Clique Probing for Mixed-Integer Programs

Jacob von Holly-Ponientzietz'@®, Alexander Hoen2®, Mark Turner'®, and
Ambros Gleixner!?

! Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
von.holly-ponientzietz@zib.de,turner@zib.de
2 HTW Berlin, 10313 Berlin, Germany
hoen@htw-berlin.de,gleixner@htw-berlin.de

Abstract. Probing is an important presolving technique in mixed-integer
programming solvers. It selects binary variables, tentatively fixes them
to 0 and 1, and performs propagation to deduce additional variable fix-
ings, bound tightenings, substitutions, and implications. In this work,
we propose clique probing: instead of probing on individual variables, we
select cliques, a set of binary variables of which at most one can be set to
one, and systematically probe on all variables of a clique. Experiments
with our implementation in the open-source presolve library PAPILO
demonstrate that exploiting clique information in this form significantly
increases the number of reductions. When integrated into the MIP solver
SCIP, we observe a 3% performance improvement on MIPLIB instances
containing cliques.

Keywords: mixed integer programming, presolving, probing

1 Introduction

Mized Integer Programming (MIP) is widely used in industry to solve opti-
mization problems, with competitive MIP solvers typically implementing some
variant of branch-&-cut as the backbone of the solving process. Before initial-
izing the branch-&-cut process, however, presolving (or preprocessing) is called.
The goal of presolving is to eliminate redundant information and strengthen
the problem formulation, thereby accelerating the subsequent solution process.
Therefore, presolving is a crucial part of modern MIP solvers and, more often
than not, it is the deciding factor between a problem being solvable or not [2,3].

One important presolving technique is probing [11,1]. The central idea of
probing is to select binary variables and temporarily fix them to 0 and 1. After
each tentative fixing, a propagation step is performed, and the resulting de-
ductions are analyzed in order to strengthen the formulation. In [2], disabling
probing led to a slowdown of 7% to 33% on instances with more than 1000 sec-
onds solving time and rendered 11 of 3155 models unsolvable.

Definition 1. Formally, let z be a binary variable and z an arbitrary variable
with bounds [I,, u.]. We denote the variable bounds of z after propagating x = 0
as [I%,u%] and the variable bounds of z after propagating = = 1 as [I},ul]. The
following four rules can be applied while probing:

http://orcid.org/0009-0002-2601-3689
http://orcid.org/0000-0003-1065-1651
http://orcid.org/0000-0001-7270-1496
http://orcid.org/0000-0003-0391-5903

2 von Holly et. al

inf If setting = 0 (z = 1) makes the problem infeasible, z can be fixed to 1

(0).

bds Global bounds for z can be updated to [min(1%,1}), max(u?, ul)].

sub If [9 = u% and I} = ul, the variable z can be substituted by z = ¢ + (I —
19) z.

imp Implications can be collected in a central data structure of the solver. An
example for an implication would be z = 0 — z > 9.

Performing probing on all variables can be time-consuming and may outweigh
its potential benefits to the solver. To address this, probing orders the variables
according to a scoring function and employs a termination criterion to stop
early. Thus, designing an effective scoring function and appropriate termination
criteria is crucial for an efficient implementation. Despite the importance of both
probing and the subsequent solving process, we are not aware of any published
work describing scoring methods or termination criteria.

Open-source solvers like SCIP [6] and HIGHS [9] assign scores to each binary
variable and rank them by this score. The score tries to reflect the impact that
fixing the variables has on the model. These solvers abort if a certain absolute
or relative limit is reached, typically a limit on time, number of variables, num-
ber of fixings, or a combination of these limits. In order to prevent stalling, an
additional termination criterion is typically added, which interrupts probing if
the last iterations were barely successful. MIP solvers typically exploit problem
structure to accelerate the solving process. Examples include the use of clique
tables [10,1], specialized handling of SOS constraints, and the identification of
knapsack structure for generating strong cover cuts [5,4,1]. However, to the best
of our knowledge, this has not yet been used for probing. To improve the effi-
ciency of probing, we propose leveraging structural information from the model.
In particular, we focus on cliques to speed up the procedure, although the under-
lying idea can be generalized to other types of structure. Therefore, we propose
Clique Probing: During our probing routine, we use the information provided
by cliques to adjust the fixings done during probing. By this, we get stronger
reductions and are able to speed up the subsequent solving process.

The paper is organized as follows: In Section 2, we present the idea of clique
probing and its implementation. In Section 3, we evaluate the performance of
clique probing, and summarize our results in Section 4.

2 Clique Probing

2.1 General idea
A clique is a set of n binary variables z1,...,x, of which at most one variable
is allowed to be active, i.e., to be set to one. We distinguish at-most-one cliques,

for which

Tyt <1

Clique probing 3
must hold, and ezactly-one cliques, for which
14+ tz, =1

must hold. During presolving, cliques are found explicitly as part of the con-
straints of the original model or derived from other problem structures that
imply mutually exclusive assignments.

Standard probing selects variables based on the score, fixes them to one and
zero, and performs propagation on both assignments. Assuming all variables of
a clique are selected for probing, probing performs 2n propagation calls, two for
each variable. However, a clique only allows at most n + 1 different assignments
for the variable vector (z1,...,z,), and for exactly-one cliques, even one less,
because the all-zero assignment is excluded. Therefore, it would be sufficient to
just probe these n + 1, respectively n, cases. This has the advantage that we
can (a) reduce the number of probing and subsequent propagation calls needed
to get the same results, (b) propagate faster since we can fix multiple variables
initially, (c) obtain tighter bounds for cliques involving more than two variables,
since fixing a variable inside the clique to zero does not determine the remaining
variables within the clique, and (d) exploit that the all-zero assignment is not
feasible for exactly-one cliques.

The following definition adjusts the evaluation of the results of standard
probing in Definition 1 for probing on cliques.

Definition 2. Formally, let ¢ be an at-most-one clique consisting of n variables.
Let ¢’ be the variable assignment, where x; is set to one, and all other variables
of clique c are set to zero. Let ¢ be the variable assignment, where all variables
of a clique c are set to 0. Let z be an arbitrary variable with bounds [l u,], and
let [I1,ul] be the variable bounds of z after propagating c’. Then a new set of
four rules can be applied while probing:

inf If propagating ¢’ with i € {1,...,n} makes the problem infeasible, x; can
be fixed to zero. If propagating ¢° makes the problem infeasible, ¢ can be
upgraded to an exactly-one clique.
bds Global bounds for z can be updated to [mingeqo,... n} 2 MaXpe(o,... n} uk].
sub Variable z can be substituted by z = ¢+ (¢ —¢2) x; with j € {1,...,n}\{i}
if the following rules hold:
1. ¢ =ub forall k € {0,1,...,n}
2.) =% and uJ = u¥ for all j,k € {0,1...,n}\{i}
3. 08 #£ 00 and ub #£ ! for all k € {0,1...,n}\ {4}
imp Implications for ¢! with i € {1,...,n} can still be stored similarly to Defi-
nition 1.

For evaluating exactly-one cliques, the variable assignment c° is not consid-
ered, and the rules are adapted accordingly: in the bds and subs rules, the index
sets range over {1,...,n} instead of {0,...,n}. Further, the sub-rule can be
more generalized, allowing the aggregation of multiple variables.

4 von Holly et. al

2.2 Data structure

In formulating the rules for analyzing substitutions and bounds, it is necessary to
know all bounds of each variable after the propagation of variable assignments.
For long cliques, however, this can be memory-intensive and cause a significant
slowdown.

To address this, we maintain a global data structure within clique probing
instead of storing all bounds for each propagation. For the global bounds, we
record for each variable the current maximum upper and minimum lower bound,
denoted as B in Algorithm 1 below. To detect substitutions, we additionally store
the second lowest and highest values, as well as the indices (argmin/argmax) of
the minimum and maximum bounds, denoted as I in Algorithm 1.

Rather than duplicating bounds for every possible variable assignment, this
approach limits the overhead to six values per variable. Additionally, after prop-
agating each assignment, these values allow us to calculate the maximal bound
changes and substitutions as if no further assignments were to be considered.
For example, if a variable’s bound is not tightened after propagating a single
assignment, then no global tightening of that bound can occur. These values
can be used as an upper bound on the number of potential bound changes and
substitutions, which can then be used as a termination criterion for large cliques.

2.3 Algorithm

Algorithm 1 shows the function to perform probing on a single clique. First,
the data structures B (for tracking global bound changes) and I (for detecting
substitutions) are initialized (Line 1). For at-most-one cliques, all variables in the
clique are fixed to zero and propagated. If this all-zero propagation is infeasible,
the clique is upgraded to an exactly-one clique (Line 5). Otherwise, B and I
are updated according to rules (bds, subs) (Line 7). Next, each variable in the
clique is probed by setting it to one while fixing all others to zero, followed by
propagation. If infeasibility is detected, the corresponding variable is fixed to
zero (Line 13); otherwise, the data structures B and I are updated (Line 15).

Since this process can become computationally expensive for large cliques,
we introduce an early termination criterion. As explained in Section 2.2, we
can derive an upper bound on how many bound changes can be applied from
B and I. If this falls below a certain threshold, we abort clique probing (Line
10). Finally, after probing all cases, the results stored in B and I are analyzed,
and the corresponding bound changes and substitutions are applied (Lines 16
and 17). If each propagation within the clique proves infeasible, the algorithm
concludes global infeasibility (Line 19).

A full run of clique probing is outlined in Algorithm 2. First, we need to select
the cliques to be probed on. In Line 1, we sort cliques by their average variable
score, and the highest-scoring cliques Then, we perform clique probing on the
selected cliques until either all the cliques have been probed or two consecutive
cliques have been unsuccessful (Line 7). Probing on a clique is considered unsuc-
cessful if a certain threshold of bound changes and substitutions per propagated

Clique probing 5

Algorithm 1 PROBESINGLECLIQUE

Require: MIP with global variable bound vectors [, u; clique ¢ with the set of all
variables in the clique N,; abort threshold ¢

1: init B, I with global bounds

2: if ¢ is an at-most-one clique then

3 set all z € N, to 0; propagate

4: if infeasible then

5: upgrade clique to an exactly-one clique

6: else

7 update B, I

8: for x € N. do

9: set = to 1; set all y € N./{z} to 0; propagate
10: if MAXGLOBALBOUNDCHANGESANDIMPLICATIONS(B, I) < § then
11: abort

12: if infeasible then

13: fix x to 0

14: else

15: update B, I

16: analyze B and apply global valid variable bounds
17: analyze I and apply substitutions

18: if all propagations infeasible then

19: return global infeasibility

variable is not reached. Afterwards, traditional probing is continued in Line 10
on the variables (Np) that have not been touched by clique probing (Line 6).
Clique probing is disabled for future runs if it finds no reductions at all (Line 9).

2.4 Implementation

For our implementation, we build upon the open-source presolving C++ library
PAPILO [7], which is publicly available on GitHub?. PAPILO implements com-
mon presolving techniques [2], supports multi-precision, and accelerates the pre-
solving process through parallelization. To minimize synchronization overhead, it
adopts a transaction-based architecture: each presolver records its reductions in-
dependently in the form of a transaction rather than applying them immediately.
These transactions are then returned to the PAPILO core, which sequentially
checks their validity and applies them if still applicable.

Whenever probing is invoked in PAPILO, our clique probing procedure is
executed first, followed by the standard probing routine. In the latter, we exclude
variables that have already been probed or fixed by clique probing. Additionally,
all bound changes and fixings identified by clique probing are applied locally to
the instance used for probing. Candidate variables are ranked using the same
scoring function employed by PAPILQO’s built-in probing routine.

In order to make use of the existing parallelization framework in PAPILO,
we implemented the option to parallelize the for loops in Line 4 in Algorithm 2

3 https://github.com/scipopt/papilo

https://github.com/scipopt/papilo

6 von Holly et. al

Algorithm 2 CLIQUEPROBING
Require: a list of cliques C, probing score for binary variables S, list of binary vari-
ables in the MIP N
1: Sort C' by average probing score of variables S
2: C <+ highest-scored cliques, skipping cliques with more than 50% overlapping vari-
ables
NP —~ N
for c € C do
PROBESINGLECLIQUE(c)
Np + Np\{Nc}
if two consecutive calls of PROBESINGLECLIQUE were unsuccessful then
break
disable clique probing for future runs if no reductions were found
: resume with PROBING(Np)

[

and Line 8 in Algorithm 1. Each thread receives its own local copy of B and I
in order to avoid synchronization overhead for the global data structures B and
I in Algorithm 1, Variable assignments are processed in batches, and after each
batch, the local data structures are synchronized sequentially with the global
ones. With this implementation, no locking during the threads is necessary.

In our experiments, however, all algorithms are executed sequentially in or-
der to determine the pure algorithmic advantage of clique probing. Furthermore,
PAPILO currently has no API to pass implications to an interfaced MIP solver
and does not use them internally. Hence, we do not consider them in our exper-
iments.

3 Computational Study

In this section, we evaluate how the theoretical speedup translates into practi-
cal performance. In particular, we are interested in investigating the following
questions: (a) Is clique probing more effective in the sense that it yields more
reductions? (b) How does clique probing affect the overall performance of the
solver? The first two questions are examined in Section 3.2 and the latter in
Section 3.3. First, we explain the experimental setup in Section 3.1.

3.1 Experimental setup

We implemented clique probing in PAPILO [7], which functions as a standalone
presolving library and is also integrated as a default plugin within the presolving
phase of the open-source MIP solver SCIP. In our experiments, we run SCIP,
which invokes PAPILO as part of its presolving routine. It is important to note
that PAPILO constitutes only one component of the overall presolving process
in SCIP and may be called multiple times during presolving, with presolving as
a whole potentially being called multiple times during the solving process. Since
presolve routines are called before the invocation of PAPILO within SCIP,

Clique probing 7

PAPILO is already executed on a reduced problem and not on the original
problem.

Testset We base our experiments on the MIPLIB 2017 benchmark set [8] con-
sisting of 240 instances and solve each instance with four different random seeds.
We exclude instances that can neither be solved with clique probing enabled nor
disabled, on four different seeds, in two hours. Further, we exclude instances
where PAPILO does not identify cliques since they are not affected by the
changes. This results in a total of 93 instances. Each seed combination is treated
as a separate observation, resulting in a total number of 372 runs.

Software & Hardware For our experiments, we use our implementation in PA-
PILO 3.0 githash 0e1165d6 and compare with the default PAPILO githash
32328a5c¢ as a baseline, which is a verbose variant of d808e1f3. We use a devel-
opment version of SCIP 10.0 with githash 80c1fbfelb. The experiments were
carried out on identical machines with Intel(R) Xeon(R) CPU ET7-8880 v4 @
2.20 GHz.

Parametrization By default, PAPILO within SCIP is executed sequentially,
hence we also used the sequential mode in our experiments. Since probing large
cliques is computationally expensive, we focus only on promising candidate
cliques and aim to terminate the probing process early and parameterize Al-
gorithms 2 and 1 accordingly. This approach aligns with the general philosophy
of probing. To avoid long and unsuccessful runtimes, we limit the maximum size
of cliques considered to 150 and the maximum number of variables in cliques
probed in a single run to 3000. The initial batch size of cliques is set to 2, which
determines how many cliques are considered at the start of the process. Clique
probing is aborted if, for two consecutive iterations, fewer than three reductions
per propagation are found. Analogous to probing, we define an additional abor-
tion criterion that terminates clique probing if a threshold of reductions or work
limit is exceeded. If no reduction is found, we also disable clique probing for
future rounds of presolving. Additionally, to avoid probing duplicate variables,
we restrict the maximum ratio of probed on variables in a clique to 50%.

3.2 Analysis of clique probing

In this section, we analyze the performance of clique probing in terms of the
number of fixings, substitutions, and bound changes found in comparison to
default PAPILO for the first call within SCIP. A detailed table containing the
propagations performed per second, the reductions found per second, and the
reductions found for each instance is provided in the repository?.

Figure 1 visualizes the total number of reductions found, comparing the de-
fault PAPILO version (horizontal axis) with the clique probing version (vertical
axis). Each data point represents an observation for one instance. Blue points

* https://github.com/alexhoen/papilo/tree/clique-probing-paper/Paper

https://github.com/alexhoen/papilo/tree/clique-probing-paper/Paper

8 von Holly et. al

indicate the number of fixings, green crosses show the number of bound changes,
and red circles represent substitutions found. Instances for which the numbers of
fixings, substitutions, and bound changes are identical, and the runtime differs
by less than 5% or by at most 0.2 seconds, are omitted from both the table and
the figure. For each of the three categories, the vast majority of data points lie
on or above the diagonal, which demonstrates that clique probing is overall more
effective than standard probing.

10°

10°

104

103

102

Reductions (Clique)

10!

10°

TTTITT T T T T T TTTI T T TTTITT T T T T T T T T TTTITT T
X
¥

T T T 1 U S 1] B A AT M

Lol Lol Ll Ll Lol Lol L
10° 10" 10° 10° 10* 10° 10°
Reductions (Default)

Fig. 1. Visualization of reductions of different types, fixings are marked as blue dots,
substitutions as red circles, and bound changes as green crosses.

We highlight several instances with particularly pronounced differences. Two
notable negative outliners are the instances NET12 and SQUARE47: On SQUAREA47,
the runtime of probing increases from 68.5 to 173.8 seconds. While default prob-
ing aborts probing on the first batch of ten variables without finding any reduc-
tions, Clique probing initially selects two large cliques, which takes a significant
amount of time and returns 41 bound changes. On NET12, an unfavorable initial
clique selection results in premature termination of clique probing, whereas the
variable selection of default probing is comparatively “lucky”: it probes 1600
variables instead of 250 and finds more reductions.

In contrast to these outliers, most instances show a clear increase in reduc-
tions with only a marginal increase in runtime. In particular, for AIR0O5, NEOSS,
NEOS-860300, PIPEROUT-08, PIPEROUT-27, SUPPORTCASE33 the improvement
is pronounced: the number of fixings increases from 0 to 138, from 1233 to 21 340,

Clique probing 9

from 27 to 168, from 209 to 477, from 67 to 361, and from 1 to 234, respectively,
with only a small overhead in runtime.

Generally, the runtime of probing increases slightly when clique probing is
active. However, the probing process becomes significantly more efficient. Com-
pared to using standard probing, PAPILO with clique probing finds 5% more
reductions per second of presolving. A drawback is that aborting the clique prob-
ing process discards all progress made for that clique, which can, for example,
on the SQUARE47 instance, increase the overall runtime.

Note that even a small number of additional reductions can substantially
impact the behavior of the underlying solver since (a) presolvers are executed in
a round-based manner to iteratively improve the model and therefore interact
with each other, and (b) contrary to what the name might imply, presolving is
invoked multiple times during the overall solution process, for example, when
solving sub-MIPs or during restarts.

3.3 Impact on overall solver performance

Although the above results are promising, it is difficult to assess solely from
the number of reductions and the recorded times how the subsequent solving
process behaves with these new changes. While each reduction achieved through
(clique-)probing strengthens the problem formulation, we want to analyze the
effectiveness of the reductions obtained by the clique probing approach when
integrated within a solver.

In Table 1, we compare the performance of clique probing in SCIP against
the default configuration. All run times are given in seconds and aggregated
using the shifted geometric mean with a shift of 1 (sgm1). Nodes are aggregated
using the shifted geometric mean with a shift of 100 (sgm100). The row “all”
summarizes results over the full test set, while the rows [s, tlimn] include only
instances which were solved by at least one configuration and for which at least
one configuration took at least s seconds to solve. The row “affected” lists only
those instances where the branch-and-bound tree was altered by clique probing.

Overall, clique probing solves 324 instances compared to 321 in the default
setting, thus improving the total number of solved instances by three. We also
observe a relative speed-up of approximately 3% in terms of solving time. This
improvement becomes more pronounced on harder instances: for instances re-
quiring at least 100 seconds to solve, the speed-up increases to 6%, and for those
requiring at least 1000 seconds, it reaches 8%. The results, therefore, indicate
that clique probing is particularly effective on more challenging instances.

4 Conclusion

In this paper, we presented clique probing, an approach that exploits the model’s
existing data structures to avoid unnecessary propagations during probing while
simultaneously providing a stronger relaxation. As demonstrated in our exper-
iments, this results in a substantial increase in propagations per second and,

10 von Holly et. al

Table 1. Performance comparison between SCIP with PAPILO with clique probing
enabled vs. default PAPILO. Times are displayed in seconds and aggregated by sgml.
The number of nodes is aggregated by sgm100.

clique probing default relative
Subset instances solved time nodes solved time nodes time nodes
all 372 324 310.56 2125 321 318.98 2139 1.03 1.01
affected 340 312 350.85 3979 309 372.52 4127 1.06 1.04
[0,tlim] 352 324 214.30 2236 321 223.45 2285 1.04 1.02
[1,tlim)] 352 324 214.30 2236 321 223.45 2285 1.04 1.02
[10,tlim] 332 304 330.23 3050 301 343.43 3119 1.04 1.02
[100,tlim] 264 236 758.98 7138 233 804.32 7281 1.06 1.02
[1000,tlim] 176 148 1987.33 19533 145 2142.13 20793 1.08 1.06

consequently, slightly more reductions during probing. Overall, this yields a 3%
speed-up in SCIP on instances containing cliques.

There remains, however, room for further improvement. (a) Since PAPILO
does not maintain a clique table, and SCIP does not share its clique table
with PAPILO, we are currently limited to detecting only those cliques that
appear explicitly in the model; and (b) there is presently no mechanism for
communicating implications back to the underlying solver within PAPILO.

Despite these limitations, the results are encouraging and suggest that similar
techniques could be applied to other data structures, such as SOS2 constraints,
opening up promising directions for future research.

Acknowledgements: The work for this article was supported through the
Research Campus MODAL funded by the German Federal Ministry of Research,
Technology, and Space (fund numbers 05M14ZAM, 05M20ZBM, 05M2025). Alexan-
der was supported by the Bundesministerium fiir Bildung und Forschung (16DHBKI071).

References

1. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis (01 2007). https:
//doi.org/10.14279 /depositonce-1634

2. Achterberg, T., Bixby, R., Gu, Z., Rothberg, E., Weninger, D.: Presolve reductions
in mixed integer programming. INFORMS Journal on Computing 32 (11 2019).
https://doi.org/10.1287 /ijoc.2018.0857

3. Achterberg, T., Wunderling, R.: Mixed integer programming: Analyzing 12 years of
progress. In: Facets of combinatorial optimization: Festschrift for martin grotschel,
pp. 449-481. Springer (2013)

4. Atamtiirk, A.: Cover and flow cover inequalities for capacitated knapsack poly-
hedra. Mathematical Programming 99(1), 63-80 (2004). https://doi.org/10.1007/
$10107-003-0467-0

5. Balas, E.: Facets of the knapsack polytope. Mathematical Programming 8, 146—164
(1975). https://doi.org/10.1007/BF01580442

https://doi.org/10.14279/depositonce-1634
https://doi.org/10.14279/depositonce-1634
https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1007/s10107-003-0467-0
https://doi.org/10.1007/s10107-003-0467-0
https://doi.org/10.1007/BF01580442

10.

11.

Clique probing 11

Bolusani, S., Besangon, M., Bestuzheva, K., Chmiela, A., Dionisio, J., Donkiewicz,
T., van Doornmalen, J., Eifler, L., Ghannam, M., Gleixner, A., Graczyk, C., Hal-
big, K., Hedtke, 1., Hoen, A., Hojny, C., van der Hulst, R., Kamp, D., Koch, T.,
Kofler, K., Lentz, J., Manns, J., Mexi, G., Mithmer, E., Pfetsch, M.E., Schlosser,
F., Serrano, F., Shinano, Y., Turner, M., Vigerske, S., Weninger, D., Xu, L.: The
scip optimization suite 9.0 (2024), https://arxiv.org/abs/2402.17702

Gleixner, A., Gottwald, L., Hoen, A.: PaPILO: A parallel presolving library for
integer and linear programming with multiprecision support. INFORMS Journal
on Computing (2023). https://doi.org/10.1287/ijoc.2022.0171.cd, https://github.
com/INFORMSJoC/2022.0171

Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold,
T., Christophel, P.M., Jarck, K., Koch, T., Linderoth, J., Liibbecke, M., Mit-
telmann, H., Ozyurt, D., Ralphs, T., Salvagnin, D., Shinano, Y.: Miplib 2017:
Data-driven compilation of the 6th mixed-integer programming library. Mathe-
matical Programming Computation 13(3), 443 — 490 (2021). https://doi.org/10.
1007/s12532-020-00194-3

Huangfu, Q., Hall, J.A.J.: Parallelizing the dual revised simplex method
(2018). https://doi.org/10.1007/s12532-017-0130-5, https://doi.org/10.1007/
s12532-017-0130-5

Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties and algo-
rithms. Mathematical Programming 8, 232-248 (1975). https://doi.org/10.1007/
BF01580444

Savelsbergh, M.: Preprocessing and probing techniques for mixed integer program-
ming problems. ORSA Journal on Computing 6 (11 1994). https://doi.org/10.
1287 /ijoc.6.4.445

https://arxiv.org/abs/2402.17702
https://doi.org/10.1287/ijoc.2022.0171.cd
https://github.com/INFORMSJoC/2022.0171
https://github.com/INFORMSJoC/2022.0171
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1007/BF01580444
https://doi.org/10.1007/BF01580444
https://doi.org/10.1287/ijoc.6.4.445
https://doi.org/10.1287/ijoc.6.4.445

von Holly et. al

12

Table 2. Results of the first probing call of PAPILO in SCIP. Columns show Default vs. Clique Probing for each metric: Time (s), variable
fixings (Fixings), substitutions (Subs), bound changes (BChgs), propagations (Props), average propagations per second (Props/s), and
reductions per propagation (Reds/Prop).

Time [s] Fixings Subs BChgs Props Reds/Prop
Instance Def Clique Def Clique Def Clique Def Clique Def Clique Def Clique
30n20b8 0.2 0.2 3 23 0 0 0 1 40 320 0.1 0.1
air05 0.1 0.5 0 138 0 0 0 0 20 392 0.0 0.4
bppc4-08 0.0 0.2 0 0 0 0 0 1 30 543 0.0 0.0
brazil3 0.2 0.3 0 10 0 0 0 0 138 791 0.0 0.0
co-100 3.2 3.9 24869 24869 80 80 0 0 62 95 402.4 262.6
cryptanalysiskb128n50bj16 5.7 6.6 690 697 8382 8348 0 0 51316 43533 0.2 0.2
ex10 141.5 74.2 15297 15206 620 711 0 0 32808 18831 0.5 0.8
ex9 14.8 16.0 8077 8063 443 474 0 0 10216 9138 0.8 0.9
mzzv1l 0.3 0.4 191 202 1 2 0 0 262 398 0.7 0.5
mzzv42z 0.2 0.3 143 153 9 11 0 0 258 647 0.6 0.3
neos-3216931-puriri 0.1 0.2 23 25 0 0 0 0 176 235 0.1 0.1
neos-4722843-widden 4.2 10.6 1659 1659 509 723 2243 2017 64928 70320 0.1 0.1
neos-5114902-kasavu 12.2 12.9 0 0 0 0 0 0 2000 2009 0.0 0.0
neos-5195221-niemur 0.5 1.4 1919 1919 441 450 4026 4026 16894 19796 0.4 0.3
neos-662469 0.2 0.4 0 0 0 0 0 0 24 299 0.0 0.0
neos-860300 0.8 1.5 27 168 0 0 0 0 120 384 0.2 0.4
neos8 5.9 1.9 1223 21340 20 20 4 4 3502 3459 0.4 6.2
neos-957323 1.1 1.9 0 40 0 0 0 0 164 519 0.0 0.1
net12 0.2 0.2 1030 237 51 35 0 0 3236 921 0.3 0.3
nexp-150-20-8-5 0.1 0.1 0 0 0 0 3 9 3462 3518 0.0 0.0
ns1644855 10.1 12.4 0 0 0 0 100 101 1950 2004 0.1 0.1
ns1760995 6.8 31.0 0 71 0 0 0 30 266 1815 0.0 0.1
piperout-08 0.2 0.3 209 477 64 111 0 26 682 1024 0.4 0.6
piperout-27 0.2 0.4 67 361 54 48 0 2 266 959 0.5 0.4
rocl-4-11 0.2 0.2 402 387 1196 1173 505 514 6156 5733 0.3 0.4
rocll-5-11 2.9 2.8 2728 2727 10 10 55 55 10068 9237 0.3 0.3
s250r10 13.7 23.0 18 18 641 641 0 0 152 420 4.3 1.6
squared? 69.5 173.8 0 0 0 0 0 41 20 377 0.0 0.1
supportcase33 0.3 1.1 1 234 0 0 1 3 62 503 0.0 0.5
wachplan 0.0 0.0 0 0 0 0 0 1 22 64 0.0 0.0

	Clique Probing for Mixed-Integer Programs

