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Abstract

For solution mappings of parameterized models (such as optimization problems,
variational inequalities, and generalized equations), standard stability (such as
Aubin property) fails to hold as the parameter approaches the boundary of the
feasible domain. A remedy is relative stability restricted to a constraint set (e.g.,
the feasible domain), which is our focus in this paper. We establish generalized
differentiation criteria that characterize stability and strong stability of a solution
mapping relative to a broad class of nonconvex constraint sets. Beyond this class,
we give a counterexample that invalidates all known generalized differentiation
criteria. Applied to generalized equations, our results yield characterizations of
relative stability and relative strong stability of their solution mappings, which
are further explicitly specified for affine variational inequalities. Finally, we prove
a global relative stability criterion, which provides a different perspective on
stability analysis and also generalizes the mean value theorem to set-valued,
non-smooth mappings.
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1 Introduction

For parameterized models arising from optimization, variational inequalities, game
theory and other fields in set-valued and variational analysis, one is interested in
how sensitive the solution set S(p) is to changes in the parameter p. In addition to
theoretical importance, stability analysis also provides a useful guide for practice.
There is a large and ever-growing literature on stability analysis of parameterized
models in optimization and other fields; see, e.g., [1–12]. One prominent model in
applications is that of generalized equations [13] (which includes optimization problems
and variational inequalities as special cases): S(p) := {x ∈ Rn : 0 ∈ f(p, x) +M(x)},
where f : Rm×Rn → Rl is single-valued andM : Rn ⇒ Rl is set-valued. As S is usually
set-valued (due to nonuniqueness of solutions), stability concepts from variational
analysis are employed. One widely used notion is the Aubin property, which was
introduced in [14] as an appropriate generalization of Lipschitz continuity of single-
valued mappings. The Aubin property of the solution mapping S at (p̄, x̄) ∈ gphS :=
{(p, x) : x ∈ S(p)} has been studied extensively by the optimization community.
However, a limitation of this concept is that it implicitly requires the reference point
to be an interior point of the feasible domain domS := {p : S(p) ̸= ∅}: the Aubin
property of S at (p̄, x̄) can hold only if p̄ ∈ int (domS) (see Remark 1 for details). That
is, the Aubin property necessarily fails when p̄ is a boundary point of domS. It turns
out that we need to consider the Aubin property relative to (i.e., restricted to) domS
(see Definition 9) in order to elicit stability in such cases. Moreover, even when p̄ is
an interior point of domS, it can happen that S enjoys the Aubin property only after
restriction to some constraint set Ω ⊂ Rm. Examples illustrating these phenomena
will be given in subsection 5.1 in terms of concrete linear complementarity problems,
an important class of variational inequalities. We also note that relative stability is
useful in applications where explicit constraints of the form p ∈ Ω are imposed.

To recognize relative stability, one needs characterizations (or at least sufficient
conditions) that are more tractable than the definitions. To orient the reader, we
first recall relevant results for standard (i.e., unconstrained) stability. As much as
the Aubin property of S measures the changes of S(p) against those of p, one may
extrapolate, from results in differential calculus, that stability can be characterized by
generalized derivatives. This bold philosophy was amply vindicated in the celebrated
work of Mordukhovich [15] (known as the Mordukhovich criterion) which characterizes
the Aubin property via the coderivative, a generalized derivative widely employed
in variational analysis. It states that a set-valued mapping S : Rn ⇒ Rm, which
is locally closed at (x̄, ȳ) ∈ gphS, has the Aubin property at (x̄, ȳ) if and only if
D∗S(x̄; ȳ)(0) = {0}; moreover, the following equality holds:

lipS(x̄; ȳ) =
∣∣∣D∗S(x̄; ȳ)

∣∣∣+, (1)

where lipS(x̄; ȳ) is the Lipschitz modulus of S at (x̄, ȳ),D∗S(x̄; ȳ) is the coderivative of
S at (x̄, ȳ), and |·|+ is the outer norm. There is another manifestation of the philosophy,
known as the Aubin criterion [16, 17], which utilizes the graphical derivative, also a
commonly employed generalized derivative. It states that (under the same assumption

2



on S)

lipS(x̄; ȳ) = lim sup

(x,y)
gphS−→ (x̄,ȳ)

∣∣∣DS(x; y)
∣∣∣−, (2)

where DS(x; y) is the graphical derivative of S at (x, y) ∈ gphS and | · |− is the inner
norm; thus S has the Aubin property at (x̄, ȳ) if and only if the right-hand side of (2)
is finite. As alluded to above, both criteria are vast generalizations of the following
simple observation: a differentiable function f : R → R is locally Lipschitz continuous
around x̄ if and only if its derivatives are bounded around x̄; moreover, the following
equality holds

lipf(x̄) = lim sup
x→x̄

|f ′(x)|, (3)

where lip f(x̄) := lim sup
x, x′→x̄, x ̸=x′

|f(x)−f(x′)|
|x−x′| is the Lipschitz modulus of f at x̄; if f is con-

tinuously differentiable (or at least strictly differentiable) at x̄, the formula simplifies
to

lipf(x̄) = |f ′(x̄)|. (4)

The concepts of relative stability were introduced in [4, 18–20]. Important results on
relative stability (and, in particular, directional stability) and their applications in
optimization were obtained in [4, 18–26]. However, generalized differentiation criteria
have only emerged recently in a series of works [27–34] where stability properties rela-
tive to a constraint set are characterized in several generalized Mordukhovich criteria
that are based on newly proposed variants of the coderivative. These characterizations
require the constraint set to be either convex [27, 28, 30–34] or a smooth manifold
[29]. This restriction is a potential barrier preventing wider applications of relative
stability since many constraint sets (e.g., domS) are neither convex sets nor smooth
manifolds. A natural question is whether one can establish generalized differentiation
criteria for broader classes of sets or even for all nonconvex sets.

The first contribution of this paper is a nuanced answer to the above question:
geometry of the constraint set plays a vital role in controlling relative stability, unlike
the standard (i.e., unconstrained) setting where generalized differentiation alone con-
trols stability. We construct a nonconvex constraint set for which all known generalized
differentiation criteria for relative stability fail to hold. This suggests that a relative
stability criterion via generalized differentiation might be impossible for arbitrary non-
convex constraint sets, due to their inherent “non-Lipschitzian” nature. Next we show
that for a broad class of nonconvex constraint sets which is introduced here and called
paratingentially Lipschitzian sets, relative stability criteria via generalized differentia-
tion can be established. This class includes not only convex sets and smooth manifolds
(the only constraint sets allowed in previous work [27, 29, 31–34]), but also many
more nonconvex sets such as prox-regular sets, o(1)-convex sets, and constraint sets
for which Mangasarian-Fromovitz constraint qualification (or more generally Robin-
son’s constraint qualification) holds. Thus we have made progress towards the precise
demarcation of those constraint sets for which generalized differentiation criteria hold.
Our results have some other differences from previous ones. The first is the use of
graphical derivative in addition to variants of coderivative that have been employed in
previous works [27, 29, 31–34]. We establish a generalized Aubin criterion: a graphical
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derivative characterization of the relative Aubin property, extending (2) in the uncon-
strained setting [16, 17]. A potential advantage in the use of graphical derivative is
that no new generalized derivative is needed whereas previous work rely on such new
concepts as projectional coderivative [27, 29], contingent coderivative [32], conic con-
tingent coderivative [31], and reduced coderivative1 [33, 34]; therefore in our approach
calculations and calculus rules for graphical derivative available in the literature can
be directly leveraged in the study of relative stability. Another difference is a norm
equality between graphical derivative and the projectional coderivative defined in [27],
via which we extend the generalized Mordukhovich criterion in [27] (for convex sets)
to the broader class of paratingentially Lipschitzian sets. This equality also guarantees
that any progress on stability criteria based on graphical derivative will automatically
translate to progress based on projectional coderivative, and vice versa.

As the second contribution of this paper, we introduce a relative version of the
strong Aubin property (where “strong” indicates existence of single-valued local-
ization) and characterize it via the strict graphical derivative for the class of
paratingentially Lipschitzian constraint sets. To the best of our knowledge, such
generalized differentiation characterizations of strong stability relative to a general
constraint set are not available in the literature.

The third contribution of this paper consists of applications of the obtained relative
stability criteria to solution mappings of generalized equations. We first demonstrate
the necessity and usefulness of relative stability through some simple but illustrative
examples taken from linear complementarity problems. We then establish character-
izations of relative stability and relative strong stability for solution mappings of
generalized equations. Our characterizations can be explicitly determined for affine
variational inequalities. Specifically, we obtain a “generalized critical face condition”,
which is necessary and sufficient for the Aubin property of solution mappings of affine
variational inequalities relative to a paratingentially Lipschitzian domain, extending
previous works in the unconstrained setting [6] and the convex domain setting [28].
Moreover, we obtain a “strict generalized critical face condition” for the strong Aubin
property relative to a paratingentially Lipschitzian domain. The “strict” condition is
genuinely different from the “non-strict” condition, since relative stability and relative
strong stability for affine variational inequalities are not equivalent [28, Example 4.8],
whereas standard stability and standard strong stability for affine variational inequal-
ities are equivalent [6, Theorem 1]. Thus our “strict” condition for the relative strong
stability of affine variational inequalities addresses a gap in the literature.

To motivate the fourth contribution of this paper, we observe that the Mor-
dukhovich/Aubin criterion can be regarded as a “localized” mean value theorem for
set-valued mappings. To make this analogy explicit, recall the Lagrange mean value
theorem, which states that for a differentiable real-valued function f : R → R, for any
a, b ∈ R with a ̸= b, there exists x ∈ (a, b) such that

f(a)− f(b) = f ′(x)(a− b), i.e.,
f(a)− f(b)

a− b
= f ′(x).

1We use this terminology to differentiate this notion from other variants of coderivative. In [33, 34] the
“reduced coderivative” is called “the coderivative relative to Ω” where Ω is the constraint set.
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However, the mean value theorem in the above form does not hold for vector-valued
maps (see [35, 5.3.2] for a simple counterexample). Instead a weaker inequality form
of the mean value theorem remains valid for any differentiable map f : Rn → Rm. It
states that (see, e.g., [36, 8.5.2]) for any a, b ∈ Rn with a ̸= b,

∥f(a)− f(b)∥
∥a− b∥

≤ sup
x∈[a,b]

∥f ′(x)∥, (5)

where [a, b] := {θa + (1 − θ)b ∈ Rn : θ ∈ [0, 1]} and ∥f ′(x)∥ is the operator norm
of f ′(x) as a linear map. So the mean value theorem provides a bound for the global
Lipschitz constant of f via norms of derivatives of f . Comparing (1)-(5), it is clear
that the Mordukhovich criterion (1) and the Aubin criterion (2) can be regarded as
limiting/localized “mean value theorems” for set-valued mappings. This leads us to
the question: is there a “global” version of the Mordukhovich/Aubin criterion that is
an analogue of the mean value theorem (5)? The fourth contribution of this paper is an
affirmative answer to this question: we prove that, under appropriate assumptions, the
relative inner norms of graphical derivatives provide a bound for the global Lipschitz
constant (measured in Hausdorff distance) of a set-valued mapping relative to a convex
constraint set (Theorem 16): for S : Rn ⇒ Rm, for a, b ∈ Ω ⊂ domS with a ̸= b and
Ω convex,

h(S(a), S(b))

∥a− b∥
≤ sup

x∈[a,b], y∈S(x)

∣∣∣DS|[a,b](x; y)
∣∣∣−
T[a,b](x)

, (6)

where h is the Hausdorff distance. As far as we know, a result of this type is new. It
hints at a different perspective in stability analysis that emphasizes the global aspect
(in addition to the standard local aspect) and offers a potentially useful tool in that
regard.

The rest of the paper are organized as follows. In Section 2, we recall preliminaries
from variational analysis. In Section 3, we introduce paratingentially Lipschitzian sets
and establish generalized differentiation criteria for relative stability with respect to
this class of constraint sets. In Section 4, we characterize relative strong stability using
strict graphical derivative. In Section 5, we apply our results to generalized equations
and affine variational inequalities. In Section 6, we establish a global Aubin criterion.
Finally we conclude the paper in Section 7.

Notation. Throughout the paper we denote by X,Y, Z,W finite-dimensional real
Hilbert spaces. For a cone K, we write K∗ for its polar cone.

2 Preliminaries

Definition 1 (Tangent Cone) The tangent cone (or contingent cone) to Ω ⊂ X at x̄ ∈ Ω is

TΩ(x̄) := {w ∈ X : ∃tk ↓ 0, ∃xk Ω→ x̄ such that wk := xk−x̄
tk

→ w}, where xk
Ω→ x̄ indicates

that xk → x̄ with xk ∈ Ω.

Definition 2 (Paratingent Cone, [16, Definition 4.5.4]) The paratingent cone to Ω ⊂ X at

x̄ ∈ Ω is T p
Ω(x̄) := {w ∈ X : ∃tk ↓ 0, ∃xk, x′k Ω→ x̄ such that wk := xk−x′k

tk
→ w}. Clearly
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TΩ(x̄) ⊂ T p
Ω(x̄). By [16, Proposition 4.5.6], the paratingent cone mapping T p

Ω(·) is outer
semicontinuous: for all x̄ ∈ Ω, lim sup

x
Ω→x̄

T p
Ω(x) = T p

Ω(x̄). We remark that the standard notation

is PΩ(x̄) instead of T p
Ω(x̄). In this paper we have avoided using PΩ(x̄) due to its potential

confusion with the projection operator.

Definition 3 (Graphical Derivative) For a set-valued mapping F : X ⇒ Y with graph
gphF := {(x, y) ∈ X × Y : y ∈ F (x)}, its graphical derivative at (x̄, ȳ) ∈ gphF is
DF (x̄; ȳ)(u) := {v ∈ Y : (u, v) ∈ TgphF (x̄, ȳ)} for u ∈ X.

Definition 4 (Strict Graphical Derivative, [16, Section 5.3]) For a set-valued mapping F :
X ⇒ Y , its strict graphical derivative (also called paratingent derivative) at (x̄, ȳ) ∈ gphF
is D∗F (x̄; ȳ)(u) := {v ∈ Y : (u, v) ∈ T p

gphF (x̄, ȳ)} for u ∈ X.

Definition 5 (Normal Cone) The regular normal cone to Ω ⊂ X at x̄ ∈ Ω is N̂Ω(x̄) :=
{
v ∈

X : lim sup
x

Ω→x̄

⟨v,x−x̄⟩
∥x−x̄∥ ≤ 0

}
= TΩ(x̄)

∗. The (Mordukhovich/limiting) normal cone to Ω at

x̄ ∈ Ω is NΩ(x̄) := lim sup
x

Ω→x̄
N̂Ω(x) = {v ∈ X : ∃xk Ω→ x̄,∃vk ∈ N̂Ω(x

k) such that vk →
v}.

Definition 6 (Coderivative) Let F : X ⇒ Y be a set-valued mapping. The regular coderiva-

tive and the (Mordukhovich/limiting) coderivative of F at (x̄, ȳ) ∈ gphF are D̂∗F (x̄; ȳ)(v) :=

{u ∈ X : (u,−v) ∈ N̂gphF (x̄, ȳ)} and D∗F (x̄; ȳ)(v) := {u ∈ X : (u,−v) ∈ NgphF (x̄, ȳ)} for
v ∈ Y .

Definition 7 (Projectional Coderivative, [27]) The projectional coderivative of F : X ⇒ Y
relative to Ω at (x̄, ȳ) ∈ gphF |Ω is the mapping D∗

Ω,projF (x̄; ȳ) : Y ⇒ X defined by

u ∈ D∗
Ω,projF (x̄; ȳ)(v) ⇐⇒ (u,−v) ∈ lim sup

(x,y)
gphF |Ω−→ (x̄,ȳ)

projTΩ(x)×Y NgphF |Ω(x,y), (7)

where projTΩ(x)×Y is projection onto TΩ(x)× Y .

Definition 8 (Inner and Outer Norms) Let H : X ⇒ Y be positively homogeneous (i.e.,
its graph is a cone). The inner norm of H is |H|− := supx∈B infy∈H(x) ∥y∥, where B is the

closed unit ball in X. Note that |H|−A = ∞ if H(x) = ∅ for some x ∈ B. The outer norm of

H is |H|+ := supx∈B supy∈H(x) ∥y∥.

For Ω ⊂ X, S|Ω : X ⇒ Y is defined by S|Ω(x) := S(x) if x ∈ Ω and S|Ω(x) := ∅ if
x /∈ Ω. The following definition is taken from [4, Definition 9.36].

Definition 9 (Relative Aubin Property) Let S : X ⇒ Y be a set-valued mapping and
Ω a subset of X. We say that S : X ⇒ Y has the Aubin property relative to Ω around
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(x̄, ȳ) ∈ gphS|Ω, if S|Ω is locally closed at (x̄, ȳ) and there exist a constant l ≥ 0 and
neighborhoods V of x̄ and W of ȳ, such that

∀x, x′ ∈ V ∩ Ω, S(x′) ∩W ⊂ S(x) + l∥x′ − x∥B, (8)

where B is the closed unit ball in X. The Lipschitz modulus of S relative to Ω at (x̄, ȳ)
is defined to be infimum over all such l: lipΩS(x̄; ȳ) := inf{l ≥ 0 : ∃V ∈ N (x̄), ∃W ∈
N (ȳ), ∀x, x′ ∈ Ω∩V, S(x′)∩W ⊂ S(x)+ l∥x′ −x∥B}, where N (x̄) (resp. N (ȳ)) is the family
of neighborhoods of x̄ (resp. ȳ). Note that lipΩS(x̄; ȳ) = ∞ means that no such l exists.

The standard Aubin property corresponds to the case Ω = X. Explicitly, S : X ⇒ Y
is said to have the Aubin property (also called pseudo-Lipschitz property or Lipschitz-like
property) around (x̄, ȳ) ∈ gphS, if S is locally closed at (x̄, ȳ) and there exist a constant
l ≥ 0 and neighborhoods V of x̄ and W of ȳ, such that

∀x, x′ ∈ V, S(x′) ∩W ⊂ S(x) + l∥x′ − x∥B. (9)

The following definition is taken from [32, Theorem 3.11, (b)].

Definition 10 (Relative Metric Regularity) A set-valued mapping F : Y ⇒ X is said to be
metrically regular relative to Θ ⊂ Y and Ω ⊂ X at (ȳ, x̄) ∈ gphF , where ȳ ∈ Θ and x̄ ∈ Ω,
if gphF ∩ (Θ × Ω) is locally closed at (ȳ, x̄) and there exist κ ≥ 0 and neighborhoods W of
ȳ and V of x̄ such that

∀ y ∈ W ∩Θ, ∀x ∈ V ∩ Ω, d(y, F−1(x) ∩Θ) ≤ κ d(x, F (y) ∩ Ω). (10)

The infimum over all such κ is called the metric regularity modulus of F relative to Θ ⊂ Y
and Ω ⊂ X at (ȳ, x̄) and denoted by regΘ,ΩF (ȳ; x̄).

The standard metric regularity corresponds to the case Θ = Y and Ω = X. Explicitly,
F : Y ⇒ X is said to be metrically regular at (ȳ, x̄) ∈ gphF , if gphF is locally closed at
(ȳ, x̄) and there exist κ ≥ 0 and neighborhoods W of ȳ and V of x̄ such that

∀ y ∈ W, ∀x ∈ V, d(y, F−1(x)) ≤ κ d(x, F (y)). (11)

The proposition below, taken from [32, Theorem 3.11], establishes the equivalence
between relative metric regularity and relative Aubin property.

Proposition 1 F : Y ⇒ X is metrically regular relative to Θ ⊂ Y and Ω ⊂ X at
(ȳ, x̄) ∈ gphF , where ȳ ∈ Θ and x̄ ∈ Ω, if and only if F−1|Θ := F−1 ∩ Θ : X ⇒
Y, x 7→ F−1|Θ(x) := F−1(x) ∩ Θ has the Aubin property relative to Ω at (x̄, ȳ). Moreover,
regΘ,ΩF (ȳ; x̄) = lipΩF

−1|Θ(x̄; ȳ). In particular, when Θ = Y and Ω = X, F is metrically

regular at (ȳ, x̄) if and only if F−1 has the Aubin property at (x̄, ȳ).

Definition 11 (Strong Metric Regularity and Strong Aubin Property) F : Y ⇒ X is said to
be strongly metrically regular at (ȳ, x̄) ∈ gphF , if F is metrically regular at (ȳ, x̄) and F−1

has a localization at (x̄, ȳ) that is single-valued around x̄, i.e., there exist neighborhoods V
of x̄ and W of ȳ such that for all x ∈ V , F−1(x) ∩ W is a singleton.. This terminology is
standard [3].

S : X ⇒ Y is said to have the strong Aubin property at (x̄, ȳ) ∈ gphS, if it has the
Aubin property at (x̄, ȳ) and has a localization at (x̄, ȳ) that is single-valued around x̄, i.e.,
there exist neighborhoods V of x̄ and W of ȳ such that for all x ∈ V , S(x)∩W is a singleton.
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This is not standard terminology but it parallels the standard terminology of “strong metric
regularity”. Indeed, it follows from Proposition 1 that strong Aubin property of S at (x̄, ȳ)
is equivalent to strong metric regularity of S−1 at (ȳ, x̄).

One version of the Ekeland variational principle is given below.

Theorem 2 (Ekeland Variational Principle, [3, Theorem 4B.5]) Let (E, ρ) be a complete
metric space and f : E → (−∞,∞] a lower semicontinuous function that is bounded from
below. Let ū ∈ domf . Then for every δ > 0, there exists uδ ∈ E such that f(uδ) ≤ f(ū) −
δρ(uδ, ū) and f(u) > f(uδ)− δρ(u, uδ) for every u ̸= uδ.

The following result in general topology is needed later.

Theorem 3 (Continuity and Closedness, [37, Section 26, Exercise 8]) Let X be a topological
space and Y a compact Hausdorff space. Then f : X → Y is continuous if and only if its
graph is closed in X × Y .

3 Criterion for Relative Stability

In this section we establish generalized differentiation characterizations of the relative
Aubin property.

3.1 Definition

We introduce the following notion which is used extensively in what follows.

Definition 12 (Relative Inner Norm) Let H : X ⇒ Y be positively homogeneous and A a
subset of X. The inner norm of H relative to A is |H|−A := supx∈A∩B infy∈H(x) ∥y∥, where B
is the closed unit ball in X. By convention, we define |H|−A := 0 if A ∩ B = ∅. When A = X,

|H|−X = |H|− is the inner norm of H. Note that if H(x) = ∅ for some x ∈ A ∩ B, then
|H|−A = ∞.

We first prove a simple lemma that is needed later.

Lemma 4 (Local Nonemptiness) Consider S : X ⇒ Y and Ω ⊂ X. Suppose that S has the
Aubin property relative to Ω at (x̄, ȳ) ∈ gphS|Ω. Then there are neighborhoods V of x̄ and
W of ȳ such that S(x) ∩W ̸= ∅ for all x ∈ Ω ∩ V .

Proof By definition, S is locally closed at (x̄, ȳ) and there exist a constant l ≥ 0 and neigh-
borhoods V of x̄ and W of ȳ, such that for all x, x′ ∈ Ω∩ V , S(x′)∩W ⊂ S(x) + l∥x′ − x∥B.
Taking x′ = x̄ ∈ Ω ∩ V and ȳ ∈ S(x̄) ∩W , we get, for all x ∈ Ω ∩ V , ȳ ∈ S(x) + l∥x− x̄∥B.
This means that for all x ∈ Ω ∩ V , S(x) ∩ (ȳ + l∥x − x̄∥B) ̸= ∅. Take Ṽ := x̄ + ϵB
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where ϵ > 0 is small so that Ṽ ⊂ V and ȳ + lϵB ⊂ W . Then for all x ∈ Ω ∩ Ṽ , we get
S(x) ∩W ⊃ S(x) ∩ (ȳ + lϵB) ⊃ S(x) ∩ (ȳ + l∥x− x̄∥B) ̸= ∅. □

Remark 1 If we take Ω = X in Lemma 4, we see that S having Aubin property at (x̄, ȳ)
implies that x̄ is an interior point of domS := {x ∈ X : S(x) ̸= ∅}. On the other hand, when
Ω is not the entire space X, S can have Aubin property relative to Ω at (x̄, ȳ) even if x̄ lies
on the boundary of domS. This observation also reveals the difference between S having the
Aubin property relative to Ω and S|Ω having the standard Aubin property, with the latter
being strictly stronger than the former. The capacity of dealing with boundary points in the
domain leads to broader applicability of the relative Aubin property, as will be illustrated in
Example 7.

3.2 Necessary Condition

We first give a necessary condition for the relative Aubin property.

Theorem 5 (Necessary Condition for Relative Aubin Property) Let S : X ⇒ Y be a set-
valued mapping and Ω ⊂ X a nonempty set. Suppose that S|Ω is locally closed at (x̄, ȳ) ∈
gphS|Ω. Then one has

lipΩ S(x̄; ȳ) ≥ lim sup

(x,y)
gphS|Ω−→ (x̄,ȳ)

∣∣∣DS|Ω(x; y)
∣∣∣−
TΩ(x)

. (12)

Consequently, if S has the Aubin property at (x̄, ȳ) relative to Ω (which means that

lipΩ S(x̄; ȳ) < ∞), then lim sup

(x,y)
gphS|Ω−→ (x̄,ȳ)

∣∣∣DS|Ω(x; y)
∣∣∣−
TΩ(x)

< ∞, i.e., the relative inner norms

(restricted to tangent cones of Ω) of the graphical derivatives of S|Ω around (x̄, ȳ) are bounded.

Proof Let lS and cDS denote the left- and right-hand sides of (12), respectively. We need to
show that lS ≥ cDS . When lS = ∞, this trivially holds. When lS < ∞, i.e., S has the Aubin
property relative to Ω at (x̄, ȳ), there exists l ∈ [lS ,∞) such that there are neighborhoods V
of x̄ and W of ȳ such that for all x, x′ ∈ Ω ∩ V ,

S(x) ∩W ⊂ S(x′) + l∥x− x′∥B. (13)

By Lemma 4 we can choose V in such a way that S(x) ∩W is nonempty for all x ∈ Ω ∩ V .

For any x ∈ Ω ∩ V and any u ∈ TΩ(x) ∩ B, by definition, there are xk
Ω→ x and τk ↓ 0 such

that xk−x
τk → u as k → ∞. For each y ∈ S(x)∩W , substituting x′ = xk (for all large k) into

(13) gives us some yk ∈ S(xk) such that ∥yk − y∥ ≤ l∥xk −x∥. Dividing the above inequality
by τk, we get ∥∥∥∥∥yk − y

τk

∥∥∥∥∥ ≤ l

∥∥∥∥∥xk − x

τk

∥∥∥∥∥ . (14)

Since the right hand side converges (to u ∈ TΩ(x) ∩ B), the left hand side is bounded and

we can therefore take a convergent subsequence vki := yki−y
τki

→ v. By the definition of
u and v, we see that (u, v) ∈ TgphS|Ω(x; y). Taking limits (with respect to the convergent
subsequence) in (14), we get ∥v∥ ≤ l∥u∥ ≤ l (since u ∈ B). So we have shown that for all

9



x ∈ Ω ∩ V , for all y ∈ S(x) ∩ W , for all u ∈ TΩ(x) ∩ B, there exists v ∈ DS|Ω(x; y)(u),
such that ∥v∥ ≤ l. By the definition of relative inner norm (Definition 12), this means that∣∣DS|Ω(x; y)

∣∣−
TΩ(x)

≤ l. Taking limit superior over (x, y) ∈ gphS|Ω on the left hand side gives

us lim sup
(x,y)

gphS|Ω−→ (x̄,ȳ)

∣∣DS|Ω(x; y)
∣∣−
TΩ(x)

≤ l. Since the above inequality holds for all Lip-

schitz constants l of S at (x̄, ȳ), we conclude that lim sup
(x,y)

gphS|Ω−→ (x̄,ȳ)

∣∣∣DS|Ω(x; y)
∣∣∣−
TΩ(x)

≤

lipΩ S(x̄; ȳ). □

The inequality (12) provides a necessary condition for the relative Aubin property.
We will show that a reverse inequality (up to some constant factors) holds when the
constraint set Ω belongs to a class of sets which include convex sets, smooth manifolds,
prox-regular sets, o(1)-convex sets and many more. So for such constraint sets (which
we will call paratingentially Lipschitzian sets), we can obtain complete characterization
of relative Aubin property.

3.3 Counterexample

Before delving into cases where complete characterization is possible, we first show
that when Ω is an arbitrary nonconvex set, the reverse of inequality (12) may fail com-
pletely, in the sense that boundedness of relative inner norms of graphical derivatives
does not guarantee relative Aubin property. We present a simple example below. We
also prove that all generalized differentiation criteria for relative Aubin property that
we have identified in the literature fail for this example.

Example 1 (Failure of Generalized Mordukhovich/Aubin Criteria) Consider the constraint
set Ω := {(x1, x2) ∈ R2 : x1 ≥ 0;x2 = x21 or x2 = −x21} and the parameterized optimization
problem: for each x ∈ R2, define

(Px) min
y∈R

1

2
(y − sgn(x2)∥x∥)2, (15)

where sgn is the sign function and ∥ · ∥ is the ℓ2-norm. Let S : R2 ⇒ R be the solution
mapping. Then

S|Ω(x) := argminPx =



{√
x21 + x22

}
, if x2 = x21, x1 ≥ 0,{

−
√

x21 + x22

}
, if x2 = −x21, x1 ≥ 0,

∅, otherwise.

(16)

Clearly (0, 0) ∈ gphS|Ω (where 0 = (0, 0) ∈ R2) and S|Ω is locally closed at (0, 0). Write
(x̄, ȳ) := (0, 0) ∈ R2 × R. We will prove the following assertions.

(i) lipΩ S(x̄; ȳ) = ∞, i.e., S does not have the Aubin property relative to Ω at (x̄, ȳ) :=
(0, 0).

(ii) lim sup

(x,y)
gphS|Ω−→ (x̄,ȳ)

∣∣∣DS|Ω(x; y)
∣∣∣−
TΩ(x)

< ∞. This means that the generalized Aubin crite-

rion (Theorem 7) proposed in this paper (for a class of sets including convex sets, smooth
manifolds, and prox-regular sets) does not hold for this example.
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(iii)
∣∣∣D∗

Ω,projS(x̄; ȳ)
∣∣∣+ < ∞, where the subscript “proj” indicates that D∗

Ω,proj refers to

the projectional coderivative defined in [27]. This means that the generalized Mordukhovich
criterion of [27, Theorem 2.4] (for closed convex sets) and [29, Theorem 4.3] (for smooth
manifolds) does not hold for this example.

(iv)
∣∣∣D∗

Ω,contS(x̄; ȳ)
∣∣∣+ < ∞, where the subscript “cont” indicates that D∗

Ω,cont refers to

the contingent coderivative defined in [32]. This means that the generalized Mordukhovich
criterion of [32, Theorem 3.6] (for closed convex sets) does not hold for this example.

(v)
∣∣∣Dc∗

Ω S(x̄; ȳ)
∣∣∣+ < ∞, where Dc∗

Ω is the conic contingent coderivative defined in [31].

This means that the generalized Mordukhovich criterion of [31, Theorem 4.5] (for closed
convex sets) does not hold for this example.

(vi)
∣∣∣D∗

Ω,redS(x̄; ȳ)
∣∣∣+ < ∞, where the subscript “red” indicates that D∗

Ω,red refers to the

reduced coderivative defined in [33]. This means that the generalized Mordukhovich criterion
of [33, Theorem 3] (for closed convex sets) does not hold for this example.

We now prove the above assertions.
(1) We first prove claim (i). For x = (x1, x

2
1) ∈ Ω and x′ = (x1,−x21) ∈ Ω, we have

|S(x)−S(x′)|
∥x−x′∥ =

2
√

x2
1+x4

1

2x2
1

=
√

1
x2
1
+ 1, which goes to infinity as x1 → 0. This shows that

lipΩS(0; 0) = ∞.
(2) The tangent cone of Ω at x = (x1, x2) ∈ Ω is computed as follows:

TΩ(x) =


{(u1, u2) ∈ R2 : u2 = 2x1u1}, if x2 = x21, x1 > 0,

{(u1, u2) ∈ R2 : u2 = −2x1u1}, if x2 = −x21, x1 > 0,

{(u1, 0) ∈ R2 : u1 ≥ 0}, if x1 = x2 = 0.

(17)

(3) The graphical derivatives of S|Ω are computed as follows.
At (0; 0) ∈ R3, we have

DS|Ω(0; 0)(u) = DS|Ω(0; 0)(u1, u2) =

{
{u1,−u1}, if u ∈ TΩ(0),

∅, otherwise.
(18)

If x2 = x21 and x1 > 0, we have for y = S(x) = S(x1, x2),

DS|Ω(x; y)(u) =


(
√

1 + x21 +
x21√
1 + x21

)u1, if u ∈ TΩ(x),

∅, otherwise.

(19)

If x2 = −x21 and x1 > 0, we have for y = S(x) = S(x1, x2),

DS|Ω(x; y)(u) =


−(

√
1 + x21 +

x21√
1 + x21

)u1, if u ∈ TΩ(x),

∅, otherwise.

(20)

Then we have lim sup

(x,y)
gphS|Ω−→ (0,0)

∣∣∣DS|Ω(x; y)
∣∣∣−
TΩ(x)

= 1 < ∞ and claim (ii) follows.
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(4) The normal cone of gphS|Ω at (x, y) ∈ gphS|Ω is computed as follows.

NgphS|Ω(x, y) = NgphS|Ω(x, S(x)) =

{(u1, u2, v) : u1 + 2x1u2 + (
√

1 + x21 +
x21√
1 + x21

)v = 0}, x2 = x21, x1 > 0,

{(u1, u2, v) : u1 − 2x1u2 − (
√

1 + x21 +
x21√
1 + x21

)v = 0}, x2 = −x21, x1 > 0,

{(u1, u2, v) : u1 ≤ 0, u1 ≤ v ≤ −u1} ∪ {(u1, u2, v) ∈ R3 : v = ±u1}, x1 = x2 = 0.

(5) The projection (onto the tangent cone of Ω) of the normal cone of gphS|Ω at (x, y) ∈
gphS|Ω is computed as follows.

ProjTΩ(x)×R NgphS|Ω(x, y) = ProjTΩ(x)×R NgphS|Ω(x, S(x)) =

{(u1, u2, v) : u1 + 2x1u2 + (
√

1 + x21 +
x21√
1 + x21

)v = 0, u2 = 2x1u1}, x2 = x21,

{(u1, u2, v) : u1 − 2x1u2 − (
√

1 + x21 +
x21√
1 + x21

)v = 0, u2 = −2x1u1}, x2 = −x21,

{(u1, 0, v) : u1 = 0} ∪ {(u1, 0, v) ∈ R3 : u1 ≥ 0, v = ±u1}, x1 = x2 = 0.

From these we can obtain the projectional coderivative [27, Definition 2.2] as follows:

D∗
Ω,projS(0; 0)(v) = {(0, 0), (v, 0), (−v, 0)}. (21)

Then D∗
Ω,projS(0; 0)(0) = {0} and |D∗

Ω,projS(0; 0)|
+ = 1 < ∞. This proves claim (iii).

(6) The intersection (with the tangent cone of Ω) of the normal cone of gphS|Ω at
(x, y) ∈ gphS|Ω is computed as follows.

NgphS|Ω(x, y) ∩ (TΩ(x)× R) = NgphS|Ω(x, S(x)) ∩ (TΩ(x)× R) =

{(u1, u2, v) : u1 + 2x1u2 + (
√

1 + x21 +
x21√
1 + x21

)v = 0, u2 = 2x1u1}, x2 = x21,

{(u1, u2, v) : u1 − 2x1u2 − (
√

1 + x21 +
x21√
1 + x21

)v = 0, u2 = −2x1u1}, x2 = −x21,

{(u1, 0, v) : u1 ≥ 0, v = ±u1}, x1 = x2 = 0.

From these we can obtain the contingent coderivative [32, Definition 2.4] as follows:

D∗
Ω,contS(0; 0)(v) = {(v, 0), (−v, 0)}. (22)

Then D∗
Ω,contS(0; 0)(0) = {0} and |D∗

Ω,projS(0; 0)|
+ = 1 < ∞. This proves claim (iv).

(7) By [31, Lemma 4.3], Dc∗
Ω S(0; 0) = D∗

Ω,contS(0; 0). Then claim (v) follows from the
above calculation.

(8) The reduced proximal normal cone with respect to Ω of gphS = gphS|Ω at (x, y) ∈
gphS|Ω is computed as follows. First note that the reduced cone (see [33, p. 4] for the
definition) RΩ×R(x, S(x)) of Ω × R at (x, S(x)) is {(0, 0)} × R. By [33, Proposition 1, (ii)],
we have

Np,Ω
gphS|Ω(x, y) = Np,Ω

gphS|Ω(x, S(x)) = Np
gphS|Ω(x, S(x)) ∩RΩ×R(x, S(x)) =

{(0, 0, 0)}, x2 = x21, x1 > 0,

{(0, 0, 0)}, x2 = −x21, x1 > 0,

{(0, 0, 0)}, x1 = x2 = 0.
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From these we can obtain the reduced coderivative [33, Definition 5, Definition 6] as follows:

D∗
Ω,redS(0; 0)(v) =

{
{0}, v = 0,

∅, v ̸= 0.

Then D∗
Ω,redS(0; 0)(0) = {0} and |D∗

Ω,redS(0; 0)|
+ = 0 < ∞. This proves claim (vi).

Remark 2 Example 1 shows that the geometry of Ω may cause the distance between S(x)
and S(x′) to be very large relative to the distance between x and x′, even when the rate of
change of S is moderate (as measured by the norm of its derivative along Ω). Intuitively, this
is due to the feature that as x and x′ approach x̄, the “intrinsic distance” between x and x′

measured within Ω can be much larger than the “extrinsic distance” ∥x− x′∥ between x and
x′ measured in the entire space X.

3.4 Complete Characterization

A perusal of the geometry of Ω in Example 1 suggests to us the definition of a class of
sets for which the “non-Lipschitzian” phenomenon explained in Remark 2 could not
occur. Before presenting the definition though, we mention a technicality concerning
projection onto a tangent cone.

For a set Ω ⊂ X and for x̄ ∈ Ω, the tangent cone TΩ(x̄) is always a closed cone, but
not necessarily convex. Therefore the projection operator ProjTΩ(x̄)(·) is not single-
valued in general. But it can be shown that for any v ∈ X, all elements in ProjTΩ(x̄)(v)
have the same norm, so that ∥ProjTΩ(x̄)(v)∥ is always well-defined. We record this fact
in the following lemma.

Lemma 6 ( Projection onto Tangent Cone) Let x̄ ∈ Ω ⊂ X. For any v ∈ X,
(i) all elements in ProjTΩ(x̄)(v) have the same norm.
(ii) ∥ProjTΩ(x̄)(v)∥ ≤ ∥v∥.
(iii) ⟨u, v − u⟩ = 0 for any u ∈ ProjTΩ(x̄)(v).

Proof We consider two cases: 0 ∈ ProjTΩ(x̄)(v) and 0 /∈ ProjTΩ(x̄)(v).
If 0 ∈ ProjTΩ(x̄)(v), then we can show that ProjTΩ(x̄)(v) = {0}. To see this, suppose on the

contrary that there exists u ∈ ProjTΩ(x̄)(v) with u ̸= 0. Clearly the ray Ru := {λu : λ ≥ 0}
is contained in TΩ(x̄). Then we would have u ∈ ProjRu

(v) and 0 ∈ ProjRu
(v), a contradiction

since Ru is a closed convex set and ProjRu
(·) is single-valued.

Consider then the case 0 /∈ ProjTΩ(x̄)(v). For any u, u′ ∈ ProjTΩ(x̄)(v), let Ru, Ru′ be the

corresponding rays. Then ProjRu
(v) = u and ProjRu′ (v) = u′. This implies that ⟨v, u⟩ > 0

and ⟨v, u′⟩ > 0 since otherwise we would have ProjRu
(v) = ProjRu′ (v) = 0. Then we have

∥u∥ = ∥ProjRu
(v)∥ =

√
∥v∥2 − ∥v − u∥2 and ∥u′∥ = ∥ProjRu′ (v)∥ =

√
∥v∥2 − ∥v − u′∥2.

Since ∥v−u∥ = ∥v−u′∥ = inf
w∈TΩ(x̄)

∥v−w∥ by definition of the projection operator, we have

∥u∥ = ∥u′∥.
Statements (ii) and (iii) also follow from the above discussion. □
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Definition 13 (Paratingentially Lipschitzian Sets) A set Ω ⊂ X is called paratingentially
Lipschitzian at x̄ ∈ Ω if there exist κ ≥ 0 and a neighborhood V of x̄, such that for all
x, x′ ∈ Ω ∩ V ,

∥x′ − x∥ ≤ κ ∥ProjTΩ(x)(x
′ − x)∥. (23)

The infimum of such κ is written PLipΩ(x̄) and called the paratingential Lipschitz modulus
of Ω at x̄. When x̄ is an isolated point of Ω, PLipΩ(x̄) = 0; otherwise PLipΩ(x̄) ≥ 1 always
holds (by Lemma 6, (ii)). If PLipΩ(x̄) = 1, Ω is called strongly paratingentially Lipschitzian
at x̄.

Remark 3 By Lemma 6, Ω is paratingentially Lipschitzian at a non-isolated point x̄ ∈ Ω if
and only if there exist a θ ∈ [0, 1) and a neighborhood V of x̄, such that for all x, x′ ∈ Ω∩V ,

dTΩ(x)(x
′ − x) ≤ θ∥x′ − x∥, (24)

where dC(v) is the distance from v ∈ X to C ⊂ X. The constants θ ∈ [0, 1) in (24) and

κ ∈ [1,∞) in (23) are related by θ =
√

1− 1
κ2 .

Definition 13 encompasses a fairly large class of nonconvex sets.

Example 2 (Convex Sets Are Paratingentially Lipschitzian) By definition, a convex set Ω ⊂ X
is strongly paratingentially Lipschitzian everywhere.

Example 3 (Smooth Manifolds Are Paratingentially Lipschitzian) By [29, Proposition 3.2,
(c)], one can show that a smooth submanifold Ω ⊂ X (for the precise definition, we refer the
reader to [4, Example 6.8]) is strongly paratingentially Lipschitzian everywhere.

Example 4 (Prox-Regular Sets Are Paratingentially Lipschitzian) A closed set Ω ⊂ X is
called prox-regular at x̄ ∈ Ω [38, Proposition 1.2], if there exist ρ > 0 and ϵ > 0 such that
for all x ∈ Ω with ∥x− x̄∥ < ϵ, all v ∈ NΩ(x) with ∥v∥ < ϵ, and all x′ ∈ Ω with ∥x′ − x̄∥ < ϵ,
one has ⟨v, x′ − x⟩ ≤ ρ∥x′ − x∥2. By [38, Theorem 1.3], a closed set Ω is prox-regular at x̄
if and only if it has the Shapiro property at x̄ [39]: there exist c > 0 and a neighborhood V
of x̄ such that for all x, x′ ∈ Ω ∩ V , one has dTΩ(x)(x

′ − x) ≤ c∥x′ − x∥2. Comparing this
with (24), we see that if Ω is prox-regular at x̄ (i.e., has the Shapiro property at x̄), then it is
strongly paratingentially Lipschitzian at x̄. Examples of prox-regular sets [40] include convex
sets, smooth manifolds, weakly convex sets [41], proximally smooth sets [42], and strongly
amenable sets [40]. Prox-regular sets play an important role in optimization, variational
analysis, and geometric measure theory (where they were introduced by Federer under the
name of “sets with positive reach” [43]), due to their nice projection properties.

Example 5 (o(1)-Convex Sets Are Paratingentially Lipschitzian) A closed set Ω ⊂ X is called
o(m)-convex (m ≥ 1) at x̄ ∈ Ω [39] if there exist a neighborhood V of x̄ and a function k(x, x′)
with lim

x,x′→x̄
k(x, x′) = 0 such that for all x, x′ ∈ Ω ∩ V , dTΩ(x)(x

′ − x) ≤ k(x, x′)∥x′ − x∥m.

Similarly, Ω is called O(m)-convex (m > 1) at x̄ ∈ Ω [39] if there exist a neighborhood V
of x̄ and a constant c > 0 such that for all x, x′ ∈ Ω ∩ V , dTΩ(x)(x

′ − x) ≤ c∥x′ − x∥m.
Clearly the class of o(1)-convex sets is the most general one; moreover O(2)-convex sets are
just prox-regular sets (Example 4). By Remark 3, if Ω is o(1)-convex at x̄, then it is strongly
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paratingentially Lipschitzian at x̄. Indeed, one can show that Ω is o(1)-convex at x̄ if and
only if Ω is strongly paratingentially Lipschitzian at x̄.

Example 6 (Robinson’s Constraint Qualification Implies Paratingential Lipschitzness) Con-
sider the constraint set Ω := {x ∈ X : g(x) ∈ K} where K ⊂ Y is a closed convex cone and
g : X → Y is C1. Robinson’s constraint qualification (RCQ) [44] is said to hold at x̄ ∈ Ω if
0 ∈ int (g(x̄) +Dg(x̄)X −K). It is shown in [45, Theorem 2.2] that if RCQ holds at x̄, then
Ω is o(1)-convex at x̄. As mentioned in Example 5, o(1)-convexity is equivalent to strong
paratingential Lipschitzness. Therefore RCQ at x̄ implies paratingential Lipschitzness at x̄.
In particular, for Ω being the feasible set of a nonlinear programming problem, RCQ is the
same as Mangasarian-Fromovitz constraint qualification (MFCQ) and consequently MFCQ
implies paratingential Lipschitzness.

We now present the generalized Aubin criterion relative to a constraint set that is
paratingentially Lipschitzian at the reference point. This result is more general than
those obtained in previous works [27, 29, 31, 32], which hold for either convex sets or
smooth submanifolds.

Theorem 7 (Generalized Aubin Criterion for Paratingentially Lipschitzian Sets) Let S :
X ⇒ Y be a set-valued mapping and let Ω ⊂ X be a set that is locally closed at x̄ and
paratingentially Lipschitzian at x̄ with PLipΩ(x̄) = κΩ > 0. Suppose that S is locally closed
at (x̄, ȳ) ∈ gphS|Ω. Then one has

lipΩ S(x̄; ȳ) ≤
cDS +

√
1− 1/κ2Ω

1−
√

1− 1/κ2Ω

, (25)

where cDS := lim sup

(x,y)
gphS|Ω−→ (x̄,ȳ)

∣∣∣DS|Ω(x; y)
∣∣∣−
TΩ(x)

. By Theorem 5, this implies that S has Aubin

property at (x̄, ȳ) relative to Ω if and only if cDS < ∞. Moreover, the following estimates
hold:

cDS ≤ lipΩ S(x̄; ȳ) ≤
cDS +

√
1− 1/κ2Ω

1−
√

1− 1/κ2Ω

. (26)

In particular, if Ω is strongly paratingentially Lipschitzian at x̄ (i.e., κΩ = 1), then one has

lipΩ S(x̄; ȳ) = lim sup

(x,y)
gphS|Ω−→ (x̄,ȳ)

∣∣∣DS|Ω(x; y)
∣∣∣−
TΩ(x)

. (27)

Proof Let lS and MDS denote the left- and right-hand sides of (25), respectively. If cDS = ∞,
then MDS = ∞ and there is nothing to prove.

Suppose that cDS < ∞. Then for any c > cDS , there are neighborhoods V of x̄ and W of

ȳ such that for all (x, y) ∈ gphS|Ω ∩ (V ×W ), we have
∣∣∣DS|Ω(x; y)

∣∣∣−
TΩ(x)

< c. By Definition

12, this means that

∀u ∈ TΩ(x), ∃v ∈ DS|Ω(x; y)(u), such that ∥v∥ < c∥u∥. (28)
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The neighborhoods V and W can always be chosen to be closed. Moreover, we also choose
V and W to be small enough so that Ω ∩ V and gphS|Ω ∩ (V ×W ) are closed.

Suppose that κ > κΩ = PLipΩ(x). By Definition 13, this means that there is a neighbor-
hood V of x̄ (which we can assume to be the same V that appears in the last paragraph)
such that for all x, x̃ ∈ Ω ∩ V , ∥x − x̃∥ ≤ κ ∥ProjTΩ(x̃)(x − x̃)∥. This implies that whenever
x ̸= x̃ and u ∈ ProjTΩ(x̃)(x− x̃), we have

∥(x− x̃)− u∥ ≤
√

1− 1/κ2∥x− x̃∥, (29)

since (x− x̃)− u and u are orthogonal to each other by Lemma 6.
Our goal is to show that for all x′, x′′ ∈ Ω ∩ V , for all y′′ ∈ S(x′′) ∩ W , there exists

y′ ∈ S(x′) such that ∥y′ − y′′∥ ≤ M∥x′ − x′′∥, where M can be arbitrarily close to MDS as
c approaches cDS and κ approaches κΩ. This would imply lS ≤ MDS .

To that end, consider the vector space E := X ×Y with metric ρ defined by the ℓ1 norm
∥(x, y)∥1 := ∥x∥+∥y∥. Then (E, ρ) is clearly a complete metric space. Given any x′ ∈ Ω∩V ,
consider the function φ : E → R, (x, y) 7→ φ(x, y) := ∥x− x′∥+ θgphS|Ω∩(V×W )(x, y), where
θgphS|Ω∩(V×W ) is the indicator function. The function φ is bounded from below by zero.
It is lower semicontinuous since the norm function is continuous and gphS|Ω ∩ (V × W ) is

closed. Given (x′′, y′′) ∈ gphS|Ω ∩ (V ×W ), for any δ ∈ (0,
1−

√
1−1/κ2

c+1 ), we apply Ekeland’s
variational principle (Theorem 2) to φ, obtaining the existence of (x̂, ŷ) ∈ gphS|Ω∩ (V ×W )
such that φ(x̂, ŷ) ≤ φ(x′′, y′′) − δ∥(x̂, ŷ) − (x′′, y′′)∥1, and φ(x̂, ŷ) − δ∥(x, y) − (x̂, ŷ)∥1 <
φ(x, y), ∀ (x, y) ∈ gphS|Ω ∩ (V ×W ),∀(x, y) ̸= (x̂, ŷ). By the definition of φ, we get

∥x̂− x′∥ ≤ ∥x′′ − x′∥ − δ∥(x̂, ŷ)− (x′′, y′′)∥1, (30)

and for all (x, y) ∈ gphS|Ω ∩ (V ×W ) with (x, y) ̸= (x̂, ŷ),

∥x̂− x′∥ − δ∥(x, y)− (x̂, ŷ)∥1 < ∥x− x′∥. (31)

We would like to show that x̂ = x′ holds, which would imply, through (30), that y′ := ŷ ∈
S(x̂) = S(x′) satisfies ∥y′ − y′′∥ ≤ ( 1δ − 1)∥x′ − x′′∥. Since 1

δ − 1 can be arbitrarily close to
c+

√
1−1/κ2

1−
√

1−1/κ2
(by the assumption δ <

1−
√

1−1/κ2

c+1 ) and the latter can be arbitrarily close to

MDS as c approaches cDS and κ approaches κΩ, we would have lS ≤ MDS . With that said,
we now move on to show that x̂ = x′.

Suppose on the contrary that x̂ ̸= x′. Take u ∈ ProjTΩ(x̂)(x
′ − x̂). By (29), we have ∥(x′−

x̂) − u∥ ≤
√

1− 1/κ2∥x′ − x̂∥. By (28), we obtain the existence of some v ∈ DS|Ω(x̂; ŷ)(u)
such that ∥v∥ ≤ c∥u∥. By definition of graphical derivative, this means that there are xk

Ω→ x̂,

yk → ŷ with yk ∈ S(xk), τk ↓ 0 such that uk := xk−x̂
τk → u ∈ ProjTΩ(x̂)(x

′ − x̂) and

vk := yk−ŷ
τk → v. Substituting x = xk and y = yk into (31), we get

∥x̂− x′∥ < ∥xk − x′∥+ δ∥(xk, yk)− (x̂, ŷ)∥1
= ∥x̂+ τkuk − x′∥+ δ(∥τkuk∥+ ∥τkvk∥)

= ∥x̂− x′ + τkuk − τk(x̂− x′) + τk(x̂− x′)∥+ τkδ(∥uk∥+ ∥vk∥)

≤ (1− τk)∥x̂− x′∥+ τk∥uk + x̂− x′∥+ τkδ(∥uk∥+ ∥vk∥),

(32)
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which implies that ∥x̂−x′∥ ≤ ∥uk+x̂−x′∥+δ(∥uk∥+∥vk∥). Letting k → ∞ in this inequality,

we get, by δ <
1−

√
1−1/κ2

c+1 ,

∥x̂− x′∥ ≤ ∥u− (x′ − x̂)∥+ δ(∥u∥+ ∥v∥)

≤ ∥u− (x′ − x̂)∥+ δ(c+ 1)∥u∥

≤ (
√

1− 1/κ2 + δ(c+ 1))∥x′ − x̂∥

< ∥x̂− x′∥,

(33)

a contradiction. Therefore we must have x̂ = x′. This completes the proof. □

3.5 Norm Equality

Next we establish an equality between outer norm of the projectional coderivative
(defined in [27]) and relative inner norms of the graphical derivative. It generalizes
[3, Theorem 4C.3] to the relative setting and enables us to extend the projectional-
coderivative-based generalized Mordukhovich criterion [27, Theorem 2.4] for convex
constraint sets to the larger class of paratingentially Lipschitzian ones.

Theorem 8 (Norm Equality) Let Ω ⊂ X be locally closed at x̄ ∈ Ω and S : X ⇒ Y be localy
closed at (x̄, ȳ) ∈ gphS|Ω. Then one has

lim sup

(x,y)
gphS|Ω−→ (x̄,ȳ)

∣∣∣DS|Ω(x; y)
∣∣∣−
TΩ(x)

=
∣∣∣D∗

Ω,projS(x̄; ȳ)
∣∣∣+, (34)

where D∗
Ω,projS(x̄; ȳ) is the projectional coderivative defined in [27] (see Definition 7).

Proof It follows from [27, Definition 2.2] that∣∣∣D∗
Ω,projS(x̄; ȳ)

∣∣∣+ = lim sup

(x,y)
gphS|Ω−→ (x̄,ȳ)

sup
v∈B

sup
u∈D∗S|Ω(x;y)(v)

∥ProjTΩ(x)(u)∥. (35)

Write cDS := lim sup

(x,y)
gphS|Ω−→ (x̄,ȳ)

∣∣∣DS|Ω(x; y)
∣∣∣−
TΩ(x)

. We first prove cDS ≥
∣∣∣D∗

Ω,projS(x̄; ȳ)
∣∣∣+.

Suppose cDS < κ. Then for all (x, y) ∈ gphS|Ω close to (x̄, ȳ), for all w ∈ B ∩ TΩ(x),
there exists ∥z∥ ≤ κ such that (w, z) ∈ TgphS|Ω(x, y) ⊂ T ∗∗

gphS|Ω(x, y). Take any (u, v) ∈
N̂gphS|Ω(x, y). Then ⟨w, u⟩ + min

z′∈κB
⟨z′, v⟩ ≤ ⟨w, u⟩ + ⟨z, v⟩ ≤ 0. This implies that for w ∈

B∩TΩ(x), ⟨w, u⟩ ≤ κ∥v∥. Taking w := ũ
∥ũ∥ with ũ ∈ ProjTΩ(x)(u) and using Lemma 6 give us

∥ProjTΩ(x)(u)∥ ≤ κ∥v∥. A limiting argument then tells us that for all (u, v) ∈ NgphS|Ω(x, y),
it holds that ∥ProjTΩ(x)(u)∥ ≤ κ∥v∥. Thus the desired inequality follows from (35).

We next prove cDS ≤
∣∣∣D∗

Ω,projS(x̄; ȳ)
∣∣∣+. Suppose

∣∣∣D∗
Ω,projS(x̄; ȳ)

∣∣∣+ < κ. By (35), for

(x, y) ∈ gphS|Ω close to (x̄, ȳ), for (u,−v) ∈ NgphS|Ω(x, y),

∥ProjTΩ(x)(u)∥ ≤ κ∥v∥. (36)

In particular, if (u, 0) ∈ NgphS|Ω(x, y), then ∥ProjTΩ(x)(u)∥ = 0, i.e., u ∈ N̂Ω(x). We will
show that for each w ∈ B ∩ TΩ(x),

({w} × κB) ∩ T ∗∗
gphS|Ω(x, y) ̸= ∅. (37)
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Suppose on the contrary that there exists w ∈ B∩TΩ(x) such that ({w}×κB)∩T ∗∗
gphS|Ω(x, y) =

∅. Then by the strong convex separation theorem [4, Theorem 2.39] and the conical structure
of T ∗∗

gphS|Ω(x, y), there exists (u, v) ∈ N̂gphS|Ω(x, y) with

⟨u,w⟩+ min
z∈κB

⟨v, z⟩ > 0. (38)

We claim that v ̸= 0. Otherwise (u, 0) ∈ NgphS|Ω(x, y), which implies u ∈ N̂Ω(x) (as shown
below (36)). This contradicts (38) (which now reads ⟨u,w⟩ > 0) since w ∈ TΩ(x). So without
loss of generality we assume ∥v∥ = 1. For any ũ ∈ ProjTΩ(x)(u), it is easy to show that

⟨u, ũ
∥ũ∥ ⟩ ≥ ⟨u,w′⟩ for all w′ ∈ B ∩ TΩ(x). By (38), we get ∥ProjTΩ(x)(u)∥ = ⟨u, ũ

∥ũ∥ ⟩ ≥
⟨u,w⟩ > supz∈κB ⟨v, z⟩ = κ, a contradiction to (36). Therefore the claim (37) holds. By [3,
Lemma 4C.4], we know that for each w ∈ B ∩ TΩ(x), ({w} × κB) ∩ TgphS|Ω(x, y) ̸= ∅. This

implies
∣∣∣DS|Ω(x; y)

∣∣∣−
TΩ(x)

≤ κ and the desired inequality follows. □

Theorem 9 (Generalized Mordukhovich Criterion for Paratingentially Lipschitzian Sets)
Let Ω ⊂ X be locally closed at x̄ ∈ Ω and S : X ⇒ Y be localy closed at (x̄, ȳ) ∈ gphS|Ω.
Suppose that Ω is paratingentially Lipschitzian at x̄. Then S has the Aubin property relative
to Ω at (x̄, ȳ) if and only if D∗

Ω,projS(x̄; ȳ)(0) = {0}.

Proof If Ω is paratingentially Lipschitzian at x̄, by Theorem 7 and Theorem 8, S has the

Aubin property at (x̄, ȳ) relative to Ω if and only if
∣∣∣D∗

Ω,projS(x̄; ȳ)
∣∣∣+ < ∞, which is equivalent

to D∗
Ω,projS(x̄; ȳ)(0) = {0} by [4, Proposition 9.23]. □

4 Criterion for Relative Strong Stability

We introduce relative strong stability and characterize it for paratingentially Lips-
chitzian constraint sets.

Definition 14 (Relative Strong Aubin property) A set-valued mapping S : X ⇒ Y is said
to have the strong Aubin property relative to Ω ⊂ X at (x̄, ȳ) ∈ gphS|Ω, if it has the Aubin
property relative to Ω at (x̄, ȳ) and has a localization at (x̄, ȳ) that is single-valued in Ω ∩ V
for some neighborhood V of x̄.

Definition 15 (Relative Strong Metric Regularity) A set-valued mapping F : Y ⇒ X is said
to be strongly metrically regular relative to Θ ⊂ Y and Ω ⊂ X at (ȳ, x̄) ∈ gphF∩(Θ×Ω), if F
is metrically regular relative to Θ ⊂ Y and Ω ⊂ X at (ȳ, x̄) and F−1 has a localization at (x̄, ȳ)
that is single-valued in Ω∩V for some neighborhood V of x̄. It follows from Proposition 1 that
this is equivalent to strong Aubin property of F−1|Θ := F−1 ∩Θ : X ⇒ Y, x 7→ F−1(x) ∩Θ
relative to Ω at (x̄, ȳ).

The following theorem extends [3, Theorem 4D.1] to the relative setting. We note
that when x̄ ∈ intΩ, relative strong Aubin property reduces to strong Aubin property
and in this case our theorem reduces to [3, Theorem 4D.1].
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Theorem 10 (Criterion for Relative Strong Aubin Property) Let S : X ⇒ Y be a set-valued
mapping and Ω a subset of X. If S has strong Aubin property relative to Ω at (x̄, ȳ) ∈ gphS|Ω,
then

ȳ ∈ lim inf
x

Ω→x̄

S|Ω(x), (39)

and ∣∣∣D∗S|Ω(x̄; ȳ)
∣∣∣+ < ∞, i.e., D∗S|Ω(x̄; ȳ)(0) = {0}. (40)

Conversely, if gphS|Ω is locally closed at (x̄, ȳ), Ω is locally closed and paratingentially Lips-
chitzian at x̄ with κΩ := PLipΩ(x̄) > 0, then conditions (39) and (40) are also sufficient for
the strong Aubin property of S relative to Ω at (x̄, ȳ). In this case one has

cD∗S ≤ lipΩS(x̄; ȳ) ≤
cD∗S +

√
1− 1/κ2Ω

1−
√

1− 1/κ2Ω

, (41)

where cD∗S :=
∣∣∣D∗S|Ω(x̄; ȳ)

∣∣∣+. If Ω is strongly paratingentially Lipschitzian at x̄ (i.e., κΩ =

1), one has

lipΩ S(x̄; ȳ) =
∣∣∣D∗S|Ω(x̄; ȳ)

∣∣∣+. (42)

Proof Suppose that S has strong Aubin property relative to Ω at (x̄, ȳ). Then there exist a
constant κ ≥ 0 and neighborhoods V of x̄ and W of ȳ such that for all x ∈ Ω∩V , S(x)∩W is
single-vlaued and for all x, x′ ∈ Ω∩V and y ∈ S(x)∩W , y′ ∈ S(x′)∩W , ∥y′−y∥ ≤ κ∥x′−x∥.
We note that (39) follows from [28, Theorem 4.7, (ii) =⇒ (i)] (which holds without any

assumption on S or Ω). Then we only need to show
∣∣∣D∗S|Ω(x̄; ȳ)

∣∣∣+ < ∞, which means,

by Definition 8, that ∀(u, v) ∈ gphD∗S|Ω(x̄; ȳ), ∥v∥ ≤ κ∥u∥. Let v ∈ D∗S|Ω(x̄; ȳ)(u). By
Definition 4, there are xk, x̃k

Ω−→ x̄ and yk, ỹk −→ ȳ, τk ↓ 0 such that yk ∈ S|Ω(xk),
ỹk ∈ S|Ω(x̃k), uk := xk−x̃k

τk → u and vk := yk−ỹk

τk → v. Then we have, for all large k,

∥yk − ỹk∥ ≤ κ∥xk − x̃k∥. Dividing by τk, we have
∥∥∥yk−ỹk

τk

∥∥∥ ≤ κ
∥∥∥xk−x̃k

τk

∥∥∥ . Taking limit, we

have ∥v∥ ≤ κ∥u∥. This also shows that
∣∣∣D∗S|Ω(x̄; ȳ)

∣∣∣+ ≤ lipΩ S(x̄; ȳ).

Conversely, suppose that (39) holds and
∣∣∣D∗S|Ω(x̄; ȳ)

∣∣∣+ < κ < ∞ :

∀(u, v) ∈ gphD∗S|Ω(x̄; ȳ), ∥v∥ ≤ κ∥u∥. (43)

Our goal is to show that S has strong Aubin property relative to Ω at (x̄, ȳ).
We first show that S|Ω has a localization around (x̄, ȳ) that is nowhere multi-valued.

Suppose on the contrary that this is not true. Then for any neighborhood V of x̄ and any
neighborhood W of ȳ, gphS|Ω∩(V ×W ) is the graph of a multi-valued mapping. This implies

that there are ϵk ↓ 0, xk
Ω→ x̄, yk, ỹk ∈ S|Ω(xk) such that yk ̸= ỹk and ∥yk − ỹk∥ ≤ ϵk.

Define vk := yk−ỹk

τk where τk := ∥yk − ỹk∥ > 0. Since ∥vk∥ = 1 for all k, {vk}k∈N has a

convergent subsequence. Without loss of generality, we assume that vk → v where ∥v∥ = 1.

Since uk := xk−xk

τk → 0, we see that v ∈ D∗S|Ω(x̄; ȳ)(0) by definition. This contradicts (43).
So S|Ω has a localization around (x̄, ȳ) that is at most single-valued. That is, there exist
bounded neighborhoods V1 of x̄ and W of ȳ such that for all x ∈ Ω ∩ V1, S(x) ∩W is either
empty or a singleton. We now show that S(x)∩W is actually always single-valued. Condition
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(39) implies that there exists a neighborhood V2 of x̄ such that for all x ∈ Ω ∩ V2, S(x) ∩W
is nonempty. Taking V3 := V1 ∩ V2, we see that for all x ∈ Ω ∩ V3, S(x) ∩ W is nonempty,
hence a singleton by the previous discussion. Since gphS|Ω is locally closed at (x̄, ȳ), Ω is
locally closed at x̄, and V,W are bounded, applying Theorem 3 tells us that the single-valued
mapping x 7→ S(x)∩W is continuous on Ω∩V , where V ⊂ V3 is a closed neighborhood of x̄.

We will show lim sup

(x,y)
gphS|Ω−→ (x̄,ȳ)

∣∣∣DS|Ω(x; y)
∣∣∣−
TΩ(x)

≤ lim sup

(x,y)
gphS|Ω−→ (x̄,ȳ)

∣∣∣D∗S|Ω(x; y)
∣∣∣+ < ∞,

which implies that S has the Aubin property relative to Ω at (x̄, ȳ) by Theorem 7. Combined
with the previous paragraph, this would imply the strong Aubin property of S relative to Ω
at (x̄, ȳ).

We first show that lim sup

(x,y)
gphS|Ω−→ (x̄,ȳ)

∣∣∣D∗S|Ω(x; y)
∣∣∣+ < ∞. Suppose on the contrary that

this does not hold. Then there exist xk ∈ Ω, yk ∈ S(xk), (uk, vk) ∈ gphD∗S|Ω(xk; yk) such
that xk → x̄, yk → ȳ, and ∥vk∥ > k∥uk∥. We consider two possible cases.

Case 1: there exists a subsequence {uki}i∈N of {uk}k∈N such that uki = 0 for all i. Since
D∗S(xki

; yki
) is positively homogeneous, we may assume that ∥vki∥ = 1. Let v be a cluster

point of {vki}i∈N. Taking limit, we obtain v ∈ D∗S|Ω(x̄; ȳ)(0) by the outer semicontinuity of
the strict derivative. This contradicts (40).

Case 2: uk ̸= 0 for all large k. We may assume that ∥uk∥ = 1 for all large k. Then

lim
k→∞

∥vk∥ = ∞. Consider wk := vk

∥vk∥ ∈ D∗S|Ω(xk; yk)( uk

∥vk∥ ). Let w be a cluster point

of {wk}. Then passing to the limit we obtain w ∈ D∗S|Ω(x̄; ȳ)(0) with ∥w∥ = 1, which
contradicts (40).

Combining the two cases, we assert that lim sup

(x,y)
gphS|Ω−→ (x̄,ȳ)

∣∣∣D∗S|Ω(x; y)
∣∣∣+ < ∞. We next

show that
∣∣∣DS|Ω(x; y)

∣∣∣−
TΩ(x)

≤
∣∣∣D∗S|Ω(x; y)

∣∣∣+ for all x ∈ Ω∩V where V is the neighborhood

of x̄ constructed in the previous discussion. We first need to show that for all u ∈ TΩ(x),

DS|Ω(x; y)(u) ̸= ∅. By definition, there exist xk
Ω→ x and τk ↓ 0 such that xk−x

τk → u.

By the previous discussion, S(xk) ∩ W is a singleton. Take yk ∈ S(xk) ∩ W . Then yk → y

by the continuity of x′ 7→ S(x′) ∩ W at x. Define vk := yk−y
τk . We will show that {vk}

is bounded. Suppose on the contrary that ∥vk∥ is not bounded. Without loss of generality

we assume that ∥vk∥ → ∞. Define τ̂k := τk∥vk∥ and wk := vk

∥vk∥ = yk−y
τ̂k . Then τ̂k → 0

and xk−x
τ̂k = xk−x

τk∥vk∥ → 0 since xk−x
τk → u and ∥vk∥ → ∞. Since ∥wk∥ = 1, we can ass-

sume without loss of generality that wk → w for some w with ∥w∥ = 1. Then we obtain

w ∈ DS|Ω(x; y)(0) ⊂ D∗S|Ω(x; y) with w ̸= 0. This means that
∣∣∣D∗S|Ω(x; y)

∣∣∣+ = ∞,

a contradiction. Therefore {vk} is bounded. Taking a cluster point v of vk, we obtain
v ∈ DS|Ω(x; y)(u). Then we have DS|Ω(x; y)(u) ̸= ∅ for all u ∈ TΩ(x). This implies that∣∣∣DS|Ω(x; y)

∣∣∣−
TΩ(x)

≤
∣∣∣DS|Ω(x; y)

∣∣∣+
TΩ(x)

≤
∣∣∣DS|Ω(x; y)

∣∣∣+ ≤
∣∣∣D∗S|Ω(x; y)

∣∣∣+ < ∞. The proof

is completed. □
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5 Relative Stability of Generalized Equations and
Affine Variational Inequalities

In this section we apply results in Section 3 and Section 4 to solution mappings
of generalized equations and obtain explicit characterizations for affine variational
inequalities.

Given z ∈ Z and w ∈ W , the problem is to find x ∈ X such that

0 ∈ z + f(w, x) +M(x). (44)

Here Z,W,X are finite-dimensional real Hilbert spaces, f : W × X → Z is single-
valued, and M : X → Z is set-valued. The generalized equation (44) depends on z
and w (with z called “canonical perturbation”). Writing p = (z, w), we study relative
stability of the solution mapping S : Z ×W ⇒ X:

S(p) = S(z, w) := {x ∈ X : 0 ∈ z + f(w, x) +M(x)}. (45)

The generalized equation (44) encompasses many important problems. When M(x) =
NC(x) for a closed convex set C ⊂ X, it is a variational inequality. When C is
polyhedral and f(w, x) = Ax for a matrix A, it is an affine variational inequality:

0 ∈ q +Ax+NC(x), (46)

where we have written q for z, conforming with common notations in the literature.
When we further assume that C = Rn

+, it is a linear complementarity problem:

0 ∈ q +Ax+NRn
+
(x), i.e., x ≥ 0, q +Ax ≥ 0, ⟨x, q +Ax⟩ = 0. (47)

5.1 Examples Illustrating Importance of Relative Stability

Before we begin the study of relative stability of S, we first demonstrate the value of
this concept. The following examples are certainly too simple to be practically relevant,
but they do illustrate, in the most elementary way, the necessity and usefulness of
relative stability.

Example 7 In the linear complementarity problem (47), let n = 2 and A = 0. It is easy to
obtain the solution mapping as follows:

S(q) = S(q1, q2) =



{(0, 0)}, if q1 > 0, q2 > 0

{0} × R+, if q1 > 0, q2 = 0,

R+ × {0}, if q1 = 0, q2 > 0,

R+ × R+, if q1 = 0, q2 = 0,

∅, otherwise.

(48)

Then domS = R2
+ and int(domS) = R2

++. For each q̄ ∈ int(domS) and x̄ = (0, 0), S has
the Aubin property at (q̄; x̄) ∈ gphS (since S is constant around q̄). If q̄1 > 0 and q̄2 = 0,
then q̄ ∈ bdry(domS) and S does not have the Aubin property at (q̄; x̄) ∈ gphS since S(q)
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can be empty even when q is arbitrarily close to q̄. Nonetheless S has the Aubin property at
(q̄; x̄) ∈ gphS relative to Ω := R++ × {0} since S is constant on Ω.

The example above, trivial as it is, illustrates vividly two crucial facts: (i) the
standard Aubin property necessarily fails at a boundary point of the domain; (ii) for
such points, relative Aubin property may still hold when restricted to an appropriate
subset of the domain. The following example illustrates another crucial fact: (iii) even
when the reference point is an interior point of the domain, it may still happen that
standard Aubin property fails but relative Aubin property prevails.

Example 8 In the linear complementarity problem (47), let n = 2 and A =

(
1 −1
1 −1

)
. It is

not hard to obtain the solution mapping as follows:

S(q) =



{(0, 0)}, if q2 > q1 ≥ 0

{(0, 0), (0, q2)}, if q1 > q2 ≥ 0,

{(0, 0)} ∪ {(x1, x2) ∈ R2
+ : x1 − x2 = −q1 = −q2}, if q1 = q2 ≥ 0,

{(x1, x2) ∈ R2
+ : x1 − x2 = −q1 = −q2}, if q1 = q2 < 0,

{(−q1, 0)}, if q2 > q1, q1 < 0

∅, otherwise.

(49)

Then domS = R2
+ ∪ {q ∈ R2 : q1 ≤ q2, q1 ≤ 0}. Let q̄ = (1, 1) ∈ int (domS) and x̄ =

(100, 101) ∈ S(q̄). One can show that S does not have Aubin property at (q̄, x̄) but S has
Aubin property at (q̄, x̄) relative to Ω = {q ∈ R2 : q1 = q2}.

5.2 Relative Stability of Generalized Equations

We propose a necessary and sufficient condition for the relative Aubin property of the
solution mapping (45) associated with a generalized equation.

Theorem 11 (Relative Stability of Generalized Equations) Consider S : Z×W ⇒ X defined
in (45) where f : W × X → Z is C1 and M : X ⇒ Z has closed graph. Let x̄ ∈ S|Ω(z̄, w̄)
where Ω := domS ⊂ Z × W is locally closed and paratingentially Lipschitzian at (z̄, w̄).
Then S has Aubin property at (z̄, w̄; x̄) relative to Ω if and only if there exist a constant
κ ≥ 0 and a neighborhood V of (z̄, w̄, x̄) such that for all (z, w, x) ∈ (gphS|Ω) ∩ V , for all
(uz , uw) ∈ TΩ(z, w), there exists ux such that ∥ux∥ ≤ κ∥(uz , uw)∥ and

−uz −∇wf(w, x)uw −∇xf(w, x)ux ∈ DM(x;−z − f(w, x))(ux). (50)

Proof Note that gphS|Ω = {(z, w, x) ∈ Ω×X : 0 ∈ z+ f(w, x) +M(x)} =
(
g−1(gphM)

)
∩

(Ω×X) where g(z, w, x) = (x,−z − f(w, x)). The Jacobian of g at (z, w, x) is

∇g(z, w, x) =

(
0 0 I
−I −∇wf(w, x) −∇xf(w, x)

)
(51)
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where I is an identity matrix of appropriate size. It is easy to see that the rows of ∇g(z, w, x)
are linearly independent. Since Ω = domS, we have gphS|Ω = gphS = g−1(gphM). By [4,
Exercise 6.7], we have

TgphS|Ω(z, w, x) = {u ∈ Z ×W ×X : ∇g(z, w, x)u ∈ TgphM (x,−z − f(w, x))}

={(uz , uw, ux) : −uz −∇wf(w, x)uw −∇xf(w, x)ux ∈ DM(x;−z − f(w, x))(ux)}.
Thus ux ∈ DS|Ω(z, w;x)(uz , uw) if and only if

−uz −∇wf(w, x)uw −∇xf(w, x)ux ∈ DM(x;−z − f(w, x))(ux). (52)

By Theorem 7 and Definition 12, the assertion follows. □

We next give a necessary and sufficient condition for the relative strong Aubin
property of S.

Theorem 12 (Strong Relative Stability of Generalized Equations) Consider S : Z×W ⇒ X
defined in (45) where f : W × X → Z is C1 and M : X ⇒ Z has closed graph. Let
x̄ ∈ S(z̄, w̄). Suppose that domS is paratingentially Lipschitzian at (z̄, w̄). Then S has strong
Aubin property at (z̄, w̄) for x̄ relative to domS if and only if the following conditions hold:
x̄ ∈ lim inf

(z,w)
domS−→ (z̄,w̄)

S(z, w) and

−∇xf(w̄, x̄)ux ∈ D∗M(x̄;−z̄ − f(w̄, x̄))(ux) =⇒ ux = 0. (53)

Proof As in the proof of Theorem 11, we have gphS = {(z, w, x) : 0 ∈ z+f(w, x)+M(x)} =
g−1(gphM) where g(z, w, x) = (x,−z−f(w, x)) and the Jacobian of g at (z̄, w̄, x̄) has linearly
independent rows. By adapting the proof of [4, Exercise 6.7] to paratingent cones, we can
obtain the following equality

T p
gphS|Ω(z̄, w̄, x̄) =

{
u ∈ Z ×W ×X : ∇g(z̄, w̄, x̄)u ∈ T p

gphM (x̄,−z̄ − f(w̄, x̄))
}

=
{
(uz , uw, ux) : −uz −∇wf(w̄, x̄)uw −∇xf(w̄, x̄)ux ∈ D∗M(x̄;−z̄ − f(w̄, x̄))(ux)

}
.

Thus ux ∈ D∗S(z̄, w̄; x̄)(uz , uw) if and only if

−uz −∇wf(w̄, x̄)uw −∇xf(w̄, x̄)ux ∈ D∗M(x̄;−z̄ − f(w̄, x̄))(ux). (54)

By Theorem 10, the assertion follows. □

5.3 Relative Stability of Affine Variational Inequalities

In this subsection we will obtain explicit conditions (which are necessary and suffi-
cient) for relative stability and relative strong stability for solution mappings of affine
variational inequalities. We will use [v]⊥ to denote the orthogonal complement of the
linear subspace [v] spanned by v.

Theorem 13 (Relative Stability of Affine Variational Inequalities) Let S(q) := {x : 0 ∈
q+Ax+NC(x)} be the solution mapping of the affine variational inequality (46). Let x̄ ∈ S(q̄).
Suppose that Ω := domS is paratingentially Lipschitzian at p̄ ∈ Ω. Then S has the Aubin
property at (q̄, x̄) relative to Ω if and only if there exists κ ≥ 0 such that for all (q, x) ∈ gphS
close to (q̄, x̄),

∀u ∈ TΩ(q), ∃ v ∈ Rn such that − u ∈ Av +NKq,x
(v), ∥v∥ ≤ κ∥u∥, (55)
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where Kq,x := TC(x) ∩ [q +Ax]⊥. If q̄ ∈ intΩ or Ω is polyhedral, then condition (55) can be
reformulated as: for all closed faces F1 ⊃ F2 of Kq̄,x̄,

−NΩ(x̄) ⊃ (A(F1 − F2))
∗ ∩ (F1 − F2). (56)

Proof From the proof of Theorem 11, we have v ∈ DS(q;x)(u) if and only if −u − Av ∈
DNC(x;−q −Ax)(v). By the reduction lemma [6], this is equivalent to

−u−Av ∈ NKq,x
(v), (57)

where Kq,x := {w ∈ TC(x) : w ⊥ (−q − Ax)} is the critical cone. By Theorem 11, S has
Aubin property at (q̄, x̄) relative to Ω if and only if there exists κ ≥ 0 such that for all
(q, x) ∈ gphS close to (q̄, x̄), for all u ∈ TΩ(q), there exists ∥v∥ ≤ κ∥u∥ such that

−u ∈ Av +NKq,x
(v). (58)

Thus the first assertion holds. This condition implies, in particular, that −TΩ(q) ⊂ AKq,x +
K∗

q,x. Taking polar cones of both sides, we obtain, by [4, Corollary 11.25], −N̂Ω(q) ⊃
(AKq,x)

∗ ∩Kq,x.

Now suppose that q̄ ∈ intΩ or Ω is polyhedral. It follows that NΩ(q) = NΩ(q̄) ∩ [q − q̄]⊥

for all q ∈ Ω close to q̄ [28]. Then we have

−NΩ(q̄) ⊃ −N̂Ω(q̄) ⊃ −N̂Ω(q) ⊃ (AKq,x)
∗ ∩Kq,x. (59)

From the proof of [6, Theorem 2], we know that the critical cones Kq,x (with (q, x) ∈ gphS
close to (q̄, x̄)) are exactly the cones of the form F1 − F2 where F1 ⊃ F2 are closed faces of
Kq̄,x̄. Then condition (59) can be restated as: for all closed faces F1 ⊃ F2 of Kq̄,x̄,

−NΩ(q̄) ⊃ (A(F1 − F2))
∗ ∩ (F1 − F2). (60)

So we have proved that (58) implies (60). The converse also holds. Indeed, recall that Ω :=
domS and in this case the proof of [28, Theorem 4.4] tells us that (60) is equivalent to the
condition D∗

ΩS(q̄; x̄)(0) = {0}. By Theorem 9, this implies the Aubin property of S at (q̄, x̄)
relative to Ω and therefore condition (58). □

Remark 4 In Theorem 13, we assume that Ω := domS is paratingentially Lipschitzian.
Since S is the solution mapping of the affine variational inequality (46), it is known [46,
Theorem 2.5.15] that domS is a finite union of polyhedral sets. It is natural to ask whether
paratingential Lipschitzness holds automatically in this case. The answer is negative. For
example, consider the set Ω := {(x, y) ∈ R2 : y = k|x|} where k > 0, which is a union of
two polyhedral sets. It is not hard to show that Ω is paratingentially Lipschitzian at (0, 0) if
k < 1 but Ω is not paratingentially Lipschitzian at (0, 0) if k ≥ 1.

Theorem 14 (Strong Relative Stability of Affine Variational Inequalities) Let S(q) := {x :
0 ∈ q + Ax + NC(x)} be the solution mapping of the affine variational inequality (46). Let
x̄ ∈ S(q̄). Suppose that Ω := domS is paratingentially Lipschitzian at p̄ ∈ Ω. Then S has
strong Aubin property at (q̄, x̄) relative to Ω if and only if x̄ ∈ lim inf

q
Ω−→q̄

S(q) and

[
v = v1 − v2 and −Av ∈ NKq̄,x̄

(v1)−NKq̄,x̄
(v2)

]
=⇒ v1 = v2. (61)

24



Proof From the proof of Theorem 12, we have v ∈ D∗S(q̄; x̄)(u) if and only if

−u−Av ∈ D∗NC(x;−q −Ax)(v). (62)

By the reduction lemma [6], we can show that T p
gphNC

(x̄, w̄) = gphNKq̄,x̄
−gphNKq̄,x̄

, where

Kq̄,x̄ := TC(x̄) ∩ [q̄ +Ax̄]⊥. Then v ∈ D∗S(q̄; x̄)(u) if and only if

v = v1 − v2 and − u−Av ∈ NKq̄,x̄
(v1)−NKq̄,x̄

(v2). (63)

By Theorem 12, S has strong Aubin property at (q̄, x̄) relative to Ω if and only if x̄ ∈
lim inf
q

Ω−→q̄

S(q) and (61) holds. □

Remark 5 We compare our results with related work. For the solution mapping S of the
affine variational inequality (46), it is known [46, Theorem 2.5.15] that domS is a finite
union of polyhedral sets (hence nonconvex). The Aubin property of S is characterized via
the “critical face condition” in [6, Theorem 2]. The Aubin property of S relative to domS
is characterized via the “generalized critical face condition” (56) in [28, Theorem 4.4] where
domS is required to be convex (hence polyhedral). In Theorem 13 a characterization for
paratingentially Lipschitzian domains is proved. This is a genuine extension of [28, Theorem
4.4]: for example, for the solution mapping S in Example 8, domS is not convex but still
paratingentially Lipschitzian.

It is proved in [6, Theorem 1] that Aubin property and strong Aubin property for the
solution mapping of an affine variational inequality are actually equivalent. This is no longer
true in the relative setting [28, Example 4.8]. To the best of our knowledge, characterization of
relative strong Aubin property seems to be lacking in the literature. Theorem 14 fills this gap
and characterizes strong Aubin property of S relative to its domain via the “strict generalized
critical face condition” (61).

6 Global Aubin Criterion

In this section we prove a global version of the generalized Aubin criterion (Theorem
7), which can be considered as a mean value theorem for set-valued mappings.

Definition 16 (Excess and Hausdorff Distance, [3]) Let C,D be subsets of X.
The excess of C beyond D (also called the one-sided Hausdorff distance from C to D) is

e(C,D) := sup
x∈C

d(x,D) = sup
x∈C

inf
y∈D

d(x, y) with the convention that e(∅, D) := 0 for nonempty

D and e(C, ∅) := ∞ for any C (in particular, e(∅, ∅) := ∞).
The Hausdorff distance between A and B is h(C,D) := max{e(C,D), e(D,C)}.

From the definition we see that the Aubin property of S : X ⇒ Y relative to Ω ⊂ X
at (x̄, ȳ) ∈ gphS|Ω as defined in Definition 9 is equivalent to the following property:
S|Ω is locally closed at (x̄, ȳ) and there exist a constant l ≥ 0 and neighborhoods V
of x̄ and W of ȳ, such that for all x, x′ ∈ Ω ∩ V , e(S(x′) ∩W,S(x)) ≤ l∥x′ − x∥. The
infimum over such l equals the Lipschitz modulus of S relative to Ω at (x̄, ȳ).

By global Aubin property, we mean the Lipschitz continuity with respect to the
Hausdorff distance.
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Definition 17 (Lipschitz Continuity of Set-Valued Mappings, [3]) A set-valued mapping
S : X ⇒ Y is said to be Lipschitz continuous relative to Ω ⊂ domS if S is closed-valued on
Ω and there exists l ≥ 0 such that ∀x, x′ ∈ Ω, h(S(x), S(x′)) ≤ l∥x − x′∥ where h(A,B) is
the Hausdorff distance between A and B.

We need the following well-known triangle inequality for excess.

Lemma 15 (Triangle Inequality for Excess) e(A,B) ≤ e(A,C) + e(C,B).

Now we state and prove the global Aubin criterion, which can be regarded as a
mean value theorem for set-valued mappings.

Theorem 16 (Global Aubin Criterion) Let S : X ⇒ Y be a set-valued mapping and Ω ⊂
domS a closed convex set. For a, b ∈ Ω, suppose that gphS|[a,b] is compact, where [a, b] :=
{(1− t)a+ tb : t ∈ [0, 1]} is the line segment between a and b. Then

e(S(a), S(b)) ≤ Ma,b∥a− b∥, (64)

where Ma,b := sup
x∈[a,b], y∈S(x)

∣∣∣DS|[a,b](x; y)
∣∣∣−
T[a,b](x)

. This also implies that

h(S(a), S(b)) ≤ Ma,b∥a− b∥. (65)

Consequently, S is Lipschitz continuous relative to Ω (see Definition 17) if Ma,b remains
uniformly bounded for all a, b ∈ Ω.

Remark 6 The analogy between (65) and the mean value theorem (5) is evident. It is worth
pointing out, perhaps, that even for S being single-valued and differentiable, (65) refines (5)
in that it gives the following sharper estimate:

∥S(a)− S(b)∥
∥a− b∥ ≤ sup

x∈[a,b]

∥∥∥S′(x)|[a−b]

∥∥∥ , (66)

where [a− b] is the one-dimensional linear subspace spanned by a− b. Actually, estimate (66)
is implicit in the textbook proof of (5).

Proof To ease notation, we write M for Ma,b in the proof.
If a = b, then e(S(a), S(b)) = 0 and the assertion holds trivially. If M = ∞, the assertion

also holds trivially. So we assume that a ̸= b and M < ∞.
Let ϵ > 0 be an arbitrary positive number.

For any yb ∈ S(b), it holds that lim sup

(x,y)
gphS|[a,b]−→ (b,yb)

∣∣∣DS|[a,b](x; y)
∣∣∣−
T[a,b](x)

≤ M by the

definition of M . So the generalized Aubin criterion (Theorem 7) tells us that S has the
Aubin property relative to [a, b] at (b, yb). This means that there exists an open neighborhood
Vyb × Wyb of (b, yb) such that for all x, x′ ∈ [a, b] ∩ Vyb , we have e(S(x) ∩ Wyb , S(x

′)) ≤
(M+ϵ)∥x−x′∥. Since we have assumed that gphS|[a,b] is compact, we know that {b}×S(b) is
compact. The family {Vyb ×Wyb}yb∈S(b) of open sets, being an open covering of the compact
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set {b} × S(b), has a finite subcovering Vy1
b
× Wy1

b
, . . . , VyN

b
× WyN

b
. Therefore we can find

an open ball Vb centered at b such that Vb ⊂ Vyi
b
for i = 1, . . . , N . This implies that for any

yb ∈ S(b), there exists iyb ∈ {1, 2, . . . , N} such that (b, yb) ∈ V
y
iyb
b

× W
y
iyb
b

. By the Aubin

property of S relative to [a, b] at (b, y
iyb
b ), we have for all x, x′ ∈ [a, b] ∩ Vb ⊂ [a, b] ∩ V

y
iyb
b

,

e(S(x) ∩ W
y
iyb
b

, S(x′)) ≤ (M + ϵ)∥x − x′∥. In particular, letting x = b, we get for all x′ ∈

[a, b] ∩ Vb, e(S(b) ∩ W
y
iyb
b

, S(x′)) ≤ (M + ϵ)∥b − x′∥. Since yb ∈ S(b) ∩ W
y
iyb
b

, we have, by

the definition of excess,

d(yb, S(x
′)) ≤ (M + ϵ)∥b− x′∥, ∀x′ ∈ [a, b] ∩ Vb.

Taking supremum over yb ∈ S(b), we have

e(S(b), S(x′)) ≤ (M + ϵ)∥b− x′∥, ∀x′ ∈ [a, b] ∩ Vb. (67)

If a ∈ Vb, then e(S(b), S(a)) ≤ (M+ϵ)∥b−a∥ and the desired estimate follows, since ϵ > 0
is arbitrary. If a /∈ Vb, we will prove the existence of some c ∈ [a, b]∩Vb with c ̸= a, b such that
e(S(c), S(a)) ≤ (M + ϵ)∥c − a∥. Since c ∈ Vb, we have e(S(b), S(c)) ≤ (M + ϵ)∥b − c∥. This
would imply, through the triangle inequality for excess, that e(S(b), S(a)) ≤ e(S(b), S(c)) +
e(S(c), S(a)) ≤ (M + ϵ)(∥b− c∥+ ∥c− a∥) = (M + ϵ)∥b− a∥. This gives the desired estimate.

To show the existence of such c, we choose some d ∈ [a, b] ∩ Vb with d ̸= a, b. Define the
following subset of [0, 1]:

I := {t ∈ [0, 1] : e (S((1− t)a+ td), S(a)) ≤ (M + ϵ)t∥d− a∥} . (68)

The set I is nonempty since 0 ∈ I by definition. Let γ := sup I. We will show that γ = 1,
which would imply the existence of some tc ∈ I that is sufficiently close to γ = 1 so that
c := (1 − tc)a + tcd is sufficiently close to d. Since d ∈ Vb and Vb is an open ball, we have
c ∈ Vb. On the other hand, the definition of I means that we have the desired estimate
e(S(c), S(a)) ≤ (M + ϵ)∥c− a∥.

Suppose on the contrary that sup I =: γ < 1 and write p := (1− γ)a+ γd.
Choose p1 ∈ [p, d] with p1 ̸= p. For any yp1 ∈ S(p1), S has Aubin property relative to

[a, b] at (p1, yp1). Then there exists an open neighborhood V ×Wyp1
of (p1, yp1) such that

e(S(x) ∩Wyp1
, S(x′)) ≤ (M + ϵ)∥x− x′∥, ∀x, x′ ∈ [a, b] ∩ V. (69)

Crucially, we will choose V to be the largest possible open ball centered at p1 such that the
estimate (69) holds with respect to the given (M + ϵ) and the given Wyp1

. In other words,
define Vyp1

:= p1 + rmaxintB where rmax ∈ (0,∞] is defined as follows:

rmax := sup
{
r > 0 : e(S(x)∩Wyp1

, S(x′)) ≤ (M+ϵ)∥x−x′∥, ∀x, x′ ∈ [a, b]∩(p1+rB)
}
. (70)

We need to show that estimate (69) holds for Vyp1
:= p1+rmaxintB. Suppose this is not true.

Then there exist x, x′ ∈ [a, b] ∩ Vyp1
such that (69) fails. But Vyp1

is an open ball, so there

must exist an open ball V ′
yp1

centered at p1 with radius r′ < rmax such that x, x′ ∈ V ′
yp1

.

Since (69) fails for x, x′ ∈ V ′
yp1

, this means that r′ ≥ rmax, a contradiction. Summarizing
the above discussion, we have obtained an open ball Vyp1

centered at p1 and a neighborhood
Wyp1

of yp1 such that

e(S(x) ∩Wyp1
, S(x′)) ≤ (M + ϵ)∥x− x′∥, ∀x, x′ ∈ [a, b] ∩ Vyp1

. (71)

Moreover, the open ball Vyp1
is maximal in the sense that any enlargement of its radius would

make the estimate (71) fail (for the given (M + ϵ) and the given Wyp1
).

Since we have assumed that S|[a,b] is compact, we know that {p1} × S(p1) is a compact
set. The family {Vyp1

×Wyp1
}yp1∈S(p1) of open sets, being an open covering of the compact
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set {p1}×S(p1), has a finite subcovering Vy1
p1

×Wy1
p1
, . . . , VyK

p1
×WyK

p1
. Among these finitely

many open sets, we denote by Vyp1
×Wyp1

the one that has the smallest open ball Vyp1
. Then

for any yp1 ∈ S(p1), there exists iyp1
∈ {1, . . . ,K} such that (p1, yp1) ∈ V

y
iyp1
p1

×W
y
iyp1
p1

. By

the relative Aubin property of S at (p1, y
iyp1
p1 ), for all x, x′ ∈ [a, b] ∩ Vyp1

⊂ V
y
iyp1
p1

, we have

e(S(x)∩W
y
iyp1
p1

, S(x′)) ≤ (M+ ϵ)∥x−x′∥. Letting x = p1, we get e(S(p1)∩W
y
iyp1
p1

, S(x′)) ≤

(M + ϵ)∥p1 − x′∥ for all x′ ∈ [a, b] ∩ Vyp1
. Since yp1 ∈ S(p1) ∩ W

y
iyp1
p1

, this implies that

d(yp1 , S(x
′)) ≤ (M + ϵ)∥p1 − x′∥. Taking supremum over yp1 ∈ S(p1), we have

e(S(p1), S(x
′)) ≤ (M + ϵ)∥p1 − x′∥, ∀x′ ∈ [a, b] ∩ Vyp1

. (72)

If p ∈ Vyp1
, then there exists some tp− ∈ I that is sufficiently close to γ := sup I so that

p− := (1− tp−)a+ tp−p ∈ Vyp1
. Then e(S(p1), S(p−)) ≤ (M + ϵ)∥p1−p−∥ (since p− ∈ Vyp1

)
and e(S(p−), S(a)) ≤ (M+ϵ)∥p−−a∥ (since tp− ∈ I). Then the triangle inequality for excess
implies that e(S(p1), S(a)) ≤ e(S(p1), S(p−)) + e(S(p−), S(a)) ≤ (M + ϵ)∥p1 − p−∥+ (M +
ϵ)∥p−−a∥ = (M+ϵ)∥p1−a∥. Let tp1 be the unique number such that p1 = (1− tp1)a+ tp1d.
The above estimate tells us that tp1 ∈ I but we also know that tp1 > γ := sup I (since
p1 ∈ [p, d] and p1 ̸= p), a contradiction. We then have to conclude that our hypothesis γ < 1
is wrong, which means that γ = 1. Then we are done, by the argument presented early on.

If, however, p /∈ Vyp1
, we define p2 := p+p1

2 and repeat the above procedure. Inductively,

we define pk+1 := p+pk
2 ∈ [p, pk] ⊂ [p, d] for each k ≥ 1 with pk → p as k → ∞. For each

k ≥ 1, we run the procedure described previously to obtain some ypk ∈ S(pk), a neighborhood
Wypk

of ypk , and an open ball Vypk
centered at pk that is maximally large for the relative

Aubin property of S at (pk, ypk ) with respect to M + ϵ and Wypk
. If p ∈ Vypk

for some k,
then we are done, as the argument in the previous paragraph can be applied in the same
way. Now we show that this must happen: there exists some k ≥ 1 such that p ∈ Vypk

.

Suppose on the contrary, that p /∈ Vypk
for all k. Remember that the open ball Vypk

centered at pk is produced in such a way that any enlargement of its radius would destroy
the relative Aubin property of S at (pk, ypk ) with respect to (M + ϵ) and Wypk

. Then

there exists an open ball Ṽypk
centered at pk such that Ṽypk

is strictly larger than Vypk
but

does not contain p. Moreover there exist xk, x
′
k ∈ [a, b] ∩ Ṽypk

such that S(xk) ∩ Wypk
̸⊂

S(x′k) + (M + ϵ)∥xk − x′k∥B. This means the existence of some yk ∈ S(xk)∩Wypk
such that

yk /∈ S(x′k) + (M + ϵ)∥xk − x′k∥B. (73)

Since pk → p but p /∈ Vypk
for all k, we conclude that the radius of Vypk

converges to zero.

Similarly the radius of Ṽypk
converges to zero. Since xk, x

′
k ∈ Ṽypk

, we conclude that xk, x
′
k →

p. The sequence (xk, yk) ∈ gphS|[a,b] is bounded since we assume that gphS|[a,b] is compact.
Without loss of generality, we can assume that (xk, yk) → (p, yp). Then (p, yp) ∈ gphS|[a,b].
Since S has the Aubin property relative to [a, b] at (p, yp), there exist neighborhoods Vp of p
and Wyp of yp such that for all x, x′ ∈ [a, b] ∩ Vp, S(x) ∩Wyp ⊂ S(x′) + (M + ϵ)∥x − x′∥B.
For large k, we have xk, x

′
k ∈ [a, b]∩Vp and yk ∈ S(xk)∩Wyp , since (xk, yk) → (p, yp). Then

we have yk ∈ S(x′k) + (M + ϵ)∥xk − x′k∥B. This is a contradiction to (73). So we conclude
that there must exist some k ≥ 1 such that p ∈ Vypk

. The proof is completed. □

7 Conclusions

In this paper we studied stability of parameterized models relative to nonconvex con-
straint sets. First, employing both graphical derivative and projectional coderivative,
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we established characterizations of stability relative to a class of nonconvex constraint
sets broader than those in previous work. Second, we characterized relative strong
stability via the strict graphical derivative. Third, we applied these results to solu-
tion mappings of generalized equations and obtained characterizations of their relative
stability and relative strong stability, which are then explicated for affine variational
inequalities. Fourth, we proved a global Aubin criterion, which bounds the global Lip-
schitz constant of a set-valued mapping relative to a convex constraint set by the
relative inner norms of graphical derivatives. This result can be viewed as a generaliza-
tion of the mean value theorem to set-valued mappings and provides a new perspective
on stability analysis. In this paper our results are stated and proved in finite dimen-
sional spaces. It is useful to extend them to infinite dimensional spaces, which is a
direction of our future research.
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