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Abstract

This paper proposes a unified framework for designing robustness in optimization under
uncertainty using gauge sets, convex sets that generalize distance and capture how distributions
may deviate from a nominal reference. Representing robustness through a gauge set reweighting
formulation brings many classical robustness paradigms under a single convex-analytic perspec-
tive. The corresponding dual problem, the upper approximator regularization model, reveals a
direct connection between distributional perturbations and objective regularization via polar
gauge sets. This framework decouples the design of the nominal distribution, distance metric,
and reformulation method, components often entangled in classical approaches, thus enabling
modular and composable robustness modeling. We further provide a gauge set algebra toolkit
that supports intersection, summation, convex combination, and composition, enabling complex
ambiguity structures to be assembled from simpler components. For computational tractabil-
ity under continuously supported uncertainty, we introduce two general finite-dimensional
reformulation methods. The functional parameterization approach guarantees any prescribed
gauge-based robustness through flexible selection of function bases, while the envelope repre-
sentation approach yields exact reformulations under empirical nominal distributions and is
asymptotically exact for arbitrary nominal choices. A detailed case study demonstrates how the
framework accommodates diverse robustness requirements while admitting multiple tractable
reformulations.

Keywords: Stochastic programming, Coherent risk measures, Distributionally robust optimiza-
tion, ϕ-divergence, Gauge optimization

1 Introduction

Designing decisions that remain effective under uncertainty is increasingly central to modern
optimization and learning applications [50], a concept we refer to as robustness design. Over the
past decades, a variety of paradigms have emerged, most notably stochastic programming (SP),
robust optimization (RO), and distributionally robust optimization (DRO), each developed to hedge
against different types of uncertainty and equipped with its own modeling methods and solution
techniques. Although unifying frameworks have been proposed within individual paradigms
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[10, 15], this work aims to offer a cross-paradigm perspective on robustness design that reveals
common structural principles and enables modular modeling choices. To illustrate the benefits of
our framework, we begin with the following example.

Illustrative Example. Consider a city Ξ ⊆ R2 partitioned into regions where emergency incidents
may occur. We model the random location of the incident as our uncertainty ξ ∈ Ξ. A planner
must determine the location of a response center to minimize the expected travel distance from
the response center to the incident. Although the spatial uncertainty ξ ∈ Ξ is continuous, the
regional partition follows established administrative divisions that govern how data are collected
and organized. With only limited observations and seasonally varying incident patterns, the true
incident distribution is uncertain. The planner therefore seeks to construct a nominal distribution
that blends empirical observations with prior knowledge, and to design a model that (i) guards
against shifts in incident frequencies, e.g., via ϕ-divergence, since future incident patterns may
differ from historical observations, (ii) hedges against uneven regional data quality, e.g., via a
region-specific Wasserstein metric, since some regions have rich historical records while others
have very limited data, and (iii) ensures robust performance under high-impact, tail events, e.g.,
via Conditional Value-at-Risk (CVaR), since the response plan should still work well for the most
remote or hard-to-reach locations. △

Existing approaches, such as ϕ-divergence DRO [9, 31], Wasserstein-based DRO [14, 26, 40], and
CVaR optimization [48], capture one of these important aspects of uncertainty or risk in this setting.
There has been an emerging stream of research that focuses on integrating multiple modeling
perspectives but often requires ad-hoc or ambiguity-set-specific constructions, such as merging
moment- and distance-based ambiguity sets [18], integrating divergence- and Wasserstein-based
formulations [15], or composing Wasserstein DRO with CVaR-type objectives [29, 59]. It is unclear
what the general principles are in terms of combining and analyzing different robustness modeling
approaches. We answer this question positively in this paper.

To enable this flexible robustness design, derive a clean algebraic interpretation of different
modeling perspectives, and provide unified reformulation approaches, we introduce a framework
grounded in the classical concept of gauge sets, that is, convex, zero-containing sets that serve as
generalized “unit balls” for measuring deviation. Consider a minimization problem minx∈X f(x, ξ),
where x ∈ X is our decision, ξ ∈ Ξ is the uncertainty, and f(x, ξ) is the associated cost. Let
fx := f(x, ·) denote the random variable induced by fixing a solution x ∈ X . Our goal is to hedge
against the uncertainty ξ. Given any gauge set V , we define the following optimal reweighting problem

sup
ν≥0∈L2(P), EP[ν]=1

{EP[ν · fx] | ∥ν − 1∥V ≤ ϵ} , (1)

where ν denotes a distribution reweighting function from the space of square-integrable random
variables L2(P), and ∥ · ∥V is the gauge function induced by V . Every gauge function is convex and
positively homogeneous, widely employed in convex analysis [21, 44] and gauge optimization [2, 24,
25] to generalize the notion of distance. Accordingly, problem (1) admits an intuitive interpretation:
it constrains the “distance” between the reweighting function ν and the nominal distribution
(represented by the trivial reweighting 1) within a prescribed radius ϵ. When ν is set to 1, (1)
becomes the expected cost under the nominal distribution P, which reduces to the risk-neutral SP:
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minx∈X EP[fx]. Under mild conditions, we show that this primal problem admits the following
dual formulation, termed the upper-approximator regularization problem,

inf
α∈R,w∈L2(P)

{α+ EP[w] + ϵ∥w∥V◦ | α+ w ≥ fx} , (2)

where V◦ denotes the polar set of V , characterizing the form of regularization imposed. This dual
perspective provides a transparent interpretation of robustness: non-constant upper-approximators
w are penalized by the gauge function induced by the polar V◦, thereby extending the intuition of
Gao et al. [27] from Wasserstein-based formulations to general gauge-induced variations. Beyond
providing an interpretable and unifying perspective, this framework further enables flexible and
composable robustness design, as illustrated below.

Illustrative Example (Continued). Within this framework, the planner can take any distribution P
as the nominal distribution to reflect the knowledge on empirical data and prior belief, and express
the three robustness requirements using the ϕ-divergence gauge Vϕ, the region-wise Wasserstein
gauge VWass (Example 5), and the CVaR gauge VCVaR, respectively. The first two gauge sets may
be combined either by intersection VComb := δ1Vϕ ∩ δ2VWass when the distributional shift must
satisfy both conditions simultaneously, or by Minkowski sum VComb := δ1Vϕ+ δ2VWass for maximal
robustness. The scalings (gauge set radii) δi control the confidence assigned to each modeling
component. Composing this with CVaR realizes the primal problem (1) as

sup
ν1≥0

EP[ν1]=1
∥ν1−1∥VComb≤ϵ1

sup
ν2≥0

Eν1P[ν2]=1

∥ν2−1∥VCVaR≤ϵ2

EP[ν2ν1fx]

to obtain the worst-case CVaR tail performance over distributions in VComb. The associated dual (2)
follows immediately from the gauge algebra (Theorem 3) for polar set computation and Theorem 6
for gauge composition. For instance, if VComb is defined as the Minkowski sum, according to
Corollary 7 and Theorem 6, the dual becomes

inf
α1,α2∈R,w1,w2∈L2(P)

α1 + α2 + EP[w1] + ϵ1δ1∥w1∥V◦
ϕ
+ ϵ1δ2∥w1∥V◦

Wass
+ ϵ2∥w2∥V◦

CVaR

s.t. α1 + w1 ≥ w2

α2 + w2 ≥ fx.

(3)

For tractable computation, if one of the polar sets is a Lipschitz gauge (Definition 7), the envelope
representation reformulation (Theorem 8) yields a finite convex program that is exact when P is the
empirical distribution and is asymptotically exact for other nominal choices (Corollary 8). Other-
wise, when only regional moments are relevant, a piecewise moment parameterization (Example 9)
projects V◦ onto the corresponding feature space with preserved robustness (Theorem 7). Both
approaches lead to tractable finite-dimensional reformulations. Section 6 presents a case study of
this problem with multiple reformulations. △

From the example above, the proposed framework admits the following benefits when com-
pared to the existing approaches.
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Method Corresponding gauge set V Polar set V◦ Section

CRM shifted risk envelope Q functions with bounded Q-induced penalty 3.1
CVaR shifted non-positive cone functions with bounded expectation 3.2

Risk-neutral SP bounded set absorbing set 3.3
RO absorbing set bounded set 3.3

MDRO moment ball polynomials with bounded coefficients 3.4
Type-1 WDRO shifted W1 ball Lipschitz-1 functions 3.5.1
Type-p WDRO shifted Wp ball functions with bounded type-p smoothness 3.5.2
ϕ-Divergence ϕ-divergence ball functions with bounded ϕ∗-penalty 3.6
Total variation Total variation ball functions with bounded oscillation 4.1.2
χ2-Divergence 2-norm ball 2-norm ball 6

Table 1: High-level description of gauge sets to represent various robustness designs. CRM refers to the
coherent risk measure, Wp ball is the type-p Wasserstein ball, and ϕ∗ is the convex conjugate of ϕ. The algebraic
rules for integrating these gauge sets in flexible ways are presented in Theorem 3.

• Separation of design elements. The dual formulation (2) decouples the nominal distribution
from the distance metric, two elements often intertwined in the reformulations in existing
DRO paradigms. In (2), the nominal measure P and the polar gauge V◦ independently
evaluate and regularize w through the expectation and the gauge function, respectively. This
separation enables a principled design of robustness. In contrast to existing data-driven DRO
methods that typically build a nominal distribution based on empirical data, our approach
permits the incorporation of both data and model-based information into a hybrid nominal
that encodes the best available belief about the underlying distribution. On the other hand,
the gauge V specifies the form of uncertainty to be guarded against.

• Modular composition of robustness. Expressing diverse robustness criteria as their cor-
responding gauge sets (Table 1) enables a modular design through algebraic operations,
including intersection, summation, convex combination, and gauge composition (Section 4).
Moreover, multiple robustness measures can be incorporated either from the distributional-
deviation perspective (1) or the objective-regularization perspective (2), with the dual interpreta-
tions immediately derived through polar-gauge computation.

• Tractable reformulations for continuously supported uncertainty. When the uncertainty
support is continuous, problem (2) becomes infinite-dimensional. We develop two finite-
dimensional reformulations (Section 5) for general problems. The functional parameterization
approach enforces prescribed gauge-based robustness through flexible selection of function
bases, while the envelope representation approach yields exact finite reformulations under
empirical distribution and is asymptotically exact for arbitrary nominal distributions (Theo-
rem 8). Together, these two methods generalize existing reformulation techniques and further
decouple reformulation choices from gauge set design, thereby providing enhanced flexibility
for tractable, application-tailored computation.

Collectively, these developments support a flexible and modular design of the distributional
center, distance metric (gauge set), and reformulation method, enabling tailored and composable
robustness modeling that aligns more naturally with data geometry and decision priorities.

4



1.1 Related Work

Multiple optimization paradigms have been established in the literature to enhance solution
robustness based on available distributional information, including SP, RO, and DRO. We review
each of these topics next and end with a connection to gauge optimization.

Stochastic Programming (SP). This paradigm aims to optimize a certain risk measure of a random
outcome (e.g., the expectation or CVaR of the random cost) given a fully known distribution of the
uncertain parameters. When the expectation is used as the performance metric, we have a “risk-
neutral” framework and aim to find a solution that performs well on average. However, focusing
solely on minimizing expected costs does not inherently prevent rare instances of exceptionally high
costs. In many real-world scenarios, a “risk-averse” framework is preferable to a risk-neutral one to
ensure reliable performance under extreme situations, where different risk measures can be used as
the objective function. Risk-averse optimization has thus been extensively studied in widespread
applications such as portfolio optimization [17], energy management [54], and inventory problems
[1]. We refer to Birge and Louveaux [13], Shapiro et al. [50] for detailed discussions about model
formulations, solution algorithms, and applications in risk-neutral and risk-averse SP. In particular,
coherent risk measures (CRMs) have been widely used in the literature since they satisfy several
natural and desirable properties. It has been understood that each CRM, in its dual representation,
corresponds to the expectation of the reweighted objective function with respect to the worst-case
reweighting probability density function chosen from a candidate density set, referred to as a
risk envelope [50]. Each CRM can be uniquely identified by its risk envelope. However, the risk
envelope remains in an abstract form in general, and it has an explicit definition only for particular
risk measures. For instance, if the decision maker focuses on the tail performance, CVaR can be
used to quantify the tail risk, which corresponds to a fairly simple box-constrained risk envelope
[43, 48]. This paper adopts the worst-case reweighting perspective and aims to present a general
yet explicit formulation of the risk envelope by imposing constraints on the reweighting function
using gauge sets. It turns out that a variety of existing methods in the literature can be linked to this
framework, and their corresponding primal and dual gauge sets offer an intuitive interpretation
from a distance-regularization perspective.

Robust Optimization (RO). When we do not have any information on the underlying distribution
except for the support set and the worst-case performance over this support set is a primary
concern, RO has proven to be beneficial, ensuring that solutions remain effective even under the
most adversarial conditions [7, 8]. Significant efforts have been dedicated to deriving duality
results and tractable reformulations under various uncertainty sets [11, 12, 23, 28, 30, 58], yielding
impactful results across various application domains in transportation, supply chain management,
power system, and operation management [3, 5, 51, 52, 53].

Distributionally Robust Optimization (DRO). As a middle ground between SP and RO, when
only partial distributional information is available, DRO can be employed to hedge against dis-
tributional ambiguity by constructing ambiguity sets containing all plausible distributions. We
refer interested readers to [45] for an extensive survey on DRO. Traditional forms of ambiguity sets
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include (i) moment-based ambiguity sets [see, e.g., 20, 39, 56, 59, 60], and (ii) distance-based ambigu-
ity sets, such as norm-based distance [see 34]), ϕ-divergence [see 6, 33], and Wasserstein metric [see,
e.g., 14, 26, 40]. Moment-based ambiguity sets consider different moments of the underlying proba-
bility distributions, ensuring the optimal decision remains robust against a family of distributions
whose moments are within a certain range from the empirical ones [20]. Distance-based ambiguity
sets impose restrictions on the distance between the candidate distribution and the reference one.
Leveraging concentration theorems, it has been shown that Wasserstein distance-based ambiguity
sets can achieve effective out-of-sample performance [26, 40]. Meanwhile, ϕ-divergence metrics,
extensively applied in statistical inferences, quantify the “ratio” between probability measures
[19, 32, 42]. Based on this, divergence-based DRO has been developed to tackle distributional
ambiguity by providing a divergence budget to an adversarial opponent [9]. Due to its tractability,
this method has been applied in various areas such as data-driven SP [6] and network design [57].

Connection to Gauge Optimization. The concepts of gauge sets and gauge functions have been
extensively studied in convex analysis [21, 44]. Their associated duality theory has been developed
in the gauge optimization literature [2, 24, 25], where gauge functions are used to evaluate the
objective function or constraint violations. Building on this perspective and extending gauge
optimization to functional spaces, this paper employs gauge sets to measure the distributional
distance between the reweighting function and the nominal one, establishing a unified framework
for solution robustness.

We organize the rest of the paper as follows. Section 2 establishes the main assumptions and
the strong duality of the gauge reweighting problem. Section 3 investigates gauge set designs in
existing robustness paradigms. In Section 4, we develop several technical tools for manipulating
and designing gauge sets, demonstrating their utility using several examples. Section 5 discusses
two tractable reformulation strategies to solve the reweighting problem. Section 6 presents a
detailed case study of the illustrative example, providing two finite-dimensional reformulations
and their computational analysis. Finally, Section 7 concludes the paper with discussions on future
directions. To streamline the presentation, we discuss potential applications to other robustness
frameworks in Appendix A and defer all the proofs to Appendix B.

Notation. Let (Ξ,F ,P) denote the nominal probability space and (Ξ̃, F̃ , P̃) the true one. LetM(Ξ)

be the space of finite signed Borel measures on Ξ, endowed with the weak∗ topology, and let
P(Ξ) ⊆ M(Ξ) denote the subset of probability measures. For any µ ∈ M(Ξ), ⟨f, µ⟩ denotes the
integration of f with respect to µ. The space L2(P) consists of square-integrable random variables
equipped with the inner product ⟨ν, w⟩P = EP[νw], where the subscript P is omitted when clear.
For any f : L2(P)→ R, its convex conjugate is f∗(w) = supν⟨w, ν⟩ − f(ν). Given a convex subset
V ⊆ M(Ξ) or L2(P) that contains the origin, we write V◦, conv(V), cone(V), V⊥, rec(V), lin(V),
int(V), and V (or clV) for its polar, convex hull, conic hull, orthogonal space, recession cone (i.e.,
{w | γw ∈ V, ∀γ ≥ 0}), lineality subspace (i.e., {w | γw ∈ V, ∀γ ∈ R}), interior, and closure (under
the ambient topology). Given some closed subspace U , intU (V ∩ U) and clU (V ∩ U) denote the
interior and closure of V ∩U relative to the subspace topology of U . If V is convex and contains zero,
its gauge function is defined as ∥ν∥V := inf{t > 0 : ν ∈ tV}. For a family {Vi}i∈I , we define

⊕
i∈I Vi

6



to be the closure of {
∑

i∈I νi | νi ∈ Vi, νi = 0 for all but finitely many i}. We use id(·) to denote the
identity function. A function is called closed if its epigraph is closed, i.e., it is lower-semicontinuous.
Given two vectors x, y, we use x⊗ y := xy⊺ to denote the tensor product and x⊗k for the k-tensor
product using the same x. Given any matrix A, vec(A) denotes the vectorization.

2 Optimal Reweighting Problem

We focus on the optimization problem minx∈X f(x, ξ) where X is the solution space and ξ is a
random vector from some underlying probability space (Ξ̃, F̃ , P̃). We use P with a support Ξ, called
the nominal measure, to denote some empirical probability measure of the unknown true measure P̃,
and use fx to denote the random variable fx(ξ) = f(x, ξ), termed the cost distribution.

Assumption 1 (Space Regularity). Throughout the paper, we assume the following

1. Ξ ⊆ Rn is Polish and closed, and Ξ ⊇ Ξ̃;

2. P is fully supported on Ξ.

We do not pose other restrictions on the type of Ξ, which can be continuous, discrete, or mixed.
The modeling choice Ξ ⊇ Ξ̃ is standard: robust formulations typically posit a design support
that covers all plausible realizations. Although Assumption 1.2 differs from those used in data-
driven DRO, it primarily serves as a technical device for analytical convenience. To the best of
the authors’ knowledge, a wide range of reformulations in existing robustness paradigms can be
recovered under this setup (see Section 3), including those based on discrete nominal distributions
(Corollary 8).

2.1 Gauge Set

This subsection provides the basic definition and properties of gauge sets. We begin with the
following definition.

Definition 1 (Gauge Set). A gauge set is any convex subset V ⊆ L2(P) that contains 0 as a relative
interior in the subspaceR0 := {w ∈ L2(P) | ⟨1, w⟩ = 0}, i.e., 0 ∈ intR0(V ∩R0). For any ν ∈ L2(P),
the gauge function induced by V is defined as ∥ν∥V := inf{t > 0 | ν ∈ tV}. We define the set of
reweighting functions asR(P) := {ν ∈ L2(P) | ν ≥ 0, ⟨1, ν⟩ = E[ν] = 1}. We further define the set of
induced probability measures with a variable center w as

PϵV,w := {νP ∈M(Ξ) | ν ∈ w + ϵV, ⟨1, ν⟩ = 1, ν ≥ 0}

and denote by PϵV,w its weak∗ closure inM(Ξ). When the center is 1, we write PϵV := PϵV,1.

The constraint in the above problem defines a “V-shaped ϵ-ball” around the nominal reweighting
1 (see Statement 4 in Proposition 1). The requirement of containing 0 as a relative interior in R0

has two implications: the gauge function is continuous when restricted to R0, and it allows the
nominal 1 to be perturbed in every direction within the subspaceR0 corresponding to probability
reweightings. When the gauge set V is symmetric (ν ∈ V ⇐⇒ −ν ∈ V), full-dimensional, and
bounded, then ∥ · ∥V is equivalent to a norm. Thus, the gauge function introduces a more liberal
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notion of length, using V as the “unit ball” for measurement, a concept commonly introduced and
applied in convex analysis [21, 44] and the gauge optimization literature [2, 24, 25]. In particular,
without the boundedness, we call the gauge function a seminorm, allowing nonzero elements
to have zero length; without the full-dimensionality, we term the gauge function a pseudonorm,
allowing elements to have infinite length. The following proposition summarizes basic properties
of the gauge sets used throughout the paper. We include the derivations for completeness, as our
notion of gauge sets differs slightly from the classical definition: we do not assume closedness of V ,
and instead require that 0 lies in the relative interior of V with respect toR0.

Proposition 1. The following relations hold for any given gauge set V ⊆ L2(P):

1. ∥ϵν∥V = 0 when ϵ = 0, and equals ϵ∥ν∥V for every ϵ > 0.

2. ∥ν + w∥V ≤ ∥ν∥V + ∥w∥V .

3. Given any closed subspace U , if 0 ∈ intU (V ∩ U), then ∥ · ∥V is Lipschitz continuous on U , and
∥ν∥V = ∥ν∥clU (V∩U) for every ν ∈ U .

4. ϵV ⊆ {ν ∈ L2(P) | ∥ν∥V ≤ ϵ} ⊆ ϵV for every ϵ > 0.

5. ∥ · ∥V is convex, and is closed if V is.

6. V = V◦◦.

7. ker(∥ · ∥V) = rec(V).

8. ∥w∥V◦ = supν∈V ⟨w, ν⟩.

9. For every w ̸= 0, ∥w∥V = 0 implies ∥w∥V◦ =∞.

10. If w ∈ V⊥, ∥w∥V◦ = 0, and ∥w∥V =∞ if w ̸= 0.

2.2 Optimal Reweighting Problem

Given a gauge set V and radius ϵ ≥ 0, we define the associated optimal reweighting problem as

zϵV := sup
ν(·)∈R(P)

⟨fx, ν⟩ (4a)

s.t. ∥ν − 1∥V ≤ ϵ. (4b)

To establish the duality results in the subsequent section, we need some technical pieces to be
established. The following lemma introduces the construction of extended gauge set that preserves
the optimal value.

Lemma 1. For every gauge set V , the extended gauge defined as Ṽ := (V ∩ R0) +R⊥
0 satisfies (i) Ṽ

contains 0 as an interior in L2(P), (ii) zϵV = zϵṼ for every ϵ ≥ 0.

Throughout, either of the following two types of regularity conditions will be imposed on a
given optimal reweighting problem to serve as a light-tail assumption in the DRO literature [26, 37].
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Assumption 2 (Gauge Regularity). For a given optimal reweighting problem with nominal P,
gauge V , radius ϵ, and a cost function fx, we assume (i) fx is continuous on Ξ, and (ii) there exists
some ϵ′ > ϵ and a finite-valued, closed, and coercive function Φ ≥ 0 (i.e., Φ(ξ)→∞ as ∥ξ∥ → ∞)
such that one of the following two conditions is satisfied:

• Type-I: |fx| ≤ α for some α ∈ (0,∞), and supQ∈Pϵ′V
EQ[Φ] <∞; or

• Type-II: |fx| ≤ α+ βΦ for some α, β ∈ (0,∞), and supQ∈Pϵ′V
EQ[Φ

1+η] <∞ for some η > 0.

Either form of gauge regularity is sufficient for our subsequent analysis, reflecting a trade-off
between enforcing bounds on fx and controlling tails via the auxiliary function Φ. In particular,
when Ξ is compact, both types are satisfied. Type-I assumes that fx is bounded, implying uniform
tightness of Pϵ′V (Lemma 2). Type-II drops the boundedness requirement on fx, allowing heavier
tails, and instead imposes a stronger light-tail condition on Pϵ′V . The next lemma summarizes the
consequences of gauge regularity.

Lemma 2. For the given ϵ′ from Assumption 2, Type-I regularity entails that for every ϵ ≤ ϵ′:

(i) supQ∈PϵV
EQ[Φ] <∞,

(ii) PϵV is uniformly tight,

(iii) supQ∈PϵV
EQ[fx] <∞,

(iv) Given ϵ < ϵ′, under the extended gauge Ṽ , there exists some δ > 0 such that ∥w − 1∥ ≤ δ implies
PϵṼ,w is uniformly tight.

Type-II regularity additionally entails that (v) for every ϵ ≤ ϵ′, supQ∈PϵV
EQ[ΦIΦ>M ]→ 0 as M →∞.

Robustness models that are based on distributions absolutely continuous with respect to P, such
as coherent risk measures and ϕ-divergence DRO, are clearly included in the gauge set framework.
For ambiguity sets defined directly inM(Ξ), such as moment-based and Wasserstein DRO, the
following proposition shows that (4) is value-equivalent to the corresponding optimization over its
probability measure closure under Assumption 1 and 2.

Lemma 3. The functional Q 7→ ⟨fx,Q⟩ is weak∗-continuous on PϵV . Consequently, let zϵV be the optimal
value of (4), the following identity is satisfied,

zϵV = sup
Q∈PϵV

⟨fx,Q⟩ .

This proposition guarantees that as long as worst-case measures can be approximated in
the weak∗ sense by distributions from PϵV , the corresponding optimization problems are value-
equivalent under Assumption 1 and 2. In particular, the full support Assumption 1.2 allows for the
weak∗ approximation of measures that are not absolutely continuous with respect to P.
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2.3 Dual of the Optimal Reweighting Problem

To derive the dual of (4), we follow the conjugate duality framework introduced in [16, 46] for
generating and analyzing dual problems. Given a convex primal problem infx f(x) with a properly
constructed convex perturbation function F (x, u) satisfying F (x, 0) = f(x), the dual problem can
be produced as supy −F ∗(0,−y) where F ∗ is the convex conjugate of F . A comprehensive list of
regularity conditions for strong duality can be found in the paper [16]. Most of these conditions are
designed to guarantee two aspects simultaneously: (i) the primal and dual problems share the same
optimal value; (ii) both problems can attain optimality. Since our main interest is to enforce (i) for
solution robustness, the following definition and proposition will be used for duality derivation.

Definition 2 (Quasi-Strong Duality). Given a primal problem infx f(x) and its dual supy g(y), we
say the quasi-strong duality holds if −∞ < infx f(x) = supy g(y) < +∞, while both optimal
solutions may not exist.

Proposition 2 ([16, p. 11, Theorem 1.4]). Given that the perturbation function F : X × U → R ∪ {±∞}
is proper and convex, the quasi-strong duality holds if and only if the infimal value function ϕ(u) :=

infx∈X F (x, u) is finite at 0 and lower-semicontinuous at 0.

Using conjugate duality, the next theorem derives the dual problem of (4). The main technical
challenge is that the strong duality may not hold, which means none of the strong duality conditions
can be directly applied. Instead, we need to prove the quasi-strong duality using Proposition 2.

Theorem 1. The quasi-strong duality holds for the following dual problem of (4)

inf
α∈R,w(·)∈L2(P)

α+ EP[w] + ϵ∥w∥V◦ (5a)

s.t. α+ w ≥ fx. (5b)

Remark 1. The dual problem always provides an upper bound on the primal value by weak duality,
irrespective of any continuity or semicontinuity of fx. Hence, the dual formulation can be used as a
tractable upper-bounding relaxation of the optimal reweighting problem; additional regularity of
fx in Assumption 2 is only needed to ensure the exact value equivalence.

This reformulation provides an intuitive dual interpretation. The objective function evaluates
the expected value of the upper approximation α + w, alongside a penalty on the magnitude of
w gauged by the polar set V◦. Thus, this result explicitly links the distance and regularization
perspectives, enabling robustness to be designed from one side while yielding a dual interpretation
via gauge set computation.

3 Gauge Set Design in Existing Frameworks

Through the gauge set reweighting perspective, this section explores existing robustness paradigms,
including general CRM, CVaR, risk-neutral SP, RO, MDRO, WDRO, and ϕ-divergence DRO, to
gain insights into gauge set design patterns. Some results presented here rely on technical tools for
gauge set manipulation, which will be fully developed in Section 4 and are referenced throughout
this section as needed.
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3.1 Gauge Set Design in Coherent Risk Measures

A CRM is a function ρ : L2(P)→ R that satisfies several axioms to quantify a certain type of risk on
cost distributions [4, 50]. In this section, we prove that any CRM can be equivalently recast as a
gauge set reweighting problem (4).

According to [4] and [47], every CRM adopts a dual representation ρ(fx) = supν∈Q ⟨fx, ν⟩ for
some convex-closed subset Q ⊆ R(P), where Q is called the risk envelope of ρ. Moreover, [4] has
shown a one-to-one correspondence between risk envelopes Q and CRMs. Let Q := Q̃ ∩ R(P) for
some convex and closed set Q̃ ⊆ L2(P). Without loss of generality, we may assume that the nominal
reweighting 1 ∈ Q, or equivalently, redefine the reference measure as P := ν0P for some ν0 ∈ Q.
Then, the following theorem proves that every risk envelope Q can be equivalently described by
some gauge set V .

Proposition 3. Every CRM with a risk envelope Q := Q̃ ∩ R(P) is equivalent to (4) under the gauge set
V = Q̃ − 1 with a radius ϵ = 1. In particular, when Q̃ is represented as {ν ∈ L2(P) | g(ν) ≤ 0} for some
convex-closed function g : L2(P)→ Rm, the polar gauge set is

V◦ = (Q̃ − 1)◦ =

{
w ∈ L2(P)

∣∣∣∣ infγ≥0
⟨γ, g(·)⟩∗ (w)− ⟨1, w⟩ ≤ 1

}
where ⟨γ, g(·)⟩∗ is the convex conjugate of the map ν 7→ ⟨γ, g(ν)⟩.

An immediate implication is the following explicit form for a general CRM.

Corollary 1. Given a CRM ρ with the risk envelope Q := Q̃ ∩ R(P) such that Q̃ := {ν | g(ν) ≤ 0} from
some convex-closed g satisfying g(1) ≤ 0, we have

ρ(fx) = inf
γ≥0,α,w(·)

{α+ ⟨γ, g(·)⟩∗ (w) | α+ w ≥ fx} ,

where ⟨γ, g(·)⟩∗ is the convex conjugate of the map ν 7→ ⟨γ, g(ν)⟩.

3.2 Gauge Set Design in CVaR

For general CRMs, the primal and dual gauge sets are defined abstractly through the representation
function g. For specific CRMs such as CVaR, the resulting gauge set is more geometrically intuitive.

In CVaR optimization [48], the β-CVaR is the conditional expectation of the upper (1− β)-tail
of the cost distribution. Constraint (4b) can then be written as ν ≤ (1 − β)−1, implying that the
reweighting function can increase the original distribution by a factor of at most (1− β)−1. In this
design, the worst-case distribution will move all the probability mass to the upper (1−β)-percentile,
which recovers the CVaR interpretation. The following proposition investigates this constraint
under the gauge set perspective.

Proposition 4. CVaR constraint ν ≤ 1/(1 − β) is equivalent to ∥ν − 1∥Vβ
≤ 1 with Vβ := {ν | ν ≤

β(1− β)−1}. The corresponding polar gauge set is V◦β = {w ≥ 0 | β(1− β)−1E[w] ≤ 1}. Then, the gauge
function is defined as ∥w∥V◦

β
= β(1 − β)−1E[w] if w ≥ 0 and equals +∞ otherwise. This recovers the

standard objective function for CVaR optimization as infα α+ (1− β)−1E[(fx − α)+].

In this case, the primal gauge set Vβ is designed as a shifted non-negative cone. The upper
bound is deliberately designed to ensure the cut-off point is exactly at the (1− β)-percentile.
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3.3 Gauge Set Design in Risk-Neutral SP and RO

Risk-neutral SP and RO represent opposite ends of robustness: the former optimizes average
performance, while the latter guards against the worst case. In their corresponding gauge-set
formulations, this contrast appears through the V-ball radius ϵ: setting ϵ = 0 in SP restricts
reweighting to the nominal function 1, whereas a sufficiently large ϵ in RO renders constraint (4b)
inactive. Achieving this requires certain basic properties in the design of V .

Definition 3 (Bounded & Absorbing Set). V ⊆ L2(P) is bounded if there exists some L < +∞ such
that ∥ν∥ ≤ L for every ν ∈ V ; it is absorbing if the origin is an interior point.

Proposition 5. If V is bounded, then ker ∥ · ∥V is zero; if V is absorbing, then cone(V) = L2(P). Therefore,
when V is bounded, (4) reduces to SP with ϵ = 0; when V is absorbing, (4b) becomes redundant when
ϵ→∞ and the problem (4) reduces to RO.

Such effects are also carried over to the dual problem through the polar gauge set V◦. The
following proposition reveals the dual relationship between bounded and absorbing sets.

Proposition 6. V◦ is absorbing if and only if V is bounded.

3.4 Gauge Set Design in DRO with Moment-based Ambiguity Sets

Moment-based ambiguity sets have been introduced in the DRO literature to hedge against ambi-
guity around different moment functions of the nominal distribution, termed MDRO [20]. For a
given nominal distribution P, the main idea is to construct certain deviation ranges for different
moment functions, e.g., the expectation and covariance matrix of P. Intuitively, these ranges can
also be interpreted as some gauge on the distance between the reweighting function ν and the
nominal weight 1. The following definition generalizes this idea to arbitrary degrees of moment.

Definition 4 (Generalized Moment Gauge Sets). Let Ω : Rn → Rn be some injective affine trans-
formation and Tm : Rn → (Rn)⊗m be the m-th order tensor product defined as Tm(ξ) = ξ⊗m with
the (i1, i2, . . . , im)-th entry equal to ξi1ξi2 · · · ξim , then the m-th moment gauge set can be defined
as Vm := {ν | ∥EνP[Tm ◦ Ω]∥N ≤ 1}, where Tm ◦ Ω is a random tensor that can be realized at each
scenario ξ0 with Tm ◦ Ω(ξ0), and ∥ · ∥N is some compatible norm in the tensor space (Rn)⊗m with
N being the corresponding unit norm ball.

The following proposition shows that the classic MDRO constraints can indeed be expressed in
terms of these moment gauge sets.

Proposition 7. Denoting µ = E[ξ] and Σ = E[(ξ − µ)(ξ − µ)⊺] as the expectation and covariance matrix
of the nominal distribution P and id(·) as the identity function, we have the following equivalence,

(EνP[ξ]− µ)⊺Σ−1(EνP[ξ]− µ) ≤ γ1 ⇐⇒ ∥ν − 1∥V1 ≤
√
γ1,

EνP[(ξ − µ)(ξ − µ)⊺] ⪯ γ2Σ⇐⇒ ∥ν − 1∥V2 ≤ γ2 − 1,

where the affine operator Ω1 for V1 is defined as Ω1 := Σ−1/2 = Λ−1/2Q for the eigenvalue decomposition
Σ = Q⊺ΛQ with 2-norm on Rn as the compatible norm; Ω2 for V2 is defined as Ω2 := Σ−1/2(id− µ) with
spectral norm ∥A∥ = σmax(A) extracting the largest singular value as the compatible norm.
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Therefore, MDRO also falls into the gauge set reweighting problem where (4b) is realized with
multiple moment gauge sets. Using Corollary 6 (in Section 4) for gauge set intersection, we can
directly obtain the dual formulation. The following theorem shows that these moment gauge sets
are quite convenient to analyze. We use J := [n][m] to denote the set of multi-indices of the tensor
space (Rn)⊗m.

Theorem 2. For every moment gauge set Vm, the polar set V◦m induces a pseudonorm and can be writ-
ten as V◦m = {⟨X,Tm ◦ Ω⟩ | X ∈ N ◦}, where ⟨X,Tm ◦ Ω⟩ ∈ L2(P) is defined as ⟨X,Tm ◦ Ω⟩ (ξ) =∑

J∈JXJ [Tm ◦ Ω(ξ)]J . The corresponding gauge of w ∈ L2(P) can be explicitly computed as

∥w∥V◦
m
=

{
∥[w]Tm◦Ω∥N ◦ , if w ∈ span(Tm ◦ Ω)
+∞, otherwise,

where [w]Tm◦Ω := argminA{∥A∥N ◦ | ⟨A, Tm ◦ Ω⟩ = w} is the coefficient tensor with respect to Tm ◦ Ω,
and ∥ · ∥N ◦ is the dual norm of ∥ · ∥N . Moreover, Vm induces a seminorm and can be decomposed as
V ′m + (V ′m)⊥ with V ′m = {⟨X,Tm ◦ Ω⟩ | X ∈ C−1N} and (V ′m)⊥ the largest subspace in Vm orthogonal to
V ′m, where C is the symmetric 2-tensor on (Rn)⊗m defined by [C]JJ ′ = ⟨[Tm ◦ Ω]J , [Tm ◦ Ω]J ′⟩P for every
index (J, J ′) ∈ J2. In particular, C is the identity tensor if entries in Tm ◦ Ω form an orthonormal set.

This theorem indicates that the polar gauge set V◦m is obtained by lifting the polar norm ball N ◦

into L2(P) through the polynomials from Tm ◦ Ω. In particular, V◦m associated with the classic first-
moment constraint is an L2-ellipsoid within the subspace of linear functions, and the one associated
with the second-moment constraint induces a spectral-norm-ellipsoid within the subspace spanned
by some second-degree polynomials. We also note that polynomials in Tm ◦ Ω are not necessarily
linearly independent, thus we define the coefficient tensors to be the ones with the smallest size
under ∥ · ∥N ◦ . With these pseudonorms used in (5), only polynomial functions are allowed for
upper approximation, which leads to the following corollary.

Corollary 2. With the first m-th moment constraints ∥ν − 1∥Vi ≤ ϵi for i ∈ [m] in (4b), the dual problem
(5) is a degree-m polynomial programming

inf
w(·)∈Pm

E[w] +
∑
i∈[m]

ϵi ∥[w]Ti◦Ωi∥N ◦
i

∣∣∣∣∣∣ w ≥ fx
 , (6)

where Pm is the space of polynomials of degree less than or equal to m.

This result echoes the equivalence between MDRO and polynomial programming discovered by
Nie et al. [41]. We note that if certain lower-order moment constraints are omitted prior to the m-th
moment constraint, then the chosen functional basis does not span the entire space Pm. Instead, it
spans only the subspace generated by the functional elements {Ti ◦Ωi}. Another interesting design
of MDRO is that V◦i ’s induce pseudonorms so that only specific types of functions (polynomials in
this case) can be used for upper approximation, which has the potential to be generalized for other
function bases (see Example 4 and 9).
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3.5 Gauge Set Design in DRO with Wasserstein Distance-based Ambiguity Sets

Another popular method is to perturb nominal distributions within a certain range measured by
Wasserstein distance for gaining solution robustness [26, 40]. Essentially, the Wasserstein p-distance
Wp(µ, ν) := infπ∈Π(µ,ν)(Eπ[d(ξ, ξ′)p])1/p defines a metric on the space of probability measures, where
d(·, ·) is a non-negative and closed cost function and Π(µ, ν) contains all the joint distributions with
marginals µ and ν. It is well known that the following duality holds for sufficiently general spaces,
which we adapt to the Euclidean spaces.

Proposition 8 (Villani [55, p. 19, Theorem 1.3]). Suppose c : Ξ× Ξ→ R+ ∪ {+∞} is a closed function,
then we have Wp(µ, ν) = supϕ(ξ)+ψ(ξ′)≤d(ξ,ξ′){Eµ[ϕ]+Eν [ψ]}, where ϕ and ψ are continuous and bounded
functions.

3.5.1 Gauge Sets of Wasserstein 1-Distance

When restricting to the probability measures inR(P), the Wasserstein 1-distance directly provides
the gauge set interpretation according to the following proposition. We omit the proof as it directly
follows the Kantorovich-Rubinstein theorem [22].

Proposition 9. Given P and νP, the associated Wasserstein 1-distance is equal to

W1(P, νP) = sup
w∈Lip1

⟨w, ν − 1⟩ = ∥ν − 1∥Lip◦1
,

where Lip1 is the set of non-expanding functions.

Hence, forW1 metric, the distance constraint (4b) becomes ∥ν−1∥Lip◦
1
≤ ϵ, and the dual problem

(5) uses the Lip1 gauge set to penalize the upper approximator w. We note that Lip◦
1 is not a ball

defined on the probability measures anymore; instead, it is the original Wasserstein ϵ-ball centered
at 1 translated to the center 0. The following theorem provides more detailed information.

Proposition 10. The gauge set V1 = Lip◦1 can be written as {ν | (ν + 1) ∈ R(P),W1((ν + 1)P,P) ≤ 1}.
It induces a pseudonorm with span(1) as its orthogonal space. The polar gauge set Lip1 induces a seminorm
with span(1) as its kernel. In particular, ∥w + α∥Lip1 = ∥w∥Lip1 for every α ∈ R.

This analysis on the W1 distance will later enable the derivation of the general Wp distance. One
immediate result is the following dual problem with respect to the W1 distance constraint.

Corollary 3. Given the constraint ∥ν − 1∥Lip◦1
≤ ϵ, the dual problem (5) becomes

inf
w(·)

{
E[w] + ϵ∥w∥Lip1

∣∣∣ w ≥ fx} . (7)

This formulation is an infinite-dimensional problem. Two different finite-dimensional solution
methods will be introduced in Section 5.
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3.5.2 Gauge Sets of Wasserstein p-Distance

Using a similar idea as in the W1 distance, we define the gauge set for the Wp distance as follows.

Definition 5. Let Vp,ϵ := {ν ∈ L2(P) | (ν + 1) ∈ R(P),Wp((ν + 1)P,P) ≤ ϵ}, the constraint (4b)
under the Wp distance can be realized as ∥ν − 1∥Vp,ϵ ≤ 1.

Since Wp also defines a metric on the probability simplex, the gauge set Vp,ϵ also shares the
same properties as Lip◦

1 in Proposition 10: it is the shifted Wasserstein p-ball centered at the origin
and is orthogonal to 1. The following theorem provides an exact description of V◦p,ϵ.

Proposition 11. The polar set V◦p,ϵ is the following

V◦p,ϵ =
{
w ∈ L2(P)

∣∣∣∣ { inf
β≥0

〈
1,−w(·)− inf

ξ
{β(d(ξ, ·)p − ϵp)− w(ξ)}

〉}
≤ 1

}
.

We note that the term inside the inner product is the difference between−w(ξ′) and its smoothed
version infξ β(d(ξ, ξ

′)p − ϵp)− w(ξ), i.e., the infimum convolution of−w(·) with the smoothing term
β(d(·, ξ′)p − ϵp). Then, the expectation of this difference measures a certain type of smoothness
of w. We call this quantity the type-p smoothness of w. Hence, V◦p,ϵ contains functions with their
type-p smoothness bounded by one. The corresponding dual problem (5) can be derived in the
next corollary, which recovers the general results obtained by [26].

Corollary 4. Given Wasserstein p-distance ∥ν − 1∥Vp,ϵ ≤ 1, the dual problem (5) becomes infβ≥0 ϵ
pβ −

⟨1, infξ {βd(ξ, ·)p − fx(ξ)}⟩.

3.6 Gauge Set Design in DRO with ϕ-Divergence-based Ambiguity Sets

Given some convex-closed function ϕ : [0,∞) → R with additional properties: (i) ϕ(1) = 0, (ii)
0ϕ(a/0) = a limt→∞ ϕ(t)/t for a > 0, and (iii) 0ϕ(0/0) = 0, the corresponding ϕ-divergence-based
worst reweighting problem is defined by realizing (4b) as E[ϕ(ν)] ≤ ϵ, where ϕ acts on ν in an
entry-wise manner by ϕ(ν)(ξ) = ϕ(ν(ξ)) [9]. The following theorem provides the gauge sets design
with respect to ϕ-divergence.

Proposition 12. Given ϕ-divergence-based constraint E[ϕ(ν)] ≤ ϵ, the associated constraint (4b) can be
written as ∥ν − 1∥Vϕ,ϵ

≤ 1 for the primal gauge set Vϕ,ϵ = {ν | E[ϕ(ν + 1)] ≤ ϵ}. The associated polar
set in (5) is V◦ϕ,ϵ = {w | infγ≥0 ⟨1, γ(ϕ∗(w/γ) + ϵ)− w⟩ ≤ 1} where ϕ∗ is the convex conjugate of ϕ and
0ϕ∗(w/0) denotes the convex indicator function δ0(w).

Thus, for any given w, we consider the value infγ≥0 ⟨1, γ(ϕ∗(w/γ) + ϵ)− w⟩ as a specific type of
penalty on w, which we call the ϕ∗-penalty of w. Then, the following corollary provides the dual
formulation (5) with respect to ϕ-divergence.

Corollary 5. Given Vϕ,ϵ as the gauge set in (4b), the dual problem (5) becomes the following

inf
α,γ≥0,w(·)

{α+ E[γϕ∗(w/γ)] + ϵγ | α+ w ≥ fx} , (8)

where ϕ∗ is the convex conjugate of ϕ and 0ϕ∗(w/0) = δ0(w). In particular, when ϕ is strictly convex and
continuously differentiable, ϕ∗ can be directly computed as ϕ∗(w) = w · (ϕ′)−1(w)− ϕ ◦ (ϕ′)−1(w).
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This corollary provides an intuitive interpretation for DRO with ϕ-divergence-based ambiguity
sets. In the primal problem, the function ϕ is designed to measure the divergence of ν relative to
the nominal reweighting function 1; in the dual problem, it induces the conjugate penalty ϕ∗ and
uses its perspective function to penalize the upper approximation functional w in an entry-wise
fashion. In the next section, we will develop technical tools for manipulating multiple gauge sets,
facilitating a more flexible approach to robustness design.

4 Gauge Set Design Methods

From Section 3, we observe that various existing robustness solution schemes can be imposed
by carefully designing the associated gauge sets. To enable systematic and flexible robustness
design, in this section, we develop three technical tools for manipulating gauge sets: (i) an algebraic
framework for combining gauge sets, (ii) a decomposition theorem that enables fine-grained design
of penalty schemes using selected functional bases, and (iii) a gauge composition theorem for
recursively applying multiple robustness requirements.

4.1 Operations on Gauge Sets and Gauge Functions

We begin with some basic properties of gauge sets and gauge functions, providing a convenient
toolset for designing gauge sets, as will be shown in later examples. We present the main results in
the following two theorems.

Theorem 3 (Algebra of Gauge Sets and Functions). Let {Vi}i∈I be a (possibly infinite) family of convex-
closed sets, each of which contains the origin, and let In ⊆ I be an arbitrary finite index subset. We define
the generalized simplex as ∆ :=

{
λ ∈

⊕
i∈I R+

∣∣ ⟨1, λ⟩ = 1
}
. Then, we have the following results.

1. (ϵV)◦ = V◦/ϵ for every ϵ > 0.

2.
(⋂

i∈I Vi
)◦

= cl conv
(⋃

i∈I V◦i
)
.

3. (
⊕

i∈I Vi)◦ = cl
(⋃

λ∈∆
⋂
i∈I λiV◦i

)
.

4. ϵ∥ν∥V = ∥ϵν∥V = ∥ν∥V/ϵ for every ϵ > 0.

5. ∥ν∥⋂
i∈I Vi

= supi∈I ∥ν∥Vi .

6. ∥ν∥⋃
i∈I Vi

= infi∈I ∥ν∥Vi .

7. ∥ν∥conv(⋃i∈I Vi) = inf
In⊆I,ν=

∑
i∈In

νi

∑
i∈In ∥νi∥Vi .

8. ∥ν∥⊕
i∈I Vi

= inf
In⊆I,ν=

∑
i∈In

νi
maxi∈In ∥νi∥Vi .

9. ∥w∥⋃
λ∈∆

⋂
i∈I λiVi

=
∑

i∈I ∥w∥Vi , when I is finite.

This theorem enables the computation of the polar gauge set from any compounded primal
gauge set and simplifies the polar gauge function representation. Similarly, the following theorem
provides a method to express gauge functions in a more specific form.

16



Theorem 4. Given any function g that satisfies (i) Non-negativity: g(w) ≥ 0 for all w ∈ L2(P) and (ii)
Positive homogeneity: g(αw) = αg(w) for every α ≥ 0, and any gauge set V := {w | g(w) ≤ ϵ} with
ϵ > 0, we have ∥w∥V = g(w)/ϵ.

4.1.1 Application of Gauge Algebra I: Intersection

Combining multiple distance metrics through intersection could reduce the solution conserva-
tiveness. The following corollary demonstrates how this intersection in the primal problem (4)
influences the dual penalization scheme.

Corollary 6. Given constraint (4b) as ∥ν − 1∥Vi ≤ ϵi for all i ∈ [m], the dual problem becomes

inf
α,wi(·)

α+
∑
i∈[m]

EP[wi] +
∑
i∈[m]

ϵi∥wi∥V◦
i

∣∣∣∣∣∣ α+
∑
i∈[m]

wi ≥ fx

 . (9)

Moreover, the quasi-strong duality holds if Vi’s are convex-closed and contain the origin.

According to this corollary, using the intersection of multiple distance constraints in the primal
problem equips the dual problem with multiple functional components for upper approximating
fx. Then, the objective function measures the expectation of the approximation and applies a
size penalty on each component functional wi via the gauge set V◦i . We can consider that each
component wi encodes a certain feature of w. Hence, using intersection, we can penalize multiple
aspects of the upper approximator w. We use the following example for illustration.

Example 1 (Combination of Multiple Ambiguity Sets I). When the underlying distributional
ambiguity arises from multiple sources, we may want to combine multiple distributional distance
metrics, such as WDRO with ϕ-divergence [15, 35] or multiple Wasserstein ambiguity sets, to
achieve solution robustness against various sources. For instance, the following reweighting
problem

sup
ν(·)∈R(P)

{
⟨fx, ν⟩

∣∣∣ ∥ν − 1∥Lip◦
1
≤ ϵ1, ∥ν − 1∥Vϕ,ϵ2

≤ 1
}

imposes that the reweighting function ν should not be too far away from the nominal reweighting
function 1 under both the Wasserstein 1-distance and ϕ-divergence metrics. Then, the primal gauge
set is the intersection ϵ1Lip◦

1 ∩ Vϕ,ϵ2 with a radius of one. Using Corollary 6, we immediately obtain
the following dual problem

inf
α,w1(·),w2(·)

{
α+ E[w1 + w2] + ϵ1∥w1∥Lip1

+ ∥w2∥V◦
ϕ,ϵ2

∣∣∣ α+ w1 + w2 ≥ fx
}
,

where two parts w1 and w2 are under distinct penalties. Moreover, due to the generality of our
framework, the above duality result remains valid for a broad range of ambiguity sets that can be
described using gauge sets. △

4.1.2 Application of Gauge Algebra II: Summation

Combining gauge sets through summation provides protection against multiple uncertainty sources.
For example, an optimal solution obtained under the sum of Wasserstein and KL-divergence gauge
sets is simultaneously certified to be robust against both types of distributional perturbations. The
following corollary reveals the effect of this operation on the gauge set design.
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Corollary 7. Given V =
∑

i∈[m] βiVi in (4b) for some scalar βi ≥ 0, the dual problem becomes

inf
α,w(·)

α+ EP[w] + ϵ
∑
i∈[m]

βi∥w∥V◦
i

∣∣∣∣∣∣ α+ w ≥ fx

 . (10)

Moreover, the quasi-strong duality holds if Vi’s are convex-closed and contain the origin.

According to Corollary 7, when adding multiple primal gauge sets, we are also adding their
penalty in the dual problem (5). Thus, it is possible to design multiple gauge sets Vi with distinct
weights βi to enable a sophisticated robustness solution scheme. In particular, the convex com-
bination of reweighting problems can be seen as a special case of gauge set summation. We use
the following examples to illustrate the utility of gauge set summation for different robust design
purposes.

Example 2 (Combination of Multiple Ambiguity Sets II). As an alternative to Example 1, we can
also combine multiple ambiguity sets from the dual perspective:

inf
α,w(·)

{
α+ E[w] + ϵ1∥w∥Lip1

+ ∥w∥V◦
ϕ,ϵ2

∣∣∣ α+ w ≥ fx
}
,

which penalizes the upper approximator w based on its Lipschitz constant as well as the ϕ∗-penalty.
Applying Corollary 7, we get the following primal problem

sup
ν(·)∈R(P)

{
⟨fx, ν⟩

∣∣∣ ∥ν − 1∥ϵ1Lip◦
1+Vϕ,ϵ2

≤ 1
}

where the corresponding primal gauge set is the sum ϵ1Lip◦
1 + Vϕ,ϵ2 . Hence, the distance interpreta-

tion is that the reweighting function ν should be near 1 under this summed gauge set. This method
provides a more robust solution than the gauge set intersection as shown in Example 1, since the
summation is a superset of the intersection. Again, this duality result also holds for other gauge
sets, such as multiple Wasserstein balls [49]. △

Example 3 (Flexible Tail-Behavior Selection & Total Variation Gauge). Utilizing multiple gauge
sets, we can extend the idea of CVaR to design flexible tail-behavior selectors as follows.

inf
x∈X ,α

α+
∑
i∈[m]

ϵi∥(fx − α)+∥V◦
i
.

For instance, when some V◦i is Lip1, the optimal fx also concerns the Lipschitz constant at the tail
part. In contrast, when the polar gauge set is defined as

Osc1 :=

{
w

∣∣∣∣∣ 12
(
(sup
ξ∈Ξ

w(ξ)− inf
ξ∈Ξ

w(ξ)

)
≤ 1

}
,

the optimal solution fx seeks to minimize the oscillation of the objective, while the parameters ϵi
govern the trade-off between tail expectation and tail variation, enforcing smaller dispersion when
risks materialize. A direct computation shows that Osc1 is the polar of the total variation gauge

VTV :=
{
ν ∈ L2(P)

∣∣ ⟨1, ν⟩ = 0, ⟨1, |ν|⟩ ≤ 1
}
.

Indeed, any ν ∈ VTV admits the decomposition ν = ν+ − ν− with ⟨1, ν+⟩ = ⟨1, ν−⟩ = 0.5. Maximiz-
ing ⟨w, ν⟩ therefore assigns half the mass to supw and half to inf w, which confirms that Osc1 = V◦TV

(up to closure). △
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4.2 Gauge Set Decomposition

In MDRO and WDRO, we observe the dual relationship between seminorms and pseudonorms,
reflected through the associated primal and polar gauge sets. The following decomposition theorem
offers a more detailed characterization of this relationship, enabling the use of the function basis
enforcement technique to address other types of ambiguities.

Theorem 5 (Gauge Set Decomposition). For a closed gauge set V , we have the following decomposition

L2(P) = lin(V)⊕ V⊥ ⊕ ess(V),

where ess(V) := (lin(V)⊕ V⊥)⊥ is termed the essential subspace induced by V . Define V† := ess(V) ∩ V
to be the essential gauge set of V , then V and V◦ can be decomposed as

V = lin(V) + V†

V◦ = V⊥ +
(
V†
)◦
ess(V)

,

where (W)◦ess(V) := {w ∈ ess(V) | ⟨w, v⟩ ≤ 1 ∀v ∈ W} is the polar set relative to the essential subspace
ess(V) for anyW ⊆ ess(V). In particular, we have

lin(V◦) = V⊥, (V◦)† =
(
V†
)◦
ess(V)

, ess(V) = ess(V◦).

Moreover, V† is convex-closed and contains 0.

This depicts a more intuitive picture regarding the primal and polar gauge sets: the lineality
subspace and the orthogonal subspace associated with V will swap in its polar set V◦, and the
“essential” part of the gauge set V will be converted to its relative polar set in the essential subspace
ess(V). The following example illustrates one usage of this result.

Example 4 (Indicator Function Basis for Spatial Uncertainty). In this case, Ξ =
⋃
i∈I Ξi represents a

region that is partitioned into multiple districts. Based on historical data, different districts may
have different types of ambiguity. A simple scheme is to define the following polar gauge sets
based on the indicator functions basis V◦i := {riIΞi | |ri| ≤ 1}. Then, the dual problem becomes

inf
w(·)=

∑
i∈I riIΞi

{
α+ E[w] +

∑
i∈I

ϵi|ri|

∣∣∣∣∣ α+ w ≥ fx

}
.

Hence, every w ∈ V◦ is a piecewise function with each piece having a coefficient ri. Each piece also
has a distinct penalty ϵi. From the primal perspective, constraint (4b) becomes

|⟨ν − 1, IΞi⟩| = |E[(ν − 1)IΞi ]| ≤ ϵi ⇐⇒ νP(Ξi) ∈ [P(Ξi)− ϵi,P(Ξi) + ϵi], ∀i ∈ I.

That is, the spatial distributional ambiguity at each region i is modeled by the probability variation
ϵi from the nominal probability, providing an intuitive distance interpretation. △

We can further combine this indicator function basis with other penalty methods, as illustrated
in the next example.
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Example 5 (Heterogeneous DRO). Let {Ξ1,Ξ2} be a partition of the uncertainty space Ξ, and
suppose the data associated with Ξ1 are more sufficient than in Ξ2. Then, the user may want to
mitigate more distributional uncertainty over Ξ2 than Ξ1. Define Lip1

1 := {w · IΞ1 | w ∈ Lip1} and
Lip2

1 := {w · IΞ2 | w ∈ Lip1}, we can set up the following dual problem

inf
w(·)

{
E[w] + ϵ1∥w · IΞ1∥Lip1

1
+ ϵ2∥w · IΞ2∥Lip2

1

∣∣∣ w · IΞ1 + w · IΞ2 ≥ fx
}
.

This function combines two polar gauge sets according to Corollary 6. Since Lip1
1 does not contain

any functions that have nonzero values on Ξ2, these functions are prevented from usage since their
gauge would be infinity. Hence, w1 is a function that has zero values on Ξ2 and has a Lipschitz
penalty ϵ1 on the Ξ1 part. From the primal perspective, the associated distance constraints are
∥ν − 1∥(Lipi

1)
◦ ≤ ϵi for i ∈ {1, 2}. Thus, it first projects ν − 1 onto the Ξi part, then ensures that its

W1 distance is less than ϵi, realizing a heterogeneous penalty. Although such a modification does
not guarantee the global Lipschitz (the changing rate between points in Ξ1 and Ξ2 is not penalized),
we can add an additional term ϵ∥w1 + w2∥Lip1

to fine-tune the global Lipschitz if needed. △

4.3 Gauge Set Composition

When additional regularization is imposed on the worst-case distribution, the resulting formulation
involves a composition of gauge sets. The next theorem formalizes this recursive construction and
presents its explicit dual representation.

Theorem 6. Given m gauge sets satisfying Type-II regularity in Assumption 2, the composed primal
problem is

sup
ν1≥0

⟨1,ν1⟩P=1
∥ν1−1∥V1

≤ϵ1

sup
ν2≥0

⟨1,ν2⟩ν1P=1

∥ν2−1∥V2
≤ϵ2

· · · sup
νm≥0

⟨1,νm⟩ν1ν2···νm−1P
=1

∥νm−1∥Vm≤ϵm

〈∏
i∈[m]

νi, fx

〉
P

. (11)

Define CΦ(Ξ) := {w ∈ C(Ξ) | supξ∈Ξ |w(ξ)|/(1 + Φ(ξ)) < ∞} where C(Ξ) is the set of continuous
functions over Ξ. The associated dual problem is

inf
{αi,wi(·)}i∈[m]

∑
i∈[m]

(
αi + ϵi∥wi∥V◦

i

)
+ EP[w1]

s.t. αi + wi ≥ wi+1, ∀i ∈ [m],

where wm+1 = fx and wi ∈ CΦ(Ξ) for every i ∈ [m].

Given the optimal reweighting νi at level i, the next stage applies a new reweighting νi+1 to
the updated distribution

(∏
k≤i νk

)
P, yielding the composed reweighting problem above. An

illustrative example is provided below.

Example 6 (Tail Performance under Worst-Case Distribution). In distributionally robust risk opti-
mization, a decision-maker facing uncertain outcomes seeks to hedge against tail risk by optimizing
performance with respect to the worst-case distribution within a Wasserstein ambiguity set, thereby
ensuring reliability under potential model misspecification. This risk attitude can be represented
as a two-level composition of gauge sets: a Wasserstein gauge V1 := Lip1 with radius ϵ capturing
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distributional perturbations, and a CVaR gauge V2 := Vβ with radius 1 modeling tail sensitivity,
where both gauge sets Lip1 and Vβ are introduced in Section 3. According to Theorem 6, the
associated dual problem is given by

inf
α,w1(·), w2(·)

α+ EP[w1] + ϵ∥w1∥Lip1
+ ∥w2∥V◦

β

s.t. w1 ≥ w2,

α+ w2 ≥ fx.

By substituting the definitions of gauge sets, the formulation can be equivalently expressed as

inf
α,w(·)

α+ EP

[
w + β

1−β (fx − α)+
]
+ ϵ∥w∥Lip1

s.t. w ≥ (fx − α)+.

Finally, a finite-dimensional program can be obtained using either of the reformulation methods
introduced in the next section of computational approaches.

5 Computational Approaches

Both the decision variable w and the constraint set (5b) of the dual reweighting problem (5) are
indexed by the elements in Ξ. When Ξ contains only a finite number of scenarios, the problem
is often tractable with a finite number of variables and constraints. Otherwise, (5) is an infinite-
dimensional optimization. This section introduces two finite-dimensional approaches, namely
functional parameterization and envelope representation, to handle this challenge, generalizing solution
methods in the DRO literature.

5.1 Functional Parameterization

In practice, one often focuses on robustness with respect to a finite number of features (e.g.,
covariances, moments, or probabilities over selected regions). To formalize this, we introduce the
functional parameterization method.

Definition 6 (Functional Parameterization). Let ϕ = (ϕi)i∈[ℓ] be a collection of basis functions with
each ϕi ∈ L2(P). For any coefficient vector λ ∈ Λ where Λ ⊆ Rℓ is a convex-closed cone, denote
the linear combination by ⟨λ, ϕ⟩ :=

∑ℓ
i=1 λiϕi. The associated parametric functional subspace is

denoted by Λϕ := {⟨λ, ϕ⟩ | λ ∈ Λ}. Then, we define the parametric primal problem under ϕ as

sup
ν(·)∈R(P)

⟨fx, ν⟩ (12a)

s.t. ∥ν − 1∥conv(V∪Λ◦
ϕ)
≤ ϵ, (12b)

where Λ◦
ϕ is the polar cone of the induced cone Λϕ in L2(P).

We observe that (12) is always at least as robust as the original problem under the gauge V , as
it corresponds to a superset of the original primal gauge. In practice, explicitly constructing this
parametric primal gauge is unnecessary, since its semi-infinite dual admits a simple and tractable
representation, as shown in the following theorem.
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Theorem 7. When Λϕ is closed in span(ϕ), the dual associated with (12) is

zϕ,Λ := inf
λ∈Λ,α

α+ ⟨λ,EP[ϕ]⟩+ ϵ∥ ⟨λ, ϕ⟩ ∥V◦ (13a)

s.t. α+ ⟨λ, ϕ⟩ ≥ fx. (13b)

Otherwise, zϕ,Λ is an upper bound of the dual of (12).

Remark 2. Since Λ is closed in Rℓ and span(ϕ) is a finite-dimensional (hence closed) subspace of
L2(P), the set Λϕ can be viewed as the image T (Λ) under the linear map T (λ) := ⟨λ, ϕ⟩. Conse-
quently, Λϕ is closed in span(ϕ) if and only if T preserves closedness on Λ. This property holds, for
example, if Λ is polyhedral, or T is injective, or kerT ∩ Λ = {0}. When Λϕ is not closed in span(ϕ),
the above reformulation still provides a conservative (i.e., potentially larger) evaluation of fx.

This theorem enables flexible finite-dimensional parameterizations while preserving robustness.
For example, existing moment-based WDRO reformulations (e.g., elliptical reformulation in [37])
require specific nominal distributions and Wasserstein metrics for tractability, whereas our result
allows arbitrary choices of functional bases, nominal distributions, and robustness metrics. More-
over, when each ϕi is piecewise convex and fx is piecewise concave, the semi-infinite constraints
often admit a finite-dimensional dual reformulation.

Example 7 (Moment-Based Parameterization). Both the classical MDRO model [20] and the WDRO
model with an elliptical nominal distribution [37] employ variants of moment-based parameteriza-
tions with ϕ(ξ) = (ξ, ξ⊗2) to extract first- and second-moment information. The distinction between
these approaches lies in their choices of the nominal distribution P and the gauge set V . In MDRO,
P is interpreted as an arbitrary distribution characterized only by its mean µ and covariance Σ,
and V is the moment-based uncertainty set described in Proposition 7. In contrast, WDRO with
an elliptical nominal assumes P to be elliptical and uses a type-2 Wasserstein ball to construct the
primal gauge. The theorem above, however, provides a more general perspective where nominal
distribution and gauge sets can be independently and flexibly chosen. For example, one may take
ϕ(ξ) =

(
cos ξi, sin ξi

)
i∈[n] as the functional basis with guaranteed robustness. Moreover, each ex-

pected feature value EP[ϕi] can be computed analytically when available, or estimated via sampling
when closed-form expressions are unavailable.

Example 8 (Region-Based (Piecewise-Constant) Parameterization). The indicator-function basis
introduced in Example 4 induces a partition of the uncertainty space Ξ into regions {Ξi}i∈[ℓ] with
corresponding indicator functions IΞi . The resulting region-based parameterization is given by
ϕ(ξ) = (IΞi(ξ))i∈[ℓ]. Overall, this parameterization offers a principled approach to discretizing the
support of the ambiguity set and remains fully compatible with different choices of V and P.

Example 9 (Piecewise-Affine Parameterization). The region-based parameterization can be overly
coarse, as it captures only the distributional distance of the zeroth moment within each region. To
achieve finer control, we introduce the piecewise-affine parameterization defined as

ϕ(ξ) = (IΞi(ξ), ξjIΞi(ξ))i∈[ℓ],j∈[n]

In addition to the constant basis functions used previously, each new basis functional ξjIΞi(ξ)

encodes the first-moment information within region Ξi.
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w(ξ) = infξ′ θγ,w(ξ′),ξ′(ξ)

ξ1 ξ2 ξ3

ŵ(ξ) = mini θγ,w(ξi),ξi(ξ)

Figure 1: Illustration of the envelope functions under the setting V◦ = Lip1. Given a function w with
Lipschitz constant γ, each atomic envelope is defined as θγ,w(ξi),ξi(ξ) = w(ξi) + γ∥ξ − ξi∥, shown as dotted
lines centered at each sample ξi. Their envelope mini θγ,w(ξi),ξi(ξ) forms an upper approximation of w.

5.2 Lipschitz Gauge and Envelope Representation

When the gauge set is to measure some type of Lipschitz property, every function adopts an
envelope representation, enabling finite-dimensional reformulation. We begin with the following
definition based on a quasimetric, a relaxed notion of a metric that may fail to satisfy symmetry.

Definition 7 (Lipschitz Gauge). A quasimetric is a function c : Ξ× Ξ→ R that satisfies

• Zero-Diagonal: c(ξ, ξ) = 0 for all ξ ∈ Ξ.

• Nonnegativity: c(ξ, ξ′) > 0 for all ξ ̸= ξ′.

• Triangle inequality: c(ξ1, ξ2) + c(ξ2, ξ3) ≥ c(ξ1, ξ3) for all ξ1, ξ2, ξ3 ∈ Ξ.

The associated c-Lipschitz gauge set is defined as

Vc := {w | w(ξ)− w(ξ′) ≤ c(ξ, ξ′), ∀ξ, ξ′ ∈ Ξ} =

{
w

∣∣∣∣∣ sup
ξ ̸=ξ′∈Ξ

w(ξ)− w(ξ′)
c(ξ, ξ′)

≤ 1

}
.

For a given (γ, si, ξi), we call θγ,si,ξi(ξ) := si+ γc(ξ, ξi) an atomic envelop associated with Vc. Given a
finite number of atomic envelops {θγ,si,ξi}i∈[m] that share the same γ, we define ŵγ,s := mini∈[m] si+

γc(ξ, ξi) the associated envelope function. For every ξ ∈ Ξ, θγ,si,ξi is active at ξ if ŵγ,s(ξ) = θγ,si,ξi(ξ).
We say θγ,si,ξi is active if it is active at some ξ ∈ Ξ.

Figure 1 illustrates the envelope functions. The following proposition provides basic properties
of quasimetrics and the induced Lipschitz gauge sets.

Proposition 13. For any quasimetric c, let Vc be the associated Lipschitz gauge. The following holds

1. Vc is convex and contains the origin.

2. Every w ∈ L2(P) adopts the representation w(ξ) = infξ′∈Ξ θγ,w(ξ′),ξ′(ξ) for every γ ≥ ∥w∥Vc .

3. ∥α+ w∥Vc = ∥w∥Vc for every constant α ∈ L2(P).

4. ∥c(·, ξ)∥Vc = 1 for every ξ ∈ Ξ.

5. If θγ,si,ξi(ξj) ≤ θγ,sj ,ξj (ξj), then θγ,si,ξi ≤ θγ,sj ,ξj pointwise.
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6. If θγ,si,ξi(ξj) < θγ,sj ,ξj (ξj), then θγ,si,ξi < θγ,sj ,ξj pointwise.

7. θγ,si,ξi is active if and only if it is active at ξi.

8. [SAA Compatibility] ŵγ,s(ξi) ≤ si. Equality holds if θγ,si,ξi is active.

9. [Gauge Compatibility] ∥ŵγ,s∥Vc ≤ γ. Equality holds if some θγ,si,ξi is active at multiple points. In
particular, suppose the cardinality of Ξ is strictly larger than the sample size m, then ∥ŵγ,s∥ = γ.

For the analysis in the remainder of this section, we consider the following problem that
generalizes (5), and always assume V◦ is a Lipschitz gauge generated by a quasimetric.

inf
α∈R,w(·)∈L2(P)

α+ g(EP[h ◦ w]) + ϵ∥w∥V◦ (14a)

s.t. α+ w ≥ fx, (14b)

where g and h satisfy the following properties:

• Both g and h are Lipschitz continuous with Lipschitz constants Lg and Lh, respectively.

• The composite functional g ◦ hQ(w) := g (EQ[h ◦ w]) is nondecreasing with respect to the
pointwise ordering of w, for every probability measure Q.

Such functions g and h naturally occur when incorporating multiple gauge sets in the design (see
case study in Section 6). In particular, the original problem (5) is recovered as a special case in
which both g and h are the identity function. To obtain a tractable reformulation of (5), we consider
the following envelope reformulation of (14) with respect to a given sample set S = {ξi}i∈[m] sampled
from the nominal or the true distributions.

inf
γ≥0,α,s

α+ g

∑
i∈[m]

h(si)/m

+ ϵγ (15a)

s.t. θγ,si,ξi ≥ fx − α, ∀i ∈ [m]. (15b)

This reformulation approximatesw by its finite envelope representation ŵγ,s to obtain a semi-infinite
program. Suppose Ξ is convex, each θγ,si,ξi is piecewise-convex, and fx is piecewise-concave, then
(15b) can be equivalently written as infξ∈Ξ{θkγ,si,ξi(ξ) − f

j
x(ξ)} ≥ −α for every piece k for θ and

every piece j for fx, allowing the entire problem to be reformulated into a convex optimization
problem with finite decision variables and constraints. The following lemma provides some results
of this formulation when g and h satisfy the required properties.

Lemma 4. Given a feasible solution (γ, α, s) of (15) under samples {ξi}i∈[m], let ŵγ,s(ξ) be the associated
envelope function. Then, α+ ŵγ,s is feasible to (14). Moreover, if an optimal solution exists, there must be
some optimal (γ, α, s) such that ŵγ,s(ξi) = si for all i ∈ [m].

We call this type of optimal solution non-redundant. The following theorem characterizes the
approximation gap between (14) and (15).
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Theorem 8. Suppose V◦ is a Lipschitz gauge induced by a quasimetric c. Let (α⋆, w⋆) and z⋆ denote an
optimal solution and the optimal value of (14). For a given set of i.i.d. samples {ξi}mi=1, let (γm, α, s) and
zm denote an optimal solution and the optimal value of (15). Let P̄m := 1

m

∑m
i=1 δξi denote the empirical

measure, and let W c̄
1 denote the type-1 Wasserstein distance induced by the transport cost c̄(ξ, ξ′) =

max{c(ξ, ξ′), c(ξ′, ξ)}. Then the following bound holds:

−Lg
∣∣〈h ◦ w⋆, P̄m − P

〉∣∣ ≤ z⋆ − zm ≤ LgLhγmW c̄
1 (P̄m,P).

In particular, lim supm→∞ zm ≤ z⋆ almost surely. Moreover, if W c̄
1 (P̄m,P)→ 0 almost surely as m→∞

and lim supm→∞ γm <∞, then zm
a.s.−−→ z⋆.

Remark 3. Since c is a quasimetric, the symmetrized cost c̄ defines a metric. Under mild regularity
conditions, both the SAA estimation error (lower bound) and the Wasserstein distance W c̄

1 (P̄m,P)
(upper bound) vanishes almost surely as the empirical measure P̄m converges to P. Theorem 8
therefore implies that the envelope reformulation (15) is a consistent approximation of (14) when
scenarios are sampled from the nominal model, and likewise consistently approximates the optimal
reweighting problem centered at the true distribution when scenarios are drawn from data. From
this perspective, sampling from the nominal model versus from observed data induces two distinct
robustness mechanisms: in the former, the ambiguity set is centered at a prescribed nominal and
robustness guards against model misspecification (with SAA used only to approximate its value);
in the latter, the true (but unknown) distribution is the conceptual center, samples provide its SAA
proxy, and the robustness radius compensates for statistical estimation error.

The following corollary shows that, when the empirical distribution is taken as the nominal, the
reformulation (15) is exact. Although this conclusion follows directly from the bound in Theorem 8,
we provide a constructive proof in the appendix for completeness.

Corollary 8. Let z⋆ and zm denote the optimal values of (14) and (15), respectively. If the nominal P is
taken as the empirical measure P̄m := 1

m

∑
i∈[m] δξi , then zm = z⋆.

Example 10 (V◦ = Lip1). In [40], the nominal distribution is the empirical distribution P̄m and the
polar gauge set is Lip1. The atomic envelope is θγ,s,ξ′(ξ) := s+ γ∥ξ− ξ′∥. Hence, the corresponding
tractable convex reformulation is obtained by dualizing the constraints in (15b). By Corollary 8,
this reformulation is exact when the empirical distribution is taken as the nominal.

The following example shows that Osc1 (see Example 3) is also a Lipschitz gauge with respect
to the discrete metric c(ξ, ξ′) := I(ξ ̸= ξ′), which assigns unit distance to any pair of distinct points.

Example 11 (V◦ = Osc1). In this case, the primal gauge is VTV and the associated dual problem is

inf
w(·)

{
E[w] + ϵ∥w∥Osc1

∣∣ w ≥ fx },
where Osc1 = V◦TV := {w | supξ∈Ξw(ξ) − infξ∈Ξw(ξ) ≤ 2} denotes the unit oscillation ball.
Every function w ∈ L2(P) with oscillation γ can be expressed via the envelope representation
w(ξ) = infξ′ [w(ξ

′) + γI(ξ ̸= ξ′)], where the binary metric I(ξ ̸= ξ′) equals 0 when ξ = ξ′ and 1

otherwise. Clearly, the function I satisfies all three properties of a quasimetric, thus Osc1 is indeed
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a Lipschitz gauge. Accordingly, each atomic envelope takes the form θγ,s,ξ′(ξ) = s + γ I(ξ ̸= ξ′).
Substituting this envelope into (15) yields the following SAA reformulation:

inf
γ≥0,si

∑
i∈[n]

si
n

+
ϵ

2
γ

s.t. si ≥ fx(ξi), ∀i ∈ [n]

si + γ ≥ sup
ξ∈Ξ

fx(ξ), ∀i ∈ [n].

As discussed earlier, when fx is piecewise-concave, the supremum term in the last constraint admits
a dual representation, yielding a tractable convex reformulation. By Corollary 8, this reformulation
is also exact when the empirical distribution is taken as the nominal.

6 Case Study

This section illustrates the proposed framework using the illustrative example in the introduc-
tion. We derive two tractable reformulations under multiple combined gauge sets and conduct
a computational study to demonstrate the resulting formulations. We stress that the purpose of
this case study is not to benchmark robustness paradigms. Rather, it is designed to illustrate the
flexibility of the proposed framework, including its ability to accommodate customized robustness
specifications and to support multiple reformulation strategies.

6.1 Tractable Reformulations

For simplicity, the city region is assumed to be a two-dimensional box Ξ = [l, u] ⊆ R2, partitioned
into finite box-shaped districts Ξk = {ξ ∈ Ξ | lk ≤ ξ ≤ uk} for k ∈ K that may share boundaries
but have no overlapping interiors. The objective is to determine the location of an emergency
response center within x ∈ Ξ to minimize the expected distance E[∥x− ξ∥1] to a random incident ξ,
where distance is measured using the Manhattan metric ∥ · ∥1. Following the same requirement as
introduced in the example, the planner aims to (i) hedge against sampling noise using ϕ-divergence,
(ii) guard against region-wise ambiguity via Wasserstein metric, and (iii) ensure robust performance
under tail events via CVaR.

For maximal robustness, we define VComb as the Minkowski sum of the divergence and the
region-aware Wasserstein gauge sets. By Corollary 7 and Theorem 6, this leads to the reformula-
tion (3). We now further simplify this expression using results from the previous sections. First, by
Proposition 4, the minimizer of w2 satisfies w2 = (fx − α2)+, and therefore

∥w2∥◦VCVaR
=

β

1− β
EP
[
(fx − α2)+

]
.

Next, utilizing the χ2-divergence with ϕ(ν) = (ν − 1)2 [9], we have

E[ϕ(ν)] = ⟨ν − 1, ν − 1⟩ = ∥ν − 1∥22.

The associated gauge set is therefore the L2(P) unit ball, Vϕ = {ν | ∥ν∥2 ≤ 1}, which is self-dual.
Consequently, ∥w1∥V◦

ϕ
= ∥w1∥2 =

√
EP[w

2
1]. To achieve the region-wise Wasserstein metric, we
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adopt the design in Example 5 with ϵi as the type-1 Wasserstein radius over region Ξk. Combining
these components yields the following reformulation, where we denote w := w1 for simplicity.

inf
α1, α2, w(·)

α1 + α2 + EP[w] + δ
√
EP[w2] +

∑
k∈K

ϵk∥w · IΞk
∥Lipk1 +

β

1− β
EP[(fx − α2)+]

s.t. α1 + w ≥ (fx − α2)+.

(16)

From here, we apply two different tractable reformulation methods introduced in Section 5.

6.1.1 Reformulation via Functional Parameterization

According to Theorem 7, we can parameterize the functional space over each Ξk using a distinct
basis ϕ with preserved robustness. In particular, we adopt the moment basis with the conic
parameter space R × Rn × Sn+ so that the polynomial hk(ξ) := q0k + ⟨qk, ξ⟩ + ⟨Qk, ξξ⊺⟩ is the
functional used for upper approximation over each Ξk with some Qk ⪰ 0. Due to this explicit
format, its Lipschitz is supξ∈Ξk

∥qk + 2Qkξ∥∗ where ∥ · ∥∗ is the dual norm of the given norm
for Lipschitz. Let pk, µk,Σk be the probability mass, conditional expectation, and conditional
covariance matrix over each Ξk, define

µ̄ := (pk, pkµk, pkvec(Σk + µkµ
⊺
k))k∈K , q̄k := (q0k, qk, vec(Qk)), q̄ := (q̄k)k∈K

as the stacked vectors, where vec(·) is the vectorization of a matrix. We can express EP[w] as

EP[w] =
∑
k∈K

pk(q0k + ⟨µk, qk⟩+
〈
Σk + µkµ

⊺
k, Qk

〉
) = ⟨µ̄, q̄⟩ .

For EP[w
2], we define Λk as the conditional expectation of the matrix (1, ξ, vec(ξξ⊺))⊗2 and Λ :=

diag
(
[
√
pkΛ

1/2
k ]k∈K

)
be the associated diagonally stacked matrix, leading to

EP[w
2] =

∑
k∈K

pk(q̄
⊺
kΛkq̄k) =

∑
k∈K

pk∥Λ
1/2
k q̄k∥22 =

∑
k∈K
∥√pkΛ

1/2
k q̄k∥22 = ∥Λq̄∥22,

Then, we obtain the following reformulation with fx(ξ) = ∥x−ξ∥1 expressed as the piecewise-affine
function maxd∈{±1}2 ⟨d, x− ξ⟩.

inf
α,γ,η

q̄=(qk0,qk,vec(Qk))k∈K

α1 + α2 + ⟨µ̄, q̄⟩+ δ∥Λq̄∥2 +
∑
k∈K

ϵkγk +
β

(1− β)m
∑
j∈[m]

ηj

s.t. α1 + q0k + ⟨qk, ξ⟩+ ⟨Qk, ξξ⊺⟩ ≥ ⟨d, x− ξ⟩ − α2, ∀k ∈ K, ξ ∈ Ξk, d ∈ {±1}2

α1 + q0k + ⟨qk, ξ⟩+ ⟨Qk, ξξ⊺⟩ ≥ 0, ∀k ∈ K, ξ ∈ Ξk

γk ≥ ∥qk + 2Qkξ∥∗, ∀k ∈ K, ξ ∈ Ξk

α2 + ηj ≥ ⟨d, x− ξj⟩ , ∀j ∈ [m], d ∈ {±1}2

Qk ⪰ 0, ∀k ∈ K
γ, η ≥ 0,
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where {ξj}j∈[m] are samples generated from P. The first two semi-infinite constraints can both be
reformulated to contain the following minimization with q := qk + d and q := qk, respectively.

min
ξ∈Ξk,X⪰ξξ⊺

⟨Qk, X⟩+ ⟨q, ξ⟩ .

Since Qk ⪰ 0, this reformulation is exact. Applying the standard Schur complement and conic
duality, we obtain the following dual problem for Ξk := {ξ | lk ≤ ξ ≤ uk}.

max
τ̄ ,τ≥0,s

⟨lk, τ⟩ − ⟨uk, τ̄⟩ − s/4

s.t.

 Qk q + τ̄ − τ

(q + τ̄ − τ)⊺ s

 ⪰ 0.

Since each constraint needs to be dualized independently, we use τ̄1kd, τ
1
kd, s

1
kd and τ̄2k , τ

2
k, s

2
k to

denote the associated dual variables. For the third semi-infinite constraint, we take the 1-norm as
the Lipschitz norm, thus the dual norm is ∥qk + 2Qkξ∥∞ = maxi∈[n]maxξ∈Ξk

|qik + 2Qikξ|. Then, γk
can be further represented as

γk ≥ qik + 2max
ξ∈Ξk

〈
Qik, ξ

〉
, γk ≥ −qik + 2max

ξ∈Ξk

〈
−Qik, ξ

〉
, ∀k ∈ K, i ∈ [n],

where Qik is the ith row of the matrix Qk. Each linear program can be dualized using the definition
of Ξk, where π̄ and π denote the associated dual variables. Putting everything together, we obtain
the following parametric reformulation

inf
x,α,γ,s,η,τ̄ ,τ ,π̄,π

q̄=(qk0,qk,vec(Qk))k∈K

α1 + α2 + ⟨µ̄, q̄⟩+ δ∥Λq̄∥2 +
∑
k∈K

ϵkγk +
β

(1− β)m
∑
j∈[m]

ηj

s.t.
∑
i∈[2]

αi + q0k +
〈
lk, τ

1
kd

〉
−
〈
uk, τ̄

1
kd

〉
− s1kd/4 ≥ ⟨d, x⟩ , ∀k ∈ K, d ∈ {±1}2 Qk qk + d+ τ̄1kd − τ1kd

(qk + d+ τ̄1kd − τ1kd)⊺ s1kd

 ⪰ 0, ∀k ∈ K, d ∈ {±1}2

α1 + q0k +
〈
lk, τ

2
k

〉
−
〈
uk, τ̄

2
k

〉
− s2k/4 ≥ 0, ∀k ∈ K Qk qk + τ̄2k − τ2k

(qk + τ̄2k − τ2k)⊺ s2k

 ⪰ 0, ∀k ∈ K

γk ≥ qik + 2
(〈
uk, π̄

1
ki

〉
−
〈
lk, π

1
ki

〉)
, ∀k ∈ K, i ∈ [n]

Qik = π̄1ki − π1ki, ∀k ∈ K, i ∈ [n]

γk ≥ −qik + 2
(〈
uk, π̄

2
ki

〉
−
〈
lk, π

2
ki

〉)
, ∀k ∈ K, i ∈ [n]

−Qik = π̄2ki − π2ki, ∀k ∈ K, i ∈ [n]

α2 + ηj ≥ ⟨d, x− ξj⟩ , ∀j ∈ [m], d ∈ {±1}2

x ∈ [l, u], γ, η, τ̄ , τ , π̄, π ≥ 0.

This yields a semidefinite program with solution robustness guaranteed by Theorem 7.
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6.1.2 Reformulation via Envelope Representation

Since each functionw·IΞk
in (16) admits its envelope representation on Ξk, we perform the following

reformulation,

inf
γ≥0,α,w(·)

α1 + α2 + EP[w] + δ
√
EP[w2] +

∑
k∈K

ϵkγk +
β

1− β
EP[(fx − α2)+]

s.t. α1 + inf
ξ′∈Ξk

(w(ξ′) + γk∥ξ − ξ′∥) ≥ (∥x− ξ∥1 − α2)+, ∀k ∈ K, ξ ∈ Ξk.

For fixed α, this fits (14) with h(w) = (w, w2) and g(a, b) = a+ δ
√
b. Hence, g ◦ hQ is not monotone

in general, and the assumptions of Theorem 8 and Corollary 8 are violated. To recover monotonicity,
we restrict the feasible set by imposing the additional constraint w ≥ 0 in the dual formulation.
Under this restriction, g ◦ hQ becomes monotone, which allows Theorem 8 and Corollary 8 to be
invoked.

This additional constraint admits a natural interpretation from the gauge perspective. Requiring
w ≥ 0 is equivalent to adding the indicator (or, equivalently, the gauge) of the nonnegative cone
V+ := {v ∈ L2(P) | v ≥ 0} to the dual objective. By gauge algebra (Corollary 7), augmenting the
dual problem with this cone gauge corresponds, in the primal, to taking the Minkowski sum of the
original primal gauge set with the polar cone V◦+ = {ν ∈ L2(P) | ν ≤ 0}. As a result, the admissible
primal gauge set is enlarged, and the resulting formulation remains robust in the sense of admitting
a superset of the original ambiguity.

With this modification, we can apply the envelope reformulation (15) either using samples
drawn from any chosen nominal P or taking the empirical measure P̄ as the nominal: the former
asymptotically converges to the optimal value of (16) by Theorem 8, while the latter is an exact
reformulation of (16) by Corollary 8. For given samples {ξj}j∈[m], let Jk := {j ∈ [m] | ξj ∈ Ξk}, we
obtain the following semi-definite program

inf
γ≥0,s≥0,α

α1 + α2 +
1

m

∑
j∈[m]

sj +
δ√
m
∥s∥2 +

∑
k∈K

ϵkγk +
β

(1− β)m
∑
j∈[m]

(fx(ξj)− α2)+

s.t. α1 + sj + γk∥ξ − ξj∥ ≥ ⟨d, x− ξ⟩ − α2, ∀k ∈ K, ξ ∈ Ξk, j ∈ Jk, d ∈ {±1}2

α1 + sj + γk∥ξ − ξj∥ ≥ 0, ∀k ∈ K, ξ ∈ Ξk, j ∈ Jk

where we represent the 1-norm as the piecewise-affine function as before. Note that the optimization
problem in the second constraint is minξ∈Ξk

∥ξ − ξj∥ with ξj ∈ Ξk for each j ∈ Jk, the minimum is
attained at ξj with a value of 0. Hence, this constraint reduces to α1 + sj ≥ 0 for all j ∈ [m]. Then,
the first semi-infinite constraint can be reformulated to contain the optimization minξ∈Ξk

(γk∥ξ −
ξj∥+ ⟨d, ξ⟩) on the left-hand side, which is a convex minimization over a compact space with strong
duality holds. Let Ξk := {ξ | lk ≤ ξ ≤ uk}, we obtain the following dual where ∥ · ∥∗ is the dual
norm of the given norm ∥ · ∥ for Lipschitz.

max
π̄≥0,π≥0

⟨d, ξj⟩+ ⟨ξj − uk, π̄⟩+ ⟨lk − ξj , π⟩

γk ≥ ∥π̄ − π + d∥∗.
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Since each dualization is independent, we use π̄kjd and πkjd to label the associated dual variables.
Then, we obtain the following envelope reformulation

min
x,γ,α,s,η,π̄,π

∑
i∈[2]

αi +
1

m

∑
j∈[m]

sj +
δ√
m
∥s∥2 +

∑
k∈K

ϵkγk +
β

(1− β)m
∑
j∈[m]

ηj

s.t.
∑
i∈[2]

αi + sj + ⟨ξj − uk, π̄kjd⟩+
〈
lk − ξj , πkjd

〉
≥ ⟨d, x− ξj⟩ ,∀k ∈ K, j ∈ Jk, d ∈ {±1}2

γk ≥ ∥π̄kjd − πkjd + d∥∗, ∀k ∈ K, j ∈ Jk, d ∈ {±1}2

α1 + sj ≥ 0, ∀j ∈ [m]

α2 + ηj ≥ ⟨d, x− ξj⟩ , ∀j ∈ [m], d ∈ {±1}2

x ∈ [l, u], γ, s, η, π̄, π ≥ 0.

When the 1-norm is taken for the Lipschitz, the dual norm ∥ · ∥∗ is the infinite norm, leading to a
linear program with one second-order conic term ∥s∥2 induced by the χ2-divergence gauge.

6.2 Computational Study

Problem Instance. We normalize the city region to be Ξ = [0, 1]2 ⊆ R2, which is partitioned into
three rectangular districts:

Ξ1 := [0, 0.65]× [0, 0.65], Ξ2 := [0, 0.65]× [0.65, 1], Ξ3 := [0.65, 1]× [0, 1],

as illustrated in Figure 2. The true incident distribution P̃ is specified as a mixture of two entrywise
independent beta distributions on Ξ, with density function given by

p̃(ξ) =
∑
i∈[2]

wi
∏
j∈[2]

Beta(ξj | aij , bij) , w := (0.9, 0.1), a :=

[
2.5 1.5

15 20

]
, b :=

[
1.5 2.5

20 9.2

]
,

where wi are the mixture weights, and each Beta(· | aij , bij) denotes the beta density on [0, 1]

with shape parameters (aij , bij). Figure 2a illustrates this distribution via a heatmap. We draw
m̃ = 500 samples {ξj}m̃j=1 from P̃ to represent historical incident occurrences across the city. Due to
heterogeneous data retention rates, some observations may be lost. In particular, only 75%, 95%,
and 55% of the observations are preserved in Ξ1, Ξ2, and Ξ3, respectively, resulting in m1 = 154,
m2 = 62, and m3 = 126 retained records, for a total of m = 342 observations. Figure 2a provides
the spatial distribution of these incidents.

Nominal Distribution. We assume that the planner has prior knowledge of the parametric
form of the incident density p̃(ξ) but does not know the hyperparameters (wi, aij , bij). Given
the available historical observations and the additional model-based information, we estimate a
nominal distribution by fitting this mixture model in a Bayesian manner. Specifically, we place a
Dirichlet prior on the mixture weights w = (w1, w2), independent beta priors on the component-
wise means, and gamma priors on the corresponding concentration parameters. Posterior inference
is performed via automatic differentiation variational inference (ADVI) [36] using the Python
package PyMC, and the resulting nominal distribution P is formed by plugging in posterior means
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Figure 2: Instance information. Panel (a) shows the three regions, the true distribution, and the retained
m = 342 observations. Panels (b)–(d) report Bayesian-learned distributions under different data retention
levels. We fix m = 342 and take the distribution in (c) as the nominal P for all models, except the data-driven
Wasserstein CVaR baseline (WDRO), which uses the empirical measure P̄m = 1

m

∑
i∈[m] δξi as the nominal.

of (w, a, b). Figure 2b–2d shows this learned distribution under different historical datasets. In
particular, we assume that the retained dataset contains m = 342 observations. Accordingly, the
fitted distribution shown in Figure 2c is taken as the nominal distribution P in our proposed
reformulations. As a baseline, we also report a data-driven type-1 Wasserstein DRO formulation
(WDRO). In contrast to the proposed approaches, this data-driven WDRO baseline is inherently
tied to a discrete, sample-based center and therefore cannot directly incorporate model-based
information by taking a continuous P as the nominal. It instead uses the standard empirical
measure P̄m = 1

m

∑
i∈[m] δξi as its nominal distribution with m = 342.

Experimental Setting. We evaluate the parametric and envelope reformulations derived in
Section 6.1, denoted by PAR and ENV, against two baselines. The first baseline is the following
stochastic CVaR formulation with m̄ i.i.d. samples generated from the trained posterior nominal P:

STO : min
x∈[l,u], α∈R, η≥0

α+
1

(1− β)m̄
∑
j∈[m̄]

ηj

s.t. α+ ηj ≥ ⟨d, x− ξj⟩ , ∀j ∈ [m̄], ∀d ∈ {±1}2,

where β denotes the confidence level in CVaR. The second baseline is the data-driven WDRO model
with a CVaR objective under the standard empirical measure P̄m as the nominal:

min
x∈[l,u], α∈R

α+
1

1− β
inf
w

{
EP̄m

[w] + ϵ∥w∥Lip1
∣∣ w(ξ) ≥ (∥x− ξ∥1 − α)+, ∀ξ ∈ Ξ

}
.

This can be equivalently reformulated following the same steps as in Section 6.1.2.

WDRO : min
x,γ,α,s,π̄,π

α+
1

(1− β)m
∑
j∈[m]

sj +
ϵ

1− β
γ

s.t. α+ sj + ⟨ξj − u, π̄jd⟩+
〈
l − ξj , πjd

〉
≥ ⟨d, x− ξj⟩ ,∀j ∈ [m], d ∈ {±1}2

γ ≥ ∥π̄jd − πjd + d∥∞, ∀j ∈ [m], d ∈ {±1}2

x ∈ [l, u], γ, s, π̄, π ≥ 0.
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(a) Solution trajectory in the city map.
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Figure 3: PAR, ENV, and WDRO solution trajectories and out-of-sample CVaR0.8 across configurations. To
improve readability, the CVaR0.8 axis is split at ρ = 3, i.e., values over ρ ∈ [0, 3] are shown on a zoomed
vertical scale, while ρ ∈ [3, 4.8] is shown on the full scale.

We fix β = 0.8 to target the upper 20% tail. For model construction, we draw m̄ := 2,000 i.i.d.
samples from the nominal distribution P for STO, PAR, and ENV. For PAR and ENV, we set the
global χ2-divergence radius to δ := ρ, where we treat the scalar ρ as the configuration parameter. We
define the region-wise Wasserstein radii in PAR and ENV as ϵk := ρ

√
tr(Σk)/mk, where mk and Σk

are the retained sample size and empirical covariance in region Ξk, respectively. Likewise, WDRO
uses the global radius ϵ := ρ

√
tr(Σ)/mwithm = 342 and global empirical covariance Σ. Intuitively,

smaller sample sizes or larger empirical variability indicate greater statistical uncertainty and
therefore motivate larger radii. To assess out-of-sample performance, we evaluate each computed
in-sample solution x on 20 independently generated test datasets drawn from the true distribution
P̃, each containing 50,000 observations. For each test set, we compute CVaR0.8(x) and report the
sample mean and standard error across the 20 replications. All algorithms are implemented in
Python 3.10 using the Mosek 11.1 solver. Experiments are conducted on a MacBook Pro (2023)
equipped with an Apple M2 Max processor and 64 GB of memory.

Hyperparameter ρ Tuning. In addition to illustrating how out-of-sample performance varies with
ρ across reformulations, we tune ρ separately for each formulation to reflect practical use. Specifi-
cally, we select ρ via cross-validation and then compare the resulting out-of-sample performance
under the chosen values. The available samples are partitioned into five folds; in each split, one
fold is held out for testing and the other four are used for training. We select the ρ that minimizes
the average out-of-sample CVaR0.8 across the five folds, with ties within numerical tolerance (10−6)

resolved by the smaller ρ.

6.2.1 Performance Analysis

Since the support of the true distribution P̃ is the full square Ξ = [0, 1]2, the robust optimization
attains its optimum at the center of Ξ, namely x⋆ROB = (0.5, 0.5). In contrast, the stochastic CVaR
optimization (STO) solution is x⋆STO = (0.589, 0.433). Figure 3a marks both locations with stars and
displays the solution trajectories of PAR, ENV, and WDRO. As the primal gauge sets expand with
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Method Best ρ Solution CVaR0.8 (mean ± se) Runtime (s)

PAR 0.8 (0.586, 0.424) 0.61359± 2.5× 10−4 0.073

ENV 0.8 (0.587, 0.433) 0.61511± 2.4× 10−4 1.454

WDRO 4.2 (0.571, 0.434) 0.61743± 2.4× 10−4 0.073

STO – (0.589, 0.433) 0.61492± 2.5× 10−4 0.036

Table 2: Performance comparison with the hyperparameter ρ selected by cross-validation for each method,
reporting mean ± standard error for CVaR0.8.

increasing ρ within the range [0, 5], the solutions produced by all three reformulations move from a
neighborhood of x⋆STO toward the robust solution x⋆ROB, with PAR reaching x⋆ROB at smaller values
of ρ. In contrast, x⋆WDRO remains unchanged for most settings and then abruptly jumps to x⋆ROB at
the two largest configurations. This is consistent with the linear-program structure of WDRO: as ϵ
varies, the optimal extreme point is stable over intervals and changes only at discrete breakpoints.

Figure 3b compares all methods in terms of out-of-sample CVaR0.8 across ρ ∈ [0, 5]. Overall,
PAR attains the lowest risk for ρ ∈ [0.0, 2.4], while STO performs best for larger values of ρ. ENV
slightly improves upon STO only at the first two configurations, which may be attributed to the
additional constraint w ≥ 0 in the envelope reformulation that can introduce extra conservatism. By
contrast, WDRO exhibits a noticeably different CVaR0.8 level from the other three methods, even at
ρ = 0, and remains less favorable than STO across the full range. A plausible explanation is that
WDRO is optimized under a different nominal and sampling regime, using the empirical nominal
P̄m with m = 342 observations, whereas STO, PAR, and ENV are constructed using m̄ = 2,000

samples drawn from the learned nominal P. At the two largest settings, PAR, ENV, and WDRO
yield identical performance as their solutions converge to the robust optimizer x⋆ROB.

As reported in Table 2, cross-validation selects ρPAR = ρENV = 0.8 and ρWDRO = 4.2, under
which both PAR and ENV achieve lower out-of-sample risk than WDRO in this setting. These
results suggest that when the assumed distributional family is reasonably aligned with the data-
generating process (here, a joint beta model), a fitted nominal distribution can improve out-of-
sample performance. In terms of runtime, STO is fastest due to its smallest formulation size,
whereas ENV is the slowest, consistent with its larger number of sample-dependent variables and
constraints.

7 Conclusion

This paper introduced a gauge set framework for robustness design in optimization, offering
a unified convex-analytic approach for modeling and analyzing robustness across stochastic,
robust, and distributionally robust paradigms. By formulating robustness through the gauge set
reweighting problem, we established quasi-strong duality and showed that the correspondence
between primal and dual problems is governed by the geometry of gauge and polar gauge sets.
This perspective recovers and extends classical results across existing robustness formulations,
including moment-based, Wasserstein, and ϕ-divergence ambiguity sets, while revealing a coherent
structure for gauge manipulation through algebraic operations, decomposition, and composition
principles. To enable computation under continuously supported uncertainty, we further develop
two general reformulation schemes that decouple robustness design from reformulation choices,
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yielding flexible and problem-tailored solution strategies.
The connection between solution robustness and gauge set design opens several promising

directions. Developing computationally efficient inner approximations of various polar gauges
could yield new tractable DRO models with strong robustness guarantees. Incorporating structured
constraints or hierarchical compositions into primal gauges may further enhance the expressiveness
of robustness design in complex applications. Overall, shifting attention from ad hoc dual reformu-
lations to the geometric design of gauge sets provides a more flexible framework for customizing
robustness in optimization.
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[49] Yves Rychener, Adrián Esteban-Pérez, Juan M Morales, and Daniel Kuhn. Wasserstein distribu-
tionally robust optimization with heterogeneous data sources. arXiv preprint arXiv:2407.13582,
2024.

[50] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures on stochastic
programming: modeling and theory. SIAM, 2021.

[51] Ruifeng Shi, Shaopeng Li, Penghui Zhang, and Kwang Y Lee. Integration of renewable energy
sources and electric vehicles in v2g network with adjustable robust optimization. Renewable
Energy, 153:1067–1080, 2020.

[52] David Simchi-Levi, Nikolaos Trichakis, and Peter Yun Zhang. Designing response supply
chain against bioattacks. Operations Research, 67(5):1246–1268, 2019.
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A Gauge Set Application in Other Robustness Frameworks

A.1 DRO Chance Constraint

Using gauge sets, we can model the general distributionally robust chance constraints as follows,

min
x∈X

f(x) (17a)

s.t.


sup

ν∈R(P)

〈
ν, Igix>0

〉
s.t. ∥ν − 1∥Vi ≤ ϵi

 ≤ β, ∀i ∈ [m]. (17b)

where I denotes the indicator function of a set (so that I flags constraint violation) and β is the
tolerance level. Moreover, the indicator I{gix>0} is bounded below and lower semicontinuous
whenever gix is, since {gix > 0} is open. Although quasi-strong duality need not hold, the following
dual formulation remains a valid approximation.

min
x∈X

f(x) (18a)

s.t. αi + E[wi] + ϵi∥wi∥V◦
i
≤ β, ∀i ∈ [m] (18b)

αi + wi ≥ Igix>0, ∀i ∈ [m]. (18c)

Then, the gauge set V◦i could be designed specifically to capture different types of robustness on
the ambiguity of the probability.

A.2 Robust Satisficing

Robust satisficing is another paradigm that optimizes robustness without restricting the scope
of ambiguity set [38]. This method aims to minimize the ratio (EP̃[fx] − τ)/d(P̃,P) where τ is a
given objective target and d(P̃,P) signifies a general type of difference between the true probability
measure P̃ and the empirical measure P. Since gauge sets provide a general way to specify such
differences, we can formulate the general robust satisficing problem as follows.

min
x∈X

inf
γ≥0

γ (19a)

s.t. ⟨fx, ν⟩ − τ ≤ γ∥ν − 1∥V , ∀ν ∈ R(P). (19b)

Using the similar derivation as in Theorem 1, we can derive the following reformulation results by
rewriting (19b) as supν∈R(P) ⟨fx, ν⟩ − γ∥ν − 1∥V ≤ τ .

min
x∈X

inf
w(·)
∥w∥V◦

s.t. α+ E[w] ≤ τ,
α+ w ≥ fx.

This reformulation provides a neat dual interpretation for robust satisficing. We again use
α+ w to upper approximate fx, but with an additional upper bound τ on the expectation of this
approximator. Then, the objective is to minimize the gauge of w under these two constraints.
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All the previous results regarding different designs of V can be carried over to study this robust
satisficing problem, facilitating various robustness requirements under this setting. For instance,
using Proposition 12 and Theorem 4, we can obtain the following robust satisficing dual problem
with respect to ϕ-divergence.

min
x∈X

inf
γ≥0,w(·)

γ

s.t. α+ γE[ϕ∗(w/γ)] ≤ τ,
α+ w ≥ fx.

B Mathematical Proofs

Proposition 1. The following relations hold for any given gauge set V ⊆ L2(P):

1. ∥ϵν∥V = 0 when ϵ = 0, and equals ϵ∥ν∥V for every ϵ > 0.

2. ∥ν + w∥V ≤ ∥ν∥V + ∥w∥V .

3. Given any closed subspace U , if 0 ∈ intU (V ∩ U), then ∥ · ∥V is Lipschitz continuous on U , and
∥ν∥V = ∥ν∥clU (V∩U) for every ν ∈ U .

4. ϵV ⊆ {ν ∈ L2(P) | ∥ν∥V ≤ ϵ} ⊆ ϵV for every ϵ > 0.

5. ∥ · ∥V is convex, and is closed if V is.

6. V = V◦◦.

7. ker(∥ · ∥V) = rec(V).

8. ∥w∥V◦ = supν∈V ⟨w, ν⟩.

9. For every w ̸= 0, ∥w∥V = 0 implies ∥w∥V◦ =∞.

10. If w ∈ V⊥, ∥w∥V◦ = 0, and ∥w∥V =∞ if w ̸= 0.

Proof. For Statement 1, when ϵ = 0, 0ν = 0 ∈ V , implying ∥0ν∥V = 0. Otherwise ϵ > 0, then

∥ϵν∥V = inf{t > 0 | ν ∈ (t/ϵ)V} = inf{ϵβ > 0 | ν ∈ βV} = ϵ inf{β > 0 | ν ∈ βV},

where the second equality is due to the substitution β := t/ϵ.
For Statement 2, take any α > ∥ν∥V and β > ∥w∥V . By definition of gauge, ν = αν0 and

w = βw0 for some ν0, w0 ∈ V . Then,

ν + w = (α+ β)

(
α

α+ β
ν0 +

β

α+ β
w0

)
∈ (α+ β)V.

where the membership is due to the convexity of V . Thus, ∥ν + w∥V ≤ α+ β. Since this holds for
every α and β, the triangle inequality holds at the infimum.
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For Statement 3, since 0 is an interior of V∩U relative to the subspace U . There exists some α > 0

such that the subspace α-ball BU (0, α) ⊆ V ∩ U , i.e., αu/∥u∥ ∈ V for every u ∈ U . Equivalently,
∥u∥V ≤ ∥u∥/α for all u ∈ U . Then, the triangle inequality of the gauge function gives

|∥ν∥V − ∥w∥V | ≤ max{∥ν − w∥V , ∥w − ν∥V} ≤
∥ν − w∥

α

for every ν, w ∈ U ((ν − w) ∈ U due to U is a subspace), which shows that ∥ · ∥V is Lipschitz on U .
Then, for every ν ∈ U , we have ∥ν∥V = ∥ν∥V∩U = ∥ν∥clU (V∩U), since every element in the subspace
closure can be approximated by a sequence in V ∩ U with ∥ · ∥V acting continuously.

For Statement 4, every ν ∈ ϵV satisfies ∥ν∥V ≤ ϵ by definition, proving the first inclusion. For
the second inclusion, ∥ν∥V ≤ ϵ implies that, for every δ > 0, ν/(ϵ+ δ) ∈ V since V is convex and
contains zero. Then, δ → 0 provides a sequence in V approaching ν/ϵ, implying ν/ϵ ∈ V .

For Statement 5, the convexity of ∥ · ∥V is a direct consequence of Statements 1 and 2. Suppose
V is further closed, Statement 4 implies {ν | ∥ν∥V ≤ ϵ} = ϵV for every ϵ > 0, which is a closed set.
For ϵ = 0, the level set becomes

⋂
ϵ>0 ϵV , where the closedness is preserved through intersection.

Since every level set is closed, the function ∥ · ∥V is a closed function.
For Statement 6, since V◦◦ contains V and is closed, the direction V ⊆ V◦◦ holds by the definition

of closure. For the other direction, suppose ν̄ /∈ V . Since V is convex-closed and {ν̄} is compact and
convex, the (strong) Hahn-Banach separation theorem along with Riesz representation theorem on
L2(P) provides some w such that

s := sup
ν∈V
⟨w, ν⟩ < ⟨w, ν̄⟩ .

Pick α such that s < α < ⟨w, ν̄⟩ and define w′ := w/α, then

sup
ν∈V

〈
w′, ν

〉
= s/α < 1,

implying w′ ∈ V◦. However, ⟨w′, ν̄⟩ = ⟨w, ν̄⟩ /α > 1, which shows ν̄ /∈ V◦◦.
For Statement 7, the definitions are

ker ∥ · ∥V := {w | w ∈ γV, ∀γ > 0}
rec(V) := {w | αw ∈ V, ∀α ≥ 0} = {w | αw ∈ V, ∀α > 0} = {w | w ∈ (1/α)V, ∀α > 0},

where we can relax the requirement α = 0 in rec(V) due to 0w = 0 ∈ V by definition.
For Statement 8, we unpack the definitions for every t > 0 as

w ∈ tV◦ ⇐⇒ ⟨w/t, ν⟩ ≤ 1 ∀ν ∈ V ⇐⇒ sup
ν∈V
⟨w, ν⟩ ≤ t.

Then, we obtain

∥w∥V◦ = inf{t > 0 | w ∈ tV◦} = inf

{
t > 0

∣∣∣∣ sup
ν∈V
⟨w, ν⟩ ≤ t

}
= sup

ν∈V
⟨w, ν⟩ .

For Statement 9, we expand the definitions as follows

∥w∥V = inf{γ > 0 | w ∈ γV},
∥w∥V◦ = sup

ν∈V
⟨w, ν⟩ .
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Then, the first quantity is 0 whenever w/γ ∈ V for every γ > 0, which implies ∥w∥V◦ ≥
supγ>0 ⟨w,w⟩ /γ =∞.

For Statement 10, w ∈ V⊥ entails ⟨ν, w⟩ = 0 for all ν ∈ V , implying ∥w∥V◦ = 0 through the
previous statement. On the other hand, if w ∈ V⊥ and w ∈ γV for some γ > 0, then ⟨w,w⟩ = 0

forcing w = 0.

Lemma 1. For every gauge set V , the extended gauge defined as Ṽ := (V ∩ R0) +R⊥
0 satisfies (i) Ṽ

contains 0 as an interior in L2(P), (ii) zϵV = zϵṼ for every ϵ ≥ 0.

Proof. To show (i), note that every element in L2(P) can be uniquely represented as ν + w for
ν ∈ R0 and w ∈ R⊥

0 due to the orthogonal decomposition theorem of Hilbert space. Moreover,
R⊥

0 can be directly computed as the constant functionals {α1 | α ∈ R}. Then, consider the unit
open ball B := {ν + α1 | ∥ν + α1∥2 < 1} under this representation, there exists some sufficiently
small δ > 0 so that δB ∩ R0 ⊆ V ∩ R0 since V contains an open neighborhood of 0 inside R0.
Thus, every δν + δα1 ∈ δB is in Ṽ , i.e., Ṽ contains an open neighborhood of 0 in L2(P). For (ii),
under Ṽ , the gauge constraint in (4) is ν − 1 ∈

⋂
t>ϵ tṼ ; since ⟨1, ν⟩ = 1 implies ν − 1 ∈ R0 and(

(V ∩R0) +R⊥
0

)
∩R0 = V ∩R0, this constraint is equivalent to ν − 1 ∈

⋂
t>ϵ tV .

Lemma 2. For the given ϵ′ from Assumption 2, Type-I regularity entails that for every ϵ ≤ ϵ′:

(i) supQ∈PϵV
EQ[Φ] <∞,

(ii) PϵV is uniformly tight,

(iii) supQ∈PϵV
EQ[fx] <∞,

(iv) Given ϵ < ϵ′, under the extended gauge Ṽ , there exists some δ > 0 such that ∥w − 1∥ ≤ δ implies
PϵṼ,w is uniformly tight.

Type-II regularity additionally entails that (v) for every ϵ ≤ ϵ′, supQ∈PϵV
EQ[ΦIΦ>M ]→ 0 as M →∞.

Proof. Without loss of generality, we assume ϵ′ = 1 throughout the proof by replacing V by ϵ′V
and ϵ by ϵ/ϵ′. For Type-I regularity, we first prove (i) and (ii) for the case ϵ = 1. (i) is provided by
Assumption 2. To show uniformly tightness, for every δ > 0, choose M > supQ∈PV

EQ[Φ(ξ)]/δ,
and define ΞM := {ξ ∈ Ξ | Φ(ξ) ≤M} to be the level set, which is closed and bounded due to the
closedness and coerciveness of Φ. Since Ξ ⊆ Rn, ΞM is compact. For any Q ∈ PV , we have

Q(Ξ \ ΞM ) = Q(Φ > M) ≤ EQ[Φ(ξ)]/M < δ.

Thus, uniform tightness follows since this is valid for every Q. Then, for every ϵ < 1, (i) and (ii)
trivially hold since PϵV ⊆ PV and both objective finiteness and uniformly tightness are preserved
under subsets. (iii) is true due to the boundedness of |fx|.

For (iv), by the triangle inequality of the gauge function (Proposition 1), we have

∥ν − 1∥Ṽ = ∥ν − w + (w − 1)∥Ṽ ≤ ∥ν − w∥Ṽ + ∥w − 1∥Ṽ .

Thus, every ν such that ∥ν − w∥Ṽ ≤ ϵ also satisfies ∥ν − 1∥Ṽ ≤ ϵ+ ∥w − 1∥Ṽ . Since the extended
gauge Ṽ contains a neighborhood of 0 in L2(P), the function ∥ · ∥Ṽ is Lipschitz by Statement 3
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of Proposition 1. Then, when ∥w − 1∥ < δ for some δ > 0, it ensures ϵ + ∥w − 1∥Ṽ ≤ 1 since
ϵ < ϵ′ = 1 is assumed. This means, when ∥w − 1∥ ≤ δ, the set {ν | ∥ν − 1∥Ṽ ≤ 1} fully contains
{ν | ∥ν − w∥Ṽ ≤ ϵ}. Since the measure closure of the former is P Ṽ while the closure of the latter is
PϵṼ,w, we also have

P Ṽ ⊇ PϵṼ,w.

Because (ii) proves the first set is uniformly tight, and uniformly tightness is preserved in subsets,
we conclude the proof of (iv).

Since Type-II regularity provides a stronger light-tail condition on PV , (i), (ii), and (iv) still hold.
For (iii), we have

sup
Q∈PϵV

EQ[fx] ≤ α+ β sup
Q∈PϵV

EQ[Φ] ≤ α+ β sup
Q∈PϵV

EQ[Φ
1+η] <∞.

For (v), we prove the case ϵ = 1. For any M > 0, on {ξ | Φ(ξ) > M} we have Φ ≤ Φ1+η/Mη. Hence

sup
Q∈PV

EQ[ΦIΦ>M ] ≤ 1

Mη
sup
Q∈PV

EQ[Φ
1+η]→ 0, as M →∞,

where the limit is induced by supQ∈PV
EQ[Φ

1+η] <∞ from Assumption 2. Then, the case ϵ < ϵ′ = 1

directly follows.

Lemma 3. The functional Q 7→ ⟨fx,Q⟩ is weak∗-continuous on PϵV . Consequently, let zϵV be the optimal
value of (4), the following identity is satisfied,

zϵV = sup
Q∈PϵV

⟨fx,Q⟩ .

Proof. Under Type-I regularity, fx ∈ Cb(Ξ), hence Q 7→ ⟨fx,Q⟩ is weak∗-continuous by the def-
inition of weak convergence. Under the Type-II regularity, we only prove the weak∗-lower-
semicontinuity, then the weak∗-upper-semicontinuity follows by a symmetric argument. Define the
truncation fMx := max{fx,−M} for every M > max{α, 0}. Each fMx is closed and bounded below,
hence

lim inf
n→∞

〈
fMx ,Qn

〉
≥
〈
fMx ,Q

〉
.

Moreover, fMx ↓ fx pointwise. To quantify the truncation error, obtain

0 ≤ fMx (ξ)− fx(ξ) = (−M − fx(ξ))+ ≤ |fx(ξ)| I{fx(ξ) < −M}.

Hence, for any Q ∈ PϵV , we have

0 ≤
〈
fMx ,Q

〉
− ⟨fx,Q⟩ ≤ EQ[|fx(ξ)| I{fx(ξ) < −M}] .

Using the Type-II growth bound |fx| ≤ α+ βΦ (with β > 0), we obtain

EQ[|fx| I{fx < −M}] ≤ EQ[(α+ βΦ) I{α+ βΦ > M}] ≤ αQ
(
Φ > M−α

β

)
+β EQ

[
Φ I
{
Φ > M−α

β

}]
,

where the first inequality holds due to |fx| ≤ α + βΦ and the indicated set becomes larger. By
Markov’s inequality,

Q
(
Φ > M−α

β

)
≤ β

M − α
EQ[Φ],
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and supQ∈PϵV
EQ[Φ] <∞ (Lemma 2) implies that the first term vanishes as M →∞ uniformly over

Q. The second term vanishes uniformly by (v) of Lemma 2. Combining Portmanteau for fMx with
the uniform truncation bound,

sup
Q∈PϵV

(
⟨fMx ,Q⟩ − ⟨fx,Q⟩

)
→ 0,

and letting M →∞ yields lim infn→∞⟨fx,Qn⟩ ≥ ⟨fx,Q⟩, i.e., the functional Q 7→ ⟨fx,Q⟩ is weak∗-
lower-semicontinuous. Weak∗-upper-semicontinuity follows analogously by applying Portmanteau
to the truncations gMx := min{fx,M} (upper semicontinuous and bounded above).

Finally, since zϵV is equivalent to supQ∈PϵV ⟨fx,Q⟩, the “≤” direction is trivial. For the other
direction, by definition of closure, for every Q in the closure, there is a sequence Qn ∈ PϵV that
weak∗ converges to Q. Clearly, supQ′∈PϵV ⟨fx,Q

′⟩ ≥ ⟨fx,Qn⟩ for every n, implying

sup
Q′∈PϵV

〈
fx,Q′〉 ≥ lim inf

n→∞
⟨fx,Qn⟩ ≥ ⟨fx,Q⟩ ,

where the second inequality is due to the weak∗-lower-semicontinuity of Q 7→ ⟨fx,Q⟩.

Theorem 1. The quasi-strong duality holds for the following dual problem of (4)

inf
α∈R,w(·)∈L2(P)

α+ EP[w] + ϵ∥w∥V◦ (5a)

s.t. α+ w ≥ fx. (5b)

Proof. Adopting the conjugate duality framework [16, 46], we define the following perturbation
function where h(ν) denotes the function ∥ν − 1∥V .

F (ν, u, z) :=

{
⟨−fx, ν⟩ , if ν ≥ 0, ⟨1, ν⟩ = 1, and h(ν − z)− ϵ ≤ u
∞, otherwise.

Then, the corresponding dual problem can be computed as

inf
γ,w

F ∗(0,−γ,−w) = inf
γ,w

sup
u,z,ν≥0,⟨1,ν⟩=1

{−γu− ⟨w, z⟩+ ⟨fx, ν⟩ | h(ν − z)− ϵ ≤ u}

= inf
γ≥0,w

sup
z,ν≥0,⟨1,ν⟩=1

{−γ(h(ν − z)− ϵ)− ⟨w, z⟩+ ⟨fx, ν⟩}

= inf
γ≥0,w

ϵγ + sup
ν≥0,⟨1,ν⟩=1

{
⟨fx, ν⟩+ sup

z
{− ⟨w, z⟩ − γh(ν − z)}

}
= inf

γ≥0,w
ϵγ + sup

ν≥0,⟨1,ν⟩=1

{
⟨fx, ν⟩+ sup

z′

{
−
〈
w, ν − z′

〉
− γh(z′)

}}
= inf

γ≥0,w
ϵγ + sup

ν≥0,⟨1,ν⟩=1

{
⟨fx − w, ν⟩+ sup

z′

{〈
w, z′

〉
− γh(z′)

}}
= inf

γ≥0,w
ϵγ + (γh)∗(w) + sup

ν≥0,⟨1,ν⟩=1
⟨fx − w, ν⟩

= inf
γ≥0,w

ϵγ + γh∗(w/γ) + sup
ν≥0

inf
α
{⟨fx − w, ν⟩+ α(1− ⟨1, ν⟩)}

≤ inf
γ≥0,w

ϵγ + γh∗(w/γ) + inf
α

{
α+ sup

ν≥0
⟨fx − α− w, ν⟩

}
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= inf
α,w,γ≥0

{α+ γh∗(w/γ) + ϵγ | α+ w ≥ fx} .

Note that the seventh equality holds for the case γ = 0 under the definition (0h)∗(w) = δ0(w). Then,
we compute h∗(w) explicitly as follows.

h∗(w) = sup
ν
⟨w, ν⟩ − ∥ν − 1∥V

= sup
ν′

〈
w, ν ′ + 1

〉
− ∥ν ′∥V

= ⟨1, w⟩+ sup
ν′

〈
w, ν ′

〉
− ∥ν ′∥V

= E[w] + δ∗∗V◦(w)

= E[w] + δV◦(w),

where the fourth equality is by the identity ∥ · ∥V = δ∗V◦(·) whenever V is convex and closed. Then,
the dual problem becomes

inf
α,w(·)

α+ E[w] + ϵ inf{γ ≥ 0 | w ∈ γV◦}

s.t. α+ w ≥ fx,

which gives the desired dual formulation by the definition of gauge function.
According to the Fenchel-Young inequality, the weak duality always holds. For quasi-strong

duality, we verify the conditions in Proposition 2. Since the primal (4) is always feasible under ν = 1

with the value E[fx] finite according to Assumption 2 and the fact P ∈ PϵV , the infimum value
function of F is finite at 0. Moreover, if F (ν, u, z) = −∞ at some ν, u, z, i.e., ⟨fx, ν⟩ = +∞ at some
ν, u, z, it contradicts to Lemma 2. Hence, F is proper. The convexity of F is also straightforward by
our perturbation scheme and the convexity of h.

Therefore, it suffices to verify that ϕ(u, z) = infν F (ν, u, z) is lower semicontinuous at (0, 0),
i.e., every (0, 0, t) that arises as a limit of points from epiϕ remains in epiϕ. We first note that
the parameters z and u are essentially designed to perturb the center 1 and radius ϵ of the gauge
function. Thus, for every (u, z), we have

F (ν, u, z) = {⟨−fx, ν⟩ | ν ∈ R(P) ∩ ((1 + z) + (ϵ+ u)V)}
ϕ(u, z) = inf

ν
F (ν, u, z) = inf

ν∈R(P)∩((1+z)+(ϵ+u)V)
⟨−fx, ν⟩ .

Due to Lemma 1, we can safely replace V with its extended gauge Ṽ to preserve the same value.
Then, the associated measure closure is P(ϵ+u)Ṽ,1+z . We define the associated optimization in the
measure space as

F̂ (Q, u, z) = {⟨−fx,Q⟩ | Q ∈ P(ϵ+u)Ṽ,1+z}

ϕ̂(u, z) = inf
Q
F̂ (Q, u, z) = inf

Q∈P(ϵ+u)Ṽ,1+z

⟨−fx,Q⟩ .

Now, take any convergence sequence (un, zn, tn) → (0, 0, t) where (un, zn, tn) ∈ epiϕ for every n.
Since ϕ is the infimum of F over ν, epiϕ is the projection of epiF onto the space of (u, z, t). By
the definition of projection, there exists a sequence (νn, un, zn, tn) in epiF . By the choice of νn, the
lifted measures νnP belongs to P(ϵ+u)Ṽ,1+z . Hence, we obtain a sequence (νnP, un, zn, tn) in epi F̂ .
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According to Lemma 2, the set P(ϵ+u)Ṽ,1+z becomes uniformly tight for all sufficiently small ϵ > 0

and all z lying in a sufficiently small neighborhood of 0. By Prokhorov’s theorem, uniform tightness
ensures precompactness. Since P(ϵ+u)Ṽ,1+z is weak∗-closed by definition, it is weak∗-compact.
Thus, there is a convergent subsequence in (νnP, un, zn, tn). Passing to this subsequence, we have
(νnP, un, zn, tn) → (Q, 0, 0, t) for some Q ∈ PϵṼ,1. Since epi F̂ is a closed set as ⟨fx, ·⟩ is weak∗-
continuous by Lemma 3, we have (Q, 0, 0, t) ∈ epi F̂ , which implies (0, 0, t) ∈ epi ϕ̂. Finally, notice
that when u = 0 and z = 0, −ϕ(0, 0) is the original problem (4), while −ϕ̂(0, 0) = supQ∈PϵṼ

⟨fx,Q⟩.
By Lemma 3, two problems have the same value, i.e., ϕ and ϕ̂ coincide at (0, 0). This shows
(0, 0, t) ∈ epiϕ, which proves the lower semicontinuity of ϕ at (0, 0), and concludes the quasi-strong
duality.

Proposition 3. Every CRM with a risk envelope Q := Q̃ ∩ R(P) is equivalent to (4) under the gauge set
V = Q̃ − 1 with a radius ϵ = 1. In particular, when Q̃ is represented as {ν ∈ L2(P) | g(ν) ≤ 0} for some
convex-closed function g : L2(P)→ Rm, the polar gauge set is

V◦ = (Q̃ − 1)◦ =

{
w ∈ L2(P)

∣∣∣∣ infγ≥0
⟨γ, g(·)⟩∗ (w)− ⟨1, w⟩ ≤ 1

}
where ⟨γ, g(·)⟩∗ is the convex conjugate of the map ν 7→ ⟨γ, g(ν)⟩.

Proof. By the definition of this gauge set, (4b) is satisfied for ϵ = 1 if and only if ν − 1 ∈ V , which is
equivalent to ν ∈ Q̃ by the definition of V := Q̃ − 1. Thus, the equivalence holds. When Q̃ has the
assumed explicit representation, we have

V◦ = (Q̃ − 1)◦ =

{
w

∣∣∣∣∣ sup
g(ν+1)≤0

⟨w, ν⟩ ≤ 1

}
,

where g(ν +1) ≤ 0 comes from the shift by 1. Then, the claimed result follows a direct computation
of conjugate duality, and the quasi-strong duality holds by the same proof as in Theorem 1.

Corollary 1. Given a CRM ρ with the risk envelope Q := Q̃ ∩ R(P) such that Q̃ := {ν | g(ν) ≤ 0} from
some convex-closed g satisfying g(1) ≤ 0, we have

ρ(fx) = inf
γ≥0,α,w(·)

{α+ ⟨γ, g(·)⟩∗ (w) | α+ w ≥ fx} ,

where ⟨γ, g(·)⟩∗ is the convex conjugate of the map ν 7→ ⟨γ, g(ν)⟩.

We note that the following proof requires a later result Theorem 4.

Proof. According to the gauge set dual formulation (4), Proposition 3, and Theorem 4, it suffices to
show that the following function

h(w) := inf
γ≥0
⟨γ, g(·)⟩∗ (w)− ⟨1, w⟩ = sup

g(ν+1)≤0
⟨w, ν⟩

is positively homogeneous and non-negative. Both are trivially true from the above supremum
form and the assumption g(1) ≤ 0.
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Proposition 4. CVaR constraint ν ≤ 1/(1 − β) is equivalent to ∥ν − 1∥Vβ
≤ 1 with Vβ := {ν | ν ≤

β(1− β)−1}. The corresponding polar gauge set is V◦β = {w ≥ 0 | β(1− β)−1E[w] ≤ 1}. Then, the gauge
function is defined as ∥w∥V◦

β
= β(1 − β)−1E[w] if w ≥ 0 and equals +∞ otherwise. This recovers the

standard objective function for CVaR optimization as infα α+ (1− β)−1E[(fx − α)+].

Proof. Since Q̃ = {ν | ν ≤ (1− β)−1}, the corresponding Vβ = Q̃ − 1 has the claimed definition by
Proposition 3. To determine the polar set V◦β , we directly compute the following for some input w.

inf
γ≥0
⟨γ, g(·)⟩∗ (w) = inf

γ≥0

{
sup
ν
⟨w, ν⟩ −

〈
γ, ν − (1− β)−1

〉}
= inf

γ≥0

{
(1− β)−1 ⟨1, γ⟩+ sup

ν
⟨w − γ, ν⟩

}
=

{
(1− β)−1 ⟨1, w⟩ , if w ≥ 0

+∞, otherwise.

This proves the definition of the polar set. Then, the definition of the gauge function ∥ · ∥V◦
β

follows
Theorem 4 directly. Hence, problem (5) becomes

inf
α,w(·)≥0

α+ (1− β)−1E[w]

s.t. α+ w ≥ fx.

Then, w = (fx − α)+ is an optimal functional for every α, which reduces the above formulation to
the familiar CVaR optimization.

Proposition 5. If V is bounded, then ker ∥ · ∥V is zero; if V is absorbing, then cone(V) = L2(P). Therefore,
when V is bounded, (4) reduces to SP with ϵ = 0; when V is absorbing, (4b) becomes redundant when
ϵ→∞ and the problem (4) reduces to RO.

Proof. By definition, ν is in the kernel if and only if ν ∈
⋂
ϵ>0 ϵV . When V is bounded, every nonzero

ν will be excluded for some sufficiently small ϵ, hence the kernel is {0}. For the second statement,
if V is absorbing, then there exists ϵ > 0 such that the open ϵ-L2-ball is contained within V . Then,
every ν ∈ L2(P) is contained in the scaled set (∥ν∥/ϵ)V .

Proposition 6. V◦ is absorbing if and only if V is bounded.

Proof. Recall that V◦ = {w | supv∈V⟨w, v⟩ ≤ 1}. Thus w ∈ λV◦ if and only if supv∈V⟨w, v⟩ ≤ λ.
Hence, V◦ is absorbing if and only if for every w ∈ L2(P) the quantity supv∈V⟨w, v⟩ is finite. If V
is bounded, let R := supv∈V ∥v∥2 < ∞. Then by the Cauchy–Schwarz inequality, supv∈V⟨w, v⟩ ≤
supv∈V ∥w∥2∥v∥2 ≤ R∥w∥2 < ∞, which shows that V◦ is absorbing. Conversely, assume that V◦

is absorbing. For each v ∈ V , define the linear functional lv(w) := ⟨w, v⟩. Absorbingness implies
that supv∈V |lv(w)| = supv∈V |⟨w, v⟩| < ∞ for every w ∈ L2(P). By the Uniform Boundedness
Principle, it follows that supv∈V ∥lv∥ <∞. Since L2(P) is a Hilbert space, the operator norm satisfies
∥lv∥ = ∥v∥2, and hence supv∈V ∥v∥2 <∞, i.e., V is bounded.

Proposition 7. Denoting µ = E[ξ] and Σ = E[(ξ − µ)(ξ − µ)⊺] as the expectation and covariance matrix
of the nominal distribution P and id(·) as the identity function, we have the following equivalence,

(EνP[ξ]− µ)⊺Σ−1(EνP[ξ]− µ) ≤ γ1 ⇐⇒ ∥ν − 1∥V1 ≤
√
γ1,
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EνP[(ξ − µ)(ξ − µ)⊺] ⪯ γ2Σ⇐⇒ ∥ν − 1∥V2 ≤ γ2 − 1,

where the affine operator Ω1 for V1 is defined as Ω1 := Σ−1/2 = Λ−1/2Q for the eigenvalue decomposition
Σ = Q⊺ΛQ with 2-norm on Rn as the compatible norm; Ω2 for V2 is defined as Ω2 := Σ−1/2(id− µ) with
spectral norm ∥A∥ = σmax(A) extracting the largest singular value as the compatible norm.

Proof. For the first moment constraint, we have

(EνP[ξ]− µ)⊺Σ−1(EνP[ξ]− µ)
= E[(ν − 1) · ξ]⊺Q⊺Λ−1QE[(ν − 1) · ξ]

= ∥Λ−1/2QE[(ν − 1) · id]∥22
= ∥E[(ν − 1) · Σ−1/2]∥22
= ∥ν − 1∥2V1

.

The third equality is because ν − 1 is a reweighting function and Σ−1/2(·) is a random vector (we
consider it as a function with input ξ). For the second moment constraint, we first subtract Σ on
both sides then multiply by Σ−1/2 and (Σ−1/2)⊺ on the left and right of both sides. Both operations
are compatible with the semi-definite inequality given Σ is positive-definite. Then, we have

Σ−1/2 (EνP[(ξ − µ)(ξ − µ)⊺]− Σ) (Σ−1/2)⊺

= EνP
[
Σ−1/2(id−µ)(id−µ)⊺(Σ−1/2)⊺

]
− E

[
Σ−1/2(id−µ)(id−µ)⊺(Σ−1/2)⊺

]
= E[(ν − 1)T2(Σ

−1/2(id−µ))]
= E[(ν − 1)T2 ◦ Ω2].

By the same operations, the right-hand side becomes (γ2 − 1)I . Hence, the semi-definite inequality
holds if and only if the largest eigenvalue of the above matrix is bounded by γ2 − 1, i.e., the
corresponding spectral norm is bounded by γ2 − 1, which completes the proof.

Theorem 2. For every moment gauge set Vm, the polar set V◦m induces a pseudonorm and can be writ-
ten as V◦m = {⟨X,Tm ◦ Ω⟩ | X ∈ N ◦}, where ⟨X,Tm ◦ Ω⟩ ∈ L2(P) is defined as ⟨X,Tm ◦ Ω⟩ (ξ) =∑

J∈JXJ [Tm ◦ Ω(ξ)]J . The corresponding gauge of w ∈ L2(P) can be explicitly computed as

∥w∥V◦
m
=

{
∥[w]Tm◦Ω∥N ◦ , if w ∈ span(Tm ◦ Ω)
+∞, otherwise,

where [w]Tm◦Ω := argminA{∥A∥N ◦ | ⟨A, Tm ◦ Ω⟩ = w} is the coefficient tensor with respect to Tm ◦ Ω,
and ∥ · ∥N ◦ is the dual norm of ∥ · ∥N . Moreover, Vm induces a seminorm and can be decomposed as
V ′m + (V ′m)⊥ with V ′m = {⟨X,Tm ◦ Ω⟩ | X ∈ C−1N} and (V ′m)⊥ the largest subspace in Vm orthogonal to
V ′m, where C is the symmetric 2-tensor on (Rn)⊗m defined by [C]JJ ′ = ⟨[Tm ◦ Ω]J , [Tm ◦ Ω]J ′⟩P for every
index (J, J ′) ∈ J2. In particular, C is the identity tensor if entries in Tm ◦ Ω form an orthonormal set.

Proof. To compute the explicit description of V◦m, we have

∥ν∥Vm = ∥EνP[Tm ◦ Ω]∥N
= sup

X∈N ◦
⟨X,EνP[Tm ◦ Ω]⟩
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= sup
X∈N ◦

EνP[⟨X,Tm ◦ Ω⟩]

= sup
w∈{⟨X,Tm◦Ω⟩|X∈N ◦}

⟨ν, w⟩ ,

where the first equality is the definition of Vm, the second is by the relationship between gauge set
and support function, along with the fact that N is convex-closed, the third is due to the linearity
of expectation, and the last one is by the definition of expectation in Hilbert space. We also note
that the first two inner products are equipped with the corresponding tensor space, and the last
one is from the Hilbert space. Since ∥ν∥Vm = δ∗V◦

m
(ν) whenever Vm is convex-closed, we proved the

description of V◦m.
Hence, V◦m can be considered as the lifting of the norm ball N ◦ into the functional space using

functions in Tm ◦ Ω. Moreover, since 0 is an interior point of N ◦ (since it is a norm ball) and the
functional lifting is a surjection onto its image, the zero function 0 = ⟨0, Tm ◦ Ω⟩ is a relative interior
of V◦m, which implies cone(V◦m) = span(Tm ◦ Ω). Given any w ∈ L2(P), by definition of gauge
function, ∥w∥V◦

m
= +∞ if w is not within cone(V◦m) = span(Tm ◦ Ω). Otherwise, let A := [w]Tm◦Ω

denote a coefficient tensor of minimal ∥·∥N ◦-norm among all tensors representingw. Thenw ∈ tV◦m
if and only if there existsX ∈ N ◦ such that w = ⟨tX, Tm ◦ Ω⟩. By minimality ofA, this is equivalent
to A ∈ tN ◦. Thus, we have

∥ ⟨A, Tm ◦ Ω⟩ ∥V◦
m
= inf {t | ⟨A, Tm ◦ Ω⟩ ∈ tV◦m}
= inf {t | A ∈ tN ◦} = ∥A∥N ◦ .

To show that V◦m induces a pseudonorm, observe that span(V◦m) = span(Tm◦Ω) is finite-dimensional.
Since V◦m = {⟨X,Tm ◦ Ω⟩ | X ∈ N ◦} is bounded, its gauge ∥ · ∥V◦

m
is a norm on span(Tm ◦Ω) (hence

has trivial kernel there), and equals +∞ outside this subspace.
Then, the decomposition of the primal gauge set Vm is a direct consequence of the later proved

gauge set decomposition theorem (Theorem 5), where the essential part V ′m := V†m (see Theorem 5)
is the polar set of V◦m relative to the subspace spanned by Tm◦Ω. Specifically, we have ⟨X ′, Tm ◦ Ω⟩ ∈
V†m if and only if X ′ belongs the following set{

X ′
∣∣∣∣ sup
X∈N ◦

〈
⟨X,Tm ◦ Ω⟩ ,

〈
X ′, Tm ◦ Ω

〉〉
P ≤ 1

}

=

X ′

∣∣∣∣∣∣ sup
X∈N ◦

∑
J,J ′

XJX
′
J ′ ⟨[Tm ◦ Ω]J , [Tm ◦ Ω]J ′⟩P ≤ 1


=

{
X ′
∣∣∣∣ sup
X∈N ◦

〈
X ⊗X ′,C

〉
≤ 1

}
=

{
X ′
∣∣∣∣ sup
X∈N ◦

〈
CX ′, X

〉
≤ 1

}
=
{
X ′ ∣∣ CX ′ ∈ N ◦◦ = N

}
= C−1N ,

where the first equality is by expressing the two functions as linear combinations of basis in Tm ◦Ω;
the second and third are by the algebra of tensor product and the fact that C is symmetric; the fourth
one is due to N is convex-closed; the last one is by the definition of the set inverse operator.
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Corollary 2. With the first m-th moment constraints ∥ν − 1∥Vi ≤ ϵi for i ∈ [m] in (4b), the dual problem
(5) is a degree-m polynomial programming

inf
w(·)∈Pm

E[w] +
∑
i∈[m]

ϵi ∥[w]Ti◦Ωi∥N ◦
i

∣∣∣∣∣∣ w ≥ fx
 , (6)

where Pm is the space of polynomials of degree less than or equal to m.

Proof. Having moment constraints up to degree m is equivalent to using the intersection of the
associated gauge sets. By later proved Corollary 6 regarding gauge set intersection, the dual
problem immediately becomes (9). By Theorem 2, each wi is a function from span(Ti ◦Ωi) where Ωi
is injective. Hence, w := α+

∑
i∈[m]wi is a polynomial of degree at most m. Thus, the constraint

(9) essentially says using an arbitrary m-degree polynomial to upper approximate fx. Then, the
first part of the objective penalizes the expectation of this upper approximation, and the second
part penalizes the coefficient tensor [w]Tm◦Ωm using the corresponding dual norm induced by N ◦

m

according to Theorem 2.

Proposition 10. The gauge set V1 = Lip◦1 can be written as {ν | (ν + 1) ∈ R(P),W1((ν + 1)P,P) ≤ 1}.
It induces a pseudonorm with span(1) as its orthogonal space. The polar gauge set Lip1 induces a seminorm
with span(1) as its kernel. In particular, ∥w + α∥Lip1 = ∥w∥Lip1 for every α ∈ R.

Proof. By definition, Lip◦
1 = {ν | supw∈Lip1

⟨ν, w⟩ ≤ 1}. Hence,

Lip◦
1 + 1 =

{
ν

∣∣∣∣∣ sup
w∈Lip1

⟨ν − 1, w⟩ ≤ 1

}
= {ν ∈ R(P) |W1(νP,P) ≤ 1},

according to Proposition 9. Hence, Lip◦
1 is the W1 ball centered at 1 shifted to the center by the

translation vector 1. Since it is known that W1 distance is a metric on the probability simplex, then
the shifted set is also a full-dimensional metric ball (for ϵ > 0) restricted to the shifted probability
simplex centered at zero. Consequently, every ν ∈ Lip◦

1 must have a total measure of zero. Then,
for every constant function α ∈ span(1) and every ν ∈ Lip◦

1, we have ⟨ν, α⟩ = α ⟨ν, 1⟩ = 0, which
shows that span(1) is the orthogonal subspace. Hence, Lip◦

1 induces a pseudonorm. By Theorem 5,
Lip1 induces a seminorm with span(1) as its kernel.

Corollary 3. Given the constraint ∥ν − 1∥Lip◦1
≤ ϵ, the dual problem (5) becomes

inf
w(·)

{
E[w] + ϵ∥w∥Lip1

∣∣∣ w ≥ fx} . (7)

Proof. A direct application of the dual problem (5) gives

inf
α,w(·)

E[α+ w] + ϵ∥w∥Lip1

s.t. α+ w ≥ fx.

By Proposition 10, ∥w + α∥Lip1
= ∥w∥Lip1

. Then, replacing α+ w with w gives the result.
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Proposition 11. The polar set V◦p,ϵ is the following

V◦p,ϵ =
{
w ∈ L2(P)

∣∣∣∣ { inf
β≥0

〈
1,−w(·)− inf

ξ
{β(d(ξ, ·)p − ϵp)− w(ξ)}

〉}
≤ 1

}
.

Proof. By definition, we have

V◦p,ϵ =


w ∈ L2(P)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



sup
ν(·),π(·,·)≥0

⟨w, ν⟩

s.t. ⟨d(ξ, ξ′)p, π(ξ, ξ′)⟩ ≤ ϵp

⟨1, π(·, ξ′)⟩ = ν + 1

⟨1, π(ξ, ·)⟩ = 1

ν + 1 ≥ 0

⟨1, ν⟩ = 0.


≤ 1


,

where the inner part is a linear program in the Hilbert space L2(P). This problem is clearly feasible
by letting ν = 0 and π = 1, and it is also bounded for every w ∈ V◦p,ϵ. In this case, the quasi-strong
duality holds by Proposition 2 under the standard RHS perturbation. Let β ≥ 0, s(ξ), t(ξ′), r(ξ) ≥
0, z be the corresponding dual variables in order, the dual problem can be computed as

inf
β≥0,r(ξ)≥0,s(ξ),t(ξ′),z

ϵpβ − ⟨1, s⟩ − ⟨1, t⟩+ ⟨1, w − s+ z⟩

s.t. w − s+ z = r

s(ξ) + t(ξ′) ≤ βd(ξ, ξ′)p.

Note that the first constraint can be reduced to w + z ≥ s by eliminating r ≥ 0. Moreover, the only
term of w + z is in the last inner product in the objective. Then, we can set w(ξ) + z = s(ξ), which
makes the last inner product equal to zero. We can further replace s by w + z in all occurrences,
which gives the following

inf
β≥0,t(ξ′),z

ϵpβ − ⟨1, w⟩ − ⟨1, t⟩+ z

s.t. w(ξ) + z + t(ξ′) ≤ βd(ξ, ξ′)p.

Finally, setting t(ξ′) = infξ {βd(ξ, ξ′)p − w(ξ)} − z gives us the dual formulation as

inf
β≥0

ϵpβ − ⟨1, w⟩ −
〈
1, inf

ξ
{βd(ξ, ·)p − w(ξ)}

〉
,

which proves the claimed polar set definition.

Corollary 4. Given Wasserstein p-distance ∥ν − 1∥Vp,ϵ ≤ 1, the dual problem (5) becomes infβ≥0 ϵ
pβ −

⟨1, infξ {βd(ξ, ·)p − fx(ξ)}⟩.

Proof. By Proposition 11, we have

∥w∥V◦
p,ϵ

= inf
β≥0

〈
1,−w(·)− inf

ξ
{β(d(ξ, ·)p − ϵp)− w(ξ)}

〉
.
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Similar to the type-1 case, ∥w∥V◦
p,ϵ

is invariant under constant addition. Then, (5) becomes

inf
w≥fx

inf
β≥0

{
ϵpβ −

〈
1, inf

ξ
{βd(ξ, ·)p − w(ξ)}

〉}
.

For each fixed β ≥ 0, the map w 7→ − ⟨1, infξ{βd(ξ, ·)p − w(ξ)}⟩ is nondecreasing in w (pointwise).
Hence, the infimum over w ≥ fx is attained at w = fx, and we obtain

inf
β≥0

{
ϵpβ −

〈
1, inf

ξ
{βd(ξ, ·)p − fx(ξ)}

〉}
,

which proves the claim.

Proposition 12. Given ϕ-divergence-based constraint E[ϕ(ν)] ≤ ϵ, the associated constraint (4b) can be
written as ∥ν − 1∥Vϕ,ϵ

≤ 1 for the primal gauge set Vϕ,ϵ = {ν | E[ϕ(ν + 1)] ≤ ϵ}. The associated polar
set in (5) is V◦ϕ,ϵ = {w | infγ≥0 ⟨1, γ(ϕ∗(w/γ) + ϵ)− w⟩ ≤ 1} where ϕ∗ is the convex conjugate of ϕ and
0ϕ∗(w/0) denotes the convex indicator function δ0(w).

Proof. A direct verification shows that ∥ν − 1∥Vϕ,ϵ
≤ 1 if and only if E[ϕ(ν)] ≤ ϵ, which proves the

equivalence. We can compute the polar set using the definition

V◦ϕ,ϵ =

w
∣∣∣∣∣∣
 sup

ν(·)
⟨w, ν⟩

s.t. ⟨1, ϕ(ν + 1)⟩ ≤ ϵ.

 ≤ 1

 .

Since ϕ is convex-closed, we can use the following perturbation function to compute the dual of
the inner optimization.

F (ν, u, z) :=

{
⟨−w, ν⟩ , if ⟨1, ϕ(ν + 1− z)⟩ − ϵ ≤ u
∞, otherwise.

Using a similar conjugate duality computation as in Theorem 1, we obtain the dual as

g(w) := inf
γ≥0
⟨1, γ(ϕ∗(w/γ) + ϵ)− w⟩ .

Moreover, by the same argument as in Theorem 1, the quasi-strong duality holds since ϕ is convex
and closed, which concludes the description of the polar set V◦ϕ,ϵ.

Corollary 5. Given Vϕ,ϵ as the gauge set in (4b), the dual problem (5) becomes the following

inf
α,γ≥0,w(·)

{α+ E[γϕ∗(w/γ)] + ϵγ | α+ w ≥ fx} , (8)

where ϕ∗ is the convex conjugate of ϕ and 0ϕ∗(w/0) = δ0(w). In particular, when ϕ is strictly convex and
continuously differentiable, ϕ∗ can be directly computed as ϕ∗(w) = w · (ϕ′)−1(w)− ϕ ◦ (ϕ′)−1(w).

Proof. We note that the function g(w) that defines V◦ϕ,ϵ is positively homogeneous since the quasi-
strong duality holds in the computation of V◦ϕ,ϵ and supν∈U ⟨αw, ν⟩ = α supν∈U ⟨w, ν⟩ for every
α ≥ 0, w ∈ L2(P), and nonempty U . It is also non-negative since we have the following when the
optimal γ > 0.

inf
w
g(w) = inf

γ≥0,w(·)
γ ⟨1, ϕ∗(w/γ)− w/γ + ϵ⟩
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= inf
γ≥0

ϵγ − γ
〈
1, sup

w
w/γ − ϕ∗(w/γ)

〉
= inf

γ≥0
ϵγ − γ ⟨1, ϕ∗∗(1)⟩

= inf
γ≥0

ϵγ − γ ⟨1, 0⟩ = 0.

The third equality is due to ϕ being convex and closed, and the fourth is by the property that
ϕ(1) = 0. In the case the optimal γ = 0, we have infw g(w) = infw ⟨1, δ0(w)− w⟩ = 0 by the
definition of 0ϕ∗(w/0). Hence, g(w) is non-negative. By Theorem 4, ∥w∥V◦

ϕ,ϵ
= g(w), which gives

the claimed reformulation (8) by plugging g(w) into (5).
When ϕ is continuously differentiable, the gradient of the objective function with respect to

ν can be computed directly as w − ϕ′(ν), which gives the optimal solution ν = (ϕ′)−1(w). This
inverse is well-defined since ϕ is strictly convex, implying that ϕ′ is strictly increasing.

Theorem 3 (Algebra of Gauge Sets and Functions). Let {Vi}i∈I be a (possibly infinite) family of convex-
closed sets, each of which contains the origin, and let In ⊆ I be an arbitrary finite index subset. We define
the generalized simplex as ∆ :=

{
λ ∈

⊕
i∈I R+

∣∣ ⟨1, λ⟩ = 1
}
. Then, we have the following results.

1. (ϵV)◦ = V◦/ϵ for every ϵ > 0.

2.
(⋂

i∈I Vi
)◦

= cl conv
(⋃

i∈I V◦i
)
.

3. (
⊕

i∈I Vi)◦ = cl
(⋃

λ∈∆
⋂
i∈I λiV◦i

)
.

4. ϵ∥ν∥V = ∥ϵν∥V = ∥ν∥V/ϵ for every ϵ > 0.

5. ∥ν∥⋂
i∈I Vi

= supi∈I ∥ν∥Vi .

6. ∥ν∥⋃
i∈I Vi

= infi∈I ∥ν∥Vi .

7. ∥ν∥conv(⋃i∈I Vi) = inf
In⊆I,ν=

∑
i∈In

νi

∑
i∈In ∥νi∥Vi .

8. ∥ν∥⊕
i∈I Vi

= inf
In⊆I,ν=

∑
i∈In

νi
maxi∈In ∥νi∥Vi .

9. ∥w∥⋃
λ∈∆

⋂
i∈I λiVi

=
∑

i∈I ∥w∥Vi , when I is finite.

Proof. The first statement is directly from the definition. For the second statement, we first show
the “⊇” direction. It suffices to verify every w ∈ conv

(⋃
i∈I V◦i

)
since the set on the left-hand side is

closed. Such a w can be represented as some convex combination w =
∑

i∈In λiwi for some finite
index subset In ⊆ I with wi ∈ V◦i for every i ∈ In. Take an arbitrary ν ∈

⋂
i∈I Vi, we have

⟨w, ν⟩ =
∑
i∈In

λi ⟨wi, ν⟩ ≤
∑
i∈In

λi = 1,

where the inequality is due to wi ∈ V◦i and ν ∈ Vi for every i. This completes the proof of this
direction. For the other direction, since both sides are convex-closed and contain the origin, we can
prove the following equivalent statement invoking Proposition 1.(⋂

i∈I
Vi

)◦◦

=
⋂
i∈I
Vi ⊇

(
cl conv

(⋃
i∈I
V◦i

))◦

=

(
conv

(⋃
i∈I
V◦i

))◦

,
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where the last equality is due to the fact that the polar set automatically ensures the closure property
using the intersection of half-spaces. Take ν from the set on the right, we have

〈
ν,
∑

i∈In λiwi
〉
≤ 1

for every In ⊆ I , every convex combination coefficients λ, and every wi ∈ V◦i . In particular, for
every i ∈ I , taking λi = 1 implies ⟨ν, wi⟩ ≤ 1 for every wi ∈ V◦i , which means ν ∈ V◦◦i = Vi by
Proposition 1. This shows ν belongs to the intersection of Vi’s.

For the third statement, we note that w ∈ (
⊕

i∈I Vi)◦ if and only if

sup
ν∈

⊕
i∈I Vi

⟨w, ν⟩ = sup
In⊆I

∑
i∈In

sup
νi∈Vi

⟨w, νi⟩ ≤ 1,

where In is any finite subset of I by the definition of direct sum. Since 0 ∈ Vi, each summation
term is non-negative. Hence, the above inequality is satisfied if and only if supνi∈Vi

⟨w, νi⟩ ≤ λi for
some λ = (λi)i∈I ∈ ∆, which is equivalent to w ∈ λiV◦i for every i ∈ I , i.e., w ∈

⋂
i∈I λiV◦i for some

λ ∈ ∆. This concludes the proof of this statement.
The fourth statement is trivial. For the fifth, since

⋂
i∈I Vi ⊆ Vi for every i, we have

∥ν∥⋂
i∈I Vi

≥ ∥ν∥Vi , ∀i ∈ I

due to the gauge function value being larger for a smaller gauge set. For the other direction, we
have ν ∈ γiVi for every γi > ∥ν∥Vi by the definition of gauge function. This implies ν/γ ∈ Vi
for every i ∈ I given that γ ≥ supi∈I ∥ν∥Vi , i.e., ν ∈ (supi∈I ∥ν∥Vi)

⋂
i∈I Vi. This concludes this

statement.
For Statement 6, the “≤” direction is obvious since

⋃
i∈I Vi ⊇ Vi for every i. We left to show

that this inequality cannot be strict. Suppose otherwise ∥ν∥⋃
i∈I Vi

< γ′ < γ := infi∈I ∥ν∥Vi , then
ν ∈ γ′

⋃
i∈I Vi. That is, there exists some i ∈ I such that ν ∈ γ′Vi, i.e., γ′ ≥ ∥ν∥Vi . This contradicts

that γ is the infimum. We note that, in this case, the union is not necessarily convex-closed anymore,
but still contains the origin.

For Statement 7, we have the following

∥ν∥conv(⋃i∈I Vi) = inf

{
γ > 0

∣∣∣∣∣ ν ∈ γ conv
(⋃
i∈I
Vi

)}

= inf


γ > 0

∣∣∣∣∣∣∣∣∣∣∣

In ⊆ I
ν = γ

∑
i∈In λiνi

νi ∈ Vi, ∀i ∈ In
λi ≥ 0, ∀i ∈ In∑

i∈In λi = 1.



= inf


γ > 0

∣∣∣∣∣∣∣∣∣∣∣

In ⊆ I
ν =

∑
i∈In γλiνi

γλiνi ∈ γλiVi, ∀i ∈ In
γλi ≥ 0, ∀i ∈ In∑

i∈In γλi = γ.


,

where the third equality is obtained by multiplying γ > 0 on both sides of the constraints. We then
substitute γi = γλi and ν ′i = γiνi to simplify the above formula, which gives

∥ν∥conv(⋃i∈I Vi) = inf
In∈I,ν=

∑
i∈In

ν′i

{∑
i∈In

γi

∣∣∣∣∣ ν ′i ∈ γiVi, ∀i ∈ In
γi ≥ 0, ∀i ∈ In.

}
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= inf
In∈I,ν=

∑
i∈In

ν′i

∑
i∈In

inf{γi ≥ 0 | ν ′i ∈ γiVi},

where each summand is exactly ∥ν ′i∥Vi by definition. This finishes the proof of this statement.
Similarly, for the eighth statement, we have

∥ν∥⊕
i∈I Vi

= inf

γ > 0

∣∣∣∣∣∣∣
In ⊆ I
ν =

∑
i∈In γνi

γνi ∈ γVi, ∀i ∈ In


= inf

In⊆I,ν=
∑

i∈In
ν′i

{
γ > 0

∣∣∣∣∣ ν ′i ∈ γiVi, ∀i ∈ In
γ ≥ γi, ∀i ∈ In

}
,

where we substitute ν ′i = γνi to obtain the second equality. According to this form, the infimum of
γ equals maxi∈In ∥νi∥Vi , which proves the desired result.

For the last statement, Since I is finite, we have

∥w∥⋃
λ∈∆

⋂
i∈I λiVi

= inf
λ∈∆

max
i∈I
∥w∥Vi/λi

by Statements 4–6. We can also safely assume that ∥w∥Vi > 0 for every i ∈ I , since otherwise we
can remove the corresponding terms on both sides. Then, the optimal λ would make ∥w∥Vi/λi
equal for every i ∈ I . Otherwise, changing any value λi would increase the maximum due to ∆ is a
simplex. Then, we have

λj =
∥w∥Vj

∥w∥Vi

λi =⇒ λi =
∥w∥Vi∑
i∈I ∥w∥Vi

=⇒ ∥w∥Vi

λi
=
∑
i∈I
∥w∥Vi

for every i ∈ I , which concludes the proof.

Theorem 4. Given any function g that satisfies (i) Non-negativity: g(w) ≥ 0 for all w ∈ L2(P) and (ii)
Positive homogeneity: g(αw) = αg(w) for every α ≥ 0, and any gauge set V := {w | g(w) ≤ ϵ} with
ϵ > 0, we have ∥w∥V = g(w)/ϵ.

Proof. By definition, we have the following thanks to positive homogeneity.

∥w∥V = inf{γ > 0 | w = γw′, g(w′) ≤ ϵ} = inf{γ > 0 | g(w)/ϵ ≤ γ}.

Then, the non-negativity ensures γ = g(w)/ϵ = ∥w∥V .

Corollary 6. Given constraint (4b) as ∥ν − 1∥Vi ≤ ϵi for all i ∈ [m], the dual problem becomes

inf
α,wi(·)

α+
∑
i∈[m]

EP[wi] +
∑
i∈[m]

ϵi∥wi∥V◦
i

∣∣∣∣∣∣ α+
∑
i∈[m]

wi ≥ fx

 . (9)

Moreover, the quasi-strong duality holds if Vi’s are convex-closed and contain the origin.

Proof. In this case, the constraint set (4b) is equivalent to ∥ν − 1∥ϵiVi ≤ 1 for all i ∈ [m], and is the
same as ∥ν − 1∥⋂

i∈[m] ϵiVi
≤ 1 by the definition of gauge function. By Theorem 3 Statement 1 and

2, the polar set is conv
(⋃

i∈[m] V◦i /ϵi
)

. Then, the claimed result follows the statements 4 and 7 in
Theorem 3.
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Corollary 7. Given V =
∑

i∈[m] βiVi in (4b) for some scalar βi ≥ 0, the dual problem becomes

inf
α,w(·)

α+ EP[w] + ϵ
∑
i∈[m]

βi∥w∥V◦
i

∣∣∣∣∣∣ α+ w ≥ fx

 . (10)

Moreover, the quasi-strong duality holds if Vi’s are convex-closed and contain the origin.

Proof. In this finite summation case, we have V =
⊕

i∈[m] βiVi. Then, by the first and third state-

ments of Theorem 3, we have V◦ = cl
(⋃

λ∈∆
⋂
i∈[m] λi(βiVi)

◦
)

. LetW :=
⋃
λ∈∆

⋂
i∈[m] λi(βiVi)

◦, by
Statements 3 and 9 of Theorem 3, we obtain

∥w∥W =
∑
i∈[m]

βi∥w∥V◦
i
.

This is a convex-closed function due to each V◦i is, thus ∥w∥V◦ = ∥w∥clW = ∥w∥W , which concludes
the proof.

Theorem 5 (Gauge Set Decomposition). For a closed gauge set V , we have the following decomposition

L2(P) = lin(V)⊕ V⊥ ⊕ ess(V),

where ess(V) := (lin(V)⊕ V⊥)⊥ is termed the essential subspace induced by V . Define V† := ess(V) ∩ V
to be the essential gauge set of V , then V and V◦ can be decomposed as

V = lin(V) + V†

V◦ = V⊥ +
(
V†
)◦
ess(V)

,

where (W)◦ess(V) := {w ∈ ess(V) | ⟨w, v⟩ ≤ 1 ∀v ∈ W} is the polar set relative to the essential subspace
ess(V) for anyW ⊆ ess(V). In particular, we have

lin(V◦) = V⊥, (V◦)† =
(
V†
)◦
ess(V)

, ess(V) = ess(V◦).

Moreover, V† is convex-closed and contains 0.

Proof. Since both lin(V) and V⊥ are closed and orthogonal to each other by definition, the subspace
lin(V)⊕V⊥ is also closed in L2(P). Then, the decomposition follows the orthogonal decomposition
theorem in Hilbert space. To show the decomposition of V , we write any ν ∈ V as ν1 + ν2 + ν3 from
the space decomposition. Then,

0 = ⟨ν, ν2⟩ = ⟨ν1, ν2⟩+ ⟨ν2, ν2⟩+ ⟨ν3, ν2⟩ = ∥ν2∥22 (a)

where the first equality is due to ν ∈ V and ν2 is from V⊥, the second is due to the decomposition,
and the third is due to orthogonality between the three spaces. Hence, ν2 = 0. Then, ν = ν1+ν3 ∈ V
implies ν3 ∈ V − ν1 = V , where the equality is due to V is invariant under translation of any ν1 ∈
lin(V) by definition of lin(V). Thus, ν3 ∈ ess(V) ∩ V . For the other direction, every ν ∈ lin(V) + V†

can be written as ν = ν1 + ν2 for some ν1 ∈ lin(V) and ν2 ∈ ess(V) ∩ V , which implies ν1 + ν2 ∈ V
as V is invariant under addition of any element in lin(V).
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For the decomposition of V◦, any w ∈ V◦ decomposed as w = w1 + w2 + w3 must satisfy

⟨w1, ν1⟩+ ⟨w2, ν2⟩+ ⟨w3, ν3⟩ ≤ 1

for every ν = ν1 + ν2 + ν3 ∈ V . Then, w1 must be 0 to ensure boundedness (otherwise, take
ν1 = γw1 ∈ lin(V) and increase γ →∞), and w2 will never affect the summation value since ν2 = 0

by (a). The above criterion is then reduced to

⟨w3, ν3⟩ ≤ 1, ∀ν3 ∈ V†,

implying w3 ∈
(
V†
)◦
ess(V) by definition. For the other direction, adding such w3 with any w2 ∈ V⊥

remains the inequality, which implies any element w ∈ V⊥ +
(
V†
)◦
ess(V) also belongs to V◦.

Finally, the subsequent three identities in the statements follow directly by the uniqueness and
orthogonality of the two decompositions, and the convexity, closedness, and containing zero are
preserved by the intersection that defines V†.

Theorem 6. Given m gauge sets satisfying Type-II regularity in Assumption 2, the composed primal
problem is

sup
ν1≥0

⟨1,ν1⟩P=1
∥ν1−1∥V1

≤ϵ1

sup
ν2≥0

⟨1,ν2⟩ν1P=1

∥ν2−1∥V2
≤ϵ2

· · · sup
νm≥0

⟨1,νm⟩ν1ν2···νm−1P
=1

∥νm−1∥Vm≤ϵm

〈∏
i∈[m]

νi, fx

〉
P

. (11)

Define CΦ(Ξ) := {w ∈ C(Ξ) | supξ∈Ξ |w(ξ)|/(1 + Φ(ξ)) < ∞} where C(Ξ) is the set of continuous
functions over Ξ. The associated dual problem is

inf
{αi,wi(·)}i∈[m]

∑
i∈[m]

(
αi + ϵi∥wi∥V◦

i

)
+ EP[w1]

s.t. αi + wi ≥ wi+1, ∀i ∈ [m],

where wm+1 = fx and wi ∈ CΦ(Ξ) for every i ∈ [m].

Proof. We prove by induction. The basic case m = 1 is true by Theorem 1. Then, the case of m can
be written as follows by the induction hypothesis:

sup
ν1≥0

⟨1,ν1⟩P=1
∥ν1−1∥V1

≤ϵ1

inf
{αi,wi(·)}mi=2

m∑
i=2

(
αi + ϵi∥wi∥V◦

i

)
+ Eν1P[w2]

s.t. αi + wi ≥ wi+1, ∀i ∈ {2, 3, . . . ,m},

where the nominal measure of the inner problem is ν1P. By Assumption 2 and Lemma 2, ν1P still
satisfies Eν1P[Φ] <∞, thus regularity is preserved, making the above induction step valid. Then,
we swap the supremum and infimum to obtain the following with a potential minimax gap,

inf
{αi,wi(·)}mi=2

m∑
i=2

(
αi + ϵi∥wi∥V◦

i

)
+ sup

ν1≥0
⟨1,ν1⟩P=1

∥ν1−1∥V1
≤ϵ1

⟨ν1, w2⟩P

s.t. αi + wi ≥ wi+1, ∀i ∈ {2, 3, . . . ,m}.
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By the definition of CΦ(Ξ), let M := supξ∈Ξ |w2(ξ)|/(1 + Φ(ξ)) <∞, then |w2| ≤M +MΦ, which
implies it is Type-II regular with respect to Φ. Thus, Assumption 1 and 2 are both satisfied. Thus,
applying Theorem 1 on the inner supremum finishes the induction step and obtains the dual form.

It remains to verify that the minimax equality holds. Under Assumption 2, the feasible set
{ν1P | ν1 ≥ 0, ⟨1, ν1⟩P = 1, ∥ν1 − 1∥V1 ≤ ϵ1} has a weak∗-compact closure in the measure space by
uniform tightness and Prokhorov’s theorem. Furthermore, for each fixed (αi, wi)

m
i=2, the mapping

ν1 7→ ⟨w2, ν1⟩P is affine and weak∗-continuous on the feasible set by Assumption 2 and Lemma 3.
Thus, the inner value function is concave and upper semicontinuous in ν1. It is also convex and
lower semicontinuous with respect to (αi, wi)

m
i=2 since it consists of a sum of convex-closed gauge

penalties and closed linear inequalities. Therefore, the hypotheses of Sion’s minimax theorem are
satisfied, and the supremum and infimum can be interchanged, which completes the proof.

Theorem 7. When Λϕ is closed in span(ϕ), the dual associated with (12) is

zϕ,Λ := inf
λ∈Λ,α

α+ ⟨λ,EP[ϕ]⟩+ ϵ∥ ⟨λ, ϕ⟩ ∥V◦ (13a)

s.t. α+ ⟨λ, ϕ⟩ ≥ fx. (13b)

Otherwise, zϕ,Λ is an upper bound of the dual of (12).

Proof. By the second statement of Theorem 3, we have(
conv

(
V ∪ Λ◦

ϕ

))◦
= V◦ ∩ (Λ◦

ϕ)
◦ = V◦ ∩ Λϕ.

Moreover, inf{t > 0 : w ∈ t(V◦ ∩ Λϕ) = tV◦ ∩ tΛϕ = tV◦ ∩ Λϕ} since Λϕ is a cone induced by Λ.
Thus, when w ∈ Λϕ, its gauge equals ∥w∥V◦ , and when w /∈ Λϕ it becomes infinite, i.e., we have

∥w∥V◦∩Λϕ
=

{
∥w∥V◦ , if w ∈ Λϕ

∞, otherwise.

Therefore, when Λϕ is closed, the problem (5) only allows functions from Λϕ = Λϕ to be upper
approximators, which proves (13) is exactly the dual of (12). Otherwise, (13) is the dual problem
restricted to the smaller decision space Λϕ ⊊ Λϕ, inducing an upper bound.

Proposition 13. For any quasimetric c, let Vc be the associated Lipschitz gauge. The following holds

1. Vc is convex and contains the origin.

2. Every w ∈ L2(P) adopts the representation w(ξ) = infξ′∈Ξ θγ,w(ξ′),ξ′(ξ) for every γ ≥ ∥w∥Vc .

3. ∥α+ w∥Vc = ∥w∥Vc for every constant α ∈ L2(P).

4. ∥c(·, ξ)∥Vc = 1 for every ξ ∈ Ξ.

5. If θγ,si,ξi(ξj) ≤ θγ,sj ,ξj (ξj), then θγ,si,ξi ≤ θγ,sj ,ξj pointwise.

6. If θγ,si,ξi(ξj) < θγ,sj ,ξj (ξj), then θγ,si,ξi < θγ,sj ,ξj pointwise.

7. θγ,si,ξi is active if and only if it is active at ξi.
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8. [SAA Compatibility] ŵγ,s(ξi) ≤ si. Equality holds if θγ,si,ξi is active.

9. [Gauge Compatibility] ∥ŵγ,s∥Vc ≤ γ. Equality holds if some θγ,si,ξi is active at multiple points. In
particular, suppose the cardinality of Ξ is strictly larger than the sample size m, then ∥ŵγ,s∥ = γ.

Proof. Convexity can be verified directly. Vc contains zero due to c ≥ 0. Given γ > ∥w∥Vc , we have
w ∈ γVc, implying w(ξ) ≤ infξ′ w(ξ

′) + γc(ξ, ξ′). On the otherhand, taking ξ′ := ξ gives

inf
ξ′
w(ξ′) + γc(ξ, ξ′) ≤ w(ξ) + γc(ξ, ξ) = w(ξ),

which proves Statement 2. The third statement can be verified directly by definition. For Statement 4,
fix ξ0 ∈ Ξ. By the triangle inequality, c(ξ, ξ0) ≤ c(ξ, ξ′)+c(ξ′, ξ0) for all ξ, ξ′, hence c(ξ, ξ0)−c(ξ′, ξ0) ≤
c(ξ, ξ′), i.e., c(·, ξ0) ∈ Vc and thus ∥c(·, ξ0)∥Vc ≤ 1. Conversely, if c(·, ξ0) ∈ tVc, then setting ξ′ = ξ0
gives c(ξ, ξ0) ≤ t c(ξ, ξ0) for all ξ, so t ≥ 1 whenever c(ξ, ξ0) > 0 for some ξ, and therefore
∥c(·, ξ0)∥Vc = 1.

For Statement 5, the premise implies

si + γc(ξj , ξi) ≤ sj + γc(ξj , ξj) =⇒ sj − si ≥ γc(ξj , ξi).

Then, for every ξ ∈ Ξ, we have

θγ,sj ,ξj (ξ)− θγ,si,ξi(ξ) = sj − si + γ(c(ξ, ξj)− c(ξ, ξi)) ≥ γ(c(ξj , ξi) + c(ξ, ξj)− c(ξ, ξi)) ≥ 0,

where the last is the triangle inequality. Statement 6 can be proved by the same argument. For
Statement 7, one direction is trivial. For the other, suppose θγ,si,ξi is not active at ξi, then Statement 6
shows that it is fully dominated in the entire domain by some other atomic envelope. For Statement
8, since θγ,si,ξi(ξi) = si and ŵ is the minimum over all atomic envelopes, the first inequality holds.
Suppose θγ,si,ξi is active, then it must be active at ξi according to Statement 7, which proves the
equality. For Statement 9, take any ξ, ξ′ ∈ Ξ and let θγ,si,ξi be an active envelope at ξ′. We have

ŵγ,s(ξ
′) = si + γc(ξ′, ξi), ŵγ,s(ξ) ≤ si + γc(ξ, ξi),

which implies
ŵγ,s(ξ)− ŵγ,s(ξ′) ≤ γ

(
c(ξ, ξi)− c(ξ′, ξi)

)
≤ γc(ξ, ξ′).

Since ξ, ξ′ are arbitrarily chosen, we have ∥ŵγ,s∥Vc ≤ γ. For the equality claim, suppose some θγ,si,ξi
is active at multiple points, then one of them is ξi by Statement 7. Take another active point ξj ̸= ξi,
we have

ŵγ,s(ξj)− ŵγ,s(ξi) = si + γc(ξj , ξi)− si = γc(ξj , ξi),

which attains the upper bound γ. Finally, suppose Ξ has a larger cardinality than I , then there
exists some ξ ∈ Ξ does not associated with any atomic envelope. Then, the active atomic at this
point, say θγ,s,ξi , must be active at both ξ and ξi.

Lemma 4. Given a feasible solution (γ, α, s) of (15) under samples {ξi}i∈[m], let ŵγ,s(ξ) be the associated
envelope function. Then, α+ ŵγ,s is feasible to (14). Moreover, if an optimal solution exists, there must be
some optimal (γ, α, s) such that ŵγ,s(ξi) = si for all i ∈ [m].
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Proof. Since (15b) is equivalently to α+mini∈[m] θγ,si,ξi = α+ ŵγ,s ≥ fx, the functional α+ ŵγ,s is
feasible to (14). By the definition of envelope, we always have ŵγ,s(ξi) ≤ si. For the last statement,
suppose ŵγ,s(ξi) < si, Statements 6 and 8 in Proposition 13 imply that θ1 := θγ,si,ξi is strictly
dominated by another atomic envelope. Let θγ,sj ,ξj be the active atomic envelope at ξi. Then,
we can modify θ1 by reducing the constant si ← ŵγ,s(ξi) = θγ,sj ,ξj (ξi) so that θ1 becomes active.
Moreover, due to Statement 5 in Proposition 13, this operation will not change the function value
of ŵγ,s. Since the function g ◦ hm is non-decreasing on s, the objective value will not increase by
this operation of reducing si, which retains the optimality of the solution.

Theorem 8. Suppose V◦ is a Lipschitz gauge induced by a quasimetric c. Let (α⋆, w⋆) and z⋆ denote an
optimal solution and the optimal value of (14). For a given set of i.i.d. samples {ξi}mi=1, let (γm, α, s) and
zm denote an optimal solution and the optimal value of (15). Let P̄m := 1

m

∑m
i=1 δξi denote the empirical

measure, and let W c̄
1 denote the type-1 Wasserstein distance induced by the transport cost c̄(ξ, ξ′) =

max{c(ξ, ξ′), c(ξ′, ξ)}. Then the following bound holds:

−Lg
∣∣〈h ◦ w⋆, P̄m − P

〉∣∣ ≤ z⋆ − zm ≤ LgLhγmW c̄
1 (P̄m,P).

In particular, lim supm→∞ zm ≤ z⋆ almost surely. Moreover, if W c̄
1 (P̄m,P)→ 0 almost surely as m→∞

and lim supm→∞ γm <∞, then zm
a.s.−−→ z⋆.

Proof. Define ŵγ,s := mini∈[m] θγ,si,ξi relative to the given samples S, we focus on the relationship
between the following problem and (14).

inf
γ,α,s

α+ g

∑
i∈[m]

h(si)/m

+ ϵγ (20a)

ŵγ,s ≥ fx − α. (20b)

Clearly, (20) is equivalent to (15) by the definition of ŵ. For a given S with size m, let z⋆, zm
be the optimal value of (14) and (20), respectively. Let (α⋆, w⋆) be the optimal solution of (14)
(which may be obtained via a weak∗ convergent sequence), we construct a feasible solution
for (20) as γ := ∥w⋆∥V◦ , α := α⋆, and si := w⋆(ξi), which induces the finite-envelope ŵm :=

ŵγ,s. Then, ŵm is feasible to (20) due to the envelope property, and its objective value is exactly

α⋆ + g
(∑

i∈[m] h ◦ w⋆(ξi)/m
)
+ ϵ∥w⋆∥V◦ by construction. Then, we have

zm − z⋆ ≤

α⋆ + g

∑
i∈[m]

h ◦ w⋆(ξi)/m

+ ϵ∥w⋆∥V◦

− z⋆
= g

∑
i∈[m]

h ◦ w⋆(ξi)/m

− g (E[h ◦ w⋆])
≤ Lg

∣∣∣∣∣∣
∑
i∈[m]

h ◦ w⋆(ξi)/m− E[h ◦ w⋆]

∣∣∣∣∣∣
= Lg

∣∣〈h ◦ w⋆, P̄m − P
〉∣∣ .
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Since gauge compatibility cancels the gauge term, we obtain the first equality. The second inequality
applies the Lipschitz inequality of g. Since this is the SAA estimation error of the random variable
h ◦ w⋆, which is independent of the i.i.d. samples, the strong-law-of-large-numbers guarantees
lim sup zm ≤ z⋆ almost surely.

For the other bound, take any optimal solution (α, s, γm) from (20) that is non-redundant as in
Lemma 4, the associated α+ ŵγ,s is feasible to (14). We have the following

z⋆ − zm = (α+ g (E[h ◦ ŵγm,s]) + ϵ∥ŵγm,s∥V◦)−

α+ g

∑
i∈[m]

h(si)

m

+ ϵγm


≤ Lg

∣∣∣∣∣∣E[h ◦ ŵγm,s]−
∑
i∈[m]

h(si)

m

∣∣∣∣∣∣
= Lg

∣∣EP[h ◦ ŵγm,s]− EP̄m
[h ◦ ŵγm,s]

∣∣
= Lg

∣∣∣∣∫ h ◦ ŵγm,s(ξ)− h ◦ ŵγm,s(ξ′) dπ(ξ, ξ′)
∣∣∣∣ , ∀π ∈ Π(P̄m,P)

≤ LgLh
∫ ∣∣ŵγm,s(ξ)− ŵγm,s(ξ′)∣∣ dπ(ξ, ξ′), ∀π ∈ Π(P̄m,P)

≤ LgLh
∫
γmmax{c(ξ, ξ′), c(ξ′, ξ)} dπ(ξ, ξ′), ∀π ∈ Π(P̄m,P)

= LgLhγm inf
π∈Π(P̄m,P)

∫
c̄(ξ, ξ′) dπ(ξ, ξ′)

= LgLhγmW
c̄
1 (P̄m,P).

Since gauge compatibility ensures ∥ŵγm,s∥V◦ = γm, we obtain the second inequality using Lipschitz
inequality of g. For the third inequality above, the following holds by the definition of Lipschitz
gauge

∥ŵγm,s∥V◦ = γm ≥ max

{
ŵγm,s(ξ)− ŵγm,s(ξ′)

c(ξ, ξ′)
,
ŵγm,s(ξ

′)− ŵγm,s(ξ)
c(ξ′, ξ)

}
,

which implies max{c(ξ, ξ′), c(ξ′, ξ)}γm ≥ |ŵγm,s(ξ) − ŵγm,s(ξ′)|. Then, the convergence zm → z⋆

follows when W c̄
1 (P̄m,P)→ 0 and lim supm→∞ γm <∞.

Corollary 8. Let z⋆ and zm denote the optimal values of (14) and (15), respectively. If the nominal P is
taken as the empirical measure P̄m := 1

m

∑
i∈[m] δξi , then zm = z⋆.

Proof. Let z⋆ and zm denote the optimal objective values of (14) and (20) (equivalently, (15)),
respectively. Consider any feasible pair (α0, w) of (14) under the discrete nominal distribution P̄m.
Let z denote its objective value, and define

γ := ∥w∥V◦ , α := α0 si := w(ξi), i ∈ [m].

Then, the induced envelope function ŵγ,s(ξ) := mini∈[m] θγ,si,ξi(ξ) satisfies ŵγ,s ≥ fx − α0, and
hence (γ, s) is feasible for (15). The corresponding objective value is

α+ g

 1

m

∑
i∈[m]

h(si)

+ ϵγ = α0 + g

 1

m

∑
i∈[m]

h ◦ w(ξi)

+ ϵ∥w∥V◦ = z,

61



which coincides with the value of (α,w) in (14) under P̄m. Since this holds for every feasible (α,w),
we obtain zm ≤ z⋆. Conversely, take any optimal solution (γ, α, s) of (20) that is non-redundant as in
Lemma 4, and let ŵγ,s be the corresponding finite envelope function. By construction, ŵγ,s ≥ fx−α,
so (α, ŵγ,s) is feasible for (14). The difference between the two objective values becomes

z⋆ − zm =
(
α+ g

(
EP̄m

[h ◦ ŵγ,s]
)
+ ϵ∥ŵγ,s∥V◦

)
−

α+ g

 1

m

∑
i∈[m]

h(si)

+ ϵγ


= g

 1

m

∑
i∈[m]

h ◦ ŵγ,s(ξi)

− g
 1

m

∑
i∈[m]

h(si)


= g

 1

m

∑
i∈[m]

h(si)

− g
 1

m

∑
i∈[m]

h(si)

 = 0.

The second equality is due to gauge compatibility ∥ŵγ,s∥V◦ = γ, and the thrid equality is by the
SAA compatibility shown in Lemma 4.
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