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A Gauge Set Framework for Flexible Robustness Design
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Abstract

This paper proposes a unified framework for designing robustness in optimization under
uncertainty using gauge sets, convex sets that generalize distance and capture how distributions
may deviate from a nominal reference. Representing robustness through a gauge set reweighting
formulation brings many classical robustness paradigms under a single convex-analytic perspec-
tive. The corresponding dual problem, the upper approximator reqularization model, reveals a
direct connection between distributional perturbations and objective regularization via polar
gauge sets. This framework decouples the design of the nominal distribution, distance metric,
and reformulation method, components often entangled in classical approaches, thus enabling
modular and composable robustness modeling. We further provide a gauge set algebra toolkit
that supports intersection, summation, convex combination, and composition, enabling complex
ambiguity structures to be assembled from simpler components. For computational tractabil-
ity under continuously supported uncertainty, we introduce two general finite-dimensional
reformulation methods. The functional parameterization approach guarantees any prescribed
gauge-based robustness through flexible selection of function bases, while the envelope repre-
sentation approach yields exact reformulations under empirical nominal distributions and is
asymptotically exact for arbitrary nominal choices. A detailed case study demonstrates how the
framework accommodates diverse robustness requirements while admitting multiple tractable
reformulations.

Keywords: Stochastic programming, Coherent risk measures, Distributionally robust optimiza-
tion, ¢-divergence, Gauge optimization

1 Introduction

Designing decisions that remain effective under uncertainty is increasingly central to modern
optimization and learning applications [50], a concept we refer to as robustness design. Over the
past decades, a variety of paradigms have emerged, most notably stochastic programming (SP),
robust optimization (RO), and distributionally robust optimization (DRO), each developed to hedge
against different types of uncertainty and equipped with its own modeling methods and solution
techniques. Although unifying frameworks have been proposed within individual paradigms
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[10, 15], this work aims to offer a cross-paradigm perspective on robustness design that reveals
common structural principles and enables modular modeling choices. To illustrate the benefits of
our framework, we begin with the following example.

Illustrative Example. Consider a city = C R? partitioned into regions where emergency incidents
may occur. We model the random location of the incident as our uncertainty £ € =. A planner
must determine the location of a response center to minimize the expected travel distance from
the response center to the incident. Although the spatial uncertainty £ € = is continuous, the
regional partition follows established administrative divisions that govern how data are collected
and organized. With only limited observations and seasonally varying incident patterns, the true
incident distribution is uncertain. The planner therefore seeks to construct a nominal distribution
that blends empirical observations with prior knowledge, and to design a model that (i) guards
against shifts in incident frequencies, e.g., via ¢-divergence, since future incident patterns may
differ from historical observations, (ii) hedges against uneven regional data quality, e.g., via a
region-specific Wasserstein metric, since some regions have rich historical records while others
have very limited data, and (iii) ensures robust performance under high-impact, tail events, e.g.,
via Conditional Value-at-Risk (CVaR), since the response plan should still work well for the most
remote or hard-to-reach locations. A

Existing approaches, such as ¢-divergence DRO [9, 31], Wasserstein-based DRO [14, 26, 40], and
CVaR optimization [48], capture one of these important aspects of uncertainty or risk in this setting.
There has been an emerging stream of research that focuses on integrating multiple modeling
perspectives but often requires ad-hoc or ambiguity-set-specific constructions, such as merging
moment- and distance-based ambiguity sets [18], integrating divergence- and Wasserstein-based
formulations [15], or composing Wasserstein DRO with CVaR-type objectives [29, 59]. It is unclear
what the general principles are in terms of combining and analyzing different robustness modeling
approaches. We answer this question positively in this paper.

To enable this flexible robustness design, derive a clean algebraic interpretation of different
modeling perspectives, and provide unified reformulation approaches, we introduce a framework
grounded in the classical concept of gauge sets, that is, convex, zero-containing sets that serve as
generalized “unit balls” for measuring deviation. Consider a minimization problem min,cx f(z,§),
where © € X is our decision, { € E is the uncertainty, and f(z,¢) is the associated cost. Let
fz = f(z,-) denote the random variable induced by fixing a solution 2 € X'. Our goal is to hedge
against the uncertainty £. Given any gauge set 1V, we define the following optimal reweighting problem

sup {Eplv - fuo] [y = 1llv < e}, 1)
v>0€L2(P), Eplv]=1

where v denotes a distribution reweighting function from the space of square-integrable random
variables L?(P), and || - || is the gauge function induced by V. Every gauge function is convex and
positively homogeneous, widely employed in convex analysis [21, 44] and gauge optimization [2, 24,
25] to generalize the notion of distance. Accordingly, problem (1) admits an intuitive interpretation:
it constrains the “distance” between the reweighting function v and the nominal distribution
(represented by the trivial reweighting 1) within a prescribed radius e. When v is set to 1, (1)
becomes the expected cost under the nominal distribution P, which reduces to the risk-neutral SP:
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mingcy Ep[f;]. Under mild conditions, we show that this primal problem admits the following
dual formulation, termed the upper-approximator regularization problem,

el (0 Eelu] 4 clulye [atw> £}, ©
where V° denotes the polar set of V, characterizing the form of regularization imposed. This dual
perspective provides a transparent interpretation of robustness: non-constant upper-approximators
w are penalized by the gauge function induced by the polar V°, thereby extending the intuition of
Gao et al. [27] from Wasserstein-based formulations to general gauge-induced variations. Beyond
providing an interpretable and unifying perspective, this framework further enables flexible and
composable robustness design, as illustrated below.

Illustrative Example (Continued). Within this framework, the planner can take any distribution IP
as the nominal distribution to reflect the knowledge on empirical data and prior belief, and express
the three robustness requirements using the ¢-divergence gauge V;, the region-wise Wasserstein
gauge Vwass (Example 5), and the CVaR gauge Vcvar, respectively. The first two gauge sets may
be combined either by intersection Vcomp 1= 61Vs N 62V wass when the distributional shift must
satisfy both conditions simultaneously, or by Minkowski sum Vcomb 1= 01V + 02 Viwass for maximal
robustness. The scalings (gauge set radii) §; control the confidence assigned to each modeling
component. Composing this with CVaR realizes the primal problem (1) as

sup sup Ep[vovy fz]
v12>0 v2>0
Ep[l/l}:l Eul]p[VQ]:l

11 =UVeomp €1 [ra—1]lvey,g Se2

to obtain the worst-case CVaR tail performance over distributions in Vcomp,. The associated dual (2)
follows immediately from the gauge algebra (Theorem 3) for polar set computation and Theorem 6
for gauge composition. For instance, if Vcomp, is defined as the Minkowski sum, according to
Corollary 7 and Theorem 6, the dual becomes

+ eallwal[ye

inf ar + ay + Ep[ui] + €101 flwi v + erdaffwillvg, SR

a1,a2€R, w1 w2 €L2(P) ass
s.t.ap +wy > we 3)

ag +we > fo.

For tractable computation, if one of the polar sets is a Lipschitz gauge (Definition 7), the envelope
representation reformulation (Theorem 8) yields a finite convex program that is exact when P is the
empirical distribution and is asymptotically exact for other nominal choices (Corollary 8). Other-
wise, when only regional moments are relevant, a piecewise moment parameterization (Example 9)
projects V° onto the corresponding feature space with preserved robustness (Theorem 7). Both
approaches lead to tractable finite-dimensional reformulations. Section 6 presents a case study of
this problem with multiple reformulations. A

From the example above, the proposed framework admits the following benefits when com-
pared to the existing approaches.



Method Corresponding gauge set V Polar set V° Section

CRM shifted risk envelope Q functions with bounded Q-induced penalty 3.1
CVaR shifted non-positive cone functions with bounded expectation 3.2
Risk-neutral SP bounded set absorbing set 3.3
RO absorbing set bounded set 3.3
MDRO moment ball polynomials with bounded coefficients 3.4
Type-1 WDRO shifted W7 ball Lipschitz-1 functions 3.5.1
Type-p WDRO shifted W, ball functions with bounded type-p smoothness  3.5.2
¢-Divergence ¢-divergence ball functions with bounded ¢*-penalty 3.6
Total variation Total variation ball functions with bounded oscillation 412
x?-Divergence 2-norm ball 2-norm ball 6

Table 1: High-level description of gauge sets to represent various robustness designs. CRM refers to the
coherent risk measure, W), ball is the type-p Wasserstein ball, and ¢* is the convex conjugate of ¢. The algebraic
rules for integrating these gauge sets in flexible ways are presented in Theorem 3.

* Separation of design elements. The dual formulation (2) decouples the nominal distribution
from the distance metric, two elements often intertwined in the reformulations in existing
DRO paradigms. In (2), the nominal measure P and the polar gauge V° independently
evaluate and regularize w through the expectation and the gauge function, respectively. This
separation enables a principled design of robustness. In contrast to existing data-driven DRO
methods that typically build a nominal distribution based on empirical data, our approach
permits the incorporation of both data and model-based information into a hybrid nominal
that encodes the best available belief about the underlying distribution. On the other hand,
the gauge V specifies the form of uncertainty to be guarded against.

* Modular composition of robustness. Expressing diverse robustness criteria as their cor-
responding gauge sets (Table 1) enables a modular design through algebraic operations,
including intersection, summation, convex combination, and gauge composition (Section 4).
Moreover, multiple robustness measures can be incorporated either from the distributional-
deviation perspective (1) or the objective-regularization perspective (2), with the dual interpreta-
tions immediately derived through polar-gauge computation.

¢ Tractable reformulations for continuously supported uncertainty. When the uncertainty
support is continuous, problem (2) becomes infinite-dimensional. We develop two finite-
dimensional reformulations (Section 5) for general problems. The functional parameterization
approach enforces prescribed gauge-based robustness through flexible selection of function
bases, while the envelope representation approach yields exact finite reformulations under
empirical distribution and is asymptotically exact for arbitrary nominal distributions (Theo-
rem 8). Together, these two methods generalize existing reformulation techniques and further
decouple reformulation choices from gauge set design, thereby providing enhanced flexibility
for tractable, application-tailored computation.

Collectively, these developments support a flexible and modular design of the distributional
center, distance metric (gauge set), and reformulation method, enabling tailored and composable
robustness modeling that aligns more naturally with data geometry and decision priorities.
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1.1 Related Work

Multiple optimization paradigms have been established in the literature to enhance solution
robustness based on available distributional information, including SP, RO, and DRO. We review
each of these topics next and end with a connection to gauge optimization.

Stochastic Programming (SP). This paradigm aims to optimize a certain risk measure of a random
outcome (e.g., the expectation or CVaR of the random cost) given a fully known distribution of the
uncertain parameters. When the expectation is used as the performance metric, we have a “risk-
neutral” framework and aim to find a solution that performs well on average. However, focusing
solely on minimizing expected costs does not inherently prevent rare instances of exceptionally high
costs. In many real-world scenarios, a “risk-averse” framework is preferable to a risk-neutral one to
ensure reliable performance under extreme situations, where different risk measures can be used as
the objective function. Risk-averse optimization has thus been extensively studied in widespread
applications such as portfolio optimization [17], energy management [54], and inventory problems
[1]. We refer to Birge and Louveaux [13], Shapiro et al. [50] for detailed discussions about model
formulations, solution algorithms, and applications in risk-neutral and risk-averse SP. In particular,
coherent risk measures (CRMs) have been widely used in the literature since they satisfy several
natural and desirable properties. It has been understood that each CRM, in its dual representation,
corresponds to the expectation of the reweighted objective function with respect to the worst-case
reweighting probability density function chosen from a candidate density set, referred to as a
risk envelope [50]. Each CRM can be uniquely identified by its risk envelope. However, the risk
envelope remains in an abstract form in general, and it has an explicit definition only for particular
risk measures. For instance, if the decision maker focuses on the tail performance, CVaR can be
used to quantify the tail risk, which corresponds to a fairly simple box-constrained risk envelope
[43, 48]. This paper adopts the worst-case reweighting perspective and aims to present a general
yet explicit formulation of the risk envelope by imposing constraints on the reweighting function
using gauge sets. It turns out that a variety of existing methods in the literature can be linked to this
framework, and their corresponding primal and dual gauge sets offer an intuitive interpretation
from a distance-regularization perspective.

Robust Optimization (RO). When we do not have any information on the underlying distribution
except for the support set and the worst-case performance over this support set is a primary
concern, RO has proven to be beneficial, ensuring that solutions remain effective even under the
most adversarial conditions [7, 8]. Significant efforts have been dedicated to deriving duality
results and tractable reformulations under various uncertainty sets [11, 12, 23, 28, 30, 58], yielding
impactful results across various application domains in transportation, supply chain management,
power system, and operation management [3, 5, 51, 52, 53].

Distributionally Robust Optimization (DRO). As a middle ground between SP and RO, when
only partial distributional information is available, DRO can be employed to hedge against dis-
tributional ambiguity by constructing ambiguity sets containing all plausible distributions. We
refer interested readers to [45] for an extensive survey on DRO. Traditional forms of ambiguity sets



include (i) moment-based ambiguity sets [see, e.g., 20, 39, 56, 59, 60], and (ii) distance-based ambigu-
ity sets, such as norm-based distance [see 34]), ¢-divergence [see 6, 33], and Wasserstein metric [see,
e.g., 14, 26, 40]. Moment-based ambiguity sets consider different moments of the underlying proba-
bility distributions, ensuring the optimal decision remains robust against a family of distributions
whose moments are within a certain range from the empirical ones [20]. Distance-based ambiguity
sets impose restrictions on the distance between the candidate distribution and the reference one.
Leveraging concentration theorems, it has been shown that Wasserstein distance-based ambiguity
sets can achieve effective out-of-sample performance [26, 40]. Meanwhile, ¢-divergence metrics,
extensively applied in statistical inferences, quantify the “ratio” between probability measures
[19, 32, 42]. Based on this, divergence-based DRO has been developed to tackle distributional
ambiguity by providing a divergence budget to an adversarial opponent [9]. Due to its tractability,
this method has been applied in various areas such as data-driven SP [6] and network design [57].

Connection to Gauge Optimization. The concepts of gauge sets and gauge functions have been
extensively studied in convex analysis [21, 44]. Their associated duality theory has been developed
in the gauge optimization literature [2, 24, 25], where gauge functions are used to evaluate the
objective function or constraint violations. Building on this perspective and extending gauge
optimization to functional spaces, this paper employs gauge sets to measure the distributional
distance between the reweighting function and the nominal one, establishing a unified framework
for solution robustness.

We organize the rest of the paper as follows. Section 2 establishes the main assumptions and
the strong duality of the gauge reweighting problem. Section 3 investigates gauge set designs in
existing robustness paradigms. In Section 4, we develop several technical tools for manipulating
and designing gauge sets, demonstrating their utility using several examples. Section 5 discusses
two tractable reformulation strategies to solve the reweighting problem. Section 6 presents a
detailed case study of the illustrative example, providing two finite-dimensional reformulations
and their computational analysis. Finally, Section 7 concludes the paper with discussions on future
directions. To streamline the presentation, we discuss potential applications to other robustness
frameworks in Appendix A and defer all the proofs to Appendix B.

Notation. Let (2, F,P) denote the nominal probability space and (=, F, P) the true one. Let M(Z)
be the space of finite signed Borel measures on =, endowed with the weak* topology, and let
P(E) € M(E) denote the subset of probability measures. For any p € M(E), (f, ) denotes the
integration of f with respect to p. The space L?(PP) consists of square-integrable random variables
equipped with the inner product (v, w)p = Ep[rvw], where the subscript P is omitted when clear.
For any f : L*(P) — R, its convex conjugate is f*(w) = sup, (w, v) — f(v). Given a convex subset
V C M(Z) or L?(P) that contains the origin, we write V°, conv(V), cone(V), V*, rec(V), lin(V),
int(V), and V (or cl V) for its polar, convex hull, conic hull, orthogonal space, recession cone (i.e.,
{w | yw € V, Vy > 0}), lineality subspace (i.e., {w | yw € V, Vy € R}), interior, and closure (under
the ambient topology). Given some closed subspace U, inty,(V NU) and cly(V NU) denote the
interior and closure of V NU relative to the subspace topology of U. If V is convex and contains zero,
its gauge function is defined as ||v(|y := inf{t > 0 : v € tV}. For a family {V; };c1, we define @,_; V;



to be the closure of {} ", ; v; | v; € V;, v; = 0 for all but finitely many i}. We use id(-) to denote the
identity function. A function is called closed if its epigraph is closed, i.e., it is lower-semicontinuous.
Given two vectors z,y, we use z ® y := zyT to denote the tensor product and @ for the k-tensor
product using the same z. Given any matrix A, vec(A) denotes the vectorization.

2 Optimal Reweighting Problem

We focus on the optimization problem min,cy f(x, ) where X is the solution space and ¢ is a
random vector from some underlying probability space (Z, F, P). We use P with a support Z, called
the nominal measure, to denote some empirical probability measure of the unknown true measure P,
and use f, to denote the random variable f,(£) = f(z, &), termed the cost distribution.

Assumption 1 (Space Regularity). Throughout the paper, we assume the following
1. = C R" is Polish and closed, and E D 5;
2. Pis fully supported on =.

We do not pose other restrictions on the type of =, which can be continuous, discrete, or mixed.
The modeling choice = D = is standard: robust formulations typically posit a design support
that covers all plausible realizations. Although Assumption 1.2 differs from those used in data-
driven DRO, it primarily serves as a technical device for analytical convenience. To the best of
the authors” knowledge, a wide range of reformulations in existing robustness paradigms can be
recovered under this setup (see Section 3), including those based on discrete nominal distributions
(Corollary 8).

2.1 Gauge Set

This subsection provides the basic definition and properties of gauge sets. We begin with the
following definition.

Definition 1 (Gauge Set). A gauge set is any convex subset V C L?(P) that contains 0 as a relative
interior in the subspace Ry := {w € L*(P) | (1,w) = 0},i.e., 0 € intg,(V NRy). For any v € L*(P),
the gauge function induced by V is defined as ||v||y := inf{t > 0 | v € tV}. We define the set of
reweighting functions as R(P) := {v € L*(P) | v > 0, (1,v) = E[v] = 1}. We further define the set of
induced probability measures with a variable center w as

Pyw ={vPe ME)|vew+eV, (1,v)=1,v>0}
and denote by feuw its weak* closure in M(Z). When the center is 1, we write P := feV,L

The constraint in the above problem defines a “V-shaped e-ball” around the nominal reweighting
1 (see Statement 4 in Proposition 1). The requirement of containing 0 as a relative interior in Ry
has two implications: the gauge function is continuous when restricted to Ry, and it allows the
nominal 1 to be perturbed in every direction within the subspace R corresponding to probability
reweightings. When the gauge set V is symmetric (v € V <= —v € V), full-dimensional, and
bounded, then || - ||y is equivalent to a norm. Thus, the gauge function introduces a more liberal
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notion of length, using V as the “unit ball” for measurement, a concept commonly introduced and
applied in convex analysis [21, 44] and the gauge optimization literature [2, 24, 25]. In particular,
without the boundedness, we call the gauge function a seminorm, allowing nonzero elements
to have zero length; without the full-dimensionality, we term the gauge function a pseudonorm,
allowing elements to have infinite length. The following proposition summarizes basic properties
of the gauge sets used throughout the paper. We include the derivations for completeness, as our
notion of gauge sets differs slightly from the classical definition: we do not assume closedness of V,
and instead require that 0 lies in the relative interior of VV with respect to Ry.

Proposition 1. The following relations hold for any given gauge set V C L?(P):
1. |lev|ly = 0 when € = 0, and equals €||v||y for every e > 0.
2. lv +wlly < flvfv + flwllv.

3. Given any closed subspace U, if 0 € inty(V NU), then || - ||y is Lipschitz continuous on U, and
lvllv = [[¥lley, (vorw) for every v € U.

4. eV C{v e L*(P) | ||lv|lv < €} C €V for every e > 0.
5. || - ||y is convex, and is closed if V is.

6. V=V=.

7. Ker(]| - ) = rec(V).

8. [Jwllye = sup,cy (w,v).

9. For every w # 0, ||w||y = 0 implies ||w||yo = oc.

10. Ifw € V*, ||lw|lye = 0, and ||w|ly = oo if w # 0.

2.2 Optimal Reweighting Problem

Given a gauge set V and radius € > 0, we define the associated optimal reweighting problem as

zey = sup  (fy,v) (4a)
v(-)ER(P)
st |lv — 1|y <e. (4b)

To establish the duality results in the subsequent section, we need some technical pieces to be
established. The following lemma introduces the construction of extended gauge set that preserves
the optimal value.

Lemma 1. For every gauge set V, the extended gauge defined as V := (V N Ry) + Ry satisfies (i) V
contains 0 as an interior in L*(P), (ii) zoy = 2.y for every e > 0.

Throughout, either of the following two types of regularity conditions will be imposed on a
given optimal reweighting problem to serve as a light-tail assumption in the DRO literature [26, 37].



Assumption 2 (Gauge Regularity). For a given optimal reweighting problem with nominal P,
gauge V, radius ¢, and a cost function f,, we assume (i) f, is continuous on Z, and (ii) there exists
some €’ > ¢ and a finite-valued, closed, and coercive function ® > 0 (i.e., ®(§) — oo as ||£]| — o)
such that one of the following two conditions is satisfied:

* Type-L: | fz| < o for some a € (0, 00), and supg5 " Eg[®] < oo; or
* Type-lL [fz| < a + B for some «, 8 € (0, 00), and supg 5 " Eg[®!*"] < oo for some n > 0.

Either form of gauge regularity is sufficient for our subsequent analysis, reflecting a trade-off
between enforcing bounds on f, and controlling tails via the auxiliary function ®. In particular,
when E is compact, both types are satistied. Type-I assumes that f; is bounded, implying uniform
tightness of Py (Lemma 2). Type-II drops the boundedness requirement on f,, allowing heavier
tails, and instead imposes a stronger light-tail condition on P,. The next lemma summarizes the
consequences of gauge regularity.

Lemma 2. For the given € from Assumption 2, Type-I regqularity entails that for every e < ¢’:
(i) supgep,, Eql[®] < oo,
(ii) Pey is uniformly tight,
(iii) supgep,, Eolfe] < oo,

(iv) Given € < ¢, under the extended gauge V), there exists some § > 0 such that ||w — 1|| < § implies
Py, s uniformly tight.

Type-1I regularity additionally entails that (v) for every € < €, supg 5., Eg[®losm] — 0as M — oo.

Robustness models that are based on distributions absolutely continuous with respect to P, such
as coherent risk measures and ¢-divergence DRO, are clearly included in the gauge set framework.
For ambiguity sets defined directly in M(Z), such as moment-based and Wasserstein DRO, the
following proposition shows that (4) is value-equivalent to the corresponding optimization over its
probability measure closure under Assumption 1 and 2.

Lemma 3. The functional Q — (f., Q) is weak*-continuous on Py. Consequently, let z. be the optimal
value of (4), the following identity is satisfied,

Zey = Sup <fIaQ>

QEfeV

This proposition guarantees that as long as worst-case measures can be approximated in
the weak™ sense by distributions from Py, the corresponding optimization problems are value-
equivalent under Assumption 1 and 2. In particular, the full support Assumption 1.2 allows for the
weak™ approximation of measures that are not absolutely continuous with respect to P.



2.3 Dual of the Optimal Reweighting Problem

To derive the dual of (4), we follow the conjugate duality framework introduced in [16, 46] for
generating and analyzing dual problems. Given a convex primal problem inf, f(x) with a properly
constructed convex perturbation function F(z, u) satisfying F'(z,0) = f(z), the dual problem can
be produced as sup, —F*(0, —y) where F'* is the convex conjugate of F'. A comprehensive list of
regularity conditions for strong duality can be found in the paper [16]. Most of these conditions are
designed to guarantee two aspects simultaneously: (i) the primal and dual problems share the same
optimal value; (ii) both problems can attain optimality. Since our main interest is to enforce (i) for
solution robustness, the following definition and proposition will be used for duality derivation.

Definition 2 (Quasi-Strong Duality). Given a primal problem inf, f(x) and its dual sup, g(y), we
say the quasi-strong duality holds if —co < inf; f(z) = sup, g(y) < +oo, while both optimal
solutions may not exist.

Proposition 2 ([16, p. 11, Theorem 1.4]). Given that the perturbation function F' : X x U — R U {%o0}
is proper and convex, the quasi-strong duality holds if and only if the infimal value function ¢(u) :=
infyex F(x,u) is finite at 0 and lower-semicontinuous at 0.

Using conjugate duality, the next theorem derives the dual problem of (4). The main technical
challenge is that the strong duality may not hold, which means none of the strong duality conditions
can be directly applied. Instead, we need to prove the quasi-strong duality using Proposition 2.

Theorem 1. The quasi-strong duality holds for the following dual problem of (4)

inf +E + ° 5
B 0+ Eef] + ey 5a)

stoa+w> fi (5b)

Remark 1. The dual problem always provides an upper bound on the primal value by weak duality,
irrespective of any continuity or semicontinuity of f,. Hence, the dual formulation can be used as a
tractable upper-bounding relaxation of the optimal reweighting problem; additional regularity of
fz in Assumption 2 is only needed to ensure the exact value equivalence.

This reformulation provides an intuitive dual interpretation. The objective function evaluates
the expected value of the upper approximation o 4+ w, alongside a penalty on the magnitude of
w gauged by the polar set V°. Thus, this result explicitly links the distance and regularization
perspectives, enabling robustness to be designed from one side while yielding a dual interpretation
via gauge set computation.

3 Gauge Set Design in Existing Frameworks

Through the gauge set reweighting perspective, this section explores existing robustness paradigms,
including general CRM, CVaR, risk-neutral SP, RO, MDRO, WDRO, and ¢-divergence DRO, to
gain insights into gauge set design patterns. Some results presented here rely on technical tools for
gauge set manipulation, which will be fully developed in Section 4 and are referenced throughout
this section as needed.
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3.1 Gauge Set Design in Coherent Risk Measures

A CRM is a function p : L?(P) — R that satisfies several axioms to quantify a certain type of risk on
cost distributions [4, 50]. In this section, we prove that any CRM can be equivalently recast as a
gauge set reweighting problem (4).

According to [4] and [47], every CRM adopts a dual representation p(f,) = sup,cg (fz,v) for
some convex-closed subset Q C R(IP), where Q is called the risk envelope of p. Moreover, [4] has
shown a one-to-one correspondence between risk envelopes Q and CRMs. Let Q := O N R(P) for
some convex and closed set O C L?(IP). Without loss of generality, we may assume that the nominal
reweighting 1 € Q, or equivalently, redefine the reference measure as P := 1P for some vy € Q.
Then, the following theorem proves that every risk envelope Q can be equivalently described by
some gauge set V.

Proposition 3. Every CRM with a risk envelope Q := Q N R(P) is equivalent to (4) under the gauge set
V = Q — 1 with a radius € = 1. In particular, when Q is represented as {v € L*(P) | g(v) < 0} for some
convex-closed function g : L?(P) — R™, the polar gauge set is

V=(Q-1)° = {w € L*(P)

inf
=0

(g ()" () — {1, w) < 1}

where (v, g(+))" is the convex conjugate of the map v — (v, g(v)).
An immediate implication is the following explicit form for a general CRM.

Corollary 1. Given a CRM p with the risk envelope Q := Q N R(P) such that Q := {v | g(v) < 0} from
some convex-closed g satisfying g(1) < 0, we have

pfe)=__inf Ao+ (g() (w)la+w>fi},

[aat]

where (v, g(+))" is the convex conjugate of the map v + (v, g(v)).

3.2 Gauge Set Design in CVaR

For general CRMs, the primal and dual gauge sets are defined abstractly through the representation
function g. For specific CRMs such as CVaR, the resulting gauge set is more geometrically intuitive.

In CVaR optimization [48], the 5-CVaR is the conditional expectation of the upper (1 — )-tail
of the cost distribution. Constraint (4b) can then be written as v < (1 — 8)~!, implying that the
reweighting function can increase the original distribution by a factor of at most (1 — 8) . In this
design, the worst-case distribution will move all the probability mass to the upper (1 — 3)-percentile,
which recovers the CVaR interpretation. The following proposition investigates this constraint
under the gauge set perspective.

Proposition 4. CVaR constraint v < 1/(1 — B3) is equivalent to [|v — 1|}y, < 1with Vg := {v | v <
B(1 — B)~1}. The corresponding polar gauge set is Ve={w>0]p(1- B)"'E[w] < 1}. Then, the gauge
function is defined as HwHyg = B(1 — B)"'E[w] if w > 0 and equals +oo otherwise. This recovers the
standard objective function for CVaR optimization as inf, o + (1 — B) " E[(fr — @) ].

In this case, the primal gauge set V3 is designed as a shifted non-negative cone. The upper
bound is deliberately designed to ensure the cut-off point is exactly at the (1 — §)-percentile.
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3.3 Gauge Set Design in Risk-Neutral SP and RO

Risk-neutral SP and RO represent opposite ends of robustness: the former optimizes average
performance, while the latter guards against the worst case. In their corresponding gauge-set
formulations, this contrast appears through the V-ball radius e: setting e = 0 in SP restricts
reweighting to the nominal function 1, whereas a sufficiently large e in RO renders constraint (4b)
inactive. Achieving this requires certain basic properties in the design of V.

Definition 3 (Bounded & Absorbing Set). V C L?(P) is bounded if there exists some L < +oo such
that ||v|| < L for every v € V; it is absorbing if the origin is an interior point.

Proposition 5. If V is bounded, then ker || - ||y is zero; if V is absorbing, then cone(V) = L?(PP). Therefore,
when V is bounded, (4) reduces to SP with e = 0; when V is absorbing, (4b) becomes redundant when
€ — oo and the problem (4) reduces to RO.

Such effects are also carried over to the dual problem through the polar gauge set V°. The
following proposition reveals the dual relationship between bounded and absorbing sets.

Proposition 6. V° is absorbing if and only if V is bounded.

3.4 Gauge Set Design in DRO with Moment-based Ambiguity Sets

Moment-based ambiguity sets have been introduced in the DRO literature to hedge against ambi-
guity around different moment functions of the nominal distribution, termed MDRO [20]. For a
given nominal distribution P, the main idea is to construct certain deviation ranges for different
moment functions, e.g., the expectation and covariance matrix of P. Intuitively, these ranges can
also be interpreted as some gauge on the distance between the reweighting function » and the
nominal weight 1. The following definition generalizes this idea to arbitrary degrees of moment.

Definition 4 (Generalized Moment Gauge Sets). Let {2 : R" — R" be some injective affine trans-
formation and 75, : R™ — (R™)®™ be the m-th order tensor product defined as T,,,(£) = %™ with
the (i1,42,...,im)-th entry equal to §;, &, - - - &;,,, then the m-th moment gauge set can be defined
as Vp, := {v | |Evp[Tn 0 Q|| < 1}, where T;,, 0 Q is a random tensor that can be realized at each
scenario &y with T,,, 0 Q(&p), and || - ||; is some compatible norm in the tensor space (R")®™ with
N being the corresponding unit norm ball.

The following proposition shows that the classic MDRO constraints can indeed be expressed in
terms of these moment gauge sets.

Proposition 7. Denoting y = E[¢] and ¥ = E[(§ — p)(§ — w)T] as the expectation and covariance matrix
of the nominal distribution IP and id(-) as the identity function, we have the following equivalence,

(Evpl¢] — 0)TS M Euplé] — 1) <1 <= |lv =1y, < V7,
Ep[(§ — )€ = )] 22X = [lv —1lly, <72 — 1,

where the affine operator Qy for V1 is defined as Q := =12 = A=1/2Q for the eigenvalue decomposition
¥ = QTAQ with 2-norm on R™ as the compatible norm; Q for Vs is defined as Qg := S7Y2(id — ) with
spectral norm || A|| = omax(A) extracting the largest singular value as the compatible norm.
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Therefore, MDRO also falls into the gauge set reweighting problem where (4b) is realized with
multiple moment gauge sets. Using Corollary 6 (in Section 4) for gauge set intersection, we can
directly obtain the dual formulation. The following theorem shows that these moment gauge sets
are quite convenient to analyze. We use J := [n]I™ to denote the set of multi-indices of the tensor
space (R™)®™.

Theorem 2. For every moment gauge set V,,, the polar set Vy, induces a pseudonorm and can be writ-
tenas Vo, = {(X, T, 0Q) | X € N°}, where (X, T,, 0Q) € L*(P) is defined as (X, T,, o Q) (£) =
> se3 X7[Tm 0 Q(€)] 5. The corresponding gauge of w € L*(PP) can be explicitly computed as

||w|| — H[w]TmOQHNO7 l’f'l,U € Span<Tm OQ)
" 00, otherwise,

where [w]r,,00 = argmina{||Al|ae | (A, T, 0 Q) = w} is the coefficient tensor with respect to T,y o €,
and || - ||ne is the dual norm of || - ||x. Moreover, V,, induces a seminorm and can be decomposed as
Vi+ (V) with V), = {(X, T o Q) | X € €N} and (V5,)* the largest subspace in V,, orthogonal to
V!, where € is the symmetric 2-tensor on (R™)®™ defined by [€] 750 = ([Tm © Q) 1, [T © Q) j7)p for every
index (J, J') € 3% In particular, € is the identity tensor if entries in T,, o ) form an orthonormal set.

This theorem indicates that the polar gauge set Vy, is obtained by lifting the polar norm ball A/°
into L?(P) through the polynomials from T, o Q. In particular, V5, associated with the classic first-
moment constraint is an Lo-ellipsoid within the subspace of linear functions, and the one associated
with the second-moment constraint induces a spectral-norm-ellipsoid within the subspace spanned
by some second-degree polynomials. We also note that polynomials in 7}, o {2 are not necessarily
linearly independent, thus we define the coefficient tensors to be the ones with the smallest size
under || - ||xo. With these pseudonorms used in (5), only polynomial functions are allowed for
upper approximation, which leads to the following corollary.

Corollary 2. With the first m-th moment constraints ||v — 1|y, < ¢; for i € [m] in (4b), the dual problem
(5) is a degree-m polynomial programming

inf < Elw]+ > e ll[wlnollye | w > foyp, (6)
w()EPm icm] '

where P, is the space of polynomials of degree less than or equal to m.

This result echoes the equivalence between MDRO and polynomial programming discovered by
Nie et al. [41]. We note that if certain lower-order moment constraints are omitted prior to the m-th
moment constraint, then the chosen functional basis does not span the entire space Py,. Instead, it
spans only the subspace generated by the functional elements {7; o {;}. Another interesting design
of MDRO is that V?’s induce pseudonorms so that only specific types of functions (polynomials in
this case) can be used for upper approximation, which has the potential to be generalized for other
function bases (see Example 4 and 9).
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3.5 Gauge Set Design in DRO with Wasserstein Distance-based Ambiguity Sets

Another popular method is to perturb nominal distributions within a certain range measured by
Wasserstein distance for gaining solution robustness [26, 40]. Essentially, the Wasserstein p-distance
Wy (p,v) = inf e (Ex[d(€, €)P]) 1/P defines a metric on the space of probability measures, where
d(-,-) is a non-negative and closed cost function and II(y, ) contains all the joint distributions with
marginals 1 and v. It is well known that the following duality holds for sufficiently general spaces,
which we adapt to the Euclidean spaces.

Proposition 8 (Villani [55, p. 19, Theorem 1.3]). Suppose ¢ : E x = — Ry U {+o0} is a closed function,
then we have Wi (p, v) = suPye)1p(¢n<d(e,e) 1 El@] + Eu[¥]}, where ¢ and 4 are continuous and bounded
functions.

3.5.1 Gauge Sets of Wasserstein 1-Distance

When restricting to the probability measures in R(P), the Wasserstein 1-distance directly provides
the gauge set interpretation according to the following proposition. We omit the proof as it directly
follows the Kantorovich-Rubinstein theorem [22].

Proposition 9. Given P and vP, the associated Wasserstein 1-distance is equal to

Wl(Pu V]P)) = sup (’UJ,V - 1> = ||V - 1||Lip‘i’
weLip,

where Lip, is the set of non-expanding functions.

Hence, for I metric, the distance constraint (4b) becomes |[v —1[|pe < €, and the dual problem
(5) uses the Lip, gauge set to penalize the upper approximator w. We note that Lip] is not a ball
defined on the probability measures anymore; instead, it is the original Wasserstein e-ball centered
at 1 translated to the center 0. The following theorem provides more detailed information.

Proposition 10. The gauge set V| = Lip| can be written as {v | (v + 1) € R(P), W1((v + 1)P,P) < 1}.
It induces a pseudonorm with span(1) as its orthogonal space. The polar gauge set Lip, induces a seminorm
with span(1) as its kernel. In particular, [[w + |y, = ||wl|Lip, for every o € R.

This analysis on the W; distance will later enable the derivation of the general W), distance. One
immediate result is the following dual problem with respect to the W; distance constraint.

Corollary 3. Given the constraint ||v — 1|0 < €, the dual problem (5) becomes
. ‘ S .
it {Elw] + v, |v> 1.} )

This formulation is an infinite-dimensional problem. Two different finite-dimensional solution
methods will be introduced in Section 5.
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3.5.2 Gauge Sets of Wasserstein p-Distance
Using a similar idea as in the IW; distance, we define the gauge set for the IV, distance as follows.

Definition 5. Let V, . := {v € L?(P) | (v + 1) € R(P),W,((v + 1)P,P) < €}, the constraint (4b)
under the W, distance can be realized as ||v — 1|}y, < 1.

Since W), also defines a metric on the probability simplex, the gauge set V, . also shares the
same properties as Lip] in Proposition 10: it is the shifted Wasserstein p-ball centered at the origin
and is orthogonal to 1. The following theorem provides an exact description of V.

Proposition 11. The polar set V; _ is the following

820

vpo={we 2@ | {int (1.0 - it (tate - - wien) b <1},

We note that the term inside the inner product is the difference between —w({’) and its smoothed
version infe S(d(¢, &P — €) — w(§), ie., the infimum convolution of —w(-) with the smoothing term
B(d(-,&')P — €). Then, the expectation of this difference measures a certain type of smoothness
of w. We call this quantity the type-p smoothness of w. Hence, V. contains functions with their
type-p smoothness bounded by one. The corresponding dual problem (5) can be derived in the

next corollary, which recovers the general results obtained by [26].

Corollary 4. Given Wasserstein p-distance ||v — 1|y, . < 1, the dual problem (5) becomes inf ¢ €3 —

(1,infe {Bd(&, )" — f2(£)})-

3.6 Gauge Set Design in DRO with ¢-Divergence-based Ambiguity Sets

Given some convex-closed function ¢ : [0,00) — R with additional properties: (i) ¢(1) = 0, (ii)
0¢(a/0) = alim; oo ¢(t)/t for a > 0, and (iii) 0¢(0/0) = 0, the corresponding ¢-divergence-based
worst reweighting problem is defined by realizing (4b) as E[¢(v)] < €, where ¢ acts on v in an
entry-wise manner by ¢(v)(§) = ¢(v(€)) [9]. The following theorem provides the gauge sets design
with respect to ¢-divergence.

Proposition 12. Given ¢-divergence-based constraint E[¢(v)] < €, the associated constraint (4b) can be
written as [|v — 1|y, . < 1 for the primal gauge set Vy . = {v | E[¢(v + 1)] < e}. The associated polar
set in (5)is V3 . = {w [ infy>0 (1, 7(¢*(w/7) + €) — w) < 1} where ¢* is the convex conjugate of ¢ and
0¢*(w/0) denotes the convex indicator function dy(w).

Thus, for any given w, we consider the value inf.>q (1, 7(¢*(w/7v) + €) — w) as a specific type of
penalty on w, which we call the ¢*-penalty of w. Then, the following corollary provides the dual
formulation (5) with respect to ¢-divergence.

Corollary 5. Given Vy . as the gauge set in (4b), the dual problem (5) becomes the following

inf ){0+E[7¢*(W/7)]+6’Y|Oé+w2fx}, 8)

a,y20,w(:

where ¢* is the convex conjugate of ¢ and 0¢*(w/0) = do(w). In particular, when ¢ is strictly convex and
continuously differentiable, ¢* can be directly computed as ¢*(w) = w - (¢')"H(w) — ¢ o (¢') " (w).
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This corollary provides an intuitive interpretation for DRO with ¢-divergence-based ambiguity
sets. In the primal problem, the function ¢ is designed to measure the divergence of v relative to
the nominal reweighting function 1; in the dual problem, it induces the conjugate penalty ¢* and
uses its perspective function to penalize the upper approximation functional w in an entry-wise
fashion. In the next section, we will develop technical tools for manipulating multiple gauge sets,
facilitating a more flexible approach to robustness design.

4 Gauge Set Design Methods

From Section 3, we observe that various existing robustness solution schemes can be imposed
by carefully designing the associated gauge sets. To enable systematic and flexible robustness
design, in this section, we develop three technical tools for manipulating gauge sets: (i) an algebraic
framework for combining gauge sets, (ii) a decomposition theorem that enables fine-grained design
of penalty schemes using selected functional bases, and (iii) a gauge composition theorem for
recursively applying multiple robustness requirements.

4.1 Operations on Gauge Sets and Gauge Functions

We begin with some basic properties of gauge sets and gauge functions, providing a convenient
toolset for designing gauge sets, as will be shown in later examples. We present the main results in
the following two theorems.

Theorem 3 (Algebra of Gauge Sets and Functions). Let {V; };cr be a (possibly infinite) family of convex-
closed sets, each of which contains the origin, and let I, C I be an arbitrary finite index subset. We define
the generalized simplex as A := {\ € @,c; Ry | (1,\) = 1} . Then, we have the following results.

1. (eV)° = V° /e for every e > 0.

2. (Nier Vi)° = cleonv (Uier V5)-

3. (Bics Vi)° =l (Unea Nier AiVY)-

4. ellvlly = llevlly = lvlly e for every € > 0.
5. Wlipe, vi = supier [[V[|vi-

6. [vlly,.,v: = inficr [[V][v,.

7 HVHCOHV(Uiez Vi) - InCLVl:nzf:ieI Vi Zie[" HV%HVZ
- n

8. HVH@iEI Vi = 1,CI Vi:nzf:_a v maXer, HV1||V7
=1, i€ln

9. Mwlly, ca Ny Aivi = 2oier lwllvy, when I is finite.

This theorem enables the computation of the polar gauge set from any compounded primal
gauge set and simplifies the polar gauge function representation. Similarly, the following theorem
provides a method to express gauge functions in a more specific form.
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Theorem 4. Given any function g that satisfies (i) Non-negativity: g(w) > 0 for all w € L*(P) and (ii)
Positive homogeneity: g(aw) = ag(w) for every a > 0, and any gauge set V := {w | g(w) < e} with
€ > 0, we have ||w|y = g(w)/e.

4.1.1 Application of Gauge Algebra I: Intersection

Combining multiple distance metrics through intersection could reduce the solution conserva-
tiveness. The following corollary demonstrates how this intersection in the primal problem (4)
influences the dual penalization scheme.

Corollary 6. Given constraint (4b) as ||v — 1|y, < €; for all i € [m], the dual problem becomes

inf) at+ > Eplwi]+ Y ellwillve |a+ > wi>fap. )

awi( i€[m] i€[m] i€[m]
Moreover, the quasi-strong duality holds if V;'s are convex-closed and contain the origin.

According to this corollary, using the intersection of multiple distance constraints in the primal
problem equips the dual problem with multiple functional components for upper approximating
fz- Then, the objective function measures the expectation of the approximation and applies a
size penalty on each component functional w; via the gauge set V;. We can consider that each
component w; encodes a certain feature of w. Hence, using intersection, we can penalize multiple
aspects of the upper approximator w. We use the following example for illustration.

Example 1 (Combination of Multiple Ambiguity Sets I). When the underlying distributional
ambiguity arises from multiple sources, we may want to combine multiple distributional distance
metrics, such as WDRO with ¢-divergence [15, 35] or multiple Wasserstein ambiguity sets, to
achieve solution robustness against various sources. For instance, the following reweighting
problem

sup { () | v = Uiy < 1, v = 1y, <1}
v()ER(P)

imposes that the reweighting function v should not be too far away from the nominal reweighting
function 1 under both the Wasserstein 1-distance and ¢-divergence metrics. Then, the primal gauge
set is the intersection €; Lip] N Vy ., with a radius of one. Using Corollary 6, we immediately obtain
the following dual problem

inf ” {a + Elwy + wa] + e1|lwi||Lip, + ||u)2||vq<;7€2 a+w +wy > fx} ;

avwl(')va )
where two parts w; and ws are under distinct penalties. Moreover, due to the generality of our

framework, the above duality result remains valid for a broad range of ambiguity sets that can be
described using gauge sets. A

4.1.2 Application of Gauge Algebra II: Summation

Combining gauge sets through summation provides protection against multiple uncertainty sources.
For example, an optimal solution obtained under the sum of Wasserstein and KL-divergence gauge
sets is simultaneously certified to be robust against both types of distributional perturbations. The
following corollary reveals the effect of this operation on the gauge set design.

17



Corollary 7. Given V = 3,1,y BiVi in (4b) for some scalar 5; > 0, the dual problem becomes

inf ¢ a+Ep[w]+e Z Billwllve |a+w > fo o (10)

aw() 1€[m)]
Moreover, the quasi-strong duality holds if V;'s are convex-closed and contain the origin.

According to Corollary 7, when adding multiple primal gauge sets, we are also adding their
penalty in the dual problem (5). Thus, it is possible to design multiple gauge sets V; with distinct
weights 3; to enable a sophisticated robustness solution scheme. In particular, the convex com-
bination of reweighting problems can be seen as a special case of gauge set summation. We use
the following examples to illustrate the utility of gauge set summation for different robust design
purposes.

Example 2 (Combination of Multiple Ambiguity Sets II). As an alternative to Example 1, we can
also combine multiple ambiguity sets from the dual perspective:

inf {o+Blu] +erlwlup, + lwlvs,, [otw> £l

a,w(-
which penalizes the upper approximator w based on its Lipschitz constant as well as the ¢*-penalty.
Applying Corollary 7, we get the following primal problem

sup  { (o) | IV = Ulestipg v, <1
o (e | = Uaigsv,., <1}

where the corresponding primal gauge set is the sum ¢; Lip] + V4 .,. Hence, the distance interpreta-
tion is that the reweighting function v should be near 1 under this summed gauge set. This method
provides a more robust solution than the gauge set intersection as shown in Example 1, since the
summation is a superset of the intersection. Again, this duality result also holds for other gauge
sets, such as multiple Wasserstein balls [49]. A

Example 3 (Flexible Tail-Behavior Selection & Total Variation Gauge). Utilizing multiple gauge
sets, we can extend the idea of CVaR to design flexible tail-behavior selectors as follows.

:Bg}(fa a+ -;1 &l (fz — @)+ llve-

For instance, when some V; is Lip,, the optimal f, also concerns the Lipschitz constant at the tail
part. In contrast, when the polar gauge set is defined as

1
Oscy := {w = ((supw(f) — inf w({)) < 1} ,
2\ ¢te= =
the optimal solution f, seeks to minimize the oscillation of the objective, while the parameters ¢;

govern the trade-off between tail expectation and tail variation, enforcing smaller dispersion when
risks materialize. A direct computation shows that Osc; is the polar of the total variation gauge

Vrv i={ve L*(P) | (1,v)y =0, (1,|v]) <1}.

Indeed, any v € Vv admits the decomposition v = v — v_ with (1,v;) = (1,v_) = 0.5. Maximiz-
ing (w, v) therefore assigns half the mass to sup w and half to inf w, which confirms that Osc; = Vi,
(up to closure). A
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4.2 Gauge Set Decomposition

In MDRO and WDRO, we observe the dual relationship between seminorms and pseudonorms,
reflected through the associated primal and polar gauge sets. The following decomposition theorem
offers a more detailed characterization of this relationship, enabling the use of the function basis
enforcement technique to address other types of ambiguities.

Theorem 5 (Gauge Set Decomposition). For a closed gauge set V, we have the following decomposition
L*(P) = lin(V) @ V' @ ess(V),

where ess(V) := (lin(V) ® V1)t is termed the essential subspace induced by V. Define VT := ess(V) NV
to be the essential gauge set of V, then V and V° can be decomposed as

Y =lin(V) 4+ V'

o _ 1 t °
v [ (V >ess(V) ’
where (W)ZSS(V) ={w € ess(V) | (w,v) <1 Yv € W} is the polar set relative to the essential subspace
ess(V) for any W C ess(V). In particular, we have
li oy — pL o\t — Il ° — oY
in(V°) =v—-, (V) (V )ess(V) , ess(V) =ess(V°)

Moreover, V' is convex-closed and contains 0.

This depicts a more intuitive picture regarding the primal and polar gauge sets: the lineality
subspace and the orthogonal subspace associated with V will swap in its polar set V°, and the
“essential” part of the gauge set VV will be converted to its relative polar set in the essential subspace
ess()). The following example illustrates one usage of this result.

Example 4 (Indicator Function Basis for Spatial Uncertainty). In this case, = = J;.; Z; represents a
region that is partitioned into multiple districts. Based on historical data, different districts may
have different types of ambiguity. A simple scheme is to define the following polar gauge sets
based on the indicator functions basis V; := {r;Iz, | |r;| < 1}. Then, the dual problem becomes

inf o+ Elw] + €lril |la+w> frp.
w<->:zie,n-nsi{ ]+ el }

el

Hence, every w € V° is a piecewise function with each piece having a coefficient ;. Each piece also
has a distinct penalty ¢;. From the primal perspective, constraint (4b) becomes

(v —1,1z,) = [E[(v — 1)Iz,]| < & <= vP(Z:) € [P(Z:) — e, P(Z:) +ei], Vi € 1.

That is, the spatial distributional ambiguity at each region 7 is modeled by the probability variation
¢; from the nominal probability, providing an intuitive distance interpretation. A

We can further combine this indicator function basis with other penalty methods, as illustrated
in the next example.
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Example 5 (Heterogeneous DRO). Let {Z1,=2} be a partition of the uncertainty space =, and
suppose the data associated with Z; are more sufficient than in Z. Then, the user may want to
mitigate more distributional uncertainty over =5 than Z;. Define Lipi :={w-Iz, | w e Lip, } and
Lip? := {w Iz, | w € Lip, }, we can set up the following dual problem

inf {Elw] + allw Tz, up; + el T, s | 0Tz, 4Tz, > o}
This function combines two polar gauge sets according to Corollary 6. Since Lip; does not contain
any functions that have nonzero values on =, these functions are prevented from usage since their
gauge would be infinity. Hence, w; is a function that has zero values on =3 and has a Lipschitz
penalty €; on the =; part. From the primal perspective, the associated distance constraints are
|lv — 1||(Lip§ o S € forie {1,2}. Thus, it first projects v — 1 onto the E; part, then ensures that its
Wy distance is less than ¢;, realizing a heterogeneous penalty. Although such a modification does
not guarantee the global Lipschitz (the changing rate between points in Z; and =5 is not penalized),
we can add an additional term e|[w; + w2||Lip, to fine-tune the global Lipschitz if needed. A

4.3 Gauge Set Composition

When additional regularization is imposed on the worst-case distribution, the resulting formulation
involves a composition of gauge sets. The next theorem formalizes this recursive construction and
presents its explicit dual representation.

Theorem 6. Given m gauge sets satisfying Type-II reqularity in Assumption 2, the composed primal
problem is

sup sup sup < H Vi,fx> . (11)

v120 v22>0 vm >0 .
(Lvp=1  (Lpa), 5=l (Lum), py o, o=l i€fm] P
1 =1lvy €1 [lug—1[|y, <ea [vm =1V, <em

Define Co(Z) = {w € C(E) | supgez [w(§)]/(1 + ®(§)) < oo} where C(Z) is the set of continuous
functions over =. The associated dual problem is

inf D (e + eillwillye) + Epfwi]

{aivwi(')}ie['m] ze[m]

s.t.ay +w; > wip1, Vi€ [m],
where w11 = fy and w; € Ce(E) for every i € [m].

Given the optimal reweighting v; at level 4, the next stage applies a new reweighting v;; to
the updated distribution ([],<; )P, yielding the composed reweighting problem above. An
illustrative example is provided below.

Example 6 (Tail Performance under Worst-Case Distribution). In distributionally robust risk opti-
mization, a decision-maker facing uncertain outcomes seeks to hedge against tail risk by optimizing
performance with respect to the worst-case distribution within a Wasserstein ambiguity set, thereby
ensuring reliability under potential model misspecification. This risk attitude can be represented
as a two-level composition of gauge sets: a Wasserstein gauge V; := Lip, with radius € capturing
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distributional perturbations, and a CVaR gauge V> := Vg with radius 1 modeling tail sensitivity,
where both gauge sets Lip, and Vg are introduced in Section 3. According to Theorem 6, the
associated dual problem is given by

inf o+ E]p['wl] + GleuLipl + H'U)QHVO
o, wi(-), w2 (") s

s.t.  wi > wo,

Oé—l—UJQng;-

By substituting the definitions of gauge sets, the formulation can be equivalently expressed as

inf Q+Ep[w+%(fx_a)+ +€Hw||Lip1

a,w(-)
st w>(fy—a)t.

Finally, a finite-dimensional program can be obtained using either of the reformulation methods
introduced in the next section of computational approaches.

5 Computational Approaches

Both the decision variable w and the constraint set (5b) of the dual reweighting problem (5) are
indexed by the elements in =. When = contains only a finite number of scenarios, the problem
is often tractable with a finite number of variables and constraints. Otherwise, (5) is an infinite-
dimensional optimization. This section introduces two finite-dimensional approaches, namely
functional parameterization and envelope representation, to handle this challenge, generalizing solution
methods in the DRO literature.

5.1 Functional Parameterization

In practice, one often focuses on robustness with respect to a finite number of features (e.g.,
covariances, moments, or probabilities over selected regions). To formalize this, we introduce the
functional parameterization method.

Definition 6 (Functional Parameterization). Let ¢ = (¢;);c|q be a collection of basis functions with
each ¢; € L*(P). For any coefficient vector A € A where A C R’ is a convex-closed cone, denote
the linear combination by (A, ¢) := Zle Ai¢i. The associated parametric functional subspace is

denoted by Ay := {(\,¢) | A € A}. Then, we define the parametric primal problem under ¢ as

sup  (faz,v) (12a)
v()ER(P)
s.t. ||y — 1||conv(VUA‘q’5) <eg, (12b)

where A7 is the polar cone of the induced cone A in L*(P).

We observe that (12) is always at least as robust as the original problem under the gauge V, as
it corresponds to a superset of the original primal gauge. In practice, explicitly constructing this
parametric primal gauge is unnecessary, since its semi-infinite dual admits a simple and tractable
representation, as shown in the following theorem.

21



Theorem 7. When A, is closed in span(¢), the dual associated with (12) is
zon = int oot (VB[] + €l (06 [ve (13a)
s.t.a+ (N, @) > fa. (13b)
Otherwise, zy a is an upper bound of the dual of (12).

Remark 2. Since A is closed in R’ and span(¢) is a finite-dimensional (hence closed) subspace of
L*(P), the set A, can be viewed as the image T'(A) under the linear map T'(\) := (), ¢). Conse-
quently, A, is closed in span(¢) if and only if T" preserves closedness on A. This property holds, for
example, if A is polyhedral, or T is injective, or ker 7' A = {0}. When A, is not closed in span(¢),
the above reformulation still provides a conservative (i.e., potentially larger) evaluation of f;.

This theorem enables flexible finite-dimensional parameterizations while preserving robustness.
For example, existing moment-based WDRO reformulations (e.g., elliptical reformulation in [37])
require specific nominal distributions and Wasserstein metrics for tractability, whereas our result
allows arbitrary choices of functional bases, nominal distributions, and robustness metrics. More-
over, when each ¢; is piecewise convex and f, is piecewise concave, the semi-infinite constraints
often admit a finite-dimensional dual reformulation.

Example 7 (Moment-Based Parameterization). Both the classical MDRO model [20] and the WDRO
model with an elliptical nominal distribution [37] employ variants of moment-based parameteriza-
tions with ¢(¢) = (¢, £€92) to extract first- and second-moment information. The distinction between
these approaches lies in their choices of the nominal distribution IP and the gauge set V. In MDRO,
IP is interpreted as an arbitrary distribution characterized only by its mean ; and covariance 33,
and V is the moment-based uncertainty set described in Proposition 7. In contrast, WDRO with
an elliptical nominal assumes PP to be elliptical and uses a type-2 Wasserstein ball to construct the
primal gauge. The theorem above, however, provides a more general perspective where nominal
distribution and gauge sets can be independently and flexibly chosen. For example, one may take
o(&) = (cos &, sin fi)l. cln) 35 the functional basis with guaranteed robustness. Moreover, each ex-
pected feature value Ep[¢;] can be computed analytically when available, or estimated via sampling
when closed-form expressions are unavailable.

Example 8 (Region-Based (Piecewise-Constant) Parameterization). The indicator-function basis
introduced in Example 4 induces a partition of the uncertainty space = into regions {Z; };cq with
corresponding indicator functions Iz,. The resulting region-based parameterization is given by
#(§) = (Iz,(§))icjq- Overall, this parameterization offers a principled approach to discretizing the
support of the ambiguity set and remains fully compatible with different choices of VV and P.

Example 9 (Piecewise-Affine Parameterization). The region-based parameterization can be overly
coarse, as it captures only the distributional distance of the zeroth moment within each region. To
achieve finer control, we introduce the piecewise-affine parameterization defined as

$(§) = (I=;(€), &1=,(€))ici,jepn)

In addition to the constant basis functions used previously, each new basis functional ;l=, (&)
encodes the first-moment information within region Z;.
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W(E) = min; 0, 4g,).¢ ()
w(f) = inf&’ av,w(é’),g’ (f)

&1 &2 &3

Figure 1: Illustration of the envelope functions under the setting V° = Lip,. Given a function w with
Lipschitz constant +, each atomic envelope is defined as 6, ., (¢,) ¢, (§) = w(&) + 7[| — &/, shown as dotted
lines centered at each sample ;. Their envelope min; 0., (¢, )¢, (§) forms an upper approximation of w.

5.2 Lipschitz Gauge and Envelope Representation

When the gauge set is to measure some type of Lipschitz property, every function adopts an
envelope representation, enabling finite-dimensional reformulation. We begin with the following
definition based on a quasimetric, a relaxed notion of a metric that may fail to satisfy symmetry.

Definition 7 (Lipschitz Gauge). A quasimetric is a function ¢ : = x Z — R that satisfies
e Zero-Diagonal: ¢(£,£) =0forall £ € Z.
e Nonnegativity: ¢(£,£') > 0 forall £ # ¢'.
¢ Triangle inequality: c(&1,&2) + c(&2,&3) > c(&1,€3) for all &1, &2, &3 € E.

The associated c-Lipschitz gauge set is defined as

Ve = {w | w(€) — w(¢) < e(&,€), ¥&,& € T} = {w

—w(¢)
vz &) él}'

For a given (v, s;,&;), we call 6 4, ¢, (&) := s; +~¢(&, &) an atomic envelop associated with V.. Given a
finite number of atomic envelops {6, s, ¢, }icm] that share the same v, we define 1, s := min;(, s; +
ve(&, &) the associated envelope function. For every £ € Z, 0., , ¢, is active at £ if W 4(§) = 0, ¢, (§)-
We say 0, ;, ¢, is active if it is active at some ¢ € E.

Figure 1 illustrates the envelope functions. The following proposition provides basic properties
of quasimetrics and the induced Lipschitz gauge sets.

Proposition 13. For any quasimetric c, let V. be the associated Lipschitz gauge. The following holds
1. V. is convex and contains the origin.
2. Every w € L*(P) adopts the representation w(§) = inferez 0. e, (€) for every > ||w]|y,.
3. ||la+w|ly, = ||wl|y, for every constant o € L?*(PP).
4. ||+, &)y, = 1 forevery & € E.

5. If by, (&) < 0r,51.6; (&), then b5, ¢, < 0r,s;,¢; pointwise.
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6. Ife%si,&' (53) < 9'7:3j7£j (fj), then 0%81'751' < e%sjaﬁj pointwise.
7. 0 s, ¢, 1s active if and only if it is active at &;.
8. [SAA Compatibility] W~ (&) < s;. Equality holds if 0. s, ¢, is active.

9. [Gauge Compatibility] ||~ s||v, < . Equality holds if some 0. s, ¢, is active at multiple points. In
particular, suppose the cardinality of = is strictly larger than the sample size m, then || || = 7.

For the analysis in the remainder of this section, we consider the following problem that
generalizes (5), and always assume V° is a Lipschitz gauge generated by a quasimetric.

inf + g(Ep[h + o 14a

e B ot g(Befhou]) + eluly (14a)

st.a+w > fi, (14b)

where g and £ satisfy the following properties:
¢ Both g and h are Lipschitz continuous with Lipschitz constants L, and Ly, respectively.

e The composite functional g o hg(w) := g (Eg[h o w]) is nondecreasing with respect to the
pointwise ordering of w, for every probability measure Q.

Such functions g and h naturally occur when incorporating multiple gauge sets in the design (see
case study in Section 6). In particular, the original problem (5) is recovered as a special case in
which both g and h are the identity function. To obtain a tractable reformulation of (5), we consider
the following envelope reformulation of (14) with respect to a given sample set S = {{; } ;[ sampled
from the nominal or the true distributions.

»yﬁ&&saJrg Z h(s;)/m | + ey (15a)
1€[m]
st. 0y 6 > fo—a, Yie[m] (15b)

This reformulation approximates w by its finite envelope representation . s to obtain a semi-infinite
program. Suppose = is convex, each 0, , ¢, is piecewise-convex, and f; is piecewise-concave, then
(15b) can be equivalently written as infgeg{ﬁlj’si’fi &) — 1 )} > —a for every piece k for 6 and
every piece j for f,, allowing the entire problem to be reformulated into a convex optimization
problem with finite decision variables and constraints. The following lemma provides some results

of this formulation when g and h satisfy the required properties.

Lemma 4. Given a feasible solution (v, «, s) of (15) under samples {&; }ic[m), let W~ s(§) be the associated
envelope function. Then, o 4 10 s is feasible to (14). Moreover, if an optimal solution exists, there must be
some optimal (v, o, s) such that ., 4(&;) = s; forall i € [m).

We call this type of optimal solution non-redundant. The following theorem characterizes the
approximation gap between (14) and (15).
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Theorem 8. Suppose V° is a Lipschitz gauge induced by a quasimetric c. Let (a*, w*) and z* denote an
optimal solution and the optimal value of (14). For a given set of i.i.d. samples {&;}7,, let (Ym, v, s) and
zm denote an optimal solution and the optimal value of (15). Let P, :== L "™, ¢, denote the empirical
measure, and let W denote the type-1 Wasserstein distance induced by the transport cost ¢(&,€&') =
max{c(&, &), c(&',€)}. Then the following bound holds:

—Lg|(how*, P — P)| < 2% — 2y < LyLpYm Wi (P, P).

In particular, lim sup,,_, o zm < 2* almost surely. Moreover, if W¢(By,, P) — 0 almost surely as m — oo
and lim sup,;,_, oo Ym < 00, then z, =% 2*,

Remark 3. Since c is a quasimetric, the symmetrized cost ¢ defines a metric. Under mild regularity
conditions, both the SAA estimation error (lower bound) and the Wasserstein distance WE(PP,,, P)
(upper bound) vanishes almost surely as the empirical measure P,,, converges to P. Theorem 8
therefore implies that the envelope reformulation (15) is a consistent approximation of (14) when
scenarios are sampled from the nominal model, and likewise consistently approximates the optimal
reweighting problem centered at the true distribution when scenarios are drawn from data. From
this perspective, sampling from the nominal model versus from observed data induces two distinct
robustness mechanisms: in the former, the ambiguity set is centered at a prescribed nominal and
robustness guards against model misspecification (with SAA used only to approximate its value);
in the latter, the true (but unknown) distribution is the conceptual center, samples provide its SAA
proxy, and the robustness radius compensates for statistical estimation error.

The following corollary shows that, when the empirical distribution is taken as the nominal, the
reformulation (15) is exact. Although this conclusion follows directly from the bound in Theorem 8§,
we provide a constructive proof in the appendix for completeness.

Corollary 8. Let z* and z,, denote the optimal values of (14) and (15), respectively. If the nominal P is

taken as the empirical measure Py, := % Zie[m] 0¢,, then z,, = 2*.

Example 10 (V° = Lip,). In [40], the nominal distribution is the empirical distribution P,, and the
polar gauge set is Lip,. The atomic envelope is 0., s ¢ (£) := s+ 7||{ — £'||. Hence, the corresponding
tractable convex reformulation is obtained by dualizing the constraints in (15b). By Corollary 8§,
this reformulation is exact when the empirical distribution is taken as the nominal.

The following example shows that Osc; (see Example 3) is also a Lipschitz gauge with respect
to the discrete metric ¢(§, &) := I(§ # £), which assigns unit distance to any pair of distinct points.

Example 11 (V° = Osc;). In this case, the primal gauge is Vv and the associated dual problem is
i >
it {Blu] + cfwllos, [w> fo }.

where Osc; = Viy = {w | supgezw(§) — infeezw(§) < 2} denotes the unit oscillation ball.
Every function w € L?(P) with oscillation v can be expressed via the envelope representation
w(§) = infg[w(g) + ~I(§ # &), where the binary metric I(§ # &) equals 0 when £ = ¢ and 1
otherwise. Clearly, the function I satisfies all three properties of a quasimetric, thus Osc; is indeed

25



a Lipschitz gauge. Accordingly, each atomic envelope takes the form 6, ; ¢/ (&) = s + yI(§ # £).
Substituting this envelope into (15) yields the following SAA reformulation:
inf iy s
v>0,s; n 2
i€[n]
s.t. s; > fm(fz), Vi € [n]
si +7 > sup f(§), Vi€ [n].
fe=
As discussed earlier, when f;; is piecewise-concave, the supremum term in the last constraint admits
a dual representation, yielding a tractable convex reformulation. By Corollary 8, this reformulation
is also exact when the empirical distribution is taken as the nominal.

6 Case Study

This section illustrates the proposed framework using the illustrative example in the introduc-
tion. We derive two tractable reformulations under multiple combined gauge sets and conduct
a computational study to demonstrate the resulting formulations. We stress that the purpose of
this case study is not to benchmark robustness paradigms. Rather, it is designed to illustrate the
flexibility of the proposed framework, including its ability to accommodate customized robustness
specifications and to support multiple reformulation strategies.

6.1 Tractable Reformulations

For simplicity, the city region is assumed to be a two-dimensional box = = [I,u] C R?, partitioned
into finite box-shaped districts =, = {{ € = | I, < £ < u} for k € K that may share boundaries
but have no overlapping interiors. The objective is to determine the location of an emergency
response center within z € = to minimize the expected distance E[||x — £]|1] to a random incident &,
where distance is measured using the Manhattan metric || - ||;. Following the same requirement as
introduced in the example, the planner aims to (i) hedge against sampling noise using ¢-divergence,
(ii) guard against region-wise ambiguity via Wasserstein metric, and (iii) ensure robust performance
under tail events via CVaR.

For maximal robustness, we define Vcomp as the Minkowski sum of the divergence and the
region-aware Wasserstein gauge sets. By Corollary 7 and Theorem 6, this leads to the reformula-
tion (3). We now further simplify this expression using results from the previous sections. First, by
Proposition 4, the minimizer of ws satisfies wy = (f; — a2)+, and therefore

||w2||%CVaR = BBEP[(fCE - O‘2)+]'

1—
Next, utilizing the x2-divergence with ¢(v) = (v — 1)? [9], we have
Elp(v)] = (v —1,v —1) = v - 13,

The associated gauge set is therefore the L?(P) unit ball, V,, = {v | ||v||2 < 1}, which is self-dual.
Consequently, ||w; va = |lw1]]2 = /Ep[w3]. To achieve the region-wise Wasserstein metric, we
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adopt the design in Example 5 with ¢; as the type-1 Wasserstein radius over region Z;. Combining
these components yields the following reformulation, where we denote w := w; for simplicity.

inf a1 + o + Bp[w] + 6v/Ep[w?] + > exllw - Iz, it + 7 Eel(fr — 02)+]
a1, ez, w() ek -8 (16)

st. ar+w> (fx — 012)_;,_.

From here, we apply two different tractable reformulation methods introduced in Section 5.

6.1.1 Reformulation via Functional Parameterization

According to Theorem 7, we can parameterize the functional space over each Z;, using a distinct
basis ¢ with preserved robustness. In particular, we adopt the moment basis with the conic
parameter space R x R"” x S so that the polynomial 4 (&) = qor + (qk, &) + (Qk, &&T) is the
functional used for upper approximation over each Z; with some @}, > 0. Due to this explicit
format, its Lipschitz is supgcz, |lgx + 2Qr€]||l« where || - [ is the dual norm of the given norm
for Lipschitz. Let pg, px, X be the probability mass, conditional expectation, and conditional
covariance matrix over each =, define

B = (Dk, Peptte, Prevec(Sk + prpif)kercs Tk = (qok, @k, vec(Qr)), @ := (qr)rek

as the stacked vectors, where vec(-) is the vectorization of a matrix. We can express Ep[w] as

Eplw] = Z pi(qok + (ks @) + (S + prpl, Q) = (i, @) -
ke

For Ep[w?], we define A, as the conditional expectation of the matrix (1, &, vec(£€7))¥2 and A :=
diag ([\/pTﬁAllg/ e K) be the associated diagonally stacked matrix, leading to

_ 1/2 _
Eelw?] = > pe(@Arae) = Y oellA2a@l3 = S Iveed a3 = A3,
keK keK keK

Then, we obtain the following reformulation with f,(§) = ||z —&||; expressed as the piecewise-affine
function maxgeg41y2 (d, x = §).

Jof a1+ a2+ (1,3 + 0|Agle + Y e T m Z nj
=910,k ,vec(Qr) ) ke K keK JG[m]

st ar+qok + (a, &) +(Qr, ET) > {dyx — &) — a9, Vk € K, € € By, d € {£1}7
a1+ qox + (qx, &) + (Qr,&T) > 0, Vk € K,§ € B
Vi > llak +2Qr€llx, Yk € K,§ € By,
ag+n; > (d,x— &), Vi€ [m],de {£1}?
Qr>0, VkeK
v.n =0,
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where {;} jc are samples generated from P. The first two semi-infinite constraints can both be
reformulated to contain the following minimization with ¢ := g3, + d and ¢ := g3, respectively.

min __(Qk, X) + (¢,€) -

£E€8y, X =ELT
Since Qi > 0, this reformulation is exact. Applying the standard Schur complement and conic
duality, we obtain the following dual problem for =, := {& | I, < & < ug}.

l — Ty —s/4
7’—?2())(,5<k7z> (ug, 7) — s/

Since each constraint needs to be dualized independently, we use 7}, 7+, sk, and 72,72, 57 to
denote the associated dual variables. For the third semi-infinite constraint, we take the 1-norm as
the Lipschitz norm, thus the dual norm is ||gx, + 2Q€||oo = max;cp, maxees, g, + 2Q}E]. Then,
can be further represented as

7k2q11+2gné§X<Q§;,§>, Vi > qk+2ma><< Qi,€), VkeK,i€[n],
Ek

where Q. is the ith row of the matrix Q. Each linear program can be dualized using the definition
of =i, where © and 7 denote the associated dual variables. Putting everything together, we obtain
the following parametric reformulation

pon Bt aa (a) +HOIAT + D et g D
7=(ax0,ax,vec(Qk))ke K kek ]e[m]

st > i+ qok + (I Tha) — (Uk, Tag) — ha/4 = (d,x), VE € K, d € {£1}?
i€(2]
Qx qk+d—|—ﬂ%d—z}cd ,
=0, Vk e K,d e {1}
(@ +d+ Thg — Thg)" Sha
a1+ qox + (le, 7)) — (we, T2y — sp/4 >0, Vk € K
Qk qr + ﬂ? — 1%
=0, Vke K

(g + 77 — 1) 5

Ve > g + 2 ((ups 7y ) — (v mr)),  Vk € K, i € [n]
Qi =7t —mhi, Vk €K, i€ [n]

Ve = —qj, +2 ((up, 75y — (e, 733)) s Yk € K, i € [n]
- Qk. = 7r,CZ Eii, Vk € K,i € [n]

as+n; > (d,x—¢&), Vje[m],de {:I:l}2

z € [lu),y,n,7,7,7,7>0.

This yields a semidefinite program with solution robustness guaranteed by Theorem 7.
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6.1.2 Reformulation via Envelope Representation

Since each function w-I=, in (16) admits its envelope representation on Zj, we perform the following
reformulation,

it ar ag + Befu] + 6VER[T + 3 v+ 125 Bel(fe — a2)a)
TRt keK B

st ot dnf (w(@) +wllE — &N = (lo — €l —az)s, VEE K EEE
For fixed q, this fits (14) with h(w) = (w, w?) and g(a,b) = a + §v/b. Hence, g o hg is not monotone
in general, and the assumptions of Theorem 8 and Corollary 8 are violated. To recover monotonicity,
we restrict the feasible set by imposing the additional constraint w > 0 in the dual formulation.
Under this restriction, g o hg becomes monotone, which allows Theorem 8 and Corollary 8 to be
invoked.

This additional constraint admits a natural interpretation from the gauge perspective. Requiring
w > 0is equivalent to adding the indicator (or, equivalently, the gauge) of the nonnegative cone
Vi :={v € L*(P) | v > 0} to the dual objective. By gauge algebra (Corollary 7), augmenting the
dual problem with this cone gauge corresponds, in the primal, to taking the Minkowski sum of the
original primal gauge set with the polar cone V3 = {v € L*(P) | v < 0}. As a result, the admissible
primal gauge set is enlarged, and the resulting formulation remains robust in the sense of admitting
a superset of the original ambiguity.

With this modification, we can apply the envelope reformulation (15) either using samples
drawn from any chosen nominal P or taking the empirical measure P as the nominal: the former
asymptotically converges to the optimal value of (16) by Theorem 8, while the latter is an exact
reformulation of (16) by Corollary 8. For given samples {{;}jcim), let Ji. := {j € [m] | §; € Ep}, we
obtain the following semi-definite program

: 1 g B
7201,151£0,a a1+ ag + - Z 55+ ﬁHSHZ + Z €kVE T+ = pm Z (f2(&5) — a2)+
j€lm] keK j€m]
st a1 +si+nllé =&l > (dr—€&) —aa, Vk€E K EEE, € Jy,de {£1}
ar+sj+llE—-¢&l >0, Vee K,£€E,je i

where we represent the 1-norm as the piecewise-affine function as before. Note that the optimization
problem in the second constraint is mingcz, || — &;|| with &; € Ej, for each j € J, the minimum is
attained at &; with a value of 0. Hence, this constraint reduces to a; + s; > 0 for all j € [m]. Then,
the first semi-infinite constraint can be reformulated to contain the optimization mingcz, (74§ —
&l + (d, &)) on the left-hand side, which is a convex minimization over a compact space with strong
duality holds. Let = := {£ | I < ¢ < ug}, we obtain the following dual where || - || is the dual
norm of the given norm || - || for Lipschitz.

Jmax (d, &) + (& — ur, ) + (e — &y )
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Since each dualization is independent, we use ;4 and Tjq tO label the associated dual variables.
Then, we obtain the following envelope reformulation

I SETE D DR TII s+ Y e+ T O

ic[2] ™ jem) keK ™ jem

st Y it s+ (& — g, Taga) + (I — &y Thja) = (dyx — &) Vh € K, j € Ji,d € {£1}?
i€[2]
Ve = || Thja — Tpjg + dlls, Yk € K, j € Jp,d € {£1}?
ar+s; >0, Vje[m]
as +1m; > (d,x— &), Vje€[m],de {£1}?
r € [l,u],v,s,n,7,x>0.

When the 1-norm is taken for the Lipschitz, the dual norm || - ||, is the infinite norm, leading to a
linear program with one second-order conic term ||s||2 induced by the y?-divergence gauge.

6.2 Computational Study

Problem Instance. We normalize the city region to be = = [0, 1]> C R?, which is partitioned into
three rectangular districts:

=1 :=[0,0.65] x [0,0.65], =y :=1[0,0.65] x [0.65,1], =3 :=1[0.65,1] x [0, 1],

as illustrated in Figure 2. The true incident distribution P is specified as a mixture of two entrywise
independent beta distributions on Z, with density function given by

25 1.5 15 2.5
= D wi [ ] Beta(§ | aij, i), w:=(09,0.1), a [15 20]7b:: [20 92]7

i€[2] j€2]

where w; are the mixture weights, and each Beta(- | a;;, b;;) denotes the beta density on [0, 1]
with shape parameters (a;j,b;;). Figure 2a illustrates this distribution via a heatmap. We draw
m = 500 samples {¢; };11 from PP to represent historical incident occurrences across the city. Due to
heterogeneous data retention rates, some observations may be lost. In particular, only 75%, 95%,
and 55% of the observations are preserved in =;, =5, and =3, respectively, resulting in m; = 154,
my = 62, and m3 = 126 retained records, for a total of m = 342 observations. Figure 2a provides
the spatial distribution of these incidents.

Nominal Distribution. We assume that the planner has prior knowledge of the parametric
form of the incident density p(¢) but does not know the hyperparameters (w;, ai;, b;;). Given
the available historical observations and the additional model-based information, we estimate a
nominal distribution by fitting this mixture model in a Bayesian manner. Specifically, we place a
Dirichlet prior on the mixture weights w = (w1, w2), independent beta priors on the component-
wise means, and gamma priors on the corresponding concentration parameters. Posterior inference
is performed via automatic differentiation variational inference (ADVI) [36] using the Python
package PyMC, and the resulting nominal distribution [P is formed by plugging in posterior means
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(a) True distribution P (b) Learned P (m = 35) (c) Learned P (m = 342) (d) Learned P (m = 3411)

Figure 2: Instance information. Panel (a) shows the three regions, the true distribution, and the retained
m = 342 observations. Panels (b)—(d) report Bayesian-learned distributions under different data retention
levels. We fix m = 342 and take the distribution in (c) as the nominal P for all models, except the data-driven
Wasserstein CVaR baseline (WDRO), which uses the empirical measure P,,, = L 3 ie[m) O¢; as the nominal.

of (w, a,b). Figure 2b—2d shows this learned distribution under different historical datasets. In
particular, we assume that the retained dataset contains m = 342 observations. Accordingly, the
titted distribution shown in Figure 2c is taken as the nominal distribution IP in our proposed
reformulations. As a baseline, we also report a data-driven type-1 Wasserstein DRO formulation
(WDRO). In contrast to the proposed approaches, this data-driven WDRO baseline is inherently
tied to a discrete, sample-based center and therefore cannot directly incorporate model-based
information by taking a continuous P as the nominal. It instead uses the standard empirical
measure P,, = = 3" ic[m] O¢; as its nominal distribution with m = 342.

Experimental Setting. We evaluate the parametric and envelope reformulations derived in
Section 6.1, denoted by PAR and ENV, against two baselines. The first baseline is the following
stochastic CVaR formulation with m i.i.d. samples generated from the trained posterior nominal IP:

1
STO : i — ;
cellaaeR, nz0 - (1-8)m jgl] K
st a+n > (dx—¢&), Vjec[m],Vde{+1}?

where 3 denotes the confidence level in CVaR. The second baseline is the data-driven WDRO model
with a CVaR objective under the standard empirical measure P,, as the nominal:

a+

i o ot {Bp fu] + elwlup, | w(©) 2 (e - €~ ), YE € ).

This can be equivalently reformulated following the same steps as in Section 6.1.2.
x7’y7a757ﬁ7£

1 €
WDRO: min o+ Y 8+
(L= Bm .ez[;:] e

st.a+ s+ (§ —u, Tja) + <l - fj,ﬂjd> > (d,x — &) ,Vje[m],de {jzl}2
v > g — mja+dllco, Vi € [m], d € {£1}?
x € [l,ul,y,s,m,m > 0.
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(a) Solution trajectory in the city map. (b) Out-of-sample CVaR s versus p (lower is better).

Figure 3: PAR, ENV, and WDRO solution trajectories and out-of-sample CVaRg s across configurations. To
improve readability, the CVaRg g axis is split at p = 3, i.e., values over p € [0, 3] are shown on a zoomed
vertical scale, while p € [3,4.8] is shown on the full scale.

We fix 3 = 0.8 to target the upper 20% tail. For model construction, we draw m := 2,000 i.i.d.
samples from the nominal distribution P for STO, PAR, and ENV. For PAR and ENV, we set the
global x2-divergence radius to & := p, where we treat the scalar p as the configuration parameter. We
define the region-wise Wasserstein radii in PAR and ENV as ¢, := py/tr(X)/ms, where my and Xy,
are the retained sample size and empirical covariance in region Zj, respectively. Likewise, WDRO
uses the global radius € := p/tr(X)/m with m = 342 and global empirical covariance ¥. Intuitively,
smaller sample sizes or larger empirical variability indicate greater statistical uncertainty and
therefore motivate larger radii. To assess out-of-sample performance, we evaluate each computed
in-sample solution = on 20 independently generated test datasets drawn from the true distribution
P, each containing 50,000 observations. For each test set, we compute CVaRq s(z) and report the
sample mean and standard error across the 20 replications. All algorithms are implemented in
Python 3.10 using the Mosek 11.1 solver. Experiments are conducted on a MacBook Pro (2023)
equipped with an Apple M2 Max processor and 64 GB of memory.

Hyperparameter p Tuning. In addition to illustrating how out-of-sample performance varies with
p across reformulations, we tune p separately for each formulation to reflect practical use. Specifi-
cally, we select p via cross-validation and then compare the resulting out-of-sample performance
under the chosen values. The available samples are partitioned into five folds; in each split, one
fold is held out for testing and the other four are used for training. We select the p that minimizes
the average out-of-sample CVaRy g across the five folds, with ties within numerical tolerance (1079)
resolved by the smaller p.

6.2.1 Performance Analysis

Since the support of the true distribution P is the full square = = [0, 1]2, the robust optimization
attains its optimum at the center of =, namely 23,5z = (0.5,0.5). In contrast, the stochastic CVaR
optimization (STO) solution is 2§ = (0.589, 0.433). Figure 3a marks both locations with stars and
displays the solution trajectories of PAR, ENV, and WDRO. As the primal gauge sets expand with
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Method  Best p Solution CVaRyp.g (mean +se) Runtime (s)

PAR 0.8  (0.586,0.424) 0.61359 + 2.5 x 10~4 0.073
ENV 0.8  (0.587,0.433) 0.61511+2.4 x 1074 1.454
WDRO 4.2  (0.571,0.434) 0.61743 £2.4 x 10~4 0.073
STO - (0.589,0.433)  0.61492 £ 2.5 x 10~4 0.036

Table 2: Performance comparison with the hyperparameter p selected by cross-validation for each method,
reporting mean =+ standard error for CVaR s.

increasing p within the range [0, 5], the solutions produced by all three reformulations move from a
neighborhood of 2§ toward the robust solution 23,5, with PAR reaching 3, at smaller values
of p. In contrast, z3ypr remains unchanged for most settings and then abruptly jumps to x5, at
the two largest configurations. This is consistent with the linear-program structure of WDRO: as €
varies, the optimal extreme point is stable over intervals and changes only at discrete breakpoints.

Figure 3b compares all methods in terms of out-of-sample CVaRg g across p € [0, 5]. Overall,
PAR attains the lowest risk for p € [0.0,2.4], while STO performs best for larger values of p. ENV
slightly improves upon STO only at the first two configurations, which may be attributed to the
additional constraint w > 0 in the envelope reformulation that can introduce extra conservatism. By
contrast, WDRO exhibits a noticeably different CVaR s level from the other three methods, even at
p = 0, and remains less favorable than STO across the full range. A plausible explanation is that
WDRO is optimized under a different nominal and sampling regime, using the empirical nominal
P,, with m = 342 observations, whereas STO, PAR, and ENV are constructed using m = 2,000
samples drawn from the learned nominal P. At the two largest settings, PAR, ENV, and WDRO
yield identical performance as their solutions converge to the robust optimizer 3.

As reported in Table 2, cross-validation selects ppar = penv = 0.8 and pwpro = 4.2, under
which both PAR and ENV achieve lower out-of-sample risk than WDRO in this setting. These
results suggest that when the assumed distributional family is reasonably aligned with the data-
generating process (here, a joint beta model), a fitted nominal distribution can improve out-of-
sample performance. In terms of runtime, STO is fastest due to its smallest formulation size,
whereas ENV is the slowest, consistent with its larger number of sample-dependent variables and
constraints.

7 Conclusion

This paper introduced a gauge set framework for robustness design in optimization, offering
a unified convex-analytic approach for modeling and analyzing robustness across stochastic,
robust, and distributionally robust paradigms. By formulating robustness through the gauge set
reweighting problem, we established quasi-strong duality and showed that the correspondence
between primal and dual problems is governed by the geometry of gauge and polar gauge sets.
This perspective recovers and extends classical results across existing robustness formulations,
including moment-based, Wasserstein, and ¢-divergence ambiguity sets, while revealing a coherent
structure for gauge manipulation through algebraic operations, decomposition, and composition
principles. To enable computation under continuously supported uncertainty, we further develop
two general reformulation schemes that decouple robustness design from reformulation choices,
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yielding flexible and problem-tailored solution strategies.

The connection between solution robustness and gauge set design opens several promising
directions. Developing computationally efficient inner approximations of various polar gauges
could yield new tractable DRO models with strong robustness guarantees. Incorporating structured
constraints or hierarchical compositions into primal gauges may further enhance the expressiveness
of robustness design in complex applications. Overall, shifting attention from ad hoc dual reformu-
lations to the geometric design of gauge sets provides a more flexible framework for customizing
robustness in optimization.
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A Gauge Set Application in Other Robustness Frameworks

A.1 DRO Chance Constraint

Using gauge sets, we can model the general distributionally robust chance constraints as follows,

gg/{} f(zx) (17a)

sup (11,50)
s.t.  VER(P) < B, Viée[m)]. (17b)
st |lv =1y, < e

where I denotes the indicator function of a set (so that I flags constraint violation) and f is the
tolerance level. Moreover, the indicator [igisoy is bounded below and lower semicontinuous
whenever g, is, since {g}, > 0} is open. Although quasi-strong duality need not hold, the following
dual formulation remains a valid approximation.

i 1
min f(x) (18a)
s.t. a; + E[w,] + 61”“%”\};’ <pB, Vie [m] (18b)
i +wi > lgisg, Vi€ [m]. (18¢)

Then, the gauge set V;’ could be designed specifically to capture different types of robustness on
the ambiguity of the probability.

A.2 Robust Satisficing

Robust satisficing is another paradigm that optimizes robustness without restricting the scope
of ambiguity set [38]. This method aims to minimize the ratio (Ez[f.] — 7)/ d(P,P) where 7 is a
given objective target and d(PP, P) signifies a general type of difference between the true probability
measure P and the empirical measure P. Since gauge sets provide a general way to specify such
differences, we can formulate the general robust satisficing problem as follows.

L inf
;Iélg(léleo’y (19a)
st (fu,v) —7 <Allv -1y, YveR(P). (19b)

Using the similar derivation as in Theorem 1, we can derive the following reformulation results by
rewriting (19b) as sup, crp (fz, V) —7llv = 1lly < 7.

min inf
min inf f[w]v-

st.a+ Elw] <,
a+w > fr.

This reformulation provides a neat dual interpretation for robust satisficing. We again use
a + w to upper approximate f,, but with an additional upper bound 7 on the expectation of this
approximator. Then, the objective is to minimize the gauge of w under these two constraints.
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All the previous results regarding different designs of V can be carried over to study this robust
satisficing problem, facilitating various robustness requirements under this setting. For instance,
using Proposition 12 and Theorem 4, we can obtain the following robust satisficing dual problem
with respect to ¢-divergence.

min inf
2EX 7>0,u(-)
st o+ B¢ (w/y)] < 7,

a+w > fr.

B Mathematical Proofs

Proposition 1. The following relations hold for any given gauge set V C L?(P):
1. |lev||ly = 0 when € = 0, and equals €||v||y for every e > 0.
2. lv+wlly < wllv + wly.

3. Given any closed subspace U, if 0 € inty (Y NU), then || - ||y is Lipschitz continuous on U, and
[v]ly = HVHCIM(VOZ/{)for every v € Y.

4. eV C{v e L3(P) | ||v|ly < €} C €V for every e > 0.
5. || - ||y is convex, and is closed if V is.
6. V=V
7. er((] - ) = rec(V).
8. flwllve = sup,ey (w,v).
9. For every w # 0, [|[w|ly = 0 implies ||w||yo = oc.

10. Ifw € V*, |lw|lye = 0, and |w|ly = oo if w # 0.

Proof. For Statement 1, when e = 0, 0v = 0 € V, implying ||Ov||y = 0. Otherwise € > 0, then

llev|ly =inf{t >0 |v € (t/e)V} =inf{ef > 0| v € BV} = einf{f > 0| v € BV},

where the second equality is due to the substitution § := t/e.
For Statement 2, take any o > ||v|ly and § > |Jw|ly. By definition of gauge, v = ary and
w = Bwy for some vy, wy € V. Then,

o
vy + w
oz—l—BO a+p 0

vrw=(a+5) ( )etaray,

where the membership is due to the convexity of V. Thus, ||v + w||y < a + 8. Since this holds for
every a and f3, the triangle inequality holds at the infimum.
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For Statement 3, since 0 is an interior of VN relative to the subspace U/. There exists some o > 0
such that the subspace a-ball By(0,) € VNU, i.e., au/|u|| € V for every u € U. Equivalently,
|lully < ||ul|/c for all w € U. Then, the triangle inequality of the gauge function gives
[ = w|

I1¥lly = llwlly] < max{ly —wly, [lw —vlv} < =

for every v,w € U ((v — w) € U due to U is a subspace), which shows that || - ||y is Lipschitz on /.
Then, for every v € U, we have |v||y = [[V|lyru = [Vl (vru), Since every element in the subspace
closure can be approximated by a sequence in V N with || - ||y acting continuously.

For Statement 4, every v € €V satisfies |||y < € by definition, proving the first inclusion. For
the second inclusion, |||y < e implies that, for every § > 0, v/(e + ) € V since V is convex and
contains zero. Then, § — 0 provides a sequence in V approaching v/e, implying v/e € V.

For Statement 5, the convexity of || - ||y is a direct consequence of Statements 1 and 2. Suppose
V is further closed, Statement 4 implies {v | |||y < €} = €V for every € > 0, which is a closed set.
For ¢ = 0, the level set becomes [ ., €/, where the closedness is preserved through intersection.
Since every level set is closed, the function || - || is a closed function.

For Statement 6, since V°° contains V and is closed, the direction V C V°° holds by the definition
of closure. For the other direction, suppose 7 ¢ V. Since V is convex-closed and {7} is compact and
convex, the (strong) Hahn-Banach separation theorem along with Riesz representation theorem on
L%(P) provides some w such that

s 1= sup (w,v) < (w, ).
vey

Pick « such that s < a < (w, 7) and define v’ := w/a, then

sup <w’, 1/> =s/a <1,
vey

implying v’ € V°. However, (w',7) = (w,7) /a > 1, which shows © ¢ V°°.
For Statement 7, the definitions are
ker || - ||y :={w | w €V, Vy > 0}
rec(V) :={w|oaw eV, Va >0} ={w|aw eV, Va >0} ={w | w € (1/a)V, Ya > 0},
where we can relax the requirement a = 0 in rec(V) due to Ow = 0 € V by definition.

For Statement 8, we unpack the definitions for every ¢t > 0 as

w etV < (w/t,v) < 1Vv eV < sup (w,v) < t.
vey

Then, we obtain

|lwllye = inf{t > 0| w € tV°} = inf {t >0

sup (w, v) < t} = sup (w, V).
veVY vey

For Statement 9, we expand the definitions as follows

[wl|ly = inf{y > 0| w € 7V},

[wl[lye = sup (w,v) .
vey
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Then, the first quantity is 0 whenever w/y € V for every v > 0, which implies |wl/y. >
sup.,~o (w, w) /v = oo.

For Statement 10, w € V' entails (v,w) = 0 for all v € V, implying |[w|y> = 0 through the
previous statement. On the other hand, if w € V* and w € vV for some v > 0, then (w,w) = 0
forcing w = 0. O

Lemma 1. For every gauge set V, the extended gauge defined as V := (V N Ro) + Ry satisfies (i) V
contains 0 as an interior in L*(P), (ii) zoy = 2 p for every € > 0.

Proof. To show (i), note that every element in L?(P) can be uniquely represented as v + w for
v € Rop and w € Ry due to the orthogonal decomposition theorem of Hilbert space. Moreover,
Rg can be directly computed as the constant functionals {a1 | @ € R}. Then, consider the unit
openball B := {v +al | ||v + al|2 < 1} under this representation, there exists some sufficiently
small 6 > 0 so that 68BN Ry C VN Ry since V contains an open neighborhood of 0 inside Ry.
Thus, every v + dal € 6B isin V, i.e.,, V contains an open neighborhood of 0 in L?(P). For (ii),
under V), the gauge constraint in (4) is v — 1 € (), tV; since (1,) = 1 implies v — 1 € R and
(VN Ro) +Ry) NRo =V N Ry, this constraint is equivalent to v — 1 € (.. tV. 0

Lemma 2. For the given € from Assumption 2, Type-I regqularity entails that for every e < ¢’:
(i) supgep,, Eo[®] < oo,
(ii) Pey is uniformly tight,
(iii) supgep., Eolfa] < oo,

(iv) Given € < ¢, under the extended gauge V), there exists some § > 0 such that ||w — 1| < § implies
P oy 18 uniformly tight.
Type-1I regularity additionally entails that (v) for every e < €, supgp.,, Eg[®losm] — 0as M — oo.
Proof. Without loss of generality, we assume ¢ = 1 throughout the proof by replacing V by ¢'V
and e by €/¢'. For Type-I regularity, we first prove (i) and (ii) for the case ¢ = 1. (i) is provided by
Assumption 2. To show uniformly tightness, for every § > 0, choose M > supgp,, Eo[®(€)]/4,

and define Z;; := {£ € 2 | ®(£) < M} to be the level set, which is closed and bounded due to the
closedness and coerciveness of ¢. Since = C R", =) is compact. For any Q € Py, we have

QE\EM) =Q(® > M) < Eg[®(&)]/M < 6.

Thus, uniform tightness follows since this is valid for every Q. Then, for every € < 1, (i) and (ii)
trivially hold since P,y C Py, and both objective finiteness and uniformly tightness are preserved
under subsets. (iii) is true due to the boundedness of | f,|.

For (iv), by the triangle inequality of the gauge function (Proposition 1), we have

v =1y =lv —w+ (w =1 <[y —wlly + lw =1

Thus, every v such that [|v — w||;; < e also satisfies || — 1||; < €+ ||w — 1||;;. Since the extended
gauge V contains a neighborhood of 0 in L?(P), the function || - | is Lipschitz by Statement 3
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of Proposition 1. Then, when [w — 1| < § for some ¢ > 0, it ensures € + [w — 1[|;; < 1 since
€ < ¢ = lis assumed. This means, when ||w — 1|| < ¢, the set {v | |[v — 1||;; < 1} fully contains
{v | |lv — wl|;; < €}. Since the measure closure of the former is P, while the closure of the latter is
P 5 .» We also have
f{; D) fef/, w-

Because (ii) proves the first set is uniformly tight, and uniformly tightness is preserved in subsets,
we conclude the proof of (iv).

Since Type-1I regularity provides a stronger light-tail condition on Py, (i), (ii), and (iv) still hold.
For (iii), we have

sup Eg[f:] <a+ B sup Eg[®] <a+ 8 sup Eg[@] < cc.
QEﬁeV QEfev Qefev

For (v), we prove the case ¢ = 1. Forany M > 0, on {¢ | ®(¢) > M} we have ® < &7 /)", Hence
1
sup Eqg[®los ] < ~rp Sup E@[<I>1+”] — 0, as M — oo,
QePy M QePy

where the limit is induced by supgc5,, Eg[®117] < oo from Assumption 2. Then, the case € < € = 1
directly follows. O

Lemma 3. The functional Q — (f,, Q) is weak*-continuous on P. Consequently, let 2., be the optimal
value of (4), the following identity is satisfied,

Zey = Sup <fIaQ>

QEfeV

Proof. Under Type-I regularity, f, € Cy(Z), hence Q — (f;, Q) is weak*-continuous by the def-
inition of weak convergence. Under the Type-II regularity, we only prove the weak*-lower-
semicontinuity, then the weak*-upper-semicontinuity follows by a symmetric argument. Define the
truncation fM := max{f,, — M} for every M > max{a,0}. Each M is closed and bounded below,
hence

liminf (£, Qn) > (£, Q).
Moreover, fM | f, pointwise. To quantify the truncation error, obtain
0< f1(8) = f2(&) = (=M — fo(©)+ < | fo(O)IT{ f2(§) < —M}.
Hence, for any Q € P, we have
0 < (/2" Q) = (o, Q) < Eqllf(&)|H{f2(&) < —M}].

Using the Type-II growth bound |f;| < a + 8@ (with § > 0), we obtain

Eq[lfell{fa < =M}] < Eql(ar + f®) o + & > M}] < a@(@ > M5a>+5EQ [M{q, < MEQ}] 7

where the first inequality holds due to |f,| < a + f® and the indicated set becomes larger. By
Markov’s inequality,

Qe > ¥5e) < 5y Eole),
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and SUPQep.,,, Eg[®] < oo (Lemma 2) implies that the first term vanishes as M — oo uniformly over
Q. The second term vanishes uniformly by (v) of Lemma 2. Combining Portmanteau for f with
the uniform truncation bound,

suwp ((f21,Q) = (£, Q) =0,
QePey

and letting M — oo yields liminf,, oo (fz, Qn) > (fz, Q), i.e., the functional Q — (f,, Q) is weak*-
lower-semicontinuous. Weak*-upper-semicontinuity follows analogously by applying Portmanteau
to the truncations g := min{f,, M} (upper semicontinuous and bounded above).

Finally, since zy is equivalent to supgep,,, (fz, Q), the “<” direction is trivial. For the other
direction, by definition of closure, for every Q in the closure, there is a sequence Q,, € P, that
weak* converges to Q. Clearly, supg cp,, (f2, Q') > (fz, Qn) for every n, implying

sup (o, @) > liminf (£, Qu) > (2, Q).

Q' €Pev

where the second inequality is due to the weak*-lower-semicontinuity of Q — (f,, Q). O
Theorem 1. The quasi-strong duality holds for the following dual problem of (4)

inf +E —+ o 5a
weral e @ plw] + efwlly (5a)

sta+w> fo (5b)

Proof. Adopting the conjugate duality framework [16, 46], we define the following perturbation
function where h(v) denotes the function ||v — 1||y.

(—fo,v), fvr>0,(l,vy=1l,andh(v—2)—ec<u

00, otherwise.

F(v,u,z):= {

Then, the corresponding dual problem can be computed as
inf F*(0, —y, —w) = inf sup {=yu — (w, z) + (fo,v) | h(v — 2) — e < u}
YW TW o z,0>0,(1,v)=1

= inf sup {=v(h(v —2) —€) — (w, 2) + (fa, V) }

120w 5 »>0,(1,0)=1

-+ s (s (- s -l -2} )
720,w v>0,(1,p)=1

= inf ey+ sup {fx, +sup{ <w I/—Z> Vh(z’)}}
720w v>0,(1,v)=1

= inf ey+ sup { —w, Vv +sup{<w 2"y — yh(z )}}
720w v>0,(1,p)=1

= inf e’y—i—(’yh)( )+ sup  (fo —w,v)
v2>0,w

v>0,(1,v)=1
= inf ey b (/) +supin {(J — w,) +a(l - (L)
v v>0

< inf ey+~h* (w/’y)—i—lnf{a—l—sup(f —a—w,y>}
720w v>0
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= _inf {a+qh’(w/7)+evlatw=fo}.
o, W,y =2

Note that the seventh equality holds for the case v = 0 under the definition (0h)*(w) = do(w). Then,
we compute h*(w) explicitly as follows.

h*(w) =sup (w,v) — |lv =1y

= sup (w, v/ +1) — [|V/[|ly

V/

= (Lw) +sup (w,v') — [[V'[|ly
1/,

= E[w] + 6% (w)
E[’LU] + 6V° (w)v

where the fourth equality is by the identity || - [y, = 03, (-) whenever V is convex and closed. Then,
the dual problem becomes
inf a+E[w]|+einf{y >0 |w € yV°}

st.a+w> fi,

which gives the desired dual formulation by the definition of gauge function.

According to the Fenchel-Young inequality, the weak duality always holds. For quasi-strong
duality, we verify the conditions in Proposition 2. Since the primal (4) is always feasible under v = 1
with the value E[f,] finite according to Assumption 2 and the fact P € Py, the infimum value
function of F is finite at 0. Moreover, if F(v,u, z) = —oo at some v, u, z, i.e., (fz, V) = +00 at some
v, u, z, it contradicts to Lemma 2. Hence, F' is proper. The convexity of F'is also straightforward by
our perturbation scheme and the convexity of h.

Therefore, it suffices to verify that ¢(u, z) = inf, F(v,u, z) is lower semicontinuous at (0, 0),
ie., every (0,0,¢) that arises as a limit of points from epi ¢ remains in epi¢. We first note that
the parameters =z and u are essentially designed to perturb the center 1 and radius € of the gauge
function. Thus, for every (u, z), we have

Fv,u,2) = {{=fe,v) |v € R(P) N ((1 + 2) + (¢ + w)V)}
) =inf F s Uy = inf —Jx .
o(u.2) w (v,u,2) yeR(P)m((ﬁzH(em)w (=farv)
Due to Lemma 1, we can safely replace V with its extended gauge V to preserve the same value.

Then, the associated measure closure is f( . We define the associated optimization in the

e4u)V,1+z
measure space as

F(Qu2) = {{~f0,Q | Q € Pz}
d(u, 2) = i&fﬁ'(@,u,z) =  inf (—f2, Q).

er(s+u)\7,1+z
Now, take any convergence sequence (uy, zn,t,) — (0,0,t) where (uy, z,,t,,) € epi ¢ for every n.
Since ¢ is the infimum of F' over v, epi ¢ is the projection of epi F' onto the space of (u, z,t). By
the definition of projection, there exists a sequence (v, un, 2n, t,) in epi F'. By the choice of v, the
lifted measures v, [P belongs to f(e )14 Hence, we obtain a sequence (v,[P, uy,, 2z, t,) in epi F.
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According to Lemma 2, the set 5(6 +u)P,14» Decomes uniformly tight for all sufficiently small € > 0
and all z lying in a sufficiently small neighborhood of 0. By Prokhorov’s theorem, uniform tightness

ensures precompactness. Since f( is weak*-closed by definition, it is weak*-compact.

e+u)V, 142
Thus, there is a convergent subsequgngz irjlL (VnP, up, 2, ty). Passing to this subsequence, we have
(VnP, Uy, 2n,tn) — (Q,0,0,t) for some Q € fef},l' Since epi F' is a closed set as (fz,-) is weak™*-
continuous by Lemma 3, we have (Q,0,0,¢) € epi F, which implies (0,0,%) € epi . Finally, notice
that when u = 0 and z = 0, —¢(0, 0) is the original problem (4), while —¢(0,0) = SUPQCp (fz, Q).
By Lemma 3, two problems have the same value, i.e., ¢ and qg coincide at (0,0). This shows
(0,0,t) € epi ¢, which proves the lower semicontinuity of ¢ at (0,0), and concludes the quasi-strong
duality. O

Proposition 3. Every CRM with a risk envelope Q := Q N R(P) is equivalent to (4) under the gauge set
V = Q — 1 with a radius ¢ = 1. In particular, when Q is represented as {v € L*(P) | g(v) < 0} for some
convex-closed function g : L?(P) — R™, the polar gauge set is

Vo= (Q—1)° = {w c L*(P)

inf (190" ()~ (L) < 1}

where (v, g(-))" is the convex conjugate of the map v + (v, g(v)).

Proof. By the definition of this gauge set, (4b) is satisfied for € = 1 if and only if v — 1 € V, which is
equivalent to v € Q by the definition of V := Q — 1. Thus, the equivalence holds. When Q has the
assumed explicit representation, we have

g(v+1)<0

VOZ(Q—I)Oz{w

sup (w,v) < 1},
where g(v + 1) < 0 comes from the shift by 1. Then, the claimed result follows a direct computation
of conjugate duality, and the quasi-strong duality holds by the same proof as in Theorem 1. O

Corollary 1. Given a CRM p with the risk envelope Q := Q N R(P) such that Q := {v | g(v) < 0} from
some convex-closed g satisfying g(1) < 0, we have

plfz) = inf ot {ng())" (W) |atw> fa},

where (v, g(+))" is the convex conjugate of the map v + (v, g(v)).
We note that the following proof requires a later result Theorem 4.

Proof. According to the gauge set dual formulation (4), Proposition 3, and Theorem 4, it suffices to
show that the following function

h(w) = nf {y,9())" (w) = (L, w) = e (w,v)

is positively homogeneous and non-negative. Both are trivially true from the above supremum
form and the assumption g(1) < 0. O
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Proposition 4. CVaR constraint v < 1/(1 — B3) is equivalent to |[v — 1|ly, < 1with Vg := {v | v <
B(1 — B)~1}. The corresponding polar gauge set is Vi={w=>0]p(1- B)~'E[w] < 1}. Then, the gauge
function is defined as ||w||vg = B(1 — B)"'E[w] if w > 0 and equals +oco otherwise. This recovers the
standard objective function for CVaR optimization as inf, o + (1 — B) 7 'E[(fr — a)+].

Proof. Since Q = {v | v < (1 — B)~!}, the corresponding Vs = Q — 1 has the claimed definition by
Proposition 3. To determine the polar set V5, we directly compute the following for some input w.

;g% (v, g(:))* (w) = inf {sup (w,v) — <’y, v—(1- 6)1>}

v=>0 v

=it {1 5)7 (3) +sup 0= 700) |

720
Ja=-p" (1w, ifw>0
+00, otherwise.

This proves the definition of the polar set. Then, the definition of the gauge function || - [} follows
Theorem 4 directly. Hence, problem (5) becomes
inf 1-B)"'E
anf ot (1—B) " Elu]

st.at+w> f,.

Then, w = (f; — «)+ is an optimal functional for every a, which reduces the above formulation to
the familiar CVaR optimization. O]

Proposition 5. If V is bounded, then ker || - ||y is zero; if V is absorbing, then cone(V) = L?(P). Therefore,
when V is bounded, (4) reduces to SP with e = 0; when V is absorbing, (4b) becomes redundant when
€ — oo and the problem (4) reduces to RO.

Proof. By definition, v is in the kernel if and only if v € (., €/V. When V is bounded, every nonzero
v will be excluded for some sufficiently small ¢, hence the kernel is {0}. For the second statement,
if V is absorbing, then there exists € > 0 such that the open e-Ls-ball is contained within V. Then,
every v € L?(P) is contained in the scaled set (||v||/€)V. O

Proposition 6. V° is absorbing if and only if V is bounded.

Proof. Recall that V° = {w | sup,ep(w,v) < 1}. Thus w € AV° if and only if sup,cy(w,v) < A
Hence, V° is absorbing if and only if for every w € L?(P) the quantity sup,¢y, (w, v) is finite. If V
is bounded, let R := sup,¢y ||v|l2 < co. Then by the Cauchy-Schwarz inequality, sup, ¢y (w, v) <
sup,cy ||w||2|lv]l2 < R|jw|j2 < oo, which shows that V° is absorbing. Conversely, assume that V°
is absorbing. For each v € V, define the linear functional /,(w) := (w,v). Absorbingness implies
that sup,cy |ly(w)| = sup,ey [(w,v)| < oo for every w € L?*(P). By the Uniform Boundedness
Principle, it follows that sup,¢y, ||l || < oc. Since L?(P) is a Hilbert space, the operator norm satisfies
|Ily]| = [|v]|2, and hence sup,,¢y, [|v]|2 < oo, i.e., V is bounded. O

Proposition 7. Denoting u = E[¢] and ¥ = E[(§ — p)(§ — p)T] as the expectation and covariance matrix
of the nominal distribution P and id(-) as the identity function, we have the following equivalence,

(Evplé] — 1) TS (Evelé] — 1) <mo= v — 1w < v,
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Eup[(§ —p) (€ — )] 2 X = |lv -1y, <7 -1,

where the affine operator Qy for Vy is defined as Q0 := X712 = A=1/2Q for the eigenvalue decomposition
¥ = QTAQ with 2-norm on R™ as the compatible norm; Q for Vy is defined as Qg := S™Y2(id — ) with
spectral norm || A|| = omax(A) extracting the largest singular value as the compatible norm.

Proof. For the first moment constraint, we have

(Evplé] — 1) (Evelé] — )
=E[(v —1)-€TQTAT'QE[(v — 1) - ¢]
= [|AT2QE[(v — 1) - id]|I3
= |E[(v — 1) - =723
= |lv =113,
The third equality is because v — 1 is a reweighting function and $~'/2(-) is a random vector (we
consider it as a function with input ). For the second moment constraint, we first subtract ¥ on

both sides then multiply by £~1/2 and (X~'/2)T on the left and right of both sides. Both operations
are compatible with the semi-definite inequality given ¥ is positive-definite. Then, we have

V2 (Eyp((€ — p)(€ - w)T] = 2) (BT
= Ep [2712(d ) (id =) T(27V)T| B [272(d ) id —0)T (52T
= E[(v — )Ta(372(id —p))]
=E[(v — 1)T; 0 Q]

By the same operations, the right-hand side becomes (2 — 1)I. Hence, the semi-definite inequality
holds if and only if the largest eigenvalue of the above matrix is bounded by v, — 1, i.e., the
corresponding spectral norm is bounded by 2 — 1, which completes the proof. O

Theorem 2. For every moment gauge set V,,, the polar set Vy, induces a pseudonorm and can be writ-
tenas Vo, = {(X, T, 0 Q) | X € N°}, where (X, T,, 0 Q) € L*(P) is defined as (X, T,, o Q) (£) =
> se3 X7[Tm 0 Q(€)] 5. The corresponding gauge of w € L*(IP) can be explicitly computed as

”va — H[w]TmOQHNO? lfw € Spa’n(TmOQ)
" 00, otherwise,

where [w]r,,00 = argmina{||Al|re | (A, T, 0 Q) = w} is the coefficient tensor with respect to Tp, o €,
and || - ||xe is the dual norm of || - ||a. Moreover, V,, induces a seminorm and can be decomposed as
Vi+ (V) with V), = (X, T o Q) | X € €N} and (V5,)* the largest subspace in V,, orthogonal to
V!, where € is the symmetric 2-tensor on (R™)®™ defined by [€] 750 = ([Tm © Q) 1, [T © Q) j7)p for every
index (J,J') € 3% In particular, € is the identity tensor if entries in T,, o ) form an orthonormal set.

Proof. To compute the explicit description of V;,,, we have

v, = [Evp[Tm o Q]H/\/‘

= sup (X,E,p[T), 0 Q])
XeNe
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= sup E,p[(X, Ty 0 Q)]
XeNe

= sup (v,w),

wWE{{X, TrmoQ)| XEN®}
where the first equality is the definition of V,,, the second is by the relationship between gauge set
and support function, along with the fact that A is convex-closed, the third is due to the linearity
of expectation, and the last one is by the definition of expectation in Hilbert space. We also note
that the first two inner products are equipped with the corresponding tensor space, and the last
one is from the Hilbert space. Since [|v[|y,, = 0}, (v) whenever Vp, is convex-closed, we proved the
description of Vy,.

Hence, V;, can be considered as the lifting of the norm ball //° into the functional space using
functions in T,,, o Q. Moreover, since 0 is an interior point of N° (since it is a norm ball) and the
functional lifting is a surjection onto its image, the zero function 0 = (0, T},, o ) is a relative interior
of V2, which implies cone(V3,) = span(T;, o Q). Given any w € L?(P), by definition of gauge
function, [|w|lys = +oc if w is not within cone(Vy;,,) = span(T;, o 2). Otherwise, let A := [w]7,,00
denote a coefficient tensor of minimal || - || s-o-norm among all tensors representing w. Thenw € tVy,
if and only if there exists X € N° such that w = (tX, T),, o ). By minimality of 4, this is equivalent
to A € t N°. Thus, we have

| (A, Ty 0 Q) [lye. = inf {t | (A, Tp 0 Q) € 1V3,}
—inf {t| A€ tN°} = ||A|ne.

To show that V;, induces a pseudonorm, observe that span(Vy,) = span(7},,0(2) is finite-dimensional.
Since Vy, = {(X, T 0 Q) | X € N°} is bounded, its gauge || - ||y2, is a norm on span(7}, o ) (hence
has trivial kernel there), and equals +oo outside this subspace.

Then, the decomposition of the primal gauge set V), is a direct consequence of the later proved
gauge set decomposition theorem (Theorem 5), where the essential part V), := V), (see Theorem 5)
is the polar set of V;, relative to the subspace spanned by T}, 0. Specifically, we have (X', T, 0 Q) €
V), if and only if X’ belongs the following set

(e
= X" | sup > XX ([T 0 Q[T 0 Qp)p < 1
XeNe 5
:{X’ sup <X®X',(’:> < 1} = {X’
XeNe

={X'|eX e N =N} =N,

X, Ty 0 Q) (X', Ty 0 gl}
Sup (X, T o) °0))p

sup (€X', X) < 1}
XeNo

where the first equality is by expressing the two functions as linear combinations of basis in 7},, o €;
the second and third are by the algebra of tensor product and the fact that € is symmetric; the fourth
one is due to \V is convex-closed; the last one is by the definition of the set inverse operator. [
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Corollary 2. With the first m-th moment constraints ||v — 1|y, < €, for i € [m] in (4b), the dual problem
(5) is a degree-m polynomial programming

inf  SE[w]+ Y e ll[wlnonllye | w> fo (6)
w()€Pm 1€[m] '

where Py, is the space of polynomials of degree less than or equal to m.

Proof. Having moment constraints up to degree m is equivalent to using the intersection of the
associated gauge sets. By later proved Corollary 6 regarding gauge set intersection, the dual
problem immediately becomes (9). By Theorem 2, each wj is a function from span(7; o §2;) where €,
is injective. Hence, w := a + }_;c,,,) wi is a polynomial of degree at most m. Thus, the constraint
(9) essentially says using an arbitrary m-degree polynomial to upper approximate f,. Then, the
tirst part of the objective penalizes the expectation of this upper approximation, and the second
part penalizes the coefficient tensor [w]7,,.0,, using the corresponding dual norm induced by N,
according to Theorem 2. O

Proposition 10. The gauge set Vy = Lip; can be written as {v | (v + 1) € R(P), W1((v + 1)P,P) < 1}.
It induces a pseudonorm with span(1) as its orthogonal space. The polar gauge set Lip, induces a seminorm
with span(1) as its kernel. In particular, [[w + |y, = ||wl|Liy, for every o € R.

Proof. By definition, Lip} = {v | sup,erip, (v, w) < 1}. Hence,

weLip,

Lip} +1 = {v sup (v —1,w) < 1} = v e R(P) | Wi (vP,P) < 1},

according to Proposition 9. Hence, Lip] is the W ball centered at 1 shifted to the center by the
translation vector 1. Since it is known that W; distance is a metric on the probability simplex, then
the shifted set is also a full-dimensional metric ball (for e > 0) restricted to the shifted probability
simplex centered at zero. Consequently, every v € Lip] must have a total measure of zero. Then,
for every constant function a € span(1) and every v € Lip], we have (v,a) = a (v,1) = 0, which
shows that span(1) is the orthogonal subspace. Hence, Lip{ induces a pseudonorm. By Theorem 5,
Lip, induces a seminorm with span(1) as its kernel. O

Corollary 3. Given the constraint ||v — 1|0 < €, the dual problem (5) becomes
i i > .
inf {Blu] + clwlluy, [v> £} %

Proof. A direct application of the dual problem (5) gives

inf Ela +w] + €|wl|Lip
CM,UJ() !

st.a+w > f;.

By Proposition 10, [[w + a||Lip, = [[w]|Lip,- Then, replacing a + w with w gives the result. O
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Proposition 11. The polar set Vy _ is the following

Vo= {we 2@ | {ut (100 -t sate. - ) —wie) b < 1)

Proof. By definition, we have

;

sup (w,v)
v(-)m ()20
s.t. (d(&,&)P,7(€, ) < €
V;e =qweE L2(P) <1,7['(~,§/)> =v+1 <1;,
(L,m(E,-) =1
v+1>0
| 1,v) =0.

where the inner part is a linear program in the Hilbert space L?(P). This problem is clearly feasible
by letting v = 0 and 7 = 1, and it is also bounded for every w € Vj .. In this case, the quasi-strong
duality holds by Proposition 2 under the standard RHS perturbation. Let 3 > 0, s(¢), ('), (&) >
0, z be the corresponding dual variables in order, the dual problem can be computed as

inf B —{(1,s) —{1,t) + (L, w—s+ =z
B>0,r(£)>0,5(€),t(£'),2 B = {Lsh = {L1) )

st. w—s+z=r

s(§) + (&) < Bd(&, &)

Note that the first constraint can be reduced to w + z > s by eliminating » > 0. Moreover, the only
term of w + z is in the last inner product in the objective. Then, we can set w(§) + z = s(§), which
makes the last inner product equal to zero. We can further replace s by w + z in all occurrences,
which gives the following

Bz&,?(ff/),z B (Lu)— (1,6 +2
st w(€) + 2z + (&) < Bd(E, €.

Finally, setting ¢(¢’) = inf¢ {8d(€,&)? — w(§)} — z gives us the dual formulation as

inf €8 — (1,w) — <1, irélf {Bd(&, )P - w(f)}> ;

B=0
which proves the claimed polar set definition. O

Corollary 4. Given Wasserstein p-distance ||v — 1|y, . < 1, the dual problem (5) becomes inf g>¢ €3 —

(1,infe {Bd(&, )" — fo(£)})-

Proof. By Proposition 11, we have

g, = it {1 —u() ~ it {5(a(6, )~ &) = w(E)}).
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Similar to the type-1 case, [|wl|ys . is invariant under constant addition. Then, (5) becomes

w>fe B20

inf inf {e%’ - <1,ir£1f{6d(§, )P — w(g)}>} .

For each fixed 8 > 0, the map w +— — (1, inf¢{Bd(§, -)P — w(§)}) is nondecreasing in w (pointwise).
Hence, the infimum over w > f, is attained at w = f,, and we obtain

i {2~ (1t (6,7 - (60} ).

B=0

which proves the claim. O

Proposition 12. Given ¢-divergence-based constraint E[¢(v)] < €, the associated constraint (4b) can be
written as [|v — 1|y, . < 1 for the primal gauge set Vg . = {v | E[¢(v + 1)] < e}. The associated polar
set in (5) is V35 . = {w [ inf,>0 (1, 7(¢*(w/7) + €) — w) < 1} where ¢* is the convex conjugate of ¢ and
0¢*(w/0) denotes the convex indicator function do(w).

Proof. A direct verification shows that || — 1|y, . < 1if and only if E[¢(v)] < ¢, which proves the
equivalence. We can compute the polar set using the definition

V3, =dwl|{ w0 <1y
st. (1,9(r+1)) <e.

Since ¢ is convex-closed, we can use the following perturbation function to compute the dual of
the inner optimization.

(—w,v)y, if (Lp(r+1—-2))—€e<u

00, otherwise.

F(v,u,z):= {

Using a similar conjugate duality computation as in Theorem 1, we obtain the dual as

g(w) := inf (1,7(¢"(w/7) +€) — w).

inf
720
Moreover, by the same argument as in Theorem 1, the quasi-strong duality holds since ¢ is convex

and closed, which concludes the description of the polar set V7 .. ]

Corollary 5. Given Vy . as the gauge set in (4b), the dual problem (5) becomes the following

inf  {a+EH¢"(w/y)]+ev|at+w> fa}, 8)
a,7>0,w(-)

where ¢* is the convex conjugate of ¢ and 0¢*(w/0) = do(w). In particular, when ¢ is strictly convex and
continuously differentiable, ¢* can be directly computed as ¢*(w) = w - (¢')"H(w) — ¢ o (¢')"H(w).

Proof. We note that the function g(w) that defines V7 _ is positively homogeneous since the quasi-
strong duality holds in the computation of V; . and sup, ¢ (aw,v) = asup,gy (w,v) for every
a >0, w € L*(P), and nonempty U. It is also non-negative since we have the following when the
optimal v > 0.

infg(w) =_inf v (L,¢"(w/7) —w/y+e

52



= inf ey — v <1, supw/y — ¢>*(w/’v)>
720 w

= infley -7 (L,¢™(1))

= infley - 7(1,0) =0.
The third equality is due to ¢ being convex and closed, and the fourth is by the property that
¢(1) = 0. In the case the optimal v = 0, we have inf,, g(w) = inf,, (1,dp(w) —w) = 0 by the
definition of 0¢*(w/0). Hence, g(w) is non-negative. By Theorem 4, ||w||vqc; _ = g(w), which gives
the claimed reformulation (8) by plugging g(w) into (5).

When ¢ is continuously differentiable, the gradient of the objective function with respect to

v can be computed directly as w — ¢/(v), which gives the optimal solution v = (¢')~!(w). This
inverse is well-defined since ¢ is strictly convex, implying that ¢’ is strictly increasing. O

Theorem 3 (Algebra of Gauge Sets and Functions). Let {V;}icr be a (possibly infinite) family of convex-
closed sets, each of which contains the origin, and let I,, C I be an arbitrary finite index subset. We define
the generalized simplex as A := {\ € @,c; Ry | (1,A) = 1} . Then, we have the following results.

1. (eV)° = V°/e for every e > 0.
2. (Nies Vi)° = cleonv (Ue; V5).
3. (Bies Vi)°* = (UAeA MNiex Aivz‘o)-

ellvlv = llevlly = [[vllv e for every € > 0.

SAR-

1vlim,, v = supier IV[lv-

6. wlly,., v, = infier [[V]lv:-

7 HVHCOHV(U'LEI Vi) - InCI,ulznzf:ieI Vi Zie]n HV%HVl
- n
8. HVH®7;EIV2‘ = 1.CI ui:nif:.el ” maXier, HVl”Vz
=1, i€ln

9. Mwllyy ca Nicy Avi = 2ier lwllv;, when Iis finite.

Proof. The first statement is directly from the definition. For the second statement, we first show
the “2” direction. It suffices to verify every w € conv (|J;c; V7) since the set on the left-hand side is
closed. Such a w can be represented as some convex combination w = ) ;.; A;w; for some finite
index subset I,, C I with w; € V; for every ¢ € I,,. Take an arbitrary v € ﬂie 1 Vi, we have

(w,v) = Z)\i (wi,v) < Z Ai =1,
i€ln 1€ln

where the inequality is due to w; € V; and v € V; for every i. This completes the proof of this
direction. For the other direction, since both sides are convex-closed and contain the origin, we can
prove the following equivalent statement invoking Proposition 1.

(Q V) = QV ) (Clconv <L€JI v;))o = (conv (LEJIV»
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where the last equality is due to the fact that the polar set automatically ensures the closure property
using the intersection of half-spaces. Take v from the set on the right, we have <y, Y ic I )\iwi> <1
for every I,, C I, every convex combination coefficients ), and every w; € V;. In particular, for
every i € I, taking A\; = 1 implies (v, w;) < 1 for every w; € V7, which means v € V° = V; by
Proposition 1. This shows v belongs to the intersection of V;’s.

For the third statement, we note that w € (,.; Vi)° if and only if

sup (w,v) = sup Z sup (w,v;) <1,
ve@,cr Vi InCl o7 Vi€V

where [, is any finite subset of I by the definition of direct sum. Since 0 € V;, each summation
term is non-negative. Hence, the above inequality is satisfied if and only if sup,, ¢y, (w,v;) < A; for
some A = (A\;);er € A, which is equivalent to w € \;Vy for every i € I,i.e., w € (), \iV; for some
A € A. This concludes the proof of this statement.

The fourth statement is trivial. For the fifth, since ﬂie 1 Vi CV; for every i, we have

HVHnie[Vi > HVHVia Viel

due to the gauge function value being larger for a smaller gauge set. For the other direction, we
have v € ~;V; for every v; > ||v|y, by the definition of gauge function. This implies v/y € V;
for every i € I given that v > sup,¢; ||v|lv,, ie., v € (sup;e; [[V[lv;) Nier Vi- This concludes this
statement.

For Statement 6, the “<” direction is obvious since | J;.; Vi 2 V; for every i. We left to show
that this inequality cannot be strict. Suppose otherwise [[v||,_,v, <7 <~ = infies [[v[lv;, then
v € 7' U;er Vi- That is, there exists some i € I such that v € 7'V}, ie., v > ||v||y,. This contradicts
that  is the infimum. We note that, in this case, the union is not necessarily convex-closed anymore,

v € vy conv (U Vi> }
el

but still contains the origin.
For Statement 7, we have the following

HVHCOHV(Uiej Vi) = inf {"}/ >0

I, CI
Vo =7 er, ANivi
=infdvy>0 v, €V;, Viel,
A >0, Viel,
Zz‘e]n Ai =1
I, CI
Vo= ier, YAivi
=inf¢vy>0 YAV, €NV, Yiel,
yA >0, Yiel,
Zieln YA =1

where the third equality is obtained by multiplying v > 0 on both sides of the constraints. We then
substitute v; = y\; and v} = v;1; to simplify the above formula, which gives

v; G%’Vi, Vi e I,
v >0, Viel,.

— inf 4
||V||COHV(Ui€I Vi) Inel,ulznz / {Z Yi

i€l Vi icl,

54



= inf inf >0 V € viVi
Inelv=Y\e; v Ziezl: {i ‘ YiVi}

where each summand is exactly |||y, by definition. This finishes the proof of this statement.
Similarly, for the eighth statement, we have

I, CI

V@, v =inf {7 >0 Vo= el Wi
vy, €V, Viel,

_ nf {7 S0 1/1{ S %‘V,;, Vi eI, } 7
IngI’V:ZLEIn i

Y=Y, Vie I,
where we substitute v/ = yv; to obtain the second equality. According to this form, the infimum of
v equals max;er, ||v;||y,, which proves the desired result.
For the last statement, Since [ is finite, we have

Uy e ey as = i mase o]y, /A

by Statements 4-6. We can also safely assume that ||w||y, > 0 for every i € I, since otherwise we
can remove the corresponding terms on both sides. Then, the optimal A would make ||w||y,/\;
equal for every i € I. Otherwise, changing any value \; would increase the maximum due to Ais a
simplex. Then, we have

lwly, [wlly, IIva
Aj =N =\ = - llwl]y,
7= T, Sl a2
for every ¢ € I, which concludes the proof. O

Theorem 4. Given any function g that satisfies (i) Non-negativity: g(w) > 0 for all w € L?(P) and (ii)
Positive homogeneity: g(aw) = ag(w) for every oo > 0, and any gauge set V = {w | g(w) < e} with
e > 0, we have ||w||y = g(w)/e.

Proof. By definition, we have the following thanks to positive homogeneity.
Jwlly = inf{y > 0 | w=w’, g(v') < e} = inf{y > 0] g(w)/e <~}
Then, the non-negativity ensures v = g(w)/e = ||w||y. O

Corollary 6. Given constraint (4b) as ||v — 1||y, < €; for all i € [m], the dual problem becomes

mf o+ Z Ep[w;) Z 6i||wi||vio o+ Z w; > fo o - 9)

awi( i€[m] i€[m] i€[m]
Moreover, the quasi-strong duality holds if V;'s are convex-closed and contain the origin.

Proof. In this case, the constraint set (4b) is equivalent to || — 1||,y, < 1 for all i € [m], and is the

same as ||v — 1] v, < 1by the definition of gauge function. By Theorem 3 Statement 1 and

ic[m] €
2, the polar set is conv (Uie[m} Ve q). Then, the claimed result follows the statements 4 and 7 in
Theorem 3. 0
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Corollary 7. Given V = 3,1,y BiVi in (4b) for some scalar 5; > 0, the dual problem becomes

inf {Q+EP[W] +e Z Billwllye

aw() 1€[m)]

a+w>fz}. (10)

Moreover, the quasi-strong duality holds if V;'s are convex-closed and contain the origin.

Proof. In this finite summation case, we have V = @ie[m] BiVi. Then, by the first and third state-

ments of Theorem 3, we have V° = cl (U,\eA Niem )\i(,BiVi)O). Let W= Ujyea Niem Mi(BiVi)°, by
Statements 3 and 9 of Theorem 3, we obtain

lwlw =Y Billwllve.

i€[m]

This is a convex-closed function due to each V¢ is, thus ||w||ye = ||w||aw = ||w]|/yy, which concludes
the proof. O

Theorem 5 (Gauge Set Decomposition). For a closed gauge set V, we have the following decomposition
L2(P) = 1in(V) @ V' @ ess(V),

where ess(V) := (lin(V) @ V1)t is termed the essential subspace induced by V. Define VT := ess(V) NV
to be the essential gauge set of V, then V and V° can be decomposed as

Y =lin(V) + V!

=yt (V)
( >ess(V)
where (W)Zss(v) ={w € ess(V) | (w,v) <1 Yv € W} is the polar set relative to the essential subspace
ess(V) for any W C ess(V). In particular, we have
li oy — L o\t — T © — oy
in(V°) =V, (V°) (V )css(V) , ess(V) =ess(V°)

Moreover, V' is convex-closed and contains 0.

Proof. Since both lin(V) and V- are closed and orthogonal to each other by definition, the subspace
lin(V) @ V- is also closed in L2(P). Then, the decomposition follows the orthogonal decomposition
theorem in Hilbert space. To show the decomposition of V, we write any v € V as vy + v + v3 from
the space decomposition. Then,

0= (v,10) = (v1,v0) + (v2,v0) + (v3,10) = |l12]l3 ()

where the first equality is due to v € V and v» is from V-, the second is due to the decomposition,
and the third is due to orthogonality between the three spaces. Hence, v5 = 0. Then, v = v +v3 € V
implies v3 € V — v1 = V, where the equality is due to V is invariant under translation of any v €
lin(V) by definition of lin(V). Thus, v3 € ess(V) N V. For the other direction, every v € lin(V) + VT
can be written as v = v + 1, for some v; € lin(V) and v, € ess(V) NV, which implies v; + v, € V
as V is invariant under addition of any element in lin(V).
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For the decomposition of V°, any w € V° decomposed as w = wy + wy + w3 must satisfy
(wi,v1) + (w2, v2) + (w3, v3) <1

for every v = 11 + 15 + v3 € V. Then, w; must be 0 to ensure boundedness (otherwise, take
v1 = yw; € lin(V) and increase v — o0), and wy will never affect the summation value since v = 0
by (a). The above criterion is then reduced to

<w3,u3> <1, Vg € VT,

ess(V)
remains the inequality, which implies any element w € yt+ (VT)

implying w3 € (V1) by definition. For the other direction, adding such w3 with any wy € V+

:SS W) also belongs to V°.
Finally, the subsequent three identities in the statements follow directly by the uniqueness and

orthogonality of the two decompositions, and the convexity, closedness, and containing zero are

preserved by the intersection that defines V. O

Theorem 6. Given m gauge sets satisfying Type-II reqularity in Assumption 2, the composed primal
problem is

vy >0 v ZO Um 20

<17V1>]P:1 <17V2>u1]]>:1 <17Vm> ]P’:1

o
=tvi e fuo—llvy<ez  fum—1]v,, <em

Define Co(Z) = {w € C(E) | supeez [w(§)]/(1 + ®(§)) < oo} where C(Z) is the set of continuous
functions over Z. The associated dual problem is

sup sup sup < H I/i,fm> . (11)

inf > (o + €illwillve) + Epfuw]

{as,wi(-) Yieim) icmm]
s.t. oy +w; > wiy, Vi € [m],

where w41 = fp and w; € Cy(E) for every i € [m).

Proof. We prove by induction. The basic case m = 1 is true by Theorem 1. Then, the case of m can
be written as follows by the induction hypothesis:

m
sup inf o; + € ||w; Vo +]EVIPU)2
n>0  {aiwi()}L, ;( i+ éillwillvp) plws]

<17V1>]P>:]. -

ll1 =1y, <ex
s.t.o oy +w; > w1, Vie {2,3,...,m},
where the nominal measure of the inner problem is v1P. By Assumption 2 and Lemma 2, v P still

satisfies E,, p[®] < 0o, thus regularity is preserved, making the above induction step valid. Then,
we swap the supremum and infimum to obtain the following with a potential minimax gap,

m
inf Y (e +ealwillye) + sup (vi,wa)p
{O‘ivwi(') ;12 =2 v1>0

<1aV1>]P’:1
lvi=1{lv, <ex

sty +w; > wip1, Vie {2,3, o ,m}.
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By the definition of Cy(Z), let M := supgcz [w2(§)[/(1 + @(£)) < oo, then [w| < M + M®, which
implies it is Type-II regular with respect to ®. Thus, Assumption 1 and 2 are both satisfied. Thus,
applying Theorem 1 on the inner supremum finishes the induction step and obtains the dual form.

It remains to verify that the minimax equality holds. Under Assumption 2, the feasible set
{iP |1 >0,(1,v1)p =1, ||v1 — 1]|y, < €1} has a weak*-compact closure in the measure space by
uniform tightness and Prokhorov’s theorem. Furthermore, for each fixed (a;, w;)j,, the mapping
v1 — (w2, v1)p is affine and weak*-continuous on the feasible set by Assumption 2 and Lemma 3.
Thus, the inner value function is concave and upper semicontinuous in v4. It is also convex and
lower semicontinuous with respect to (o, w;)i", since it consists of a sum of convex-closed gauge
penalties and closed linear inequalities. Therefore, the hypotheses of Sion’s minimax theorem are
satisfied, and the supremum and infimum can be interchanged, which completes the proof. ]

Theorem 7. When A, is closed in span(¢), the dual associated with (12) is
Zon = int oot (VERl) + €l (0 6) [ve (13a)
s.t.a+ (N, @) > fa. (13b)
Otherwise, zy p 1s an upper bound of the dual of (12).
Proof. By the second statement of Theorem 3, we have
(conv (VU A;))O =V°N(A3)° =V°NAy.

Moreover, inf{t > 0 : w € t(V° N Ay) = tV° NtAy = tV° N A,} since Ay is a cone induced by A.
Thus, when w € A, its gauge equals ||wl||y», and when w ¢ A it becomes infinite, i.e., we have

HwHV07 lwaK¢
fellyeris, =

0, otherwise.

Therefore, when Ay is closed, the problem (5) only allows functions from As = A, to be upper
approximators, which proves (13) is exactly the dual of (12). Otherwise, (13) is the dual problem
restricted to the smaller decision space Ay C Ay, inducing an upper bound. O

Proposition 13. For any quasimetric c, let V. be the associated Lipschitz gauge. The following holds
1. V. is convex and contains the origin.
2. Every w € L*(P) adopts the representation w(§) = inferez 0., e, (€) for every v > ||w]|y,.
3. |la+w|y, = ||w|y, for every constant o € L?(P).
4. ||e(-,8)|lv. = 1 for every & € E.
5. If 0y 5,6,(85) < Oy5,6,(85), then 0 s, ¢, < 0. 5. ¢, pointwise.
6. If 0 5,6.(&5) < On5,6,(&5), then 0, s, ¢, < 0. . ¢, pointwise.

7. 0 s, ¢, 1s active if and only if it is active at &;.
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8. [SAA Compatibility] W~ (&) < s;. Equality holds if 0 s, ¢, is active.

9. [Gauge Compatibility] ||~ s||v, < . Equality holds if some 0. s, ¢, is active at multiple points. In
particular, suppose the cardinality of = is strictly larger than the sample size m, then ||~ || = 7.

Proof. Convexity can be verified directly. V. contains zero due to ¢ > 0. Given v > ||w||y,, we have
w € YV, implying w(§) < infer w(&’) + ve(€,€'). On the otherhand, taking &' := ¢ gives

i?,fw(f') +7¢(§,€) < w(§) +7e(8, §) = w(6),

which proves Statement 2. The third statement can be verified directly by definition. For Statement 4,
fix & € Z. By the triangle inequality, c(§, &) < c(&, &) +c(€, &o) forall €, &', hence (€, &) —c(&', &) <
c(&,¢), e, c(-,&) € Ve and thus | c(-, &) |y, < 1. Conversely, if ¢(-, &) € tV,, then setting £’ = &

gives c(§, &) < te(€, &) for all  sot > 1 whenever ¢(&,&) > 0 for some ¢, and therefore
le(, €o)llve = 1.

For Statement 5, the premise implies

si +7c(&5,&) < 55+ e, &) = 55 — si > ve(&5,6)-

Then, for every £ € =, we have

07,5j,§j (5) - e’y,sifi (5) =S5 — S + ’Y(C(é-a 5]) - C(ga gl)) > ’Y(C(gjv fl) + C(ga 5]) - C(g, 61)) > 07

where the last is the triangle inequality. Statement 6 can be proved by the same argument. For
Statement 7, one direction is trivial. For the other, suppose 0., ,, ¢, is not active at &;, then Statement 6
shows that it is fully dominated in the entire domain by some other atomic envelope. For Statement
8, since 0., , ¢, (&) = si and w is the minimum over all atomic envelopes, the first inequality holds.
Suppose 0., ;, ¢, is active, then it must be active at §; according to Statement 7, which proves the
equality. For Statement 9, take any ¢, &’ € Zand let 0., ;, ¢, be an active envelope at ¢’. We have

w'y,S(g/) =8+ 70(5/>§i)> wv,S(ﬁ) < si+yc(é &),

which implies
w%S(&) - w’y,S(gl) <7 (C(&gz) - C(f/afi)) < 70(575,)-

Since &, ¢’ are arbitrarily chosen, we have ||, s||y. < 7. For the equality claim, suppose some 6, s, ¢,
is active at multiple points, then one of them is ; by Statement 7. Take another active point {; # &;,
we have

Wy, s(&5) — Wy,s(&) = si +7e(§5.&) — 50 = ve(§5, &),

which attains the upper bound ~. Finally, suppose = has a larger cardinality than I, then there
exists some ¢ € = does not associated with any atomic envelope. Then, the active atomic at this
point, say 0, s ¢,, must be active at both { and ;. O

Lemma 4. Given a feasible solution (v, «, s) of (15) under samples {&; }ic[m), let W~ s(§) be the associated
envelope function. Then, o 4 1~ s is feasible to (14). Moreover, if an optimal solution exists, there must be
some optimal (v, o, s) such that ., 4(&) = s; for all i € [m).
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Proof. Since (15b) is equivalently to a + min;c(y,) 045, ¢; = o + 1,5 > fz, the functional a + . 5 is
feasible to (14). By the definition of envelope, we always have w, 4(&;) < s;. For the last statement,
suppose w,,s(§;) < s;, Statements 6 and 8 in Proposition 13 imply that 6, := 6, ,, ¢, is strictly
dominated by another atomic envelope. Let 0, s, ¢, be the active atomic envelope at &;. Then,
we can modify 6; by reducing the constant s; < w0, (&) = Ory.5;.6 (&) so that 01 becomes active.
Moreover, due to Statement 5 in Proposition 13, this operation will not change the function value
of w, ;. Since the function g o h,, is non-decreasing on s, the objective value will not increase by
this operation of reducing s;, which retains the optimality of the solution. O

Theorem 8. Suppose V° is a Lipschitz gauge induced by a quasimetric c. Let (a*, w*) and z* denote an
optimal solution and the optimal value of (14). For a given set of i.i.d. samples {&;}7,, let (Ym, v, s) and
zm denote an optimal solution and the optimal value of (15). Let P, :== L "™, ¢, denote the empirical
measure, and let W denote the type-1 Wasserstein distance induced by the transport cost ¢(&,€&') =
max{c(&, &), c(&',€)}. Then the following bound holds:

—Lg ‘<h o w*,]f”m - ]P)>‘ <zF— Zm < LthmeWf(EDmJP))

In particular, lim sup,,,_, - zm < 2* almost surely. Moreover, if W¢(Py,, P) — 0 almost surely as m — oo
and lim sup,,, oo Ym < 00, then zy, == 2*.

Proof. Define 1, s := min;epy,) 0, s, ¢; relative to the given samples S, we focus on the relationship

VySi
between the following problem and (14).

inf a+g Z h(si)/m | + ey (20a)
T i€[m]
w'y,s Z fx — Q. (2Ob)

Clearly, (20) is equivalent to (15) by the definition of w. For a given S with size m, let z*, z,
be the optimal value of (14) and (20), respectively. Let (o*, w*) be the optimal solution of (14)
(which may be obtained via a weak* convergent sequence), we construct a feasible solution
for (20) as v = ||lw*|lye, a = o*, and s; := w*(¢;), which induces the finite-envelope w,, :=
W~,s. Then, 1wy, is feasible to (20) due to the envelope property, and its objective value is exactly
a*+yg (Zie[m] ho w*(&)/m) + €||w*||ye by construction. Then, we have

=2 < | @ g | D how(&)/m | +ellwrye | — 2
1€[m)

=g | Y how'(&)/m| —g(E[how)

1€[m)]
< Ly | S how (&) /m — Elhow?]
1€[m)]

:LgKhow*,Pm—Pﬂ.
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Since gauge compatibility cancels the gauge term, we obtain the first equality. The second inequality
applies the Lipschitz inequality of g. Since this is the SAA estimation error of the random variable
h o w*, which is independent of the i.i.d. samples, the strong-law-of-large-numbers guarantees
lim sup z,,, < z* almost surely.

For the other bound, take any optimal solution («, s, 7,,) from (20) that is non-redundant as in
Lemma 4, the associated o + 0 s is feasible to (14). We have the following

fzm(a+gﬁmow%wb+€1%msw)(a+9(§:hia)+e%J

1€[m)]

h(s:)

< Ly |Elh oy, = Y

1€[m]

= Lg ‘Ep[h ° III)'Y'HHS] - ]E]Pm [h o w'YnuSH

=L, /h 0 Wy, s(&) = h oy, (&) dr (&, &)

< Lth /

< Lth/vm max{c(§,£),c(¢,€)} dn(€,€), Vr € (P, P)

, Vr e II(P,,,P)

w’ym,:s(g) - w’Ym,S(SI)‘ dﬂ(&? 6,)7 Vﬂ— € H(Pmy IP)

—LyLiwm _int [ ale¢) dn(e.¢)

7 E€M(Ppm,P)
= LyLpYmWr (P, P).
Since gauge compatibility ensures |[1,, s||vo = 7m, we obtain the second inequality using Lipschitz

inequality of g. For the third inequality above, the following holds by the definition of Lipschitz
gauge

||ﬁ)’7m7s||vo = TYm 2 max {w’ym78(i)(é__g)’ym78(§ )7 wﬂym78(i()€/_gVM7S(£) } P
which implies max{c(¢, '), c(&, ) }ym > |Ws,,,5(§) — Wy,,,s(§)|. Then, the convergence z,, — z*

follows when W{(P,,,P) — 0 and lim sup,,,_, o, Ym < 00. O

Corollary 8. Let z* and z,, denote the optimal values of (14) and (15), respectively. If the nominal P is
taken as the empirical measure P, := % Zie[m] O¢,, then z,, = 2*.

Proof. Let z* and z,, denote the optimal objective values of (14) and (20) (equivalently, (15)),
respectively. Consider any feasible pair (ag, w) of (14) under the discrete nominal distribution P,,.
Let z denote its objective value, and define

vi=lwlye, a:=ag si:=w(&), i€ [m].

Then, the induced envelope function - 5(§) := min;epy) 0, s, ¢, (€) satisfies 1w, s > fr — ap, and
hence (v, s) is feasible for (15). The corresponding objective value is

a+g (; > h(Sz’)) tey=ao+g (7711 > how(&)) +ellwlye = z,

i€[m] i€[m]
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which coincides with the value of (a, w) in (14) under P,,. Since this holds for every feasible (o, w),
we obtain z,, < z*. Conversely, take any optimal solution (v, c, s) of (20) that is non-redundant as in
Lemma 4, and let 1 ; be the corresponding finite envelope function. By construction, w, s > f, —a,
s0 («, 1~ ) is feasible for (14). The difference between the two objective values becomes

2 — 2y, = (a +g (Epm [ho 111%3]) + 6||’LD%SHVO) — (a +g (7711 Z h(si)) + e'y)
i€[m]
1 R 1
ISR

i€[m] i€[m]

=g (; Z h(si)) -9 (T}”L Z h(Si)) =0.
i€[m] 1€[m)|

The second equality is due to gauge compatibility ||, s|lve = 7, and the thrid equality is by the
SAA compatibility shown in Lemma 4. O
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