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Abstract

In this paper, we develop a unified majorization-minimization scheme and convergence analysis with first-
order surrogate functions for unconstrained vector optimization problems (VOPs). By selecting different
surrogate functions, the unified method can be reduced to various existing first-order methods. The unified
convergence analysis reveals that the slow convergence of the steepest descent method is primarily attributed
to the significant gap between the surrogate and objective functions. Consequently, narrowing this surrogate
gap can enhance the performance of first-order methods for VOPs. To strike a better trade-off in terms
of surrogate gap and per-iteration cost, we reformulate the direction-finding subproblem and elucidate that
selecting a tighter surrogate function is equivalent to using an appropriate base of the dual cone in the
direction-finding subproblem. Building on this insight, we employ the Barzilai-Borwein method to narrow
the surrogate gap and propose a Barzilai-Borwein descent method for VOPs (BBDVO) with polyhedral
cones. By reformulating the corresponding subproblem, we provide a novel perspective on the Barzilai-
Borwein descent method, bridging the gap between this method and the steepest descent method. Finally,
several numerical experiments are presented to validate the efficiency of the BBDVO.

Keywords: Multiple objective programming, Majorization-minimization optimization, Barzilai-Borwein
method, Convergence rates, Polyhedral cone
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1. Introduction

This paper focuses on the following unconstrained vector optimization problem:
ming F(x), (VOP)

where F' : R® — R™ is to be optimized under the partial order induced by a closed, convex, and pointed
cone K C R™ with a non-empty interior, defined as follows:

y <k (resp. <k)y & y' —y € K(resp. int(K)).

Let K* = {c¢* € R™: (¢*,y) > 0,Vy € K} be the positive polar cone of K, and C be a compact base of K*,
namely, C' is a convex set such that 0 ¢ clC and cone(C) = K*. In vector optimization, it is often impossible
to improve all objectives simultaneously with respect to the partial order. Therefore, the concept of opti-
mality is defined as efficiency (Jahn, 2011), meaning that there is no better solution for an efficient solution.
Specifically, the problem (VOP) corresponds to a multiobjective optimization problem when K = R, where
R’ denotes the non-negative orthant of R™. Various applications of multiobjective optimization problems
(MOPs) can be found in engineering (Marler & Arora, 2004), economics (Tapia & Coello, 2007; Fliege &
Werner, 2014), management science (Evans, 1984), environmental analysis (Leschine et al., 1992), machine
learning (Sener & Koltun, 2018; Ye et al., 2021), etc. Although many real-world problems reformulated as
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vector-valued problems adhere to the partial order induced by R, some applications, such as portfolio selec-
tion in securities markets (Aliprantis et al., 2004a,b), require partial orders induced by closed convex cones
other than the non-negative orthant. Consequently, vector optimization problems (VOPs) have garnered
significant attention in recent years.

Over the past two decades, descent methods have received increasing attention within the multiobjective
optimization community, primarily due to the seminal work on the steepest descent method proposed by
Fliege & Svaiter (2000). Inspired by Fliege and Svaiter’s contributions, researchers have extended other
numerical algorithms to solve multiobjective optimization problems (MOPs) (see, e.g., Fliege et al., 2009;
Qu et al., 2011; Povalej, 2014; Fliege & Vaz, 2016; Carrizo et al., 2016; Mercier et al., 2018; Morovati &
Pourkarimi, 2019; Tanabe et al., 2019). To the best of our knowledge, the study of descent methods for
unconstrained vector optimization problems can be traced back to the work of Grana Drummond & Svaiter
(2005), who extended the steepest descent method for MOPs (SDMO) proposed by Fliege & Svaiter (2000)
to VOPs. In this context, the direction-finding subproblem at z* is formulated as follows:

. * k Lo
min max (¢*, JF(a")d) + 5||d|*,
where JF(z*) € R™*" is the Jacobian matrix of F(-) at 2. Similar to MOPs, several standard numerical
algorithms have been extended to VOPs, including the Newton method (Grana Drummond et al., 2014),
projected gradient method (Grafia Drummond & Iusem, 2004), proximal point method (Bonnel et al., 2005),
conjugated gradient method (Lucambio Pérez & Prudente, 2018) and conditional gradient method (Chen
et al., 2023c).

In recent years, complexity analysis of descent methods for MOPs has been extensively studied. Fliege
et al. (2018) and Zeng et al. (2019) established the convergence rates of SDMO under different convexity
assumptions. Tanabe et al. (2023) developed convergence results for the multiobjective proximal gradient
method. Additionally, Lapucci (2024) studied the complexity of a wide class of multiobjective descent meth-
ods with nonconvex assumption. However, Chen et al. (2023b) noted that both theoretical and empirical
results indicate that existing multiobjective first-order methods exhibit slow convergence due to objective
imbalances. To address this challenge, Chen et al. (2023a) proposed a Barzilai-Borwein descent method
for MOPs (BBDMO) that dynamically tunes gradient magnitudes using Barzilai-Borwein’s rule (Barzilai &
Borwein, 1988) in direction-finding subproblem. From a theoretical perspective, an improved linear conver-
gence rate is confirmed by Chen et al. (2023b), demonstrating that Barzilai-Borwein descent methods can
effectively mitigate objective imbalances.

Despite the extensive study of complexity analysis for MOPs, corresponding results have received little
attention in VOPs. As described by Chen et al. (2022), the linear convergence rates of first-order descent
methods for VOPs are essentially affected by C, which represents the base of K* in direction-finding sub-
problem. In general, K* admits infinitely many possible bases, and the choice of C' is therefore not unique.
Although this choice critically influences the search direction and ultimately the convergence behavior of
the algorithm, the existing literature offers no comprehensive theoretical analysis or guiding principle for
selecting such a base. In the classical setting of multiobjective optimization, the subproblem of SDMO can
be reformulated as

. k Lo
min max (A, JF(z")d) + 5 [ld]*,
where Ay, := {X = 0: " A\ = 1} is a base of R". While this choice appears natural and convenient
from a computational perspective, its theoretical justification and potential advantages over other alternatives
remain largely unexplored. Hence, identifying an appropriate and theoretically sound base for K* constitutes
a fundamental yet open problem, which is of both theoretical significance and practical relevance in the design
of efficient first-order methods for VOPs. This naturally leads to the following question:

Can we provide a theoretical guidance for the choice of the base? (Q)

To answer the proposed questions, we develop a unified framework and convergence analysis of first-order
methods for VOPs from a majorization-minimization perspective. The majorization-minimization principle



is a versatile tool for designing novel algorithms, which has been successful employed in nonconvex optimiza-
tion (Lanza et al., 2017), constrained optimization (Landeros et al., 2023), and incremental optimization
(Mairal, 2015; Karimi et al., 2022). The core idea behind the majorization-minimization method is to mini-
mize a difficult optimization problem by iteratively minimizing a simpler surrogate function that majorizes
(upper-bounds) the original objective. In this paper, we extend majorization-minimization method to vector
optimization, addressing the aforementioned questions. Our work aims to provide a unified framework and
convergence analysis of first-order methods for VOPs from a majorization-minimization perspective. The
primary contributions of this paper are summarized as follows:

(i) Before presenting the majorization-minimization method and its convergence analysis, we first define
the concepts of strong convexity and smoothness for a vector-valued function with respect to a partial order.
Leveraging these properties, we extend the notion of the condition number to VOPs, which plays a pivotal
role in establishing the linear convergence of first-order methods for VOPs. To the best of our knowledge, it
is the first definition of condition number to VOPs.

(ii) We devise a unified majorization-minimization descent method for VOPs and develop its convergence
analysis. By selecting different surrogate functions, the unified method can be reduced to several existing
first-order methods. It is worth noting that the gap between the surrogate and objective functions signifi-
cantly affects the performance of descent methods, which plays a central role in majorization-minimization
optimization. Specifically, the steepest descent method for VOPs exhibits slow convergence due to the large
gap between the surrogate and objective functions. To address this issue, we develop an improved descent
method with a tighter surrogate function, resulting in improved linear convergence, and the rate of con-
vergence is determined by the condition number. Interestingly, we show that selecting a tighter surrogate
function is equivalent to using an appropriate base in the direction-find subproblem (see Remarks 4.4 and
5.3). This provides a positive answer to the proposed question.

(iii) Theoretical results suggest a tighter surrogate function by using Barzilai-Borwein method, which
motivates us to devise a Barzilai-Borwein descent method for VOPs (BBDVO) with polyhedral cones. By
reformulating the subproblem, we observe that BBDVO is essentially the steepest descent method with
an appropriately chosen base in the direction-finding subproblem (see Remark 6.3). Furthermore, a VOP
with a polyhedral cone can be transformed into an MOP using a transform matrix, which is often used
to define a specific polyhedral cone. We demonstrate that the performance of BBDVO is insensitive to
the choice of the transform matrix, whereas the steepest descent method is highly sensitive to it. From
a majorizationminimization perspective, we further elucidate why the line search procedure in VOPs leads
to a slower linear convergence rate compared with its counterpart without line search. In contrast, the
backtracking strategy preserves the same linear convergence rate as first-order methods for VOPs without
line search.

The remainder of this paper is organized as follows. Section 2 introduces the necessary notations and
definitions for later use. In Section 3, we present a generic majorization-minimization descent method for
VOPs and analyze its convergence rates under various convexity assumptions. Sections 4 and 5 explore the
connections between different descent methods from the perspective of majorization-minimization. Section 6
proposes a Barzilai-Borwein descent method for VOPs with a polyhedral cone. Section 7 provides numerical
results to demonstrate the efficiency of the BBDVO. Finally, conclusions are presented at the end of the

paper.

2. Preliminaries

Throughout this paper, R™ and R™*" denote the set of n-dimensional real column vectors and the set
of m x n real matrices, respectively. The space R" is equipped with the inner product (-,-) and the induced
norm || - ||. The interior, boundary and the closure of a set are denoted by int(-), bd(-) and cl(-), respectively.
The cone generated by a set is denoted by cone(-). For simplicity, we denote [m] := {1,2,...,m}, 1,,, and I,
the all-ones vector in R™ and identity matrix in R™*™ respectively.

Since K is a closed convex cone, it follows that K = K** (see (Rockafellar, 1970, Theorem 14.1)),

K={yeR™:(y,c") >0,Vc" € K"},



and
int(K) ={y e R": (y,c*) > 0,Vc* € K*\ {0}}.

Since int(K') # 0, we assume that there exists a compact and convex set C' such that

0¢C, (1)
cone(C) = K*. (2)
Therefore
K={yeR™:(y,c") >0,Vc" € C}, (3)
int(K) = {y e R™: (y,c*) > 0,Vc* € C}. (4)

The latter equality, together with the compactness of C', implies that

min {(c",y)} >0, Vy & int(K). (5)

For more details on C, we refer the readers to (Grana Drummond & Svaiter, 2005, pp. 400).

2.1. Vector optimization

In the subsection, we revisit some definitions and results pertinent to VOPs. Firstly, we introduce the
concept of efficiency.

Definition 2.1. (Jahn, 2011, Definition 11.3) A vector * € R™ is called efficient solution to (VOP) if there
exists no x € R™ such that F(x) < F(x*) and F(x) # F(x*).

Definition 2.2. (Jahn, 2011, Definition 11.5) A vector x* € R™ is called weakly efficient solution to (VOP)
if there exists no v € R™ such that F(x) <x F(z*).

Definition 2.3. (Grana Drummond & Svaiter, 2005) A vector z* € R™ is called K -stationary point to (VOP)

if
range(JF(z*)) N (—int(K)) = 0,

where range(JF(2*)) denotes the range of linear mapping given by the matriz JF(z*).

Definition 2.4. (Grana Drummond & Svaiter, 2005) A vector d € R™ is called K -descent direction for F(-)
at x if
JF(z)d € —int(K).

Remark 2.1. Note that if x € R™ is a non-stationary point, then there exists a K-descent direction d € R™
such that JF (z)d € —int(K).

Next, we introduce the concept of K-convexity for F(-).

Definition 2.5. (Jahn, 2011, Definition 2.4) The objective function F(-) is called K -convex if
FQz+ (1= Ny) 2k AF(z) + (1 = A)F(y)
holds for all z,y € R™, X €[0,1].
By the continuous differentiability of F(-), K-convexity of F(-) is equivalent to
JE(z)(y - 2) 2k Fly) - F(z)

holds for all z,y € R™. (see (Jahn, 2011, Theorem 2.20)).
We conclude this section by elucidating the relationship between K-stationary points and weakly efficient
solutions.

Lemma 2.1. (Jahn, 2011) Assume that the objective function F(-) is K-convex, then z* € R" is a K-
stationary point of (VOP) if and only if x* is a weakly efficient solution of (VOP).



2.2. Strong convexity and smoothness

Strong convexity and smoothness of objective functions play a central role of first-order methods in
optimization. This subsection is devoted to strong convexity and smoothness of vector-valued functions
under partial order.

Definition 2.6. (Grana Drummond et al., 2014) The objective function F(-) is called strongly K-convex
with p € K if
1
FOz+ (1= Ny) <x AF(z) + (1 = N\ F(y) — 5A(l —\) ||z —y|® p, Y,y €R™, Ae[0,1],

and the above relation does not hold for any fr with o Ak w.

Remark 2.2. Comparing with the definition in (Grana Drummond et al., 2014 ), Definition 2.6 includes the
case p € bd(K), then it reduces K -convexity when p = 0. Furthermore, tthe final statement in the definition
establishes the uniqueness of the parameter w, which is essential for the convergence analysis.

Lemma 2.2. (Fliege et al., 2009, Theorem 3.1) Assume that the objective function F(-) is strongly K -convex
with p € int(K), then * € R™ is a K-stationary point of (VOP) if and only if x* is an efficient solution of
(VOP).

By the continuous differentiability of F(+), strong K-convexity of F(-) is equivalent to
1 2
3 llz=yl"p+ JF(2)(y — o) =x Fy) - F(z), Yo,y € R",
it characterizes a quadratic lower-bound of F(-). Intuitively, we use quadratic upper-bound to define the

K-smoothness of F'(-) under partial order.

Definition 2.7. The objective function F(-) is called K-smooth with £ € int(K) if
1
Fly) - F(z) 2x JF(@)(y —2) + 5 [lo — yl* £, Yo,y € R",

and the above relation does not hold for any £ with £ 2K L.

Remark 2.3. Assume that F(-) is strongly K-conver with p € K and K-smooth with £ € int(K), then
p =kt

Remark 2.4. Comparing with the smoothness and strong convezity in (Chen et al., 2022, Definitions 7 and
8) with Euclidean distance, i.e., w(-) = % |-II°, Definitions 2.6 and 2.7 are tighter and do not depend on the
reference vector e.

Next, we characterize the properties of the difference of two vector-valued functions.

Lemma 2.3 (regularity of residual functions). Let F,G : R™ — R™ be two vector-valued functions. Define
H(:) :=G(-) — F(-). Then the following statements hold.

(1) if G(-) is strongly K -convex with p € int(K) and F(-) is K-smooth with £ € int(K), where £ < p, then
H(.) is strongly K-convex with p — £;

(i1) if G(-) is K-smooth with £ € int(K) and F(-) is K-convez, then H(-) is K-smooth with £ € int(K).

(i) if G(-) K-smooth with £ € int(K) and F(-) is strongly K-convex with p € int(K), where p < £, then
H(-) is K-smooth with £ — p.

Proof. The proof is a consequence of the definition of strong K-convexity and K-smoothness, we omit it
here. O

In SOPs, the condition number (the quotient of smoothness parameter and the modulus of strong con-
vexity) plays a key role in the geometric convergence of first-order methods. We end this section with the
definition of the condition number of a strongly K-convex function under partial order.



Definition 2.8. Assume that F(-) is strongly K-convex with p € int(K) and K-smooth with £ € int(K).
Then, we denote

(6)
the condition number of F(-) under partial order <.
Remark 2.5. Notice that 0 ¢ C' and K* = cone(C'), the condition number can be rewritten as follows:

{c*, £)
max .
creK\{0} (c*, p)

KF<k =

In other words, the condition number of F(-) is determined only by K, not C.

In the following, we will show that the condition number can be reduced to that of MOPs (Chen et al.,
2023b).

Proposition 2.1. For any £, € R?,, we have

Dicim Mibi 3
AEAN, Zie[m] X i€lm] gy

Proof. Since £, u € R, , for any i € [m], we have
£;
£; < p; max —.
i€[m] pb

Multiply by A; > 0 and sum over ¢ € [m]:

Dicpm) Aidi £;

Therefore, the relation
Zie[m] )\161 Ei

max ——————— < max —
AEA,, ic[m] il i€[m]

holds due to the arbitrary of X\. Let s be an index where the maximum ratio is attained, i.e.

£y £;
— = max —
Hs i€[m] My
Take \¢ =1 and A; = 0 for i # s, we have
Zié[m] )\161 es ‘ez
max > — = max —.
AEA,, ic[m] )\zuz s i€[m]
This completes the proof. O

Remark 2.6. If K = R, then kp <, = maxyeca,, Zie[m] /\iei/Zie[m] Aipti- By Proposition 2.1, it follows
that Kp,<, = MaXic(m) €i/pmi. In other words, the condition number for multiobjective optimization is the
largest condition number among all objective functions.



Proposition 2.2. Assume that F(-) is strongly K;-conver with p1 € int(K7) and Ki-smooth with £; €
int(K1). Then, for any order cone Ky satisfied K1 C Ks, we have F(-) is strongly Ks-convexr with po €
int(K3) and Ka-smooth with €y € int(Ks). Futhermore, €y <k, €1, 1 <k, W2, and KF<r, < KF =, -

Proof. The proof is a consequence of the definitions of strong K-convexity, K-smoothness and condition
number, we omit it here. O

Remark 2.7. Proposition 2.2 shows that, for a fived vector-valued function, enlarging the underlying order
cone effectively simplifies the associated vector optimization problem; see Lemma 4.2 for a formal statement.
This observation motivates the use of a larger order cone to accelerate first-order methods for VOPs.

3. Majorization-minimization with first-order surrogate functions for VOPs

3.1. Majorization-minimization descent method for VOPs

In this section, we present a unified majorization-minimization scheme for minimizing a vector-valued
function in the sense of descent.

Algorithm 1: Unified majorization-minimization scheme for VOPs
Data: 20 ¢ R”
for k=0,1,... do
Choose a strongly K-convex surrogate function Gy () of F(-) — F(z*) near z*
Choose a base C}, of dual cone K*
Update zF! := argmin, cp» max.-cc, (¢, G (7))
if 2"t = 2% then
‘ return K-stationary point z*
end
end

® N O A~ W N

Remark 3.1. It is worth noting that we choose a variable base Cy, in each iteration, whreas an invariable base
C' is used in existing descent methods for VOPs, see (Grana Drummond € Svaiter, 2005; Grana Drummond
et al., 2014; Grana Drummond & Iusem, 2004; Bonnel et al., 2005; Lucambio Pérez & Prudente, 2018; Chen
et al., 2023c).

The surrogate function G/(-) plays a central role in the generic majorization-minimization scheme. Intu-
itively, G}, (+) should well approximate F(-) — F(x*) near z* and the related subproblem should be easy to
minimize. Therefore, we measure the approximation error by Hy(-) := G () — F(-) + F(2*¥). To characterize
surrogates, we introduce a class of surrogate functions, which will be used to establish the convergence results
of Algorithm 1.

Definition 3.1. For 2* € R", we call G1.(+) a first-order surrogate function of F(-) — F(x*) near o when

(i) F(aF*) — F(2F) g Gi(x*1), where 2%+1 is the minimizer of mingegs max.-cc, (¢, Gx(x)), further-
more, when F(-) — F(2*) < G(-) for all x € R"™, we call Gi(-) a majorizing surrogate;

(i3) the approzimation error Hy(-) is K-smooth with £ € int(K), Hy(z*) =0, and JH(z*) = 0.
We denote by Se, . (F,z%) the set of first-order strongly K -convex surrogate functions with p € int(K).
Next, we characterize the properties of first-order surrogate functions.

Lemma 3.1. Let Gi(-) € Sepu(F,z%) and 2**1 be the minimizer of mingegn maxe-cc, (¢, Gr(z)). Then,
for all x € R™, we have

(i) Hi(w) < § ||z — %[



(ii) {cp, F(z"1)) + § [|«F+ fch2 (ctom) < (e}, F(x)) + & ||2* fo (¢}, £), where ¢, is a mazimizer of
maXes ¢, Milgern <C*,Gk($ >

Proof. Assertion (i) directly follows by the K-smoothness of Hy(-) and the facts that Hy(x*) = 0 and
JH(z*) = 0. Next, we prove the assertion (ii). By Sion’s minimax theorem (Sion, 1958), by denoting cj
a maximizer of max. ¢, Mingegrn (¢*, Gx(z)), and z¥*1 the minimizer of min,eg: max.cc, (¢, Gr(z)), we
have JGy(z*t1)Tc; = 0. This, together with the strong K-convexity of G(-), implies that

1
(e, Gr(FT1)) + 3 H:E’”'l - $||2 (¢, ) < {ci,Gi(z)), Vo € R".

We thus use F(zFt1) — F(2F) < Gr(2F1) to get

(e P = PR 4 2[5 — ] (eh i) < (e, Gola** ) + 5 o4+ = (e )
< (¢f, Gu(a))
= {c;, F(z) — F(z*)) + (c}, Hy(z))
< (e Fla) ~ Fah)) + 3 2 — > (i, 0,

where the equality follows by the definition of Hy(-) and the last inequality is due to the assertion (i). This
completes the proof. O

3.2. Convergence analysis

In Algorithm 1, it can be observed that it terminates either with a K-stationary point in a finite number
of iterations or generates an infinite sequence of non-stationary points. In the subsequent analysis, we will
assume that the algorithm produces an infinite sequence of non-stationary points.

3.2.1. Global convergence

Firstly, we establish the global convergence result in the nonconvex setting, the following assumptions are
required.

Assumption 3.1. Assume the following statements hold for F(-) and Gy(-):
(i) The level set Lr(2°) := {z: F(z) < F(z°)} is bounded;

(ii) There exist two compact bases Cp, and C of K* such that
C € C, and max-ec, (¢*,y) > maxe-ec, (¢*,y)

hold for allk >0 and y € — K.

(iii) If C is a compact base of K*, x* — x*, Gi(-) € Sepu(F,2") and min,er» max.-cc (c*, Gk (y)) — 0,
then z* is a K -stationary point to (VOP).

Remark 3.2. Assumption 3.1(i) is a standard condition for nonconvex cases. Moreover, Assumption 3.1(ii)
requires the sequence {Cy} to be uniformly bounded, which is a mild assumption. Assumption 3.1(iii) holds for
K -steepest descent method (Grana Drummond & Svaiter, 2005). Specifically, min,cgn max.«cc (c*, Gx(y)) —
0 takes the form of o, (Grana Drummond & Svaiter, 2005, Definition 3.2), where oy, is continuous (Grana
Drummond & Svaiter, 2005, Lemma 3.3(3)) and o, = 0 if and only if x is a K-stationary point to (VOP)
(Graria Drummond & Svaiter, 2005, Lemma 3.53(1)).

We are now in a position to establish the global convergence of Algorithm 1.

Theorem 3.1. Suppose that Assumption 3.1 holds, let {x*} be the sequence generated by Algorithm 1 with
Gi(") € Sepu(F,a%). Then, {2%} has at least one accumulation point and every accumulation point is a
non-stationary point to (VOP).



Proof. Since Gy (-) € Se,u(F, "), we have

F) = Fab) =i Gl ), ™
and

Gk(l’k+1) jK Gk(l‘k) = Hk(l’k) = 0
Then, we conclude that {F(z*)} is decreasing under partial order <. It follows by Assumption 3.1(i) and
continuity of F'(-) that {2*} is bounded and there exists F'* such that
F* < F(z*), Vk > 0.

The boundedness of {*} indicates that {z*} has at least one accumulation point. Next, we prove that any
accumulation point 2* is a non-stationary point. By summing (7) from 0 to infinity, we have

oo

Fr— Z k+1 ( k)) jKin(l‘k—i_l).

k=0 k=0
It follows that
o0
k41 k41
> i (G 2 3 g (0 Gu )
R+
> o ZG >

* * 0
chleac}'(L<C’F F(z?))

Z —0Q0,

where the first inequality follows by Assumption 3.1(ii) and G (z**!) <k 0, the second inequality is due to
the fact max, fi(z) + max, fo(x) > max,{fi(x) + f2(x)}. This, together with the fact that Gy (z**!) <k
G (x*) = 0, implies max.-cc, (c*, Gr(z*T)) — 0. A direct calculation gives:

0= glgg( ,Gr(a")) > maip max (c*, Gx(y)) > min max (c", Ci(y)) = max (¢, Gr(a"1)) =0,

where the second inequality follows by C, C C. Therefore, minyegn max . s (¢*, Ge(y)) — 0. For the

accumulation point z*, there exists an infinite index set K such that z* SNSY By Assumption 3.1(iii), we
conclude that z* is a K-stationary point. O

8.2.2. Strong convergence
In the following, we establish the strong convergence result of Algorithm 3.1 in K-convex setting.

Theorem 3.2. Suppose that Assumption 3.1 holds and F(-) is K -convez, let {x*} be the sequence generated
by Algorithm 1 with Gy (-) € Se,u(F,2*) and 0 < £ = p. Then, the following statements hold:

(i) {z*} converges to a weakly efficient solution z* of (VOP);

(ii) up(z¥) < ““”‘ , Yk > 1, where byax = max . s (c*, €), R:={||lv —y||:z,y € Lr(z®)}, and

up(a") = max mig (c*, F(z") - F(x))

is a merit function in the sense of weak efficiency.

Proof. (i) By the similar arguments in the proof of Theorem 3.1, we conclude that {z*} is bounded, and
there exists a K-stationary point z* such that F'(z*) <x F(z*). Besides, the K-convexity of F(-) indicates



that =* is a weakly efficient point. From Lemma 3.1(ii), for any € R™ we have
* k+1 1 k 2 x 1 k+1 2 x
(e ) = F(@)) < 5 o — 2l (6,8 = 5 %+ — 2] tef ). (8)

Substituting x = z* into the above inequality, we obtain

2

1 1
<C;;7F(£Ek+1) B F(.’E*)> < 5 ka —x* <CZ,£> _ 5 ka-l-l —x* 2 <Cz,l,l,> .

Recall that F(z*) <x F(z*), it follows that
k+1 _ * 2, < k. 2, & Y
e R
Furthermore, we use the fact that 0 <x £ = p to get

ka-‘rl e

2 2
T < ka—a:*

Therefore, the sequence {ka —z*

} converges. This, together with the fact that z* is an accumulation point
of {z*}, implies that {z*} converges to z*
(ii) Since 0 < £ = p, we use inequality (8) to obtain

(e P~ F@) < &~ ol (e, 0~ 3 e = ol (e = B2 (o~ af — o412

2
(9)
Taking the sum of the preceding inequality over 0 to k — 1, we have

[ay

— (.0

k—1
> (e P = F(a) < 3022 (fla* = alf’ = [|lo* = a]|*) -
s=0 s=0

Notice that F(z%) <x F(x**!) for all s < k — 1, it leads to

(o =l = 2=+ = o).

Denote ¢}, := Zk_l ¢t /k. Tt follows from the convexity of C' and the fact that ¢! € C that ¢ € C. Therefore,

s=0 “s
we conclude that

k=1, ,
(e Fla) — Fl)) <3 ) (o — o> — [l —af?).

Select y* € arg max,cpn min . (¢*, F(2¥) — F(z)), it holds that

uo(2¥) = max min <c*,F(mk) — F(z)) = min <c*7F($k) — F(yk)>
TER™ cx el creC

o k k = (c:, £) s k|2 s+1 k|2
< (e Flah) = Fh) < 30 57 (lat = oH° =l =)

s=

By the definition of y*, we deduce that y* € {z : F(z) <x F(2*)} C Lr(2*) for all s < k — 1. Substituting
this relation into (9), we have ||:cS — kaZ — ||:135Jr1 — kaQ >0 for all s <k — 1. Therefore,

emax = s 2 s 2 ém X xO - yk 2
@) < 222 5 (o - P oot = gpP) < el VL
s=0
Recall that y* € Lp(2°), the desired result follows. O



3.2.83. Linear convergence
By further assuming that F'(-) is strongly K-convex, the linear convergence result of Algorithm 1 can be
derived as follows.

Theorem 3.3. Suppose that Assumption 3.1(ii) holds and F(-) is strongly K -convex, let {x*} be the sequence
generated by Algorithm 1 with Gi(-) € Se.u(F,2%) and 0 <k € <x p. Then, the following statements hold:

(i) {z*} converges to an efficient solution z* of (VOP);

(i1) ||gck‘Irl —z* | < [ max <4

c*eCy <C* ’H>

ka —x*||, Vk > 0.

Proof. (i) Since F'(-) is strongly K-convex, then Assumption 3.1(i) holds and every weakly efficient solution
is actually an efficient solution. Therefore, assertion (i) is a consequence of Theorem 3.2(i).
(ii) By substituting = z* into inequality (8), we have

<c,’;,F(ack+1) — F(z%)) < % ka — |

<CZ’£> k *
< e _
“\ o ==

The desired result follows . O

1
(e 8) = 5 [ = || (e )

It follows by F(x*) =g F(x**1) that

k+1 _

Hx z*

Remark 3.3. It seems that the convezity of F(-) plays no role in the proof of Theorems 3.2 and 3.5. However,
it can indeed be shown that F(-) is necessarily K-convez if € = p and strongly K -convexr with p—€ if £ < w.
In the next section, we will give some examples where such a condition holds.

Remark 3.4. Note that 0 ¢ Cy, and cone(Cy) = K*, we have

(c*, £) (c*, £)
max = max
creCr (c*,pu)  erek*\{0} (c*, )

Therefore, the linear convergence rate is related to {Gr(-)}, not {Cy}, which confirms that the rate of con-
vergence can be improved by choosing a tighter surrogate.

4. First-order methods for VOPs with majorizing surrogate functions

It is worth noting that Remark 3.4 may suggest that the choice of the base in the subproblem is inessential,
which could make the question (Q) raised in the introduction seem trivial. However, as will be demonstrated
in this section, the selection of such a base not only influences the convergence rate but also determines the
computational complexity of the subproblem. Both aspects are of central importance in the framework of
majorization-minimization optimization.

In what follows, we first revisit the classical steepest descent method for VOPs (SDVO) (Grafia Drummond
& Svaiter, 2005) and establish its connection with Algorithm 1. To mitigate the slow convergence of SDVO,
we then investigate, from a majorization-minimization perspective, how an appropriate choice of the base
can effectively accelerate first-order methods for VOPs.

4.1. K-steepest descent method for VOPs without line search

For z € R™, recall that d*, the K-steepest descent direction (Grafia Drummond & Svaiter, 2005) at z*,
is defined as the optimal solution of

1
: , k L2
min max (c*, JF(z*)d) + 2||dH . (10)
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Select a vector e € int(K), and denote C, = {c¢* € K* : (c*,e) = 1}. If we set C' = C, in (10), then the
K-steepest descent direction can be reformulated as the optimal solution of

1
. * k L1112
min max <c ,JF(2%)d + 2||cl|| e>. (11)

Remark 4.1. If K = R, and C. = A,,, then e = 1,, and the subproblem (11) reduces to that of steepest
descent method for MOPs (Fliege € Svaiter, 2000). In what follows, we refer to subproblems of the forms
(10) and (11) as seperate and coupled subproblems, respectively.

From now on, we assume that F(-) is K-smooth with £ € int(K), denote

Liax i = crgleaé( (c*, L) .
e

Let us revisit the K-steepest descent method without line search:

Algorithm 2: K-steepest descent method for VOPs
Data: 2° € R*, L > L
1 for k=0,1,... do
Update 2" := arg min,epn max-cc, (¢*, JF(2F)(z — 2%)) + Lz — «
if 21! = 2% then
‘ return K-stationary point z*
end

kHZ

S Gtk W N

end

We consider the following surrogate:

2

o

(12)

It is obvious that Algorithm 2 is a special case of Algorithm 1 with Cy = C. and Gi(-) = Gg (). As

described in Remark 3.4, the peformance of Algorithm 2 is mainly attributed to G re(-). The following

results show that Gy re(+) is a majorizing surrogate function of F(-) — F(z*) near z*.

GrLe(z) == JF(a")(z — %) + g | — 2]

Proposition 4.1. Let Gy 1.(-) be defined as (12). Then, the following statements hold.
(i) For any L > Luyax, Gr.re(+) is a majorizing surrogate of F(-) — F(a%), i.e., F(-) — F(z*) <x Gr.re(*).
(i1) If F(-) is K-convex, then G Le(+) € Spe,Le(F, 2 for all L > Lyax-

(1it) If F(-) is strongly K-convex with p € int(K), then Gy re(-) € Ste—p,re(F, 2 for all L > Lyax-

Proof. By the definition of Lyax, we have £ <g Lpaxe, it follows from the K-smoothness of F(-) that
assertion (i) holds. Notice that G r(-) is strongly K-convex and K-smooth with Le, and p <x Le, then
we obtain assertion (ii) and (iii) by Lemma 2.3 (ii) and (iii), respectively. O

Note that for a strongly K-convex objective function, G re(-) € Spe—p,re(F, x®) for all L > Lpac. We
are now in a position to present the rate of linear convergence for SDVO.

Lemma 4.1. Assume that F(-) is strongly K -convez with p € int(K), let {z*} be the sequence generated by
Algorithm 2. Then, the following statements hold:

(i) {x*} converges to an efficient solution x* of (VOP);

(i) ||xkJrl — x*” < /1 — timin/L ||£Ek — x*” , Vk >0, where fimin = minescc, (¢*, ).

Proof. Since F(-) is strongly K-convex, it follows that G re(-) € Sre—p,Le(F, 2*) and Assumption 3.1 holds
in this case. By setting Cj, = C., Theorem 3.3 (i) and (ii) reduce to the assertions (i) and (ii), respectively. [

12



Remark 4.2. If K = R and e = 1,,, then C. = A, is a base of R, the convergence rate in Lemma
4.1 reduces to that of (Tanabe et al., 2023, Theorem 5.8) with g(-) = 0. Specifically, the linear convergence
rate is worse than O((\/1 — pmin/Lmax)®) (setting L = Luay), where Lyax = max;ecim{4i} and fimin =
min;ep, {pi}. Therefore, even each of objective functions is well-conditioned (max;e[m){€i/p:} is relative
small), the linear convergence rate can be very slow due to objective imbalances (Lmax/imin can be extremely
large). It is worth noting that the rate of convergence is related to C., since in the seperate subproblem the
surrogate function is inherently determined by Ce. To the best of our knowledge, apart from A,,, it remains
an open problem for the better choice of the base in MOPs.

4.2. Improved K -steepest descent method for VOPs without line search

As detailed in Remark 4.2, the linear convergence rate can be very slow with imbalanced objectives,
this is mainly due to the large gap between F(-) — F(2*) and Gy () from a majorization-minimization
perspective. To reduce this gap, one natural strategy is to construct a tighter surrogate function that better
approximates the local behavior of F(-) — F(z*). Notice that £ <x Lmaxe, we denote the following tighter
majorizing surrogate:

) 1
Gralw) = JF (@) (= ) + 5 [Jo - o*| " (13)
The properties of Gy, ¢(-) is presented as follows.
Proposition 4.2. Let G ¢(-) be defined as (13). Then, the following statements hold.

(i) Gr.e() is a tight majorizing surrogate of F(-) — F(x*), i.e., F(-) — F(2*) <k Gr.e(:), and the relation
does not hold for any G, ;(-) such that £ Ak £.

(ii) If F(-) is K-convez, then G e() € Spe(F,x").
(iii) If F(-) is strongly K -convezx with p € int(K), then Gy e(-) € Se—pe(F,2").
Proof. The assertions can be obtained by using the similar arguments as in the proof of Proposition 4.1. [

By using the tighter surrogate, we devise the following improved K-steepest descent method with coupled
subproblems for VOPs.

Algorithm 3: improved K-steepest descent method for VOPs with coupled subproblems
Data: 2% ¢ R

1 for k=0,1,... do

Update zF1 := argmin, cpn max.-cc, (¢*, JF(z¥)(x — 2*) + ||z — 2*|%€)

if 21 = 2% then

‘ return K-stationary point z*

end

o Uk WwN

end

Lemma 4.2. Assume that F(-) is strongly K -convez with p € int(K), let {z*} be the sequence generated by
Algorithm 3. Then, the following statements hold:

(i) {z*} converges to an efficient solution z* of (VOP);

(ii) ||aF+t — a*|| < /1= 1/kp <, ||o* —2*||, Vk > 0.
Proof. The assertions can be obtained by using the similar arguments as in the proof of Lemma 4.1. O

Remark 4.3. If K =R, and e = 1,,, the convergence rate in Lemma 4.2 reduces to that of (Chen et al.,
2023b, Corollary 4.3) with g(-) = 0. Notice that 1/kp <, > pmin/L, which indicates that Algorithm 3 enjoys
faster linear convergence than Algorithm 2. Furthermore, by Remark 3.4, we conclude that the improved
linear convergence does not depend on the choice of C..

13



4.8. Trade-off between surrogate gap and per-iteration cost

Although Algorithms 3 exhibits improved linear convergence by using a tighter surrogate function, the
per-iteration cost is more expensive than that of Algorithm 2 due to coupled subproblems. Details on solving
these subproblems will be provided in Section 6 (see Remark 6.2). In the spirit of majorization-minimization
optimization, a direct question arises: how to strike a better trade-off in terms of surrogate gap and per-
iteration cost?

Recall that the linear convergence rate of Algorithm 3 does not depend on the choice of C,, which is
mainly due to coupled subproblems. By denoting

Co:={c" e K*:{(c", ) =1},

we propose the following improved K-steepest descent method with seperate subproblems for VOPs.

Algorithm 4: improved K-steepest descent method for VOPs with seperate subproblems
Data: 2° ¢ R”

1 for k=0,1,... do

Update zFF1 := argmin, cpn max.-cc, (¢*, JF(2*)(z — %)) + L[|z — 2*||?

if 2Ft1 = 2% then

‘ return K-stationary point z*

end

o Ttk W N

end

Using the definition of Cp, the seperate subproblem in Algorithm 4 can be rewritten equivalently as the
following coupled form:

1
. * By (g — 25) + Mo — 251122 )
min max <c ,JF (@) (x — 2") + 2H:c x|

Therefore, Algorithm 4 enjoys the same improved linear convergence as that of Algorithm 3.

Lemma 4.3. Assume that F(-) is strongly K -convez with p € int(K), let {x*} be the sequence generated by
Algorithm 4. Then, the following statements hold:

(i) {z*} converges to an efficient solution z* of (VOP);

| < V1=1/kp <, ||2" — 2~

Remark 4.4. If K = R, and A% = {¢* € R, : (¢*,€) = 1}, the Algorithm j reduces to (Chen
et al., 2023b, Algorithm 5) with g(-) = 0. Interestingly, the relations between Algorithms 2, 3 and 4 depend
solely on the choice of Cy. If C. = Cg, Algorithms 2, 8 and 4 are equivalent. Consequently, regarding the
open problem of selecting a better C. mentioned in Remark 4.2, we provide a theoretical answer by setting
C. = Cy. Furthermore, we can summarize that choosing a tighter surrogate function is equivalent to selecting
an appropriate base in the seperate subproblem.

(,”) ||.’L’k+l — ot

. Yk > 0.

Remark 4.5. Although Algorithms 3 and j both exhibit similar improved linear convergence, the compu-
tational cost of solving seperate subproblems is generally lower in Algorithm 4. Details on solving these
subproblems will be provided in Section 6 (see Remark 6.2).

5. First-order methods for VOPs with non-majorizing surrogate functions

In the previous section, the majorization-minimization optimization methods were developed using ma-
jorizing surrogate functions; however, these surrogates may be overly conservative due to reliance on global
upper bounds. From the perspective of majorization-minimization, selecting a non-majorizing surrogate
function could potentially enhance performance.

14



5.1. K-steepest descent method with line search

Firstly, we revisit K-steepest descent method for VOPs with line search.

Algorithm 5: K-steepest descent method for VOPs with line search

Data: 2° € R,y € (0,1)
1 for k=0,1,... do

2 Update d* := arg min ep. maxe-cc, (¢*, JF(z%)d) + £||d||?
3 if d* =0 then
4 return K-stationary point z*
5 else
6 Compute the stepsize ¢ € (0, 1] in the following way:
4 4 , 1
t; = max {'yj 1 EN,F(2P ++7d¥) — F(2*) <k +* <<]F(a:k)d’C + 3 ||alk||2 e)}

7 oh = ok 4 t.dk

end
9 end

The stepsize has the following lower bound.

Proposition 5.1. The stepsize generated in Algorithm 5 satisfies t >ty 1= min{ o ,1}.

Lmax

Proof. By the line search condition in Algorithm 5, we have
ko Uk ok k |22 ook o L2
F(x +;d )— F(x )ﬁK; JF(z")d +§Hd H el.
Then there exists ¢ € C. such that

t t 1
<c;,F<xk ) - F(xk)> > <1§ (Jmk)dk v y|dk||26)> .

On the other hand, the K-smoothness of F'(-) implies

2

t t 1]t
F(z* 4+ £d*) — F(a*) < ZIF(F)d* + = ’ Edk|l e
v gl 2~
Therefore, we have
t t 1| te 4|
<c;,F(xk + Eaky — F(:ck)> < <c;, kJF(xk)dk> += ‘ Edkl| (e
gl gl 2y
This, together with inequality (14), yields
ty > J
(c1,€)
Then the desired result follows.
We consider the following surrogate:
1
Gt (@) i= TP (@ — %) + o — [l — 2| "e.

The following results show that Gy, .y, (*) is a non-majorizing surrogate function of F(-) — F(z¥)

() be defined as (15). Then, the following statements hold.

(z*F1).

Proposition 5.2. Let G}, ¢y

min

(i) F(a**1) = F(a*) 2k Grepe

min

(15)

k

near r-.



(it) If F(-) is K-conves, then G e/t (1) € Setoimie/tmsn (Fr 2F).
(iii) If F(-) is strongly K-conver with p € int(K), then Gy e/t (-) € Sejtmin—pe/tmm (Fr ).

Proof. By the line search condition, we have

F(ah1) = P(s%) <1 JF(a*) (e = %)+ ——

2
= e

ka"'l — wkHQe <K JF(xk)(ka—xk)—&-iQt :

Then, the assertion (i) holds. The assertions (ii) and (iii) can be obtained by using the similar arguments as
in the proof of Proposition 4.1. 0

Lemma 5.1. Assume that F(-) is strongly K -convez with p € int(K), let {x*} be the sequence generated by
Algorithm 5. Then, the following statements hold:

(i) {x*} converges to an efficient solution x* of (VOP);

(“) ka—i-l —x* | < V 1— tmin/-j/min ka -z

Proof. The assertions can be obtained by using the similar arguments as in the proof of Lemma 4.1. O

, Yk >0, where fimin := minecc, (¢*, ).

Remark 5.1. If K = R, and e = 1,,, i.e., Cc = A, the convergence rate in Lemma 5.1(ii) reduces to
those established in (Fliege et al., 2018, Theorem 4.2) and (Zeng et al., 2019, Theorem 5.6).

5.2. Generic first-order method for VOPs with line search
To reduce the gap between F(-) — F(z*) and Gy /s, (+), we select e;, € int(K) and devise the following
generic first-order method:

Algorithm 6: Generic first order method for VOPs with line search
Data: 2° € R",y € (0,1)
1 for k=0,1,... do

2 Select e, € int(K)

3 Update d* := arg min cp. maxe-cc, (¢*, JF(a*)d + £||d||%ex)

4 if d* =0 then

5 ‘ return K-stationary point z*

6 else

7 Compute the stepsize ¢ € (0, 1] in the following way:

tr := max {fyj 1§ €N, F(zk 4+ ~7d") — F(aF) <k ~7 (JF(wk)dk + % HdkHQek>}

8 Pl = gk 4t dF

9 end
10 end

It is worth noting that we don’t specify how to select ey in Algorithm 6. This naturally raises the question:
what role does e play in determining the convergence rate? Firstly, we derive the lower bound of stepsize
in each iteration.

Proposition 5.3. The stepsize generated in Algorithm 6 satisfies tj, > " = min{ mig 722:’;;” , 1}.
crelCle ’

Proof. The result can be obtained by using the similar arguments as in the proof of Proposition 5.1. O

We consider the following surrogate:

Gloep iy () := JF(a")(x — 2*) + & — 2*||” e (16)

2¢min

We can show that Gy, ., pmin () is a non-majorizing surrogate function of F(-) — F(2*) near z*.
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Proposition 5.4. Let Gk7ek/t21ixl(‘) be defined as (16). Then, the following statements hold.
(i) F(a™h) = F(a*) 2k Gy ey i (z7H1)..
(it) If F(-) is K-convex, then Gy, o, jymin(+) € S, jymin o, jmin (F, zk).
(ii) If F(-) is strongly K-convex with p € int(K), then Gy o, jpmin(-) € Se, jpmin _py o, ymin (F, z").
Proof. The assertions can be obtained by using the similar arguments as in the proof of Proposition 5.2. [
The following results show that e; plays a significant role in the convergence rate of Algorithm 6.

Lemma 5.2. Assume that F(-) is strongly K -convez with p € int(K), let {z*} be the sequence generated by
Algorithm 6. Then, the following statements hold:

(i) {z*} converges to an efficient solution z* of (VOP).

(i1) ka"’l —x*

g\/1— min %ka—x* , Vk > 0.

creC, <c*7€k/t2]in

(iii) If ey, = e, we have

kaﬂ —a|| < V1 = tminfimin |z —2*||, Vk >0,
where fmin 1= Ming-ec, (¢, 1).
(iv) For any ey, € itK, we have
min (", 1) <7 (17)

c*eCe <C*,ek/tglin> T KR <k

Moreover, the equality holds with e, = u or e, = £. In these cases, we have

a5 = 2] < /1= 2 mrm 2 — o], VE 2 0. 1s)

Proof. The assertions (i) and (ii) can be obtained by using the similar arguments as in the proof of Lemma
4.1. By substituting e, = e into (ii), we can obtain the assertion (iii). Next, we prove the assertion (iv).
Since C. is a compact set, there exists a vector ¢ € C. such that 1/kp <, = (¢}, )/{c, £€). On the other
hand, by the definition of ¢ we can deduce

<C*a ) <CS’ N> gl <CS’ ex) Y

min — < = ‘
c*eC, <C*76k/tglm> - <CE,€]€> <CB7£> KF <k

Then the relation (17) follows. The equality can be obtain by substituting e;, = p or e, = £ into the left-hand
side of (17) . Moreover, The equality leads to the relation (18). O

Remark 5.2. As described in Lemma 5.2(iv), by setting e, = p or e, = £, we can derive the optimal linear
convergence rate for Algorithm 6, and the convergence rate reduces to that of Lemma 4.53(ii) with constant
v. Intuitively, to explore the local curvature information of F(-), we can devise a tighter local surrogate
Gren/tn (1) with p X ex 2 £. In this case, the performance of Algorithm 6 can be further improved by
using a tighter local surrogate Gy, , /1, (-).

To narrow the surrogate gap and better capture the local curvature information, we compute ex by
Barzilai-Borwein method, namely, we set

JF(zF) — JF(zF 1), b — 2F1
e = JE") ( ) 5 > (19)
2% — k=]

Lemma 5.3. Assume that F(-) is strongly K -convez with p € int(K), let {z*} be the sequence generated by
Algorithm 6, where ey, is defined as in (19). Then, the following statements hold:
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(i) p =<k er <k ¥£;
(ii) tr, > mine-co {7y (c*, ex) / (c*, €)};

Proof. Assertion (i) follows by the strong k-convexity and K-smoothness of F(-), and the definition of e.
We can obtain the assertion (ii) by using the similar arguments as in the proof of Proposition 5.1. O

Remark 5.3. To reduce per-iteration cost, we set e = ey, i.e., Co = Ce,, so that the coupled subproblem in
Algorithm 6 can be reformulated into the following seperate form:

1
i * JF(2M)d) + < ||d||.
join max (¢*, JF(a®)d) + 5 1l
Hence, we conclude that using a variable Ce, serves as an appropriate choice of base in SDVO, which provides
a theoretical answer to (Q). For K = Ri, Fig. 1 illustrates the choice of the base under the assumption of
strong converity. It suggests that bases should be adaptively selected from the pink region according to (19).

0 1/£, 1/m

Fig. 1. [llustration of the C¢, of K =R3.

6. First-order methods for VOPs with polyhedral cones

In this section, we consider the VOPs that K is a polyhedral cone with nonempty interior. Without loss
of generality, for the polyhedral cone K, there exists a transform matrix A € R™ with m < [ such that

K :={xeR™:0=< Ax}.

In this case, for any a,b € R™, a <k b can be equivalently represented as Aa < Ab. Denote A; the i-th row
vector of A. For the polyhedral cone K, we denote the set of transform matrices as follows:

A:={AeR»™: AK =R' }.

Notably, in practice, the polyhedral cone K is often defined by a specific transform matrix A. This raises
a crucial question: does the transform matrix A affect the performance of descent methods for VOPs with
polyhedral cones?

6.1. Steepest descent method for VOPs with polyhedral cones

By using a transform matrix A € A, the steepest descent direction subproblem for VOPs with polyhedral
cones is formulated as follows:

1
. k - 2
min max (X, AJF(z")d) + 3 lld]|” . (20)

The complete K-steepest descent method for VOPs with polyhedral cones is described as follows:
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Algorithm 7: K-steepest descent method for VOPs with polyhedral cones
Data: 2° € R,y € (0,1)

1 Select a transform matrix A € A

2 for k=0,1,... do

3 Update d* as the minimizer of (20)

4 if d¥ =0 then

5

6

7

‘ return K-stationary point z*
else
Compute the stepsize ¢ € (0, 1] in the following way:

, , ; 1
ty := max {’y] 1§ €N, A(F (2% 4+ +7d¥) — F(2*)) <7 (AJF(wk)dk + 3 HdkH2 11)}

Pt = 2k 4t dP
8 end

9 end

We consider the following surrogate:
1 2
Gra1,/t(2) == AJF(xk)(x—xk)—i—EHx—ka 1;. (21)

We can show that G 41,4, (+) is a non-majorizing surrogate function of A(F(-) — F(z*)) near z*.

Proposition 6.1. Let Gy a.1,/1, () be defined as (21). Then, the following statements hold.
(i) A(P(zH1) = F(ak)) < Ghan, o (254).
(ii) If F(-) is K-convez, then Gy a1, /1, (-) € S1,/t0,1, /1, (AF, z").
(iii) If F(-) is strongly K -convez with p € int(K), then Gy a1,/t, () € S1,/tp—Ap1, /1, (AF, 2%).
Proof. The assertions can be obtained by using the similar arguments as in the proof of Proposition 5.2. [

Lemma 6.1. Assume that F(-) is strongly K-conver with p € int(K), where K = {x € R™ : 0 < Ax}. Let
{z*} be the sequence generated by Algorithm 7. Then, the following statements hold:

(1) ti > min{min;e{y/(A;, £)},1};
(i3) {x*} converges to an efficient solution x* of (VOP);

(iii) ||z* T — 2% < /1 =t mingep (As, ) ka —a*||, Vk > 0.

Proof. The assertions can be obtained by using the similar arguments as in the proof of Proposition 5.1 and
Lemma 4.1. ]

Remark 6.1. The subproblem (20) can be reformulated as

12
i * JF(zF)d) + = ||d
min max (c*, JF(«")d) + 5 ||d]"

where C := conv{A;,i € [I]} is a base of K*. In other words, selecting a transform matriz in (20) is equivalent
to selecting a base of K*. Consequently, the linear convergence rate of Algorithm 7 is sensitive to the choice
of A. When K =R, the steepest descent method (Fliege € Svaiter, 2000) fixzs A = I, i.e., C = A,,.
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6.2. Barzilai-Borwein descent method for VOPs with polyhedral cones
In general, for the e; defined as (19) we have e <k €, which can be written as Ae,, < AL. We denote
ak e RZ_H_ as follows:

k—1
. Sk— i _
max{aminamln{W7amax}}v <5k715y£€ 1> >07
Sk—1
k_ k—1
ok = e _ (22)

' max {amin,mm { ||’|S; 1|H 7amax}}7 (sk—1,4) ") <0,

Omin, <5k—1ay§_1> = 07

for all 4 € [I], where sy = ¥ — 2*=1, yF~! is the i-th row vector of A(JF(z*) — JF (2" 1)), cumax is
a sufficient large positive constant and i, is a sufficient small positive constant. The Barzilai-Borwein
descent direction is defined as the minimizer of
1
min max <>\, AJF(2*)d + = ||d||? ak> : (23)
deR™ NeA, 2

Alternatively, we use the similar strategy in Algorithm 4, the Barzilai-Borwein descent direction subproblem
can be rewritten equivalently as the following coupled form:

1
. k 2
,?Elﬁgri )\rélj;fk <)\,AJF(Q: )d> + 3 )=, (24)

where Af“k = {c* € RY : {¢*,a") = 1}. The subproblem can be reformulated as follows:

1
. k k - 2
grelﬁri )I\rézgi <)\,A AJF(x )d> + > Il , (25)
where

1
O(k

1

AF =

oF
R
By Sion’s minimax theorem (Sion, 1958), the minimizer of (25) can be written as
d* = —(A*AJF(z*)"\F,

where A¥ € A is a solution of the following dual problem:

1 EW\T y |2
iiéknliH(AkAJF(:z: DA (DP)
Remark 6.2. In general, the dual problem (DP) is a lower dimensional quadratic programming with u-
nit simplex constraint (the vertices of unit simplex constraint are known), then it can be solved by Frank-
Wolfe/conditional gradient method efficiently (see, e.g., Sener & Koltun, 2018; Chen et al., 2023a). However,
dual problem of (23) reads as
L|[(ATF @) TA|?
min — ,
XeA; 2 Z )\1041C
i€[l]

which is not easy to solve.

Remark 6.3. If K = R} and A = I,,,, the subproblem (25) reduces to that of the BBDMO (Chen et al.,
2023a). Consequently, transforming (23) into (25) gives a new insight into BBDMO from a majorization-
minimization perspective. Comparing the subproblems (20) and (24), it turns out that the differences between
the directions of the steepest descent and the Barzilai-Borwein descent lie in the choice of base for K*.
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The complete K-Barzilai-Borwein descent method for VOPs with polyhedral cones is described as follows:

Algorithm 8: K-Barzilai-Borwein descent method for VOPs with polyhedral cones
Data: 2° € R",y € (0,1)
Select a transform matrix A € A
Choose £~ ! in a small neighborhood of z°
for k=0,1,... do
Update o as (22)
Update d* as the minimizer of (25)
if d¥ =0 then

‘ return K-stationary point z*
else

Compute the stepsize ¢ € (0,1] in the following way:

© W N O ok W N

ty := max {fyj 1§ €N, A(F(zF 4+ +7d¥) — F(2*)) <47 (AJF(xk)dk + % HdkH2 ak>}

10 okl = 2k 4 t,dF
11 end
12 end

We consider the following surrogate:

1 2
Graar i, (1) = ATF(2")(z — 2¥) + 7 |z — 2" " (26)

We can show that Gy 4 ok /¢, (+) is a non-majorizing surrogate function of A(F(-) — F(z*)) near z*.
Proposition 6.2. Let Gy, 4 ok 4, (+) be defined as (26). Then, the following statements hold.

(i) AF(H1) — F(%)) < Gy ot (251).

(it) If F(-) is K-convex, then Gy g o e, (-) € Sak jty,ar 1, (AF, 2%).
(iii) If F(-) is strongly K-convex with p € int(K), then Gy a ok, (-) € Sar st —Ap,at st (AF, z").

Proof. The assertions can be obtained by using the similar arguments as in the proof of Proposition 5.2. [

Lemma 6.2. Assume that F(-) is strongly K-conver with p € int(K), where K = {x € R™ : 0 <X Ax}. Let
{x*} be the sequence generated by Algorithm 8. Then, the following statements hold:

(i) Ap <ok < Ae;
(i) ti > mine{yal/ (A, £)};

(iii) {x*} converges to an efficient solution z* of (VOP);

(iv) (a1 = 2| < \/1 = te minge {(As, )/} [Ja* — 27|, Wk > 0.

Proof. The assertions can be obtained by using the similar arguments as in the proof of Proposition 5.1 and
Lemma 4.1. O

A large stepsize may speed up the convergence of Algorithm 8. Accordingly, the Armijo line search can
be applied, namely, compute the stepsize t;, € (0,1] in the following way:

ty ==max {7 :j € N, A(F(z* ++7d*) — F(z*)) < ayjAJF(a:k)dk} , (27)

where o € (0,1).
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The following result shows that the convergence rate of Algorithm 8 is not sensitive to the choice of
transform matrix. More specifically, the descent direction d* and stepsize t;, of Algorithm 8 are invariant for
some A € A.

Proposition 6.3. (Affine Invariance) Let A', A% € A, d¥, ty. and dk, t2 be the descent directions and stepsize
generated by Algorithm 8 with A and A?, respectively. If amin < af’l,afg < Qmax, @ € [l], we have d} = db
and ty = t3.

Proof. Denote A} and A? the the i-th row vector of A' and A2, respectively. Before presenting the main
results, we rewritten the subproblem (25) as follows:
A; 1.
i — L JF@M)d )+ = ||d)” .
%@Q?é?ff<a§’ (") >+ 5 lldll

Recall that A, A% € A, there exists a vector a € RfH_ such that

{A} vie ]} ={a;A7 i [l]}. (28)

1 2
{ﬁﬁ%GM}={§QMGM} (29)

This, together with the reformulated subproblem, implies that d¥ = d. Therefore, t; = t7 is a consequence
of (29).

Next, we prove that assertion (29) holds. For any i € [I], it follows by (28) that there exist j € [I] such
that A} = ajA?. Notice that apmin < ak’l7 a?’2 < Qimax, @ € [l], we distinguish two cases:

i

We claim the following assertion:

apt = [[AHJIF (%) = JF(2* )|/ sk-1ll and af? = |AZ(JF (%) = TF @)/ llsi-al.
and
it = (ANJF (%) = TR (1), se-1)/Ilsk-1]|” and o = (AN(JF (%) = TF (@), s6-1) /Ilsn-1 ]
Since A} = a; A3 (a; > 0), it is easy to verify that
A A2

k1
o «

holds in both cases. Thus, we have

The relation

{éimeM}g{ii%eM}

follows the similar arguments, this concludes the proof. O

Remark 6.4. Assume A C A is bounded and A; is bounded away from 0 for all A € A. Then, there
erists Qumin and amax Such that the assumption min < af < Qmax, ¢ € [I] holds for all A € A with
(sk—1, Ai(JF(z*) — JF(xz*71))) # 0. For the case with linear objective, (si—1, A;j(JF(z*) — JF(z*71))) =0
may hold. As illustrated in (Chen et al., 2023a, Example 3), for any Ai, As € fl, we have d¥ ~ d§ with
sufficient small apy,. As a result, we conclude that the performance of Algorithm 8 is not sensitive to the

choice of A.
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6.3. Backtracking method for VOPs with polyhedral cones

As described in Lemma 6.2, we apply Barzilai-Borwein method to ensure Ay < o < A€, which in turn is
expected to obtain Ap < o /t;, < AL, thereby achieving a fast linear convergence rate in practice. However,
this strategy actually yields an even slower convergence rate.

Proposition 6.4. Assume that F(-) is strongly K-convex with p € int(K), where K = {x € R™: 0 < Ax}.
Let {x*} be the sequence generated by Algorithm 8 and z* be the efficient solution satisfies F(x*) < F(z%)
for allk > 0. Then

o =t 1 i (e Gt

holds for all k > 0.

Proof. By Lemma 6.2(i), we have Au < of < A€. For any i # j, consider the choice af = (A;, u) and
of = (A;,£), then we have
min af min (Ai, )
iell] (Aq, £) iell)

The arbitrary of ¢ and j with i # j yields

_ (i) (4
of T (A0 (4,0

k
< .
ol (@A, 0 el oF S #ﬁ?ﬁem{ (A;,€) (A;,0)
Conversely, notice that
T oy (Aiap) o (Asm) o (A
s < WA nd el et =z o] (A

and no single a* can simultaneously satisfy both equilities unless there exists two distinct indices ig # jo

such that
min <Al’p‘> _ <Aioap’> _ <Aj07/1‘>’
i€ll] <Al?£> <Aio’ > <Aj07£>
which yields
af (Ai,p) {<A' ) (A u>}
min —4— min 2~ > min AR A kA .
iell] (A, €) icll  of T azgigen | (A, £) (A, L)
Hence,
i e A {<Ai,u> (4;, 1) }
iell) (A, £) icl]  of i#jagell] | (Ai €) (Aj,8)
The desired result follows by Lemma 6.2(ii) and (iv). O

In contrast to the line search method for VOPs, the corresponding method for SOPs preserves the same
linear convergence rate as its counterpart without line search. This discrepancy arises because the line search
in VOPs is imposed with respect to a strict dominance relation by the underlying partial order. We
clarify the distinction with the following example.

Example 6.1. Let K = Ri and A = I,. Consider first the case where o = (u1,£2)T. As illustrated in Fig.
2(a), the ratio o /t;, lies on the blue line determined by the strict dominance relation. In this situation, the

k
line search results in a slower linear convergence rate, with the worst-case rate being O (( 1-— 7%) )
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(a) Line search for VOPs (b) Line search for SOPs

Fig. 2. Differences in line search for VOPs and SOPs.

In contrast, if o* falls on the red point in Fig. 2(a), then oF/t lies on the red line. In this case, line
search for VOPs potentially improves the practical linear convergence rate, with the worst-case rate coinciding
with that of the method without line search. As illustrated in Fig. 2(b), line search for SOPs tends to improve
linear convergence rate, and the worst case rate is the same as that of its counterpart without line search.

The remaining question is how to preserve the linear convergence rate of descent methods for VOPs
without line search when the smoothness parameter £ is unknown. To address this, we revisit the backtracking
method for VOPs, which was first proposed in (Chen et al., 2023b).

Algorithm 9: Backtracking method for VOPs with polyhedral cones

Data: 2 e R, Ac A, 0<£° <A, 7> 1
1 for k=0,1,... do

2 Update af := ¢*
3 | Update zF*! := argmin max {<)\,AJF(Ik)($ —a")) + 1z — kaQ}
zE€R™  AEAY

4 if 2Ft1 = 2% then

5 ‘ return K-stationary point z*

6 else

7 s;=0,i €[]

8 repeat

9 Update of = 75i£¥ i € [i]
10 Update z¥*! := arg min max {<)\,AJF(£Bk)(£L' —a")) + 1| — mk||2}

z€R™  XeAP

11 fori=1,---,ldo
12 if (A, F(z") — F(2F)) > (A;, JF(a%) (2%t — 2F)) + %I;ka“ — 2%||? then
13 | Update s; = s; + 1
14 end
15 end
16 until (A;, F(a**h) — F(z%)) < (A, JF(2®)(zF T — 2)) + af;kaH — 2|2, i € [1];
17 end
18 | Update £FF! := ¥ /7
19 end

We consider the following surrogate:
1
G a0 (1) i= ATF(@F) (@ = a*) + 5 o 2| ok, (30)

We can show that Gy 4 o+ () is a non-majorizing surrogate function of A(F(-) — F(2*)) near z*.
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Proposition 6.5. Let G 4 o+ (-) be defined as (30). Then, the following statements hold.
(i) A(P(H1) = F(@*)) % Gy g or (a4,
(ii) If F(-) is K-convex, then Gy g o (-) € Sur or (AF, z¥).
(iii) If F(-) is strongly K-convex with p € int(K), then Gy a ok (-) € Sar—ap ok (AF, z*).
Proof. The assertions can be obtained by using the similar arguments as in the proof of Proposition 5.2. [

Lemma 6.3. Assume that F(-) is strongly K-convex with p € int(K), where K = {x € R™ : 0 < Az}. Let
{z*} be the sequence generated by Algorithm 8. Then, the following statements hold:

(i) oF < TA;
(ii) {x*} converges to an efficient solution z* of (VOP);
(iii) [|a* Tt — 2% || < /1T =7 minge (A, p) /(A €) ||2* — 2~

Proof. (i) Suppose, to the contrary, that o > 7 (A;, £) holds for some i € [I]. Then the backtracking pro-
cedure would be triggered only when o > (A;, £), which contradicts the backtracking condition. Assertions
(i) and (iii) can be obtained by using the similar arguments as in the proof of Lemma 4.1. O

, VkE > 0.

In contrast to the line search method for VOPs, the backtracking method preserves the same linear
convergence rate as its counterpart without line search. This discrepancy arises because backtracking for
VOPs is imposed with respect to a weak dominance relation induced by the underlying partial order. We
clarify the distinction with the following example.

Example 6.2. Let K = Ri and A = I,. Consider the case where €F = (1,£2)T.

Fig. 3. Differences between line search and backtracking for VOPs.

As illustrated in Fig. 3, the ratio €* [ty lies on the blue line determined by the strict dominance relation.
In this situation, the line search yields a slower linear convergence rate, with the worst-case rate given by

k
@ (( 1-— 7%) ) . In contrast, the o lies on the red line determined by the weak dominance relation. In

this case, the backtracking procedure for VOPs preserves the same linear convergence rate as its counterpart
without line search.

Remark 6.5. A notable advantage of backtracking is its ability to adapt to the local smoothness and to
preserve the same linear convergence rate as its counterpart without line search. However, this benefit comes
at the price of increased per-iteration computational cost, since backtracking requires repeatedly solving the
associated subproblems.
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7. Numerical Results

In this section, we present numerical results to demonstrate the performance of Barzilai-Borwein descent
methods for VOPs (BBDVO) with polyhedral cones. We also compare BBDVO with steepest descent method
for VOPs (SDVO) and equiangular direction method (Katrutsa et al., 2020) for VOPs (EDVO). All numerical
experiments were implemented in Python 3.7 and executed on a personal computer with an Intel Core i7-
11390H, 3.40 GHz processor, and 16 GB of RAM.

7.1. Implementation details

For all tested algorithms, we used Armijo line search (27) with o = 10~* and v = 0.5. The test algorithms
were executed on several test problems, and the problem illustration is given in Table 1. The dimensions of
variables and objective functions are presented in the second and third columns, respectively. x; and xy
represent lower bounds and upper bounds of variables, respectively.

Table 1: Description of all test problems used in numerical experiments

Problem n m T Ty Reference

BK1 2 2 (-5,5) (10,10) (Huband et al., 2006)
DD1 5 2 (-20,...-20)  (20,..,20)  (Das & Dennis, 1998)
Deb 2 2 (0.1,0.1) (1,1) (Deb, 1999)

FF1 2 2 (-1,-1) (1,1) (Huband et al., 2006)
Hill 2 2 (0,0) (1,1) (Hillermeier, 2001)
Imbalancel 2 2 (-2,-2) (2,2) (Chen et al., 2023a)
JOSla 50 2 (-2,...-2) (2,....2) (Jin et al., 2001)

LE1 2 2 (-5,-5) (10,10) (Huband et al., 2006)
PNR 2 2 (-2,-2) (2,2) (Preuss et al., 2006)
WIT1 2 2 (-2,-2) (2,2) (Witting, 2012)

For the tested problems, the partial order are induced by polyhedral cones Ri, K1, and K>, respectively,
where
K ::{x€R2:5x1—x2 >0, —x1+5z9 >0} CRZ,

and
K, ::{x6R2:5x1—|—x220, x1+5x220}2Rﬁ_.

The polyhedral cones are illustrated in Fig. 4.

v

Fig. 4. llustration of the polyhedral cones.

For each problem, we used the same initial points for different tested algorithms. The initial points were
randomly selected within the specified lower and upper bounds. Dual subproblems of different algorithms were
efficiently solved by Frank-Wolfe method. To guarantee a fair comparison, we decided to let the algorithms
run until one of the following stopping conditions was satisfied:
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e the current solution satisfies HJ’“H < 1075, where d is the steepest descent direction (20) with A = A

and A € A with row vectors H/LH =1lfori=1,..,1;

e the number of iterations reaches 500.

The recorded averages from the 200 runs include the number of iterations, the number of function evaluations,
and the CPU time. The performance profiles (Dolan & Moré, 2002) in terms of iterations, function evaluations
and CPU time are used to illustrate the overall performance of the 200 runs.

7.2. Numerical results for VOPs with K = Ri

In this case, we denote the set of transform matrices Ay := {4 : AR%Z = R%}. For SDVO, we choose A° =
I, € Ay and A° € Ay in subproblem, respectively, where A° := {4 : A; = AY/max{1, [VFEi(=)| )}, i =
1,2}1. For EDVO, normalization is applied for each of gradients in the transformed subproblem, which
implies that EDVO is also not sensitive to the choice of transform matrix. As a result, we choose A = A° in

subproblems of EDVO and BBDVO.

Table 2: Number of average iterations (iter), number of average function evaluations (feval), and average
CPU time (time(ms)) of SDVO, EDVO and BBDVO implemented on different test problems with K = R%.

Problem SDVO with A = A° SDVO with A = A° EDVO with A = A° BBDVO with 4 = A°

iter feval  time iter feval  time iter feval  time iter feval time
BK1 1.00 2.00 0.24 36.93  40.15  4.03 30.12  34.07  2.67 1.00 1.00 0.21
DD1 70.95 199.40 12.14 248.33  250.81 30.41 376.96 376.96 38.11 7.33 8.51 1.24
Deb 57.79 376.02 13.67 5.67 13.15  1.36 1048  26.39  1.43 4.51 6.67 0.79
FF1 28.95 29.11 3.93 8.22 9.15 1.38 8.68 9.51 1.03 4.68 5.90 0.84
Hill 24.89  82.53 5.15 15.62  36.52  3.05 20.09  51.60  3.06 11.42 12.25 2.07
Imbalancel  88.23 178.31 12.35 387.91 388.32 4347 420.04  420.99 42.01 2.62 3.60 0.50
JOSla 302.72  302.72 35.80 16.51 18.03  3.40 74.13  74.44  9.29 1.00 1.00 0.26
LE1 22.44 52.57 3.72 7.98 29.78 1.70 11.80 29.93 1.47 4.65 7.13 0.82
PNR 11.24 48.40 2.83 12.32 16.09 1.85 14.37 23.24 1.75 4.28 4.77 0.71
WIT1 73.30 461.37 19.93 139.88 146.58 15.15 10.64 1797 1.33 3.59 3.68 0.62

Iterations

SDVO(A®)
--- SDVO(A%)
—-= EDVO(A%)

++ BBVO(A?)

10! 102
T

(a) Iterations

Function Evaluactions

CPU Time

SDVO(A°) 74

--- SDVO(A°) 0.2
—-= EDVO(A%)
- BBVO(A?)

(b) Function Evaluations

SDVO(A?)
--- SDVO(A?)
—:= EDVO(A%)

BBVO(A?)

10* 102

(¢) CPU Time

Fig. 5. Performance profiles on the test problems in Table 2 with K = Ri.

7.83. Numerical results for VOPs with K = K3

In this case, we denote the set of transform matrices A;

choose A!

A}/ max{1, ||VFi(m0)’|oo}, i=1,2}.

-1 5

= {A : AK, =

R3}. For SDVO, we

(5 _1) € Ao and A' € A; in subproblem, respectively, where A' := {4 : A, =

IThe scale strategy is initially proposed in (Gongalves et al., 2022) due to numerical reasons.
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Table 3: Number of average iterations (iter), number of average function evaluations (feval), and average

CPU time (time(ms)) of SDVO, EDVO and BBDVO implemented on different test problems with K = K;

Problem SDVO with A = A! SDVO with A = Al EDVO with A = A! BBDVO with A = A!
iter feval time iter feval  time iter feval  time iter feval time
BK1 1.00 2.65 0.21 7.51 9.87 1.21 48.30 51.56 4.07 1.00 1.00 0.22
DD1 92.40 373.32 18.42 118.35 120.30 15.34 496.99 496.99 53.13 41.85 47.12 6.39
Deb 102.21 876.19 27.68 27.82 146.28 6.29 81.45 161.00 9.44 35.69 71.88 6.48
FF1 33.19 105.29 5.85 17.23 56.82 3.16 45.35 65.10 4.73 16.00 16.95 2.61
Hill 28.28 151.71 7.15 19.41 86.98 4.71 23.09 56.07 3.51 17.74 18.35 3.10
Imbalancel 77.34 309.32 13.55 397.37  397.44  46.97 500.00 500.00 50.14 28.78 31.18 4.49
JOS1la 69.86 69.86 6.82 6.57 17.06 2.55 117.30 117.43 13.78 1.00 1.00 0.26
LE1 14.02 69.28 2.88 12.37 55.82 2.46 15.99 39.60 1.92 6.31 7.49 1.14
PNR 27.10 157.72 5.71 12.76 37.65 2.15 21.80 27.54 2.41 9.78 10.97 1.64
WIT1 244.44 2084.16 111.19 199.03 245.92 24.42 414.29 416.78 42.52 158.78 164.91 22.80
Iterations Function Evaluactions
1.0 g b b P REEEE 10 o a 10 s ———]
08 I,"J‘ S =21 08 I."" g 0.8
- 06 # il _/"/, - 0.6 ,,"/ /'/I = 0.6
0.4 I,’Il _// 0.4 /’;’/ o 04
% _/‘/ sovou?) ,"5/ . sovou’) sovouA)
= ooy Z ooy " = oo
ke - BBVO(AY) f< - BBVO(AY) - BBVO(AY)
0.0 0.0 o

107

(a) Iterations

T

10?

(b) Function Evaluations

(¢) CPU Time

Fig. 6. Performance profiles on the test problems in Table 2 with K = K.

7.4. Numerical results for VOPs with K = Ko

We denote the set of transform matrices Ay := {4 : AK> = R% }. For SDVO, we choose A% = (

107

5 1
1 5

)<

Ap and A% € A, in subproblem, respectively, where A2 := {4 : A; = A2/ max{1, |

VF )|} i =12}

Table 4: Number of average iterations (iter), number of average function evaluations (feval), and average
CPU time (time(ms)) of SDVO, EDVO and BBDVO implemented on different test problems with K = K,

Problem SDVO with A = A? SDVO with A = A? EDVO with A = A2 BBDVO with A = A?

iter feval  time iter feval  time iter feval  time iter feval time
BK1 22.29  85.27 2.52 6.67  11.79 1.25 20.69  26.53 1.92 1.00 1.00 0.21
DD1 17.16  62.14 3.37 46.38  47.71 5.03 133.89 134.00 13.33 4.84 5.29 0.83
Deb 19.48 164.15 5.43 18.22 135.69 4.63 21.95 141.27 4.40 9.47 48.94 2.02
FF1 13.52 18.80 1.96 14.76  67.80  3.04 17.68 12248  4.04 4.72 5.74 0.91
Hill 14.69  75.19 3.86 17.60  82.61 4.44 16.61 42.27  2.65 8.38 9.24 1.52
Imbalancel 25.76 105.22 4.60 500.00 610.90 61.64 500.00 500.04 48.91 4.35 5.76 0.73
JOS1a 46.11 46.11  4.47 4.58 10.16 1.77 48.35  51.67  6.34 1.00 1.00 0.26
LE1 9.64  47.62 2.05 14.79  79.00  3.08 11.40  54.09 1.95 7.58 43.00 1.63
PNR 17.22  103.38  3.60 13.30  50.20 241 11.12  36.16 1.69 6.80 8.83 1.04
WIT1 23.12  140.31 5.32 311.78 975.91 44.38 10.46  29.67  1.52 8.66 9.95 1.27
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Fig. 7. Performance profiles on the test problems in Table 2 with K = K.
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Fig. 8. Numerical results in value space obtained by BBDVO for problems BK1, FF1, Hill, PNR and WIT1
with K = R2, K = K; and K = K, respectively.

For test problems with different partial orders, the number of average iterations (iter), number of average
function evaluations (feval), and average CPU time (time(ms)) of the different algorithms are listed in Tables
2, 3 and 4, respectively. We conclude that BBDVO outperforms SDVO and EDVO, especially for problems
DD1 and Imbalancel. For SDVO, its performance is sensitive to the choice of transform matrix, changing the
transform matrix in subproblem cannot improve the performance on all test problems. Naturally, a question
arises that how to choose an appropriate transform matrix for a specific test problem in SDVO. It is worth
noting that BBDVO can be viewed as SDVO with variable transform matrices (A¥A is a transform matrix
of K) and thus enjoys promising performance on these test problems. This provides a positive answer to
the question. EDVO can also be viewed as SDVO with variable transform matrices, it generates descent
directions with norm less than 1 (the minimizer of subproblem is the minimal norm element of the convex
hull of some unit vectors), decelerating the convergence in large-scale problems (the initial point may be
far from the Pareto set). Figs. 5, 6 and 7 present the performance profiles based on iterations, function
evaluations, and CPU time. The results confirm that the proposed BBDVO significantly outperforms SDVO
and EDVO.

Fig. 8 plots the final points obtained by BBDVO on problems BK1, FF1, Hill, PNR and WIT1 with
K= R2+7 K = K; and K = K>, respectively. We can observe that enlarging the partial order cone reduces the
number of obtained Pareto critical points, especially in the long tail regions, where improving one objective
function slightly can sacrifice the others greatly. As a result, we can use an order cone containing the
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non-negative orthant in real-world MOPs to obtain Pareto points with a better trade-off.

8. Conclusions

In this paper, we develop a unified framework and convergence analysis of descent methods for VOPs
from a majorization-minimization perspective. We emphasize that the convergence rate of a descent method
can be improved by narrowing the surrogate functions. By changing the base in subproblems, we elucidate
that choosing a tighter surrogate function is equivalent to selecting an appropriate base of the dual cone.
From the majorization-minimization perspective, we employ Barzilai-Borwein method to narrow the local
surrogate functions and propose a Barzilai-Borwein descent method for VOPs polyhedral cone. The proposed
method is not sensitive to the choice of transform matrix, which affects the performance of SDVO. Numerical
experiments confirm the efficiency of the proposed method.

From a majoriztion-minimization perspective, we also rediscover the preconditioned Barzilai-Borwein
method for MOPs. This highlights the versatility of the majorization-minimization principle as a powerful
framework for designing novel algorithms in vector optimization. In future work, it is worth analyzing prox-
imal gradient methods and high-order methods for VOPs within the majorization-minimization framework.
Additionally, exploring solution methods for VOPs with non-polyhedral cones presents an intriguing avenue
for further research.
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