certain primal feasibility and dual stationarity measure are less than 10^{-6} .
- **Not a number.** Bazinga is terminated if a NaN occurs.
- **Time limit.** Algorithm 3.1 is terminated if the running time exceeds 1 hour.

¹The code package of Bazinga is downloaded from <https://github.com/aldma/Bazinga.jl>

853 **6.2. CUTEst test problems.** We first conduct experiments on a subset of the
 854 CUTEst test problems. Given the objective function f , equality constraint $c_E(x) = 0$,
 855 inequality constraints $c_l \leq c_I(x) \leq c_u$ for some constant vectors c_l and c_u , and bound
 856 constraints $b_l \leq x \leq b_u$ for some constant vectors b_l and b_u all supplied by CUTEst
 857 for a given test problem, we solve the ℓ_1 -regularized optimization problem

858 (6.4)
$$\min_{(x,s,a) \in \mathbb{R}^{n+m_I+m}} f(x) + \lambda \|a\|_1 \text{ s.t. } \begin{bmatrix} c_E(x) \\ c_I(x) - s \end{bmatrix} + a = 0, \quad \begin{bmatrix} b_l \\ c_l \end{bmatrix} \leq \begin{bmatrix} x \\ s \end{bmatrix} \leq \begin{bmatrix} b_u \\ c_u \end{bmatrix},$$

859 where m_I is the number of inequality constraints and $\lambda \in \mathbb{R}_{>0}$ is a regularization
 860 parameter. The slack vector s is introduced to reformulate inequality constraints as
 861 equality constraints plus bound constraints. The vector a is introduced in this manner
 862 so that we can control its sparsity for illustrative purposes in our experiments.

863 The subset of CUTEst problems were chosen based on the following selection
 864 criteria: (i) the objective function is not constant; (ii) the number of variables and
 865 constraints satisfy $1 \leq m \leq n \leq 100$; (iii) the total number of inequality constraints
 866 satisfies $m_I \geq 1$. For the choice of λ , we consider the following optimization problem

867 (6.5)
$$\min_{x \in \mathbb{R}^n, s \in \mathbb{R}^{m_I}} f(x) \quad \text{s.t.} \quad \begin{bmatrix} c_E(x) \\ c_I(x) - s \end{bmatrix} = 0, \quad \begin{bmatrix} b_l \\ c_l \end{bmatrix} \leq \begin{bmatrix} x \\ s \end{bmatrix} \leq \begin{bmatrix} b_u \\ c_u \end{bmatrix},$$

868 and let (\bar{x}, \bar{s}) be a first-order KKT point of this problem with Lagrange multiplier
 869 y_{eq} associated with the equality constraints. Then, if $\lambda \geq \|y_{\text{eq}}\|_\infty$, the point $(\bar{x}, \bar{s}, 0)$
 870 is a first-order KKT point for the optimization problem (6.4). With this observation,
 871 we set $\lambda = \|y_{\text{eq}}\|_\infty + 10$ where y_{eq} is computed by solving problem (6.5) using
 872 IPOPT [50]. Problems that are not successfully solved by IPOPT are removed from
 873 the test problems. The final subset consisted of 81 CUTEst test problems.

874 For our tests, we set $\alpha_0 = 10$ and x_0 as the initial point supplied by CUTEst.

875 We compare the performance of Algorithm 3.1 and Bazinga using several metrics;
 876 the results of our tests can be found in Table 6.2. The meaning of the columns found
 877 in Table 6.2 are described in the following bullet points.

- **Feasible.** The number of test problems for which the corresponding method terminates at a point with constraint violation less than 10^{-6} . For this metric, we see that the two methods behave similarly, with Algorithm 3.1 achieving approximate feasibility on four more test problem.
- **Feasible, Better Objective.** To understand the meaning of this column, let $f_{\text{Algorithm 3.1}}$ denote the final objective value returned by Algorithm 3.1 and f_{Bazinga} denote the final objective value returned by Bazinga. We then define the relative difference in the returned objective function values as

886 (6.6)
$$f_{\text{diff}} := \frac{f_{\text{Bazinga}} - f_{\text{Algorithm 3.1}}}{\max(1, |\min(f_{\text{Bazinga}}, f_{\text{Algorithm 3.1}})|)}.$$

887 We say that Algorithm 3.1 (resp., Bazinga) has a better relative objective
 888 value if $f_{\text{diff}} \geq 10^{-6}$ (resp., $f_{\text{diff}} \leq -10^{-6}$). Using this terminology, column
 889 “Feasible, Better Objective” gives the number of test problems for which both
 890 algorithms terminated at a point with constraint violation less than 10^{-6} and
 891 the corresponding method has a better relative objective value. For this
 892 metric, Algorithm 3.1 outperforms Bazinga on 8 additional problems.

- **Performs Better.** The number of test problems for which the corresponding method either (i) meets the constraint violation tolerance and the other

895 method does not, or (ii) both methods reach the constraint violation tolerance
 896 and the corresponding method has a better relative objective value (see (6.6)).
 897 For this metric, Algorithm 3.1 outperforms Bazinga by one problem.
 898 • ***a* is Zero.** The number of test problems for which the corresponding method
 899 returns $a = 0$. Algorithm 3.1 outperforms Bazinga on this metric, with Algo-
 900 rithm 3.1 (resp., Bazinga) returning $a = 0$ on 76 (resp., 55) of the problems.
 901 • ***a* is Small.** The number of test problems for which the corresponding method
 902 returns $\|a\|_\infty \leq 10^{-8}$, thus indicating that a is small (possibly equal to zero).
 903 When comparing this column with column “*a* is Zero”, we see that the only
 904 difference is that Bazinga returns a small (nonzero) value for a on one addi-
 905 tional test problem; the results for Algorithm 3.1 are unchanged.
 906 • **KKT Found.** The number of test problems for which the corresponding
 907 method terminates with an approximate KKT point. Algorithm 3.1 outper-
 908 forms Bazinga with Algorithm 3.1 (resp., Bazinga) returning an approximate
 909 first-order KKT point on 70 (resp., 58) of the problems tested.

TABLE 6.2

Algorithm 3.1 versus Bazinga on various performance metrics related to solving problem (6.4).

Method	Feasible	Feasible, Better Objective	Performs Better	<i>a</i> is Zero	<i>a</i> is Small	KKT Found
Algorithm 3.1	71	13	14	76	76	70
Bazinga	67	5	13	55	56	58

910 We conclude this section by comparing the computational times of Algorithm 3.1
 911 and Bazinga. Figure 6.1 is a Dolan-Moré performance profile [19] for timings, capped
 912 at $t = 1000$. The results show that Algorithm 3.1 (red line) outperforms Bazinga
 913 (purple line); see [19] for details on interpreting this figure.

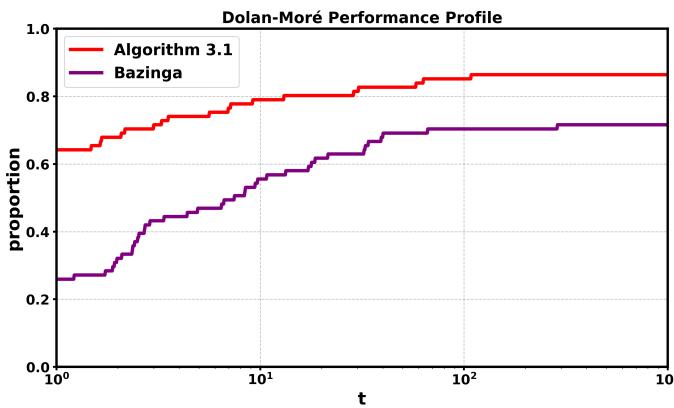


FIG. 6.1. More-Dolen performance profile comparing Algorithm 3.1 and Bazinga in terms of wall-clock time on the subset of CUTEst test problems discussed in Section 6.2.

914 **6.3. Sparse canonical correlation analysis (SCCA).** We now evaluate the
 915 performance of Algorithm 3.1 on the SCCA problem [52] formulated as

$$916 \quad (6.7) \quad \begin{aligned} \min_{w_x \in \mathbb{R}^{n_x}, w_y \in \mathbb{R}^{n_y}} \quad & -w_x^T \Sigma_{xy} w_y + \lambda(\|w_x\|_1 + \|w_y\|_1) \\ \text{s.t.} \quad & w_x^T \Sigma_{xx} w_x \leq 1, \quad w_y^T \Sigma_{yy} w_y \leq 1, \end{aligned}$$

917 where $\Sigma_{xx} = XX^T$ and $\Sigma_{yy} = YY^T$ represent the covariance matrices for data
 918 matrices $X \in \mathbb{R}^{n_x \times N}$ and $Y \in \mathbb{R}^{n_y \times N}$, respectively, and $\Sigma_{xy} = XY^T$ represents the
 919 cross-covariance matrix between X and Y . Problem (6.7) aims to identify sparse
 920 weight vectors w_x and w_y that maximize the correlation between the transformed
 921 views of X and Y while the variance constraints prevent trivial solutions where the
 922 weight vectors are arbitrarily scaled to inflate the correlation.

923 Following the approach of [13], we generate synthetic data matrices X and Y as

$$924 \quad X = \left(\begin{bmatrix} e \\ -e \\ 0 \end{bmatrix} + \xi_x \right) u^T \quad \text{and} \quad Y = \left(\begin{bmatrix} 0 \\ e \\ -e \end{bmatrix} + \xi_y \right) u^T,$$

925 where $e \in \mathbb{R}^{n_x/8}$ represents an all-ones vector, $\xi_x \in \mathbb{R}^{n_x}$ and $\xi_y \in \mathbb{R}^{n_y}$ are noise
 926 vectors with entries sampled from $\mathcal{N}(0, 0.01)$, and $u \in \mathbb{R}^N$ is a random vector with
 927 entries $u_i \sim \mathcal{N}(0, 1)$. This construction creates a known ground truth structure: the
 928 first $n_x/4$ rows of X are correlated with the last $n_y/4$ rows of Y . Consequently, the
 929 ideal sparse solutions for w_x and w_y should have non-zero elements confined to the
 930 first $n_x/4$ and last $n_y/4$ indices, respectively.

931 To evaluate the quality of a solution returned by a solver, we compute various
 932 metrics: the correlation coefficient ρ_{xy} , sparsity ratio sr_x for vector w_x , sparsity ratio
 933 sr_y for vector w_y , overall sparsity ratio sr , variance bound-constraint violations voc_x
 934 and voc_y , and sparsity level sl , which are defined as

$$\begin{aligned} 935 \quad \rho_{xy} &= \frac{w_x^T \Sigma_{xy} w_y}{\sqrt{(w_x^T \Sigma_{xx} w_x)(w_y^T \Sigma_{yy} w_y)}}, \quad sr_x = \frac{n_x - \|w_x\|_0}{n_x}, \\ 936 \quad sr_y &= \frac{n_y - \|w_y\|_0}{n_y}, \quad sr = \frac{(n_x + n_y) - (\|w_x\|_0 + \|w_y\|_0)}{n_x + n_y}, \\ 937 \quad voc_x &= \max(w_x^T \Sigma_{xx} w_x - 1, 0), \quad voc_y = \max(w_y^T \Sigma_{yy} w_y - 1, 0), \text{ and} \\ 938 \quad sl &= \|w_x\|_{[n_x/4+1:n_x]} + \|w_y\|_{[1:3n_y/4-1]}. \end{aligned}$$

939 We consider SCCA test problems of three different sizes with $n_x = n_y = N \in$
 940 $\{200, 400, 800\}$ and regularization parameters $\lambda \in \{10^{-2}, 10^{-3}, 10^{-4}\}$. For each problem
 941 instance, the starting point x_0 is obtained by solving the generic canonical
 942 correlation analysis problem (no regularization term) using the `CCA` class from the
 943 `scikit-learn` package. We set the initial proximal parameter as $\alpha_0 = 10^{-3}$. The
 944 algorithm terminates when one of the conditions detailed in Section 6.1 is satisfied.

945 The results in Table 6.3 demonstrate the effectiveness of Algorithm 3.1 on SCCA
 946 problems. First, the correlation coefficient achieves the maximum possible value on
 947 every test case. Second, every solution exhibits the correct sparse structure since
 948 $sl = 0$. Third, the algorithm produces solutions with varying sparsity levels that
 949 are controlled by the regularization parameter λ , with higher sparsity ratios achieved
 950 by larger λ values. Finally, constraint violations are smaller than 10^{-9} . Table 6.4

TABLE 6.3

Performance metrics for Algorithm 3.1 when solving problem (6.7). Time is measured in seconds.

$n_x = n_y$	λ	ρ_{xy}	sr_x	sr_y	sr	sl	voc_x	voc_y	time
200	10^{-2}	1.0000	99.50%	99.50%	99.50%	0	0	0	76.89
	10^{-3}	1.0000	99.50%	99.50%	99.50%	0	0	0	87.36
	10^{-4}	1.0000	89.50%	90.00%	89.75%	0	0	1.03e-11	117.14
400	10^{-2}	1.0000	99.75%	99.75%	99.75%	0	1.40e-9	0	128.40
	10^{-3}	1.0000	99.50%	99.00%	99.25%	0	9.83e-11	0	348.44
	10^{-4}	1.0000	83.50%	82.75%	83.13%	0	9.46e-11	1.67e-10	226.48
800	10^{-2}	1.0000	99.88%	99.88%	99.88%	0	5.86e-9	3.34e-9	279.18
	10^{-3}	1.0000	99.63%	99.88%	99.75%	0	6.33e-10	1.81e-9	899.06
	10^{-4}	1.0000	96.63%	95.63%	96.13%	0	0	1.47e-10	463.84

TABLE 6.4

Performance metrics for Bazinga when solving problem (6.7). Time is measured in seconds.

$n_x = n_y$	λ	ρ_{xy}	sr_x	sr_y	sr	sl	voc_x	voc_y	time
200	10^{-2}	1.0000	99.50%	99.50%	99.50%	0	4.02e-9	3.34e-8	86.10
	10^{-3}	1.0000	99.50%	99.50%	99.50%	0	1.96e-8	0	251.97
	10^{-4}	1.0000	92.00%	87.50%	89.75%	0	0	0	164.08
400	10^{-2}	1.0000	99.75%	99.75%	99.75%	0	6.62e-9	1.32e-8	556.60
	10^{-3}	1.0000	97.50%	97.75%	97.63%	0	0	0	744.31
	10^{-4}	1.0000	77.75%	85.00%	81.38%	0	0	0	713.13
800	10^{-2}	1.0000	98.75%	98.38%	98.56%	0	0	2.35e-9	2958.89
	10^{-3}	1.0000	88.63%	97.25%	92.94%	0	0	2.00e-8	2789.95
	10^{-4}	1.0000	81.38%	78.75%	80.06%	0	6.55e-8	0	2612.26

951 reports the performance of Bazinga on the same problems. Notably, Algorithm 3.1
952 attains sparsity ratios that are at least as high as those of Bazinga (sometimes strictly
953 higher), while requiring less computational time.

954 **7. Conclusion.** We presented the first proximal-gradient-type method for reg-
955 ularized optimization problems with general nonlinear inequality constraints. Simi-
956 lar to the traditional proximal-gradient method, we proved that our approach has a
957 convergence result (under an LICQ assumption), a worst-case iteration complexity
958 result (under a stronger assumption), as well as a manifold identification property
959 and active-set identification property (under standard assumptions).

960

REFERENCES

961 [1] Yanqin Bai, Renli Liang, and Zhouwang Yang. Splitting augmented Lagrangian method for
962 optimization problems with a cardinality constraint and semicontinuous variables. *Opti-*
963 *mization Methods and Software*, 31(5):1089–1109, 2016.

964 [2] Gilles Bareilles, Franck Iutzeler, and Jérôme Malick. Newton acceleration on manifolds identi-
965 fied by proximal gradient methods. *Mathematical Programming*, 200(1):37–70, 2023.

966 [3] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
967 problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202, 2009.

968 [4] Amir Beck. *First-order methods in optimization*. SIAM, 2017.

969 [5] Carla Bertocchi, Emilie Chouzenoux, Marie-Caroline Corbineau, Jean-Christophe Pesquet, and
970 Marco Prato. Deep unfolding of a proximal interior point method for image restoration.
971 *Inverse Problems*, 36(3):034005, 2020.

972 [6] Dimitri Bertsekas. *Convex optimization theory*, volume 1. Athena Scientific, 2009.

973 [7] Digvijay Boob, Qi Deng, and Guanghui Lan. Level constrained first order methods for function
974 constrained optimization. *Mathematical Programming*, 209(1):1–61, 2025.

975 [8] Lahcen El Bourkhissi, Ion Necoara, Panagiotis Patrinos, and Quoc Tran-Dinh. Complexity of
 976 linearized perturbed augmented Lagrangian methods for nonsmooth nonconvex optimization
 977 with nonlinear equality constraints. *arXiv preprint arXiv:2503.01056*, 2025.

978 [9] Paul H. Calamai and Jorge J. Moré. Projected gradient methods for linearly constrained
 979 problems. *Mathematical programming*, 39(1):93–116, 1987.

980 [10] Tianyi Chen, Frank E. Curtis, and Daniel P. Robinson. A reduced-space algorithm for mini-
 981 mizing ℓ_1 -regularized convex functions. *SIAM J. Optim.*, 27(3):1583–1610, 2017.

982 [11] Tianyi Chen, Frank E. Curtis, and Daniel P. Robinson. FaRSA for ℓ_1 -regularized convex opti-
 983 mization: local convergence and numerical experience. *Optim. Methods. Softw.*, 33(2):396–
 984 415, 2018.

985 [12] Emilie Chouzenoux, Marie-Caroline Corbineau, and Jean-Christophe Pesquet. A proximal
 986 interior point algorithm with applications to image processing. *Journal of Mathematical
 987 Imaging and Vision*, 62(6):919–940, 2020.

988 [13] Delin Chu, Li-Zhi Liao, Michael K Ng, and Xiaowei Zhang. Sparse canonical correlation analy-
 989 sis: New formulation and algorithm. *IEEE transactions on pattern analysis and machine
 990 intelligence*, 35(12):3050–3065, 2013.

991 [14] XT Cui, XJ Zheng, SS Zhu, and XL Sun. Convex relaxations and MIQCQP reformulations
 992 for a class of cardinality-constrained portfolio selection problems. *Journal of Global Opti-
 993 mization*, 56(4):1409–1423, 2013.

994 [15] Frank E. Curtis and Daniel P. Robinson. *Practical Nonconvex Nonsmooth Optimization*. MOS-
 995 SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadel-
 996 phia, PA, USA, 2025.

997 [16] Yutong Dai, Xiaoyi Qu, and Daniel P. Robinson. A proximal-gradient method for equality
 998 constrained optimization. *SIAM Journal on Optimization*, 35(4):2654–2683, 2025.

999 [17] Alberto De Marchi. An interior proximal gradient method for nonconvex optimization. *Open
 1000 Journal of Mathematical Optimization*, 5:1–22, 2024.

1001 [18] Alberto De Marchi, Xiaoxi Jia, Christian Kanzow, and Patrick Mehlitz. Constrained com-
 1002 posite optimization and augmented Lagrangian methods. *Mathematical Programming*,
 1003 201(1):863–896, 2023.

1004 [19] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
 1005 profiles. *Mathematical programming*, 91(2):201–213, 2002.

1006 [20] Florian Dörfler, Mihailo R Jovanović, Michael Chertkov, and Francesco Bullo. Sparsity-
 1007 promoting optimal wide-area control of power networks. *IEEE Transactions on Power
 1008 Systems*, 29(5):2281–2291, 2014.

1009 [21] Francisco Facchinei, Andreas Fischer, and Christian Kanzow. On the accurate identification of
 1010 active constraints. *SIAM Journal on Optimization*, 9(1):14–32, 1998.

1011 [22] Makan Fardad, Fu Lin, and Mihailo R. Jovanović. Sparsity-promoting optimal control for a
 1012 class of distributed systems. In *Proceedings of the 2011 American Control Conference*,
 1013 pages 2050–2055. IEEE, 2011.

1014 [23] Nicholas I.M. Gould, Dominique Orban, and Philippe L. Toint. CUTEst: a constrained and
 1015 unconstrained testing environment with safe threads for mathematical optimization. *Com-
 1016 putational optimization and applications*, 60:545–557, 2015.

1017 [24] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

1018 [25] Davood Hajinezhad and Mingyi Hong. Perturbed proximal primal–dual algorithm for noncon-
 1019 vex nonsmooth optimization. *Mathematical Programming*, 176(1):207–245, 2019.

1020 [26] Nadav Hallak and Marc Teboulle. An adaptive Lagrangian-based scheme for nonconvex com-
 1021 posite optimization. *Mathematics of Operations Research*, 48(4):2337–2352, 2023.

1022 [27] Syed Ali Hamza and Moeness G Amin. Hybrid sparse array beamforming design for general
 1023 rank signal models. *IEEE Transactions on Signal Processing*, 67(24):6215–6226, 2019.

1024 [28] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
 1025 for efficient neural network. *Advances in neural information processing systems*, 28, 2015.

1026 [29] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in
 1027 deep learning: Pruning and growth for efficient inference and training in neural networks.
Journal of Machine Learning Research, 22(241):1–124, 2021.

1028 [30] Huiping Huang, Hing Cheung So, and Abdelhak M Zoubir. Sparse array beamformer design
 1029 via ADMM. *IEEE Transactions on Signal Processing*, 71:3357–3372, 2023.

1030 [31] Bo Jiang, Tianyi Lin, Shiqian Ma, and Shuzhong Zhang. Structured nonconvex and nonsmooth
 1031 optimization: algorithms and iteration complexity analysis. *Computational Optimization
 1032 and Applications*, 72(1):115–157, 2019.

1033 [32] H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient
 1034 methods under the Polyak–Lojasiewicz condition. In *Joint European Conference on Ma-
 1035 chine Learning and Knowledge Discovery in Databases*, pages 795–811. Springer, 2016.

1037 [33] Weiwei Kong, Jefferson G. Melo, and Renato D.C. Monteiro. Complexity of a quadratic penalty
 1038 accelerated inexact proximal point method for solving linearly constrained nonconvex com-
 1039 posite programs. *SIAM Journal on Optimization*, 29(4):2566–2593, 2019.

1040 [34] Geoffroy Leconte and Dominique Orban. An interior-point trust-region method for nonsmooth
 1041 regularized bound-constrained optimization. *arXiv preprint arXiv:2402.18423*, 2024.

1042 [35] Ching-pei Lee. Accelerating inexact successive quadratic approximation for regularized op-
 1043 timization through manifold identification. *Mathematical Programming*, 201(1):599–633,
 1044 2023.

1045 [36] Ching-pei Lee and Stephen J. Wright. Inexact successive quadratic approximation for regular-
 1046 ized optimization. *Comput. Optim. Appl.*, 72:641–674, 2019.

1047 [37] Adrian S. Lewis and Shanshan Zhang. Partial smoothness, tilt stability, and generalized Hes-
 1048 sians. *SIAM Journal on Optimization*, 23(1):74–94, 2013.

1049 [38] Zichong Li, Pin-Yu Chen, Sijia Liu, Songtao Lu, and Yangyang Xu. Rate-improved inexact
 1050 augmented Lagrangian method for constrained nonconvex optimization. In *International
 1051 Conference on Artificial Intelligence and Statistics*, pages 2170–2178. PMLR, 2021.

1052 [39] Shuai Liu, Claudia Sagastizabal, and Mikhail V. Solodov. Proximal gradient-method with su-
 1053 perlinear convergence for nonsmooth convex optimization. *SIAM Journal on Optimization*,
 1054 35(3):1601–1629, 2025.

1055 [40] G.P. McCormick and R.A. Tapia. The gradient projection method under mild differentiability
 1056 conditions. *SIAM Journal on Control*, 10(1):93–98, 1972.

1057 [41] Jorge J Moré. Trust regions and projected gradients. In *System Modelling and Optimization:
 1058 Proceedings of the 13th IFIP Conference Tokyo, Japan, August 31–September 4, 1987*,
 1059 pages 1–13. Springer, 2006.

1060 [42] Julie Nutini, Mark Schmidt, and Warren Hare. “Active-set complexity” of proximal gradient:
 1061 How long does it take to find the sparsity pattern? *Optimization Letters*, 13:645–655,
 1062 2019.

1063 [43] Christina Oberlin and Stephen J. Wright. Active set identification in nonlinear programming.
 1064 *SIAM Journal on Optimization*, 17(2):577–605, 2006.

1065 [44] Daniel P. Robinson. *Primal-Dual Methods for Nonlinear Optimization*. PhD thesis, Department
 1066 of Mathematics, University of California San Diego, La Jolla, CA, 2007.

1067 [45] R. Tyrrell Rockafellar and Roger J-B Wets. *Variational analysis*, volume 317. Springer Science
 1068 & Business Media, 2009.

1069 [46] Mehmet Fatih Sahin, Ahmet Alacaoglu, Fabian Latorre, Volkan Cevher, et al. An inexact
 1070 augmented Lagrangian framework for nonconvex optimization with nonlinear constraints.
 1071 *Advances in Neural Information Processing Systems*, 32, 2019.

1072 [47] Yifan Sun, Halyun Jeong, Julie Nutini, and Mark Schmidt. Are we there yet? manifold
 1073 identification of gradient-related proximal methods. In *The 22nd International Conference
 1074 on Artificial Intelligence and Statistics*, pages 1110–1119. PMLR, 2019.

1075 [48] Ph. L. Toint. Global convergence of a of trust-region methods for nonconvex minimization in
 1076 hilbert space. *IMA Journal of Numerical Analysis*, 8(2):231–252, 1988.

1077 [49] Steve Tonneau, Daeun Song, Pierre Fernbach, Nicolas Mansard, Michel Taïx, and Andrea
 1078 Del Prete. SL1M: Sparse L1-norm minimization for contact planning on uneven terrain. In
 1079 *2020 IEEE International Conference on Robotics and Automation (ICRA)*, pages 6604–
 1080 6610. IEEE, 2020.

1081 [50] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter
 1082 line-search algorithm for large-scale nonlinear programming. *Mathematical programming*,
 1083 106(1):25–57, 2006.

1084 [51] Pinzheng Wei and Weihong Yang. An SQP-type proximal gradient method for composite
 1085 optimization problems with equality constraints. *Journal of Computational Mathematics*,
 1086 2024.

1087 [52] Daniela M Witten, Robert Tibshirani, and Trevor Hastie. A penalized matrix decomposi-
 1088 tion, with applications to sparse principal components and canonical correlation analysis.
 1089 *Biostatistics*, 10(3):515–534, 2009.

1090 [53] Xinghao Yang, Weifeng Liu, Wei Liu, and Dacheng Tao. A survey on canonical correlation
 1091 analysis. *IEEE Transactions on Knowledge and Data Engineering*, 33(6):2349–2368, 2019.

1092 [54] Yuqian Zhang, Yenson Lau, Han-wen Kuo, Sky Cheung, Abhay Pasupathy, and John Wright.
 1093 On the global geometry of sphere-constrained sparse blind deconvolution. In *Proceedings
 1094 of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 4894–4902,
 1095 2017.

1096 [55] Hui Zou and Lingzhou Xue. A selective overview of sparse principal component analysis.
 1097 *Proceedings of the IEEE*, 106(8):1311–1320, 2018.