
An adaptive line-search-free multiobjective

gradient method and its iteration-complexity

analysis

Max L.N. Gonçalves1, Geovani N. Grapiglia2, Jefferson G. Melo1

1IME, Universidade Federal de Goiás, Rua Jacarandá, Goiânia, CEP
74001-970, GO, Brazil, Emails: maxlng@ufg.br and jefferson@ufg.br.

2ICTEAM/INMA, Université catholique de Louvain, Avenue Georges
Lemâıtre, 4-6, L4.05.01, Louvain-la-Neuve, B-1348, Belgium, Email:

geovani.grapiglia@uclouvain.be.

Abstract

This work introduces an Adaptive Line-Search-Free Multiobjective Gradient
(AMG) method for solving smooth multiobjective optimization problems. The
proposed approach automatically adjusts stepsizes based on steepest descent
directions, promoting robustness with respect to stepsize choice while main-
taining low computational cost. The method is specifically tailored to the
multiobjective setting and does not rely on function evaluations, making it well
suited for this scenario. The proposed algorithm admits two variants: (i) a con-
servative variant, in which the stepsize is monotonically decreasing; and (ii) a
flexible variant, which allows occasional increases in the stepsize. From a theoreti-
cal standpoint, under standard Lipschitz continuity assumptions on the gradients,
we establish iteration-complexity bounds for achieving a Pareto critical point for
both variants in the nonconvex setting. In the convex setting, we further derive
improved iteration-complexity bounds for the conservative AMG variant. From
a practical standpoint, the numerical experiments demonstrate that the flexible
AMG performs favorably compared to the steepest descent method with either
a fixed stepsize or Armijo line search.

Keywords: Adaptive gradient method; iteration-complexity; Pareto optimality;
multiobjective problem.

1

1 Introduction

In this paper, we consider the following unconstrained multiobjective optimization
problem:

min
x∈Rn

F (x) := (F1(x), . . . , Fm(x)), (1)

where, for each j ∈ J := {1, . . . ,m}, the component function Fj : Rn → R is continu-
ously differentiable, and its gradient ∇Fj is Lj-Lipschitz continuous on Rn. The latter
assumption implies, for all x, y ∈ Rn, that

Fj(y) ≤ Fj(x) + 〈∇Fj(x), y − x〉+
Lj
2
‖x− y‖2. (2)

For convenience, we define L := maxj∈J Lj .
Problem (1) provides a unifying modeling framework for decision-making pro-

cesses involving multiple, often conflicting, performance criteria. Such situations arise
naturally in a wide range of real-world applications, including engineering design
problems balancing cost, reliability, and efficiency, economic and management models
involving trade-offs between risk and return, and medical and biological applications
where treatment effectiveness must be weighed against side effects or resource con-
straints; see, for instance, [10, 26]. The intrinsic presence of competing objectives
makes multiobjective optimization fundamentally different from its scalar counter-
part and highlights the need for specific algorithmic tools. This practical relevance
has motivated extensive research over the past decades on the development of algo-
rithms for general multiobjective and vector optimization problems. A large portion of
this literature focuses on extending well-established methods from scalar optimization
(J = {1}) to the multiobjective setting. In particular, multiobjective variants of steep-
est descent, conjugate gradient, conditional (FrankWolfe) gradient, projected gradient,
proximal gradient, and Newton-type methods have been proposed and analyzed; see,
for example, [2, 4–6, 8, 11–16, 18–21, 24] and the references therein.

In recent years, there has been growing interest in adaptive first-order methods that
avoid line-search procedures and reduce sensitivity to problem-dependent parameters.
Such methods are particularly attractive in applications, where function evaluations
are costly and suitable stepsizes are difficult to estimate due to unknown or hetero-
geneous smoothness constants across objectives. In the scalar case, adaptive gradient
methodsmost notably AdaGrad and its variants (see, for example, [9, 25, 27])have
proven highly effective by automatically adjusting stepsizes based on accumulated gra-
dient information, leading to robust practical performance with minimal parameter
tuning.

Motivated by these developments, and inspired in particular by the AdaGrad
methodology and the adaptive nonmonotone stepsize strategy proposed in [22], we pro-
pose and analyze an adaptive line-search-free multiobjective gradient (AMG) method
for solving problem (1). The proposed AMG method preserves key advantages of
adaptive gradient schemes. More precisely: (i) the method converges for any choice
of algorithmic hyperparameters, in contrast to the steepest descent method with a
fixed stepsize, which may fail to converge if the stepsize exceeds a threshold depend-
ing on the (typically unknown) smoothness Lipschitz constant; and (ii) AMG is free

2

of function evaluationsan especially valuable property in multiobjective optimization,
where evaluating the objective function requires computing multiple components. Our
algorithm admits two variants: a conservative version with monotonically decreasing
stepsizes and a flexible version that occasionally allows stepsize increases, potentially
accelerating convergence in practice. The inclusion of the flexible case, however, makes
the complexity analysis substantially more involved. While the conservative variant
correponds to a multiobjective generalization of the scalar AdaGrad-Norm method,
the flexible variant constitutes a novel contribution to the AdaGrad literature, even
in the scalar case (J = {1}).

From a theoretical standpoint, we establish iteration-complexity guarantees for
both variants in the nonconvex setting. Specifically, for a given tolerance ε > 0, the
conservative variant requires at most O(ε−2) iterations (or evaluations of the steepest
descent direction) to reach an ε−approximate Pareto critical point (see Remark 1(a)),
whereas the flexible variant attains a slightly weaker bound of O(ε−2 log3(ε−1)). In
the convex setting, we further show that the conservative variant enjoys an improved
iteration-complexity bound of O(ε−1) iterations to reach an ε−approximate Pareto
optimal point, measured by a merit function recently introduced in [17]. From a prac-
tical perspective, numerical experiments demonstrate that the flexible AMG performs
favorably compared to the multiobjective steepest descent method [12] with either a
fixed stepsize or Armijo line search.

The paper is organized as follows. Section 2 contains some preliminaries results of
the present work. Section 3 formally describes the AMG method to solve (1), whereas
its iteration-complexity bounds for the nonconvex and convex setting are discussed in
Section 4. Section 5 contains some numerical experiments. Final remarks are given in
Section 6.

2 Preliminaries

This section presents basic properties of the multiobjective steepest descent direction
and a key auxiliary result used in the analysis of the proposed method.

In multiobjective optimization, the concept of optimality is replaced by Pareto
optimality. A point x∗ ∈ Rn is considered Pareto optimal if there is no other point
x ∈ Rn such that F (x) ≤ F (x∗) and F (x) 6= F (x∗), where the inequality ≤ is
understood component-wise. Similarly, a point x∗ ∈ Rn is called weakly Pareto optimal
if there is no point x ∈ Rn such that F (x) < F (x∗). A point x∗ ∈ Rn is locally Pareto
optimal (or locally weakly Pareto optimal) if there is a neighborhood V ⊂ Rn around
x∗ where x∗ is Pareto optimal (or weakly Pareto optimal) for F restricted to V . A
necessary condition for local Pareto optimality of x∗ ∈ Rn is given by:

max
j∈J
〈∇Fj(x∗), y − x∗〉 ≥ 0, ∀y ∈ Rn. (3)

A point x∗ ∈ Rn that satisfies this condition is called Pareto critical or stationary.
Consequently, if a point x is not Pareto critical, there exists a vector y ∈ Rn such
that y− x is a descent direction for F at x, meaning that there exists ε > 0 such that
F (x+ t(y − x)) < F (x) for any t ∈ (0, ε].

3

For a given point x ∈ Rn, consider the scalar-valued problem:

min
d∈Rn

max
j∈J
〈∇Fj(x), d〉+

1

2
‖d‖2. (4)

Since maxj∈J 〈∇Fj(x), ·〉 is a real closed convex function, it follows that (4) has always
a unique optimal solution. Denote by dSD(x) the solution of (4) and by θSD(x) its
optimal value, i.e.,

dSD(x) := arg min

{
max
j∈J
〈∇Fj(x), d〉+

‖d‖2

2
| d ∈ Rn

}
, (5)

and

θSD(x) := max
j∈J
〈∇Fj(x), dSD(x)〉+

1

2
‖dSD(x)‖2. (6)

Direction dSD(x) extends the notion of the steepest descent direction to the multiob-
jective optimization case. Note that in the single-objective minimization case where
F : Rn → R, we obtain dSD(x) = −∇F (x) and θSD(x) = −‖∇F (x)‖2/2. As is well-
known, the direction dSD(x) and the optimum value θSD(x) can be used, in particular,
to characterize Pareto points of (1).

Lemma 1 ([21, Lemma 3.3]) Let dSD : Rn → Rn and θSD : Rn → R be as in (5). Then, we
have:

(a) if x is Pareto critical, then dSD(x) = 0 and θSD(x) = 0;
(b) if x is not Pareto critical, then we have

dSD(x) 6= 0, θSD(x) < 0, max
j∈J
〈∇Fj(x), dSD(x)〉 ≤ −1

2
‖dSD(x)‖2 < 0; (7)

as a consequence, dSD(x) is a descent direction for F at x;
(c) the mappings dSD(·) and θSD(·) are continuous.

Problem (4) can be reformulated as

min
(t,d)∈R×Rn

t+
1

2
‖d‖2

s. t. 〈∇Fj(x), d〉 ≤ t, ∀j ∈ J ,
(8)

which is a convex quadratic problem with linear inequality constraints. Since
problem (8) has a unique solution (f(x, dSD(x)), dSD(x)) and its constraints are
linear, there exists a multiplier λSD(x) ∈ Rm such that the triple (t, d, λ) :=
(f(x, dSD(x)), dSD(x), λSD(x)) ∈ R × Rn × Rm satisfies the Karush-Kuhn-Tucker

4

conditions of problem (8) given by:

m∑
j=1

λj [∇Fj(x) + d] = 0,
m∑
j=1

λj = 1,

λj ≥ 0, 〈∇Fj(x), d〉 ≤ t, λj [〈∇Fj(x), d〉 − t] = 0, ∀j = 1, . . . ,m.

Therefore, in particular, we have

dSD(x) = −
m∑
j=1

λSDj (x)∇Fj(x), (9)

m∑
j=1

λSDj (x) = 1, λSDj (x) ≥ 0, ∀j ∈ J , (10)

θSD(x) = −1

2
‖dSD(x)‖2 and max

j∈J
〈∇Fj(x), dSD(x)〉 = −‖dSD(x)‖2. (11)

We conclude this section by presenting, for completeness, a result analogous to
that in [27, Lemma 3.2], which addresses the convergence properties of the scalar
AdaGrad-Norm method.

Lemma 2 For any positive numbers a1, . . . , ak, we have

k∑
i=1

ai

1 +
∑i
t=1 at

≤ log

(
1 +

k∑
i=1

ai

)
.

Proof Define a0 = 1 and note that since {ai}ki=0 are positive numbers, the partial sums

Si :=
∑i
t=0 at, for i = 0, . . . , k, are strictly increasing and S0 = a0 = 1. Thus, logS0 = 0 and

the following relations hold

logSk = logSk − logS0 =

k∑
i=1

(logSi − logSi−1) .

Apply, for i = 1, . . . , k, the mean value theorem to the function f(x) = log x on the interval
[Si−1, Si], and noting that Si = Si−1 + ai and f ′(x) = 1/x, we have that there exists
ξi ∈ (Si−1, Si) such that

logSi − logSi−1 =
1

ξi
(Si − Si−1) =

ai
ξi
.

Since ξi < Si and ai > 0, we have
ai
Si

<
ai
ξi

= logSi − logSi−1.

Summing over i = 1 to k, we get
k∑
i=1

ai
Si
≤

k∑
i=1

(logSi − logSi−1) = logSk − logS0 = logSk.

Therefore, the desired result follows from the fact that Si = 1 +
∑i
t=1 at, for each i =

1, . . . , k. �

5

3 An adaptive line-search-free multiobjective
gradient method

In this section, we present the adaptive line-search-free multiobjective gradient method
for solving problem (1) and provide remarks on its main features.

The algorithm is formally stated next.

Algorithm 1: AMG method.

(0) Let x0 ∈ Rn, ω0 > 0, bmax ≥ b0 ≥ bmin > 0, α ∈ [0, 1), and η > 0 be given. Set
k ← 0.

(1) Compute dSD(xk) as in (5), and set dk := dSD(xk).

(2) If dk = 0, then stop and return xk.

(3) Update bk+1 and ωk+1 as follows:

(bk+1, ωk+1) =

{
(b̂k, ‖dk‖), if k ≥ 1 and ‖dk‖ ≤ αωk,(√

b2k + ‖dk‖2, ωk
)
, otherwise,

(12)

where
b̂k ∈ [bmin,min{bk, bmax}] ; (13)

(4) Compute

xk+1 := xk +
η

bk+1
dk. (14)

Set k ← k + 1 and return to Step (1).

Remark 1 (a) If the algorithm terminates at some iteration k, then Lemma 1 ensures that xk

is a Pareto critical point of problem (1). For a given tolerance ε > 0, our theoretical goal will
be to establish a bound on the number of iterations (or evaluations of the steepest descent
direction) required to obtain an εapproximate Pareto critical point, that is, an iterate xk

satisfying ‖dk‖ = (2|θk|)
1
2 ≤ ε.

(b) Note that the stepsize in (14) is given by η/bk+1. Hence, Algorithm 1 consists of two types

of iterations: one with decreasing stepsize, where b2k+1 = b2k + ‖dk‖2 > b2k, and another with

nondecreasing stepsize, where bk+1 = b̂k ≤ bk. The former case is regarded as conservative,
and the latter as flexible. This nonmonotone stepsize rule is inspired by the one proposed in
[22] in the context of trust-region methods.
(c) The sequence {ωk} is used to identify when a flexible iteration occurs: it remains constant
throughout a cycle of conservative iterations and decreases during a cycle of flexible ones. In
particular, {ωk} is nonincreasing and satisfies ωk ≤ ω0 for all k ∈ N.
(d) The parameter α is used to control the type of iterations performed by the method. It is
worth noting that when α = 0, the method executes only conservative iterations.
(e) Algorithm 1 does not prescribe a specific rule for selecting the stepsize b̂k in (13). An
effective and practical choice is given by

b̂k =

{
min{bmax,max{bmin, bk/2}}, if ‖dk‖ > η

2bk
,

min{bmax, bk}, otherwise.
(15)

6

with bmax := ‖d0‖. This update rule guarantees that (13) holds. Moreover, it adapts the
magnitude of b̂kand consequently of bk+1based on the relationship between the stepsize η/bk
and the norm of the descent direction dk.

We next proceed to the iteration-complexity analysis of Algorithm 1.

4 Iteration-complexity analysis of Algorithm 1

In this section, we analyze the iteration-complexity of the AMG method. Our goal is to
quantify the number of iterations required to reach approximate Pareto critical point
of problem (1). In the nonconvex case, we establish worst-case complexity bounds for
both the conservative and flexible variants of AMG. In the convex case, we show that
the conservative variant enjoys improved iteration-complexity guarantees.

4.1 Nonconvex case

We first consider the general nonconvex setting, where no convexity assumptions are
imposed on the component functions Fj .

Given ` ≥ 0, define the set of indices

D` :=
{
k ∈ {1, 2, ..., `} : ‖dk‖ ≤ αωk

}
= {k1, k2, . . . , k|D`|}, (16)

where |A| denotes the cardinality of a set A ⊂ N, and, by convention, |∅| = 0. This
set is used to track when a flexible iteration is performed up to the `-th iteration.
Note that I0 := {0, 1, . . . , k1} is the first cycle of conservative iterations. Moreover,
for every t such that kt+1 > kt + 1, we have a new cycle of conservative iterations
It := {kt + 2, . . . , kt+1}.

The following result shows that the sequence {dki} decreases geometrically with a
rate α. This result will be used subsequently to estimate the size of the set D`.

Lemma 3 Let {(xk, dk, ωk)}k≥0 be generated by Algorithm 1. Suppose that D` 6= ∅ for some

` ≥ 1, and let D` = {ki}
|D`|
i=1 with ki < kj whenever i < j. Then, the following inequality

holds
‖dki‖ ≤ αiω0, ∀i = 1, . . . , |D`|.

Proof From the definitions of ωk and Dl in (12) and (16), respectively, we have

ωk = ω0 for k = 0, . . . , k1,

ωk = ‖dki‖ for k = ki + 1, . . . , ki+1, (17)

ωki+1 = ‖dki‖ ≤ αωki for i = 1, . . . , |D`|.
It follows from the first relation and the last inequality above that the statement of the lemma
holds for i = 1. Now assume that the statement of the lemma holds for some i = 1, . . . , |Dl|−1.
It follows from the last two relations in (17) that

ωki+1+1 = ‖dki+1‖ ≤ αωki+1
= α‖dki‖ ≤ αi+1ω0,

7

where the last inequality is due to the induction assumption. Therefore, the proof of the
lemma follows by an induction argument. �

The following result provides, in particular, two estimates. The first one is an upper
bound on |D`|, and the second one estimates the number of iterations ` in terms of
|D`| and the sizes of the conservative cycles |It|, t = 0, . . . , |D`|. Both estimates assume
that ‖dk‖, for k = 0, 1, . . . , `, are not sufficiently small.

Lemma 4 Let {(xk, dk)}`k=0 be generated by Algorithm 1, and consider D` as in (16). Given

ε > 0, assume that ‖dk‖ > ε for every k = 0, 1, . . . , `. Then, the following statements hold:

a) if α = 0, then |D`| = 0 (equivalently, D` = ∅);
b) if α ∈ (0, 1), then

|D`| ≤

∣∣∣∣∣ log
(
ω0ε
−1
)

log(α)

∣∣∣∣∣ ; (18)

c) the number ` of iterations of Algorithm 1 is bounded by τ` := (|D`| +
1)
(
1 + maxt=0,...,|D`| |It|

)
.

Proof (a) This statement follows immediately from the definition of D` in (16) and the fact
that dk 6= 0 for every k = 0, . . . , `.

(b) If D` = ∅, then (18) trivially holds. Assume that D` 6= ∅. Since ε ≤ ‖dk‖ for all
k = 0, 1, . . . , `, it follows from Lemma 3 that

ε ≤ ‖dk|D`|‖ ≤ α|D`|ω0.

Thus, we have

0 ≤ log(α|D`|ω0ε
−1) = |D`| logα+ log(ω0ε

−1)

which, in view of the fact that α ∈ (0, 1), implies that

|D`|| logα| ≤ log(ω0ε
−1) ≤ | log(ω0ε

−1)|.

Hence, (18) follows.

(c) First, considering D` = {ki}
|D`|
i=1 , define D̃` := {ki + 1}|D`|

i=1 , which corresponds to the
set of flexible iterations of Algorithm 1 up to the `-th iteration. Recall that It denotes the t-
th cycle of conservative iterations, and let N` denote the number of such cycles up to the `-th
iteration. It is easy to see that |D̃`| = |D`| and that N` ≤ |D`| + 1, given that Algorithm 1
starts with a cycle I0 of conservative iterations and that a new cycle may occur after each
flexible iteration ki + 1. Hence, we have {0, 1, . . . , `} = D̃` ∪N`−1

t=0 It, and

`+ 1 = |D̃`|+
N`−1∑
t=0

|It| ≤ |D`|+N` max
t=0,...,N`−1

|It| ≤ |D`|+ (|D`|+ 1) max
t=0,...,|D`|

|It|

≤ (|D`|+ 1)

(
1 + max

t=0,...,|D`|
|It|
)
,

proving the statement in (c). �

8

The next result shows that the constant ηL acts as a threshold: if the stepsize
parameter bk exceeds this value, Algorithm 1 guarantees a decrease of Fj(x

k). Con-
versely, if bk is smaller than this threshold, the functional value Fj(x

k) may not
decrease; however, any possible increase is bounded in terms of this threshold and the
size of the direction dk.

Lemma 5 Let {(xk, dk, bk)}k≥0 be generated by Algorithm 1. Then, the following holds:

Fj(x
k+1) ≤ Fj(xk)− η

bk+1

(
1− ηL

2bk+1

)
‖dk‖2, ∀j ∈ J . (19)

As a consequence, for every j ∈ J , we have if bk+1 ≥ ηL, then Fj(x
k+1) ≤ Fj(xk); otherwise,

Fj(x
k+1) ≤ Fj(xk) +

η2L

2b2k+1

‖dk‖2.

Proof From (2), the definition L = maxj∈J Lj , and the update rule (14), it follows that, for
every j ∈ J and k = 0, . . . , `− 1,

Fj(x
k+1) ≤ Fj(xk) + 〈∇Fj(xk), xk+1 − xk〉+

Lj
2
‖xk+1 − xk‖2

≤ Fj(xk) + max
j∈J
〈∇Fj(xk), xk+1 − xk〉+

L

2
‖xk+1 − xk‖2

= Fj(x
k) +

η

bk+1
max
j∈J
〈∇Fj(xk), dk〉+

η2L

2b2k+1

‖dk‖2

= Fj(x
k)− η

bk+1

(
1− ηL

2bk+1

)
‖dk‖2,

where the equality is due to the second inequality in (11). Therefore, the first statement of
the lemma follows. The last statements for the theorem follow immediately from the first
one. �

The next two results analyze the behavior of Algorithm 1 during a cycle of con-
servative steps. The first result shows that if ‖dk‖ is not sufficiently small, then the
stepsize parameter bk eventually becomes larger than a specific threshold determined
by the Lipschitz constant L. The second result demonstrates, in essence, that if bk
exceeds the aforementioned threshold, the directions of minimum norm can be over-
estimated using the size of the corresponding conservative cycle, the functional value
at the first iteration of the conservative cycle, the optimal functional value, and basic
constants provided by the method.

Lemma 6 Let {(dk, bk)}k∈It be generated by Algorithm 1, where It is a cycle of convervative

iterations. Given a tolerance ε > 0, assume that ‖dk‖ > ε, for all k ∈ It, and that |It| ≥
Nε := dη2L2/ε2e. Then, bt0+Nε

≥ ηL, where t0 = 0 if t = 0, and t0 = kt + 1 if t 6= 0.

9

Proof From the definition of bk+1 in (12) and the facts that t0 +1 is the first positive element

in It and ‖dk‖ > ε, for each k ∈ It, we have

b2t0+l+1 = b2t0 +

t0+l∑
i=t0

‖di‖2 ≥ (l + 1)ε2, ∀l ≥ 0.

Hence, if l := dη2L2/ε2e− 1, we obtain bt0+l+1 ≥ ηL, and then the lemma follows by noting
that l + 1 = Nε. �

Henceforth, we assume that there exists j∗ ∈ J such that

F ∗j∗ := inf
x
Fj∗(x) > −∞. (20)

Lemma 7 Let {(xk, dk, bk)}k∈It be generated by Algorithm 1, where It is a cycle of conser-

vative iterations. Assume that there exists an index k̃t ∈ It such that k̃t ≥ 1 and bk̃t ≥ ηL.

Define Ĩt := {k̃t − 1, . . . , kt+1 − 1}. Then,∑
k∈Ĩt

‖dk‖2

bk+1
≤ Ct, min

k∈Ĩt
‖dk‖ ≤

(
C2
t + Ctbk̃t−1

|Ĩt|

) 1
2

, (21)

where

Ct :=
2

η
(Fj∗(x

k̃t−1)− F ∗j∗), (22)

and j∗ is as in (20).

Proof Note that, for all k ∈ Ĩt, we have k+1 ∈ It, which corresponds to a conservative cycle.
Hence, for every k ∈ Ĩt, we have bk+1 ≥ bk̃t ≥ ηL. Thus, (19) implies that

Fj(x
k+1) ≤ Fj(xk)− η

2bk+1
‖dk‖2, ∀k ∈ Ĩt, ∀j ∈ J .

Thus, rewriting the above inequality with j = j∗ and summing over k ∈ Ĩt, we obtain∑
k∈Ĩt

‖dk‖2

bk+1
≤

2(Fj∗(x
k̃t−1)− Fj∗(x

kt+1))

η
≤

2(Fj∗(x
k̃t−1)− F ∗j∗)
η

= Ct, (23)

which proves the first inequality in (21). Now, let Zt :=
∑
k∈Ĩt ‖d

k‖2. Since, for all k ∈ Ĩt,
we have k+ 1 ∈ It, which corresponds to a conservative cycle whose last element is kt+1, the

update rule for bk+1 in (12) yields bk+1 ≤ bkt+1
=
√
Zt + b2

k̃t−1
, for all k ∈ Ĩt. Thus, (23)

implies that
1

bkt+1

∑
k∈Ĩt

‖dk‖2 =
Zt√

Zt + b2
k̃t−1

≤ Ct.

The last inequality above is equivalent to

Z2
t − C2

t Zt − C2
t b

2
k̃t−1

≤ 0.

It follows from the above quadratic inequality on Zt and simple calculus that

|Ĩt|min
k∈Ĩt
‖dk‖2 ≤

∑
k∈Ĩt

‖dk‖2 = Zt ≤
C2
t +

√
C4
t + 4C2

t b
2
k̃t−1

2
≤ C2

t + Ctbk̃t−1,

which implies the second inequality in (21). �

10

In the following, we show, in particular, that although Algorithm 1 may not pro-
duce a sequence of decreasing functional values Fj(x

k), j ∈ J , it is still possible to
uniformly bound the terms of this sequence in terms of the initial functional value
Fj(x

0), some initial parameters, and a prescribed tolerance ε > 0. Moreover, it is
important to note that the dependence of this upper bound on the tolerance ε is of
order log(ε−1). This result will be used to establish a uniform upper bound for the
scalar Ct defined in (22).

Lemma 8 Let {(xk, dk)}`k=0 be generated by Algorithm 1. Given a tolerance ε > 0, assume

that ‖dk‖ > ε, for every k = 0, 1, . . . , `. Then, for any j ∈ J and k = 0, . . . , `, we have

Fj(x
k) ≤ Fj(x0) +Rε, and

∑̀
k=0

‖dk‖2

b2k+1

≤ 2

(
Rε
η2L

+
(Fj∗(x

0)− F ∗j∗ +Rε)Kε

ηbmin

)
, (24)

where

Rε :=
η2L

2

[
α2ω2

0

(1− α2)b2min

+ 2Kε log

(
ηL

bmin

)]
, (25)

with

Kε := 1 if α = 0, and Kε := 1 +

∣∣∣∣∣∣
log
(
ω0ε
−1
)

log(α)

∣∣∣∣∣∣ , if α ∈ (0, 1). (26)

Proof It follows from Lemma 5 that if bk+1 ≥ ηL, then Fj(x
k+1) ≤ Fj(xk), and if bk+1 < ηL,

then

Fj(x
k+1) ≤ Fj(xk) +

η2L

2b2k+1

‖dk‖2,

for every j ∈ J . Hence, denoting Bk := {l ≤ k : bl+1 < ηL}, we have that if Bk = ∅, then
the first inequality in (24) trivially holds. Now, assume that Bk 6= ∅. Thus, we have

Fj(x
k+1) ≤ Fj(x0) +

η2L

2

∑
l∈Bk

‖dl‖2

b2l+1

, ∀k = 0, . . . , `− 1. (27)

Now, note that ∑
l∈Bk

‖dl‖2

b2l+1

=
∑

l∈Bk∩Dk

‖dl‖2

b2l+1

+
∑

l∈Bk∩DC
k

‖dl‖2

b2l+1

, (28)

where Dk = {k1, . . . , k|Dk|} is defined in (16). If Dk 6= ∅, then it follows from Lemma 3 and

by using bki+1 = b̂ki ≥ bmin, that∑
l∈Bk∩Dk

‖dl‖2

b2l+1

≤
∑
l∈Dk

‖dl‖2

b2l+1

=

|Dk|∑
i=1

‖dki‖2

b2ki+1

≤
|Dk|∑
i=1

α2i ω
2
0

b2min

≤
(

α2

1− α2

)
ω2

0

b2min

. (29)

On the other hand, in view of the update rule of bk+1 in (12) and the definition of Bk,

we see that Bk ∩ DCk = ∪|Dk|
i=0 Ji, where, for each i = 0, . . . , |Dk|, we have Ji = ∅ or Ji =

{ki + 1, . . . , k̂i}, with ki < k̂i < ki+1, k0 := −1, k̂|Dk| ≤ k, and k|Dk|+1 := k + 1. Define

Ĵ := {i = 0, . . . , |Dk| : Ji 6= ∅}. Thus, the last term in (28) can be rewritten as∑
l∈Bk∩DC

k

‖dl‖2

b2l+1

=
∑
i∈Ĵ

∑
l∈Ji

‖dl‖2

b2l+1

. (30)

11

Now, observe that l + 1 is a conservative iteration for any l ∈ Ji with i ∈ Ĵ . Therefore, by
the update rule (12), we have

b2l+1 = b2l + ‖dl‖2.
Combining this relation with Lemma 2, and defining al := ‖dl‖2/b2ki+1, we obtain

∑
l∈Ji

‖dl‖2

b2l+1

=

k̂i∑
l=ki+1

‖dl‖2

b2ki+1 +
∑l
t=ki+1 ‖dt‖2

=

k̂i∑
l=ki+1

al

1 +
∑l
t=ki+1 at

=

k̂i−ki∑
t=1

aki+t

1 +
∑t
r=1 aki+r

≤ log

1 +

k̂i−ki∑
l=1

aki+l

 = log

1 +

k̂i∑
l=ki+1

al

 = log

1 +

k̂i∑
l=ki+1

‖dl‖2

b2ki+1


= log

 b2k̂i+1

b2ki+1

 ≤ log

(
η2L2

b2min

)
,

where the last inequality is due to bki+1 = b̂ki ≥ bmin and b
k̂i+1

< ηL, because k̂i ∈ Bk.

Hence, combining the latter inequality with (30) and the fact that |Ĵ | ≤ |Dk|+ 1, we get∑
l∈Bk∩DC

k

‖dl‖2

b2l+1

≤
∑
i∈Ĵ

log

(
η2L2

b2min

)
≤ 2(|Dk|+ 1) log

(
ηL

bmin

)
. (31)

Note that if Dk = ∅ (which is the case if the initial parameter α = 0), then Ĵ = ∅ or Ĵ = {0},
i.e, only J0 6= ∅, and hence the bound in (31) still holds with |Dk| = 0. Therefore, since (18)

implies that |Dk| ≤ | log
(
ω0ε
−1
)
/ log(α)|, the first inequality in (24) follows by combining

(27), (28), (29), (31), and the definitions of Rε and Kε.
We now proceed to prove the second inequality in (24). It follows from (29) and (31) that

k∑
l=0

‖dl‖2

b2l+1

=
∑
l∈Dk

‖dl‖2

b2l+1

+
∑
l∈DC

k

‖dl‖2

b2l+1

=
∑
l∈Dk

‖dl‖2

b2l+1

+
∑

l∈Bk∩DC
k

‖dl‖2

b2l+1

+
∑

l∈BC
k ∩D

C
k

‖dl‖2

b2l+1

≤
(

α2

1− α2

)
ω2

0

b2min

+ 2 (|Dk|+ 1) log

(
ηL

bmin

)
+

∑
l∈BC

k ∩D
C
k

‖dl‖2

b2l+1

≤ 2Rε
η2L

+
∑

l∈BC
k ∩D

C
k

‖dl‖2

b2l+1

, (32)

where the last inequality is due to (18) and the definition of Rε in (25). In view of the defi-

nitions of Bk and Dk, we observe that BCk ∩D
C
k =

⋃|Dk|
t=0 Ĩt, where, for each t = 0, . . . , |Dk|,

either Ĩt = ∅ or Ĩt is defined as in Lemma 7, namely, Ĩt = {k̃t − 1, . . . , kt+1 − 1}, with
k̃t ≥ 1. Let us consider Ĩ := {t = 0, . . . , |Dk| : Ĩt 6= ∅}. Thus, by noting that bl+1 ≥ bmin and
applying the first inequality in (21), we obtain∑

l∈BC
k ∩D

C
k

‖dl‖2

b2l+1

=
∑
t∈Ĩ

∑
l∈Ĩt

‖dl‖2

b2l+1

≤ 1

bmin

∑
t∈Ĩ

∑
l∈Ĩt

‖dl‖2

bl+1
≤ 1

bmin

∑
t∈Ĩ

Ct

≤
|Ĩ|maxt∈Ĩ Ct

bmin
≤

2|Dk|(Fj∗(x
0)− F ∗j∗ +Rε)

ηbmin
, (33)

where the last inequality is due to the definition of Ct in (22), the first inequality in (24) and
the fact that |Ĩ| ≤ |Dk|. Therefore, the second inequality in (25) follows from (32), (33), and
the definition of Kε in (26). �

12

In the following, we establish the main result of this section, which is the worst-
case iteration-complexity bound on the total number of iterations of Algorithm 1
for computing an approximate Pareto critical to problem (1). This approximation is
measured in terms of the sequence {dk} generated by the method. Indeed, given a
tolerance ε > 0, we are interested in estimating the number of iterations K required
to obtain dK such that ‖dK‖ ≤ ε. Moreover, note that in the scalar case, for which
J = {1}, we have dk = −∇f(xk), and hence the above concept of approximate
solution consists of obtaining a point xK satisfying ‖∇f(xK)‖ ≤ ε.

Theorem 9 Let {(xk, dk)}k≥0 be generated by Algorithm 1. Given a tolerance ε > 0, in at

most K iterations, we have ‖dK‖ ≤ ε, where

K ≤ Kε(1 +Nε +Mε), (34)

with

Nε =

⌈
η2L2

ε2

⌉
, Mε :=

⌈ 4
η2

(Fj∗(x
0)− F ∗j∗ +Rε)

2 + 2
η (Fj∗(x

0)− F ∗j∗ +Rε) max{bmax, ηL}
ε2

⌉
,

and Rε and Kε are as in (25) and (26), respectively.

Proof Assume that ‖dk‖ > ε for every k = 0, . . . `. In view of Lemma 4 (a)-(b), the
number |D`| of flexible iterations of Algorithm 1 up to the `-th iteration is bounded by

| log
(
ω0ε
−1
)
|/| log(α)| if α 6= 0 or |D`| = 0 if α = 0. Hence, in view of the definition of

Kε in (26), we have |D`| ≤ Kε − 1. Thus, it follows from Lemma 4(c) that the number ` of

iterations is bounded by τ` := Kε
(

1 + maxt=0,...,|D`| |It|
)
, where It corresponds to the t-th

cycle of conservative iterations. Therefore, the desired bound (34) follows once we show that
|It| ≤ Nε + Mε for all t = 0, . . . , |D`|. If |It| < Nε for all t = 0, . . . , |D`|, the result follows
trivially. Thus, suppose that there exists t such that |It| ≥ Nε. Fix such a t, and let k̃t be
the first element of It satisfying k̃t ≥ 1 and bk̃t ≥ ηL. The existence of such an index is guar-
anteed by Lemma 6, which ensures that bt0+Nε

≥ ηL, where t0 = 0 if t = 0, and t0 = kt + 1
if t 6= 0. Hence, we have the following two cases to consider:

• the iteration k̃t is not the first element in the cycle It, in which case bk̃t−1 < ηL.

• the iteration k̃t corresponds to the first positive element in the cycle It, which implies
that either k̃t = 1, or k̃t − 1 is the last flexible iteration preceding the cycle It.
Hence, we have that either bk̃t−1 = b0 or bk̃t−1 = b̂k̃t−2. In particular, bk̃t−1 ≤ bmax,
in view of Step 1 of Algorithm 1 and (13).

Thus, in both cases, we must have bk̃t−1 ≤ max{bmax, ηL}. On the other hand, the definition

of Ct in (22) and the first inequality in (24) with k = k̃t − 1 imply that

Ct =
2

η
(Fj∗(x

k̃t−1)− F ∗j∗) ≤
2

η
(Fj∗(x

0)− F ∗j∗ +Rε).

Hence, in view of the second inequality in (21), the fact that bk̃t−1 ≤ max{bmax, ηL}, and
the definition of Mε, we have

min
k∈Ĩt
‖dk‖ ≤

 4
η2

(
Fj∗(x

0)− F ∗j∗ +Rε
)2

+ 2
η

(
Fj∗(x

0)− F ∗j∗ +Rε
)

max{bmax, ηL}

|Ĩt|


1
2

13

≤ ε M
1
2
ε

|Ĩt|
1
2

,

where Ĩt = {k̃t, . . . , kt+1} is as in Lemma 7. Since ‖dk‖ > ε for every k = 0, . . . `, the above
inequalities imply that |Ĩt| < Mε. Now, note that

I0 = {0, . . . , k̃t − 1} ∪ Ĩ0, It = {kt + 2, . . . , k̃t − 1} ∪ Ĩt, if t 6= 0,

where k̃t ≤ Nε if t = 0, and k̃t ≤ kt + 1 + Nε if t 6= 0, in view of Lemma 6. Therefore,
|It| ≤ Nε + |Ĩt| < Nε + Mε, for any t = 0, . . . , |D`|, which concludes the proof of the
theorem. �

Remark 2 If α = 0 (conservative variant), Theorem 9 implies that Algorithm 1 requires
at most O(ε−2) iterations (or evaluations of the steepest descent direction) to reach an ε-
approximate Pareto critical point. In contrast, the flexible variant (α ∈ (0, 1)) achieves a
slightly weaker bound of O(ε−2 log3(ε−1)). We also note that, in the scalar case (J = {1}),
the iteration complexity established in Theorem 9 for the conservative variant is consistent
with the result in [27, Theorem 2.2].

We conclude this section by presenting a liminf-type global convergence result for
Algorithm 1.

Corollary 10 Let {xk}k≥0 be an infinite sequence generated by Algorithm 1. Then

lim inf
k→+∞

‖dk‖ = 0. (35)

Proof For any natural number j ≥ 1, by applying Theorem 9 successively with tolerance
εj = 1/j, we obtain an element dK(j) of the sequence {dk} generated by Algorithm 1 such

that ‖dK(j)‖ ≤ 1/j. As a consequence, lim infk→+∞ ‖dk‖ = 0. �

4.2 Convex Case

In this subsection, we analyze the conservative variant of Algorithm 1 (case α = 0)
under the assumption that all components of F are convex functions. Let us consider
the merit function u0 : Rn → R ∪ {+∞} defined by

u0(x) = sup
z∈Rn

min
j∈J
{Fj(x)− Fj(z)} . (36)

By [17, Theorem 3.1], we have u0(x) ≥ 0 for all x ∈ Rn and u0(x) = 0 if and only if
x is a weak Pareto optimal point of F .

Lemma 11 Given x ∈ Rn, let

L(F (x)) :=
{
y ∈ Rn : F (y) ≤ F (x)

}
.

Then
u0(x) = sup

z∈L(F (x))
min
j∈J

{
Fj(x)− Fj(z)

}
.

14

Proof Consider the function φ : Rn → R given by

φ(z) = min
j∈J

{
Fj(x)− Fj(z)

}
. (37)

If z ∈ L(F (x)) then
Fj(x)− Fj(z) ≥ 0, j ∈ J ,

and so φ(z) ≥ 0. Since this is true for any z ∈ L(F (x)), it follows that

sup
z∈L(F (x))

φ(z) ≥ 0. (38)

On the other hand, if z ∈ L(F (x))c then there exists jz ∈ J such that Fjz (z) > Fjz (x), and
so φ(z) < 0. Since this is true for any z ∈ L(F (x))c, we have

sup
z∈L(F (x))c

φ(z) ≤ 0. (39)

Finally, combining (36)–(39), we obtain

u0(x) = sup
z∈Rn

φ(z) = max

{
sup

z∈L(F (x))
φ(z), sup

z∈L(F (x))c
φ(z)

}
= sup
z∈L(F (x))

φ(z)

= sup
z∈L(F (x))

min
j∈J

{
Fj(x)− Fj(z)

}
.

�

Let us consider explicitly the following assumption:

A1. Fj(·) is convex for each j ∈ J .

Under A1, the next lemma establishes the connection between u0(x) and dSD(x).

Lemma 12 Suppose that A1 holds. Then, for any x ∈ Rn, we have

u0(x) ≤

(
sup

z∈L(F (x))
‖z − x‖

)
‖dSD(x)‖.

Proof Given z ∈ Rn and i ∈ J , it follows from A1 that

Fi(z) ≥ Fi(x) + 〈∇Fi(x), z − x〉,
which implies

〈∇Fi(x), x− z〉 ≥ Fi(x)− Fi(z) ≥ min
j∈J

{
Fj(x)− Fj(z)

}
. (40)

Recall that

dSD(x) = −
m∑
i=1

λSDi ∇Fi(x),

m∑
i=1

λSDi (x) = 1, and λSDi (x) ≥ 0 ∀i ∈ J .

Then, it follows from (40) and the Cauchy-Schwarz inequality that

min
j∈J

{
Fj(x)− Fj(z)

}
≤

m∑
i=1

λSDi (x)〈∇Fi(x), x− z〉

=

〈
m∑
i=1

λSDi (x)∇Fi(x), x− z

〉

15

=
〈
−dSD(x), x− z

〉
≤ ‖z − x‖‖dSD(x)‖.

The proof of the lemma follows by taking the supremum over z ∈ L(F (x)) on both sides of
the above inequalities and by using Lemma 11. �

Consider the set

ΩR(x0) =
{
x ∈ Rn : Fj(x) ≤ Fj(x0) +R

}
,

where

R = η2L log

(
ηL

bmin

)
. (41)

In what follows we will consider the additional assumption:

A2. D̃0 := supz∈ΩR(x0) ‖z − x0‖ < +∞.

Theorem 13 Suppose that A1-A2 holds, and let {xk}k≥0 be generated by Algorithm 1 with
α = 0. Then

lim inf
k→+∞

u0(xk) = 0. (42)

Proof Let k ∈ N. Note that the scalar R, defined in (41), coincides with the quantity Rε
defined in (25) when α = 0. Hence, it follows from the first inequality in (24) that xk ∈
ΩR(x0). Thus, L(F (xk)) ⊂ ΩR(x0) and so, by A2,

sup
z∈L(F (xk))

‖z − xk‖ ≤ sup
z∈ΩR(x0)

(
‖z − x0‖+ ‖x0 − xk‖

)
≤ 2D̃0.

Consequently, it follows from Lemma 12 that

u0(xk) ≤ 2D̃0‖dSD(xk)‖ = 2D̃0‖dk‖. (43)

Since (43) holds for every k, it follows from Corollary 10 that (42) is true. �

By Theorem 13, given ε > 0 there exists k such that u0(xk) ≤ ε, i.e., Algorithm 1
with α = 0 is guaranteed to find an ε-approximate weak Pareto optimal point. Let us
define

T (ε) = inf
{
k ∈ N : u0(xk) ≤ ε

}
. (44)

In what follows we will establish an upper bound of O(ε−1) on T (ε) when b1 is
sufficiently large. For that, let us consider a weaker version of assumption A2:

A2’. D0 := supz∈L(F (x0)) ‖z − x0‖ < +∞.

Note that A2’ means that L(F (x0) is bounded. Since this set is closed (due to the
continuity of F), we conclude that it is compact. Thus, by the Weierstrass Theorem,
it follows that the function ψF : Rn → R, given by

ψF (x) = max
j∈J
{Fj(x)} ,

16

has a global minimizer x∗. Let us denote ψ∗F = ψF (x∗). Our next lemma provides all
the auxiliary inequalities we need to obtain the referred complexity bound.

Lemma 14 Suppose that A2’ holds and let {xk}k≥0 be generated by Algorithm 1 with α = 0.

If b1 =
√
b20 + ‖d0‖2 ≥ ηL, then we have:

(a) F (xk+1) ≤ F (xk) for all k ≥ 0.

(b)
∑T
k=0

(
η

bk+1

)2

‖dk‖2 ≤ 2
L

[
ψF (x0)− ψ∗F

]
, for all T ≥ 0.

(c) bk+1 ≤ b0 + 2
η

[
ψF (x0)− ψ∗F

]
for all k ≥ 0.

Proof Since α = 0, the sequence {bk}k≥1 generated by Algorithm 1 is nondecreasing.
Therefore, the assumption b1 ≥ ηL implies that

bk+1 ≥ ηL, ∀k ≥ 0. (45)

Consequently, by Lemma 5, we have

Fj(x
k+1) ≤ Fj(xk)− η

2bk+1
‖dk‖2, j ∈ J (46)

for all k ≥ 0. This establishes statement (a). Moreover, (46) implies that

ψF (xk+1) ≤ ψF (xk)− η

2bk+1
‖dk‖2,

that is
η

bk+1
‖dk‖2 ≤ 2

[
ψF (xk)− ψF (xk+1)

]
. (47)

Combining (45) and (47), for any T ≥ 1, we get

T−1∑
k=0

(
η

bk+1

)2

‖dk‖2 ≤
T−1∑
k=0

1

L

(
η

bk+1

)
‖dk‖2 ≤ 2

L

[
ψF (x0)− ψF (xT)

]
. (48)

Thus, statement (b) follows from inequality (48) together with the bound ψF (xT) ≥ ψ∗F .
Now, regarding item (c), first note that from the definition of bk+1 it follows that

η

bk+1
‖dk‖2 =

η
(
b2k+1 − b

2
k

)
bk+1

=
η(bk+1 − bk)(bk+1 + bk)

bk+1
≥
η(bk+1 − bk) bk+1

bk+1
= η(bk+1−bk),

where the inequality follows from the fact that bk+1 ≥ bk. Thus, for any T ≥ 1, summing
the above inequality for k = 0, . . . , T − 1 and using (47), we obtain

η(bT − b0) =

T−1∑
k=0

η(bk+1 − bk) ≤
T−1∑
k=0

η

bk+1
‖dk‖2 ≤ 2

[
ψF (x0)− ψ∗F

]
.

Consequently,

bT ≤ b0 +
2

η

[
ψF (x0)− ψ∗F

]
.

Since T is an arbitrary integer greater than or equal to 1, we conclude that statement (c)
holds. �

Now we are ready to establish our complexity bound for Algorithm 1 (α = 0) when
all the components of F are convex and b1 is sufficiently large.

17

Theorem 15 Suppose that A1-A2’ hold, and let {xk}k≥0 be generated by Algorithm 1 with

α = 0. If b1 =
√
b20 + ‖d0‖2 ≥ ηL, then, given ε > 0, we have

T (ε) ≤

(
D2

0 + 2
L

[
ψF (x0)− ψ∗F

])(
b0 + 2

η

[
ψF (x0)− ψ∗F

])
2η

ε−1 (49)

where T (ε) is defined in (44).

Proof If T (ε) = 0, then (49) is clearly true. Therefore, from now one we assume that T (ε) ≥ 1.
Let us denote αk = η/bk+1 and recall that dk = dSD(xk) = −

∑m
i=1 λ

SD
i (xk)∇Fi(xk). Then,

given z ∈ Rn we have

‖xk+1 − z‖2 = ‖xk − z‖2 + 2αk〈xk − z, dk〉+ α2
k‖d

k‖2

= ‖xk − z‖2 − 2αk

〈
xk − z,

m∑
i=1

λSDi (xk)∇Fi(xk)

〉
+ α2

k‖d
k‖2. (50)

It follows from assumption A1 that

〈xk − z,∇Fi(xk)〉 ≥ Fi(xk)− Fi(z), i ∈ J ,
and so, as

∑m
i=1 λ

SD
i (xk) = 1 and λSDi (xk) ≥ 0 for all i, we obtain〈

xk − z,
m∑
i=1

λSDi (xk)∇Fi(xk)

〉
=

m∑
i=1

λSDi (xk)〈xk − z,∇Fi(xk)〉

≥
m∑
i=1

λSDi (xk)(Fi(x
k)− Fi(z)) ≥ min

j∈J
(Fj(x

k)− Fj(z)).

(51)

Combining (50) and (51), we get

2αk min
j∈J

(Fj(x
k)− Fj(z)) ≤ ‖xk − z‖2 − ‖xk+1 − z‖2 + α2

k‖d
k‖2.

Summing up this inequality for k = 0, . . . , T , and using item (b) of Lemma 14, it follows that

2

T∑
k=0

αk min
j∈J

(Fj(x
k)− Fj(z)) ≤ ‖x0 − z‖2 +

2

L

[
ψF (x0)− ψ∗F

]
.

Since, by item (a) of Lemma 14, we have Fj(x
T) ≤ Fj(x

k), for all j ∈ J and k = 0, . . . , T ,
the above inequality implies that

2 min
j∈J

(Fj(x
T)− Fj(z))

T∑
k=0

αk ≤ ‖x0 − z‖2 +
2

L

[
ψF (x0)− ψ∗F

]
.

By taking the supremum over z ∈ L(F (xT)) on both sides of the above inequality, A2′

together with Lemma 11, yields that

2u0(xT)

T∑
k=0

αk ≤ D2
0 +

2

L

[
ψF (x0)− ψ∗F

]
. (52)

From the definition of αk and statement (c) in Lemma 14, we have

T∑
k=0

αk =

T∑
k=0

η

bk+1
≥

T∑
k=0

η

b0 + 2
η

[
ψF (x0)− ψ∗F

] =
η(T + 1)

b0 + 2
η

[
ψF (x0)− ψ∗F

] ,
18

which combined with (52) yields

u0(xT) ≤

(
D2

0 + 2
L

[
ψF (x0)− ψ∗F

])(
b0 + 2

η

[
ψF (x0)− ψ∗F

])
2η(T + 1)

.

Finally, by considering this inequality with T = T (ε)− 1, we conclude that (49) holds, since,

by the definition of T (ε) in (44), u0(xT (ε)−1) > ε. �

5 Numerical Experiments

In this section, we evaluate the performance of the proposed algorithm on two classes
of problems: (i) a standard collection of multiobjective test functions, and (ii) a PDE
multiobjective optimization problem.

We consider two variants of Algorithm 1, using parameters ω0 = d0, η := 1,
b0 := 10−3 and bmin := 10−4:

• C-AMG: Algorithm 1 with α := 0 (conservative version);
• F-AMG: Algorithm 1 with α := 0.95 and b̂k as in (15) (flexible version).

These variants are compared with two baseline methods from the literature [12]:

• Fixed-SD: the steepest descent method with constant stepsize equal to 1;
• Armijo-SD: the steepest descent method with Armijo line search.

The experiments were conducted using the Python programming language, which
was installed on a machine equipped with a 3.5 GHz Dual-Core Intel Core i5 processor
and 16 GB of 2400 MHz DDR4 memory. For all algorithms, the steepest descent
subproblem (8) was solved using the cvxpy package, except in the case m = 2, where
the subproblem admits a closed-form solution.

5.1 Benchmark Test Problems

We first consider a collection of 44 unconstrained multiobjective test problems, cov-
ering both convex and nonconvex scenarios, with varying dimensions n and numbers
of objectives m. A summary of these problems is given in Table 1; further details can
be found in [20]. The initial points were generated within the box ` ≤ x ≤ u, where `
and u denote the lower and upper bounds of each problem. More precisely, each initial
point was computed as

x0 = (1− β)`+ βu, (53)

with β ∼ U(0, 1). We consider the stopping criterion |θk| ≤ 10−4, and set a maximum
number of iterations to 5,000.

We adopted the total computational cost, denoted by Cost(·), as the performance
measure. The total cost up to iteration K is defined as

Cost(K) :=
1

m

(
m∑
i=1

fie(K) + 3× gie(K)

)
, (54)

where fie(K) denotes the total number of evaluations of the component function
fi(·), and gie(K) represents the total number of evaluations of the corresponding

19

Problem n m Convex ` u
AP1 2 3 Y (-10, -10) (10, 10)
AP2 1 2 Y -100 100
AP3 2 2 N (-100, -100) (100, 100)
AP4 3 3 Y (-10, -10, -10) (10, 10, 10)
BK1 2 2 Y (-5, -5) (10, 10)
DD1a 5 2 N (-20, . . . , -20) (20, . . . , 20)
DGO1 1 2 N -10 13
Far1 2 2 N (-1, -1) (1, 1)
FDS 5 3 Y (-2, . . . , -2) (2, . . . , 2)
FF1 2 2 N (-1, -1) (1, 1)
Hil1 2 2 N (0, 0) (1, 1)
IKK1 2 3 Y (-50, -50) (50, 50)
JOS1 100 2 Y (-100, . . . , -100) (100, . . . , 100)
KW2 2 2 N (-3, -3) (3, 3)
LE1 2 2 N (-5, -5) (10, 10)
Lov1 2 2 Y (-10, -10) (10, 10)
Lov3 2 2 N (-20, -20) (20, 20)
Lov4 2 2 N (-20, -20) (20, 20)
Lov5 3 2 N (-2, -2, -2) (2, 2, 2)
MGH16b 4 5 N (-25, -5, -5, -1) (25, 5, 5, 1)
MGH26b 4 4 N (-1, -1, -1 - 1) (1, 1, 1, 1)
MGH33b 10 10 Y (-1, . . . , -1) (1, . . . , 1)
MHHM2 2 3 Y (0, 0) (1, 1)
MLF2 2 2 N (-100, -100) (100, 100)
MMR1c 2 2 N (0.1, 0) (1, 1)
MMR3 2 2 N (-1, -1) (1, 1)
MOP2 2 2 N (-1, -1) (1, 1)
MOP3 2 2 N (-π, -π) (π, π)
MOP5 2 3 N (-1, -1) (1, 1)
MOP7 2 3 Y (-400, -400) (400, 400)
PNR 2 2 Y (-2, -2) (2, 2)
QV1 10 2 N (-5, . . . , -5) (5, . . . , 5)
SK1 1 2 N -100 100
SK2 4 2 N (-10, -10, -10, -10) (10, 10, 10, 10)
SLCDT1 2 2 N (-1.5, -1.5) (1.5, 1.5)
SLCDT2 10 3 Y (-1, . . . , -1) (1, . . . , 1)
SP1 2 2 Y (-100, -100) (100, 100)
SSFYY2 1 2 N -100 100
Toi4b 4 2 Y (-2, -2, -2, -2) (5, 5, 5, 5)
Toi8b 3 3 Y (-1, -1, -1, -1) (1, 1, 1, 1)
Toi9b 4 4 N (-1, -1, -1, -1) (1, 1, 1, 1)
Toi10b 4 3 N (-2, -2, -2, -2) (2, 2, 2, 2)
VU1 2 2 N (-3, -3) (3, 3)
ZLT1 10 5 Y (-1000, . . . , -1000) (1000, . . . , 1000)

Table 1 Test problems

gradient ∇fi(·), both accumulated up to iteration K. This cost function reflects the
relative computational expense of evaluating gradients compared to function values
by assigning a weight of 3 to each gradient evaluation. This choice is motivated by
the fact that, when using reverse-mode automatic differentiation, computing ∇fi(·)
typically requires about three times the computational effort of a single evaluation of
fi(·); see, e.g., [1, 3].

20

Fig. 1 Performance profiles (log2 scale) comparing Fixed-SD, C-AMG, F-AMG and Armijo-SD in
terms of Cost(K).

We evaluated the algorithms on the 44 test problems listed in Table 1, using 100
different initial points for each problem, resulting in a total of 4,400 instances. The
performance profile based on the cost measure Cost(K) is shown in Figure 1. As
observed in the figure, F-AMG was the most efficient method in terms of Cost(K),
achieving the lowest cost in (42.98%) of the instances. In comparison, Fixed-SD, C-
AMG, and Armijo-SD were the best performers in (26.68%), (31.73%) and (27.05%)
of the cases, respectively. Moreover, F-AMG also demonstrated the highest robustness
among all methods. This superior performance, in terms of efficiency, of the Algorithm
1 variants (C-AMG and F-AMG) over Armijo-SD is largely due to the fact that they
do not require evaluations of the objective function. In contrast, Armijo-SD often
incurs a large number of function evaluations because of its line search procedure.
Moreover, the superior robustness of AMG variants compared with Fixed-SD further
highlights another appealing feature of the adaptive methodits global convergence,
achieved independently of the stepsize choice.

Naturally, the algorithms may generate different iterates and, as a result, produce
distinct approximate Pareto points. Therefore, it is worthwhile to examine whether
they recover the Pareto front in a similar manner. Figure 2 illustrates the recovered
Pareto fronts for four representative problems: BK1, DGO1, QV1, and Toi4. The plots
on the left correspond to F-AMG, while those on the right correspond to Armijo-SD.
Visually, the Pareto fronts recovered by F-AMG appear slightly better.

21

Fig. 2 Recovered Pareto fronts from 100 random starting points. From top to bottom: BK1, DGO1,
QV1, Toi4b. Left: F-AMG, Right: Armijo-SD.

5.2 PDE Multiobjective Problem

We also evaluated the algorithms on a PDE-constrained multiobjective optimization
problem [7], which is particularly challenging due to the high computational cost of
function and gradient evaluations.

22

Let Ω = (0, 1)2 ⊂ R2 denote the unit square and ∂Ω its boundary. For a given
control function y : Ω→ R, we define the state u : Ω→ R as the weak solution of the
boundary value problem

−∆u = y in Ω, u = 0 on ∂Ω, (55)

where ∆ = ∂2/∂x2
1 +∂2/∂x2

2 denotes the Laplace operator. Problem (55) is discretized
using the finite element method (FEM) with piecewise linear Lagrange basis functions
on a uniform triangular mesh of Ω.

The aim is to minimize two competing objective functions. The first one measures
the mismatch between the state u and a desired state

ud(x1, x2) = sin(πx1) sin(πx2), (x1, x2) ∈ Ω,

while the second one penalizes the energy of the control. More precisely, for a finite-
dimensional control vector y ∈ Rn (the FEM coefficients of the control function), we
define the objectives

F1(y) = 1
2

∫
Ω

(
u(y)(x)− ud(x)

)2
dx,

F2(y) = 1
2

∫
Ω

y(x)2 dx,

(56)

where u(y) denotes the FEM solution of (55) corresponding to control y.
The resulting optimization problem is the unconstrained multiobjective problem

min
y∈Rn

F (y) =
(
f1(y), f2(y)

)
. (57)

The PDE was discretized by the finite element method using piecewise linear Lagrange
basis functions on a uniform 16 × 16 triangular mesh, resulting in (n = 289) control
variables. All finite element formulations and numerical solutions (used to evaluate
F and its Jacobian) were implemented in Python using the DOLFIN interface of the
FEniCS library [23]. We generated 70 random Gaussian initial points y0 ∈ R289. We
consider the stopping criterion |θk| ≤ 10−2, and set a maximum number of iterations
to 500.

For each algorithm, we recorded the average number of iterations, function evalua-
tions, and gradient evaluations. A representative summary is reported in Table 5.2. All
algorithms successfully solved the problem instances. Notably, F-AMG achieved solu-
tions of comparable quality to those obtained by the other methods while requiring the
fewest iterations and gradient evaluationsand without any function evaluations. This
highlights the efficiency and practical appeal of the proposed method, especially for
computationally expensive problems such as PDE-constrained optimization. Figure 3
displays the recovered Pareto fronts of problem (57) obtained from 70 random start-
ing points. Visually, the Pareto fronts recovered by all algorithms appear very similar,
indicating that each method approximates the true Pareto front with comparable
accuracy.

23

Algorithm Iterations Func. evals Grad. evals
Fixed-SD 71.0 - 72.0
C-AMG 155.7 - 156.7
F-AMG 33.9 - 34.9
Armijo-SD 71.0 72.0 72.0

Table 2 Average performance over 70 runs
(dimension = 289)

Fig. 3 Recovered Pareto fronts of problem (57) from 70 random starting points. Top row: Fixed-SD
and C-AMG. Bottom row: F-AMG and Armijo-SD.

6 Conclusion

This work introduced AMG, an adaptive line-search-free multiobjective gradient
method for solving multiobjective optimization problems. The AMG method preserves
key advantages of adaptive gradient schemesrobustness with respect to stepsize selec-
tion, independence from function evaluations, and low computational costwhile being
tailored to the multiobjective setting. The algorithm admits two variants: a conserva-
tive variant with monotonically decreasing stepsizes and a flexible variant that allows
occasional stepsize increases. Under standard Lipschitz continuity assumptions, we
established iteration-complexity guarantees for both variants in the nonconvex setting
and improved bounds for the conservative variant in the convex case. Numerical exper-
iments show that the flexible AMG performs favorably compared to multiobjective
steepest descent methods with fixed or Armijo stepsizes.

24

Acknowledgments

The works of M. L. N. Gonçalves and J. G. Melo were supported in part by CNPq
(Grant No. 312223/2022-6), FAPEG (Grant No. 202510267001610), and FAPESC
(Grant No. 2024TR002238). The work of G. N. Grapiglia was partially supported by
the Fonds d’appui l’internationalisation (FAI), UCLouvain.

References

[1] A. W. A. Griewank. Evaluationg derivatives: Principles and techniques of
algorithmic differentiation. SIAM, Philadelphia, 2008.

[2] P. B. Assunção, O. P. Ferreira, and L. F. Prudente. Conditional gradient method
for multiobjective optimization. Comput. Optim. Appl., 78:741–768, 2021.

[3] M. Bartholomew-Biggs, S. Brown, B. Christianson, and L. Dixon. Automatic
differentiation of algorithms. J. Comput. Appl. Math., 124(1):171–190, 2000.

[4] Y. Bello-Cruz, L. R. Lucambio Pérez, and J. G. Melo. Convergence of the pro-
jected gradient method for quasiconvex multiobjective optimization. Nonlinear
Anal. Theory Methods Appl., 74(16):5268 – 5273, 2011.

[5] Y. Bello-Cruz, J. G. Melo, and R. V. G. Serra. A proximal gradient splitting
method for solving convex vector optimization problems. Optimization, 71(1):33–
53, 2022.

[6] G. C. Bento, J. X. Cruz-Neto, and A. Soubeyran. A proximal point-type method
for multicriteria optimization. Set-Valued Var Anal., 22(3):557–573, 2014.

[7] M. Bernreuther, M. Dellnitz, B. Gebken, M. G., S. Peitz, K. Sonntag, and S. Volk-
wein. Multiobjective optimization of non-smooth pde-constrained problems.
arXiv preprint arXiv:2308.01113v1, 2023.

[8] H. Bonnel, A. N. Iusem, and B. F. Svaiter. Proximal methods in vector
optimization. SIAM J. Optim., 15(4):953–970, 2005.

[9] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. In J. Mach. Learn. Res., volume 12, pages
2121–2159, 2011.

[10] H. A. Eschenauer, J. Koski, and A. Osyczka. Multicriteria Optimization —
Fundamentals and Motivation, pages 1–32. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1990.

[11] J. Fliege, L. M. Graña Drummond, and B. F. Svaiter. Newton’s method for
multiobjective optimization. SIAM J. Optim., 20(2):602–626, 2009.

25

[12] J. Fliege and B. F. Svaiter. Steepest descent methods for multicriteria optimiza-
tion. Math. Method. Oper. Res., 51(3):479–494, 2000.

[13] E. H. Fukuda and L. M. G. Drummond. Inexact projected gradient method for
vector optimization. Comput. Optim. Appl., 54(3):473–493, 2013.

[14] E. H. Fukuda and L. M. Graña Drummond. On the convergence of the projected
gradient method for vector optimization. Optimization, 60(8-9):1009–1021, 2011.

[15] E. H. Fukuda, H. Tanabe, and N. Yamashita. Proximal gradient methods
for multiobjective optimization and their applications. Comput. Optim. Appl.,
72(2):339–361, 2019.

[16] E. H. Fukuda, H. Tanabe, and N. Yamashita. An accelerated proximal gradient
method for multiobjective optimization. Comput. Optim. Appl., 86(2):421–455,
2023.

[17] E. H. Fukuda, H. Tanabe, and N. Yamashita. New merit functions for mul-
tiobjective optimization and their properties. Optimization, 73(13):3821–3858,
2024.

[18] D. S. Gonçalves, M. L. N. Gonçalves, and J. G. Melo. An away-step Frank-Wolfe
algorithm for constrained multiobjective optimization. Comput. Optim. Appl.,
88(2):759–781, 2024.

[19] D. S. Gonçalves, M. L. N. Gonçalves, and J. G. Melo. Improved convergence rates
for the multiobjective Frank-Wolfe method. J. Optim. Theory Appl., 205(20):1–
25, 2025.

[20] M. L. N. Gonçalves, F. S. Lima, and L. F. Prudente. Globally convergent Newton-
type methods for multiobjective optimization. Comput. Optim. Appl., 83:403–
434, 2022.

[21] L. M. Graña Drummond and B. F. Svaiter. A steepest descent method for vector
optimization. J. Comput. Appl. Math., 175(2):395 – 414, 2005.

[22] G. Grapiglia and G. Stella. An adaptive trust-region method without function
evaluations. Comput. Optim. Appl., 82(1):31–60, 2022.

[23] A. Logg, K.-A. Mardal, G. Wells, et al. Automated Solution of Differential
Equations by the Finite Element Method: The FEniCS Book, volume 84 of Lecture
Notes in Computational Science and Engineering. Springer, 2012.

[24] L. R. Lucambio Pérez and L. F. Prudente. Nonlinear conjugate gradient methods
for vector optimization. SIAM J. Optim., 28(3):2690–2720, 2018.

[25] H. B. McMahan and M. Streeter. Adaptive bound optimization for online convex
optimization. In Conference on Learning Theory (COLT), pages 244–256, 2010.

26

[26] E. Schreibmann, M. Lahanas, L. Xing, and D. Baltas. Multiobjective evolutionary
optimization of the number of beams, their orientations and weights for intensity-
modulated radiation therapy. Physics in medicine and biology, 49:747–70, 04
2004.

[27] R. Ward, X. Wu, and L. Bottou. Adagrad stepsizes: sharp convergence over
nonconvex landscape. J. Mach. Learn. Res., 21(1):1–30, 2020.

27

	Introduction
	Preliminaries
	An adaptive line-search-free multiobjective gradient method
	Iteration-complexity analysis of Algorithm 1
	Nonconvex case
	Convex Case

	Numerical Experiments
	Benchmark Test Problems
	PDE Multiobjective Problem

	Conclusion

