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Abstract

In this paper, we develop a unified majorization-minimization scheme and convergence analysis with first-

order surrogate functions for unconstrained vector optimization problems (VOPs). By selecting different

surrogate functions, the unified method can be reduced to various existing first-order methods. The unified

convergence analysis reveals that the slow convergence of the steepest descent method is primarily attributed

to the significant gap between the surrogate and objective functions. Consequently, narrowing this surrogate

gap can enhance the performance of first-order methods for VOPs. To strike a better trade-off in terms

of surrogate gap and per-iteration cost, we reformulate the direction-finding subproblem and elucidate that

selecting a tighter surrogate function is equivalent to using an appropriate base of the dual cone in the

direction-finding subproblem. Building on this insight, we employ the Barzilai-Borwein method to narrow

the surrogate gap and propose a Barzilai-Borwein descent method for VOPs (BBDVO) with polyhedral

cones. By reformulating the corresponding subproblem, we provide a novel perspective on the Barzilai-

Borwein descent method, bridging the gap between this method and the steepest descent method. Finally,

several numerical experiments are presented to validate the efficiency of the BBDVO.

Keywords: Multiple objective programming, Majorization-minimization optimization, Barzilai-Borwein

method, Convergence rates, Polyhedral cone
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1. Introduction

This paper focuses on the following unconstrained vector optimization problem:

minK F (x), (VOP)

where F : Rn → Rm is to be optimized under the partial order induced by a closed, convex, and pointed

cone K ⊂ Rm with a non-empty interior, defined as follows:

y �K (resp. ≺K)y′ ⇔ y′ − y ∈ K(resp. int(K)).

Let K∗ = {c∗ ∈ Rm : 〈c∗, y〉 ≥ 0,∀y ∈ K} be the positive polar cone of K, and C be a compact base of K∗,

namely, C is a convex set such that 0 /∈ clC and cone(C) = K∗. In vector optimization, it is often impossible

to improve all objectives simultaneously with respect to the partial order. Therefore, the concept of opti-

mality is defined as efficiency (Jahn, 2011), meaning that there is no better solution for an efficient solution.

Specifically, the problem (VOP) corresponds to a multiobjective optimization problem when K = Rm+ , where

Rm+ denotes the non-negative orthant of Rm. Various applications of multiobjective optimization problems

(MOPs) can be found in engineering (Marler & Arora, 2004), economics (Tapia & Coello, 2007; Fliege &

Werner, 2014), management science (Evans, 1984), environmental analysis (Leschine et al., 1992), machine

learning (Sener & Koltun, 2018; Ye et al., 2021), etc. Although many real-world problems reformulated as
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vector-valued problems adhere to the partial order induced by Rm+ , some applications, such as portfolio selec-

tion in securities markets (Aliprantis et al., 2004a,b), require partial orders induced by closed convex cones

other than the non-negative orthant. Consequently, vector optimization problems (VOPs) have garnered

significant attention in recent years.

Over the past two decades, descent methods have received increasing attention within the multiobjective

optimization community, primarily due to the seminal work on the steepest descent method proposed by

Fliege & Svaiter (2000). Inspired by Fliege and Svaiter’s contributions, researchers have extended other

numerical algorithms to solve multiobjective optimization problems (MOPs) (see, e.g., Fliege et al., 2009;

Qu et al., 2011; Povalej, 2014; Fliege & Vaz, 2016; Carrizo et al., 2016; Mercier et al., 2018; Morovati &

Pourkarimi, 2019; Tanabe et al., 2019). To the best of our knowledge, the study of descent methods for

unconstrained vector optimization problems can be traced back to the work of Graña Drummond & Svaiter

(2005), who extended the steepest descent method for MOPs (SDMO) proposed by Fliege & Svaiter (2000)

to VOPs. In this context, the direction-finding subproblem at xk is formulated as follows:

min
d∈Rn

max
c∗∈C

〈
c∗, JF (xk)d

〉
+

1

2
‖d‖2,

where JF (xk) ∈ Rm×n is the Jacobian matrix of F (·) at xk. Similar to MOPs, several standard numerical

algorithms have been extended to VOPs, including the Newton method (Graña Drummond et al., 2014),

projected gradient method (Graña Drummond & Iusem, 2004), proximal point method (Bonnel et al., 2005),

conjugated gradient method (Lucambio Pérez & Prudente, 2018) and conditional gradient method (Chen

et al., 2023c).

In recent years, complexity analysis of descent methods for MOPs has been extensively studied. Fliege

et al. (2018) and Zeng et al. (2019) established the convergence rates of SDMO under different convexity

assumptions. Tanabe et al. (2023) developed convergence results for the multiobjective proximal gradient

method. Additionally, Lapucci (2024) studied the complexity of a wide class of multiobjective descent meth-

ods with nonconvex assumption. However, Chen et al. (2023b) noted that both theoretical and empirical

results indicate that existing multiobjective first-order methods exhibit slow convergence due to objective

imbalances. To address this challenge, Chen et al. (2023a) proposed a Barzilai-Borwein descent method

for MOPs (BBDMO) that dynamically tunes gradient magnitudes using Barzilai-Borwein’s rule (Barzilai &

Borwein, 1988) in direction-finding subproblem. From a theoretical perspective, an improved linear conver-

gence rate is confirmed by Chen et al. (2023b), demonstrating that Barzilai-Borwein descent methods can

effectively mitigate objective imbalances.

Despite the extensive study of complexity analysis for MOPs, corresponding results have received little

attention in VOPs. As described by Chen et al. (2022), the linear convergence rates of first-order descent

methods for VOPs are essentially affected by C, which represents the base of K∗ in direction-finding sub-

problem. In general, K∗ admits infinitely many possible bases, and the choice of C is therefore not unique.

Although this choice critically influences the search direction and ultimately the convergence behavior of

the algorithm, the existing literature offers no comprehensive theoretical analysis or guiding principle for

selecting such a base. In the classical setting of multiobjective optimization, the subproblem of SDMO can

be reformulated as

min
d∈Rn

max
λ∈∆m

〈
λ, JF (xk)d

〉
+

1

2
‖d‖2,

where ∆m := {λ � 0 :
∑m
i=1 λi = 1} is a base of Rm+ . While this choice appears natural and convenient

from a computational perspective, its theoretical justification and potential advantages over other alternatives

remain largely unexplored. Hence, identifying an appropriate and theoretically sound base for K∗ constitutes

a fundamental yet open problem, which is of both theoretical significance and practical relevance in the design

of efficient first-order methods for VOPs. This naturally leads to the following question:

Can we provide a theoretical guidance for the choice of the base? (Q)

To answer the proposed questions, we develop a unified framework and convergence analysis of first-order

methods for VOPs from a majorization-minimization perspective. The majorization-minimization principle
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is a versatile tool for designing novel algorithms, which has been successful employed in nonconvex optimiza-

tion (Lanza et al., 2017), constrained optimization (Landeros et al., 2023), and incremental optimization

(Mairal, 2015; Karimi et al., 2022). The core idea behind the majorization-minimization method is to mini-

mize a difficult optimization problem by iteratively minimizing a simpler surrogate function that majorizes

(upper-bounds) the original objective. In this paper, we extend majorization-minimization method to vector

optimization, addressing the aforementioned questions. Our work aims to provide a unified framework and

convergence analysis of first-order methods for VOPs from a majorization-minimization perspective. The

primary contributions of this paper are summarized as follows:

(i) Before presenting the majorization-minimization method and its convergence analysis, we first define

the concepts of strong convexity and smoothness for a vector-valued function with respect to a partial order.

Leveraging these properties, we extend the notion of the condition number to VOPs, which plays a pivotal

role in establishing the linear convergence of first-order methods for VOPs. To the best of our knowledge, it

is the first definition of condition number to VOPs.

(ii) We devise a unified majorization-minimization descent method for VOPs and develop its convergence

analysis. By selecting different surrogate functions, the unified method can be reduced to several existing

first-order methods. It is worth noting that the gap between the surrogate and objective functions signifi-

cantly affects the performance of descent methods, which plays a central role in majorization-minimization

optimization. Specifically, the steepest descent method for VOPs exhibits slow convergence due to the large

gap between the surrogate and objective functions. To address this issue, we develop an improved descent

method with a tighter surrogate function, resulting in improved linear convergence, and the rate of con-

vergence is determined by the condition number. Interestingly, we show that selecting a tighter surrogate

function is equivalent to using an appropriate base in the direction-find subproblem (see Remarks 4.4 and

5.3). This provides a positive answer to the proposed question.

(iii) Theoretical results suggest a tighter surrogate function by using Barzilai-Borwein method, which

motivates us to devise a Barzilai-Borwein descent method for VOPs (BBDVO) with polyhedral cones. By

reformulating the subproblem, we observe that BBDVO is essentially the steepest descent method with

an appropriately chosen base in the direction-finding subproblem (see Remark 6.3). Furthermore, a VOP

with a polyhedral cone can be transformed into an MOP using a transform matrix, which is often used

to define a specific polyhedral cone. We demonstrate that the performance of BBDVO is insensitive to

the choice of the transform matrix, whereas the steepest descent method is highly sensitive to it. From

a majorizationminimization perspective, we further elucidate why the line search procedure in VOPs leads

to a slower linear convergence rate compared with its counterpart without line search. In contrast, the

backtracking strategy preserves the same linear convergence rate as first-order methods for VOPs without

line search.

The remainder of this paper is organized as follows. Section 2 introduces the necessary notations and

definitions for later use. In Section 3, we present a generic majorization-minimization descent method for

VOPs and analyze its convergence rates under various convexity assumptions. Sections 4 and 5 explore the

connections between different descent methods from the perspective of majorization-minimization. Section 6

proposes a Barzilai-Borwein descent method for VOPs with a polyhedral cone. Section 7 provides numerical

results to demonstrate the efficiency of the BBDVO. Finally, conclusions are presented at the end of the

paper.

2. Preliminaries

Throughout this paper, Rn and Rm×n denote the set of n-dimensional real column vectors and the set

of m× n real matrices, respectively. The space Rn is equipped with the inner product 〈·, ·〉 and the induced

norm ‖ · ‖. The interior, boundary and the closure of a set are denoted by int(·), bd(·) and cl(·), respectively.

The cone generated by a set is denoted by cone(·). For simplicity, we denote [m] := {1, 2, ...,m}, 1m and Im
the all-ones vector in Rm and identity matrix in Rm×m, respectively.

Since K is a closed convex cone, it follows that K = K∗∗ (see (Rockafellar, 1970, Theorem 14.1)),

K = {y ∈ Rm : 〈y, c∗〉 ≥ 0,∀c∗ ∈ K∗},
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and

int(K) = {y ∈ Rm : 〈y, c∗〉 > 0,∀c∗ ∈ K∗ \ {0}}.

Since int(K) 6= ∅, we assume that there exists a compact and convex set C such that

0 /∈ C, (1)

cone(C) = K∗. (2)

Therefore

K = {y ∈ Rm : 〈y, c∗〉 ≥ 0,∀c∗ ∈ C}, (3)

int(K) = {y ∈ Rm : 〈y, c∗〉 > 0,∀c∗ ∈ C}. (4)

The latter equality, together with the compactness of C, implies that

min
c∗∈C
{〈c∗, y〉} > 0, ∀y ∈ int(K). (5)

For more details on C, we refer the readers to (Graña Drummond & Svaiter, 2005, pp. 400).

2.1. Vector optimization

In the subsection, we revisit some definitions and results pertinent to VOPs. Firstly, we introduce the

concept of efficiency.

Definition 2.1. (Jahn, 2011, Definition 11.3) A vector x∗ ∈ Rn is called efficient solution to (VOP) if there

exists no x ∈ Rn such that F (x) �K F (x∗) and F (x) 6= F (x∗).

Definition 2.2. (Jahn, 2011, Definition 11.5) A vector x∗ ∈ Rn is called weakly efficient solution to (VOP)

if there exists no x ∈ Rn such that F (x) ≺K F (x∗).

Definition 2.3. (Graña Drummond & Svaiter, 2005) A vector x∗ ∈ Rn is called K-stationary point to (VOP)

if

range(JF (x∗)) ∩ (−int(K)) = ∅,

where range(JF (x∗)) denotes the range of linear mapping given by the matrix JF (x∗).

Definition 2.4. (Graña Drummond & Svaiter, 2005) A vector d ∈ Rn is called K-descent direction for F (·)
at x if

JF (x)d ∈ −int(K).

Remark 2.1. Note that if x ∈ Rn is a non-stationary point, then there exists a K-descent direction d ∈ Rn
such that JF (x)d ∈ −int(K).

Next, we introduce the concept of K-convexity for F (·).

Definition 2.5. (Jahn, 2011, Definition 2.4) The objective function F (·) is called K-convex if

F (λx+ (1− λ)y) �K λF (x) + (1− λ)F (y)

holds for all x, y ∈ Rn, λ ∈ [0, 1].

By the continuous differentiability of F (·), K-convexity of F (·) is equivalent to

JF (x)(y − x) �K F (y)− F (x)

holds for all x, y ∈ Rn. (see (Jahn, 2011, Theorem 2.20)).

We conclude this section by elucidating the relationship between K-stationary points and weakly efficient

solutions.

Lemma 2.1. (Jahn, 2011) Assume that the objective function F (·) is K-convex, then x∗ ∈ Rn is a K-

stationary point of (VOP) if and only if x∗ is a weakly efficient solution of (VOP).
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2.2. Strong convexity and smoothness

Strong convexity and smoothness of objective functions play a central role of first-order methods in

optimization. This subsection is devoted to strong convexity and smoothness of vector-valued functions

under partial order.

Definition 2.6. (Graña Drummond et al., 2014) The objective function F (·) is called strongly K-convex

with µ ∈ K if

F (λx+ (1− λ)y) �K λF (x) + (1− λ)F (y)− 1

2
λ(1− λ) ‖x− y‖2 µ, ∀x, y ∈ Rn, λ ∈ [0, 1],

and the above relation does not hold for any µ̂ with µ̂ 6�K µ.

Remark 2.2. Comparing with the definition in (Graña Drummond et al., 2014), Definition 2.6 includes the

case µ ∈ bd(K), then it reduces K-convexity when µ = 0. Furthermore, tthe final statement in the definition

establishes the uniqueness of the parameter µ, which is essential for the convergence analysis.

Lemma 2.2. (Fliege et al., 2009, Theorem 3.1) Assume that the objective function F (·) is strongly K-convex

with µ ∈ int(K), then x∗ ∈ Rn is a K-stationary point of (VOP) if and only if x∗ is an efficient solution of

(VOP).

By the continuous differentiability of F (·), strong K-convexity of F (·) is equivalent to

1

2
‖x− y‖2 µ+ JF (x)(y − x) �K F (y)− F (x), ∀x, y ∈ Rn,

it characterizes a quadratic lower-bound of F (·). Intuitively, we use quadratic upper-bound to define the

K-smoothness of F (·) under partial order.

Definition 2.7. The objective function F (·) is called K-smooth with ` ∈ int(K) if

F (y)− F (x) �K JF (x)(y − x) +
1

2
‖x− y‖2 `, ∀x, y ∈ Rn,

and the above relation does not hold for any ˆ̀ with ` 6�K ˆ̀.

Remark 2.3. Assume that F (·) is strongly K-convex with µ ∈ K and K-smooth with ` ∈ int(K), then

µ �K `.

Remark 2.4. Comparing with the smoothness and strong convexity in (Chen et al., 2022, Definitions 7 and

8) with Euclidean distance, i.e., ω(·) = 1
2 ‖·‖

2
, Definitions 2.6 and 2.7 are tighter and do not depend on the

reference vector e.

Next, we characterize the properties of the difference of two vector-valued functions.

Lemma 2.3 (regularity of residual functions). Let F,G : Rn → Rm be two vector-valued functions. Define

H(·) := G(·)− F (·). Then the following statements hold.

(i) if G(·) is strongly K-convex with µ ∈ int(K) and F (·) is K-smooth with ` ∈ int(K), where ` � µ, then

H(·) is strongly K-convex with µ− `;

(ii) if G(·) is K-smooth with ` ∈ int(K) and F (·) is K-convex, then H(·) is K-smooth with ` ∈ int(K).

(iii) if G(·) K-smooth with ` ∈ int(K) and F (·) is strongly K-convex with µ ∈ int(K), where µ � `, then

H(·) is K-smooth with `− µ.

Proof . The proof is a consequence of the definition of strong K-convexity and K-smoothness, we omit it

here.

In SOPs, the condition number (the quotient of smoothness parameter and the modulus of strong con-

vexity) plays a key role in the geometric convergence of first-order methods. We end this section with the

definition of the condition number of a strongly K-convex function under partial order.
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Definition 2.8. Assume that F (·) is strongly K-convex with µ ∈ int(K) and K-smooth with ` ∈ int(K).

Then, we denote

κF,�K := max
c∗∈C

〈c∗, `〉
〈c∗,µ〉

(6)

the condition number of F (·) under partial order �K .

Remark 2.5. Notice that 0 /∈ C and K∗ = cone(C), the condition number can be rewritten as follows:

κF,�K := max
c∗∈K∗\{0}

〈c∗, `〉
〈c∗,µ〉

.

In other words, the condition number of F (·) is determined only by K, not C.

In the following, we will show that the condition number can be reduced to that of MOPs (Chen et al.,

2023b).

Proposition 2.1. For any `,µ ∈ Rm++, we have

max
λ∈∆m

∑
i∈[m] λi`i∑
i∈[m] λiµi

= max
i∈[m]

`i
µi
.

Proof . Since `,µ ∈ Rm++, for any i ∈ [m], we have

`i ≤ µi max
i∈[m]

`i
µi
.

Multiply by λi ≥ 0 and sum over i ∈ [m]:

∑
i∈[m]

λi`i ≤

∑
i∈[m]

λiµi

max
i∈[m]

`i
µi
.

Dividing by the positive
∑
i∈[m] λiµi yields∑

i∈[m] λi`i∑
i∈[m] λiµi

≤ max
i∈[m]

`i
µi
.

Therefore, the relation

max
λ∈∆m

∑
i∈[m] λi`i∑
i∈[m] λiµi

≤ max
i∈[m]

`i
µi

holds due to the arbitrary of λ. Let s be an index where the maximum ratio is attained, i.e.

`s
µs

= max
i∈[m]

`i
µi
.

Take λs = 1 and λi = 0 for i 6= s, we have

max
λ∈∆m

∑
i∈[m] λi`i∑
i∈[m] λiµi

≥ `s
µs

= max
i∈[m]

`i
µi
.

This completes the proof.

Remark 2.6. If K = Rm+ , then κF,�K = maxλ∈∆m

∑
i∈[m] λi`i/

∑
i∈[m] λiµi. By Proposition 2.1, it follows

that κF,�K = maxi∈[m] `i/µi. In other words, the condition number for multiobjective optimization is the

largest condition number among all objective functions.
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Proposition 2.2. Assume that F (·) is strongly K1-convex with µ1 ∈ int(K1) and K1-smooth with `1 ∈
int(K1). Then, for any order cone K2 satisfied K1 ⊂ K2, we have F (·) is strongly K2-convex with µ2 ∈
int(K2) and K2-smooth with `2 ∈ int(K2). Futhermore, `2 �K2

`1, µ1 �K2
µ2, and κF,�K2

≤ κF,�K1
.

Proof . The proof is a consequence of the definitions of strong K-convexity, K-smoothness and condition

number, we omit it here.

Remark 2.7. Proposition 2.2 shows that, for a fixed vector-valued function, enlarging the underlying order

cone effectively simplifies the associated vector optimization problem; see Lemma 4.2 for a formal statement.

This observation motivates the use of a larger order cone to accelerate first-order methods for VOPs.

3. Majorization-minimization with first-order surrogate functions for VOPs

3.1. Majorization-minimization descent method for VOPs

In this section, we present a unified majorization-minimization scheme for minimizing a vector-valued

function in the sense of descent.

Algorithm 1: Unified majorization-minimization scheme for VOPs

Data: x0 ∈ Rn
1 for k = 0, 1, ... do
2 Choose a strongly K-convex surrogate function Gk(·) of F (·)− F (xk) near xk

3 Choose a base Ck of dual cone K∗

4 Update xk+1 := arg minx∈Rn maxc∗∈Ck 〈c∗, Gk(x)〉
5 if xk+1 = xk then
6 return K-stationary point xk

7 end

8 end

Remark 3.1. It is worth noting that we choose a variable base Ck in each iteration, whreas an invariable base

C is used in existing descent methods for VOPs, see (Graña Drummond & Svaiter, 2005; Graña Drummond

et al., 2014; Graña Drummond & Iusem, 2004; Bonnel et al., 2005; Lucambio Pérez & Prudente, 2018; Chen

et al., 2023c).

The surrogate function Gk(·) plays a central role in the generic majorization-minimization scheme. Intu-

itively, Gk(·) should well approximate F (·) − F (xk) near xk and the related subproblem should be easy to

minimize. Therefore, we measure the approximation error by Hk(·) := Gk(·)−F (·) +F (xk). To characterize

surrogates, we introduce a class of surrogate functions, which will be used to establish the convergence results

of Algorithm 1.

Definition 3.1. For xk ∈ Rn, we call Gk(·) a first-order surrogate function of F (·)− F (xk) near xk when

(i) F (xk+1)−F (xk) �K Gk(xk+1), where xk+1 is the minimizer of minx∈Rn maxc∗∈Ck 〈c∗, Gk(x)〉, further-

more, when F (·)− F (xk) �K Gk(·) for all x ∈ Rn, we call Gk(·) a majorizing surrogate;

(ii) the approximation error Hk(·) is K-smooth with ` ∈ int(K), Hk(xk) = 0, and JHk(xk) = 0.

We denote by S`,µ(F, xk) the set of first-order strongly K-convex surrogate functions with µ ∈ int(K).

Next, we characterize the properties of first-order surrogate functions.

Lemma 3.1. Let Gk(·) ∈ S`,µ(F, xk) and xk+1 be the minimizer of minx∈Rn maxc∗∈Ck 〈c∗, Gk(x)〉. Then,

for all x ∈ Rn, we have

(i) Hk(x) �K 1
2

∥∥x− xk∥∥2
`;
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(ii)
〈
c∗k, F (xk+1)

〉
+ 1

2

∥∥xk+1 − x
∥∥2 〈c∗k,µ〉 ≤ 〈c∗k, F (x)〉 + 1

2

∥∥xk − x∥∥2 〈c∗k, `〉, where c∗k is a maximizer of

maxc∗∈Ck minx∈Rn 〈c∗, Gk(x)〉.

Proof . Assertion (i) directly follows by the K-smoothness of Hk(·) and the facts that Hk(xk) = 0 and

JHk(xk) = 0. Next, we prove the assertion (ii). By Sion’s minimax theorem (Sion, 1958), by denoting c∗k
a maximizer of maxc∗∈Ck minx∈Rn 〈c∗, Gk(x)〉, and xk+1 the minimizer of minx∈Rn maxc∗∈Ck 〈c∗, Gk(x)〉, we

have JGk(xk+1)T c∗k = 0. This, together with the strong K-convexity of Gk(·), implies that

〈
c∗k, Gk(xk+1)

〉
+

1

2

∥∥xk+1 − x
∥∥2 〈c∗k,µ〉 ≤ 〈c∗k, Gk(x)〉 , ∀x ∈ Rn.

We thus use F (xk+1)− F (xk) �K Gk(xk+1) to get

〈
c∗k, F (xk+1)− F (xk)

〉
+

1

2

∥∥xk+1 − x
∥∥2 〈c∗k,µ〉 ≤

〈
c∗k, Gk(xk+1)

〉
+

1

2

∥∥xk+1 − x
∥∥2 〈c∗k,µ〉

≤ 〈c∗k, Gk(x)〉
=
〈
c∗k, F (x)− F (xk)

〉
+ 〈c∗k, Hk(x)〉

≤
〈
c∗k, F (x)− F (xk)

〉
+

1

2

∥∥xk − x∥∥2 〈c∗k, `〉 ,

where the equality follows by the definition of Hk(·) and the last inequality is due to the assertion (i). This

completes the proof.

3.2. Convergence analysis

In Algorithm 1, it can be observed that it terminates either with a K-stationary point in a finite number

of iterations or generates an infinite sequence of non-stationary points. In the subsequent analysis, we will

assume that the algorithm produces an infinite sequence of non-stationary points.

3.2.1. Global convergence

Firstly, we establish the global convergence result in the nonconvex setting, the following assumptions are

required.

Assumption 3.1. Assume the following statements hold for F (·) and Gk(·):

(i) The level set LF (x0) := {x : F (x) �K F (x0)} is bounded;

(ii) There exist two compact bases CL and C̃ of K∗ such that

Ck ⊂ C̃, and maxc∗∈Ck 〈c∗, y〉 ≥ maxc∗∈CL 〈c∗, y〉

hold for all k ≥ 0 and y ∈ −K.

(iii) If C is a compact base of K∗, xk → x∗, Gk(·) ∈ S`,µ(F, xk) and miny∈Rn maxc∗∈C 〈c∗, Gk(y)〉 → 0,

then x∗ is a K-stationary point to (VOP).

Remark 3.2. Assumption 3.1(i) is a standard condition for nonconvex cases. Moreover, Assumption 3.1(ii)

requires the sequence {Ck} to be uniformly bounded, which is a mild assumption. Assumption 3.1(iii) holds for

K-steepest descent method (Graña Drummond & Svaiter, 2005). Specifically, miny∈Rn maxc∗∈C 〈c∗, Gk(y)〉 →
0 takes the form of αxk (Graña Drummond & Svaiter, 2005, Definition 3.2), where αx is continuous (Graña

Drummond & Svaiter, 2005, Lemma 3.3(3)) and αx = 0 if and only if x is a K-stationary point to (VOP)

(Graña Drummond & Svaiter, 2005, Lemma 3.3(1)).

We are now in a position to establish the global convergence of Algorithm 1.

Theorem 3.1. Suppose that Assumption 3.1 holds, let {xk} be the sequence generated by Algorithm 1 with

Gk(·) ∈ S`,µ(F, xk). Then, {xk} has at least one accumulation point and every accumulation point is a

non-stationary point to (VOP).
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Proof . Since Gk(·) ∈ S`,µ(F, xk), we have

F (xk+1)− F (xk) �K Gk(xk+1), (7)

and

Gk(xk+1) �K Gk(xk) = Hk(xk) = 0.

Then, we conclude that {F (xk)} is decreasing under partial order �K . It follows by Assumption 3.1(i) and

continuity of F (·) that {xk} is bounded and there exists F ∗ such that

F ∗ �K F (xk), ∀k ≥ 0.

The boundedness of {xk} indicates that {xk} has at least one accumulation point. Next, we prove that any

accumulation point x∗ is a non-stationary point. By summing (7) from 0 to infinity, we have

F ∗ − F (x0) �K
∞∑
k=0

(F (xk+1)− F (xk)) �K
∞∑
k=0

Gk(xk+1).

It follows that

∞∑
k=0

max
c∗∈Ck

〈
c∗, Gk(xk+1)

〉
≥
∞∑
k=0

max
c∗∈CL

〈
c∗, Gk(xk+1)

〉
≥ max
c∗∈CL

〈
c∗,

∞∑
k=0

Gk(xk+1)

〉
≥ max
c∗∈CL

〈
c∗, F ∗ − F (x0)

〉
≥ −∞,

where the first inequality follows by Assumption 3.1(ii) and Gk(xk+1) �K 0, the second inequality is due to

the fact maxx f1(x) + maxx f2(x) ≥ maxx{f1(x) + f2(x)}. This, together with the fact that Gk(xk+1) �K
Gk(xk) = 0, implies maxc∗∈Ck

〈
c∗, Gk(xk+1)

〉
→ 0. A direct calculation gives:

0 = max
c∗∈C̃

〈
c∗, Gk(xk)

〉
≥ min
y∈Rn

max
c∗∈C̃

〈c∗, Gk(y)〉 ≥ min
y∈Rn

max
c∗∈Ck

〈c∗, Gk(y)〉 = max
c∗∈Ck

〈
c∗, Gk(xk+1)

〉
→ 0,

where the second inequality follows by Ck ⊂ C̃. Therefore, miny∈Rn maxc∗∈C̃ 〈c∗, Gk(y)〉 → 0. For the

accumulation point x∗, there exists an infinite index set K such that xk
K−→ x∗. By Assumption 3.1(iii), we

conclude that x∗ is a K-stationary point.

3.2.2. Strong convergence

In the following, we establish the strong convergence result of Algorithm 3.1 in K-convex setting.

Theorem 3.2. Suppose that Assumption 3.1 holds and F (·) is K-convex, let {xk} be the sequence generated

by Algorithm 1 with Gk(·) ∈ S`,µ(F, xk) and 0 �K ` = µ. Then, the following statements hold:

(i) {xk} converges to a weakly efficient solution x∗ of (VOP);

(ii) u0(xk) ≤ `maxR
2

2k , ∀k ≥ 1, where `max := maxc∗∈C̃ 〈c∗, `〉, R := {‖x− y‖ : x, y ∈ LF (x0)}, and

u0(xk) := max
x∈Rn

min
c∗∈C̃

〈
c∗, F (xk)− F (x)

〉
is a merit function in the sense of weak efficiency.

Proof . (i) By the similar arguments in the proof of Theorem 3.1, we conclude that {xk} is bounded, and

there exists a K-stationary point x∗ such that F (x∗) �K F (xk). Besides, the K-convexity of F (·) indicates
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that x∗ is a weakly efficient point. From Lemma 3.1(ii), for any x ∈ Rn we have

〈
c∗k, F (xk+1)− F (x)

〉
≤ 1

2

∥∥xk − x∥∥2 〈c∗k, `〉 −
1

2

∥∥xk+1 − x
∥∥2 〈c∗k,µ〉 . (8)

Substituting x = x∗ into the above inequality, we obtain〈
c∗k, F (xk+1)− F (x∗)

〉
≤ 1

2

∥∥xk − x∗∥∥2 〈c∗k, `〉 −
1

2

∥∥xk+1 − x∗
∥∥2 〈c∗k,µ〉 .

Recall that F (x∗) �K F (xk), it follows that∥∥xk+1 − x∗
∥∥2 〈c∗k,µ〉 ≤

∥∥xk − x∗∥∥2 〈c∗k, `〉 .

Furthermore, we use the fact that 0 �K ` = µ to get∥∥xk+1 − x∗
∥∥2 ≤

∥∥xk − x∗∥∥2
.

Therefore, the sequence {
∥∥xk − x∗∥∥} converges. This, together with the fact that x∗ is an accumulation point

of {xk}, implies that {xk} converges to x∗

(ii) Since 0 �K ` = µ, we use inequality (8) to obtain

〈
c∗k, F (xk+1)− F (x)

〉
≤ 1

2

∥∥xk − x∥∥2 〈c∗k, `〉 −
1

2

∥∥xk+1 − x
∥∥2 〈c∗k,µ〉 =

〈c∗k, `〉
2

(∥∥xk − x∥∥2 −
∥∥xk+1 − x

∥∥2
)
.

(9)

Taking the sum of the preceding inequality over 0 to k − 1, we have

k−1∑
s=0

〈
c∗s, F (xs+1)− F (x)

〉
≤
k−1∑
s=0

〈c∗s, `〉
2

(
‖xs − x‖2 −

∥∥xs+1 − x
∥∥2
)
.

Notice that F (xk) �K F (xs+1) for all s ≤ k − 1, it leads to

k−1∑
s=0

〈
c∗s, F (xk)− F (x)

〉
≤
k−1∑
s=0

〈c∗s, `〉
2

(
‖xs − x‖2 −

∥∥xs+1 − x
∥∥2
)
.

Denote ĉ∗k :=
∑k−1
s=0 c

∗
s/k. It follows from the convexity of C̃ and the fact that c∗s ∈ C̃ that ĉ∗k ∈ C̃. Therefore,

we conclude that 〈
ĉ∗k, F (xk)− F (x)

〉
≤
k−1∑
s=0

〈c∗s, `〉
2k

(
‖xs − x‖2 −

∥∥xs+1 − x
∥∥2
)
.

Select yk ∈ arg maxx∈Rn minc∗∈C̃
〈
c∗, F (xk)− F (x)

〉
, it holds that

u0(xk) = max
x∈Rn

min
c∗∈C̃

〈
c∗, F (xk)− F (x)

〉
= min
c∗∈C̃

〈
c∗, F (xk)− F (yk)

〉
≤
〈
ĉ∗k, F (xk)− F (yk)

〉
≤
k−1∑
s=0

〈c∗s, `〉
2k

(∥∥xs − yk∥∥2 −
∥∥xs+1 − yk

∥∥2
)
.

By the definition of yk, we deduce that yk ∈ {x : F (x) �K F (xk)} ⊂ LF (xs) for all s ≤ k − 1. Substituting

this relation into (9), we have
∥∥xs − yk∥∥2 −

∥∥xs+1 − yk
∥∥2 ≥ 0 for all s ≤ k − 1. Therefore,

u0(xk) ≤ `max

2k

k−1∑
s=0

(∥∥xs − yk∥∥2 −
∥∥xs+1 − yk

∥∥2
)
≤
`max

∥∥x0 − yk
∥∥2

2k
.

Recall that yk ∈ LF (x0), the desired result follows.
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3.2.3. Linear convergence

By further assuming that F (·) is strongly K-convex, the linear convergence result of Algorithm 1 can be

derived as follows.

Theorem 3.3. Suppose that Assumption 3.1(ii) holds and F (·) is strongly K-convex, let {xk} be the sequence

generated by Algorithm 1 with Gk(·) ∈ S`,µ(F, xk) and 0 �K ` ≺K µ. Then, the following statements hold:

(i) {xk} converges to an efficient solution x∗ of (VOP);

(ii)
∥∥xk+1 − x∗

∥∥ ≤√max
c∗∈Ck

〈c∗,`〉
〈c∗,µ〉

∥∥xk − x∗∥∥ , ∀k ≥ 0.

Proof . (i) Since F (·) is strongly K-convex, then Assumption 3.1(i) holds and every weakly efficient solution

is actually an efficient solution. Therefore, assertion (i) is a consequence of Theorem 3.2(i).

(ii) By substituting x = x∗ into inequality (8), we have

〈
c∗k, F (xk+1)− F (x∗)

〉
≤ 1

2

∥∥xk − x∗∥∥2 〈c∗k, `〉 −
1

2

∥∥xk+1 − x∗
∥∥2 〈c∗k,µ〉 .

It follows by F (x∗) �K F (xk+1) that

∥∥xk+1 − x∗
∥∥ ≤√ 〈c∗k, `〉

〈c∗k,µ〉
∥∥xk − x∗∥∥ .

The desired result follows .

Remark 3.3. It seems that the convexity of F (·) plays no role in the proof of Theorems 3.2 and 3.3. However,

it can indeed be shown that F (·) is necessarily K-convex if ` = µ and strongly K-convex with µ−` if ` ≺K µ.

In the next section, we will give some examples where such a condition holds.

Remark 3.4. Note that 0 /∈ Ck and cone(Ck) = K∗, we have

max
c∗∈Ck

〈c∗, `〉
〈c∗,µ〉

= max
c∗∈K∗\{0}

〈c∗, `〉
〈c∗,µ〉

.

Therefore, the linear convergence rate is related to {Gk(·)}, not {Ck}, which confirms that the rate of con-

vergence can be improved by choosing a tighter surrogate.

4. First-order methods for VOPs with majorizing surrogate functions

It is worth noting that Remark 3.4 may suggest that the choice of the base in the subproblem is inessential,

which could make the question (Q) raised in the introduction seem trivial. However, as will be demonstrated

in this section, the selection of such a base not only influences the convergence rate but also determines the

computational complexity of the subproblem. Both aspects are of central importance in the framework of

majorization-minimization optimization.

In what follows, we first revisit the classical steepest descent method for VOPs (SDVO) (Graña Drummond

& Svaiter, 2005) and establish its connection with Algorithm 1. To mitigate the slow convergence of SDVO,

we then investigate, from a majorization-minimization perspective, how an appropriate choice of the base

can effectively accelerate first-order methods for VOPs.

4.1. K-steepest descent method for VOPs without line search

For x ∈ Rn, recall that dk, the K-steepest descent direction (Graña Drummond & Svaiter, 2005) at xk,

is defined as the optimal solution of

min
d∈Rn

max
c∗∈C

〈
c∗, JF (xk)d

〉
+

1

2
‖d‖2. (10)
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Select a vector e ∈ int(K), and denote Ce = {c∗ ∈ K∗ : 〈c∗, e〉 = 1}. If we set C = Ce in (10), then the

K-steepest descent direction can be reformulated as the optimal solution of

min
d∈Rn

max
c∗∈Ce

〈
c∗, JF (xk)d+

1

2
‖d‖2e

〉
. (11)

Remark 4.1. If K = Rm+ , and Ce = ∆m, then e = 1m and the subproblem (11) reduces to that of steepest

descent method for MOPs (Fliege & Svaiter, 2000). In what follows, we refer to subproblems of the forms

(10) and (11) as seperate and coupled subproblems, respectively.

From now on, we assume that F (·) is K-smooth with ` ∈ int(K), denote

Lmax := max
c∗∈Ce

〈c∗, `〉 .

Let us revisit the K-steepest descent method without line search:

Algorithm 2: K-steepest descent method for VOPs

Data: x0 ∈ Rn, L ≥ Lmax

1 for k = 0, 1, ... do
2 Update xk+1 := arg minx∈Rn maxc∗∈Ce

〈
c∗, JF (xk)(x− xk)

〉
+ L

2 ‖x− x
k‖2

3 if xk+1 = xk then
4 return K-stationary point xk

5 end

6 end

We consider the following surrogate:

Gk,Le(x) := JF (xk)(x− xk) +
L

2

∥∥x− xk∥∥2
e. (12)

It is obvious that Algorithm 2 is a special case of Algorithm 1 with Ck = Ce and Gk(·) = Gk,Le(·). As

described in Remark 3.4, the peformance of Algorithm 2 is mainly attributed to Gk,Le(·). The following

results show that Gk,Le(·) is a majorizing surrogate function of F (·)− F (xk) near xk.

Proposition 4.1. Let Gk,Le(·) be defined as (12). Then, the following statements hold.

(i) For any L ≥ Lmax, Gk,Le(·) is a majorizing surrogate of F (·)− F (xk), i.e., F (·)− F (xk) �K Gk,Le(·).

(ii) If F (·) is K-convex, then Gk,Le(·) ∈ SLe,Le(F, xk) for all L ≥ Lmax.

(iii) If F (·) is strongly K-convex with µ ∈ int(K), then Gk,Le(·) ∈ SLe−µ,Le(F, xk) for all L ≥ Lmax.

Proof . By the definition of Lmax, we have ` �K Lmaxe, it follows from the K-smoothness of F (·) that

assertion (i) holds. Notice that Gk,Le(·) is strongly K-convex and K-smooth with Le, and µ �K Le, then

we obtain assertion (ii) and (iii) by Lemma 2.3 (ii) and (iii), respectively.

Note that for a strongly K-convex objective function, Gk,Le(·) ∈ SLe−µ,Le(F, xk) for all L ≥ Lmax. We

are now in a position to present the rate of linear convergence for SDVO.

Lemma 4.1. Assume that F (·) is strongly K-convex with µ ∈ int(K), let {xk} be the sequence generated by

Algorithm 2. Then, the following statements hold:

(i) {xk} converges to an efficient solution x∗ of (VOP);

(ii)
∥∥xk+1 − x∗

∥∥ ≤√1− µmin/L
∥∥xk − x∗∥∥ , ∀k ≥ 0, where µmin := minc∗∈Ce 〈c∗,µ〉.

Proof . Since F (·) is strongly K-convex, it follows that Gk,Le(·) ∈ SLe−µ,Le(F, xk) and Assumption 3.1 holds

in this case. By setting Ck = Ce, Theorem 3.3 (i) and (ii) reduce to the assertions (i) and (ii), respectively.
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Remark 4.2. If K = Rm+ and e = 1m, then Ce = ∆m is a base of Rm+ , the convergence rate in Lemma

4.1 reduces to that of (Tanabe et al., 2023, Theorem 5.3) with g(·) = 0. Specifically, the linear convergence

rate is worse than O((
√

1− µmin/Lmax)k) (setting L = Lmax), where Lmax = maxi∈[m]{`i} and µmin =

mini∈[m]{µi}. Therefore, even each of objective functions is well-conditioned (maxi∈[m]{`i/µi} is relative

small), the linear convergence rate can be very slow due to objective imbalances (Lmax/µmin can be extremely

large). It is worth noting that the rate of convergence is related to Ce, since in the seperate subproblem the

surrogate function is inherently determined by Ce. To the best of our knowledge, apart from ∆m, it remains

an open problem for the better choice of the base in MOPs.

4.2. Improved K-steepest descent method for VOPs without line search

As detailed in Remark 4.2, the linear convergence rate can be very slow with imbalanced objectives,

this is mainly due to the large gap between F (·) − F (xk) and Gk,Le(·) from a majorization-minimization

perspective. To reduce this gap, one natural strategy is to construct a tighter surrogate function that better

approximates the local behavior of F (·) − F (xk). Notice that ` �K Lmaxe, we denote the following tighter

majorizing surrogate:

Gk,`(x) := JF (xk)(x− xk) +
1

2

∥∥x− xk∥∥2
`. (13)

The properties of Gk,`(·) is presented as follows.

Proposition 4.2. Let Gk,`(·) be defined as (13). Then, the following statements hold.

(i) Gk,`(·) is a tight majorizing surrogate of F (·)− F (xk), i.e., F (·)− F (xk) �K Gk,`(·), and the relation

does not hold for any Gk, ˆ̀(·) such that ` 6�K ˆ̀.

(ii) If F (·) is K-convex, then Gk,`(·) ∈ S`,`(F, xk).

(iii) If F (·) is strongly K-convex with µ ∈ int(K), then Gk,`(·) ∈ S`−µ,`(F, xk).

Proof . The assertions can be obtained by using the similar arguments as in the proof of Proposition 4.1.

By using the tighter surrogate, we devise the following improved K-steepest descent method with coupled

subproblems for VOPs.

Algorithm 3: improved K-steepest descent method for VOPs with coupled subproblems

Data: x0 ∈ Rn
1 for k = 0, 1, ... do
2 Update xk+1 := arg minx∈Rn maxc∗∈Ce

〈
c∗, JF (xk)(x− xk) + 1

2‖x− x
k‖2`

〉
3 if xk+1 = xk then
4 return K-stationary point xk

5 end

6 end

Lemma 4.2. Assume that F (·) is strongly K-convex with µ ∈ int(K), let {xk} be the sequence generated by

Algorithm 3. Then, the following statements hold:

(i) {xk} converges to an efficient solution x∗ of (VOP);

(ii)
∥∥xk+1 − x∗

∥∥ ≤√1− 1/κF,�K
∥∥xk − x∗∥∥ , ∀k ≥ 0.

Proof . The assertions can be obtained by using the similar arguments as in the proof of Lemma 4.1.

Remark 4.3. If K = Rm+ , and e = 1m, the convergence rate in Lemma 4.2 reduces to that of (Chen et al.,

2023b, Corollary 4.3) with g(·) = 0. Notice that 1/κF,�K ≥ µmin/L, which indicates that Algorithm 3 enjoys

faster linear convergence than Algorithm 2. Furthermore, by Remark 3.4, we conclude that the improved

linear convergence does not depend on the choice of Ce.
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4.3. Trade-off between surrogate gap and per-iteration cost

Although Algorithms 3 exhibits improved linear convergence by using a tighter surrogate function, the

per-iteration cost is more expensive than that of Algorithm 2 due to coupled subproblems. Details on solving

these subproblems will be provided in Section 6 (see Remark 6.2). In the spirit of majorization-minimization

optimization, a direct question arises: how to strike a better trade-off in terms of surrogate gap and per-

iteration cost?

Recall that the linear convergence rate of Algorithm 3 does not depend on the choice of Ce, which is

mainly due to coupled subproblems. By denoting

C` := {c∗ ∈ K∗ : 〈c∗, `〉 = 1},

we propose the following improved K-steepest descent method with seperate subproblems for VOPs.

Algorithm 4: improved K-steepest descent method for VOPs with seperate subproblems

Data: x0 ∈ Rn
1 for k = 0, 1, ... do
2 Update xk+1 := arg minx∈Rn maxc∗∈C`

〈
c∗, JF (xk)(x− xk)

〉
+ 1

2‖x− x
k‖2

3 if xk+1 = xk then
4 return K-stationary point xk

5 end

6 end

Using the definition of C`, the seperate subproblem in Algorithm 4 can be rewritten equivalently as the

following coupled form:

min
x∈Rn

max
c∗∈C`

〈
c∗, JF (xk)(x− xk) +

1

2
‖x− xk‖2`

〉
.

Therefore, Algorithm 4 enjoys the same improved linear convergence as that of Algorithm 3.

Lemma 4.3. Assume that F (·) is strongly K-convex with µ ∈ int(K), let {xk} be the sequence generated by

Algorithm 4. Then, the following statements hold:

(i) {xk} converges to an efficient solution x∗ of (VOP);

(ii)
∥∥xk+1 − x∗

∥∥ ≤√1− 1/κF,�K
∥∥xk − x∗∥∥ , ∀k ≥ 0.

Remark 4.4. If K = Rm+ , and ∆`
m := {c∗ ∈ Rm++ : 〈c∗, `〉 = 1}, the Algorithm 4 reduces to (Chen

et al., 2023b, Algorithm 5) with g(·) = 0. Interestingly, the relations between Algorithms 2, 3 and 4 depend

solely on the choice of Ce. If Ce = C`, Algorithms 2, 3 and 4 are equivalent. Consequently, regarding the

open problem of selecting a better Ce mentioned in Remark 4.2, we provide a theoretical answer by setting

Ce = C`. Furthermore, we can summarize that choosing a tighter surrogate function is equivalent to selecting

an appropriate base in the seperate subproblem.

Remark 4.5. Although Algorithms 3 and 4 both exhibit similar improved linear convergence, the compu-

tational cost of solving seperate subproblems is generally lower in Algorithm 4. Details on solving these

subproblems will be provided in Section 6 (see Remark 6.2).

5. First-order methods for VOPs with non-majorizing surrogate functions

In the previous section, the majorization-minimization optimization methods were developed using ma-

jorizing surrogate functions; however, these surrogates may be overly conservative due to reliance on global

upper bounds. From the perspective of majorization-minimization, selecting a non-majorizing surrogate

function could potentially enhance performance.
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5.1. K-steepest descent method with line search

Firstly, we revisit K-steepest descent method for VOPs with line search.

Algorithm 5: K-steepest descent method for VOPs with line search

Data: x0 ∈ Rn, γ ∈ (0, 1)

1 for k = 0, 1, ... do

2 Update dk := arg mind∈Rn maxc∗∈Ce
〈
c∗, JF (xk)d

〉
+ 1

2‖d‖
2

3 if dk = 0 then

4 return K-stationary point xk

5 else

6 Compute the stepsize tk ∈ (0, 1] in the following way:

tk := max

{
γj : j ∈ N, F (xk + γjdk)− F (xk) �K γj

(
JF (xk)dk +

1

2

∥∥dk∥∥2
e

)}
7 xk+1 := xk + tkd

k

8 end

9 end

The stepsize has the following lower bound.

Proposition 5.1. The stepsize generated in Algorithm 5 satisfies tk ≥ tmin := min
{

γ
Lmax

, 1
}

.

Proof . By the line search condition in Algorithm 5, we have

F (xk +
tk
γ
dk)− F (xk) 6�K

tk
γ

(
JF (xk)dk +

1

2

∥∥dk∥∥2
e

)
.

Then there exists c∗1 ∈ Ce such that〈
c∗1, F (xk +

tk
γ
dk)− F (xk)

〉
>

〈
c∗1,

tk
γ

(
JF (xk)dk +

1

2

∥∥dk∥∥2
e

)〉
. (14)

On the other hand, the K-smoothness of F (·) implies

F (xk +
tk
γ
dk)− F (xk) �K

tk
γ
JF (xk)dk +

1

2

∥∥∥∥ tkγ dk
∥∥∥∥2

`.

Therefore, we have〈
c∗1, F (xk +

tk
γ
dk)− F (xk)

〉
≤
〈
c∗1,

tk
γ
JF (xk)dk

〉
+

1

2

∥∥∥∥ tkγ dk
∥∥∥∥2

〈c∗1, `〉 .

This, together with inequality (14), yields

tk ≥
γ

〈c∗1, `〉
.

Then the desired result follows.

We consider the following surrogate:

Gk,e/tmin
(x) := JF (xk)(x− xk) +

1

2tmin

∥∥x− xk∥∥2
e. (15)

The following results show that Gk,e/tmin
(·) is a non-majorizing surrogate function of F (·)− F (xk) near xk.

Proposition 5.2. Let Gk,e/tmin
(·) be defined as (15). Then, the following statements hold.

(i) F (xk+1)− F (xk) �K Gk,e/tmin
(xk+1).
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(ii) If F (·) is K-convex, then Gk,e/tmin
(·) ∈ Se/tmin,e/tmin

(F, xk).

(iii) If F (·) is strongly K-convex with µ ∈ int(K), then Gk,e/tmin
(·) ∈ Se/tmin−µ,e/tmin

(F, xk).

Proof . By the line search condition, we have

F (xk+1)−F (xk) �K JF (xk)(xk+1−xk)+
1

2tk

∥∥xk+1 − xk
∥∥2
e �K JF (xk)(xk+1−xk)+

1

2tmin

∥∥xk+1 − xk
∥∥2
e.

Then, the assertion (i) holds. The assertions (ii) and (iii) can be obtained by using the similar arguments as

in the proof of Proposition 4.1.

Lemma 5.1. Assume that F (·) is strongly K-convex with µ ∈ int(K), let {xk} be the sequence generated by

Algorithm 5. Then, the following statements hold:

(i) {xk} converges to an efficient solution x∗ of (VOP);

(ii)
∥∥xk+1 − x∗

∥∥ ≤ √1− tminµmin

∥∥xk − x∗∥∥ , ∀k ≥ 0, where µmin := minc∗∈Ce 〈c∗,µ〉.

Proof . The assertions can be obtained by using the similar arguments as in the proof of Lemma 4.1.

Remark 5.1. If K = Rm+ , and e = 1m, i.e., Ce = ∆m, the convergence rate in Lemma 5.1(ii) reduces to

those established in (Fliege et al., 2018, Theorem 4.2) and (Zeng et al., 2019, Theorem 5.6).

5.2. Generic first-order method for VOPs with line search

To reduce the gap between F (·)− F (xk) and Gk,e/tmin
(·), we select ek ∈ int(K) and devise the following

generic first-order method:

Algorithm 6: Generic first order method for VOPs with line search

Data: x0 ∈ Rn, γ ∈ (0, 1)
1 for k = 0, 1, ... do
2 Select ek ∈ int(K)

3 Update dk := arg mind∈Rn maxc∗∈Ce
〈
c∗, JF (xk)d+ 1

2‖d‖
2ek
〉

4 if dk = 0 then
5 return K-stationary point xk

6 else
7 Compute the stepsize tk ∈ (0, 1] in the following way:

tk := max

{
γj : j ∈ N, F (xk + γjdk)− F (xk) �K γj

(
JF (xk)dk +

1

2

∥∥dk∥∥2
ek

)}
8 xk+1 := xk + tkd

k

9 end

10 end

It is worth noting that we don’t specify how to select ek in Algorithm 6. This naturally raises the question:

what role does ek play in determining the convergence rate? Firstly, we derive the lower bound of stepsize

in each iteration.

Proposition 5.3. The stepsize generated in Algorithm 6 satisfies tk ≥ tmin
k := min

{
min
c∗∈Ce

γ〈c∗,ek〉
〈c∗,`〉 , 1

}
.

Proof . The result can be obtained by using the similar arguments as in the proof of Proposition 5.1.

We consider the following surrogate:

Gk,ek/tk(x) := JF (xk)(x− xk) +
1

2tmin
k

∥∥x− xk∥∥2
ek. (16)

We can show that Gk,ek/tmin
k

(·) is a non-majorizing surrogate function of F (·)− F (xk) near xk.
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Proposition 5.4. Let Gk,ek/tmin
k

(·) be defined as (16). Then, the following statements hold.

(i) F (xk+1)− F (xk) �K Gk,ek/tmin
k

(xk+1)..

(ii) If F (·) is K-convex, then Gk,ek/tmin
k

(·) ∈ Sek/tmin
k ,ek/tmin

k
(F, xk).

(iii) If F (·) is strongly K-convex with µ ∈ int(K), then Gk,ek/tmin
k

(·) ∈ Sek/tmin
k −µ,ek/tmin

k
(F, xk).

Proof . The assertions can be obtained by using the similar arguments as in the proof of Proposition 5.2.

The following results show that ek plays a significant role in the convergence rate of Algorithm 6.

Lemma 5.2. Assume that F (·) is strongly K-convex with µ ∈ int(K), let {xk} be the sequence generated by

Algorithm 6. Then, the following statements hold:

(i) {xk} converges to an efficient solution x∗ of (VOP).

(ii)
∥∥xk+1 − x∗

∥∥ ≤√1− min
c∗∈Ce

〈c∗,µ〉
〈c∗,ek/tmin

k 〉
∥∥xk − x∗∥∥ , ∀k ≥ 0.

(iii) If ek = e, we have ∥∥xk+1 − x∗
∥∥ ≤√1− tminµmin

∥∥xk − x∗∥∥ , ∀k ≥ 0,

where µmin := minc∗∈Ce 〈c∗,µ〉.

(iv) For any ek ∈ intK, we have

min
c∗∈Ce

〈c∗,µ〉〈
c∗, ek/tmin

k

〉 ≤ γ

κF,�K
. (17)

Moreover, the equality holds with ek = µ or ek = `. In these cases, we have∥∥xk+1 − x∗
∥∥ ≤√1− γ/κF,�K

∥∥xk − x∗∥∥ , ∀k ≥ 0. (18)

Proof . The assertions (i) and (ii) can be obtained by using the similar arguments as in the proof of Lemma

4.1. By substituting ek = e into (ii), we can obtain the assertion (iii). Next, we prove the assertion (iv).

Since Ce is a compact set, there exists a vector c∗0 ∈ Ce such that 1/κF,�K = 〈c∗0,µ〉/〈c∗0, `〉. On the other

hand, by the definition of tmin
k we can deduce

min
c∗∈Ce

〈c∗,µ〉〈
c∗, ek/tmin

k

〉 ≤ 〈c∗0,µ〉
〈c∗0, ek〉

γ 〈c∗0, ek〉
〈c∗0, `〉

=
γ

κF,�K
.

Then the relation (17) follows. The equality can be obtain by substituting ek = µ or ek = ` into the left-hand

side of (17) . Moreover, The equality leads to the relation (18).

Remark 5.2. As described in Lemma 5.2(iv), by setting ek = µ or ek = `, we can derive the optimal linear

convergence rate for Algorithm 6, and the convergence rate reduces to that of Lemma 4.3(ii) with constant

γ. Intuitively, to explore the local curvature information of F (·), we can devise a tighter local surrogate

Gk,ek/tk(·) with µ �K ek �K `. In this case, the performance of Algorithm 6 can be further improved by

using a tighter local surrogate Gk,ek/tk(·).

To narrow the surrogate gap and better capture the local curvature information, we compute ek by

Barzilai-Borwein method, namely, we set

ek :=

〈
JF (xk)− JF (xk−1), xk − xk−1

〉
‖xk − xk−1‖2

. (19)

Lemma 5.3. Assume that F (·) is strongly K-convex with µ ∈ int(K), let {xk} be the sequence generated by

Algorithm 6, where ek is defined as in (19). Then, the following statements hold:
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(i) µ �K ek �K `;

(ii) tk ≥ minc∗∈Ce{γ 〈c∗, ek〉 / 〈c∗, `〉};

Proof . Assertion (i) follows by the strong k-convexity and K-smoothness of F (·), and the definition of ek.

We can obtain the assertion (ii) by using the similar arguments as in the proof of Proposition 5.1.

Remark 5.3. To reduce per-iteration cost, we set e = ek, i.e., Ce = Cek , so that the coupled subproblem in

Algorithm 6 can be reformulated into the following seperate form:

min
d∈Rn

max
c∗∈Cek

〈
c∗, JF (xk)d

〉
+

1

2
‖d‖2.

Hence, we conclude that using a variable Cek serves as an appropriate choice of base in SDVO, which provides

a theoretical answer to (Q). For K = R2
+, Fig. 1 illustrates the choice of the base under the assumption of

strong convexity. It suggests that bases should be adaptively selected from the pink region according to (19).

Fig. 1. Illustration of the Cek of K = R2
+.

6. First-order methods for VOPs with polyhedral cones

In this section, we consider the VOPs that K is a polyhedral cone with nonempty interior. Without loss

of generality, for the polyhedral cone K, there exists a transform matrix A ∈ Rl×m with m ≤ l such that

K := {x ∈ Rm : 0 � Ax}.

In this case, for any a, b ∈ Rm, a �K b can be equivalently represented as Aa � Ab. Denote Ai the i-th row

vector of A. For the polyhedral cone K, we denote the set of transform matrices as follows:

A :=
{
A ∈ Rl×m : AK = Rl+

}
.

Notably, in practice, the polyhedral cone K is often defined by a specific transform matrix A. This raises

a crucial question: does the transform matrix A affect the performance of descent methods for VOPs with

polyhedral cones?

6.1. Steepest descent method for VOPs with polyhedral cones

By using a transform matrix A ∈ A, the steepest descent direction subproblem for VOPs with polyhedral

cones is formulated as follows:

min
d∈Rn

max
λ∈∆l

〈
λ,AJF (xk)d

〉
+

1

2
‖d‖2 . (20)

The complete K-steepest descent method for VOPs with polyhedral cones is described as follows:
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Algorithm 7: K-steepest descent method for VOPs with polyhedral cones

Data: x0 ∈ Rn, γ ∈ (0, 1)
1 Select a transform matrix A ∈ A
2 for k = 0, 1, ... do
3 Update dk as the minimizer of (20)

4 if dk = 0 then
5 return K-stationary point xk

6 else
7 Compute the stepsize tk ∈ (0, 1] in the following way:

tk := max

{
γj : j ∈ N, A(F (xk + γjdk)− F (xk)) � γj

(
AJF (xk)dk +

1

2

∥∥dk∥∥2
1l

)}
xk+1 := xk + tkd

k

8 end

9 end

We consider the following surrogate:

Gk,A,1l/tk(x) := AJF (xk)(x− xk) +
1

2tk

∥∥x− xk∥∥2
1l. (21)

We can show that Gk,A,1l/tk(·) is a non-majorizing surrogate function of A(F (·)− F (xk)) near xk.

Proposition 6.1. Let Gk,A,1l/tk(·) be defined as (21). Then, the following statements hold.

(i) A(F (xk+1)− F (xk)) � Gk,A,1l/tk(xk+1).

(ii) If F (·) is K-convex, then Gk,A,1l/tk(·) ∈ S1l/tk,1l/tk(AF, xk).

(iii) If F (·) is strongly K-convex with µ ∈ int(K), then Gk,A,1l/tk(·) ∈ S1l/tk−Aµ,1l/tk(AF, xk).

Proof . The assertions can be obtained by using the similar arguments as in the proof of Proposition 5.2.

Lemma 6.1. Assume that F (·) is strongly K-convex with µ ∈ int(K), where K = {x ∈ Rm : 0 � Ax}. Let

{xk} be the sequence generated by Algorithm 7. Then, the following statements hold:

(i) tk ≥ min{mini∈[l]{γ/ 〈Ai, `〉}, 1};

(ii) {xk} converges to an efficient solution x∗ of (VOP);

(iii)
∥∥xk+1 − x∗

∥∥ ≤√1− tk mini∈[l] 〈Ai,µ〉
∥∥xk − x∗∥∥ , ∀k ≥ 0.

Proof . The assertions can be obtained by using the similar arguments as in the proof of Proposition 5.1 and

Lemma 4.1.

Remark 6.1. The subproblem (20) can be reformulated as

min
d∈Rn

max
c∗∈C

〈
c∗, JF (xk)d

〉
+

1

2
‖d‖2 ,

where C := conv{Ai, i ∈ [l]} is a base of K∗. In other words, selecting a transform matrix in (20) is equivalent

to selecting a base of K∗. Consequently, the linear convergence rate of Algorithm 7 is sensitive to the choice

of A. When K = Rm+ , the steepest descent method (Fliege & Svaiter, 2000) fixs A = Im, i.e., C = ∆m.
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6.2. Barzilai-Borwein descent method for VOPs with polyhedral cones

In general, for the ek defined as (19) we have ek �K `, which can be written as Aek � A`. We denote

αk ∈ Rl++ as follows:

αki =



max

{
αmin,min

{
〈sk−1, y

k−1
i 〉

‖sk−1‖2
, αmax

}}
, 〈sk−1, y

k−1
i 〉 > 0,

max

{
αmin,min

{∥∥yk−1
i

∥∥
‖sk−1‖

, αmax

}}
, 〈sk−1, y

k−1
i 〉 < 0,

αmin, 〈sk−1, y
k−1
i 〉 = 0,

(22)

for all i ∈ [l], where sk−1 = xk − xk−1, yk−1
i is the i-th row vector of A(JF (xk) − JF (xk−1)), αmax is

a sufficient large positive constant and αmin is a sufficient small positive constant. The Barzilai-Borwein

descent direction is defined as the minimizer of

min
d∈Rn

max
λ∈∆l

〈
λ,AJF (xk)d+

1

2
‖d‖2 αk

〉
. (23)

Alternatively, we use the similar strategy in Algorithm 4, the Barzilai-Borwein descent direction subproblem

can be rewritten equivalently as the following coupled form:

min
d∈Rn

max
λ∈∆αk

l

〈
λ,AJF (xk)d

〉
+

1

2
‖d‖2 , (24)

where ∆αk

l := {c∗ ∈ Rl+ :
〈
c∗, αk

〉
= 1}. The subproblem can be reformulated as follows:

min
d∈Rn

max
λ∈∆l

〈
λ,ΛkAJF (xk)d

〉
+

1

2
‖d‖2 , (25)

where

Λk :=


1
αk1

. . .
1
αkl

 .
By Sion’s minimax theorem (Sion, 1958), the minimizer of (25) can be written as

dk = −(ΛkAJF (xk))Tλk,

where λk ∈ ∆l is a solution of the following dual problem:

min
λ∈∆l

1

2

∥∥(ΛkAJF (xk))Tλ
∥∥2
. (DP)

Remark 6.2. In general, the dual problem (DP) is a lower dimensional quadratic programming with u-

nit simplex constraint (the vertices of unit simplex constraint are known), then it can be solved by Frank-

Wolfe/conditional gradient method efficiently (see, e.g., Sener & Koltun, 2018; Chen et al., 2023a). However,

dual problem of (23) reads as

min
λ∈∆l

1

2

∥∥(AJF (xk))Tλ
∥∥2∑

i∈[l]

λiαki
,

which is not easy to solve.

Remark 6.3. If K = Rm+ and A = Im, the subproblem (25) reduces to that of the BBDMO (Chen et al.,

2023a). Consequently, transforming (23) into (25) gives a new insight into BBDMO from a majorization-

minimization perspective. Comparing the subproblems (20) and (24), it turns out that the differences between

the directions of the steepest descent and the Barzilai-Borwein descent lie in the choice of base for K∗.
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The complete K-Barzilai-Borwein descent method for VOPs with polyhedral cones is described as follows:

Algorithm 8: K-Barzilai-Borwein descent method for VOPs with polyhedral cones

Data: x0 ∈ Rn, γ ∈ (0, 1)
1 Select a transform matrix A ∈ A
2 Choose x−1 in a small neighborhood of x0

3 for k = 0, 1, ... do
4 Update αk as (22)

5 Update dk as the minimizer of (25)

6 if dk = 0 then
7 return K-stationary point xk

8 else
9 Compute the stepsize tk ∈ (0, 1] in the following way:

tk := max

{
γj : j ∈ N, A(F (xk + γjdk)− F (xk)) � γj

(
AJF (xk)dk +

1

2

∥∥dk∥∥2
αk
)}

10 xk+1 := xk + tkd
k

11 end

12 end

We consider the following surrogate:

Gk,A,αk/tk(x) := AJF (xk)(x− xk) +
1

2tk

∥∥x− xk∥∥2
αk. (26)

We can show that Gk,A,αk/tk(·) is a non-majorizing surrogate function of A(F (·)− F (xk)) near xk.

Proposition 6.2. Let Gk,A,αk/tk(·) be defined as (26). Then, the following statements hold.

(i) A(F (xk+1)− F (xk)) � Gk,A,αk/tk(xk+1).

(ii) If F (·) is K-convex, then Gk,A,αk/tk(·) ∈ Sαk/tk,αk/tk(AF, xk).

(iii) If F (·) is strongly K-convex with µ ∈ int(K), then Gk,A,αk/tk(·) ∈ Sαk/tk−Aµ,αk/tk(AF, xk).

Proof . The assertions can be obtained by using the similar arguments as in the proof of Proposition 5.2.

Lemma 6.2. Assume that F (·) is strongly K-convex with µ ∈ int(K), where K = {x ∈ Rm : 0 � Ax}. Let

{xk} be the sequence generated by Algorithm 8. Then, the following statements hold:

(i) Aµ � αk � A`;

(ii) tk ≥ mini∈[l]{γαki / 〈Ai, `〉};

(iii) {xk} converges to an efficient solution x∗ of (VOP);

(iv)
∥∥xk+1 − x∗

∥∥ ≤√1− tk mini∈[l]{〈Ai,µ〉/αki }
∥∥xk − x∗∥∥ , ∀k ≥ 0.

Proof . The assertions can be obtained by using the similar arguments as in the proof of Proposition 5.1 and

Lemma 4.1.

A large stepsize may speed up the convergence of Algorithm 8. Accordingly, the Armijo line search can

be applied, namely, compute the stepsize tk ∈ (0, 1] in the following way:

tk := max
{
γj : j ∈ N, A(F (xk + γjdk)− F (xk)) � σγjAJF (xk)dk

}
, (27)

where σ ∈ (0, 1).
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The following result shows that the convergence rate of Algorithm 8 is not sensitive to the choice of

transform matrix. More specifically, the descent direction dk and stepsize tk of Algorithm 8 are invariant for

some A ∈ A.

Proposition 6.3. (Affine Invariance) Let A1, A2 ∈ A, dk1 , t
1
k and dk2 , t

2
k be the descent directions and stepsize

generated by Algorithm 8 with A1 and A2, respectively. If αmin < αk,1i , αk,2i < αmax, i ∈ [l], we have dk1 = dk2
and t1k = t2k.

Proof . Denote A1
i and A2

i the the i-th row vector of A1 and A2, respectively. Before presenting the main

results, we rewritten the subproblem (25) as follows:

min
d∈Rn

max
i∈[l]

〈
Ai
αki
, JF (xk)d

〉
+

1

2
‖d‖2 .

Recall that A1, A2 ∈ A, there exists a vector a ∈ Rl++ such that{
A1
i : i ∈ [l]

}
=
{
aiA

2
i : i ∈ [l]

}
. (28)

We claim the following assertion: {
A1
i

αk,1i
: i ∈ [l]

}
=

{
A2
i

αk,2i
: i ∈ [l]

}
. (29)

This, together with the reformulated subproblem, implies that dk1 = dk2 . Therefore, t1k = t2k is a consequence

of (29).

Next, we prove that assertion (29) holds. For any i ∈ [l], it follows by (28) that there exist j ∈ [l] such

that A1
i = ajA

2
j . Notice that αmin < αk,1i , αk,2i < αmax, i ∈ [l], we distinguish two cases:

αk,1i =
∥∥A1

i (JF (xk)− JF (xk−1))
∥∥/‖sk−1‖ and αk,2j =

∥∥A2
j (JF (xk)− JF (xk−1))

∥∥/‖sk−1‖,

and

αk,1i =
〈
A1
i (JF (xk)− JF (xk−1)), sk−1

〉
/‖sk−1‖2 and αk,2i =

〈
A1
i (JF (xk)− JF (xk−1)), sk−1

〉
/‖sk−1‖2.

Since A1
i = ajA

2
j (aj > 0), it is easy to verify that

A1
i

αk,1i
=

A2
j

αk,2j

holds in both cases. Thus, we have {
A1
i

αk,1i
: i ∈ [l]

}
⊆

{
A2
i

αk,2i
: i ∈ [l]

}
.

The relation {
A2
i

αk,2i
: i ∈ [l]

}
⊆

{
A1
i

αk,1i
: i ∈ [l]

}
follows the similar arguments, this concludes the proof.

Remark 6.4. Assume Â ⊂ A is bounded and Ai is bounded away from 0 for all A ∈ Â. Then, there

exists αmin and αmax such that the assumption αmin < αki < αmax, i ∈ [l] holds for all A ∈ Â with〈
sk−1, Ai(JF (xk)− JF (xk−1))

〉
6= 0. For the case with linear objective,

〈
sk−1, Ai(JF (xk)− JF (xk−1))

〉
= 0

may hold. As illustrated in (Chen et al., 2023a, Example 3), for any A1, A2 ∈ Â, we have dk1 ≈ dk2 with

sufficient small αmin. As a result, we conclude that the performance of Algorithm 8 is not sensitive to the

choice of A.
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6.3. Backtracking method for VOPs with polyhedral cones

As described in Lemma 6.2, we apply Barzilai-Borwein method to ensure Aµ � αk � A`, which in turn is

expected to obtain Aµ � αk/tk � A`, thereby achieving a fast linear convergence rate in practice. However,

this strategy actually yields an even slower convergence rate.

Proposition 6.4. Assume that F (·) is strongly K-convex with µ ∈ int(K), where K = {x ∈ Rm : 0 � Ax}.
Let {xk} be the sequence generated by Algorithm 8 and x∗ be the efficient solution satisfies F (x∗) �K F (xk)

for all k ≥ 0. Then

∥∥xk+1 − x∗
∥∥ ≤√1− γ min

i 6=j,i,j∈[l]

{
〈Ai,µ〉
〈Ai, `〉

〈Aj ,µ〉
〈Aj , `〉

}∥∥xk − x∗∥∥
holds for all k ≥ 0.

Proof . By Lemma 6.2(i), we have Aµ � αk � A`. For any i 6= j, consider the choice αki = 〈Ai,µ〉 and

αkj = 〈Aj , `〉, then we have

min
i∈[l]

αki
〈Ai, `〉

min
i∈[l]

〈Ai,µ〉
αki

≤ 〈Ai,µ〉
〈Ai, `〉

〈Aj ,µ〉
〈Aj , `〉

.

The arbitrary of i and j with i 6= j yields

min
i∈[l]

αki
〈Ai, `〉

min
i∈[l]

〈Ai,µ〉
αki

≤ min
i 6=j,i,j∈[l]

{
〈Ai,µ〉
〈Ai, `〉

〈Aj ,µ〉
〈Aj , `〉

}
.

Conversely, notice that

min
i∈[l]

αki
〈Ai,`〉 ≥ min

i∈[l]

〈Ai,µ〉
〈Ai,`〉 and min

i∈[l]

〈Ai,µ〉
αki

≥ min
i∈[l]

〈Ai,µ〉
〈Ai,`〉 ,

and no single αk can simultaneously satisfy both equilities unless there exists two distinct indices i0 6= j0
such that

min
i∈[l]

〈Ai,µ〉
〈Ai, `〉

=
〈Ai0 ,µ〉
〈Ai0 , `〉

=
〈Aj0 ,µ〉
〈Aj0 , `〉

,

which yields

min
i∈[l]

αki
〈Ai, `〉

min
i∈[l]

〈Ai,µ〉
αki

≥ min
i 6=j,i,j∈[l]

{
〈Ai,µ〉
〈Ai, `〉

〈Aj ,µ〉
〈Aj , `〉

}
.

Hence,

min
i∈[l]

αki
〈Ai, `〉

min
i∈[l]

〈Ai,µ〉
αki

= min
i 6=j,i,j∈[l]

{
〈Ai,µ〉
〈Ai, `〉

〈Aj ,µ〉
〈Aj , `〉

}
.

The desired result follows by Lemma 6.2(ii) and (iv).

In contrast to the line search method for VOPs, the corresponding method for SOPs preserves the same

linear convergence rate as its counterpart without line search. This discrepancy arises because the line search

in VOPs is imposed with respect to a strict dominance relation by the underlying partial order. We

clarify the distinction with the following example.

Example 6.1. Let K = R2
+ and A = I2. Consider first the case where αk = (µ1, `2)T . As illustrated in Fig.

2(a), the ratio αk/tk lies on the blue line determined by the strict dominance relation. In this situation, the

line search results in a slower linear convergence rate, with the worst-case rate being O
((√

1− γ µ1µ2

`1`2

)k)
.
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(a) Line search for VOPs (b) Line search for SOPs

Fig. 2. Differences in line search for VOPs and SOPs.

In contrast, if αk falls on the red point in Fig. 2(a), then αk/tk lies on the red line. In this case, line

search for VOPs potentially improves the practical linear convergence rate, with the worst-case rate coinciding

with that of the method without line search. As illustrated in Fig. 2(b), line search for SOPs tends to improve

linear convergence rate, and the worst case rate is the same as that of its counterpart without line search.

The remaining question is how to preserve the linear convergence rate of descent methods for VOPs

without line search when the smoothness parameter ` is unknown. To address this, we revisit the backtracking

method for VOPs, which was first proposed in (Chen et al., 2023b).

Algorithm 9: Backtracking method for VOPs with polyhedral cones

Data: x0 ∈ Rn, A ∈ A, 0 ≺ `0 � A`, τ > 1
1 for k = 0, 1, ... do
2 Update αk := `k

3 Update xk+1 := arg min
x∈Rn

max
λ∈∆αk

l

{〈
λ,AJF (xk)(x− xk)

〉
+ 1

2

∥∥x− xk∥∥2
}

4 if xk+1 = xk then
5 return K-stationary point xk

6 else
7 si = 0, i ∈ [l]
8 repeat
9 Update αki = τsi`ki , i ∈ [l]

10 Update xk+1 := arg min
x∈Rn

max
λ∈∆αk

l

{〈
λ,AJF (xk)(x− xk)

〉
+ 1

2

∥∥x− xk∥∥2
}

11 for i = 1, · · · , l do

12 if
〈
Ai, F (xk+1)− F (xk)

〉
>
〈
Ai, JF (xk)(xk+1 − xk)

〉
+

αki
2 ‖x

k+1 − xk‖2 then
13 Update si = si + 1
14 end

15 end

16 until
〈
Ai, F (xk+1)− F (xk)

〉
≤
〈
Ai, JF (xk)(xk+1 − xk)

〉
+

αki
2 ‖x

k+1 − xk‖2, i ∈ [l];

17 end

18 Update `k+1 := αk/τ

19 end

We consider the following surrogate:

Gk,A,αk(x) := AJF (xk)(x− xk) +
1

2

∥∥x− xk∥∥2
αk. (30)

We can show that Gk,A,αk(·) is a non-majorizing surrogate function of A(F (·)− F (xk)) near xk.
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Proposition 6.5. Let Gk,A,αk(·) be defined as (30). Then, the following statements hold.

(i) A(F (xk+1)− F (xk)) � Gk,A,αk(xk+1).

(ii) If F (·) is K-convex, then Gk,A,αk(·) ∈ Sαk,αk(AF, xk).

(iii) If F (·) is strongly K-convex with µ ∈ int(K), then Gk,A,αk(·) ∈ Sαk−Aµ,αk(AF, xk).

Proof . The assertions can be obtained by using the similar arguments as in the proof of Proposition 5.2.

Lemma 6.3. Assume that F (·) is strongly K-convex with µ ∈ int(K), where K = {x ∈ Rm : 0 � Ax}. Let

{xk} be the sequence generated by Algorithm 8. Then, the following statements hold:

(i) αk ≺ τA`;

(ii) {xk} converges to an efficient solution x∗ of (VOP);

(iii)
∥∥xk+1 − x∗

∥∥ ≤√1− τ mini∈[l] 〈Ai,µ〉/〈Ai, `〉
∥∥xk − x∗∥∥ , ∀k ≥ 0.

Proof . (i) Suppose, to the contrary, that αki ≥ τ 〈Ai, `〉 holds for some i ∈ [l]. Then the backtracking pro-

cedure would be triggered only when αki ≥ 〈Ai, `〉, which contradicts the backtracking condition. Assertions

(ii) and (iii) can be obtained by using the similar arguments as in the proof of Lemma 4.1.

In contrast to the line search method for VOPs, the backtracking method preserves the same linear

convergence rate as its counterpart without line search. This discrepancy arises because backtracking for

VOPs is imposed with respect to a weak dominance relation induced by the underlying partial order. We

clarify the distinction with the following example.

Example 6.2. Let K = R2
+ and A = I2. Consider the case where `k = (µ1, `2)T .

Fig. 3. Differences between line search and backtracking for VOPs.

As illustrated in Fig. 3, the ratio `k/tk lies on the blue line determined by the strict dominance relation.

In this situation, the line search yields a slower linear convergence rate, with the worst-case rate given by

O
((√

1− γ µ1µ2

`1`2

)k)
. In contrast, the αk lies on the red line determined by the weak dominance relation. In

this case, the backtracking procedure for VOPs preserves the same linear convergence rate as its counterpart

without line search.

Remark 6.5. A notable advantage of backtracking is its ability to adapt to the local smoothness and to

preserve the same linear convergence rate as its counterpart without line search. However, this benefit comes

at the price of increased per-iteration computational cost, since backtracking requires repeatedly solving the

associated subproblems.
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7. Numerical Results

In this section, we present numerical results to demonstrate the performance of Barzilai-Borwein descent

methods for VOPs (BBDVO) with polyhedral cones. We also compare BBDVO with steepest descent method

for VOPs (SDVO) and equiangular direction method (Katrutsa et al., 2020) for VOPs (EDVO). All numerical

experiments were implemented in Python 3.7 and executed on a personal computer with an Intel Core i7-

11390H, 3.40 GHz processor, and 16 GB of RAM.

7.1. Implementation details

For all tested algorithms, we used Armijo line search (27) with σ = 10−4 and γ = 0.5. The test algorithms

were executed on several test problems, and the problem illustration is given in Table 1. The dimensions of

variables and objective functions are presented in the second and third columns, respectively. xL and xU
represent lower bounds and upper bounds of variables, respectively.

Table 1: Description of all test problems used in numerical experiments

Problem n m xL xU Reference

BK1 2 2 (-5,-5) (10,10) (Huband et al., 2006)

DD1 5 2 (-20,...,-20) (20,...,20) (Das & Dennis, 1998)

Deb 2 2 (0.1,0.1) (1,1) (Deb, 1999)

FF1 2 2 (-1,-1) (1,1) (Huband et al., 2006)

Hil1 2 2 (0,0) (1,1) (Hillermeier, 2001)

Imbalance1 2 2 (-2,-2) (2,2) (Chen et al., 2023a)

JOS1a 50 2 (-2,...,-2) (2,...,2) (Jin et al., 2001)

LE1 2 2 (-5,-5) (10,10) (Huband et al., 2006)

PNR 2 2 (-2,-2) (2,2) (Preuss et al., 2006)

WIT1 2 2 (-2,-2) (2,2) (Witting, 2012)

For the tested problems, the partial order are induced by polyhedral cones R2
+, K1, and K2, respectively,

where

K1 := {x ∈ R2 : 5x1 − x2 ≥ 0, − x1 + 5x2 ≥ 0} ⊆ R2
+,

and

K2 := {x ∈ R2 : 5x1 + x2 ≥ 0, x1 + 5x2 ≥ 0} ⊇ R2
+.

The polyhedral cones are illustrated in Fig. 4.

Fig. 4. Illustration of the polyhedral cones.

For each problem, we used the same initial points for different tested algorithms. The initial points were

randomly selected within the specified lower and upper bounds. Dual subproblems of different algorithms were

efficiently solved by Frank-Wolfe method. To guarantee a fair comparison, we decided to let the algorithms

run until one of the following stopping conditions was satisfied:
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• the current solution satisfies
∥∥d̄k∥∥ ≤ 10−6, where d̄ is the steepest descent direction (20) with A = Ā

and Ā ∈ A with row vectors
∥∥Āi∥∥ = 1 for i = 1, ..., l;

• the number of iterations reaches 500.

The recorded averages from the 200 runs include the number of iterations, the number of function evaluations,

and the CPU time. The performance profiles (Dolan & Moré, 2002) in terms of iterations, function evaluations

and CPU time are used to illustrate the overall performance of the 200 runs.

7.2. Numerical results for VOPs with K = R2
+

In this case, we denote the set of transform matrices A0 := {A : AR2
+ = R2

+}. For SDVO, we choose A0 =

I2 ∈ A0 and Â0 ∈ A0 in subproblem, respectively, where Â0 := {A : Ai = A0
i /max{1,

∥∥∇Fi(x0)
∥∥
∞}, i =

1, 2}1. For EDVO, normalization is applied for each of gradients in the transformed subproblem, which

implies that EDVO is also not sensitive to the choice of transform matrix. As a result, we choose A = A0 in

subproblems of EDVO and BBDVO.

Table 2: Number of average iterations (iter), number of average function evaluations (feval), and average
CPU time (time(ms)) of SDVO, EDVO and BBDVO implemented on different test problems with K = R2

+

Problem SDVO with A = A0 SDVO with A = Â0 EDVO with A = A0 BBDVO with A = A0

iter feval time iter feval time iter feval time iter feval time

BK1 1.00 2.00 0.24 36.93 40.15 4.03 30.12 34.07 2.67 1.00 1.00 0.21

DD1 70.95 199.40 12.14 248.33 250.81 30.41 376.96 376.96 38.11 7.33 8.51 1.24

Deb 57.79 376.02 13.67 5.67 13.15 1.36 10.48 26.39 1.43 4.51 6.67 0.79

FF1 28.95 29.11 3.93 8.22 9.15 1.38 8.68 9.51 1.03 4.68 5.90 0.84

Hil1 24.89 82.53 5.15 15.62 36.52 3.05 20.09 51.60 3.06 11.42 12.25 2.07

Imbalance1 88.23 178.31 12.35 387.91 388.32 43.47 420.04 420.99 42.01 2.62 3.60 0.50

JOS1a 302.72 302.72 35.80 16.51 18.03 3.40 74.13 74.44 9.29 1.00 1.00 0.26

LE1 22.44 52.57 3.72 7.98 29.78 1.70 11.80 29.93 1.47 4.65 7.13 0.82

PNR 11.24 48.40 2.83 12.32 16.09 1.85 14.37 23.24 1.75 4.28 4.77 0.71

WIT1 73.30 461.37 19.93 139.88 146.58 15.15 10.64 17.97 1.33 3.59 3.68 0.62

(a) Iterations (b) Function Evaluations (c) CPU Time

Fig. 5. Performance profiles on the test problems in Table 2 with K = R2
+.

7.3. Numerical results for VOPs with K = K1

In this case, we denote the set of transform matrices A1 := {A : AK1 = R2
+}. For SDVO, we

choose A1 =

(
5 −1

−1 5

)
∈ A0 and Â1 ∈ A1 in subproblem, respectively, where Â1 := {A : Ai =

A1
i /max{1,

∥∥∇Fi(x0)
∥∥
∞}, i = 1, 2}.

1The scale strategy is initially proposed in (Gonçalves et al., 2022) due to numerical reasons.
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Table 3: Number of average iterations (iter), number of average function evaluations (feval), and average
CPU time (time(ms)) of SDVO, EDVO and BBDVO implemented on different test problems with K = K1

Problem SDVO with A = A1 SDVO with A = Â1 EDVO with A = A1 BBDVO with A = A1

iter feval time iter feval time iter feval time iter feval time

BK1 1.00 2.65 0.21 7.51 9.87 1.21 48.30 51.56 4.07 1.00 1.00 0.22

DD1 92.40 373.32 18.42 118.35 120.30 15.34 496.99 496.99 53.13 41.85 47.12 6.39

Deb 102.21 876.19 27.68 27.82 146.28 6.29 81.45 161.00 9.44 35.69 71.88 6.48

FF1 33.19 105.29 5.85 17.23 56.82 3.16 45.35 65.10 4.73 16.00 16.95 2.61

Hil1 28.28 151.71 7.15 19.41 86.98 4.71 23.09 56.07 3.51 17.74 18.35 3.10

Imbalance1 77.34 309.32 13.55 397.37 397.44 46.97 500.00 500.00 50.14 28.78 31.18 4.49

JOS1a 69.86 69.86 6.82 6.57 17.06 2.55 117.30 117.43 13.78 1.00 1.00 0.26

LE1 14.02 69.28 2.88 12.37 55.82 2.46 15.99 39.60 1.92 6.31 7.49 1.14

PNR 27.10 157.72 5.71 12.76 37.65 2.15 21.80 27.54 2.41 9.78 10.97 1.64

WIT1 244.44 2084.16 111.19 199.03 245.92 24.42 414.29 416.78 42.52 158.78 164.91 22.80

(a) Iterations (b) Function Evaluations (c) CPU Time

Fig. 6. Performance profiles on the test problems in Table 2 with K = K1.

7.4. Numerical results for VOPs with K = K2

We denote the set of transform matrices A2 := {A : AK2 = R2
+}. For SDVO, we choose A2 =

(
5 1

1 5

)
∈

A0 and Â2 ∈ A2 in subproblem, respectively, where Â2 := {A : Ai = A2
i /max{1,

∥∥∇Fi(x0)
∥∥
∞}, i = 1, 2}.

Table 4: Number of average iterations (iter), number of average function evaluations (feval), and average
CPU time (time(ms)) of SDVO, EDVO and BBDVO implemented on different test problems with K = K2

Problem SDVO with A = A2 SDVO with A = Â2 EDVO with A = A2 BBDVO with A = A2

iter feval time iter feval time iter feval time iter feval time

BK1 22.29 85.27 2.52 6.67 11.79 1.25 20.69 26.53 1.92 1.00 1.00 0.21

DD1 17.16 62.14 3.37 46.38 47.71 5.03 133.89 134.00 13.33 4.84 5.29 0.83

Deb 19.48 164.15 5.43 18.22 135.69 4.63 21.95 141.27 4.40 9.47 48.94 2.02

FF1 13.52 18.80 1.96 14.76 67.80 3.04 17.68 122.48 4.04 4.72 5.74 0.91

Hil1 14.69 75.19 3.86 17.60 82.61 4.44 16.61 42.27 2.65 8.38 9.24 1.52

Imbalance1 25.76 105.22 4.60 500.00 610.90 61.64 500.00 500.04 48.91 4.35 5.76 0.73

JOS1a 46.11 46.11 4.47 4.58 10.16 1.77 48.35 51.67 6.34 1.00 1.00 0.26

LE1 9.64 47.62 2.05 14.79 79.00 3.08 11.40 54.09 1.95 7.58 43.00 1.63

PNR 17.22 103.38 3.60 13.30 50.20 2.41 11.12 36.16 1.69 6.80 8.83 1.04

WIT1 23.12 140.31 5.32 311.78 975.91 44.38 10.46 29.67 1.52 8.66 9.95 1.27
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(a) Iterations (b) Function Evaluations (c) CPU Time

Fig. 7. Performance profiles on the test problems in Table 2 with K = K2.

K
=

R
2 +

K
=
K

1
K

=
K

2

(a) BK1 (b) FF1 (c) Hil1 (d) PNR (e) WIT1

Fig. 8. Numerical results in value space obtained by BBDVO for problems BK1, FF1, Hil1, PNR and WIT1
with K = R2

+, K = K1 and K = K2, respectively.

For test problems with different partial orders, the number of average iterations (iter), number of average

function evaluations (feval), and average CPU time (time(ms)) of the different algorithms are listed in Tables

2, 3 and 4, respectively. We conclude that BBDVO outperforms SDVO and EDVO, especially for problems

DD1 and Imbalance1. For SDVO, its performance is sensitive to the choice of transform matrix, changing the

transform matrix in subproblem cannot improve the performance on all test problems. Naturally, a question

arises that how to choose an appropriate transform matrix for a specific test problem in SDVO. It is worth

noting that BBDVO can be viewed as SDVO with variable transform matrices (ΛkA is a transform matrix

of K) and thus enjoys promising performance on these test problems. This provides a positive answer to

the question. EDVO can also be viewed as SDVO with variable transform matrices, it generates descent

directions with norm less than 1 (the minimizer of subproblem is the minimal norm element of the convex

hull of some unit vectors), decelerating the convergence in large-scale problems (the initial point may be

far from the Pareto set). Figs. 5, 6 and 7 present the performance profiles based on iterations, function

evaluations, and CPU time. The results confirm that the proposed BBDVO significantly outperforms SDVO

and EDVO.

Fig. 8 plots the final points obtained by BBDVO on problems BK1, FF1, Hil1, PNR and WIT1 with

K = R2
+, K = K1 and K = K2, respectively. We can observe that enlarging the partial order cone reduces the

number of obtained Pareto critical points, especially in the long tail regions, where improving one objective

function slightly can sacrifice the others greatly. As a result, we can use an order cone containing the
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non-negative orthant in real-world MOPs to obtain Pareto points with a better trade-off.

8. Conclusions

In this paper, we develop a unified framework and convergence analysis of descent methods for VOPs

from a majorization-minimization perspective. We emphasize that the convergence rate of a descent method

can be improved by narrowing the surrogate functions. By changing the base in subproblems, we elucidate

that choosing a tighter surrogate function is equivalent to selecting an appropriate base of the dual cone.

From the majorization-minimization perspective, we employ Barzilai-Borwein method to narrow the local

surrogate functions and propose a Barzilai-Borwein descent method for VOPs polyhedral cone. The proposed

method is not sensitive to the choice of transform matrix, which affects the performance of SDVO. Numerical

experiments confirm the efficiency of the proposed method.

From a majoriztion-minimization perspective, we also rediscover the preconditioned Barzilai-Borwein

method for MOPs. This highlights the versatility of the majorization-minimization principle as a powerful

framework for designing novel algorithms in vector optimization. In future work, it is worth analyzing prox-

imal gradient methods and high-order methods for VOPs within the majorization-minimization framework.

Additionally, exploring solution methods for VOPs with non-polyhedral cones presents an intriguing avenue

for further research.
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