
A Majorization-Minimization approach for
multiclass classification in a big data scenario

Filippo Camellini1 Emilie Chouzenoux2 Giorgia Franchini3
Jean–Christophe Pesquet4 Federica Porta5

January 8, 2026

1Department of Physics, Informatics and Mathematics, University of Modena and
Reggio Emilia, Via Campi 213/B, 41125 Modena, Italy. filippo.camellini@unimore.it

2CVN, Inria, CentraleSupélec, University Paris-Saclay, 9 rue Joliot Curie, 91190 Gif-
sur-Yvette, France. emilie.chouzenoux@inria.fr

3Corresponding author. Department of Physics, Informatics and Mathematics, Univer-
sity of Modena and Reggio Emilia, Modena, Italy. giorgia.franchini@unimore.it

4CVN, Inria, CentraleSupélec, University Paris-Saclay, France. jean-
christophe@pesquet.eu

5Department of Physics, Informatics and Mathematics, University of Modena and
Reggio Emilia, Modena, Italy. federica.porta@unimore.it

2

Abstract

This work presents a novel optimization approach for training linear classifiers
in multiclass classification tasks, when focusing on a regularized and smooth
Weston-Watkins support vector machine (SVM) model. We propose a Majorization-
Minimization (MM) algorithm to solve the resulting, Lipschitz-differentiable, op-
timization problem. To enhance scalability of the algorithm when tackling large
datasets, we introduce an incremental MM strategy that suitably integrates the
second-order information from the MM strategy within a low-complexity incremen-
tal gradient scheme. We establish convergence guarantees of the algorithm for both
convex and non-convex settings and demonstrate its effectiveness through various
numerical experiments. In particular, by incorporating kernel principal component
analysis and foundation models at preprocessing time, we demonstrate that optimiz-
ing a linear multiclass SVM using the proposed incremental MM scheme achieves
results comparable to state-of-the-art deep learning methods on benchmark tasks.

Keywords

Majorization-minimization Incremental Minimization Machine Learning Multi-
class Classification Support Vector Machine Foundation Models

0.1 Introduction

This work addresses the problem of training a linear classifier for multiclass classi-
fication tasks. Linear models offer several advantages compared to more complex
models, including lower training costs and a reduced number of parameters to store
during the inference phase. Moreover, the linear relationship between model pa-
rameters and problem variables enhances interpretability, making it well suited for
feature selection and dimensionality reduction by identifying the most significant
variables. However, the performance of linear predictors is generally lower than that
of most nonlinear models, particularly when the dataset is not linearly separable.
Despite this, linear classifiers remain a valuable option when combined with pre-
processing techniques that map the input data into a more linearly separable space.
Examples of such techniques include Kernel Principal Component Analysis [46],
and foundation models [35, 41]. These methods remap the original dataset’s fea-
tures into a more meaningful representation, enabling linear classifiers to achieve
classification performance comparable to deep learning-based approaches while
requiring significantly fewer trainable parameters.

Among the various linear classifiers for multiclass classification, one of the
most significant is the Support Vector Machine (SVM), which extends the margin-
based optimization framework from binary classification to handle multiple classes
effectively.

0.1. INTRODUCTION 3

Motivated by these considerations, the main aim of this work is to develop a
Majorization-Minimization (MM) method to solve the primal optimization problem
arising in linear SVM for multiclass classification. In particular, we focus here on
the variant of multiclass SVMs proposed by Weston and Watkins [54], which
directly learns a linear classifier without reducing the problem to multiple binary
classifications (such as One-vs-All or One-vs-One). Doǧan et al. [23] conducted an
empirical study comparing nine well-known multiclass SVM variants and found that
the Weston-Watkins SVM outperformed the others in both efficiency and accuracy.
Typically, the Weston-Watkins linear SVM problem is addressed by considering its
dual counterpart and devising algorithms for its minimization [26, 30, 52, 53, 54].
On the other hand, in this work we optimize a smooth version of the Weston-
Watkins loss function directly, avoiding the dual formulation, which is particularly
advantageous in big data scenarios. Primal approaches are also appealing as they
guarantee a continuous decrease in the primal objective function, and can benefit
from sound convergence guarantees even in the challenging non-convex setting.

Contributions. (i) We provide a matrix-based formulation of the primal smoothed
Weston-Watkins problem, enabling an efficient computation of both the loss and its
gradient from a practical perspective, while avoiding costly array indexing opera-
tions. (ii) Building on this matrix formulation, we first derive a batch MM algorithm
for solving the regularized smoothed Weston-Watkins optimization problem, ex-
ploiting the Lipschitz-differentiability of the loss function to provide an appropriate
tangent majorant inspired by half-quadratic schemes [2]. (iii) When the training set
is large, computing the gradient of the smoothed Weston-Watkins loss becomes in-
feasible, making the direct application of the previous MM scheme impractical. To
overcome this difficulty, we propose an incremental version of our MM method that
combines computable gradient approximations with the benefits of second-order
acceleration from the MM technique. In more detail, the incremental MM algo-
rithm we propose is inspired by a classical incremental gradient scheme [9] where
the descent direction is scaled by a symmetric and positive definite matrix based on
the half-quadratic tangent majorant. The inverse of the scaling matrix results in the
sum of a constant term that can be computed in a preprocessing phase -suitable for
parallelization- and a diagonal term that remains fixed in each epoch. The product
between the scaling matrix and the approximation of the gradient in the incremen-
tal iteration can be efficiently performed by Cholesky factorization. We establish
convergence results for the proposed incremental MM algorithm under both convex
and non-convex loss function assumptions. (iv) Several numerical experiments on
multiclass classification problems show the effectiveness of the suggested approach
in minimizing the smoothed Weston-Watkins loss function, when compared to both
classical incremental and stochastic gradient methods. The second-order informa-
tion leveraged by the half-quadratic majorant and the efficient computation of the
scaled direction allow for faster convergence than applying first-order approaches.
Furthermore, we show that, by applying kernel principal component analysis and
foundation models as part of the preprocessing pipeline, the proposed incremental
MM scheme for optimizing a linear multiclass SVM achieves performance compa-

4

rable to that of state-of-the-art deep learning methods on benchmark tasks.
Related works. Primal optimizations of SVMs have already been studied in the

case of binary classification by several authors [13, 29, 31, 34, 47]. To the best of
our knowledge, the primal optimization of multiclass SVM has been investigated
only in [59], where a logistic regression based loss is considered and optimized
using a nonlinear conjugate gradient scheme. In this work, we design instead a
highly scalable second-order method based on an MM strategy, specifically tailored
to address a smooth Weston-Watkins problem, allowing for fast minimization of
differentiable losses, and efficiently handling large training sets.

MM approaches have been successfully applied to several problems arising in
machine learning (see, for example, [21, 24, 49, 55] and references therein), offering
convergence guarantees even in the presence of non-convex objective functions
[38, 42]. Moreover, MM methods have been previously applied to binary SVMs,
as explored in [8]. In particular, [8] employs an MM approach with a quadratic
surrogate function to train a binary SVM-based linear model on small training
sets. This work extends that approach to the multiclass setting and applies it
to minimizing a Weston-Watkins-based loss function, also considering a big data
framework.

MM algorithms combined with gradient approximation to deal with big data
scenarios have been investigated in the literature. Specifically, the extension of
MM methodology to the stochastic context has been studied recently in [16, 18, 32,
33, 40]. In [16] an MM-based scheme is proposed, which can be traced back to
a preconditioned stochastic gradient algorithm, with a stochastic scaling matrix as
well. A similar approach is also used in [18], but applied to a more restricted setting
related to the minimization of a fidelity function based on a least squares criterion.
The MISO algorithm presented in [32, 33] is based on variance reduction technique
by keeping a memory of past gradient estimates for each data point. In a big data
context, this approach can be highly costly or even impractical. In [40], stochas-
tic variance-reduced MM algorithms were introduced, combining the general MM
principle with the variance-reduction techniques used in SAGA [22], SVRG [28],
and SARAH [36] stochastic gradient methods. However, it is well-known that the
gradient estimators underlying SAGA, SVRG, and SARAH can be difficult to apply
in machine learning and deep learning frameworks due to the high computational
cost associated with handling large-scale datasets.
The MM approach presented in this paper has the advantage of being based on an
incremental (i.e., deterministic) process rather than a stochastic one. Instead of gen-
erating mini-batches at each iteration by randomly selecting individual components
of the objective function, a fixed partition of the dataset is created at the beginning
of the process and remains unchanged throughout the entire optimization. This
approach can lead to greater computational efficiency and reduced computational
cost, by minimizing the overhead of I/O operations and memory access.

The incremental MM scheme proposed in this paper is motivated by the need to
address a large-scale optimization problem arising from multiclass SVM. Over the
past decade, a wide range of algorithms has been developed to handle large-scale

0.2. PROBLEM FORMULATION 5

optimization problems (see, for example, [7, 12, 15, 25, 39, 44, 45] and references
therein). While our approach is specifically tailored to multiclass SVMs, it can,
in principle, be applied to other minimization problems whose objective functions
can be formulated as a regularized finite-sum.

The paper is organized as follows. In Section 0.2, we present the objective function
used to train the SVM-based multiclass linear classifier. Section 0.3 introduces
the batch MM approach. Building on an incremental gradient scheme, Section 0.4
introduces our main contribution, that is a highly scalable incremental version of
the MM method described in Section 0.3, and convergence analysis of it. Nu-
merical experiments highlighting the advantages of this algorithm are provided in
Section 0.5. Section 0.6 focuses on dataset remapping techniques aimed at im-
proving the performance of linear models. Finally, the conclusions are presented
in Section 0.7.

0.2 Problem formulation

The problem addressed in this work is supervised multiclass classification. Let a
training dataset D = {(x𝑘 , y𝑘)}𝑘∈K with K = {1, . . . , 𝐾} consist of pairs of feature
vectors x𝑘 ∈ R𝑛, and their corresponding labels y𝑘 ∈ R𝑄, with 𝑄 the number of
classes. Assuming one-hot encoding for the 𝑄 classes, each y𝑘 is an element of
the canonical basis of R𝑄, namely y𝑘 = e𝑞∗

𝑘
, where 𝑞∗

𝑘
∈ {1, . . . , 𝑄} corresponds

to the class associated with x𝑘 . Given the labeled dataset, the goal of multiclass
classification is to assign a new observation x ∈ R𝑛 to the correct class among
{1, . . . , 𝑄}. To achieve this task, we formulate a penalized minimization problem
whose objective function is the sum of a loss term and a regularization term. More
details are provided in Sections 0.2.1 and 0.2.2.

0.2.1 A smooth Weston-Watkins loss function

A linear classifier for categorizing an observation x into 𝑄 classes can be defined
as

𝑀 : R𝑛 → R𝑄

x → 𝑀 (x) = e𝑞̂
where

𝑞 = argmax
𝑞∈{1,...,𝑄}

(w⊤
𝑞x + 𝑏𝑞), (1)

and, for every 𝑞 ∈ {1, . . . , 𝑄}, w𝑞 ∈ R𝑛 and 𝑏𝑞 ∈ R define the separating hyper-
plane for class 𝑞. The value w⊤

𝑞x + 𝑏𝑞 is called the similarity score for the 𝑞-th
class. Hence, the predicted label 𝑀 (x) is the vector e𝑞̂ corresponding to the index
𝑞 attaining the highest similarity score with x. The classifier parameters w𝑞 and 𝑏𝑞
with 𝑞 ∈ {1, . . . , 𝑄} in (1) can be estimated from the training dataset {(x𝑘 , y𝑘)}𝑘∈K
as described hereafter. The goal is to find w𝑞 and 𝑏𝑞 with 𝑞 ∈ {1, . . . , 𝑄} such that
the correct class is maximally separated from the others, while still minimizing the

6

classification error on the training set. Given a sample (x𝑘 , y𝑘) ∈ D, an ideal loss
function measuring classification correctness is the misclassification error, which
can be defined as

ℓ (𝑀 (x𝑘), y𝑘) = 𝜎
©­­«w⊤

𝑞∗
𝑘
x𝑘 + 𝑏𝑞∗

𝑘
−
©­­« max

1≤𝑞≤𝑄
𝑞≠𝑞∗

𝑘

w⊤
𝑞x𝑘 + 𝑏𝑞

ª®®¬
ª®®¬ , (2)

where, for every 𝑣 ∈ R, 𝜎(𝑣) = 1 − sign(𝑣)
2

. We remark that the loss function in
(2) is related to the definition of margin for a given sample x𝑘 , provided below.

Definition 0.1. The margin for a given sample x𝑘 is the difference between the
similarity score of the correct class and the maximum similarity score of any
incorrect class. More formally, the margin for a sample x𝑘 is

𝑚(x𝑘) = w⊤
𝑞∗
𝑘
x𝑘 + 𝑏𝑞∗

𝑘
−
©­­« max

1≤𝑞≤𝑄
𝑞≠𝑞∗

𝑘

w⊤
𝑞x𝑘 + 𝑏𝑞

ª®®¬ .
Obviously, if the margin 𝑚(x𝑘) is negative then the predicted label 𝑀 (x𝑘) for

x𝑘 is wrong. On the other hand, a larger positive margin means the correct class is
more distinct from the incorrect ones and the related misclassification error is zero.
Matrix W = [w1, . . . ,w𝑄]⊤ ∈ R𝑄×𝑛 and vector b = (𝑏𝑞)1≤𝑞≤𝑄 must be trained so
as to minimize the misclassification error over all the 𝐾 samples, hence solve the
following optimization problem:

minimize
W∈R𝑄×𝑛 , b∈R𝑄

𝐾∑︁
𝑘=1

𝜎
©­­«w⊤

𝑞∗
𝑘
x𝑘 + 𝑏𝑞∗

𝑘
−
©­­« max

1≤𝑞≤𝑄
𝑞≠𝑞∗

𝑘

w⊤
𝑞x𝑘 + 𝑏𝑞

ª®®¬
ª®®¬ . (3)

Unfortunately, the objective function in (3) is non-differentiable and non-convex.
To partially overcome this issue, a popular choice consists in substituting 𝜎 with
the hinge loss function (∀𝑣 ∈ R) 𝜌hinge(𝑣) = max{1 − 𝑣, 0}, which provides the
minimal convex upper bound on the function 𝜎. A common variant of the previous
optimization problem considers the Weston-Watkins loss [54], which introduces a
margin-based formulation by summing over all incorrect classes:

minimize
W∈R𝑄×𝑛 , b∈R𝑄

𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1
𝑞≠𝑞∗

𝑘

𝜌hinge

(
(w𝑞∗

𝑘
− w𝑞)⊤x𝑘 + 𝑏𝑞∗

𝑘
− 𝑏𝑞

)
. (4)

The hinge loss is convex but not differentiable, which can cause numerical issues
around 𝑣 = 1. The solution of (4) can be achieved using primal-dual methods [14],
but these approaches are often computationally expensive and not very flexible

0.2. PROBLEM FORMULATION 7

(e.g., not straightforwardly accounting for non-convex penalties). To mitigate this,
we adopt here a smoothed version of the Weston-Watkins problem, as follows

minimize
W∈R𝑄×𝑛 , b∈R𝑄

𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1
𝑞≠𝑞∗

𝑘

𝜌

(
(w𝑞∗

𝑘
− w𝑞)⊤x𝑘 + 𝑏𝑞∗

𝑘
− 𝑏𝑞

)
, (5)

where 𝜌 : R→ R is differentiable with a 𝛽-Lipschitz continuous derivative and pe-
nalizes negative arguments. Examples of such functions include the smooth hinge
loss, squared hinge loss, sigmoid loss and logistic regression loss. Figure 1 shows
possible smooth loss functions that can be used as approximations of the 𝜌hinge loss.
Finally, we remark that employing smoothed variants of the hinge loss enables the
design of fast optimization algorithms based on second-order information, such as
the MM approach proposed in this paper.

Figure 1: Smooth loss functions alternative to the hinge loss. The smooth hinge loss
and squared hinge loss offer a smooth approximation around the non-differentiable
point, while both the logistic regression and sigmoid losses are smooth, monotonic
decreasing functions that asymptotically approach zero.

Remark 1. The Weston-Watkins loss in (4) is commonly used in the multiclass
extension of the SVM [26, 30, 52, 53, 54] to represent the primal problem. Unlike
the approach followed in these papers, this work directly minimizes a regularized
version of the smoothed Weston-Watkins loss in (5), avoiding the transition to the
dual problem. This offers an advantage, especially in big data scenarios, where
solving the primal problem directly can lead to better scalability and computational
efficiency compared to dual optimization methods, which often involve solving large-
scale quadratic programs. In the case of binary SVM, some benefits of primal
optimization have been highlighted in [13, 29] .

8

0.2.2 Regularization

In order to mitigate overfitting, we consider a regularized version of problem (5).
Specifically, in this paper, we focus on the following optimization problem:

minimize
W∈R𝑄×𝑛 , b∈R𝑄

𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1
𝑞≠𝑞∗

𝑘

𝜌

(
(w𝑞∗

𝑘
− w𝑞)⊤x𝑘 + 𝑏𝑞∗

𝑘
− 𝑏𝑞

)
+ 𝑓 (W), (6)

where the regularization term 𝑓 is defined as(
∀W = (𝑤𝑖, 𝑗)1≤𝑖≤𝑄

1≤ 𝑗≤𝑛
∈ R𝑄×𝑛

)
𝑓 (W) = 𝜆

𝑄∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜑(𝑤𝑖, 𝑗) +
𝜂

2
∥W∥2

F. (7)

Here ∥ · ∥F denotes the Frobenius norm , and 𝜂 ≥ 0 and 𝜆 ≥ 0 are regularization
parameters. Function 𝜑 : R→ R is a potential function that satisfies the following
conditions:

1. 𝜑 is 𝑎-Lipschitz differentiable on R, with 𝑎 > 0;

2. 𝜑 is even;

3. 𝜑(√·) is concave on]0, +∞[;

4. 𝜑 is increasing on]0, +∞[.

These assumptions on the function 𝜑 are required to establish the convergence
results for the MM method proposed in the paper. They allow for various choices
of regularization terms, such as smooth approximations to the ℓ1-norm or the
ℓ0-pseudo-norm [17, 18], that promote sparsity of the SVM model parameters.
Sparsity is desirable in many practical applications, as it effectively performs im-
plicit feature selection, retaining only the features that are most relevant to the task
while discarding those that are redundant or introduce noise. Sparsity becomes
particularly important in classification problems involving limited or highly unbal-
anced datasets, where models are prone to overfitting. In such cases, conventional
(non-sparse) SVMs, often fitted closely to specific training data, may fail to gener-
alize well to unseen samples.
For 𝜆 = 0 in (7), we recover the standard quadratic penalty commonly used in SVMs
[51]. When both 𝜂 > 0 and 𝜆 > 0, with 𝜑 acting as a sparse-promoting term, 𝑓 can
be viewed as an elastic-net penalty [51, 60].
Throughout the paper, we assume that either 𝜂 > 0 or 𝜑 is coercive. As a result,
the problem in (6) is well-posed, meaning that a solution exists.

0.2.3 Matrix formulation

In this section we rewrite problem (6) in a convenient matrix form which allows
for efficient computaton of the objective function and its gradient. In matrix- and

0.2. PROBLEM FORMULATION 9

tensor-based languages such as MATLAB and Python, adopting a fully matrix-
based reformulation is advantageous, as it eliminates both logical constructs and
array indexing that could slow down computation.
We begin by rewriting the differentiable version of the Weston-Watkins loss in (5),
hereafter denoted by L𝑊𝑊 :

L𝑊𝑊 (W, b) =
𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1
𝑞≠𝑞∗

𝑘

𝜌

(
(w𝑞∗

𝑘
− w𝑞)⊤x𝑘 + 𝑏𝑞∗

𝑘
− 𝑏𝑞

)

=

𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1

𝜌

(
(w𝑞∗

𝑘
− w𝑞)⊤x𝑘 + 𝑏𝑞∗

𝑘
− 𝑏𝑞

)
−

𝐾∑︁
𝑘=1

𝜌

(
(w𝑞∗

𝑘
− w𝑞∗

𝑘
)⊤x𝑘 + 𝑏𝑞∗

𝑘
− 𝑏𝑞∗

𝑘

)
=

𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1

𝜌

(
(w𝑞∗

𝑘
− w𝑞)⊤x𝑘 + 𝑏𝑞∗

𝑘
− 𝑏𝑞

)
− 𝐾𝜌(0)

=

𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1

𝜌

(
(e𝑞∗

𝑘
− e𝑞)⊤(Wx𝑘 + b)

)
− 𝐾𝜌(0).

(8)

Given the matrix

Θ = [W, b] =


w⊤

1 𝑏1
w⊤

2 𝑏2
...

w⊤
𝑄

𝑏𝑄


∈ R𝑄×(𝑛+1)

10

and the vector x̃𝑘 =
[

x𝑘
1

]
∈ R𝑛+1, it follows from (8) that

L𝑊𝑊 (Θ) =
𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1

𝜌

(
(e𝑞∗

𝑘
− e𝑞)⊤Θx̃𝑘

)
− 𝐾𝜌(0)

=

𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1

𝜌

(
(e𝑞∗

𝑘
− e𝑞)⊤(x̃⊤𝑘 ⊗ I𝑄) vec(Θ)

)
− 𝐾𝜌(0)

=

𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1

𝜌

(
(e𝑞∗

𝑘
− e𝑞)⊤ [(x̃𝑘)1I𝑄 (x̃𝑘)2I𝑄 . . . (x̃𝑘)𝑛+1I𝑄] vec(Θ)

)
− 𝐾𝜌(0)

=

𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1

𝜌

(
[(x̃𝑘)1(e𝑞∗

𝑘
− e𝑞)⊤ . . . (x̃𝑘)𝑛+1(e𝑞∗

𝑘
− e𝑞)⊤] vec(Θ)

)
− 𝐾𝜌(0),

(9)
where the second equality follows from a well-known property of the Kronecker
product1, vec denotes the vectorization operation by columns, I𝑄 is the identity
matrix in R𝑄×𝑄 and (x̃𝑘) 𝑗 represents the 𝑗-th component of x̃𝑘 . Additionally, to
reformulate (9) for each sample index 𝑘 ∈ K, we introduce the matrix Ŷ𝑘 ∈ R𝑄×𝑄

defined as

Ŷ𝑘 =


e⊤
𝑞∗
𝑘

...

e⊤
𝑞∗
𝑘

 −

e⊤1
...

e⊤
𝑄

 =

y⊤
𝑘
...

y⊤
𝑘

 − I𝑄

and the matrix L𝑘 ∈ R𝑄×𝑄 (𝑛+1) such that:

L𝑘 = x̃⊤𝑘 ⊗ Ŷ𝑘 = [(x̃𝑘)1Ŷ𝑘 (x̃𝑘)2Ŷ𝑘 . . . (x̃𝑘)𝑛+1Ŷ𝑘] .

It is clear that the 𝑞-th row of L𝑘 is equal to the matrix

[(x̃𝑘)1(e𝑞∗
𝑘
− e𝑞)⊤ . . . (x̃𝑘)𝑛+1(e𝑞∗

𝑘
− e𝑞)⊤]

appearing in (9). In view of all these considerations and by setting 𝜽 = vec(Θ) ∈
R𝑄 (𝑛+1) , the Weston-Watkins loss can be written as

L𝑊𝑊 (𝜽) =
𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1

𝜌
(
(L𝑘){𝑞,:}𝜽

)
− 𝐾𝜌(0),

where (L𝑘){𝑞,:} is the 𝑞-th row of the matrix L𝑘 . In order to finalize the matrix
reformulation of (6), we introduce L ∈ R𝑄×𝑄 (𝑛+1)×𝐾 and L⊤ ∈ R𝑄 (𝑛+1)×𝑄×𝐾 ,

1Given 𝐿 ∈ R𝑎×𝑏 , 𝑀 ∈ R𝑏×𝑐 , 𝑁 ∈ R𝑐×𝑑 , it holds that 𝑣𝑒𝑐(𝐿𝑀𝑁) = (𝑁⊤ ⊗ 𝐿) vec(𝑀).

0.2. PROBLEM FORMULATION 11

which are, respectively, the tensors defined as the collection of all 𝐾 matrices L𝑘
and L⊤

𝑘
. It can be noticed that L𝜽 is a matrix in R𝑄×𝐾 whose element at row 𝑞 and

column 𝑘 , denoted by (L𝜽)𝑞,𝑘 , is given by

(L𝜽)𝑞,𝑘 = (L𝑘){𝑞,:}𝜽 =

𝑄 (𝑛+1)∑︁
𝑡=1

(L𝑘)𝑞,𝑡𝜃𝑡 , 𝑞 ∈ {1, . . . , 𝑄}, 𝑘 ∈ {1, . . . , 𝐾}.

(10)
Hence, we get

L𝑊𝑊 (𝜽) =
𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1

𝜌
(
(L𝜽)𝑞,𝑘

)
− 𝐾𝜌(0).

From a practical perspective, once L𝜽 is computed and assuming that 𝜌 operates
element-wise on matrices, the objective function can be evaluated directly by ap-
plying function 𝜌 to the entire matrix L𝜽 , without explicitly extracting its elements.
The value of the Weston-Watkins loss is finally given by summing over all rows and
columns of 𝜌(L𝜽).
We now aim to rewrite the regularizer in (6) in terms of 𝜽 . To do so, we decompose
𝜽 as follows:

𝜽 =

[
𝜽𝑤
𝜽𝑏

]
where 𝜽𝑤 ∈ R𝑄𝑛 contains the first 𝑄𝑛 components of 𝜽 , and 𝜽𝑏 ∈ R𝑄 contains the
remaining components, indexed from 𝑄𝑛 + 1 to 𝑄(𝑛 + 1). With a slight abuse of
notation, we can rewrite the regularization term 𝑓 in (6) as

(
∀𝜽 = ((𝜽𝑤)𝑖)1≤𝑖≤𝑄𝑛 ∈ R𝑄𝑛

)
𝑓 (𝜽) = 𝜆

𝑄𝑛∑︁
𝑖=1

𝜑 ((𝜽𝑤)𝑖) +
𝜂

2
∥𝜽𝑤∥2

2. (11)

The resulting reformulation of the problem (6) is

minimize
𝜽∈R𝑄 (𝑛+1)

𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1

𝜌
(
(L𝜽)𝑞,𝑘

)
−𝐾𝜌(0) + 𝑓 (𝜽) ≡ L𝑊𝑊 (𝜽) + 𝑓 (𝜽) ≡ Φ(𝜽). (12)

To make this expression more concise, we can introduce the function

𝑔𝐾 : R𝑄×𝐾 −→ R

X −→ 𝑔𝐾 (X) =
𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1

𝜌
(
(X)𝑞,𝑘

)
where (X)𝑞,𝑘 denotes the element of the 𝑞-th row and the 𝑘-th column of matrix
X. In view of the definition of 𝑔𝐾 , problem (12) boils down to

minimize
𝜽∈R𝑄 (𝑛+1)

𝑔𝐾 (L𝜽) − 𝐾𝜌(0) + 𝑓 (𝜽) ≡ Φ(𝜽). (13)

12

We conclude this section by deriving the expression of the gradient of Φ. First
we clarify the definition of ∇L𝑊𝑊 (𝜽) ∈ R𝑄 (𝑛+1) . The 𝑗-th element of ∇L𝑊𝑊 (𝜽)
with 𝑗 ∈ {1, . . . , 𝑄(𝑛 + 1)} is

(∇L𝑊𝑊 (𝜽)) 𝑗 =
𝜕L𝑊𝑊 (𝜽)

𝜕𝜃 𝑗
=

𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1

𝜌′
(
(L𝜽)𝑞,𝑘

)
(L𝑘)𝑞, 𝑗

=

𝐾∑︁
𝑘=1

(
L⊤
𝑘

)
{ 𝑗 ,:}


𝜌′

(
(L𝜽)1,𝑘

)
...

𝜌′
(
(L𝜽)𝑄,𝑘

)
 ,

(14)

where 𝜌′ : R→ R is the derivative of 𝜌. In order to simplify the expression of the
gradient of the function L𝑊𝑊 , will make use of function 𝑔𝐾 . Its gradient ∇𝑔𝐾 (X)
at X is a matrix in R𝑄×𝐾 whose (𝑞, 𝑘)-th element is

(∇𝑔𝐾 (X))𝑞,𝑘 =
𝜕𝑔𝐾 (X)
𝜕 (X)𝑞,𝑘

= 𝜌′
(
(X)𝑞,𝑘

)
, 𝑞 ∈ {1, . . . , 𝑄}, 𝑘 ∈ {1, . . . , 𝐾}.

(15)
Consequently, (14) can be reformulated as

(∇L𝑊𝑊 (𝜽)) 𝑗 =
𝐾∑︁
𝑘=1

(L⊤
𝑘){ 𝑗 ,:} (∇𝑔𝐾 (L𝜽)){:,𝑘}

where (∇𝑔𝐾 (L𝜽)){:,𝑘} denotes the 𝑘-th column of ∇𝑔𝐾 (L𝜽). We remark that
all components of ∇L𝑊𝑊 can be computed simultaneously by properly applying
a tensor product function either in MATLAB or Python to L⊤ and ∇𝑔𝐾 (L𝜽),
eliminating the need to extract specific rows or columns from either matrix. In
particular, we have

∇L𝑊𝑊 (𝜽) = L⊤∇𝑔𝐾 (L𝜽) :=



𝐾∑︁
𝑘=1

(L⊤
𝑘){1,:} (∇𝑔𝐾 (L𝜽)){:,𝑘}

𝐾∑︁
𝑘=1

(L⊤
𝑘){2,:} (∇𝑔𝐾 (L𝜽)){:,𝑘}

...
𝐾∑︁
𝑘=1

(L⊤
𝑘){𝑄 (𝑛+1) ,:} (∇𝑔𝐾 (L𝜽)){:,𝑘}



. (16)

On the other hand, the gradient ∇ 𝑓 (𝜽) of the regularization term is a vector in

0.3. BATCH MM APPROACH 13

R𝑄 (𝑛+1) , expressed as

∇ 𝑓 (𝜽) =

©­­­­­­­­­­­­­­­­­­­«

𝜆𝜑′ (𝜃1) + 𝜂𝜃1
...

𝜆𝜑′
(
𝜃𝑄

)
+ 𝜂𝜃𝑄

...

𝜆𝜑′
(
𝜃𝑄·𝑛−𝑛+1

)
+ 𝜂𝜃𝑄·𝑛−𝑛+1

...

𝜆𝜑′
(
𝜃𝑄·𝑛

)
+ 𝜂𝜃𝑄·𝑛

0
...

0

ª®®®®®®®®®®®®®®®®®®®¬

,

where 𝜑′ is the first derivative of the potential function 𝜑 involved in the construction
of the regularization term 𝑓 .

In summary, the expression of the gradient of Φ is given by(
∀ 𝜽 ∈ R𝑄 (𝑛+1)) ∇Φ(𝜽) = L⊤∇𝑔𝐾 (L𝜽) + ∇ 𝑓 (𝜽). (17)

0.3 Batch MM approach

The MM approach is an iterative optimization technique that aims at transforming
a challenging optimization problem into a sequence of easier subproblems by
iteratively constructing and minimizing a surrogate function that majorizes the
original objective function. At each iteration, the surrogate function, also referred
to as the tangent majorant, is designed to be a convenient approximation to the
objective function and exhibits good properties such as convexity. Under suitable
assumptions, the MM algorithm converges to a local minimizer of the original
function while often improving computational efficiency compared to classical
gradient methods. For a comprehensive introduction to MM schemes, the reader is
referred to [50, 58]. This section is devoted to providing the key ingredients needed
to apply an MM method to the resolution of (12) by processing the training set in
a single full batch.

Definition 0.2. Given problem (12), a tangent majorant ℎ(·; 𝜽 ′) : R𝑄 (𝑛+1) → R of
Φ at 𝜽 ′ ∈ R𝑄 (𝑛+1) is a function such that

ℎ(𝜽; 𝜽 ′) ≥ Φ(𝜽) (∀ 𝜽 ∈ R𝑄 (𝑛+1))
ℎ(𝜽 ′; 𝜽 ′) = Φ(𝜽 ′)

Building on the previous definition of tangent majorant, the general MM itera-
tive scheme for (12) reads as

(∀𝑡 ∈ N) 𝜽 (𝑡+1) = argmin
𝜽∈R𝑄 (𝑛+1)

ℎ(𝜽; 𝜽 (𝑡)), (18)

14

given 𝜽 (0) ∈ R𝑄 (𝑛+1) . Under suitable hypotheses on the objective function in (12)
and its majorizing approximations, the iterative scheme (18) generates a sequence
that converges to a solution to (12) [27]. We now discuss the construction of
reliable majorizing approximations for the function Φ. First, we introduce the
so called descent lemma majorant, which is based on the Lipschitz smoothness
property of Φ.

Proposition 0.1. Consider the function Φ involved in (12). Φ is 𝜇-Lipschitz
differentiable on R𝑄 (𝑛+1) with

𝜇 = 𝛽∥L∥2 + 𝑎𝜆 + 𝜂, (19)

where ∥L∥ is the spectral norm of L. As a consequence, for every 𝜽 ′ ∈ R𝑄 (𝑛+1) ,
the following function is a tangent majorant of Φ at 𝜽 ′,

(∀𝜽 ∈ R𝑄 (𝑛+1)) ℎ(𝜽 , 𝜽 ′) = Φ(𝜽 ′) + ∇Φ(𝜽 ′)⊤(𝜽 − 𝜽 ′) + 𝜇
2
∥𝜽 − 𝜽 ′∥2.

While the previous majorizing approximation is useful, its accuracy may be
limited since its curvature remains independent of the tangency point 𝜽 ′. To
address this limitation, we introduce a more refined approximation inspired by
the half-quadratic techniques commonly used in image processing algorithms [2].
Before stating the proposition, we recall the definition of the tensor product L⊤L ∈
R𝑄 (𝑛+1)×𝑄 (𝑛+1) . The (𝑖, 𝑗) entry of L⊤L is given by

(
L⊤L

)
𝑖, 𝑗

=

𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1

(
L⊤
𝑘

)
𝑖,𝑞

(L𝑘)𝑞, 𝑗 =
𝐾∑︁
𝑘=1

(
L⊤
𝑘

)
{𝑖,:} (L𝑘) {:, 𝑗 } (20)

where (𝑖, 𝑗) ∈ {1, . . . , 𝑄(𝑛 + 1)}2. Here, we recall that
(
L⊤
𝑘

)
{𝑖,:} and (L𝑘) {:, 𝑗 }

denote the 𝑖-th row of L⊤
𝑘

and the 𝑗-th column of L𝑘 , respectively. Their product in
the last equality is understood as the standard row-by-column multiplication.

Proposition 0.2. For every 𝜽 ′ ∈ R𝑄 (𝑛+1) , the following function is a tangent
majorant of function Φ in (12):

(∀𝜽 ∈ R𝑄 (𝑛+1)) ℎ(𝜽; 𝜽 ′) = Φ(𝜽 ′) + ∇Φ(𝜽 ′)⊤(𝜽 − 𝜽 ′) + 1
2
(𝜽 − 𝜽 ′)⊤A(𝜽 ′) (𝜽 − 𝜽 ′)

0.3. BATCH MM APPROACH 15

where, for every 𝜽 ∈ R𝑄 (𝑛+1) ,

A(𝜽) = 𝛽L⊤L + R(𝜽) = 𝛽L⊤L + Diag

©­­­­­­­­­­­­­­­­­­­«



𝜆𝜓(𝜃1) + 𝜂
...

𝜆𝜓(𝜃𝑛) + 𝜂
...

𝜆𝜓(𝜃 (𝑄−1) ·𝑛+1) + 𝜂
...

𝜆𝜓(𝜃𝑄·𝑛) + 𝜂
𝜀
...

𝜀



ª®®®®®®®®®®®®®®®®®®®¬

. (21)

Here, 𝜓 : 𝑣 ↦→ 𝜑′(𝑣)/𝑣 (with 𝜓(0) := 0), 𝜀 > 0 and 𝛽 denotes the Lipschitz constant
of 𝜌′.

The proof of Proposition 0.2 relies on standard results from the MM approach.
For completeness, it is included in Appendix .1.

Based on Proposition 0.2, the MM method in (18) can be specialized as

(∀𝑡 ∈ N) 𝜽 (𝑡+1) = argmin
𝜽∈R𝑄 (𝑛+1)

(
∇Φ(𝜽 (𝑡))⊤(𝜽 − 𝜽 (𝑡)) + 1

2
(𝜽 − 𝜽 (𝑡))⊤A(𝜽 (𝑡)) (𝜽 − 𝜽 (𝑡))

)
= 𝜽 (𝑡) − (A(𝜽 (𝑡)))−1∇Φ(𝜽 (𝑡)). (22)

The MM approach (22) relies on the positive definiteness of the matrix A(𝜽) defined
in Proposition 0.2. Consequently, we assume that 𝜂 > 0 hereafter. The iterative
scheme (22) can be interpreted both as a scaled gradient algorithm with a unit
step-size, and as a special case of the subspace acceleration method introduced in
[17], for which a convergence proof was provided. Indeed, the following theoretical
convergence result for the MM method (22) can be established assuming that the
objective function satisfies Kurdyka- Lojasiewicz inequality [5].

Theorem 0.1. Assume that Φ in (12) satisfies the Kurdyka- Lojasiewicz inequality.
Let (𝜽 (𝑡))𝑡∈N be generated by (22). Then, (𝜽 (𝑡))𝑡∈N converges to a stationary point
of Φ in (12). Moreover, if Φ is strongly convex, (𝜽 (𝑡))𝑡∈N converges to the unique
minimizer of Φ.

Proof. In view of Proposition 0.1, function Φ in (12) is Lipschitz differentiable. As
a consequence, the theorem directly follows from [17, Theorem 3], using Proposi-
tion 0.2, and taking into account that (22) is a particular case of the MM quadratic
subspace algorithm proposed in [17] with one inner iteration, and full space map-
ping. □

Examples of Kurdyka- Lojasiewicz functions are the indicator functions of semi-
algebraic sets, real polynomials, 𝑝-norms and, in general, semi-algebraic functions

16

or real analytic functions [4, 10, 56]. If the regularization function 𝜑 in (7) is chosen
as the hyperbolic potential or the Welsh potential, as done in our numerical exper-
iments, then the objective function Φ satisfies the Kurdyka- Lojasiewicz property,
hence Theorem 0.1 holds.

0.4 Incremental MM approach

Despite its simplicity and guaranteed convergence properties, the MM algorithm
introduced in (22) for solving problem (12) may not be feasible when the number
of examples 𝐾 is very large. Indeed, if number of data is too large, tensor L ∈
R𝑄×𝑄 (𝑛+1)×𝐾 may become too large to be stored. As a consequence, in view of
(16), the full gradient of Φ cannot be computed and the MM scheme (22) cannot
be directly applied in this form. In this section we propose an incremental version
of the MM scheme defined in (22), which can be successfully employed to solve
problem (12) when 𝐾 is large.

To design this incremental MM approach, we first rewrite the target function
Φ in (6) as a sum of 𝑚 functions, where 𝑚 is a predefined number of blocks into
which the training dataset D is partitioned. Specifically, we assume that

D =

𝑚⋃
𝑖=1

D𝑖 , (23)

where, without loss of generality, each D𝑖 with 𝑖 ∈ {1, . . . , 𝑚} contains 𝑁 = 𝐾/𝑚
examples, with 𝑁 being a positive integer. Each block indexed by 𝑖 ∈ {1, . . . , 𝑚}
can be interpreted as a minibatch defined as follows:

D𝑖 = {(x𝑘 , y𝑘)}𝑘∈K𝑖 (24)

with K𝑖 = {(𝑖 − 1) 𝑁 + 1, . . . , 𝑖 𝑁}. It follows from (6) that

(∀𝜽 ∈ R𝑄 (𝑛+1)) Φ(𝜽) =
𝑚∑︁
𝑖=1

Φ𝑖 (𝜽), (25)

where, for every 𝑖 ∈ {1, . . . , 𝑚},

(∀𝜽 ∈ R𝑄 (𝑛+1)) Φ𝑖 (𝜽) =
∑︁
𝑘∈K𝑖

𝑄∑︁
𝑞=1
𝑞≠𝑞∗

𝑘

𝜌
(
(w𝑞∗

𝑘
− w𝑞)⊤x𝑘 + 𝑏𝑞∗

𝑘
− 𝑏𝑞

)
+ 𝑓 (𝜽)

𝑚
.

(26)
We now aim to rewrite functions (Φ𝑖)1≤𝑖≤𝑚 similarly to the form of Φ introduced
in Section 0.2.3. First we define the sub-tensors of L corresponding to the blocks
(D𝑖)1≤𝑖≤𝑚.

Definition 0.3. For every 𝑖 ∈ {1, . . . , 𝑚}, the tensor L(𝑖) ∈ R𝑄×𝑄 (𝑛+1)×𝑁 , related
to D𝑖 , is defined as the collection of matrices (L𝑘)𝑘∈K𝑖 .

0.4. INCREMENTAL MM APPROACH 17

Following the same arguments as in Section 0.2.3, each functions Φ𝑖 with
𝑖 ∈ {1, . . . , 𝑚}, and its gradient are expressed as

(∀𝜽 ∈ R𝑄 (𝑛+1)) Φ𝑖 (𝜽) = 𝑔𝑁 (L(𝑖)𝜽) − 𝑁𝜌(0) + 𝑓 (𝜽)
𝑚

(27)

and
(∀𝜽 ∈ R𝑄 (𝑛+1)) ∇Φ𝑖 (𝜽) = L(𝑖)⊤∇𝑔𝑁 (L(𝑖)𝜽) + ∇ 𝑓 (𝜽)

𝑚
, (28)

where L(𝑖)𝜽 is defined as in (10), and the gradient ∇𝑔𝑁 (X) at X of function 𝑔𝑁 is
a matrix in R𝑄×𝑁 such that its (𝑞, 𝜈)-th element is defined as

(∇𝑔𝑁 (X))𝑞,𝜈 = 𝜌′
(
(X)𝑞,𝜈

)
, 𝑞 ∈ {1, . . . , 𝑄}, 𝜈 ∈ {1, . . . , 𝑁}.

Formulation (25) allows us to process each block incrementally to solve problem
(12). In particular, we propose to combine a standard incremental technique [9]
with the half-quadratic MM approach, which led to the scheme (22). The resulting
algorithm is an incremental gradient method where the gradient direction is properly
scaled using matrix A(·) defined in (21).

Remark 2. According to (21), matrix A(·) also depends on the tensor L. However,
as seen from the definition in (20), the computation of L⊤L can be performed
efficiently by accumulating each product L⊤

𝑘
L𝑘 , eliminating the need to store the

entire tensor L. Moreover, since the term L⊤L remains constant throughout the
optimization process, it can be computed as a pre-processing step, as detailed in
Section 0.4.1. Finally, we note that computing L⊤L via (20) is both parallelizable
and adaptable to potential additions to the training dataset, as arises in continual
learning.

The main steps of the proposed approach are detailed in Algorithm 1. This
algorithm differs from a standard incremental gradient method applied to problem
(12) through the scaling matrix A𝑡 = A(𝜽 (𝑡)) = 𝛽L⊤L + R(𝜽 (𝑡)), which is given
by (21). This matrix is computed at the beginning of the 𝑡-th epoch and it is
employed for the update of the successive 𝑚 inner iterations. In particular, matrix
A𝑡 , as well as the step-size 𝛾𝑡 , do not depend on the blocks (D𝑖)1≤𝑖≤𝑚 or the iterates
(𝝎 (𝑡 ,𝑖−1))1≤𝑖≤𝑚+1. We remark that the conditions on the sequence (𝛾𝑡)𝑡∈N, stated at
the beginning of Algorithm 1, are quite standard for incremental gradient methods
and are needed for the convergence results, as detailed in Section 0.4.2.

Remark 3. The update of 𝝎 (𝑡 ,𝑖) in (29) would, in principle, require the inver-
sion of the full matrix A𝑡 . In practice, we avoid explicitly inverting A𝑡 by
computing A−1

𝑡 ∇Φ𝑖 (𝝎 (𝑡 ,𝑖−1)) through the solution of two linear systems. Par-
ticularly, we exploit the fact that A𝑡 is symmetric and positive definite. Based
on this property, at the beginning of each epoch, we compute an upper trian-
gular matrix P𝑡 ∈ R𝑄 (𝑛+1)×𝑄 (𝑛+1) via the Cholesky decomposition such that

18

Algorithm 1 Incremental MM algorithm
Set 𝜽 (0) ∈ R𝑄 (𝑛+1) , {𝛾𝑡 }𝑡∈N ⊂ R+ such that

∑∞
𝑡=0 𝛾𝑡 = +∞ and

∑∞
𝑡=0 𝛾

2
𝑡 < +∞,

𝑚 > 0, 𝛽 > 0, and compute L⊤L.

for 𝑡 = 0, 1, . . . do

Set 𝝎 (𝑡 ,0) = 𝜽 (𝑡)

Compute A𝑡 = A(𝜽 (𝑡)) = 𝛽L⊤L + R(𝜽 (𝑡)) as defined in (21)

for 𝑖 = 1, . . . , 𝑚 do

𝝎 (𝑡 ,𝑖) = 𝝎 (𝑡 ,𝑖−1) − 𝛾𝑡A−1
𝑡 ∇Φ𝑖 (𝝎 (𝑡 ,𝑖−1)) (29)

end for
Set

𝜽 (𝑡+1) = 𝝎 (𝑡 ,𝑚) (30)

end for

A𝑡 = P⊤
𝑡 P𝑡 . Subsequently, in the incremental update step (29), the descent di-

rection d(𝑡 ,𝑖) = A−1
𝑡 ∇Φ𝑖 (𝝎 (𝑡 ,𝑖−1)) is obtained by solving the following two linear

systems: {
P⊤
𝑡 z = ∇Φ𝑖 (𝝎 (𝑡 ,𝑖−1))

P𝑡d(𝑡 ,𝑖) = z

with z ∈ R𝑄 (𝑛+1) . The solution of these linear systems is highly efficient because of
the structure of matrix P𝑡 .

We conclude the presentation of Algorithm 1 by noting that it can be regarded
as an incremental version of the MM method detailed in (22). An epoch of the
incremental MM gradient method through the components Φ𝑖 differs from the
standard gradient iteration (22) in that the evaluation of ∇Φ𝑖 is performed at the
corresponding current estimate 𝝎 (𝑡 ,𝑖−1) rather than at the estimate 𝜽 (𝑡) available at
the start of the epoch. This approach enables solving problem (12) efficiently, even
when 𝐾 is very large.

0.4.1 Warm-up phase

As already mentioned, Algorithm 1 relies on an efficient computation of L⊤L,
whose definition depends on the available training data. As highlighted in Remark
2, the computation of this matrix can be carried out using (20), which allows for an
incremental approach by accumulating the products L⊤

𝑘
L𝑘 . The warm-up phase is

outlined in Algorithm 2. According to (20), the output H𝑚 of Algorithm 2 coincides
with L⊤L.

0.4. INCREMENTAL MM APPROACH 19

Algorithm 2 Warm-up phase
Set 𝑚 > 0 and H0 as the null matrix in R𝑄 (𝑛+1)×𝑄 (𝑛+1) .

Split the training dataset into blocks (D𝑖)1≤𝑖≤𝑚, as defined in (23)-(24).

for 𝑖 = 1, . . . , 𝑚 do

Compute the tensor L(𝑖) corresponding to the block D𝑖 from Definition 0.3.

Compute H𝑖 = (L(𝑖))⊤L(𝑖) + H𝑖−1

end for

0.4.2 Convergence results

In this section we provide a proof of convergence of the incremental MM method
defined in Algorithm 1. To ensure greater generality, the convergence results are
established for a broad class of incremental scaled gradient schemes, of which Al-
gorithm 1 is a specific instance. Specifically, we consider the general differentiable
finite-sum optimization problem of the form:

minimize
𝜽∈R𝑑

Φ(𝜽) ≡
𝑚∑︁
𝑖=1

Φ𝑖 (𝜽). (31)

The theoretical results presented in this section pertain to Algorithm 3. Further
assumptions regarding the objective functionΦ and the sequence of scaling matrices
(A𝑡)𝑡∈N will be introduced in the relevant theorems.

Algorithm 3 General incremental scaled gradient algorithm
Set 𝜽 (0) ∈ R𝑑 , {𝛾𝑡 }𝑡∈N ⊂ R+ such that

∑∞
𝑡=0 𝛾𝑡 = +∞ and

∑∞
𝑡=0 𝛾

2
𝑡 < +∞, 𝑚 > 0.

for 𝑡 = 0, 1, . . . do

Set 𝝎 (𝑡 ,0) = 𝜽 (𝑡)

Fix a symmetric and positive definite matrix A𝑡 .

for 𝑖 = 1, . . . , 𝑚 do

𝝎 (𝑡 ,𝑖) = 𝝎 (𝑡 ,𝑖−1) − 𝛾𝑡A−1
𝑡 ∇Φ𝑖 (𝝎 (𝑡 ,𝑖−1))

end for
Set 𝜽 (𝑡+1) = 𝝎 (𝑡 ,𝑚)

end for

Theorem 0.2 extends the results in the seminal work [9], by accounting for the
presence of a scaling matrix in the incremental gradient method update. With-
out any convexity assumption, we prove that the gradient sequence (∇Φ(𝜽 (𝑡)))𝑡∈N

20

tends to zero. If, in addition, we assume that the function is strictly convex and
that the iterates are bounded, it is possible to prove the convergence of the iterates
(𝜽 (𝑡))𝑡∈N through Theorem 0.3.

We firstly recall [9, Proposition 1].

Proposition 0.3. Let 𝜇 be some positive constant and let Φ : R𝑑 → R be a 𝜇-
Lipschitz differentiable function. Let (𝛾𝑡)𝑡∈N be positive step-sizes and let (𝜽 (𝑡))𝑡∈N
be a sequence generated by the iterates:

(∀𝑡 ∈ N) 𝜽 (𝑡+1) = 𝜽 (𝑡) + 𝛾𝑡 (s𝑡 + w𝑡), (32)

where (s𝑡)𝑡∈N are descent directions satisfying for some positive constants 𝑐1, 𝑐2,

(∀𝑡 ∈ N) 𝑐1∥∇Φ(𝜽 (𝑡))∥2 ≤ −⟨∇Φ(𝜽 (𝑡)), s𝑡⟩, ∥s𝑡 ∥ ≤ 𝑐2(1 + ∥∇Φ(𝜽 (𝑡))∥),
(H1)

and (w𝑡)𝑡∈N is an vector error sequence satisfying for some positive constants 𝑝, 𝑞,

(∀𝑡 ∈ N) ∥w𝑡 ∥ ≤ 𝛾𝑡 (𝑝 + 𝑞∥∇Φ(𝜽 (𝑡))∥). (H2)

In addition, we assume that (𝛾𝑡)𝑡∈N is such that

∞∑︁
𝑡=0

𝛾𝑡 = +∞,
∞∑︁
𝑡=0

𝛾2
𝑡 < +∞, (H3)

Then, either Φ(𝜽 (𝑡)) → −∞ or Φ(𝜽 (𝑡)) converges to a finite value. In the latter
case, lim𝑡→∞ ∇Φ(𝜽 𝑡) = 0. Furthermore, every cluster point of (𝜽 (𝑡))𝑡∈N is a
stationary point of Φ.

Now, we prove that, under suitable assumptions, the incremental scaled gradient
Algorithm 3 belongs to the class of algorithms defined in Proposition 0.3. We then
discuss the validity of these assumptions for the objective function in (25)-(26) and
the incremental MM algorithm (Algorithm 1) under consideration (see Remark 4).

Our first convergence result for the general incremental scaled gradient algo-
rithm is stated in Theorem 0.2. This results extends [9, Proposition 2] to Algorithm
3. In [9], the analysis is restricted to a constant scaling matrix.

Theorem 0.2. Given the optimization problem (31), let (𝜽 (𝑡))𝑡∈N be a sequence
generated by Algorithm 3. Let us make the following assumptions.

(i) For all 𝑖 ∈ {1, . . . , 𝑚}, there exists 𝜇𝑖 > 0 such that Φ𝑖 is 𝜇𝑖-Lipschitz
differentiable.

(ii) There exist positive constants 𝐶 and 𝐷, such that

(∀𝑡 ∈ N) (∀𝑖 ∈ {1, . . . , 𝑚}) ∥∇Φ𝑖 (𝝎 (𝑡 ,𝑖))∥ ≤ 𝐶 + 𝐷∥∇Φ(𝝎 (𝑡 ,𝑖))∥.

0.4. INCREMENTAL MM APPROACH 21

(iii) There exists 𝜒 > 0, such that, for every 𝑡 ∈ N, the eigenvalues of A𝑡 belong
to the interval [1

𝜒
, 𝜒].

(iv) (𝛾𝑡)𝑡∈N is a sequence of positive step-sizes satisfying (H3).

Then, either Φ(𝜽 (𝑡)) → −∞ or Φ(𝜽 (𝑡)) converges to a finite value. In the latter
case, lim𝑡→∞ ∇Φ(𝜽 (𝑡)) = 0. Furthermore, every cluster point of (𝜽 (𝑡))𝑡∈N is a
stationary point of Φ.

Proof. Let 𝑡 ∈ N. First of all, we reduce the scheme (30) to the form (32):

𝜽 (𝑡+1) = 𝜽 (𝑡) − 𝛾𝑡A−1
𝑡

𝑚∑︁
𝑖=1

∇Φ𝑖 (𝝎 (𝑡 ,𝑖−1))

= 𝜽 (𝑡) + 𝛾𝑡
[
−A−1

𝑡 ∇Φ(𝜽 (𝑡))︸ ︷︷ ︸
s𝑡

+A−1
𝑡

𝑚∑︁
𝑖=1

(
∇Φ𝑖 (𝜽 (𝑡)) − ∇Φ𝑖 (𝝎 (𝑡 ,𝑖−1))

)
︸ ︷︷ ︸

w𝑡

]
.

This yields {
s𝑡 = −A−1

𝑡 ∇Φ(𝜽 (𝑡))
w𝑡 = A−1

𝑡

∑𝑚
𝑖=1

(
∇Φ𝑖 (𝜽 (𝑡)) − ∇Φ𝑖 (𝝎 (𝑡 ,𝑖−1))

) (33)

The vector s𝑡 in (33) satisfies the first inequality in (𝐻1) since A−1
𝑡 is a symmetric

positive definite matrix and

⟨∇Φ(𝜽 (𝑡)), s𝑡⟩ = ⟨∇Φ(𝜽 (𝑡)),−A−1
𝑡 ∇Φ(𝜽 (𝑡))⟩ = −∥∇Φ(𝜽 (𝑡))∥2

A−1
𝑡

≤ −𝜆min(A−1
𝑡)∥∇Φ(𝜽 (𝑡))∥2 ≤ − 1

𝜒
∥∇Φ(𝜽 (𝑡))∥2,

where 𝜆min(·) (resp. 𝜆max(·)) denotes the smallest (resp. largest) eigenvalue of the
symmetric matrix in argument. Thus the first inequality in (𝐻1) is simply verified
for 𝑐1 = 1

𝜒
.

Moreover, s𝑡 in (33) also satisfies the second inequality in (𝐻1) for 𝑐2 = 𝜒:

∥s𝑡 ∥ = ∥−A−1
𝑡 ∇Φ(𝜽 (𝑡))∥ ≤ ∥A−1

𝑡 ∥ ∥∇Φ(𝜽 (𝑡))∥
= 𝜆max(A−1

𝑡)∥∇Φ(𝜽 (𝑡))∥ ≤ 𝜒∥∇Φ(𝜽 (𝑡))∥
≤ 𝜒

(
1 + ∥∇Φ(𝜽 (𝑡))∥

)
.

Let us now focus on w𝑡 defined in (33). We have

∥w𝑡 ∥ = ∥A−1
𝑡

𝑚∑︁
𝑖=1

(
∇Φ𝑖 (𝜽 (𝑡)) − ∇Φ𝑖 (𝝎 (𝑡 ,𝑖−1))

)
∥

≤ 𝜒

𝑚∑︁
𝑖=1

∥∇Φ𝑖 (𝜽 (𝑡)) − ∇Φ𝑖 (𝝎 (𝑡 ,𝑖−1))∥

≤ 𝜒

𝑚∑︁
𝑖=1

𝜇𝑖 ∥𝜽 (𝑡) − 𝝎 (𝑡 ,𝑖−1) ∥ ,

22

where the first inequality follows from the assumed boundedness of the eigenvalues
of A𝑡 and the second one follows from the Lipschitz regularity of the gradients of
functions (Φ𝑖)1≤𝑖≤𝑚.
If, for each 𝑖 ∈ {1, . . . , 𝑚}, there exist proper positive constants 𝑝𝑖−1 and 𝑞𝑖−1 such
that

∥𝜽 (𝑡) − 𝝎 (𝑡 ,𝑖−1) ∥ ≤ 𝛾𝑡 (𝑝𝑖−1 + 𝑞𝑖−1∥∇Φ(𝜽 (𝑡))∥) (34)

then (H2) follows with {
𝑝 = 𝜒

∑𝑚
𝑖=1 𝜇𝑖𝑝𝑖−1

𝑞 = 𝜒
∑𝑚
𝑖=1 𝜇𝑖𝑞𝑖−1.

Let us proceed by induction on 𝑖 ∈ {1, . . . , 𝑚} to show that (34) holds. First, we
observe that for 𝑖 = 1, the inequality obsviously holds with 𝑝0 = 𝑞0 = 0. Now
we suppose that (34) holds and we prove that the same property is satisfied for the
value 𝑖. Particularly we observe that

∥𝜽 (𝑡) − 𝝎 (𝑡 ,𝑖) ∥ ≤ ∥𝜽 (𝑡) − 𝝎 (𝑡 ,𝑖−1) ∥ + ∥𝝎 (𝑡 ,𝑖−1) − 𝝎 (𝑡 ,𝑖) ∥
≤ 𝛾𝑡 (𝑝𝑖−1 + 𝑞𝑖−1∥∇Φ(𝜽 (𝑡))∥) + 𝛾𝑡 𝜒∥∇Φ𝑖 (𝝎 (𝑡 ,𝑖−1))∥
≤ 𝛾𝑡 (𝑝𝑖−1 + 𝑞𝑖−1∥∇Φ(𝜽 (𝑡))∥) + 𝛾𝑡 𝜒

(
𝐶 + 𝐷∥∇Φ(𝝎 (𝑡 ,𝑖−1))∥)

≤ 𝛾𝑡 (𝑝𝑖−1 + 𝑞𝑖−1∥∇Φ(𝜽 (𝑡))∥)
+ 𝛾𝑡 𝜒

(
𝐶 + 𝐷∥∇Φ(𝝎 (𝑡 ,𝑖−1)) − ∇Φ(𝜽 (𝑡))∥) + 𝐷∥∇Φ(𝜽 (𝑡))∥

)
≤ 𝛾𝑡 (𝑝𝑖−1 + 𝑞𝑖−1∥∇Φ(𝜽 (𝑡))∥)
+ 𝛾𝑡 𝜒

(
𝐶 + 𝐷𝜇∥𝝎 (𝑡 ,𝑖−1) − 𝜽 (𝑡) ∥ + 𝐷∥∇Φ(𝜽 (𝑡))∥

)
≤ 𝛾𝑡 (𝑝𝑖−1 + 𝑞𝑖−1∥∇Φ(𝜽 (𝑡))∥)
+ 𝛾𝑡 𝜒

(
𝐶 + 𝐷𝜇𝛾𝑡 (𝑝𝑖−1 + 𝑞𝑖−1∥∇Φ(𝜽 (𝑡))∥))

+ 𝛾𝑡 𝜒
(
𝐷∥∇Φ(𝜽 (𝑡))∥

)
≤ 𝛾𝑡 (𝑝𝑖−1 + 𝑞𝑖−1∥∇Φ(𝜽 (𝑡))∥)
+ 𝛾𝑡 𝜒

(
𝐶 + 𝐷𝜇𝛾max(𝑝𝑖−1 + 𝑞𝑖−1∥∇Φ(𝜽 (𝑡))∥))

+ 𝛾𝑡 𝜒
(
𝐷∥∇Φ(𝜽 (𝑡))∥

)
= 𝛾𝑡 (𝑝𝑖−1 + 𝜒𝐶 + 𝜒𝐷𝜇𝛾max𝑝𝑖−1)
+ 𝛾𝑡 (𝑞𝑖−1 + 𝜒𝐷𝜇𝛾max𝑞𝑖−1 + 𝜒𝐷)∥∇Φ(𝜽 (𝑡))∥,

where 𝛾max = sup𝑡∈N 𝛾𝑡 is finite because of assumption (iv) on the step-size.
Hereabove, the second inequality follows from the inductive assumption and the
definition of the incremental method, the third inequality follows from assumption
(ii), the fifth inequality follows from the 𝜇-smoothness of ∇Φ with 𝜇 =

∑𝑚
𝑖=1 𝜇𝑖 ,

and the sixth inequality follows again from the inductive assumption. Thus we have
shown that

∥𝜽 (𝑡) − 𝝎 (𝑡 ,𝑖) ∥ ≤ 𝛾𝑡 (𝑝𝑖 + 𝑞𝑖 ∥∇Φ(𝜽 (𝑡))∥)

0.4. INCREMENTAL MM APPROACH 23

where {
𝑝𝑖 = 𝑝𝑖−1 + 𝜒(𝐶 + 𝐷𝜇𝑝𝑖−1𝛾max)
𝑞𝑖 = 𝑞𝑖−1 + 𝜒(𝐷 + 𝐷𝜇𝑞𝑖−1𝛾max).

Then, applying Proposition 0.3 concludes the proof. □

Remark 4. Let us assess the applicability of the assumptions made in Theorem 0.2
to the objective function in (25)-(26) and the incremental MM method reported in
Algorithm 1.

• We firstly recall that, for the objective function in (25)-(26), 𝑑 = 𝑄(𝑛 + 1) is
the dimension of the input argument 𝜽 .

• In view of Proposition 0.1, Assumption (i) easily holds for the objective
function in (25)-(26) with 𝜇𝑖 = 𝛽∥L(𝑖) ∥ + 𝑎𝜆+𝜂

𝑚
.

• As for Assumption (ii), in view of the definitions (17) and (28), we note that,
for every 𝜽 ∈ R𝑑 , it holds that

∥∇Φ𝑖 (𝜽)∥ =

L(𝑖)⊤∇𝑔𝑁 (L(𝑖)𝜽) + ∇ 𝑓 (𝜽)

𝑚

 = 1
𝑚

𝑚L(𝑖)⊤∇𝑔𝑁 (L(𝑖)𝜽) + ∇ 𝑓 (𝜽)

=
1
𝑚

𝑚L(𝑖)⊤∇𝑔𝑁 (L(𝑖)𝜽) + ∇Φ(𝜽) − L⊤∇𝑔𝐾 (L𝜽)

≤

L(𝑖)⊤∇𝑔𝑁 (L(𝑖)𝜽)

 + 1
𝑚

L⊤∇𝑔𝐾 (L𝜽)

 + 1

𝑚
∥∇Φ(𝜽)∥

≤

L(𝑖)⊤

∇𝑔𝑁 (L(𝑖)𝜽)

 + 1

𝑚

L⊤

 ∥∇𝑔𝐾 (L𝜽)∥ +
1
𝑚
∥∇Φ(𝜽)∥

=

L(𝑖)

√√√√ 𝑄∑︁
𝑞=1

𝑁∑︁
𝜈=1

(
𝜌′

(
(L(𝑖)𝜽)𝑞,𝜈

))2+

+ ∥L∥
𝑚

√√√√ 𝑄∑︁
𝑞=1

𝐾∑︁
𝑘=1

(
𝜌′

(
(L𝜽)𝑞,𝑘

))2 + 1
𝑚
∥∇Φ(𝜽)∥.

If the function 𝜌′ is bounded — as in the case when 𝜌 is either the logistic
loss or the sigmoid loss — then Assumption (ii) is satisfied.
On the other hand, if 𝜌′ is unbounded, as with the squared hinge loss, the
required condition for the proof of Theorem 0.2 can still be ensured by
assuming that the iterates remain bounded. This is because 𝜌 is assumed to
have a Lipschitz continuous derivative. It is worth noting that the assumption
of bounded iterates is quite standard in the literature and, in particular, it is
satisfied if 𝑓 is coercive.

• If the regularization function 𝜑 in (7) is chosen such that 𝜓 is upper bounded
by a nonnegative constant 𝜓̄, then the matrix A𝑡 used in Algorithm 1 and
defined in (21), fulfills Assumption (iii). Indeed, denoting by 𝑎𝑡 and 𝑎𝑡 the

24

minimum and maximum eigenvalues of A𝑡 , respectively, it follows from (21)
that

𝛽ℓ + 𝑟𝑡 ≤ 𝑎𝑡 ≤ 𝑎𝑡 ≤ 𝛽ℓ̄ + 𝑟𝑡 ,

where 0 ≤ ℓ ≤ ℓ̄ and 0 < 𝑟𝑡 ≤ 𝑟𝑡 are the minimum and maximum eigenvalues
of L⊤L and R(𝜽 (𝑡)), respectively. Since min(𝜂, 𝜖) ≤ 𝑟𝑡 ≤ 𝑟𝑡 ≤ max(𝜆𝜓̄ +
𝜂, 𝜀), there exists 𝜒 > 0 such that 1

𝜒
≤ 𝑎𝑡 ≤ 𝑎𝑡 ≤ 𝜒. Specifically, if

𝜑 corresponds to the hyperbolic (resp. Welsh) potential, as done in our
numerical experiments, then

min(𝜂, 𝜀) ≤ 𝑟𝑡 ≤ 𝑟𝑡 ≤ max
(
𝜆

𝛿
+ 𝜂, 𝜀

)
(
resp. min(𝜂, 𝜀) ≤ 𝑟𝑡 ≤ 𝑟𝑡 ≤ max

(
𝜆

𝛿2 + 𝜂, 𝜀
))
.

More details on the definition of the function 𝜓 defining R(𝜽) when 𝜑 is either
the hyperbolic or Welsh potential are given in Subsection 0.5.1.

• A choice for stepsizes satisfying Assumption (iv) is the following:

(∀𝑡 ∈ N) 𝛾𝑡 =
𝛼1

𝛼2 + 𝑡
, 𝛼1 > 0, 𝛼2 > 0. (35)

With the additional assumption of strict convexity, we can prove a further result
for Algorithm 3. Before doing so, we first recall a key property of strictly convex
functions.

Property 0.1. [43, Corollary 27.2.2] Given a strictly convex function 𝑓 : R𝑝 −→ R,
for any sequence (𝑡 (𝑘))𝑘∈N ∈ R𝑝, if lim𝑘→+∞ 𝑓 (𝑡 (𝑘)) = 𝑓 (𝑥∗), then lim𝑘→+∞ 𝑡 (𝑘) =
𝑥∗.

Theorem 0.3. Let (𝜽 (𝑡))𝑡∈N be a sequence generated by Algorithm 3. Under the
same assumptions as in Theorem 0.2, let us further suppose that

(i) there exists a compact set Ω that contains (𝜽 (𝑡))𝑡∈N;

(ii) Φ is bounded from below;

(iii) Φ is strictly convex.

Then (𝜽 (𝑡))𝑡∈N converges to the unique mininimizer 𝜽̂ of Φ.

Proof. From assumption (i), (𝜽 (𝑡))𝑡∈N admits a convergent subsequence, namely
there exist (𝜽 (𝑡ℓ))ℓ∈N and 𝜽̂ ∈ R𝑑 such that limℓ→+∞ 𝜽 (𝑡ℓ) = 𝜽̂ . From the continuity
of ∇Φ, we deduce that limℓ→+∞ ∇Φ(𝜽 (𝑡ℓ)) = ∇Φ(𝜽̂). Moreover, in view of
Theorem 0.2, 𝜽̂ is a stationary point of Φ, hence ∇Φ(𝜽̂) = 0. The strict convexity
of Φ guarantees that 𝜽̂ is its unique minimizer.

0.5. EXPERIMENTAL RESULTS 25

Theorem 0.2 ensures that there exists 𝑙 ∈ R such that lim𝑡→+∞Φ(𝜽 (𝑡)) = 𝑙. As a
consequence, from the continuity of Φ, we get:

lim
ℓ→+∞

Φ(𝜽 (𝑡ℓ)) = Φ(𝜽̂) = 𝑙,

and, hence,
lim
𝑡→+∞

Φ(𝜽 (𝑡)) = Φ(𝜽̂).

Property 0.1 guarantees that
lim
𝑡→+∞

𝜽 (𝑡) = 𝜽̂ .

□

Remark 5. Some comments on the assumptions made in Theorem 0.3, in relation
to the objective function (25)-(26) and Algorithm 1, are in order. Assumption (i)
corresponds to the bounded iterates assumption, which was already discussed in 4.
Moreover, if both the loss function 𝜌 and the regularization function 𝜑 in (25)-(26)
are chosen to be strictly convex and non-negative, then:

• the objective function Φ is non-negative and thus satisfies Assumption (ii);

• the objective function Φ is strictly convex.

For instance, by selecting the hyperbolic potential as the regularization function
and the logistic regression function as the loss, the assumptions in Theorem 0.3 are
satisfied.

0.5 Experimental results

In this section, we present various numerical experiments carried out on several
datasets and target functions demonstrating the good performance of Algorithm
1. The features of the training datasets and objective functions used are listed in
Subsection 0.5.1. In Subsection 0.5.2, we compare the performance of Algorithm
1 when initialized with the warm-up phase detailed in Algorithm 2 versus a ran-
dom starting point. Subsection 0.5.3 discusses the selection of hyperparameters
associated with Algorithm 1.

Next, we present two different experiments. In the first experiment, detailed
in Subsection 0.5.4, we examine a scenario where the standard MM algorithm
(22) is applicable due to a sufficiently small value of 𝐾 . This allows for a direct
performance comparison with the incremental MM method we propose. In the
second experiment, described in Subsection 0.5.5, Algorithm 1 is applied to a
setting with a large number of examples, where using the standard MM method
(22) may become infeasible.

These tests were performed on a machine with an Intel Core i5-6198DU pro-
cessor and 12 GB of RAM.

26

0.5.1 Datasets and target functions

The description of the datasets used in the experiments is provided in Table 1. In

Dataset 𝒏 + 1 𝑲 Test set examples 𝑸

protein 358 14213 3553 3

MNIST 785 60000 10000 10

covtype 55 464810 116202 7

Table 1: Datasets features.

Tables 2 and 3, we list the considered loss and regularization functions, respectively.
Both the loss and the regularization functions are Lipschitz differentiable, with
the Lipschitz constant given in Tables 2 and 3. Additionally, the regularization
functions 𝜑 satisfy assumptions 2, 3 and 4 reported in Subsection 0.2.2. In Table 3,
𝛿 is referred to as the smoothing parameter for the hyperbolic and the Welsh
potential, and it controls the degree of approximation of the ℓ1 norm and ℓ0 pseudo-
norm, respectively. Note that the former potential is convex, while the second is
nonconvex. In Table 3 we also report the expression of the function 𝜓 and the
corresponding upper bound 𝜓̄ which is here equal to the Lipschitz constant 𝑎 of the
function 𝜑.

Function Analytical expression Lipschitz constant 𝛽
Squared hinge (SH) 𝜌2

ℎ𝑖𝑛𝑔𝑒
(𝑣) = (max{1 − 𝑣; 0})2 2

Sigmoid (SGM) 𝜌𝑠𝑖𝑔𝑚(𝑣) = (1 + exp(𝑣))−1 1
6
√

3

Logistic regression (LR) 𝜌𝑙𝑜𝑔 (𝑣) = ln (1 + exp(−𝑣)) 1
4

Table 2: Fidelity functions 𝜌.

Function 𝜑(𝑣) 𝜓(𝑣) 𝑎 = 𝜓̄

Hyperbolic
potential
(HP)

√
𝑣2 + 𝛿2, 𝛿 > 0

1
√
𝑣2 + 𝛿2

1
𝛿

Welsh poten-
tial (WP)

1 − exp
(
− 𝑣2

2𝛿2

)
, 𝛿 > 0

1
𝛿2 exp

(
− 𝑣2

2𝛿2

)
1
𝛿2

Table 3: Regularization functions 𝜑.

0.5. EXPERIMENTAL RESULTS 27

For all the experiments, we set the regularization parameters in (7) to 𝜆 = 10−3

and 𝜂 = 1, based on empirical tuning. On the other hand, the parameter 𝛿 for the
Welsh potential and the hyperbolic potential was set to 10−1 and 10−4, respectively.
These values were chosen to ensure the numerical stability of the inversion of matrix
A𝑡 . Indeed, it follows from Equation 21 that, if the matrix L⊤L is ill-conditioned,
the diagonal matrix R(𝜽) derived from the regularization terms plays a crucial
role in ensuring the stable computation of A−1

𝑡 . In particular, each 𝑖-th diagonal
element of R(𝜽) is computed as the sum of 𝜂 and 𝜆𝜓(𝜃𝑖), where the value of
𝜓(𝜃𝑖) = 𝜑

′ (𝜃𝑖)/𝜃𝑖 also depends on 𝛿, as shown in the third column of Table 3.
In the case of the considered experiments, the smallest eigenvalue of L⊤L is very
close or equal to 0, thus the matrix is ill-conditioned. Therefore, the parameters 𝜂,
𝜆 and 𝛿, in addition to having a meaningful role in the regularizing effect of the
model Equation 6, are essential for the numerical stability of the algorithm.

0.5.2 Efficient computation of the initial point

In this section, we describe a way to modify the warm-up phase detailed in Algo-
rithm 2 so that it can be used not only to construct the matrix L⊤L, but also to
obtain a reliable initial point for Algorithm 1.

This modified warm-up phase is detailed in Algorithm 4 and consists of a single
epoch of incremental gradient descent, where the gradient direction is scaled by a
varying scaling matrix at each iteration. This matrix, denoted as C𝑖 , is inspired by
(21). As in Algorithm 2, the matrix H𝑖 progressively approximates L⊤L.

Hereafter, we present a comparison of Algorithm 1 when initialized with the
output 𝝎 (𝑚) of the warm-up phase presented in Algorithm 4 versus a random
starting point. Hereafter, we denote 𝜽OPT

0 = 𝝎 (𝑚) .
To verify that 𝜽OPT

0 can be an effective initial point for Algorithm 1, we con-
ducted an empirical test on the protein dataset. For the target functionΦ in (6), we
used the squared hinge loss for 𝜌 and the hyperbolic potential for 𝜑. For Algorithm
4, we set 𝛾̄ equal to 1, following the step-size value in the standard MM approach
(22), and 𝑚 = 10.

First, we compare the value of the objective function Φ at 𝜽OPT
0 and the mean

of the values of Φ on 100 random initial points, namely Φrand =
1

100

100∑︁
𝑗=1

Φ(𝜽 𝑗),

where 𝜽 𝑗 is drawn from a standard normal distribution, i.e., each component has
zero mean and unit variance. Table 4 reports Φ(𝜽OPT

0) and Φrand, along with the
relative error with respect to the optimal value Φ★ achieved by applying the MM
method (22) for 1000 epochs. The values in Table 4 clearly illustrate that 𝜽OPT

0
serves as a good initial point in terms of objective function value reduction. We
emphasize that the values shown in Table 4 are reported solely for quantitative
analysis. Computing the objective function Φ at different starting points in order to
identify the one yielding the lowest value is not efficient. Indeed, especially for large
training sets, evaluating Φ can be computationally expensive or even untractable.

28

Algorithm 4 Modified warm-up phase
Set 𝝎 (0) ∈ R𝑄 (𝑛+1) as a random vector from a standard normal distribution, 𝛾̄ > 0,
𝑚 > 0, 𝛽 > 0 as the Lipschitz constant defined in Table 2, 𝜆 > 0, 𝜂 > 0, H0 as the null
matrix in R𝑄 (𝑛+1)×𝑄 (𝑛+1) .

Split the training dataset into blocks (D𝑖)1≤𝑖≤𝑚, as defined in (23)-(24).

for 𝑖 = 1, . . . , 𝑚 do

Compute the tensor L(𝑖) corresponding to the block D𝑖 .

Compute H𝑖 = (L(𝑖))⊤L(𝑖) + H𝑖−1 and

C𝑖 = 𝛽H𝑖 + Diag

©­­­­­­­­­­­­­­­­­­­­­«



𝜆𝜓(𝝎 (𝑖−1)
1) + 𝜂
...

𝜆𝜓(𝝎 (𝑖−1)
𝑛) + 𝜂
...

𝜆𝜓(𝝎 (𝑖−1)
(𝑄−1) ·𝑛+1) + 𝜂

...

𝜆𝜓(𝝎 (𝑖−1)
𝑄·𝑛) + 𝜂
𝜀
...

𝜀



ª®®®®®®®®®®®®®®®®®®®®®¬
Set 𝝎 (𝑖) = 𝝎 (𝑖−1) − 𝛾̄C−1

𝑖
∇Φ𝑖 (𝝎 (𝑖−1))

end for

0.5. EXPERIMENTAL RESULTS 29

𝚽rand
|𝚽rand −𝚽★|

|𝚽★|
𝚽(𝜽OPT

0)
|𝚽(𝜽OPT

0) −𝚽★|

|𝚽★|

4.0259×105 24.94 3.1474×104 1.03

Table 4: Example on the protein dataset of the comparison between the objective
function values at both the warm-up and a random initialization of 𝜽 (0) .

Figure 2 illustrates the decrease in the relative optimality gap, defined as
|Φ(𝜽 (𝑘)) −Φ★|

|Φ★| , obtained by running Algorithm 1 with both 𝜽OPT
0 and a ran-

dom initial point 𝜽 (0) . In both cases, the other hyperparameters for Algorithm 1
have been set as 𝑚 = 10, 𝛾0 = 1, 𝛾𝑡 = 𝛾0

100
100+𝑡 . From Figure 2 we can conclude

that initializing Algorithm 1 with 𝜽OPT
0 significantly accelerates the optimization

process, particularly during the first epochs.

Figure 2: Relative optimality gap achieved on the protein dataset by Algorithm 1
initialized by the output of the warm-up phase and a random vector.

This experiment shows that leveraging the warm-up phase in Algorithm 4 to
compute an initial point via a single epoch of an incremental MM-like method
provides a good initialization for Algorithm 1. In all the experiments presented in
Sections 0.5.3, 0.5.4 and 0.5.5, 𝜽OPT

0 is used as the initial point for Algorithm 1 and
all its competitors.

0.5.3 Hyperparameters selection for Algorithm 1

The implementation of Algorithm 1 depends on the choice of the step-size sequence
(𝛾𝑡)𝑡 and the number of blocks (i.e., mini-batches) 𝑚 used to partition the training

30

dataset. To satisfy the assumptions on the step-size required for the theoretical
results, we chose it according to (35) with 𝛼1 = 𝛾0𝛼2 and 𝛼2 = 100. Below, we
discuss how 𝛾0 and 𝑚 were determined for the numerical experiments.

Choice of 𝑚 To analyze the impact of 𝑚 on the performance of Algorithm 1,
we considered classification problems on the small-sized protein dataset and the
large-sized MNIST dataset. For the objective function in (6), we used the squared
hinge loss for 𝜌 and the hyperbolic potential for 𝜑. For both datasets, Algorithm 1
was evaluated for 𝑚 ∈ {3, 10, 100}. The step-size 𝛾0 is set to 1 and 𝜽OPT

0 is used as
the initial point. Figure 3 illustrates the decrease in the objective function achieved
using Algorithm 1 with different values of 𝑚. Figures 3(a) and 3(c) show that the
choice of 𝑚 does not significantly impact the decrease in the objective function, as
all curves are nearly identical. On the other hand, Figures 3(b) and 3(d) indicate
that 𝑚 affects the computational time: using a small number of blocks leads to
handling large matrices, which slows down the optimization process. As a result,
choosing 𝑚 = 10 provides a good trade-off between block size and the number of
update steps per epoch. For the numerical experiments in the following sections,
this value of 𝑚 was chosen.

Choice of 𝛾0 As for the selection of 𝛾0, we consider three possible strategies.

1. Inspired by the fact that in the standard MM method (22), the step-size is
constant and equal to 1, a natural choice is to set 𝛾0 = 1. This option incurs
no additional computational cost, but a larger value of 𝛾0 may lead to faster
convergence of Algorithm 1.

2. The second approach is to select 𝛾0 using a grid-search. Specifically, for 𝜑
set as the hyperbolic potential, we run Algorithm 1 with different values of
𝛾0 for each combination of training dataset in Table 1 and fidelity function
𝜌 in Table 2. We then evaluate which values yield the best performance in
terms of objective function reduction.

The tested values for 𝛾0 are {1, 5, 10, 15, 20}. The value of 𝑚 is set to 10,
and 𝜽 (0) is initialized as 𝜽OPT

0 . We assess the performance of Algorithm
1 over the first 10 epochs, as the choice of 𝛾0 significantly impacts the
method’s behavior, particularly in the initial iterations when 𝑡 is relatively
small. Additionally, limiting the evaluation to 10 epochs helps reduce the
computational cost associated with tuning 𝛾0.

Table 5 provides the optimal 𝛾0 values for each dataset and fidelity function.
The values reported in Table 5 were also used when 𝜑 was chosen as the
Welsh potential.

3. The last strategy to select a value for 𝛾0 relies on a line-search procedure
aimed at finding 𝑚 proper step-sizes (𝛾̃𝑖)1≤𝑖≤𝑚, which aim at ensuring a

0.5. EXPERIMENTAL RESULTS 31

(a) Results for protein (epochs). (b) Results for protein (time).

(c) Results for MNIST (epochs). (d) Results for MNIST (time).

Figure 3: Decrease in the objective function achieved by Algorithm 1 for differ-
ent values of 𝑚 in multiclass classification problems on the protein and MNIST
datasets.

sufficient decrease in functions (Φ𝑖)1≤𝑖≤𝑚, 𝑖 = 1, . . . , 𝑚, while moving from
𝜽 (0) to 𝜽 (0) − 𝛾̃𝑖A−1

0 ∇Φ𝑖 (𝜽 (0)), where A0 = 𝛽L⊤L + 𝑅(𝜽 (0)). Then the
final value of 𝛾0 is computed as the average of the values 𝛾̃𝑖 identified by the
line-search at each 𝑖 ∈ {1, . . . , 𝑚}. The line-search strategy for the selection
of 𝛾0 is reported in Algorithm 5. The Armijo-type line-search procedure in
steps 7–11 of Algorithm 5 is used to select a suitable step-size within the
interval [1, 𝛾]. This step-size ensures a sufficient decrease in the function Φ𝑖

when applying a single iteration of a scaled gradient descent method starting
from 𝜽 (0) . Table 6 reports the values for 𝛾0 obtained by running Algorithm
5 with 𝑘max = 50, 𝜉 = 0.875, 𝛾 = 25, 𝑚 = 10 for the different combinations
of training dataset and fidelity functions 𝜌. The function 𝜑 is chosen as the
hyperbolic potential.

32

Dataset Squared hinge (SH) Sigmoid (SGM) Logistic regression (LR)
protein 1 5 1

MNIST 15 20 15

covtype 5 20 5

Table 5: Optimal 𝛾0 for Algorithm 1 found by means of a grid-search for the
different datasets and fidelity functions.

Algorithm 5 Line-search procedure for 𝛾0

1: Set 𝜽 (0) ∈ R𝑄 (𝑛+1) , 𝑚 > 0, A0 = 𝛽L⊤L + 𝑅(𝜽 (0)), 𝑘max, 𝜉, 𝛾.

2: Set 𝜈 =
(

1
𝛾

) 1
𝑘max

3: for 𝑖 = 1, . . . , 𝑚 do
4: 𝛾𝑖 = 𝛾

5: 𝜽̂ = 𝜽 (0) − 𝛾𝑖A−1
0 ∇Φ𝑖 (𝜽 (0))

6: 𝑘 = 1
7: while

(
Φ𝑖 (𝜽̂) > Φ𝑖 (𝜽 (0)) − 𝜉𝛾𝑖∇Φ𝑖 (𝜽 (0))⊤A−1

0 ∇Φ𝑖 (𝜽 (0))
)

& (𝑘 ≤ 𝑘max)
do

8: 𝛾𝑖 = 𝜈𝛾

9: 𝜽̂ = 𝜽 (0) − 𝛾𝑖A−1
0 ∇Φ𝑖 (𝜽 (0))

10: 𝑘 = 𝑘 + 1
11: end while
12: end for
13: 𝛾0 = 1

𝑚

∑𝑚
𝑖=1 𝛾𝑖

Dataset Squared hinge (SH) Sigmoid (SGM) Logistic regression (LR)
protein 2.54 12.03 2.98

MNIST 2.71 19.38 9.96

covtype 1.99 3.18 2.48

Table 6: Values for 𝛾0 selected via the line-search procedure in Algorithm 5

We compared the performance of Algorithm 1 using the three different strategies
for selecting 𝛾0 described above. Moreover we considered 𝑚 = 10, 𝜽 (0) = 𝜽 (0)

OPT,
and (𝛾𝑡)𝑡 as defined before. The decrease in the objective function obtained by
applying Algorithm 1 with different 𝛾0 values is shown in Figure 4. The final
objective function value after 100 epochs is reported in Table 7.

In most cases, the best strategy for selecting 𝛾0 is the grid-search procedure,
despite its higher computational cost. However, the performance of Algorithm 1

0.5. EXPERIMENTAL RESULTS 33

when 𝛾0 is chosen via the line-search procedure is comparable to that obtained with
the optimal 𝛾0 from grid-search. In the experiments reported in Subsections 0.5.4
and 0.5.5, we set 𝛾0 using the value obtained from the grid-search, as shown in
Table 5. However, we emphasize that Algorithm 5 provides a suitable alternative
for selecting 𝛾0, avoiding the use of grid-search. Finally, we note that the values in
Table 5, identified for the hyperbolic potential regularization term, were also used
for the Welsh potential.

(a) protein + SH. (b) protein + SGM. (c) protein + LR.

(d) MNIST + SH. (e) MNIST + SGM. (f) MNIST + LR.

(g) covtype + SH. (h) covtype + SGM. (i) covtype + LR.

Figure 4: Decrease of the objective function obtained using Algorithm 1 with
different strategies for selecting 𝛾0, evaluated across different datasets and fidelity
functions.

34

Dataset Target function 𝛾0 = 1 Grid-search Line-search

protein

SH + HP 1.5532 × 104 1.5532 × 104 1.5595 × 104

SGM + HP 6.0308 × 103 6.0229 × 103 6.0415 × 103

LR + HP 1.1866 × 104 1.1866 × 104 1.1895 × 104

MNIST

SH + HP 4.5935 × 104 2.2851 × 104 3.0120 × 104

SGM + HP 1.1349 × 105 8.4493 × 103 8.4595 × 103

LR + HP 2.4071 × 104 1.9566 × 104 1.9650 × 104

covtype

SH + HP 4.9374 × 105 4.8562 × 105 4.8677 × 105

SGM + HP 2.4188 × 105 2.4050 × 105 2.3781 × 105

LR + HP 4.2761 × 105 4.2092 × 105 4.2121 × 105

Table 7: Objective function value after 100 epochs achieved by Algorithm 1 for
different choices of 𝛾0.

0.5.4 Results on small-scale dataset

The main purpose of this section is to compare Algorithm 1 with both its non-
incremental version, defined in (22), and a standard first-order descent algorithm.
To evaluate the performance of these three approaches, we considered the protein
dataset, where𝐾 is not too large, making it feasible to apply the MM method in (22).
More specifically, we compare the following methods:

• Algorithm 1 denoted as I-MM, where (𝛾𝑡)𝑡 is chosen as explained in the
previous section, 𝑚 = 10, and the initial point 𝜽 (0) is set as 𝜽OPT

0 , obtained
using Algorithm 4 with 𝛾̄ = 1;

• the standard MM algorithm in (22), where 𝜽 (0) and L⊤L are initialized in
the same way as in Algorithm 1, using Algorithm 4 with 𝛾̄ = 1;

• the standard gradient descent (GD) method, given by

(∀𝑡 ∈ N) 𝜽 (𝑡+1) = 𝜽 (𝑡) − 𝛾∇Φ(𝜽 (𝑡)),

where the step-size 𝛾 is set to 1.9999/𝜇, where 𝜇 is the Lipschitz constant
defined in (19).

Figure 5 illustrates the decrease in the objective function Φ(𝜽 (𝑡)) over 50 epochs
for all the considered test problems, when varying 𝜌 and 𝜑. In Tables 8 and 9, we
report the accuracy computed on the test set and the final value of the objective
function on the training set, respectively.

0.5. EXPERIMENTAL RESULTS 35

Target function MM I-MM GD
SH + HP 0.6811 0.6806 0.6310

SH + WP 0.6811 0.6806 0.6310

SGM + HP 0.6828 0.6811 0.4494

SGM + WP 0.6828 0.6811 0.4494

LR + HP 0.6814 0.6825 0.6200

LR + WP 0.6814 0.6822 0.6198

Table 8: Accuracy achieved after 50 epochs by I-MM, MM, and GD on the protein
test set for different 𝜌 and 𝜑.

Target function MM I-MM GD
SH + HP 1.5522 × 104 1.5542 × 104 2.7757 × 104

SH + WP 1.5522 × 104 1.5542 × 104 2.7757 × 104

SGM + HP 6.0462 × 103 6.0258 × 103 1.1614 × 104

SGM + WP 6.0464 × 103 6.0260 × 103 1.1615 × 104

LR + HP 1.1862 × 104 1.1869 × 104 1.4880 × 104

LR + WP 1.1863 × 104 1.1869 × 104 1.4880 × 104

Table 9: Final objective function value achieved after 50 epochs by I-MM, MM,
and GD on the protein training set for different 𝜌 and 𝜑.

From these results, we can conclude that the I-MM algorithm effectively lever-
ages second-order information from the MM method. Moreover, in terms of epoch
number, we observe that

• the performance of the MM and I-MM methods, as reflected in plots and
final objective function values, is comparable;

• when using the sigmoid function, I-MM exhibits faster convergence during
the initial epochs: this is a typical behavior of incremental gradient schemes
compared to full gradient algorithms;

• both MM and I-MM outperform the GD method in overall performance
owing to the presence of the scaling matrix.

Tables 10 and 11 report the computational times needed by MM and I-MM, re-
spectively, on the protein dataset to reduce the relative difference between the

36

objective function values at two successive iterations,

|Φ(𝜽 (𝑡+1)) −Φ(𝜽 (𝑡)) |
|Φ(𝜽 (𝑡+1)) |

below specific thresholds 𝜀. The corresponding accuracy values are also provided.
It is evident that I-MM requires more time than MM to satisfy the same stop-

𝜀 = 10−2 𝜀 = 10−3 𝜀 = 10−4

Target function Accuracy Time Accuracy Time Accuracy Time
SH + HP 0.6783 1.20 0.6797 1.62 0.6808 1.97

SH + WP 0.6783 0.92 0.6797 1.32 0.6808 1.62

SGM + HP 0.6848 2.35 0.6881 4.17 0.6836 8.05

SGM + WP 0.6848 2.17 0.6882 3.98 0.6834 8.31

LR + HP 0.6820 0.42 0.6822 0.69 0.6808 1.00

LR + WP 0.6820 0.43 0.6822 0.65 0.6811 1.01

Table 10: Accuracy achieved and execution times required by MM to bring the
relative difference between the objective function at two successive iterates given
thresholds 𝜀 on the protein dataset for different 𝜌 and 𝜑.

𝜀 = 10−2 𝜀 = 10−3 𝜀 = 10−4

Target function Accuracy Time Accuracy Time Accuracy Time
SH + HP 0.6783 7.58 0.6805 11.79 0.6805 15.98

SH + WP 0.6783 7.54 0.6805 11.80 0.6805 15.96

SGM + HP 0.6907 11.21 0.6820 16.47 0.6817 32.73

SGM + WP 0.6907 6.08 0.6820 11.23 0.6817 22.01

LR + HP 0.6822 3.38 0.6808 5.91 0.6825 8.47

LR + WP 0.6822 3.53 0.6808 6.15 0.6825 8.79

Table 11: Accuracy achieved and execution times required by I-MM to bring the
relative difference between the objective function at two successive iterates given
thresholds 𝜀 on the protein dataset for different 𝜌 and 𝜑.

ping criterion. The reason is that, for any fixed 𝑡-th epoch, MM requires a single
matrix–vector product, A−1

𝑡 ∇Φ(𝜽 (𝑡)), while I-MM requires 𝑚 matrix–vector prod-
ucts, A−1

𝑡 ∇Φ𝑖 (𝝎 (𝑡 ,𝑖−1)), each with the same computational complexity as the one
computed by MM. However, we emphasize that our aim is not to design an algo-
rithm that accelerates MM, but rather to develop a variant that can be applied to

0.5. EXPERIMENTAL RESULTS 37

large-scale datasets where the main challenge is memory saturation. Indeed, the ad-
vantage of I-MM lies in its ability to handle the gradients of the individual functions
Φ𝑖 , whereas the full gradient ∇Φ cannot be stored, rendering MM inapplicable.
Finally, we note that the computational time strongly depends on the architecture of
the device on which the numerical experiments are performed. A different archi-
tecture can lead to a different scenario. For instance, if the numerical experiments
had been carried out on a GPGPU-based architecture, which is designed to perform
tensor operations efficiently, the computational burden associated with the 𝑚 ma-
trix–vector multiplications in I-MM could have been significantly reduced.

Comparison with a standard one-vs-one SVM classifier

To conclude this section, we report the results of multiclass classification on
the protein dataset using a one-vs-one scheme implemented through the error-
correcting output codes (ECOC) framework [3]. In this setting, a separate binary
SVM classifier is trained for every possible pair of classes in the dataset. Specif-
ically, the model was trained using MATLAB’s built-in fitcecoc function. An
accuracy of 0.6882 was achieved on the protein test set in 70.87 seconds. Based
on the results reported in Tables 10 and 11, we can conclude that both MM and
I-MM achieve comparable accuracy values with lower computational time.

0.5.5 Results on large-scale datasets

This section aims to evaluate the performance of Algorithm 1 on large-scale datasets
where 𝐾 is too large to compute the gradient of the objective function in (12).
Consequently, the MM and GD schemes from the previous section cannot be
applied. In this setting, we compare I-MM with both a standard incremental gradient
method and a stochastic gradient method. The large-scale datasets considered are
MNIST and covtype.

The methods compared in these experiments are:

• Algorithm 1 with the same parameter setting as in the previous example;

• the standard stochastic gradient (SG) method [11] with a fixed mini-batch
size and a decreasing step-size. Specifically, the mini-batch size is set equal
to the number of samples in one block of I-MM to ensure a fair comparison.
The step-size sequence follows the same form as in Algorithm 1, the only
difference lying in the choice of 𝛾0, selected via grid-search over the set

{10−2, 10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5, 5 × 10−6, 10−6}.

Given the hyperbolic potential regularization term, the SG algorithm was run
for 100 epochs for each dataset and fidelity function. The optimal 𝛾0 value

38

was determined as the one that minimizes the average objective function
value over the last five iterations.

The optimal 𝛾0 values for each dataset and fidelity function are provided in
Table 12. The same values identified for the hyperbolic potential regulariza-
tion term were also used for the Welsh potential;

Dataset Squared hinge Sigmoid Logistic regression
MNIST 10−6 10−2 10−4

covtype 5 × 10−6 10−3 5 × 10−5

Table 12: Optimal value of 𝛾0 for the SG algorithm.

• the standard incremental gradient (IG) method [9], which corresponds to
Algorithm 1 with A𝑡 set to the identity matrix for all 𝑡 ∈ N. The number of
blocks,𝑚, is set to 10 to ensure a fair comparison with I-MM. The decreasing
step size follows the same formulation as in I-MM and SG, with the only
difference being the choice of 𝛾0, selected as described for SG. In Table 13,
the optimal 𝛾0 values for each dataset and fidelity function are provided. The
same values identified for the hyperbolic potential regularization term were
also used for the Welsh potential. The values reported in Table 13 indicate
that the optimal 𝛾0 for IG coincides with that of SGD in many cases.

Dataset Squared hinge Sigmoid Logistic regression
MNIST 10−6 10−2 10−4

covtype 5 × 10−6 5 × 10−4 5 × 10−5

Table 13: Optimal value of 𝛾0 for the IG algorithm.

Figures 6, 7, 8 and 9 illustrate the decrease in the objective function provided
by the compared methods over 100 epochs for all test problems considered. In
Tables 15 and 17, the final test set accuracy is reported. Similarly, Tables 16 and
18 present the final objective function value computed on the training set. From
the results reported in these figures and tables, we conclude that I-MM outperforms
both IG and SG in terms of objective function decrease and test set accuracy. The
computational time per epoch for I-MM is comparable to that of first-order methods,
even for larger datasets. This confirms the effectiveness of the proposed procedure
in handling the inversion of the non-sparse scaling matrix A𝑡 . From the figures
showing the objective function decrease, we observe that I-MM enables a stable
and smooth reduction of the objective function. Furthermore, it is evident that
I-MM achieves very good results in the early stages of the optimization process.

0.5. EXPERIMENTAL RESULTS 39

This confirms that selecting 𝛾0 via grid-search by evaluating the objective function
behavior within the first 10 epochs is an effective strategy. For first-order methods,
a similar procedure cannot be used, as the optimization process is slower. Finally,
we note that for the same data fidelity function 𝜌, the accuracy results remain very
similar across different regularization terms 𝜑.

Remark 6. To investigate the benefits of the sparsity-inducing term, we performed
an additional numerical experiment. Specifically we considered the objective func-
tion defined by the squared hinge loss combined with the hyperbolic potential. For
each of the three datasets in Table 1, we evaluated the final accuracy and the num-
ber of solution components with absolute values below the threshold of 10−4, as
obtained by the I-MM algorithm after 100 epochs, for five values of 𝜆: 0, 10−3,
1, 103, and 106. From the results shown in Table 14, we found that, as expected,
increasing the value of 𝜆 leads to more coefficients falling below the considered
threshold. However, an excessively large value of 𝜆 results in a solution where most
components are zero, which in turn reduces the accuracy. These results highlight
that the proposed model effectively promotes sparsity in the solution while main-
taining reliable accuracy, provided that the regularization parameter 𝜆 is properly
tuned. A reduced number of nonzero parameters for the learned classifier lowers the
risk of overfitting and improves model explainability by removing non-significant
features.

protein MNIST covtype

Final accuracy

𝜆 = 0 0.6811 0.9117 0.6015
𝜆 = 10−3 0.6811 0.9117 0.6015
𝜆 = 1 0.6811 0.9126 0.6016
𝜆 = 103 0.4869 0.8853 0.5711
𝜆 = 106 0.4869 0.6430 0.4035

Number of
sparse components

𝜆 = 0 3 678 15
𝜆 = 10−3 3 694 33
𝜆 = 1 316 1807 262
𝜆 = 103 1050 5962 355
𝜆 = 106 1073 7850 382

Table 14: Final accuracy and number of solution components with absolute value
below 10−4, obtained after 100 epochs by the I-MM algorithm. Results are reported
for different values of 𝜆, using the squared hinge loss as 𝜌 and the hyperbolic
potential as 𝜑.

40

Target function I-MM IG SG
SH + HP 0.9117 0.8373 0.8371

SH + WP 0.9117 0.8372 0.8371

SGM + HP 0.9251 0.9223 0.9236

SGM + WP 0.9251 0.9126 0.9226

LR + HP 0.9170 0.8916 0.8909

LR + WP 0.9170 0.8916 0.8909

Table 15: Final accuracy on the test set achieved after 100 epochs by I-MM, IG,
and SG on the MNIST test set for different 𝜌 and 𝜑.

Target function I-MM IG SG
SH + HP 2.2851 × 104 2.2143 × 105 2.2345 × 105

SH + WP 2.2854 × 104 2.2141 × 105 2.2343 × 105

SGM + HP 8.4493 × 103 9.3122 × 103 9.4292 × 103

SGM + WP 8.4562 × 103 1.0184 × 104 9.5285 × 103

LR + HP 1.9566 × 104 3.6905 × 104 3.7765 × 104

LR + WP 1.9569 × 104 3.6906 × 104 3.7765 × 104

Table 16: Final objective function value achieved after 100 epochs by I-MM, IG,
and SG on the MNIST training set for different 𝜌 and 𝜑.

Target function I-MM IG SG
SH + HP 0.6015 0.5738 0.5621

SH + WP 0.6015 0.5738 0.5621

SGM + HP 0.5504 0.5443 0.5491

SGM + WP 0.5504 0.5443 0.5491

LR + HP 0.5882 0.5571 0.5599

LR + WP 0.5882 0.5571 0.5599

Table 17: Final accuracy achieved after 100 epochs by I-MM, IG, and SG on the
covtype test set for different 𝜌 and 𝜑.

0.6. ENHANCEMENT OF LINEAR MODEL PERFORMANCE 41

Target function I-MM IG SG
SH + HP 4.8562 × 105 6.1219 × 105 5.8890 × 105

SH + WP 4.8562 × 105 6.1218 × 105 5.8889 × 105

SGM + HP 2.4050 × 105 2.9954 × 105 2.5420 × 105

SGM + WP 2.4050 × 105 2.9955 × 105 2.5414 × 105

LR + HP 4.2092 × 105 5.4003 × 105 5.1979 × 105

LR + WP 4.2092 × 105 5.4003 × 105 5.1979 × 105

Table 18: Final objective function value achieved after 100 epochs by I-MM, IG,
and SG on the covtype training set for different 𝜌 and 𝜑.

Comparison with a standard one-vs-one SVM classifier

Similarly to Section 0.5.4, Table 19 reports the results of multiclass classification
on the large-scale datasets MNIST and covtype using the same standard SVM
classifier considered in Section 0.5.4. A comparison of the results in Tables 15 and
19 shows that the accuracy obtained with the standard SVM approach is slightly
higher than that of I-MM for MNIST. However, the one-vs-one approach requires
waiting for the entire execution to generate results. In contrast, I-MM is an iterative
method that can be stopped after a predefined time budget, typically yielding good
results even in a short time. For example, on the MNIST dataset, the results in Table
15 correspond to 100 epochs, taking approximately 3000 seconds (as inferred from
Figures 6 and 7). Nevertheless, comparable accuracy can be obtained in the same
time required by the considered standard SVM approach; for instance, the accuracy
obtained by I-MM with the SH+HP objective function after 503 seconds is 0.9155.
This behavior is further confirmed by the decay of the objective function in Figures
6 and 7, where after the first 500 seconds, progress toward the solution becomes
very slow. For the covtype dataset, I-MM typically achieves comparable accuracy
in significantly lower computational time (around 1500 seconds), as shown in Table
17 and Figure 8.

0.6 Enhancement of linear model performance

As shown in Section 0.5, the achieved accuracy is lower than that of non-linear or
deep learning-based models. For instance, on MNIST, many models reach around
99% accuracy [37]. This suboptimal performance is not a result of the optimization
algorithm, since its effectiveness was well established, but rather the inherent
limitations of the linear classifier. As discussed in Section 0.1, while linear models

42

Accuracy Time (s)

MNIST 0.9438 513.85
covtype 0.5858 6004.53

Table 19: Performance of a standard ECOC one-vs-one SVM multiclass classifier
on the large-scale datasets. Accuracy on the test set and computational time are
reported.

benefit from having fewer parameters and higher explainability, their simplicity can
ultimately restrict performance

A possible solution to improve accuracy while maintaining a linear classifier is
to pre-structure the training dataset using various techniques. These methods serve
as advanced feature extractors, capturing abstract and informative characteristics
that enhance classification performance. Additionally, they can map data into
latent spaces where different classes become more distinguishable, making the
classification task easier for a linear model. In particular, we consider two different
approaches.

Kernel Principal Component Analysis (Kernel PCA) This algorithm, introduced
in [46],
firstly maps each example x𝑘 into a high-dimensional space using a ker-
nel function. Then PCA is applied in this new space to reduce the number
of features in the remapped dataset. In our experiment, we used a quadratic
kernel and reduced the final number of features to 500.

CLIP image embeddings Recently, foundation models have demonstrated signifi-
cant advantages in various computer vision applications [6, 57]. Specifically,
the CLIP model [41, 48] is a visual-language model trained on a massive
dataset containing both images and text. One of its key strengths is the
ability to compute embeddings of input images, producing a meaningful rep-
resentation with 512 new features. These features are computed exclusively
exploiting the visual part of the pre-trained model in its inference phase.

As shown in the rest of this section, using one of the techniques described above
in combination with a linear classifier can be more advantageous than applying a
deep learning approach or a non-linear classifier. This is because it achieves very
good accuracy with fewer parameters, significantly reducing computational costs.

In the following, we present the classification results obtained using a linear clas-
sifier on the MNIST dataset, remapped via either Kernel PCA or CLIP image em-
beddings. Specifically, for the remapped MNIST dataset, we solve the minimization
problem (6) using the incremental MM method described in Algorithm 1. Regard-
ing the objective function, the fidelity function 𝜌 is set to logistic regression, while
the regularizer 𝜑 is chosen as the hyperbolic potential, with 𝜆 = 10−3, 𝜂 = 10−2, and

0.7. CONCLUSIONS 43

𝛿 = 10−4. For the I-MM method, the initial parameter vector 𝜽 (0) is generated from
a standard normal distribution, the step size 𝛾0 is set to 20 using the grid-search
procedure, and the number of blocks 𝑚 is set to 10.

Table 20 and Figure 10 compare the accuracy obtained using the original MNIST
dataset and the datasets remapped via Kernel PCA and CLIP image embeddings.
These results indicate that these techniques significantly improve classifier accuracy.
In particular, with CLIP image embeddings, performance is fully comparable to
many deep learning-based algorithms [37], while the number of parameters in the
linear model remains limited to 5130, corresponding to the𝑄(𝑛+1) dimension. This
is orders of magnitude lower than the number of parameters used in deep learning
architectures. Considering an example of the architectures reported in[37], the
Multi Layer Perceptron used in [1] achieves an accuracy of 0.9927 and consists
of 1.12 million parameters. The proposed method thus efficiently leverage the
availability of existing pretrained neural networks.

Finally, in Figure 10, we show the accuracy variation during the first ten epochs.
It is clear that, especially for the remapped MNIST dataset, the classification task is
efficiently solved at the very early stage of the optimization process.

Original dataset Kernel PCA CLIP embeddings
Number of features 756 500 512

Total accuracy 0.9116 0.9552 0.9902

Table 20: Final accuracy on the original and remapped MNIST dataset obtained by
solving problem (6) using the I-MM method over 100 epochs.

0.7 Conclusions

In this work, we introduced a novel optimization algorithm for training linear classi-
fiers in multiclass classification tasks, with a particular focus on the Weston-Watkins
SVM. By leveraging a Majorization-Minimization (MM) algorithm, we addressed
the primal optimization problem associated with a regularized and smoothed ver-
sion of the Weston-Watkins SVM loss. To enhance scalability and efficiency on
large datasets, we introduced an incremental MM variant that incorporates second-
order information through a half-quadratic majorization approach. We provided
convergence guarantees for this algorithm, in both convex and non-convex set-
tings. Our numerical experiments demonstrated the practical effectiveness of the
proposed approach, showing that it achieves competitive performance while main-
taining computational efficiency. Additionally, by employing either kernel principal
component analysis or a foundation model on the training set, it can be observed
that the optimized linear multiclass SVM can achieve results comparable to those
of deep learning methods. As for future work, we will consider extending the

44

proposed approach to loss functions that may include non-differentiable fidelity or
regularization terms, for instance by incorporating incremental techniques into the
MM-based accelerated proximal gradient methods proposed in [20].

acknowledgements

This work was partially supported by the Gruppo Nazionale per il Calcolo Sci-
entifico (GNCS-INdAM). The publication was created with the co-financing of
the European Union-FSE-REACT-EU, PON Research and Innovation 2014-2020
DM1062/2021.
F. P. is partially supported by the the Italian MUR through the PRIN 2022 Project
“Numerical Optimization with Adaptive Accuracy and Applications to Machine
Learning”, project code: 2022N3ZNAX (CUP E53D23007700006), under the
National Recovery and Resilience Plan (PNRR), Italy, Mission 04 Component 2
Investment 1.1 funded by the European Commission - NextGeneration EU pro-
gramme.
F. P. is partially supported by the the Italian MUR through the PRIN 2022 PNRR
Project “Advanced optimization METhods for automated central veIn Sign de-
tection in multiple sclerosis from magneTic resonAnce imaging (AMETISTA)”,
project code: P2022J9SNP (CUP E53D23017980001), under the National Recov-
ery and Resilience Plan (PNRR), Italy, Mission 04 Component 2 Investment 1.1
funded by the European Commission - NextGeneration EU programme.
E.C., F.C., and G.F. acknowledge support from the European Research Council
Starting Grant MAJORIS ERC-2019-STG850925.

Declarations

Funding

The authors did not receive support from any organization for the submitted work.

Data availabilty

The code and data supporting the results of this work are available on the GitHub
page https://github.com/giofra23/MM_multiclass/settings.

Conflict of interest

The authors declare that they have no conflict of interest.

https://github.com/giofra23/MM_multiclass/settings

0.7. CONCLUSIONS 45

(a) SH + HP. (b) SH + WP.

(c) SGM + HP. (d) SGM + WP.

(e) LR + HP. (f) LR + WP.

Figure 5: Decrease in the objective function achieved by I-MM, MM, and GD on
the protein training set for different 𝜌 and 𝜑.

46

(a) SH + HP (epochs). (b) SH + HP (time).

(c) SGM + HP (epochs). (d) SGM + HP (time).

(e) LR + HP (epochs). (f) LR + HP (time).

Figure 6: Objective function decrease achieved by I-MM, SG, and IG on the MNIST
training set for the hyperbolic potential and different 𝜑.

0.7. CONCLUSIONS 47

(a) SH + WP (epochs). (b) SH + WP (time).

(c) SGM + WP (epochs). (d) SGM + WP (time).

(e) LR + WP (epochs). (f) LR + WP (time).

Figure 7: Objective function decrease achieved by I-MM, SG, and IG on the MNIST
training set for the Welsh potential and different 𝜑.

48

(a) SH + HP (epochs). (b) SH + HP (time).

(c) SGM + HP (epochs). (d) SGM + HP (time).

(e) LR + HP (epochs). (f) LR + HP (time).

Figure 8: Objective function decrease achieved by I-MM, SG, and IG on the
covtype training set for the hyperbolic potential and different 𝜑.

0.7. CONCLUSIONS 49

(a) SH + WP (epochs). (b) SH + WP (time).

(c) SGM + WP (epochs). (d) SGM + WP (time).

(e) LR + WP (epochs). (f) LR + WP (time).

Figure 9: Objective function decrease achieved by I-MM, SG, and IG on the
covtype training set for the Welsh potential and different 𝜑.

50

Figure 10: Accuracy behaviour on the original and remapped MNIST dataset ob-
tained by solving problem (6) using the I-MM method

Bibliography

[1] A. Acharya, A. Hashemi, P. Jain, S. Sanghavi, I. S. Dhillon, and U. Topcu,
Robust training in high dimensions via block coordinate geometric median
descent, in Proceedings of The 25th International Conference on Artificial
Intelligence and Statistics, vol. 151, 2022, pp. 11145–11168.

[2] M. Allain, J. Idier, and Y. Goussard, On global and local convergence
of half-quadratic algorithms, IEEE Transactions on Image Processing, 15
(2006), pp. 1130–1142.

[3] E. Allwein, R. Schapire, and Y. Singer, Reducing multiclass to binary:
A unifying approach for margin classifiers, Journal of Machine Learning
Research, 1 (2000), pp. 113–141.

[4] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Proximal alternating
minimization and projection methods for nonconvex problems: an approach
based on the kurdyka- lojasiewicz inequality, Math. Oper. Res., 35 (2010),
pp. 438–457.

[5] H. Attouch, J. Bolte, and B. Svaiter, Convergence of descent methods for
semialgebraic and tame problems: proximal algorithms, forward backward
splitting, and regularized Gauss-Seidel methods, Mathematical Programming,
(2011), pp. 1–39.

[6] M. Awais, M. Naseer, S. Khan, R. M. Anwer, H. Cholakkal, M. Shah, M.-
H. Yang, and F. S. Khan, Foundational models defining a new era in vision:
A survey and outlook, 2023, https://arxiv.org/abs/2307.13721.

[7] S. Bellavia, N. Krejić, B. Morini, and S. Rebegoldi, A stochastic first-
order trust-region method with inexact restoration for finite-sum minimization,
Comput. Optim. Appl., 84 (2023), pp. 53–84.

[8] A. Benfenati, E. Chouzenoux, G. Franchini, S. Latva-Äijö, D. Narn-
hofer, J.-C. Pesquet, S. J. Scott, and M. Yousefi, Majoration-minimization
for sparse SVMs, in Advanced Techniques in Optimization for Machine Learn-
ing and Imaging, A. Benfenati, F. Porta, T. A. Bubba, and M. Viola, eds.,
Singapore, 2024, Springer Nature Singapore, pp. 31–54.

51

https://arxiv.org/abs/2307.13721

52 BIBLIOGRAPHY

[9] D. P. Bertsekas and J. N. Tsitsiklis, Gradient convergence in gradient
methods with errors, SIAM Journal on Optimization, 10 (2000), pp. 627–642.

[10] J. Bolte, S. Sabach, , and M. Teboulle., Proximal alternating linearized
minimization for nonconvex and nonsmooth problems, Math. Program., 146
(2014), pp. 459–494.

[11] L. Bottou, F. E. Curtis, and J. Nocedal, Optimization methods for large-
scale machine learning, SIAM Review, 60 (2018), pp. 223–311.

[12] L. Briceño-Arias, G. Chierchia, E. Chouzenoux, and J.-C. Pesquet, A
random block-coordinate Douglas-Rachford splitting method with low com-
putational complexity for binary logistic regression, Comput. Optim. Appl.,
72 (2019), pp. 707–726.

[13] O. Chapelle, Training a support vector machine in the primal, Neural Com-
putation, 19 (2007), pp. 1155–1178.

[14] G. Chierchia, N. Pustelnik, and J.-C. Pesquet, Random primal-dual prox-
imal iterations for sparse multiclass SVM, in 2016 IEEE 26th International
Workshop on Machine Learning for Signal Processing (MLSP), 2016, pp. 1–6,
https://doi.org/10.1109/MLSP.2016.7738833.

[15] F. Chorobura and I. Necoara, Random coordinate descent methods for
nonseparable composite optimization, SIAM Journal on Optimization, 33
(2023), pp. 2160–2190.

[16] E. Chouzenoux and J. B. Fest, SABRINA: A stochastic subspace
majorization-minimization algorithm, Journal of Optimization Theory and
Applications, 195 (2022), pp. 919–952.

[17] E. Chouzenoux, A. Jezierska, J.-C. Pesquet, and H. Talbot, A majorize-
minimize subspace approach for ℓ2 − ℓ0 image regularization, SIAM Journal
on Imaging Sciences, 6 (2013), pp. 563–591.

[18] E. Chouzenoux and J.-C. Pesquet, A stochastic majorize-minimize subspace
algorithm for online penalized least squares estimation, IEEE Transactions
on Signal Processing, 65 (2015), pp. 4770–4783.

[19] E. Chouzenoux and J.-C. Pesquet, Optimization Methods for Signal Pro-
cessing, in Source Separation in Physical-Chemical Sensing, no. Chapter 2,
IEEE Press, 2023.

[20] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, Variable metric forward-
backward algorithm for minimizing the sum of a differentiable function and
a convex function, Journal of Optimization Theory and Applications, 162
(2014), pp. 107–132.

https://doi.org/10.1109/MLSP.2016.7738833

BIBLIOGRAPHY 53

[21] R. Collobert, F. Sinz, J. Weston, and L. Bottou, Large scale transductive
SVMs, Journal of Machine Learning Research, 7 (2006), pp. 1687–1712.

[22] A. Defazio, F. Bach, and S. Lacoste-Julien, SAGA: A fast incremental
gradient method with support for non-strongly convex composite objectives,
Advances in neural information processing systems, 27 (2014).

[23] U. Doǧan, T. Glasmachers, and C. Igel, A unified view on multi-class
support vector classification, The Journal of Machine Learning Research, 17
(2016), pp. 1550–1831.

[24] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, Object
detection with discriminatively trained part-based models, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 32 (2010), pp. 1627–1645.

[25] G. Franchini, F. Porta, V. Ruggiero, and I. Trombini, A line search based
proximal stochastic gradient algorithm with dynamical variance reduction,
2023.

[26] C.-W. Hsu and C.-J. Lin, A comparison of methods for multiclass support
vector machines, IEEE Transactions on Neural Networks, 13 (2002), pp. 415–
425.

[27] M. W. Jacobson and J. A. Fessler, An expanded theoretical treatment of
iteration-dependent Majorize-Minimize algorithms, IEEE Transactions on Im-
age Processing, 16 (2007), pp. 2411–2422.

[28] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using
predictive variance reduction, Advances in neural information processing
systems, 26 (2013).

[29] S. S. Keerthi and D. M. DeCoste, A modified finite Newton method for fast
solution of large scale linear SVMs, Journal of Machine Learning Research,
6 (2005), pp. 341–361.

[30] S. S. Keerthi, S. Sundararajan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin, A
sequential dual method for large scale multi-class linear SVMs, in Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2008, pp. 408–416.

[31] Y. J. Lee and O. L. Mangasarian, SSVM: A smooth support vector machine
for classification, Computational Optimization and Applications, 20 (2001),
pp. 5–22.

[32] J. Mairal, Stochastic majorization-minimization algorithms for large-scale
optimization, in Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’13, Red Hook, NY, USA,
2013, Curran Associates Inc., p. 2283–2291.

54 BIBLIOGRAPHY

[33] J. Mairal, Incremental majorization-minimization optimization with applica-
tion to large-scale machine learning, SIAM J. Optim., 25 (2014), pp. 829–855.

[34] O. L. Mangasarian, A finite Newton method for classification, Optimization
Methods and Software, 17 (2002), pp. 913–929.

[35] S. Martin, Y. Huang, F. Shakeri, J.-C. Pesquet, and I. B. Ayed, Transduc-
tive zero-shot and few-shot CLIP, 2024, https://arxiv.org/abs/2405.
18437.

[36] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč, SARAH: A novel
method for machine learning problems using stochastic recursive gradient, in
International Conference on Machine Learning, 2017, pp. 2613–2621.

[37] Papers With Code web site, 2022, https://paperswithcode.com/
sota/image-classification-on-mnist.

[38] S. N. Parizi, K. He, R. Aghajani, S. Sclaroff, and P. Felzenszwalb, Gen-
eralized majorization-minimization, in Proceedings of the 36th International
Conference on Machine Learning, K. Chaudhuri and R. Salakhutdinov, eds.,
vol. 97 of Proceedings of Machine Learning Research, PMLR, 09–15 Jun
2019, pp. 5022–5031.

[39] A. Patrascu and I. Necoara, Efficient random coordinate descent algo-
rithms for large-scale structured nonconvex optimization, J. Glob. Optim., 61
(2015), pp. 19–46.

[40] D. N. Phan, S. Bartz, N. Guha, and H. M. Phan, Stochastic variance-
reduced majorization-minimization algorithms, SIAM Journal on Mathemat-
ics of Data Science, 6 (2024), pp. 926–952.

[41] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,
Learning transferable visual models from natural language supervision, 2021,
https://arxiv.org/abs/2103.00020.

[42] A. Repetti and Y. Wiaux, Variable metric forward-backward algorithm for
composite minimization problems, SIAM Journal on Optimization, 31 (2021),
pp. 1215–1241.

[43] R. T. Rockafeller, Convex Analysis, Princeton University Press, Princeton,
NJ, 1970.

[44] L. Rosasco, S. Villa, and B. Vũ, Stochastic forward–backward splitting for
monotone inclusions, J. Optim. Theory Appl., 169 (2016), pp. 388–406.

[45] S. Salzo and S. Villa, Parallel random block-coordinate forward–backward
algorithm: a unified convergence analysis, Math. Program., 193 (2022),
pp. 225–269.

https://arxiv.org/abs/2405.18437
https://arxiv.org/abs/2405.18437
https://paperswithcode.com/sota/image-classification-on-mnist
https://paperswithcode.com/sota/image-classification-on-mnist
https://arxiv.org/abs/2103.00020

BIBLIOGRAPHY 55

[46] B. Schölkopf, A. Smola, and K.-R. Müller, Kernel principal component
analysis, in Artificial Neural Networks — ICANN’97, Berlin, Heidelberg,
1997, Springer Berlin Heidelberg, pp. 583–588.

[47] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, Pegasos: Pri-
mal estimated sub-gradient solver for SVM, Mathematical Programming, 127
(2011), pp. 3–30.

[48] H. Song, L. Dong, W.-N. Zhang, T. Liu, and F. Wei, CLIP models are
few-shot learners: Empirical studies on vqa and visual entailment, 2022,
https://arxiv.org/abs/2203.07190.

[49] B. Sriperumbudur, D. Torres, and G. Lanckriet, A majorization-
minimization approach to the sparse generalized eigenvalue problem, Ma-
chine Learning, 85 (2011), pp. 3–39.

[50] Y. Sun, P. Babu, and D. P. Palomar, Majorization-minimization algorithms
in signal processing, communications, and machine learning, IEEE Transac-
tions on Signal Processing, 65 (2017), pp. 794–816.

[51] L. Wang, J. Zhu, and H. Zou, The doubly regularized support vector machine,
Statistica Sinica, 16 (2006), pp. 589–615.

[52] Y. Wang and C. Scott, Weston-Watkins hinge loss and ordered partitions, in
Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M. Balcan, and H. Lin, eds., vol. 33, Curran Associates, Inc.,
2020, pp. 19873–19883.

[53] Y. Wang and C. Scott, An exact solver for the Weston-Watkins SVM sub-
problem, in International Conference on Machine Learning, PMLR, 2021,
pp. 10894–10904.

[54] J. Weston and C. Watkins, Support vector machines for multi-class pattern
recognition, in Proc. 7th European Symposium on Artificial Neural Networks,
1999.

[55] J. Xu and K. Lange, Power k-means clustering, in Proceedings of the 36th
International Conference on Machine Learning, PMLR, 2019.

[56] Y. Xu and W. Yin, A block coordinate descent method for regularized multi-
convex optimization with applications to nonnegative tensor factorization and
completion, SIAM J. Imaging Sci., 6 (2013), pp. 1758–1789.

[57] S. Zhang and D. Metaxas, On the challenges and perspectives of foundation
models for medical image analysis, 2023, https://arxiv.org/abs/2306.
05705.

[58] Z. Zhang, J. Kwok, and D. Yeung, Surrogate maximization/minimization
algorithms and extensions, Machine Learning, 69 (2007), pp. 1–33.

https://arxiv.org/abs/2203.07190
https://arxiv.org/abs/2306.05705
https://arxiv.org/abs/2306.05705

56 BIBLIOGRAPHY

[59] A. Zien, F. De Bona, and C. S. Ong, Training and approximation of a primal
multiclass support vector machine, in Proceedings of the 12th International
Conference on Applied Stochastic Models and Data Analysis (ASMDA 2007),
2007, pp. 1–8.

[60] H. Zou and T. Hastie, Regularization and variable selection via the elastic
net, Journal of the Royal Statistical Society Series B: Statistical Methodology,
67 (2005), pp. 301–320.

.1 Proof of Proposition 0.2

This proof relies on the notation introduced in Subsection 0.2.3 for the matrix
formulation of the objective function.

As a first step, we rewrite the objective function given in (13) as the sum of
three terms:

Φ(𝜽) = Φ1(𝜽) +Φ2(𝜽) +Φ3(𝜽),
where

Φ1(𝜽) = L𝑊𝑊 (𝜽) = 𝑔𝐾 (L𝜽) − 𝐾𝜌(0),

Φ2(𝜽) =
𝜂

2
∥𝜽𝑤∥2

2,

Φ3(𝜽) = 𝜆
𝑄𝑛∑︁
𝑖=1

𝜑 ((𝜽𝑤)𝑖) .

We now show that each function Φ𝑖 , for 𝑖 ∈ {1, 2, 3}, admits a quadratic majorant
ℎ𝑖 (·; 𝜽 ′) at 𝜽 ′ ∈ R𝑄 (𝑛+1) of the form:

ℎ𝑖 (𝜽; 𝜽 ′) = Φ𝑖 (𝜽 ′) + ∇Φ𝑖 (𝜽 ′)⊤(𝜽 − 𝜽 ′) + 1
2
(𝜽 − 𝜽 ′)⊤A𝑖 (𝜽 ′) (𝜽 − 𝜽 ′).

(i) Quadratic majorant for Φ1. First, we derive an upper bound for the function
𝑔𝐾 (L𝜽).

𝑔𝐾 (L𝜽) =
𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1

𝜌
(
(L𝜽)𝑞,𝑘

)
(36)

≤
𝐾∑︁
𝑘=1

𝑄∑︁
𝑞=1

(
𝜌
(
(L𝜽 ′)𝑞,𝑘

)
+ 𝜌′

(
(L𝜽 ′)𝑞,𝑘

)
(L(𝜽 − 𝜽 ′))𝑞,𝑘 +

𝛽

2
(L(𝜽 − 𝜽 ′))2

𝑞,𝑘

)
= 𝑔𝐾 (L𝜽 ′) +

(
L⊤∇𝑔(L𝜽)

)⊤ (𝜽 − 𝜽 ′) + 𝛽
2
(𝜽 − 𝜽 ′)⊤ L⊤L (𝜽 − 𝜽 ′)

= 𝑔𝐾 (L𝜽 ′) + ∇Φ1(𝜽 ′)⊤ (𝜽 − 𝜽 ′) + 𝛽
2
(𝜽 − 𝜽 ′)⊤ L⊤L (𝜽 − 𝜽 ′)

where the first equality follows from the definition of 𝑔𝐾 , the first inequality from
the 𝛽-Lipschitz smoothness property of 𝜌, and the third equality from (16).

.1. PROOF OF PROPOSITION 0.2 57

From (36), if we define A1(𝜽 ′) = 𝛽L⊤L, it follows that the function

ℎ1(𝜽; 𝜽 ′) = Φ1(𝜽 ′) + ∇Φ1(𝜽 ′)⊤(𝜽 − 𝜽 ′) + 1
2
(𝜽 − 𝜽 ′)⊤A1(𝜽 ′) (𝜽 − 𝜽 ′)

is a tangent majorant for Φ1 at 𝜽 ′.
(ii) Quadratic majorant for Φ2. Given any 𝜀 > 0, we have

∇2Φ2(𝜽) = 𝜂
(

I𝑄𝑛 O𝑄𝑛×𝑄
O𝑄×𝑄𝑛 O𝑄×𝑄

)
⪯

(
𝜂I𝑄𝑛 O𝑄𝑛×𝑄

O𝑄×𝑄𝑛 𝜀I𝑄

)
:= A2,

where O𝑚×𝑛 is a zero matrix of 𝑚 rows and 𝑛 columns. According to [19, Property
1.3 (ii)], by defining A2(𝜽 ′) = A2, the function

ℎ2(𝜽; 𝜽 ′) = Φ2(𝜽 ′) + ∇Φ2(𝜽 ′)⊤(𝜽 − 𝜽 ′) + 1
2
(𝜽 − 𝜽 ′)⊤A2(𝜽 ′) (𝜽 − 𝜽 ′)

is a tangent majorant for Φ2 at 𝜽 ′.
(iii) Quadratic majorant for Φ3. According to [19, Property 1.7], and noting

that the function 𝜑 : R→ R not only satisfies the assumptions of this property but
is also even, it follows that, for every 𝑣′ ∈ R,

(∀𝑣 ∈ R) 𝜑(𝑣) ≤ 𝜑(𝑣′) + 𝜑′(𝑣′) (𝑣 − 𝑣′) + 1
2
𝜑′(𝑣′)
𝑣′

(𝑣 − 𝑣′)2.

Then, by defining 𝜓 : 𝑣 ↦→ 𝜑′(𝑣)/𝑣, we have

Φ3(𝜽) = 𝜆
𝑄𝑛∑︁
𝑖=1

𝜑 ((𝜽𝑤)𝑖)

≤ 𝜆
𝑄𝑛∑︁
𝑖=1

(
𝜑((𝜽 ′𝑤)𝑖) + 𝜑′((𝜽 ′𝑤)𝑖) ((𝜽𝑤)𝑖 − (𝜽 ′𝑤)𝑖) +

1
2
𝜑′((𝜽 ′𝑤)𝑖)
(𝜽 ′𝑤)𝑖

((𝜽𝑤)𝑖 − (𝜽 ′𝑤)𝑖)2
)

= 𝜆

𝑄𝑛∑︁
𝑖=1

(
𝜑((𝜽 ′𝑤)𝑖) + 𝜑′((𝜽 ′𝑤)𝑖) ((𝜽𝑤)𝑖 − (𝜽 ′𝑤)𝑖) +

1
2
𝜓((𝜽 ′𝑤)𝑖) ((𝜽𝑤)𝑖 − (𝜽 ′𝑤)𝑖)2

)
= Φ3(𝜽 ′) + ∇Φ3(𝜽 ′)𝑇 (𝜽 − 𝜽 ′) + 1

2
(𝜽 − 𝜽 ′)𝑇A3(𝜽 ′) (𝜽 − 𝜽 ′) := ℎ3(𝜽; 𝜽 ′),

where, for each 𝜽 ∈ R𝑄 (𝑛+1) ,

𝜽 =

[
𝜽𝑤
𝜽𝑏

]
=



𝜽1
...

𝜽𝑄𝑛
𝜽𝑄𝑛+1
...

𝜽𝑄 (𝑛+1)


,

58 BIBLIOGRAPHY

∇Φ3(𝜽) = 𝜆



𝜑′(𝜽1)
𝜑′(𝜽2)
...

𝜑′(𝜽𝑄𝑛)
0
...

0


,

and

A3(𝜽) = Diag

©­­­­­­­­­­­«



𝜆𝜓(𝜽1)
𝜆𝜓(𝜽2)

...

𝜆𝜓(𝜽𝑄𝑛)
0
...

0



ª®®®®®®®®®®®¬
.

As a consequence, by definition, ℎ3(·; 𝜽 ′) is a tangent majorant for Φ3 at 𝜽 ′.

The result now follows by defining the tangent majorant ℎ(·; 𝜽 ′) of Φ at 𝜽 ′ ∈
R𝑄 (𝑛+1) as the sum

(∀𝜽 ∈ R𝑄 (𝑛+1)) ℎ(𝜽; 𝜽 ′) = ℎ1(𝜽; 𝜽 ′) + ℎ2(𝜽; 𝜽 ′) + ℎ3(𝜽; 𝜽 ′)

= Φ(𝜽 ′) + ∇Φ(𝜽 ′)⊤(𝜽 − 𝜽 ′) + 1
2
(𝜽 − 𝜽 ′)⊤A(𝜽 ′) (𝜽 − 𝜽 ′),

where the matrix 𝐴(𝜽) is given by

𝐴(𝜽) = 𝐴1(𝜽) + 𝐴2(𝜽) + 𝐴3(𝜽)

and coincides with the expression provided in (21).

	Keywords
	Introduction
	Problem formulation
	A smooth Weston-Watkins loss function
	Regularization
	Matrix formulation

	Batch MM approach
	Incremental MM approach
	Warm-up phase
	Convergence results

	Experimental results
	Datasets and target functions
	Efficient computation of the initial point
	Hyperparameters selection for Algorithm 1
	Results on small-scale dataset
	Results on large-scale datasets

	Enhancement of linear model performance
	Conclusions
	Proof of Proposition 0.2

