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Abstract. We propose, analyze, and test a proximal-gradient method for solving regularized4
optimization problems with general constraints. The method employs a decomposition strategy to5
compute trial steps and uses a merit function to determine step acceptance or rejection. Under various6
assumptions, we establish a worst-case iteration complexity result, prove that limit points are first-7
order KKT points, and show that manifold identification and active-set identification properties hold.8
Preliminary numerical experiments on a subset of the CUTEst test problems and sparse canonical9
correlation analysis problems demonstrate the promising performance of our approach.10
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1. Introduction. We consider the constrained optimization problem14

(1.1) min
x∈Rn

f(x) + r(x) subject to (s.t.) c(x) = 0, x ∈ Ω,15

where f : Rn → R is continuously differentiable, r : Rn → [0,∞) is a nonnegative-16
valued convex function (possibly nonsmooth), c : Rn → Rm is continuously differen-17
tiable with m ≤ n, and Ω is the nonnegative orthant in Rn (i.e., the vectors in Rn18
with all nonnegative components). We note that general inequality constraints can19
be converted to the form (1.1) by using slack variables. Thus, problem (1.1) is impor-20
tant to a range of application areas such as data science (e.g., principal component21
analysis [55] and canonical correlation analysis [52, 53]), finance (e.g., portfolio selec-22
tion [1, 14]), signal processing (e.g., sparse blind deconvolution [54] and array beam-23
former design [27, 30]), and image processing (e.g., hyperspectral unmixing [12]).24

When the constraints in (1.1) are not present, the problem reduces to a nonsmooth25
unconstrained regularized optimization problem, for which proximal-gradient (PG)26
methods and their variants are among the most widely used algorithms [3, 4, 11, 10, 32,27
36]. The basic PG method proceeds by solving a sequence of proximal subproblems.28
Given the kth iterate xk ∈ Rn and proximal parameter αk > 0, the next iterate xk+129
is computed as the unique solution to the optimization problem30

(1.2) min
x∈Rn

{
1

2αk
∥x− (xk −∇f(xk))∥2

2 + r(x)
}
.31

A notable property of PG methods is that as αk → 0, the vector xk+1 − xk con-32
verges to zero. PG methods are also well-known for their structure identification33
property [35, 42, 47], whereby the sequence of iterates eventually identifies the mani-34
fold associated with a solution (e.g., the zero-nonzero structure of an optimal solution35
when r(x) = ∥x∥1). This property is particularly advantageous in structured opti-36
mization problems for at least three reasons. First, identifying the correct solution37
structure can have significant computational savings. For example, when r(x) = ∥x∥1,38
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it is well known that optimal solutions tend to be sparser, and in the context of sta-39
tistical modeling sparser solutions offer simpler models that can be employed more40
efficiently [28, 29]. Second, in certain other applications, the zero-nonzero values of41
the variables can have a physical meaning that is lost if the solutions do not have the42
true zero-nonzero structure [20, 22, 49]. Third, if the manifold of the solution can43
be identified, then one can consider hybrid methods that combine PG calculations44
with those of more advanced (usually higher-order) optimization algorithms designed45
for smooth optimization problems (here restricted to the smooth manifold identified46
by the PG iterates). Such an approach aims to exploit local smoothness to achieve47
accelerated convergence rates, and has great success in many settings [2, 35, 39].48

When the regularization function r is not present in problem (1.1), it reduces to a49
traditional nonlinear program. An important concept in the nonlinear programming50
literature is active-set identification. An algorithm has the active-set identification51
property if, under certain reasonable assumptions, it can identify from an iterate near52
an optimal solution which inequality constraints are active (i.e., hold at equality)53
at that optimal solution. For a comprehensive overview of active-set identification54
strategies in nonlinear programming, see [21, 43] and the references therein.55

Little research has considered the case when the regularization function r and56
nonlinear constraints are present. Two primary challenges arise in this setting. First,57
the computation of projections onto the feasible points satisfying c(x) = 0 (or perhaps58
the intersection of this region with Ω) is typically computationally intractable. Second,59
conventional techniques such as penalty-based methods [17] may fail to preserve the60
structure of the solution (see [16, Section 5]), therefore limiting their effectiveness in61
this setting. Our work is motivated by the need to address these challenges.62

1.1. Related work. We restrict our attention to work that considers regularized63
optimization problems with smooth nonlinear constraints, where both the smooth part64
of the objective and the constraints may be nonconvex. Most approaches are penalty-65
function-based, where constrained problems are transformed into unconstrained ones66
(or ones with simple constraints) by combining the objective function with a penalty67
function that measures constraint violation. The resulting subproblems are then typ-68
ically solved using the PG method or its variants. Penalty-based methods generally69
fall into two main categories: augmented Lagrangian methods and penalty-barrier70
methods. Among these, [8, 38, 46] propose inexact augmented Lagrangian meth-71
ods and show that an ϵ-KKT point can be found within O(ϵ−3) iterations under72
suitable constraint qualifications. The constraint qualifications in [38, 46] are identi-73
cal, whereas [8] uses a slightly different condition, replacing the subdifferential with74
the horizon subdifferential. In contrast, the augmented Lagrangian method in [26]75
adopts a transversality condition and establishes a better complexity bound of O(ϵ−2).76
In [18], an augmented Lagrangian method is proposed for solving regularized problems77
with general constraints. The authors use an AM-regularity condition to establish con-78
vergence, but no complexity result is provided. To the best of our knowledge, [17] is79
the only penalty-barrier approach designed for our problem setting. Instead of assum-80
ing any constraint qualification, they directly assume the existence and boundedness81
of Lagrange multipliers, which is typically implied by a constraint qualification.82

Three non-penalty approaches for solving regularized problems with constraints83
include [7, 16, 51]. In [51], the authors combine ideas from PG methods and se-84
quential quadratic programming methods. In particular, their method formulates a85
quadratic approximation to f , linearizes the constraint function, and keeps the regu-86
larizer explicitly in each subproblem. This nonsmooth subproblem is solved using a87
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semi-smooth Newton method. The weakness of this approach is that each subproblem88
is assumed to be feasible and no structure identification result is provided. In [7], a89
feasible proximal-gradient method is proposed that reformulates a nonconvex problem90
into convex surrogate subproblems with quadratic regularization, but it cannot handle91
problems that involve equality constraints due to the infeasibility of each subproblem.92
Our work builds upon on [16], which only considers the equality-constrained case. Al-93
though limited in relevance here, we mention that some work has considered problems94
with only simple bound constraints [5, 34] or only linear constraints [25, 31, 33].95

1.2. Contributions. Our contributions relate to the proposal, analysis, and96
testing of a new PG algorithm for solving problem (1.1), as we now discuss.97

• We propose a new PG method (Algorithm 3.1) for solving problem (1.1). Un-98
like most work in the literature, our method has the following characteristics:99
(i) it uses the regularization function explicitly (as opposed to approximating100
it) when computing the trial step, (ii) it avoids using a penalty function to101
handle the constraints, and (iii) every subproblem is feasible.102

• We establish various convergence results. (i) Without assuming any con-103
straint qualification, we prove that the number of iterations required to re-104
duce a stationarity measure related to minimizing the constraint violation105
below ϵ > 0 is O(ϵ−2) (see Theorem 5.8). (ii) Under the linear independence106
constraint qualification (LICQ), we show that all limit points of the iterate107
sequence are first-order KKT points (see Theorem 5.25). (iii) Under a se-108
quential constraint qualification that is stronger than the LICQ, we prove109
that the worst-case iteration complexity needed to reduce a KKT measure110
below ϵ > 0 is O(ϵ−2) (see Theorem 5.12). (iv) When strict complementarity111
holds in addition, we prove that our method possesses an optimal active-set112
identification property (see Theorem 5.26). (v) Under partial smoothness of113
the regularization function r and a certain non-degeneracy assumption, we es-114
tablish a manifold identification property for our method (see Theorem 5.27).115

• We numerically test the performance of our method on CUTEst test prob-116
lems and a sparse canonical correlation analysis problem. In addition, we117
demonstrate the competitive performance of our algorithm by comparing it118
to an augmented Lagrangian approach named Bazinga [18].119

1.3. Organization. In Section 2, we introduce notations and definitions. In120
Section 3, we propose our method as Algorithm 3.1. In Section 4, we derive pre-121
liminary results for the subproblems used in our method, which are critical for the122
theoretical analysis we provide in Section 5. In Section 6, we illustrate our algorithm’s123
performance through numerical tests, and final comments are provided in Section 7.124

2. Preliminaries. Let R denote the set of real numbers, R≥0 (resp., R>0) de-125
note the set of nonnegative (resp., positive) real numbers, Rn denote the set of n-126
dimensional real vectors, and Rm×n denote the set of m-by-n-dimensional real ma-127
trices. The set of natural numbers is N := {0, 1, 2, . . . }. For a given natural number128
n ∈ N, let [n] := {1, . . . , n}. The index sets of active and inactive variables at x ∈ Rn129
is A(x) := {i ∈ [n] : xi = 0} and I(x) := {i ∈ [n] : xi ̸= 0}, respectively. The130
ϵ-neighborhood ball of a point x ∈ Rn is B(x, ϵ) := {z ∈ Rn : ∥x − z∥2 < ϵ}. Given131
a nonempty set C that is either compact, or closed and convex, and a point x ∈ Rn,132
the distance from x to C is dist(x, C) := minx∈C ∥x− x∥2.133

For convenience, we define g(x) := ∇f(x) and J(x) := ∇c(x)T . We append a134
natural number as a subscript for a quantity to denote its value during an iteration135
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of an algorithm; i.e., we let fk := f(xk), gk := g(xk), ck := c(xk), and Jk := J(xk).136
We now introduce several key concepts from convex analysis that will be used137

throughout the paper. We start with the normal cone [45, Theorem 6.9].138

Definition 2.1 (normal cone). The normal cone of a convex set C at x ∈ C is139

NC(x) = {v ∈ Rn : vT (y − x) ≤ 0 for all y ∈ C}.140

We define the tangent cone using its polarity with the normal cone [45, Theorem 6.28].141

Definition 2.2 (tangent cone). The tangent cone of a convex set C at x ∈ C is142

TC(x) = {d ∈ Rn : vT d ≤ 0 for all v ∈ NC(x)}.143

Next, we define the projection onto a closed convex set [6, Proposition 1.1.9].144

Definition 2.3 (Projection). Let C ⊆ Rn be a nonempty closed convex set. The145
projection of x ∈ Rn onto C is ProjC(x) := arg miny∈C ∥x− y∥2.146

Finally, we define the projection of the steepest descent direction of a function147
onto the tangent cone [9, Equation (3.1)] associated with Ω at a point x.148

Definition 2.4. Given a differentiable function h : Rn → R, a convex set C, and149
x ∈ C, the projection of the steepest descent direction of h at x onto TC(x) is150

∇Ch(x) = arg min
v∈TC(x)

∥v +∇h(x)∥2 ≡ ProjTC(x)(−∇h(x)).151

3. Algorithm Framework. The algorithm that we propose for solving prob-152
lem (1.1) is stated as Algorithm 3.1. Given the kth iterate xk ∈ Ω, the kth proximal153
parameter αk, and constant κv ∈ R>0, we first compute a direction vk that reduces154
linearized infeasibility within Ω. In particular, the vector vk is computed as an ap-155
proximate solution to the bound-constrained trust-region subproblem156

(3.1) min
v∈Rn

mk(v) s.t. ∥v∥2 ≤ κvαkδk, xk + v ∈ Ω with mk(v) := 1
2∥ck + Jkv∥2

2,157

where158

(3.2) δk := ∥∇Ωψ(xk)∥2 ≡ ∥ProjTΩ(xk)(−JT
k ck)∥2 with ψ(x) := 1

2∥c(x)∥2
2.159

If δk = 0, then vk ← 0 solves (3.1). In this case, if ∥ck∥2 ̸= 0, we terminate our160
algorithm in Line 7 since xk is an infeasible stationary point, i.e., xk is infeasible for161
c(x) = 0 and is a first-order stationary point for the problem162

(3.3) min
x∈Ω

1
2∥c(x)∥2

2.163

If δk ̸= 0, we compute an approximate solution vk to (3.1) satisfying164

(3.4) ∥vk∥2 ≤ κvαkδk, xk + vk ∈ Ω, and mk(vk) ≤ mk(vc
k),165

where vc
k is a Cauchy point computed using a projected line search along the steepest166

descent direction of mk at v = 0. In particular, by defining167

(3.5) vk(β)← ProjΩ(xk − β∇mk(0))− xk ≡ ProjΩ(xk − βJT
k ck)− xk,168
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we define the Cauchy point as169

(3.6) vc
k := vk(βk) ≡ ProjΩ(xk − βkJ

T
k ck)− xk170

where, for some chosen γ ∈ (0, 1),171

(3.7) βk = γik172

with ik being the smallest nonnegative integer such that βk in (3.7) satisfies173

(3.8) ∥vk(βk)∥2 ≤ κvαkδk and mk(vk(βk)) ≤ mk(0) + ηm∇mk(0)T vk(βk)174

for some constant ηm ∈ (0, 1). (It follows from Lemma 4.2 later on that this procedure175
is well defined.) Note from the definition of vc

k (see (3.6) which ensures xk + vc
k ∈ Ω)176

and (3.8) that vc
k itself satisfies the conditions required of vk in (3.4).177

Algorithm 3.1 PG method for solving problem (1.1)
1: Input: x0 ∈ Ω, {α0, τ−1, κτ , κv} ⊂ R>0, and {ξ, ηΦ, σc, ϵτ , γ, ηm} ⊂ (0, 1)
2: for k = 0, 1, 2, . . . do
3: compute δk in (3.2)
4: if δk = 0 then
5: set vk ← 0
6: if ∥ck∥2 ̸= 0 then
7: return xk (infeasible stationary point)
8: end if
9: else (δk ̸= 0)

10: compute vk as an approximate solution to (3.1) satisfying (3.4)
11: end if
12: compute uk as the unique solution to subproblem (3.9)
13: set sk ← vk + uk

14: if ∥sk∥2/αk = 0 then
15: return xk (first-order KKT point for problem (1.1))
16: end if
17: compute τk using (3.10)
18: if Φτk

(xk+sk)−Φτk
(xk) ≤ −ηΦ

(
τk

4αk
∥sk∥2

2 + σc(∥ck∥2 − ∥ck + Jksk∥2)
)

then
19: set xk+1 → xk + sk and αk+1 → αk

20: else
21: set xk+1 → xk and αk+1 → ξαk

22: end if
23: end for

Next, we compute a direction uk that maintains the level of linearized infeasibility178
achieved by vk while also reducing a model of the objective function. In particular,179
we compute uk as the unique solution to the strongly convex subproblem180

(3.9)
min
u∈Rn

gT
k u+ 1

2αk
∥u∥2

2 + 1
αk
vT

k u+ r(xk + vk + u)

s.t. Jku = 0, xk + vk + u ∈ Ω.
181

Concerning subproblem (3.9), note that u = 0 is feasible and that its solution is unique182
since it is a convex optimization problem with a strongly convex objective function.183
The overall trial step sk is defined as sk = vk + uk.184
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To determine whether the trial step sk is accepted, we adopt the ℓ2 merit function,
which for merit parameter τ ∈ R>0 is defined as

Φτ (x) := τ
(
f(x) + r(x)

)
+ ∥c(x)∥2.

During each iteration, the merit parameter is updated so that sk is a descent direction185
for the merit function. To ensure that this holds, note that the directional derivative186
of Φτ at xk along sk, denoted as DΦτ (xk, sk), satisfies (see [16, Lemma 3.3])187

DΦτ (xk, sk)188

≤ τ(gT
k sk + r(xk + sk)− rk) + ∥ck + Jksk∥2 − ∥ck∥2189

=− τ
2αk
∥sk∥2

2 + τ (gT
k sk + 1

2αk
∥sk∥2

2 + r(xk + sk)− rk)︸ ︷︷ ︸
Ak

+∥ck + Jksk∥2 − ∥ck∥2.190

Next, for a chosen parameter σc ∈ (0, 1), we set191

τk,trial ←

{ ∞ if Ak ≤ 0,
(1−σc)(∥ck∥2−∥ck+Jksk∥2)

gT
k

sk+ 1
2αk

∥sk∥2
2+r(xk+sk)−rk

otherwise,192

and then set, for some chosen ϵτ ∈ (0, 1), the value of the kth merit parameter as193

(3.10) τk ←

{
τk−1 if τk−1 ≤ τk,trial,

min{(1− ϵτ )τk−1, τk,trial} otherwise.
194

This merit parameter update strategy ensures that195

DΦτk
(xk, sk) ≤ − τk

2αk
∥sk∥2

2 − σc(∥ck∥2 − ∥ck + Jksk∥2),196

meaning that the negative directional derivative is lower bounded by critical measures197
of problem (1.1). The kth iteration is completed by checking whether the merit198
function achieves sufficient decrease (see Line 18), and then defining the next iterate199
and proximal parameter accordingly. Specifically, if sufficient decrease in the merit200
function is achieved, the trial step is accepted (i.e., xk+1 ← xk +sk) and the proximal201
parameter value is maintained (i.e., αk+1 ← αk); otherwise, the trial step is rejected202
(i.e., xk+1 ← xk) and the proximal parameter value is decreased (i.e., αk+1 ← ξαk203
for some ξ ∈ (0, 1)). This update strategy motivates the definition of the index set204

(3.11) S := {k ∈ N : xk+1 = xk + sk},205

which contains the indices of the successful iterations associated with Algorithm 3.1.206
The following assumption is assumed to hold throughout the paper.207

Assumption 3.1. Let X ⊆ Rn be an open convex set containing the iterate se-208
quences {xk} and {xk + vk} generated by Algorithm 3.1. The function f : Rn → R209
is bounded over X , and its gradient function ∇f : Rn → R is Lipschitz continuous210
and bounded in norm over X . Similarly, for all i ∈ [m], the constraint function211
ci : Rn → R is bounded over X , and its gradient function ∇ci : Rn → R is Lipschitz212
continuous and bounded in norm over X . Finally, the function r : Rn → R≥0 is213
convex, and has bounded subdifferential ∂r : Rn → Rn over X .214
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Under Assumption 3.1, there exist constants (finf, fsup, κ∇f , κ∂r, κc, κJ , Lg, LJ) ∈215
R × R × R>0 × R>0 × R>0 × R>0 × R>0 × R>0 such that for all x ∈ X one has216

(3.12)
finf ≤ f(x) ≤ fsup, ∥∇f(x)∥2 ≤ κ∇f , ∥∂r(x)∥2 ≤ κ∂r,

∥c(x)∥2 ≤ κc, ∥∇c(x)T ∥2 ≤ κJ ,
217

and for all (x, x) ∈ X × X one has218

(3.13) ∥∇f(x)−∇f(x)∥2 ≤ Lg∥x− x∥2 and ∥∇c(x)T −∇c(x)T ∥2 ≤ LJ∥x− x∥2.219

4. Preliminary Properties Related to the Subproblems. In this section,220
we discuss properties related to the subproblems used in Algorithm 3.1.221

4.1. Subproblem (3.1). In this section, we present properties related to the222
computation of the Cauchy point of subproblem (3.1), following by a final result223
related to the computed feasibility steps. Recall that the Cauchy point is defined224
in (3.6). Our first lemma summarizes properties of vk(·) (recall (3.5)).225

Lemma 4.1. Consider vk(·) defined in (3.6). For all 0 < β2 ≤ β1, it holds that226

∥vk(β2)∥2 ≤ ∥vk(β1)∥2 and(4.1a)227

∥vk(β1)/β1∥2 ≤ ∥vk(β2)/β2∥2.(4.1b)228

For all β ∈ R>0 it holds that229

−∇mk(0)T vk(β) ≥ ∥vk(β)∥2
2/β and(4.2a)230

δk ≡ ∥∇Ωψ(xk)∥2 ≥ ∥vk(β)/β∥2 .(4.2b)231

Finally, the following limit holds:232

(4.3) lim
β→0+

vk(β)/β = ∇Ωψ(xk).233

Proof. Parts (4.1a)–(4.2a) follow from [48, Lemma 2], part (4.3) follows from [40,234
Proposition 2], and part (4.2b) follows by combining (4.3), (4.1b), and (3.2).235

The next result is a special case of [41, Lemma 4.3].236

Lemma 4.2. Suppose that δk ̸= 0. If β ∈ R>0 satisfies mk(vk(β)) > mk(0) +237
ηm∇m(0)T vk(β), then β ≥ (1− ηm)/∥JT

k Jk∥2.238

We now bound the decrease in mk by using the argument in [41, Theorem 4.4].239

Lemma 4.3. Suppose that δk ̸= 0. Then, with respect to the constant κ̄1 :=240
min{1, γ(1− ηm), γ} ≡ γ(1− ηm) ∈ (0, 1), the Cauchy point vc

k ≡ vk(βk) satisfies241

−∇mk(0)T vk(βk) ≥ κ̄1

[
∥vk(βk)∥2

βk

]
min

{
1

1 + ∥JT
k Jk∥2

[
∥vk(βk)∥2

βk

]
, κvαkδk

}
.242

Moreover, with respect to the constant κ1 := κ̄1ηm ≡ γηm(1− ηm) ∈ (0, 1), it satisfies243

mk(0)−mk(vk(βk)) ≥ κ1

[
∥vk(βk)∥2

βk

]
min

{
1

1 + ∥JT
k Jk∥2

[
∥vk(βk)∥2

βk

]
, κvαkδk

}
.244
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Proof. We begin by proving the first inequality by considering three cases.245
Case 1: βk = 1. It follows from (4.2a) and βk = 1 that246

−∇mk(0)T vk(βk) ≥ βk

[
∥vk(βk)∥2

βk

]2
=

[
∥vk(βk)∥2

βk

]2
247

≥ ∥vk(βk)∥2

βk
min

{
∥vk(βk)∥2

βk
, κvαkδk

}
.248

Combining this result with 1/(1 +∥JT
k Jk∥2) ≤ 1 shows that the first inequality holds.249

Case 2: βk < 1 and ∥vk(γ−1βk)∥2 ≤ κvαkδk. Since γ ∈ (0, 1), ∥vk(γ−1βk)∥2 ≤250
κvαkδk, and the step size γ−1βk was not accepted by the search procedure, the suffi-251
cient decrease condition must not have held, i.e., it must hold that mk(vk(γ−1βk)) >252
mk(0) + ηm∇mk(0)T vk(γ−1βk). Combining this inequality with Lemma 4.2 gives253
γ−1βk ≥ (1− ηm)/∥JT

k Jk∥2. Combining this with (4.2a) gives254

−∇mk(0)T vk(βk) ≥ βk

[
∥vk(βk)∥2

βk

]2
≥ γ (1− ηm)

1 + ∥JT
k Jk∥2

[
∥vk(βk)∥2

βk

]2
255

≥ γ(1− ηm)∥vk(βk)∥2

βk
min

{
1

1 + ∥JT
k Jk∥2

[
∥vk(βk)∥2

βk

]
, κvαkδk

}
256

so that the first inequality again holds, and completes the proof for this case.257
Case 3: βk < 1 and ∥vk(γ−1βk)∥2 > κvαkδk. It follows from (4.1b) and the fact258

that γ ∈ (0, 1) that ∥vk(βk)∥2
βk

≥ ∥vk(γ−1βk)∥2
γ−1βk

. After rearrangement and using the fact259

that ∥vk(γ−1βk)∥2 > κvαkδk in this case, we obtain γ−1∥vk(βk)∥2 ≥ ∥vk(γ−1βk)∥2 >260
κvαkδk, which combined with (4.2a) yields261

−∇mk(0)T vk(βk) ≥ ∥vk(βk)∥2

[
∥vk(βk)∥2

βk

]
> γκvαkδk

[
∥vk(βk)∥2

βk

]
262

≥ γ
[
∥vk(βk)∥2

βk

]
min

{
1

1 + ∥JT
k Jk∥2

[
∥vk(βk)∥2

βk

]
, κvαkδk

}
,263

so that the first inequality again holds, and completes the proof for this case.264
The second inequality follows from the first inequality and (3.8).265

Combining the previous result with Lemma 4.1 gives new lower bounds.266

Lemma 4.4. For κ1 ∈ (0, 1] in Lemma 4.3, the Cauchy point vc
k ≡ vk(βk) yields267

mk(0)−mk(vc
k) ≥ κ1

[
∥vk(βk)∥2

βk

]2
min

{
1

1 + ∥JT
k Jk∥2

, κvαk

}
(4.4a)268

≥ κ1∥vk(1)∥2
2 min

{
1

1 + ∥JT
k Jk∥2

, κvαk

}
(4.4b)269

and270

(4.5) ∥ck∥2 − ∥ck + Jkv
c
k∥2 ≥ κ1

κc
∥vk(1)∥2

2 min
{

1
1 + ∥JT

k Jk∥2
, κvαk

}
.271

Proof. Inequality (4.4a) follows from Lemma 4.3, vc
k = vk(βk), and (4.2b) with272

β = βk. Inequality (4.4b) follows from (4.1b) since βk ≤ 1.273
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It follows from (4.4a) that ∥ck + Jkv
c
k∥2 ≤ ∥ck∥2. If ∥ck∥2 = 0, then (4.5) follows274

trivially. Otherwise, it follows from ∥ck + Jkv
c
k∥2 ≤ ∥ck∥2 that275

(4.6)
∥ck∥2

2 − ∥ck + Jkv
c
k∥2

2 = (∥ck∥2 + ∥ck + Jkv
c
k∥2)(∥ck∥2 − ∥ck + Jkv

c
k∥2)

≤ 2∥ck∥2(∥ck∥2 − ∥ck + Jkv
c
k∥2).

276

Combining (4.6) and (4.4) we have277

2∥ck∥2(∥ck∥2 − ∥ck + Jkv
c
k∥2) ≥ ∥ck∥2

2 − ∥ck + Jkv
c
k∥2

2 = 2(mk(0)−mk(vc
k))278

≥ 2κ1∥vk(1)∥2
2 min

{
1

1 + ∥JT
k Jk∥2

, κvαk

}
.279

Diving both sides by 2∥ck∥2 and using (3.12) gives (4.5).280

Our next lemma relates the computation of vk to the measure δk. We suspect the281
first result is well-known in the literature but we could not find a suitable reference.282

Lemma 4.5. The following results hold.283
(i) If ∥vk(1)∥2 = 0, then δk = 0.284

(ii) ∥vk∥2 = 0 if and only if δk = 0.285
(iii) If δk = 0, then xk is a first-order KKT point for problem (3.3).286

Proof. To prove part (i), we suppose that ∥vk(1)∥2 = 0. Note that 0 = ∥vk(1)∥2 =287
∥ProjΩ(xk − JT

k ck) − xk∥2 implies that ProjΩ(xk − JT
k ck) = xk. Using this fact, we288

can apply the projection theorem [6, Proposition 1.1.9] to obtain289

(−JT
k ck)T (z − xk) = (xk − JT

k ck − xk)T (z − xk) ≤ 0 for all z ∈ Ω,290

which is equivalent to −JT
k ck ∈ NΩ(xk). It now follows from Definition 2.2 that291

(4.7) (−JT
k ck)T v ≤ 0 for all v ∈ TΩ(xk).292

Using (4.7) and nonnegativity of norms, we find that293

1
2∥v + JT

k ck∥2
2 = 1

2
(
∥v∥2

2 + 2vTJT
k ck + ∥JT

k ck∥2
2
)
≥ 1

2∥J
T
k ck∥2

2 for all v ∈ TΩ(xk).294

It follows from this inequality and 1
2∥v + JT

k ck∥2
2 being strongly convex in v that

0 = arg min
v∈TΩ(xk)

1
2∥v+JT

k ck∥2
2 = arg min

v∈TΩ(xk)
∥v+JT

k ck∥2 = ProjTΩ(xk)(−JT
k ck) = ∇Ω(ψ(xk)).

It now follows from (3.2) that δk = 0, which completes the proof of part (i).295
To prove part (ii), we first observe from Algorithm 3.1 that if δk = 0 then vk = 0.296

Thus, it remains to prove that if vk = 0, then δk = 0. To do this, let us assume that297
vk = 0. It follows from the third condition in (3.4) and Lemma 4.4 that298

0 = mk(0)−mk(vk) ≥ mk(0)−mk(vc
k) ≥ κ1∥vk(1)∥2

2 min
{

1
1 + ∥JT

k Jk∥2
, κvαk

}
.299

Since κ1, κv, and αk are strictly positive, it follows that ∥vk(1)∥2 = 0. We can combine300
this result with part (i) to conclude that δk = 0, which completes the proof.301

The proof of part (iii) is provided in [9, Lemma 3.1(c)].302
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4.2. Subproblem (3.9). With respect to subproblem (3.9), we recall that u = 0303
is feasible, the constraints are linear (meaning that the feasible region is convex and304
that a constraint qualification holds), and the objective function is strongly convex.305
Therefore, the unique solution uk to subproblem (3.9) satisfies, for some gr,k ∈ ∂r(xk+306
vk + uk), yk ∈ Rm, and zk ∈ Rn, the following conditions:307

gk + 1
αk
uk + 1

αk
vk + gr,k + JT

k yk + zk = 0,(4.8a)308

Jkuk = 0, and(4.8b)309

∥min{xk + vk + uk,−zk}∥2 = 0,(4.8c)310

where the minimum of two vectors is taken componentwise. These conditions charac-311
terize uk and will play a critical role in the analysis of Section 5. In particular, they312
allow us to establish the following bound on the size of the trial step.313

Lemma 4.6. The trial step sk satisfies ∥sk∥2 ≥ ∥min{xk,−zk}∥2.314

Proof. It follows from sk = vk + uk and (4.8) that315

(4.9) − 1
αk
sk = gk + gr,k + JT

k yk + zk and ∥min{xk + sk,−zk}∥2 = 0.316

The latter equality and min-inequalities give, for each i ∈ {1, 2, . . . , n}, that317

0 = min{[xk + sk]i,−[zk]i} ≥ min{[xk]i,−[zk]i}+ min{[sk]i, 0}.318

Combining this inequality with min{[xk]i,−[zk]i} ≥ 0 gives 0 ≤ min{[xk]i,−[zk]i} ≤319
−min{[sk]i, 0}. It follows from this inequality that320

∥min{xk,−zk}∥2
2 =

n∑
i=1
|min{[xk]i,−[zk]i}|2321

≤
n∑

i=1
|min{[sk]i, 0}|2 ≤

n∑
i=1
|[sk]i|2 = ∥sk∥2

2.322

Taking the square-root of both sides of this inequality completes the proof.323

5. Analysis. In this section, we present a complete convergence analysis for324
Algorithm 3.1 in both the finite termination case and infinite iteration case.325

5.1. Finite termination. Our first result shows that the solutions to our sub-326
problems that define the trial step are both zero precisely when the trial step is zero.327

Lemma 5.1. sk = 0 if and only if vk = uk = 0.328

Proof. Since sk = vk + uk, it follows that if vk = uk = 0, then sk = 0. Thus,329
it remains to prove that if sk = 0, then vk = uk = 0. For a proof by contradiction,330
suppose that sk = 0 and vk ̸= 0. It follows from Lemma 4.5(i)(ii) that vk(1) ̸= 0, so331
that Lemma 4.4 gives vc

k ̸= 0. We may now combine this result with (4.2a) to obtain332

cT
k Jkv

c
k = (JT

k ck)T vc
k = ∇mk(0)T vc

k ≤ −∥vc
k∥2

2/βk < 0,333

which implies that Jkv
c
k ̸= 0, i.e., that vc

k is not in the nullspace of Jk. At the334
same time, we know from (4.8b) that uk is in the nullspace of Jk. The previous two335
statements cannot both be true since sk = vk + uk = 0 implies that vk = −uk, which336
is a contradiction. Therefore, we must conclude that vk = 0. Combining this result337
with sk = vk + uk = 0 shows that uk = 0, and completes the proof.338
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We can now state our finite termination results for Algorithm 3.1.339

Theorem 5.2. The following finite termination results hold for Algorithm 3.1.340
(i) If Algorithm 3.1 terminates at Line 7, then xk is an infeasible stationary341

point, i.e., xk is a first-order KKT point for problem (3.3) and ∥ck∥2 ̸= 0.342
(ii) If Algorithm 3.1 terminates at Line 15, then xk is a first-order KKT point343

for problem (1.1).344

Proof. We first prove part (i). If Algorithm 3.1 terminates at Line 7, then it345
follows from Lines 4 and 6 that δk = 0 and ∥ck∥2 ̸= 0. It now follows from δk = 0 and346
Lemma 4.5(iii) that xk is a first-order KKT point for problem (3.3), as claimed.347

For part (ii), we know that if Algorithm 3.1 terminates in Line 15 then sk = 0,348
which from Lemma 5.1 implies that uk = vk = 0, and then Lemma 4.5(ii) implies349
that δk = 0. Since termination did not occur in Line 7 of Algorithm 3.1, we know350
that ∥ck∥2 = 0. It follows from vk = uk = 0 and (4.8) that there exists gr,k ∈ ∂r(xk),351
yk ∈ Rm, and zk ∈ Rn satisfying gk + gr,k +JT

k yk + zk = 0 and ∥min{xk,−zk}∥2 = 0.352
These equations and ∥ck∥2 = 0 show that xk is a first-order KKT point for (1.1).353

5.2. Infinite iterations. We now consider the scenario where finite termination354
does not occur, meaning that Algorithm 3.1 performs an infinite number of iterations.355

5.2.1. Analysis under no constraint qualification. In this section, we an-356
alyze properties of the iterate sequence {xk} generated by Algorithm 3.1 when no357
constraint qualification is assumed to hold. The key metric we consider is358

(5.1) χ̄k := max
{
∥gk + gr,k + JT

k yk + zk∥2, ∥vk(1)∥2, ∥max{xk,−zk}∥2
}
,359

where gr,k ∈ Rn, yk ∈ Rm, and zk ∈ Rn are defined as those quantities satisfying (4.8).360
The first quantity in the max is a measure of stationarity for problem (1.1), the second361
quantity is a stationarity measure for problem (3.3), and the third quantity measures362
feasibility with respect to xk ∈ Ω, the sign of the Lagrange multiplier estimate zk, and363
complementarity. In particular, we emphasize that ∥vk(1)∥2 is used here in place of364
∥ck∥2 since a constraint qualification is not assumed to hold in this section, meaning365
that it is possible that the iterates do not converge toward feasibility.366

Our first result gives a uniform upper bound on the sequence {δk} defined in (3.2).367

Lemma 5.3. For all iterations k ∈ N, we have that368

(5.2) δk ≡ ∥∇Ωψ(xk)∥2 ≤ 2κJ∥ck∥2 ≤ 2κJκc.369

Proof. Recall that ∇Ωψ(xk) = arg min{∥v + JT
k ck∥2 : v ∈ TΩ(xk)}. It follows370

from this fact, the triangle inequality, and 0 ∈ TΩ(xk) that371

∥∇Ωψ(xk)∥2 − ∥JT
k ck∥2 ≤ ∥∇Ωψ(xk) + JT

k ck∥2 ≤ ∥JT
k ck∥2.372

It follows from this inequality, how δk is defined in (3.2), and Assumption 3.1 that373
δk ≡ ∥∇Ωψ(xk)∥2 ≤ 2∥JT

k ck∥2 ≤ 2κJ∥ck∥2 ≤ 2κJκc, which completes the proof.374

We can now prove an upper bound on Ak that is defined for τk,trial.375

Lemma 5.4. For all k ∈ N, we have that376

gT
k sk + 1

2αk
∥sk∥2

2 + r(xk + sk)− rk ≤ 2(κ∇f + κ∂r)κvκJαk∥ck∥2 + 2κ2
vκ

2
Jκcαk∥ck∥2.377

Proof. By convexity of r, we know that378

(5.3) r(xk + vk)− rk ≤ (gv
r,k)T vk for all gv

r,k ∈ ∂r(xk + vk).379
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It now follows that380

gT
k sk + 1

2αk
∥sk∥2

2 + r(xk + sk)− rk381

(i)
≤ gT

k vk + 1
2αk
∥vk∥2

2 + r(xk + vk)− rk382

(ii)
≤ gT

k vk + 1
2αk
∥vk∥2

2 + (gv
r,k)T vk383

(iii)
≤ (∥gk∥2 + ∥gv

r,k∥2)∥vk∥2 + 1
2αk
∥vk∥2

2384

(iv)
≤ (∥gk∥2 + ∥gv

r,k∥2)κvαkδk + 1
2αk

κ2
vα

2
kδ

2
k385

(v)= (∥gk∥2 + ∥gv
r,k∥2)κvαkδk + 1

2κ
2
vαkδ

2
k386

(vi)
≤ (∥gk∥2 + ∥gv

r,k∥2)2κvαkκJ∥ck∥2 + 2κ2
vαkκ

2
Jκc∥ck∥2387

(vii)
≤ (κ∇f + κ∂r)2κvκJαk∥ck∥2 + 2κ2

vκ
2
Jκcαk∥ck∥2,388

where (i) follows from substituting sk = vk + uk and using the fact that uk = 0 is a389
feasible solution to the tangential subproblem (3.9), (ii) follows from (5.3), (iii) follows390
from the Cauchy-Schwartz inequality, (iv) follows from ∥vk∥2 ≤ κvαkδk in (3.4), (v)391
follows from canceling an αk from the second term, (vi) follows from Lemma 5.3392
and (3.12), and (vii) follows from (3.12). This completes the proof.393

The first part of the next lemma establishes that the merit parameter never needs394
to be decreased for any iteration k ∈ N such that vk(1) = 0. On the other hand, for395
all k ∈ N satisfying vk(1) ̸= 0, the second part of the lemma provides a lower bound396
on how small the previous merit parameter τk−1 could have been when decreased.397

Lemma 5.5. The following merit parameter update results hold.398
(i) For each k ∈ N \ {0}, if vk(1) = 0, then τk,trial =∞ and τk ← τk−1.399

(ii) There exists a constant ϵτ > 0 such that, for all k ∈ N satisfying ∥vk(1)∥2 ̸= 0400
and τk < τk−1, it holds that τk−1 ≥ ϵτ∥vk(1)∥2

2.401

Proof. We first prove part (i). To this end, first observe that vk(1) = 0 and
Lemma 4.5(i) imply that δk = 0, and therefore vk = 0 holds as a consequence of
Lemma 4.5(ii). Next, since u = 0 is feasible for subproblem (3.9) we know that

gT
k uk + 1

2αk
∥uk∥2

2 + 1
αk
vT

k uk + r(xk + vk + uk) ≤ r(xk + vk),

which may be combined with vk = 0 to obtain gT
k sk + 1

2αk
∥sk∥2

2 + r(xk + sk) ≤ r(xk).402
This inequality and the definition of τk,trial gives τk,trial =∞, so that τk ← τk−1.403

Next, we prove part (ii). It follows from the merit parameter update rule (3.10),404
Jkuk = 0 (see (4.8b)), the third condition in (3.4), (4.5), (3.12), Lemma 5.4, and405
monotonicity of the proximal parameter sequence {αk} that if τk < τk−1, then406

τk−1 >
(1− σc)(∥ck∥2 − ∥ck + Jkvk∥2)

gT
k sk + 1

2αk
∥sk∥2

2 + r(xk + sk)− rk

407

≥ (1− σc)(∥ck∥2 − ∥ck + Jkv
c
k∥2)

gT
k sk + 1

2αk
∥sk∥2

2 + r(xk + sk)− rk

408

≥
(1− σc) κ1

κc
∥vk(1)∥2

2 min
{

1
1+∥JT

k
Jk∥2

, κvαk

}
2(κ∇f + κ∂r)κvκJαk∥ck∥2 + 2κ2

vκ
2
Jκcαk∥ck∥2

409
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≥
(1− σc)κ1∥vk(1)∥2

2 min
{

1
1+∥JT

k
Jk∥2

, κvαk

}
2(κ∇f + κ∂r)κvκJκ2

cαk + 2κ2
vκ

2
Jκ

2
cαk

≥ ϵτ∥vk(1)∥2
2,410

where ϵτ :=
(1−σc)κ1 min

{
1

(1+κ2
J

)α0
,κv

}
2(κ∇f +κ∂r)κvκJ κ2

c+2κ2
vκ2

J
κ2

c
> 0, thus completing the proof.411

Next, under the assumption that the merit parameter sequence stays bounded412
away from zero, we give a positive lower bound on {αk}.413

Lemma 5.6. Assume that there exists τmin > 0 such that τk ≥ τmin for all k ∈ N.414
If αk ≤ τmin

2(τminLg+LJ ) , then k ∈ S. Thus, for all k ∈ N,415

(5.4) αk ≥ αmin := min{α0,
ξτmin

2(τminLg+LJ )} > 0416

and a bound on the number of unsuccessful iterations is given by417

(5.5) |{k ∈ N : xk /∈ S}| ≤ max

0,


log

(
τmin

2α0(τminLg+LJ )

)
log(ξ)


 .418

Proof. It follows from (3.13) and the merit parameter update rule (3.10) that419

(5.6)

Φτk
(xk + sk)− Φτk

(xk)
= τk

(
f(xk + sk) + r(xk + sk)

)
+ ∥c(xk + sk)∥2 − τk

(
fk + rk

)
− ∥ck∥2.

≤ τkg
T
k sk + τk

(
r(xk + sk)− rk

)
+ ∥ck + Jksk∥2 − ∥ck∥2 + 1

2 (τkLg + LJ)∥sk∥2
2

≤ − τk

4αk
∥sk∥2

2 − σc(∥ck∥2 − ∥ck + Jksk∥2) + 1
2 (− τk

2αk
+ τkLg + LJ)∥sk∥2

2.

420

Suppose that k ∈ N satisfies αk ≤ τmin
2(τminLg+LJ ) . It follows from the fact that τ

2(τLg+LJ )421
is a monotonically increasing function on the nonnegative real line as a function422
of τ that αk ≤ τmin

2(τminLg+LJ ) ≤
τk

2(τkLg+LJ ) , which after rearrangement shows that423

− τk

2αk
+ τkLg + LJ ≤ 0. The previous inequality, ∥sk∥2 ̸= 0 (since finite termination424

does not occur), (4.5), ∥ck + Jkvk∥2 ≤ ∥ck + Jkv
c
k∥2, Jkuk = 0, and ηΦ ∈ (0, 1) give425

(1− ηΦ)( τk

4αk
∥sk∥2

2 + σc(∥ck∥2 − ∥ck + Jksk∥2)) > 0 ≥ 1
2 (− τk

2αk
+ τkLg + LJ)∥sk∥2

2.426

Combining this inequality with (5.6) shows that k ∈ S, as claimed. This result and427
the update strategy for the proximal parameter αk ensures that the bound in (5.4)428
holds. Finally, the first result we proved in this lemma and the update strategy429
for {αk} shows that the maximum number of unsuccessful iterations is the smallest430
nonnegative integer nu such that ξnuα0 ≤ τmin

2(τminLg+LJ ) , which gives the final result.431

It will be convenient for our analysis to define the shifted merit function432

(5.7) Φ̄τ (x) := τ
(
f(x)− finf + r(x)

)
+ ∥c(x)∥2,433

where finf is defined in (3.12). We stress that the (typically) unknown value finf is434
never used in the algorithm statement or its implementation, only in our analysis.435

Lemma 5.7. The following properties hold for the shifted merit function.436
(i) For all {x, y} ⊂ Rn and τ ∈ R>0, it holds that Φ̄τ (x)−Φ̄τ (y) = Φτ (x)−Φτ (y).437

(ii) For all x ∈ Rn and 0 < τ2 ≤ τ1, it holds that Φ̄τ2(x) ≤ Φ̄τ1(x).438
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(iii) The sequence {Φ̄τk
(xk)} is monotonically decreasing.439

Proof. See [16, Lemma 3.14] for a proof.440

We can now state our main convergence result for this section.441

Theorem 5.8. Let Assumption 3.1 hold. One of the following two cases occurs.442
(i) There exists τmin > 0 such that τk ≥ τmin for all k ∈ N. In this case, the443

following hold: (a) αk ≥ αmin := min{α0,
ξτmin

2(τminLg+LJ )} for all k ∈ N; (b) If444

{k1, k2} ⊂ N are two iterations with k1 < k2 such that k ∈ S and χ̄k > ϵ for445
all iterations k1 ≤ k < k2, then it follows that446

(5.8) k2 − k1 ≤
⌊
τ0(f(x0) + r(x0)− finf) + ∥c(x0)∥2

κ̄Φϵ2

⌋
447

with κ̄Φ = ηΦ min
{

τminαmin
8 , τmin

8α0
, σcκ1

κc
min{ 1

1+κ2
J

, κvαmin}
}

; and (c) for any448

given ϵ > 0, the maximum number of iterations before χ̄k ≤ ϵ is449 max

0,


log

(
τmin

2α0(τminLg+LJ )

)
log(ξ)


 + 1

⌊
τ0

(
f(x0)− finf + r(x0)

)
+ ∥c(x0)∥2

κ̄Φϵ2

⌋
.450

(ii) The merit parameter values converge to zero, i.e., limk→∞ τk = 0. In this451
case, there exists a subsequence K ⊆ N such that limk∈K ∥vk(1)∥2 = 0.452

Proof. To prove part (i), let us assume there exists τmin > 0 such that τk ≥ τmin453
for all k ∈ N. Using this fact, Lemma 5.6 ensures that both (5.4) and (5.5) hold.454
Since (5.4) holds, part (i)(a) is proved. To prove part (i)(b), let {k1, k2} be as in455
the statement of the theorem. Then, for all k ∈ S and k1 ≤ k < k2, it follows from456
Lemma 5.7(i)–(ii), k ∈ S, (3.12), Jkuk = 0, (4.5), and Lemma 5.6 that457

(5.9)

Φ̄τk
(xk)− Φ̄τk+1(xk+1) ≥ Φ̄τk

(xk)− Φ̄τk
(xk+1) = Φτk

(xk)− Φτk
(xk+1)

≥ ηΦ

(
τk

4αk
∥sk∥2

2 + σc(∥ck∥2 − ∥ck + Jksk∥2)
)

≥ ηΦ

[
τkαk

4

(
∥sk∥2

αk

)2
+ σcκ1

κc
∥vk(1)∥2

2 min
{

1
1+∥JT

k
Jk∥2

, κvαk

}]
= ηΦ

[
τkαk

8

(
∥sk∥2

αk

)2
+ τk∥sk∥2

2
8αk

+ σcκ1
κc
∥vk(1)∥2

2 min
{

1
1+∥JT

k
Jk∥2

, κvαk

}]
.

458

Lemma 4.6, (5.9), (4.8), (5.4), and τk ≥ τmin and αk ≤ α0 for all k ∈ N give459

Φ̄τk
(xk)− Φ̄τk+1(xk+1)460

≥ ηΦ

[
τkαk

8 ∥gk + gr,k + JT
k yk + zk∥2

2 + τk

8αk
∥min{xk,−zk}∥2

2461

+ σcκ1
κc
∥vk(1)∥2

2 min
{

1
1+∥JT

k
Jk∥2

, κvαk

}]
462

≥ ηΦ

[
τminαmin

8 ∥gk + gr,k + JT
k yk + zk∥2

2 + τmin
8α0
∥min{xk,−zk}∥2

2463

+ σcκ1
κc
∥vk(1)∥2

2 min
{

1
1+κ2

J

, κvαmin

}]
464

≥ κ̄Φχ̄
2
k465

where κ̄Φ is defined in the statement of the current theorem. Using this inequality,466
Lemma 5.7(iii), and nonnegativity of Φ̄τ for all τ ∈ R>0, we find that467

Φ̄τ0(x0) ≥ Φ̄τk1
(xk1) ≥ Φ̄τk1

(xk1)− Φ̄τk2
(xk2)468
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=
k2−1∑
k=k1

(
Φ̄τk

(xk)− Φ̄τk+1(xk+1)
)
≥

k2−1∑
k=k1

κ̄Φχ̄
2
k,469

which may be combined with χ̄k > ϵ for all k1 ≤ k ≤ k2 to conclude that Φ̄τ0(x0) ≥470
(k2 − k1)κ̄Φϵ

2, from which (5.8) follows. The result (i)(c), namely the claimed upper471
bound on the maximum iterations before χ̄k ≤ ϵ, follows from what we just proved472
and the fact that maximum number of unsuccessful iterations is bounded as in (5.5).473

We prove part (ii) by contradiction. Thus, suppose that there exists ϵ ∈ R>0 and474
k1 ∈ N such that ∥vk(1)∥2 ≥ ϵ for all k ≥ k1. It then follows from Lemma 5.5 that475
there exists τmin ∈ R>0 such that τk ≥ τmin for all k ∈ N, which is a contradiction.476

5.2.2. Analysis under a sequential constraint qualification. In this sec-
tion, we assume that a sequential constraint qualification holds (all results from Sec-
tion 5.2.1 still hold). To state this assumption, we define the index set of active
variables after taking the Cauchy step vc

k as

Av
k := A(xk + vc

k) ≡ {i ∈ [n] : [xk + vc
k]i = 0}.

We can now formally state the assumption we make throughout this section.477

Assumption 5.1. The matrix [JT
k , I

T
Av

k
]T has full row rank and its smallest sin-478

gular value is uniformly bounded away from zero for all k ∈ N, where IAv
k

denotes479
the subset of rows of the identity matrix that correspond to the elements in Av

k, i.e.,480
there exists σmin ∈ R>0 such that σmin([JT

k , I
T
Av

k
]T ) ≥ σmin for all k ∈ N with σmin(A)481

denoting the smallest singular value of a matrix A.482

Under the above assumption, our aim is to prove a worst-case iteration complexity483
result for Algorithm 3.1. Our result uses the KKT-residual measure484

(5.10) χk := max
{
∥gk + gr,k + JT

k yk + zk∥2, ∥ck∥2, ∥min{xk,−zk}∥2
}
.485

Note that (5.10) differs from the definition of χ̄k in (5.1) by using the measure ∥ck∥2486
instead of ∥vk(1)∥2, which is reasonable because of the constraint qualification.487

We begin by establishing a key connection between ∥vk(βk)∥2 and ∥ck∥2.488

Lemma 5.9. For all k ∈ N, it holds that ∥vk(βk)∥2/βk ≥ σmin∥ck∥2.489

Proof. Let us define the vector wk ∈ Rn componentwise as490

(5.11) [wk]i =
{

0 i ∈ [n] \ Av
k,

−[JT
k ck]i − [vk(βk)]i/βk i ∈ Av

k.
491

We claim that the following holds:492

(5.12) ProjΩ(xk − βkJ
T
k ck)− xk = −βkJ

T
k ck − βkwk,493

which we verify by considering its coordinates. If i ∈ Av
k, then (3.6) and (5.11) give494

(5.13)
[ProjΩ(xk − βkJ

T
k ck)− xk]i = [vk(βk)]i

= [−βkJ
T
k ck]i − [−βkJ

T
k ck − vk(βk)]i = [−βkJ

T
k ck]i − [βkwk]i,

495

so that (5.12) holds in this case. On the other hand, if i ∈ [n] \Av
k, then [ProjΩ(xk −496

βkJ
T
k ck)]i = [xk + vk(βk)]i = [xk + vc

k]i > 0 and [wk]i = 0. It follows that497

(5.14) 0 < [ProjΩ(xk − βkJ
T
k ck)]i = max

{
[xk − βkJ

T
k ck]i, 0

}
,498
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which implies that [xk − βkJ
T
k ck]i > 0. Combining this with [wk]i = 0 shows that499

(5.15)
[ProjΩ(xk − βkJ

T
k ck)− xk]i = [(xk − βkJ

T
k ck)− xk]i

= [−βkJ
T
k ck]i = [−βkJ

T
k ck − βkwk]i

500

so that (5.12) again holds for this case. This establishes that (5.12) holds, as claimed.501
It follows from the definition of vk(βk), (5.12), and Assumption 5.1 that502 ∥∥∥∥vk(βk)

βk

∥∥∥∥
2

=
∥∥∥∥ProjΩ(xk − βkJ

T
k ck)− xk

βk

∥∥∥∥
2

=
∥∥∥∥−βkJ

T
k ck − βkwk

βk

∥∥∥∥
2

= ∥JT
k ck + wk∥2 =

∥∥∥∥[
JT

k , I
T
Av

k

] [
ck

[wk]Av
k

]∥∥∥∥
2

≥ σmin([JT
k , I

T
Av

k
]T )

∥∥∥∥[
ck

[wk]Av
k

]∥∥∥∥
2
≥ σmin∥ck∥2 for all k ∈ N,

503

which completes the proof.504

We now give a bound on the improvement in linearized infeasibility at xk.505

Lemma 5.10. For all k ∈ N, it holds that506

∥ck∥2 − ∥ck + Jksk∥2 = ∥ck∥2 − ∥ck + Jkvk∥2 ≥ κ1σ
2
min∥ck∥2 min

{
1

1+∥JT
k

Jk∥2
, κvαk

}
.507

and

∥ck∥2−∥ck + Jksk∥2 = ∥ck∥2−∥ck + Jkvk∥2 ≥
κ1

κc
σ2

min∥ck∥2
2 min

{
1

1+∥JT
k

Jk∥2
, κvαk

}
.

Proof. It follows from (3.4) and Lemma 4.3 that ∥ck +Jkvk∥2 ≤ ∥ck∥2. It follows508
from this inequality and a difference-of-squares computation that509

(5.16)
∥ck∥2

2 − ∥ck + Jkvk∥2
2 = (∥ck∥2 + ∥ck + Jkvk∥2)(∥ck∥2 − ∥ck + Jkvk∥2)
≤ 2∥ck∥2(∥ck∥2 − ∥ck + Jkvk∥2).

510

Combining (5.16), the third condition in (3.4), Lemma 4.4, and Lemma 5.9 we have511

2∥ck∥2(∥ck∥2 − ∥ck + Jkvk∥2) ≥ ∥ck∥2
2 − ∥ck + Jkvk∥2

2 = 2(mk(0)−mk(vk))512

≥ 2(mk(0)−mk(vc
k)) ≥ 2κ1

[
∥vk(βk)∥2

βk

]2
min

{
1

1+∥JT
k

Jk∥2
, κvαk

}
513

≥ 2κ1σ
2
min∥ck∥2

2 min
{

1
1+∥JT

k
Jk∥2

, κvαk

}
.514

The proof of the first inequality follows by dividing through the previous inequality515
by 2∥ck∥2 and using the fact that Jkuk = 0 (see (4.8b)). The second inequality follows516
from the first inequality and the fact that ∥ck∥2/κc ≤ 1 because of (3.12).517

We now establish that the merit parameter sequence is bounded away from zero.518

Lemma 5.11. For all k ∈ N, it holds that519

τk,trial ≥ τmin,trial :=
(1− σc)κ1σ

2
min min

{
1

(1+κ2
J

)α0
, κv

}
2(κ∇f + κ∂r)κvκJ + 2κ2

vκ
2
Jκc

> 0 and(5.17)520

τk ≥ τmin := min{τ0, (1− ϵτ )τmin,trial)} > 0.(5.18)521
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Proof. We first prove (5.17). If Ak ≤ 0 in the definition of τk,trial, then τk,trial =∞522
so that (5.17) trivially holds. If Ak > 0, then it follows from the definition of τk,trial,523
sk = vk + uk, Jkuk = 0 (see (4.8b)), Lemma 5.10, Lemma 5.4, the fact that αk ≤ α0524
for all k by construction of Algorithm 3.1, and (3.12) that525

τk,trial = (1− σc)(∥ck∥2 − ∥ck + Jkvk∥2)
gT

k sk + 1
2αk
∥sk∥2

2 + r(xk + sk)− rk

526

≥
(1− σc)κ1σ

2
min∥ck∥2 min

{
1

1+∥JT
k

Jk∥2
, κvαk

}
2(κ∇f + κ∂r)κvκJαk∥ck∥2 + 2κ2

vκ
2
Jκcαk∥ck∥2

527

=
(1− σc)κ1σ

2
min min

{
1

1+∥JT
k

Jk∥2
, κvαk

}
2(κ∇f + κ∂r)κvκJαk + 2κ2

vκ
2
Jκcαk

528

≥
(1− σc)κ1σ

2
min min

{
1

(1+κ2
J

)α0
, κv

}
2(κ∇f + κ∂r)κvκJ + 2κ2

vκ
2
Jκc

,529

which proves (5.17). The merit parameter update rule (3.10) and (5.17) give (5.18).530

We may now state our worst-case complexity result for Algorithm 3.1.531

Theorem 5.12. Suppose that Assumption 3.1 and Assumption 5.1 hold. Let ϵ ∈532
R>0 be given. If {k1, k2} ⊂ N are two iterations with k1 < k2 such that k ∈ S and533
χk > ϵ for all iterations k1 ≤ k < k2, then it follows that534

(5.19) k2 − k1 ≤
⌊
τ0(f(x0) + r(x0)− finf) + ∥c(x0)∥2

κΦϵ2

⌋
535

with κΦ = ηΦ min
{

τminαmin
8 , τmin

8α0
, σcκ1

κc
σ2

min min{ 1
1+κ2

J

, κvαmin}
}

. Moreover, the max-536

imum number of iterations before χk ≤ ϵ for some iteration k ∈ N is537 max

0,


log

(
τmin

2α0(τminLg+LJ )

)
log(ξ)


 + 1

 ⌊
τ0

(
f(x0)− finf + r(x0)

)
+ ∥c(x0)∥2

κΦϵ2

⌋
.538

Proof. Let {k1, k2} be as in the statement of the theorem. Then, for all k ∈ S and539
k1 ≤ k < k2, it follows from Lemma 5.7(i)–(ii), k ∈ S, (3.12), the second inequality540
of Lemma 5.10, and Lemma 5.6 that541

(5.20)

Φ̄τk
(xk)− Φ̄τk+1(xk+1) ≥ Φ̄τk

(xk)− Φ̄τk
(xk+1) = Φτk

(xk)− Φτk
(xk+1)

≥ ηΦ

(
τk

4αk
∥sk∥2

2 + σc(∥ck∥2 − ∥ck + Jksk∥2)
)

≥ ηΦ

[
τkαk

4

(
∥sk∥2

αk

)2
+ σc

(
κ1
κc
σ2

min∥ck∥2
2 min

{
1

1+κ2
J

, κvαk

})]
= ηΦ

[
τkαk

8

(
∥sk∥2

αk

)2
+ τk∥sk∥2

2
8αk

+ σc

(
κ1
κc
σ2

min∥ck∥2
2 min

{
1

1+κ2
J

, κvαmin

})]
.

542

Lemma 4.6, (5.20), (4.8), (5.18), (5.4), and αk ≤ α0 for all k ≥ 0 give543

Φ̄τk
(xk)− Φ̄τk+1(xk+1)544

≥ ηΦ

[
τkαk

8 ∥gk + gr,k + JT
k yk + zk∥2

2 + τk

8αk
∥min{xk,−zk}∥2

2545
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+σc

(
κ1
κc
σ2

min∥ck∥2
2 min

{
1

1+κ2
J

, κvαmin

})]
546

≥ ηΦ

[
τminαmin

8 ∥gk + gr,k + JT
k yk + zk∥2

2 + τmin
8α0
∥min{xk,−zk}∥2

2547

+σc

(
κ1
κc
σ2

min∥ck∥2
2 min

{
1

1+κ2
J

, κvαmin

})]
548

≥ κΦχ
2
k549

where κΦ is defined in the statement of the current theorem. Using this inequality,550
Lemma 5.7(iii), and nonnegativity of Φ̄τ for all τ ∈ R>0, we find that551

Φ̄τ0(x0) ≥ Φ̄τk1
(xk1) ≥ Φ̄τk1

(xk1)− Φ̄τk2
(xk2)552

=
k2−1∑
k=k1

(
Φ̄τk

(xk)− Φ̄τk+1(xk+1)
)
≥

k2−1∑
k=k1

κΦχ
2
k,553

which may be combined with χk > ϵ for all iterations k1 ≤ k ≤ k2 to conclude that

Φ̄τ0(x0) ≥ (k2 − k1)κΦϵ
2,

from which (5.8) follows. The final result in the theorem, namely the claimed upper554
bound on the maximum iterations before χk ≤ ϵ, follows from what we just proved555
and the fact that maximum number of unsuccessful iterations is bounded as in (5.5).556

5.2.3. Analysis under a limit-point constraint qualification. The analysis557
in this section is performed under Assumption 3.1 and the following two assumptions.558
Before stating them, we remark that all of the results from Section 5.2.1 still hold.559

Assumption 5.2. The set X in Assumption 3.1 is bounded.560

Assumption 5.3. Let L denote the set of limit points of the sequence {xk} gen-561
erated by Algorithm 3.1. Every x∗ ∈ L satisfies the LICQ, i.e., if x∗ ∈ L, then562
[J(x∗)T , IT

A(x∗)]T has full row rank with IA(x∗) denoting the subset of the rows of the563
identity matrix I that corresponds to the index set A(x∗) := {i ∈ [n] : [x∗]i = 0}.564

The previous assumption has important consequences in terms of a certain type565
of infeasible point (see Lemma 4.5(ii)), as we now define.566

Definition 5.13. We say that x ∈ Rn is an infeasible stationary point (ISP) for567
problem (1.1) if and only if x ∈ Ω, x = ProjΩ(x− J(x)T c(x)), and c(x) ̸= 0.568

We now show that any limit point of the sequence of iterates cannot be an ISP.569

Lemma 5.14. If x∗ is a limit point of {xk}, then x∗ cannot be an ISP.570

Proof. Let x∗ ∈ Rn be a limit point of {xk}. Suppose that x∗ ∈ Ω and x∗ =571
ProjΩ(x∗ − J(x∗)T c(x∗)). The proof will be complete if we can show that c(x∗) = 0572
since this would prove that x∗ is not an ISP. Thus, we now prove that c(x∗) = 0.573

It follows using the same proof as in Lemma 4.5 with xk replaced by x∗ that574
x∗ = ProjΩ(x∗ − J(x∗)T c(x∗)) implies that x∗ is a first-order KKT point for the575
feasibility problem (3.3). Therefore, there exists z∗ ∈ Rn

≥0 satisfying x∗ · z∗ = 0576
(componentwise), and J(x∗)T c(x∗) = z∗. It follows from these equations and I(x∗) =577
[n] \ A(x∗) that [J(x∗)T c(x∗)]I(x∗) = 0, where we also note that I(x∗) ̸= ∅ as a578
consequence of Assumption 5.3. Letting JI(x∗)(x∗) denote the columns of J(x∗) that579
correspond to the indices in I(x∗), it follows from above that 0 = [J(x∗)T c(x∗)]I(x∗) =580
[JI(x∗)(x∗)]T c(x∗). Since JI(x∗)(x∗) must have full row rank (see [44, Lemma 2.1.3]),581
it follows that c(x∗) = 0, which completes the proof.582
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The next result bounds ∥vk(1)∥2 by the infeasibility of the equality constraints.583

Lemma 5.15. For all k ∈ N, it holds that ∥vk(1)∥2 ≤ κJ∥ck∥2.584

Proof. It follows from the definition of vk(1) in (3.6), xk ∈ Ω for all k ∈ N by how585
Algorithm 3.1 is designed, non-expansivity of the projection operator, and (3.12) that586

∥vk(1)∥2 = ∥ProjΩ(xk − JT
k ck)− xk∥2 = ∥ProjΩ(xk − JT

k ck)− ProjΩ(xk)∥2587

≤ ∥JT
k ck∥2 ≤ κJ∥ck∥2,588

which completes the proof.589

We can now prove that our infeasiblity measure converges to zero.590

Lemma 5.16. The iterate sequence {xk} satisfies limk→∞ ∥vk(1)∥2 = 0.591

Proof. From Theorem 5.12, it follows that there exists a subsequence K1 ⊆ N such592
that limk∈K1 ∥vk(1)∥2 = 0. Now, for the purpose of reaching a contradiction, assume593
that there exists a subsequence of iterations K2 ⊆ N \ K1 and a scalar vmin ∈ R>0594
such that ∥vk(1)∥2 ≥ vmin for all k ∈ K2. We now proceed by considering two cases.595

Case 1: {τk} → 0. The definitions of K1 and K2 allow us to define, for each k ∈ K1,596
the quantity k̂(k) as the smallest iteration in K2 that is strictly larger than k. We can597
use this definition, Lemma 5.15, {τk} → 0, (3.12), Lemma 5.7(iii), and nonnegativity598
of r to conclude that the following holds for each sufficiently large k ∈ K1:599

vmin

2κJ
≤
∥c(xk̂(k))∥2

2 ≤ τk̂(k)
(
fk̂(k) − finf + r(xk̂(k))

)
+ ∥c(xk̂(k))∥2 = Φ̄τk̂(k)

(xk̂(k))600

≤ Φ̄τk
(xk) = τk

(
fk − finf + r(xk)

)
+ ∥c(xk)∥2 ≤ 2∥ck∥2.601

It follows from this inequality and the definition of K1 that

lim
k∈K1

∥vk(1)∥2 = 0 and lim inf
k∈K1

∥ck∥2 ≥
vmin

2κJ
> 0.

Therefore, every limit point of {xk}k∈K1 must be an ISP, and at least one such limit602
point must exist as a consequence of Assumption 5.2. This contradicts Lemma 5.14.603

Case 2: {τk} is bounded away from zero. In this case, it follows from The-604
orem 5.8(i) that the proximal parameter sequence {αk} is also bounded away from605
zero. Given the manner in which both sequences are defined in Algorithm 3.1, we can606
conclude that there exists k̂ ∈ N such that τk = τk̂ > 0 and αk = αk̂ > 0 for all k ≥ k̂.607
We may now use the same logic as in the proof of Lemma 5.8(i) and (3.12) to obtain608

∞ > Φ̄τ0(x0) ≥
∞∑

k=0
(Φ̄τk

(xk)− Φ̄τk+1(xk+1))

≥
∑

k̂≤k∈S

(Φ̄τk
(xk)− Φ̄τk+1(xk+1))

≥
∑

k̂≤k∈S

ηΦ
σcκ1

κc
αk̂∥vk(1)∥2

2 min
{

1
1+κ2

J

, κvαk̂

}
,

609

which implies that limk∈S ∥vk(1)∥2 = 0. Combining this result with the fact that610
xk+1 = xk whenever k /∈ S and that the definition of vk(1) depends only on xk, the611
projection onto Ω (which is continuous), and the continuous functions c and J , it612
follows that limk→∞ ∥vk(1)∥2 = 0. This contradicts the definition of K2.613
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Since we have shown that both Case 1 and Case 2 cannot occur, and these are614
the only cases that can possibly occur, we must conclude that our original assumption615
was incorrect, namely the existence of the set K2. This completes the proof.616

Next, we formally establish that L is a compact set.617

Lemma 5.17. The set L in Assumption 5.3 is compact.618

Proof. By Assumption 5.2, the set L is bounded. It remains to show that L is
closed. To this end, suppose that {xL

j }j≥1 ⊆ L and xL ∈ Rn satisfy limj→∞ xL
j = xL;

we prove that xL ∈ L. Let us define a sequence K = {k1, k2, . . . } ⊆ N. In particular,
let k1 be the smallest integer such that the iterate xk1 satisfies ∥xL

1 − xk1∥2 ≤ 1. We
then iteratively define kj for j ≥ 2 as the smallest integer kj such that kj > kj−1 and
the iterate xkj

satisfies ∥xL
j − xkj

∥2 ≤ 1/j. In summary, K = {k1, k2, . . . } ⊆ N is a
strictly monotonically increasing subsequence of N such that ∥xL

j − xkj
∥2 ≤ 1/j for

all j. It follows from this inequality and the triangle inequality that

∥xL − xkj
∥2 ≤ ∥xL − xL

j ∥2 + ∥xL
j − xkj

∥2 ≤ ∥xL − xL
j ∥2 + 1

j for all j ≥ 1.

Combining this inequality with limj→∞ xL
j = xL, it follows that limj→∞ xkj

= xL,619
which proves that xL ∈ L as claimed, thus completing the proof.620

The next key lemma uses the function δ(·) : Rn → R>0 defined as621

(5.21) δmin(x) := min
i∈I(x)

[x]i,622

which gives a measure for how far the inactive variables at x are from being active.623

Lemma 5.18. The following hold for the set of limit points L:624
(i) There exist nL ∈ N, {xL

i }
nL
i=1 ⊆ L, and {ϵLi }

nL
i=1 ⊂ R>0 such that625

(a) L ⊂ ∪nL
i=1B(xL

i , ϵ
L
i ), and626

(b) if, for some j, it holds that x ∈ B(xL
j , ϵ

L
j ), then627

∥x− xL
j ∥2 ≤ 1

3δmin(xL
j ),(5.22a)628

A(x) ⊆ A(xL
j ), and(5.22b)629

σmin
(
[J(x)T , IT

A(xL
j

)]
T

)
≥ 1

2σmin
(
[J(xL

j )T , IT
A(xL

j
)]

T
)
.(5.22c)630

(ii) For the objects in part (i), there exists ϵLmin ∈ R>0 such that if x ∈ Rn satisfies631
dist(x,L) ≤ ϵLmin, then x ∈ ∪nL

i=1B(xL
i , ϵ

L
i ) and there exists j ∈ [nL] such that632

σmin
(
[J(x)T , IT

A(xL
j

)]
T

)
≥ min

i∈[nL]
1
2σmin

(
[J(xL

i )T , IT
A(xL

i
)]

T
)

=: σL
min > 0,633

where the inequality σL
min > 0 is a consequence of Assumption 5.3.634

Proof. For xL ∈ L, let ϵ(xL) ∈ R>0 satisfy that if x ∈ B(xL, ϵ(xL)) then I(xL) ⊆635
I(x), ∥x− xL∥2 ≤ 1

3δmin(xL), and σmin
(
[J(x)T , IT

A(xL)]
T

)
≥ σmin

2
(
[J(xL)T , IT

A(xL)]
T

)
,636

where satisfying the third condition is possible because of the continuity of singu-637
lar values of a matrix with respect to its entries and Assumption 5.3. It follows638
that ∪xL∈LB(xL, ϵ(xL)) is an open cover of the compact set L (see Lemma 5.17).639
Using this fact and the definition of a compact set, it follows that there exists a640
finite subcover, i.e., there exist nL ∈ N, {xL

i }
nL
i=1 ⊆ L, and {ϵLi }

nL
i=1 ⊂ R>0 such641

that L ⊂ ∪nL
i=1B(xL

i , ϵ
L
i ) and if, for some j ∈ {1, 2, . . . , nL}, it holds that x ∈642
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B(xL
j , ϵ

L
j ) then I(xL

j ) ⊆ I(x), ∥x− xL
j ∥2 ≤ 1

3δmin(xL
j ), and σmin

(
[J(x)T , IT

A(xL
j

)]
T

)
≥643

1
2σmin

(
[J(xL

j )T , IT
A(xL

j
)]

T
)
. Since I(xL

j ) ⊆ I(x) is equivalent to A(x) ⊆ A(xL
j ), we644

have completed the proof of part (i).645
We now prove part (ii). First, using the finite subcover computed in part (i)646

and the fact that L is compact, there exists ϵLmin ∈ R>0 such that if x ∈ Rn sat-647
isfies dist(x,L) ≤ ϵLmin, then x ∈ ∪nL

i=1B(xL
i , ϵ

L
i ). Let x be an arbitrary point that648

satisfies dist(x,L) ≤ ϵLmin. Then, it follows that there exists j ∈ {1, 2, . . . , nL}649
such that x ∈ B(xL

j , ϵ
L
j ), which combined with part (i)(b) gives A(x) ⊆ A(xL

j ) and650
σmin

(
[J(x)T , IT

A(xL
j

)]
T

)
≥ 1

2σmin
(
[J(xL

j )T , IT
A(xL

j
)]

T
)
≥ σL

min > 0, as claimed.651

The next result shows that iterates of the algorithm eventually satisfy the prop-652
erties of the previous lemma.653

Lemma 5.19. There exists k ∈ N such that, for each k ≥ k, there exists a corre-654
sponding j ∈ [nL] that satisfies, with σL

min defined in Lemma 5.18(ii), the following:655
656

∥xk − xL
j ∥2 ≤ 1

3δmin(xL
j ),(5.23a)657

A(xk) ⊆ A(xL
j ), and(5.23b)658

σmin
(
[JT

k , I
T
A(xL

j
)]

T
)
≥ 1

2σmin
(
[J(xL

j )T , IT
A(xL

j
)]

T
)
≥ σL

min > 0.(5.23c)659

Proof. Let ϵLmin > 0 be defined as in Lemma 5.18(ii). Since L is the set of all limit660
points, there exists an iteration k such that dist(xk,L) ≤ ϵLmin for all k ≥ k (this k661
is now the k whose existence is claimed in the statement of the current lemma). For662
the remainder of the proof, consider arbitrary k ≥ k. It follows from the definition663
of k that dist(xk,L) ≤ ϵLmin, and then from Lemma 5.18(ii) that there exists j ∈ [nL]664
such that xk ∈ B(xL

j , ϵ
L
j ). Conditions (5.23a)–(5.23c) now follow from Lemma 5.18.665

We now give a lower bound on ∥vk(1)∥2 in terms of ∥ck∥2, which is crucial to666
giving a lower bound on the merit parameter sequence. The result uses the constant667

(5.24) δL
min := min

j∈[nL]
δmin(xL

j ) > 0.668

Lemma 5.20. For all sufficiently large k ∈ N, it holds that ∥vk(1)∥2 ≥ σL
min∥ck∥2,669

where the positive constant σL
min is defined in Lemma 5.18(ii).670

Proof. With δL
min in (5.24), Lemma 5.16 ensures the existence k1 such that671

(5.25) ∥vk(1)∥2 =
∥∥ProjΩ(xk − JT

k ck)− xk

∥∥
2 ≤

1
3δ

L
min for all k ≥ k1.672

Let {ϵLmin, σ
L
min} ⊂ R>0 be as stated in Lemma 5.18, and let k2 play the role of k from673

Lemma 5.19. For the remainder of the proof, consider arbitrary k ≥ max{k1, k2}. It674
follows from the definition of k2 that xk satisfies (5.23a)–(5.23c) for some j ∈ [nL].675
Using (5.25), (5.23a), and definitions of δmin(xL

j ) and δL
min, each i ∈ I(xL

j ) satisfies676

[ProjΩ(xk − JT
k ck)]i ≥ [xk]i − 1

3δ
L
min ≥ [xL

j ]i − 1
3δmin(xL

j )− 1
3δ

L
min

≥ δmin(xL
j )− 1

3δmin(xL
j )− 1

3δ
L
min = 2

3δmin(xL
j )− 1

3δ
L
min

≥ 2
3δ

L
min − 1

3δ
L
min = 1

3δ
L
min.

677

Hence, for all i ∈ I(xL
j ) it holds that [xk − JT

k ck]i > 0. Now, define wk ∈ Rn as678

(5.26) [wk]i =
{

0 if i ∈ I(xL
j ),

−[JT
k ck]i − [vk(1)]i if i ∈ A(xL

j ).
679
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The definition of wk, the fact that [xk−JT
k ck]i > 0 for all i ∈ I(xL

j ), and (5.23c) give680

∥vk(1)∥2 =
∥∥ProjΩ(xk − JT

k ck)− xk

∥∥
2 =

∥∥−JT
k ck − wk

∥∥
2

=
∥∥∥∥[
JT

k , I
T
A(xL

j
)

] [
ck

[wk]A(xL
j

)

]∥∥∥∥
2
≥ σL

min∥ck∥2,
681

which completes the proof.682

Our next result gives a new bound on the model decrease.683

Lemma 5.21. For κ1 ∈ (0, 1] in Lemma 4.3, all sufficiently large k ∈ N satisfy684

(5.27) ∥ck∥2 − ∥ck + Jkv
c
k∥2 ≥ κ1(σL

min)2∥ck∥2 min
{

1
1 + κ2

J

, κvαk

}
.685

Proof. If δk = 0, then either ∥ck∥2 = 0 and the inequality holds trivially, or686
∥ck∥2 ̸= 0 and the algorithm terminates finitely, which is a contradiction to our overall687
setting in this subsection that the algorithm does not terminate finitely. Therefore, we688
may proceed assuming δk ̸= 0. It follows from Lemma 4.3 that ∥ck + Jkv

c
k∥2 ≤ ∥ck∥2.689

Using this inequality and a difference-of-squares computation, we have that690

(5.28)
∥ck∥2

2 − ∥ck + Jkv
c
k∥2

2 = (∥ck∥2 + ∥ck + Jkv
c
k∥2)(∥ck∥2 − ∥ck + Jkv

c
k∥2)

≤ 2∥ck∥2(∥ck∥2 − ∥ck + Jkv
c
k∥2).

691

Combining (5.28), (4.4), Lemma 5.20, and (3.12), all sufficiently large k ∈ N satisfy692

2∥ck∥2(∥ck∥2 − ∥ck + Jkv
c
k∥2) ≥ ∥ck∥2

2 − ∥ck + Jkv
c
k∥2

2 = 2(mk(0)−mk(vc
k))693

≥ 2κ1∥vk(1)∥2
2 min

{
1

1 + ∥JT
k Jk∥2

, κvαk

}
694

≥ 2κ1(σL
min)2∥ck∥2

2 min
{

1
1 + κ2

J

, κvαk

}
.695

If ∥ck∥2 = 0, then again the desired inequality holds trivially. Otherwise, dividing the696
above inequality by 2∥ck∥2 gives (5.27), and thus completes the proof.697

We now bound the merit and proximal parameter sequences away from zero.698

Lemma 5.22. Let k > 0 be sufficiently large that the results in Lemma 5.20 and699
Lemma 5.21 hold. Then, each k ≥ k yields700

τk,trial ≥ τ̄min,trial :=
(1− σc)κ1(σL

min)2 min
{

1
(1+κ2

J
)α0

, κv

}
2(κ∇f + κ∂r)κvκJ + 2κ2

vκ
2
Jκc

> 0.(5.29)701

The merit parameter sequence itself satisfies, for all k ∈ N, the inequality702

τk ≥ τ̄min := min{τk−1, (1− ϵτ )τ̄min,trial)} > 0.(5.30)703

Finally, the proximal parameter sequence satisfies, for all k ∈ N, the inequality704

(5.31) αk ≥ ᾱmin := min{α0,
ξτ̄min

2(τ̄minLg+LJ )} > 0.705

Proof. We first prove (5.29). If Ak ≤ 0 in the definition of τk,trial, then τk,trial =∞706
so that (5.29) trivially holds. If Ak > 0, then it follows from the definition of τk,trial,707
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sk = vk + uk, Jkuk = 0 (see (4.8b)), Lemma 5.4, Lemma 5.21, the fact that αk ≤ α0708
for all k by construction of Algorithm 3.1, and (3.12) that each k ≥ k yields709

τk,trial = (1− σc)(∥ck∥2 − ∥ck + Jkvk∥2)
gT

k sk + 1
2αk
∥sk∥2

2 + r(xk + sk)− rk

710

≥
(1− σc)κ1(σL

min)2∥ck∥2 min
{

1
1+κ2

J

, κvαk

}
2(κ∇f + κ∂r)κvκJαk∥ck∥2 + 2κ2

vκ
2
Jκcαk∥ck∥2

711

≥
(1− σc)κ1(σL

min)2 min
{

1
(1+κ2

J
)α0

, κv

}
2(κ∇f + κ∂r)κvκJ + 2κ2

vκ
2
Jκc

,712

which proves that (5.29) holds for all k ≥ k, as claimed. The merit parameter update713
rule (3.10) and (5.29) give (5.30). Finally, (5.31) follows from (5.30) and Lemma 5.6.714

The next result establishes that the norm of the search direction converges to zero715
along the sequence of successful iterations.716

Lemma 5.23. The search direction sequence {sk}k∈S satisfies limk∈S ∥sk∥2 = 0.717

Proof. We first note that the derivation of (5.20) still holds under the assumptions718
of this section, and therefore we know that719

(5.32) Φ̄τk
(xk)− Φ̄τk+1(xk+1) ≥

∑
k∈S

ηΦ
τk

8αk
∥sk∥2

2.720

Using nonnegativity of Φ̄τ in (5.7), Lemma 5.7(ii)-(iii), and (5.32), we have that721

∞ >
∑
k∈S

(Φ̄τk
(xk)− Φ̄τk+1(xk+1)) ≥

∑
k∈S

ηΦ
τk

8αk
∥sk∥2

2.722

Lemma 5.22 gives τk ≥ τ̄min > 0 for all k ∈ N, where τ̄min is defined in (5.30), so that723 ∑
k∈S ηΦ

τ̄min
8α0
∥sk∥2

2 <∞, which implies limk∈S ∥sk∥2 = 0, and completes the proof.724

We next prove that the sequence of Lagrange multiplier estimates generated by725
subproblem (3.9) during successful iterations are bounded.726

Lemma 5.24. There exists κyz ∈ R>0 so that maxk∈S max{∥yk∥∞, ∥zk∥∞} ≤ κyz.727

Proof. Let k1 serve the role of k in Lemma 5.19 so that the results of Lemma 5.19728
hold for each k ≥ k1. Let k2 be sufficiently large so that ∥sk∥2 ≤ 1

3δ
L
min for all729

k2 ≤ k ∈ S, which is possible because of how δL
min is defined and Lemma 5.23.730

For the remainder of the proof, consider an arbitrary k with max{k1, k2} ≤ k ∈ S.731
Let j ∈ [nL] be the value guaranteed by Lemma 5.19 to exist so (5.23a)–(5.23c) hold.732

Next, consider i ∈ I(xL
j ). It follows from (5.23a), the triangle inequality, the

definition of k2, and the definition of δL
min (see (5.24)) that

∥xk + sk − xL
j ∥2 ≤ ∥xk − xL

j ∥2 + ∥sk∥2 ≤ 1
3δmin(xL

j ) + 1
3δ

L
min ≤ 2

3δmin(xL
j ).

This inequality, the definition of δmin(xL
j ) (see (5.21)), and i ∈ I(xL

j ) imply that

[xk + sk]i ≥ [xL
j ]i − 2

3δmin(xL
j ) ≥ δmin(xL

j )− 2
3δmin(xL

j ) = 1
3δmin(xL

j ) > 0,

so that i ∈ I(xk +sk). Thus, I(xL
j ) ⊆ I(xk +sk), or equivalently A(xk +sk) ⊆ A(xL

j ).733
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Now, let us introduce the notation As
k = A(xk +sk). It follows from sk = vk +uk,734

(4.8a), [zk]i = 0 for all i /∈ As
k (see (4.8c)), and As

k ⊆ A(xL
j ) (see above) that735

gk + 1
αk
sk + gr,k = [JT

k , I
T
As

k
]
[

yk

(zk)As
k

]
= [JT

k , I
T
A(xL

j
)]

[
yk

(zk)A(xL
j

)

]
.736

Combining this result with (5.23c) and As
k ⊆ A(xL

j ) it follows that∥∥∥gk + 1
αk
sk + gr,k

∥∥∥
2
≥ σL

min

∥∥∥∥[
yk

(zk)A(xL
j

)

]∥∥∥∥
2

= σL
min

∥∥∥∥[
yk

zk

]∥∥∥∥
2
.

Combining this inequality with the triangle inequality, (3.12), ∥sk∥2 ≤ 1
3δ

L
min, and

αk ≥ ᾱmin (see (5.31)) it follows that∥∥∥∥[
yk

zk

]∥∥∥∥
2
≤ 1

σL
min

(κ∇f + δL
min

3ᾱmin
+ κ∂r).

Since the right-hand side of this inequality is a constant and independent of k, we know737
that the sequence of Lagrange multipliers over the successful iterations is bounded.738

Theorem 5.25. Let Assumption 3.1 and Assumption 5.3 hold. Any limit point739
x∗ of the sequence {xk}k∈S is a first-order KKT point for problem (1.1).740

Proof. Let x∗ be a limit point of {xk}k∈S , i.e., there exists infinite K1 ⊆ S741
satisfying {xk}k∈K1 → x∗. From Lemma 5.16 and Lemma 5.20, we have that742

(5.33) 0 = lim
k→∞

∥vk(1)∥2 ≥ lim
k→∞

σL
min∥ck∥2 ≥ 0,743

which implies that 0 = limk→∞ ∥ck∥2 = limk∈K1 ∥ck∥2. Combining this with continu-744
ity of c and {xk}k∈S → x∗ it follows that c(x∗) = 0.745

Next, Lemma 5.24 ensures the existence of a vector pair (y∗, z∗) ∈ Rm × Rn and
infinite subsequence K2 ⊆ K1 such that {(yk, zk)}k∈K2 → (y∗, z∗). Also, it follows
from Lemma 5.23 and Lemma 4.6 that

0 = lim
k∈K2

∥sk∥2 ≥ lim
k∈K2

∥min{xk,−zk}∥2 ≥ 0,

which implies that limk∈K2 ∥min{xk,−zk}∥2 = 0. Combining this with the continuity746
of the min operator and {(yk, zk)}k∈K2 → (y∗, z∗) it follows that min{x∗,−z∗} = 0.747

It follows from Lemma 5.23 and (5.31) that limk∈K2(1/αk)∥sk∥2 = 0. This fact,
(4.8a), {(xk, yk, zk)}k∈K2 → (x∗, y∗, z∗), and continuity of g and J give

gr,∗ := −g(x∗)− J(x∗)T y∗ − z∗ = lim
k∈K3

(−gk − JT
k yk − zk) = lim

k∈K3
gr,k,

so that g(x∗) + gr,∗ + J(x∗)T y∗ + z∗ = 0. It follows from this equality, c(x∗) = 0, and748
min{x∗,−z∗} = 0 that x∗ is a first-order KKT point for problem (1.1), as claimed.749

5.3. Active set Identification. Our result in this section shows, under suitable750
assumptions, that our method can successfully identify the optimal active set.751

Theorem 5.26. Let x∗ be a first-order KKT point for problem (1.1) with La-752
grange multiplier vectors y∗ ∈ Rm and z∗ ∈ Rn

≤0 for the equality constraints and753
bound constraints, respectively. Suppose that strict complementarity holds, i.e., that754
max{x∗,−z∗} > 0. Let S1 ⊆ S be such that {xk}k∈S1 → x∗, {sk}k∈S1 → 0, and755
{zk}k∈S1 → z∗. Then, A(xk+1) = A(x∗) for all sufficiently large k ∈ S1.756
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Proof. We have from the optimality conditions in (4.8) that757

(5.34) ∥min{xk + sk,−zk}∥2 = 0 for all k ∈ N.758

It follows from strict complementarity that ϵ := min{[−z∗]j : j ∈ A(x∗)} > 0. Com-759
bining this with {zk}k∈S1 → z∗ gives the existence of k ∈ N such that ∥zk−z∗∥∞ < ϵ/2760
for all k ≤ k ∈ S1. Thus, all k ≤ k ∈ S1 and j ∈ A(x∗) satisfy [−zk]j > ϵ

2 . Combining761
this with (5.34) shows that [xk+1]i = [xk + sk]i = 0 for all k ≤ k ∈ S1 and i ∈ A(x∗).762
Finally, it follows from {xk}k∈S1 → x∗ and {sk}k∈S1 → 0 that [xk+1]i = [xk +sk]i > 0763
for all i /∈ A(x∗) and k ∈ S1 sufficiently large, which completes the proof.764

5.4. Manifold Identification. In this section, we establish a manifold iden-765
tification property for Algorithm 3.1 under certain assumptions. For the definition766
of a C2-smooth manifold M ⊂ Rn at a given point in Rn, see [37, Definition 2.3].767
Our result assumes that the regularizer r is partly smooth relative to a manifold at a768
first-order KKT point; see [37, Definition 3.2].769

To motivate our assumption that the regularizer is partly smooth, consider r(x) =770
∥x∥1 and x∗ ∈ Rn \ {0}. Define the set M = {x ∈ Rn : sgn(xi) = sgn([x∗]i) for i ∈771
I(x∗), and xi = 0 for i ∈ A(x∗)}, which is a (|I(x∗)|)-dimensional C2-smooth mani-772
fold around the point x∗. Then, r is partly smooth at x∗ relative to M.773

We are now ready to present our manifold identification property of Algorithm 3.1.774
The proof borrows ideas from [35, Lemma 1] and relies on [37, Theorem 4.10].775

Theorem 5.27. Let x∗ be a first-order KKT point to problem (1.1) with Lagrange776
multiplier vectors y∗ and z∗, and suppose that r is convex and partly smooth at x∗777
relative to a C2-smooth manifold M. Assume that the proximal parameter sequence778
{αk}k∈N is bounded away from zero, that there exists a subsequence S1 ⊆ S such that779
{(xk, sk, yk, zk)}k∈S1 → (x∗, 0, y∗, z∗), and that the non-degeneracy condition780

(5.35) 0 ∈ {g(x∗) + J(x∗)T y∗ + z∗}+ relint(∂r(x∗))781

holds, where relint denotes the relative interior of a convex set. Then, it follows that782
xk+1 ∈M for all sufficiently large k ∈ S1.783

Proof. Let us define y = −(g(x∗) + J(x∗)T y∗ + z∗), and note from (5.35) that784
y ∈ relint(∂r(x∗)). Next, since r is convex, it is prox-regular [37, Definition 3.6] at x∗785
with y. It also follows from r being convex (thus continuous), {xk}k∈S1 → x∗, and786
{sk}k∈S1 → 0 that {xk + sk}k∈S1 → x∗ and {r(xk + sk)}k∈S1 → r(x∗). Combining787
these observations with the assumption in the statement of the theorem that r is partly788
smooth at x∗ relative to a C2-smooth manifold M, means that every assumption789
in [37, Theorem 4.10] holds (with r and x∗ here playing the role of f and x in [37,790
Theorem 4.10]). To use [37, Theorem 4.10]) to establish our manifold identification791
result, it remains to prove that {dist (y, ∂r(xk + sk))}k∈S1 → 0, as we now show.792

It follows from the triangle inequality, (3.12), and (3.13) that793

(5.36)
∥J(xk + sk)T y∗ − J(xk)T yk∥2

≤ ∥J(xk + sk)T y∗ − J(xk)T y∗ + J(xk)T y∗ − J(xk)T yk∥2

≤ LJ∥sk∥2∥y∗∥2 + κJ∥yk − y∗∥2 for all k ∈ N.
794
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Using (4.8a), gr,k ∈ ∂r(xk + sk), (3.12), and (5.36), we have that795

dist
(
−g(xk + sk)− J(xk + sk)T y∗ − z∗, ∂r(xk + sk)

)
≤

∥∥−g(xk + sk)− J(xk + sk)T y∗ − z∗ − gr,k

∥∥
2

=
∥∥∥g(xk + sk)− g(xk) +

(
J(xk + sk)T y∗ − J(xk)T yk

)
+ (z∗ − zk)− 1

αk
sk

∥∥∥
2

≤ ∥g(xk + sk)− g(xk)∥2 + ∥J(xk + sk)T y∗ − J(xk)T yk∥2 + ∥z∗ − zk∥2 + 1
αk
∥sk∥2

≤ Lg∥sk∥2 + LJ∥sk∥2∥y∗∥2 + κJ∥yk − y∗∥2 + ∥zk − z∗∥2 + 1
αk
∥sk∥2 for all k ∈ N.

796

This inequality, {(xk, sk, yk, zk)}k∈S1 → (x∗, 0, y∗, z∗), and {αk} bounded from 0 give797

(5.37) {dist(−g(xk + sk)− J(xk + sk)T y∗ − z∗, ∂r(xk + sk))}k∈S1 → 0.798

Next, for all k ∈ N, it follows from [15, Theorem 6.2] that799

|dist(y, ∂r(xk + sk))− dist(−g(xk + sk)− J(xk + sk)T y∗ − z∗, ∂r(xk + sk))|800

≤ ∥y + g(xk + sk) + J(xk + sk)T y∗ + z∗∥2,801

which immediately implies that802

dist(y, ∂r(xk + sk)) ≤ dist(−g(xk + sk)− J(xk + sk)T y∗ − z∗, ∂r(xk + sk))803

+ ∥y + g(xk + sk) + J(xk + sk)T y∗ + z∗∥2.804

Combining this inequality with (5.37), {(xk, sk, yk, zk)}k∈S1 → (x∗, 0, y∗, z∗), and805
continuity of g and J shows that {dist (y, ∂r(xk + sk))}k∈S1 → 0, which was our goal.806
We can now apply [37, Theorem 4.10] to conclude that xk +sk ∈M for all sufficiently807
large k ∈ S1. Since xk+1 = xk + sk for all k ∈ S1, the proof is completed.808

6. Numerical Results. We present results from numerical experiments con-809
ducted using our Python implementation of Algorithm 3.1. The test problems employ810
the ℓ1 regularizer, a widely adopted choice to induce sparse solutions. Our numerical811
evaluation has two primary objectives: to demonstrate the numerical performance of812
our method using standard optimization metrics, and to assess its capability to cor-813
rectly identify the zero-nonzero structure of the solution. Our test problems include814
special instances of ℓ1-regularized optimization problems from the CUTEst [23] test815
environment, and instances of sparse canonical correlation analysis.816

6.1. Implementation details. Given vc
k in (3.6) as the Cauchy point for sub-817

problem (3.1), to find a vk satisfying the conditions in (3.4), we first compute818

(6.1) v∞
k := arg min

v∈Rn
mk(v) s.t. ∥v∥∞ ≤ κ∞

v αkδk, xk + v ∈ Ω819

with κ∞
v ∈ R>0, which differs from (3.1) only in its use of the infinity-norm. Our

motivation for using subproblem (6.1) is that the feasible region only consists of
simple bound constraints, which can be handled efficiently by solvers. As long as
κ∞

v ≤ 1√
n
κv (which we choose to hold), the solution v∞

k to (6.1) satisfies ∥v∞
k ∥2 ≤√

n∥v∞
k ∥∞ ≤

√
nκ∞

v αkδk ≤ κvαkδk, meaning that v∞
k satisfies the first two conditions

in (3.4). To ensure that the third condition is also satisfied, we set

vk ←

{
vc

k if mk(vc
k) < mk(v∞

k ),
v∞

k otherwise.
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To solve subproblem (6.1), we use the barrier method in Gurobi version 11.0.3 [24].820
Next, to solve subproblem (3.9) (as needed in Line 12 of Algorithm 3.1), we exploit821

the structure of the ℓ1-norm. By introducing variables (p, q) ∈ Rn
≥0 × Rn

≥0 and using822
e to denote a ones vector of appropriate dimension, we solve the equivalent problem823

(6.2)
min

(u,p,q)∈Rn×Rn×Rn
gT

k u+ 1
2αk
∥u∥2

2 + 1
αk
vT

k u+ λeT (p+ q)

s.t. Jku = 0, xk + vk + u ∈ Ω, p ≥ 0, q ≥ 0.
824

Problem (6.2) is a convex QP that we solve using the dual active-set QP solver825
in Gurobi. In Algorithm 3.1, the proximal parameter αk remains unchanged, i.e.,826
αk+1 ← αk (Line 19), whenever the sufficient decreasing condition at Line 18 is827
satisfied; in our implementation, we instead update it as αk+1 ← max{ξ−1αk, 10},828
which allows the proximal parameter to possibly take larger values. We found this829
update strategy to work better in our testing, all of the analysis of Section 5.2.3830
still holds, and the analysis of Section 5.2.2 still holds if this modified update is only831
allowed a finite (possibly large) number of times.832

The parameters used and initial proximal parameter value are presented in Ta-833
ble 6.1. The starting point x0 and initial proximal-parameter value α0 used for the834
test problems will be specified in Section 6.2–6.3.835

Table 6.1
Parameters used by Algorithm 3.1. Recall that κ∞

v appears in (6.1).

τ−1 κv κ∞
v σc ϵτ ξ γ ηΦ ηm

1 103 10−2 0.1 0.1 0.5 0.5 10−4 10−4

Algorithm 3.1 is terminated when one of the following conditions is satisfied.836
• Approximate KKT point. Algorithm 3.1 is terminated during the kth837

iteration with xk considered an approximate KKT point if ∥ck∥2 ≤ 10−6,838
∥gk + gr,k + JT

k yk + zk∥2 ≤ 10−4, and ∥min{xk,−zk}∥2 ≤ 10−4.839
• Time limit. Algorithm 3.1 is terminated if the running time exceeds 1 hour.840

As is common in the literature, we scale the problem functions. In particular, the841
objective and its gradient are scaled by the scaling factor842

(6.3) scale factor =


100

∥∇f(x0)∥∞
if ∥∇f(x0)∥∞ > 100,

1 otherwise.
843

A similar scaling strategy is applied to each constraint ci for 1 ∈ [m].844
For comparison, we consider the solver Bazinga,1 which is a safeguarded aug-845

mented Lagrangian method and, to the best of our knowledge, the only open source846
code that can solve problem (1.1); see [18] for more details. The Bazinga algorithm847
is terminated when one of the following conditions is satisfied.848

• Approximate KKT point. Bazinga is terminated if a certain primal fea-849
sibility and dual stationarity measure are less than 10−6.850

• Not a number. Bazinga is terminated if a NaN occurs.851
• Time limit. Algorithm 3.1 is terminated if the running time exceeds 1 hour.852

1The code package of Bazinga is downloaded from https://github.com/aldma/Bazinga.jl
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6.2. CUTEst test problems. We first conduct experiments on a subset of the853
CUTEst test problems. Given the objective function f , equality constraint cE(x) = 0,854
inequality constraints cl ≤ cI(x) ≤ cu for some constant vectors cl and cu, and bound855
constraints bl ≤ x ≤ bu for some constant vectors bl and bu all supplied by CUTEst856
for a given test problem, we solve the ℓ1-regularized optimization problem857

(6.4) min
(x,s,a)∈Rn+mI +m

f(x) + λ∥a∥1 s.t.
[
cE(x)

cI(x)− s

]
+ a = 0,

[
bl

cl

]
≤

[
x
s

]
≤

[
bu

cu

]
,858

where mI is the number of inequality constraints and λ ∈ R>0 is a regularization859
parameter. The slack vector s is introduced to reformulate inequality constraints as860
equality constraints plus bound constraints. The vector a is introduced in this manner861
so that we can control its sparsity for illustrative purposes in our experiments.862

The subset of CUTEst problems were chosen based on the following selection863
criteria: (i) the objective function is not constant; (ii) the number of variables and864
constraints satisfy 1 ≤ m ≤ n ≤ 100; (iii) the total number of inequality constraints865
satisfies mI ≥ 1. For the choice of λ, we consider the following optimization problem866

(6.5) min
x∈Rn, s∈RmI

f(x) s.t.
[
cE(x)

cI(x)− s

]
= 0,

[
bl

cl

]
≤

[
x
s

]
≤

[
bu

cu

]
,867

and let (x, s̄) be a first-order KKT point of this problem with Lagrange multiplier868
yeq associated with the equality constraints. Then, if λ ≥ ∥yeq∥∞, the point (x, s̄, 0)869
is a first-order KKT point for the optimization problem (6.4). With this observa-870
tion, we set λ = ∥yeq∥∞ + 10 where yeq is computed by solving problem (6.5) using871
IPOPT [50]. Problems that are not successfully solved by IPOPT are removed from872
the test problems. The final subset consisted of 81 CUTEst test problems.873

For our tests, we set α0 = 10 and x0 as the initial point supplied by CUTEst.874
We compare the performance of Algorithm 3.1 and Bazinga using several metrics;875

the results of our tests can be found in Table 6.2. The meaning of the columns found876
in Table 6.2 are described in the following bullet points.877

• Feasible. The number of test problems for which the corresponding method878
terminates at a point with constraint violation less than 10−6. For this metric,879
we see that the two methods behave similarly, with Algorithm 3.1 achieving880
approximate feasibility on four more test problem.881

• Feasible, Better Objective. To understand the meaning of this column,882
let fAlgorithm 3.1 denote the final objective value returned by Algorithm 3.1883
and fBazinga denote the final objective value returned by Bazinga. We then884
define the relative difference in the returned objective function values as885

(6.6) fdiff := fBazinga − fAlgorithm 3.1

max(1, |min(fBazinga, fAlgorithm 3.1)|) .886

We say that Algorithm 3.1 (resp., Bazinga) has a better relative objective887
value if fdiff ≥ 10−6 (resp., fdiff ≤ −10−6). Using this terminology, column888
“Feasible, Better Objective” gives the number of test problems for which both889
algorithms terminated at a point with constraint violation less than 10−6 and890
the corresponding method has a better relative objective value. For this891
metric, Algorithm 3.1 outperforms Bazinga on 8 additional problems.892

• Performs Better. The number of test problems for which the correspond-893
ing method either (i) meets the constraint violation tolerance and the other894
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method does not, or (ii) both methods reach the constraint violation tolerance895
and the corresponding method has a better relative objective value (see (6.6)).896
For this metric, Algorithm 3.1 outperforms Bazinga by one problem.897

• a is Zero. The number of test problems for which the corresponding method898
returns a = 0. Algorithm 3.1 outperforms Bazinga on this metric, with Algo-899
rithm 3.1 (resp., Bazinga) returning a = 0 on 76 (resp., 55) of the problems.900

• a is Small. The number of test problems for which the corresponding method901
returns ∥a∥∞ ≤ 10−8, thus indicating that a is small (possibly equal to zero).902
When comparing this column with column “a is Zero”, we see that the only903
difference is that Bazinga returns a small (nonzero) value for a on one addi-904
tional test problem; the results for Algorithm 3.1 are unchanged.905

• KKT Found. The number of test problems for which the corresponding906
method terminates with an approximate KKT point. Algorithm 3.1 outper-907
forms Bazinga with Algorithm 3.1 (resp., Bazinga) returning an approximate908
first-order KKT point on 70 (resp., 58) of the problems tested.909

Table 6.2
Algorithm 3.1 versus Bazinga on various performance metrics related to solving problem (6.4).

Method Feasible Feasible, Performs a is a is KKT
Better Objective Better Zero Small Found

Algorithm 3.1 71 13 14 76 76 70
Bazinga 67 5 13 55 56 58

We conclude this section by comparing the computational times of Algorithm 3.1910
and Bazinga. Figure 6.1 is a Dolan-Moré performance profile [19] for timings, capped911
at t = 1000. The results show that Algorithm 3.1 (red line) outperforms Bazinga912
(purple line); see [19] for details on interpreting this figure.913

Fig. 6.1. More-Dolen performance profile comparing Algorithm 3.1 and Bazinga in terms of
wall-clock time on the subset of CUTEst test problems discussed in Section 6.2.
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6.3. Sparse canonical correlation analysis (SCCA). We now evaluate the914
performance of Algorithm 3.1 on the SCCA problem [52] formulated as915

(6.7)
min

wx∈Rnx ,wy∈Rny
− wT

x Σxywy + λ(∥wx∥1 + ∥wy∥1)

s.t. wT
x Σxxwx ≤ 1, wT

y Σyywy ≤ 1,
916

where Σxx = XXT and Σyy = Y Y T represent the covariance matrices for data917
matrices X ∈ Rnx×N and Y ∈ Rny×N , respectively, and Σxy = XY T represents the918
cross-covariance matrix between X and Y . Problem (6.7) aims to identify sparse919
weight vectors wx and wy that maximize the correlation between the transformed920
views of X and Y while the variance constraints prevent trivial solutions where the921
weight vectors are arbitrarily scaled to inflate the correlation.922

Following the approach of [13], we generate synthetic data matrices X and Y as923

X =

 e
−e

0

 + ξx

uT and Y =

 0
e
−e

 + ξy

uT ,924

where e ∈ Rnx/8 represents an all-ones vector, ξx ∈ Rnx and ξy ∈ Rny are noise925
vectors with entries sampled from N (0, 0.01), and u ∈ RN is a random vector with926
entries ui ∼ N (0, 1). This construction creates a known ground truth structure: the927
first nx/4 rows of X are correlated with the last ny/4 rows of Y . Consequently, the928
ideal sparse solutions for wx and wy should have non-zero elements confined to the929
first nx/4 and last ny/4 indices, respectively.930

To evaluate the quality of a solution returned by a solver, we compute various931
metrics: the correlation coefficient ρxy, sparsity ratio srx for vector wx, sparsity ratio932
sry for vector wy, overall sparsity ratio sr, variance bound-constraint violations vocx933
and vocy, and sparsity level sl, which are defined as934

ρxy = wT
x Σxywy√

(wT
x Σxxwx)(wT

y Σyywy)
, srx = nx − ∥wx∥0

nx
,935

sry = ny − ∥wy∥0

ny
, sr = (nx + ny)− (∥wx∥0 + ∥wy∥0)

nx + ny
,936

vocx = max
(
wT

x Σxxwx − 1, 0
)
, vocy = max

(
wT

y Σyywy − 1, 0
)
, and937

sl = ∥[wx][nx/4+1:nx]∥0 + ∥[wy][1:3ny/4−1]∥0.938

We consider SCCA test problems of three different sizes with nx = ny = N ∈939
{200, 400, 800} and regularization parameters λ ∈ {10−2, 10−3, 10−4}. For each prob-940
lem instance, the starting point x0 is obtained by solving the generic canonical941
correlation analysis problem (no regularization term) using the CCA class from the942
scikit-learn package. We set the initial proximal parameter as α0 = 10−3. The943
algorithm terminates when one of the conditions detailed in Section 6.1 is satisfied.944

The results in Table 6.3 demonstrate the effectiveness of Algorithm 3.1 on SCCA945
problems. First, the correlation coefficient achieves the maximum possible value on946
every test case. Second, every solution exhibits the correct sparse structure since947
sl = 0. Third, the algorithm produces solutions with varying sparsity levels that948
are controlled by the regularization parameter λ, with higher sparsity ratios achieved949
by larger λ values. Finally, constraint violations are smaller than 10−9. Table 6.4950
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Table 6.3
Performance metrics for Algorithm 3.1 when solving problem (6.7). Time is measured in seconds.

nx = ny λ ρxy srx sry sr sl vocx vocy time

200
10−2 1.0000 99.50% 99.50% 99.50% 0 0 0 76.89
10−3 1.0000 99.50% 99.50% 99.50% 0 0 0 87.36
10−4 1.0000 89.50% 90.00% 89.75% 0 0 1.03e-11 117.14

400
10−2 1.0000 99.75% 99.75% 99.75% 0 1.40e-9 0 128.40
10−3 1.0000 99.50% 99.00% 99.25% 0 9.83e-11 0 348.44
10−4 1.0000 83.50% 82.75% 83.13% 0 9.46e-11 1.67e-10 226.48

800
10−2 1.0000 99.88% 99.88% 99.88% 0 5.86e-9 3.34e-9 279.18
10−3 1.0000 99.63% 99.88% 99.75% 0 6.33e-10 1.81e-9 899.06
10−4 1.0000 96.63% 95.63% 96.13% 0 0 1.47e-10 463.84

Table 6.4
Performance metrics for Bazinga when solving problem (6.7). Time is measured in seconds.

nx = ny λ ρxy srx sry sr sl vocx vocy time

200
10−2 1.0000 99.50% 99.50% 99.50% 0 4.02e-9 3.34e-8 86.10
10−3 1.0000 99.50% 99.50% 99.50% 0 1.96e-8 0 251.97
10−4 1.0000 92.00% 87.50% 89.75% 0 0 0 164.08

400
10−2 1.0000 99.75% 99.75% 99.75% 0 6.62e-9 1.32e-8 556.60
10−3 1.0000 97.50% 97.75% 97.63% 0 0 0 744.31
10−4 1.0000 77.75% 85.00% 81.38% 0 0 0 713.13

800
10−2 1.0000 98.75% 98.38% 98.56% 0 0 2.35e-9 2958.89
10−3 1.0000 88.63% 97.25% 92.94% 0 0 2.00e-8 2789.95
10−4 1.0000 81.38% 78.75% 80.06% 0 6.55e-8 0 2612.26

reports the performance of Bazinga on the same problems. Notably, Algorithm 3.1951
attains sparsity ratios that are at least as high as those of Bazinga (sometimes strictly952
higher), while requiring less computational time.953

7. Conclusion. We presented the first proximal-gradient–type method for reg-954
ularized optimization problems with general nonlinear inequality constraints. Simi-955
lar to the traditional proximal-gradient method, we proved that our approach has a956
convergence result (under an LICQ assumption), a worst-case iteration complexity957
result (under a stronger assumption), as well as a manifold identification property958
and active-set identification property (under standard assumptions).959
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