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Abstract This paper proposes an improved quasi-Newton penalty decom-
position algorithm for the minimization of continuously differentiable func-
tions, possibly nonconvex, over sparse symmetric sets. The method solves a
sequence of penalty subproblems approximately via a two-block decomposition
scheme: the first subproblem admits a closed-form solution without sparsity
constraints, while the second subproblem is handled through an efficient sparse
projection over the symmetric feasible set. Under a new assumption on the gra-
dient of the objective function, weaker than global Lipschitz continuity from
the origin, we establish that accumulation points of the outer iterates are ba-
sic feasible and cardinality-constrained Mordukhovich stationarity points. To
ensure robustness and efficiency in finite-precision arithmetic, the algorithm
incorporates several practical enhancements, including an enhanced line search
strategy based on either backtracking or extrapolation, and four inexpensive
diagonal Hessian approximations derived from differences of previous iterates
and gradients or from eigenvalue-distribution information. Numerical experi-
ments on a diverse benchmark of 30 synthetic and data-driven test problems,
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including machine-learning datasets from the UCI repository and sparse sym-
metric instances with dimensions ranging from 10 to 500, demonstrate that
the proposed algorithm is competitive with several state-of-the-art methods
in terms of efficiency, robustness, and strong stationarity.

Keywords Sparse optimization · penalty decomposition method · diagonal
quasi-Newton method · line search method · global convergence
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1 Introduction

In modern applications such as machine learning, signal processing, and data
mining, high-dimensional data pose significant computational and modeling
challenges. To address these challenges, one widely adopted strategy is to
impose sparsity, i.e., to focus on a limited number of relevant features while
discarding the rest. Sparsity not only reduces computational cost but also
improves interpretability, making it a key principle in large-scale optimization.

A central challenge in sparse optimization is understanding the structure of
the feasible set. Many important problem classes are defined over symmet-
ric sets, i.e., sets that are invariant under permutations or sign changes of
the variables. Examples include the full space, the nonnegative orthant, the
simplex, norm balls, and box constraints. Each of these sets induces a specific
structure on the feasible solutions, which must be carefully respected in sparse
projection algorithms.

Minimization over sparse symmetric sets is challenging because it requires
combining the combinatorial nature of sparsity with structural constraints.
Efficient projection rules exploit the geometry of each set: in the full space,
the projection keeps the largest components; in the orthant, nonnegativity
must be preserved; in the simplex or unit-sum set, normalization is enforced;
and for norm or box constraints, rescaling or clipping may be needed. Under-
standing these structural nuances is crucial for designing algorithms that are
both computationally efficient and theoretically sound.

1.1 Problem Definition

Following recent research trends, optimization problems that combine spar-
sity with additional structural constraints have gained considerable attention.
Motivated by applications in signal recovery, image processing, and data com-
pression, we study the following general cardinality-constrained optimization
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problem:

min
x∈C∩Cs

f(x), (CCOP)

where the objective function f : C ∩ Cs → R is assumed to be twice continu-
ously differentiable, with gradient g(x) := ∇f(x), but not necessarily convex,
and

Cs := {x ∈ Rn | ∥x∥0 ≤ s}, (1)

and C ⊆ Rn is a closed and convex set representing additional structure.
Examples of symmetric sets include Rn, the nonnegative orthant, the simplex,
ℓp-norm balls, and box constraints. These sets are invariant under sign changes

and/or permutations of coordinates, a property that strongly influences sparse
projection rules.

The set Cs enforces the sparsity constraint, with s ∈ Z+ denoting the target
sparsity level (s < n), and ∥x∥0 indicating the number of nonzero components
of x. Despite its simple definition, Cs is highly nonconvex and disconnected,
and problems of the form (CCOP) are in general NP-hard. It is well known that
even testing the feasibility of the sparsity set is NP-complete [19,22], so that
(CCOP) inherits this fundamental computational hardness.

In the context of such problems, several stationarity notions have been
proposed, including Lu–Zhang points [23], basic feasible points [3], L-
stationarity [3], and Mordukhovich-stationarity (M-stationarity) points [19,26,
33]. These concepts play a key role in analyzing the convergence behavior of
penalty decomposition and related algorithms, and will be revisited later in
the paper.

This broad formulation covers many important models. For instance, when f
is quadratic and C = Rn, one recovers the classical sparse recovery problem
in compressive sensing. Incorporating additional convex sets C, such as the
nonnegative orthant, the simplex, or norm constraints, yields a wide class of
structured sparse optimization problems. In the terminology of [19,33], prob-
lem (CCOP) belongs to the class of mathematical programs with cardinality
constraints.

1.2 Related Work

Sparse optimization problems aim to find solutions with few nonzero compo-
nents, often under structural or functional constraints. A variety of algorithmic
approaches have been proposed to tackle these problems, each with its own
advantages and limitations. In this section, we categorize the most prominent
methods and discuss their similarities, differences, strengths, and weaknesses,
with a particular focus on how penalty decomposition methods compared to
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the others. We begin with approaches offering the weakest theoretical guaran-
tees and proceed toward increasingly stronger ones.

Greedy algorithms such as orthogonal matching pursuit and for-
ward/backward selection incrementally construct sparse solutions by selecting
variables according to local criteria. These methods are computationally effi-
cient and easy to implement. Yet, they often suffer from suboptimal selections
and are sensitive to noise and variable correlations, which limit their robust-
ness and ability to scale reliably in high-dimensional, correlated settings [13,
38].

A second class providing relatively weak guarantees is convex relaxation,
where the original nonconvex sparsity constraint (typically represented by the
ℓ0-norm) is replaced with a convex surrogate like the ℓ1-norm. Popular meth-
ods in this class include Basis Pursuit, LASSO, and the Elastic Net [12,16,35].
These approaches benefit from convex optimization theory and mature solvers,
but they typically return only approximately sparse solutions and may intro-
duce significant shrinkage bias.

Moving toward stronger guarantees, thresholding and iterative shrinkage
methods, including Iterative Hard Thresholding (IHT) and proximal gradi-
ent variants, project intermediate solutions onto the set of s-sparse vectors
[8]. These methods are well-suited for large-scale problems and admit global
convergence guarantees under restricted conditions. Nonetheless, their perfor-
mance is sensitive to step-size rules, tuning parameters, and problem condi-
tioning [6,17,40].

Stationarity-based algorithms form a considerably stronger class. Multi-
ple frameworks have been designed to compute stationarity points of non-
convex sparse optimization problems [3,4,22,23]. These methods aim to sat-
isfy first-order necessary conditions—even in nonsmooth and nonconvex set-
tings—but often converge only to generalized notions such as Lu–Zhang sta-
tionarity points, which may still fail to guarantee strict feasibility or desirable
structural properties [22, Example 2.1].

In contrast, mixed-integer and combinatorial methods directly encode
sparsity through binary variables, enabling them to certify global optimality.
Examples include mixed-integer quadratic programming formulations [7,10].
Their major limitation is scalability, as the combinatorial search space grows
exponentially with problem size.

Among these diverse methodological families, we emphasize penalty decom-
position (PD) methods because they serve as the foundation of the algo-
rithms analyzed in this paper and offer a balanced trade-off between theoretical
structure and computational practicality. Penalty and augmented Lagrangian
techniques incorporate sparsity constraints through penalization or variable
decompositions, enabling the separation of difficult nonsmooth or combinato-
rial components from smooth differentiable ones. PD methods have received



Title Suppressed Due to Excessive Length 5

increasing attention due to their ability to decouple complex constraints and
nonconvex cost functions into tractable subproblems solvable via block coor-
dinate descent [23]. They are often less sensitive to initializations, especially
when warm-started using simpler heuristics.

Furthermore, PD algorithms are compatible with limited-memory quasi-
Newton updates [11,20], providing scalability and effective use of curvature
information while allowing inexact line searches [30]. The flexibility of PD

frameworks is highlighted by numerous applications: Dong and Zhu [15] in-
tegrated IHT-type updates for adaptive sparsity-level detection; Lu et al. [24]
applied PD to rank minimization; and Kanzow and Lapucci [18] proposed an
inexact PD method for geometric constraints such as cardinality constraints
and rank constraints. Additional applications span multi-objective sparse op-
timization [21], wavelet-frame ℓ0 image reconstruction [39], sparse time-series
filtering [32], cardinality-constrained portfolio optimization [29], and nuclear
norm minimization with ℓ1 fidelity terms [37]. Algorithmic relaxations designed
to reduce subproblem complexity have also been proposed in [34].

Compared to the other paradigms discussed above, PD methods preserve the
problem’s inherent structure while enabling effective enforcement of sparsity
and feasibility. They exhibit robustness and flexibility, particularly in exten-
sions involving structured sparse sets (e.g., simplex constraints and mixed-
norm balls). When paired with quasi-Newton updates, they offer both scala-
bility and accurate practical performance. Thus, while simpler methods may
provide speed or convex surrogates ensure elegant theory, PD represents a com-
pelling middle ground.

However, existing inexact PD algorithms (e.g., [22,23]) are typically guaranteed
to converge only to Lu–Zhang stationarity points and, under mild assumptions,
to BF points. These concepts remain weaker than cardinality-constrained Mor-
dukhovich (CC-M) stationarity [19], which is the strongest variationally nec-
essary first-order optimality condition for cardinality-constrained optimiza-
tion in the absence of constraint qualifications. Stronger notions, such as CC-S
(strong stationarity), may exist but are not guaranteed to hold at all local min-
imizers and typically require additional regularity or support-identification as-
sumptions. Developing PD variants that converge directly to CC-M-stationarity
points would bridge this gap between algorithmic guarantees and advanced
optimality theory, thereby significantly enhancing the robustness and applica-
bility of PD methods across broader classes of nonsmooth and geometrically
constrained optimization problems [18,19,33].

1.3 Main Contributions of our Work

In this study, we propose an improved quasi-Newton penalty decomposition
algorithm, called PD-QN, for solving optimization problems involving contin-



6 Ahmad Mousavi et al.

uously differentiable functions over sparse symmetric sets. Like the classical
penalty decomposition algorithm [22,23], PD-QN approximates the solution of
a sequence of penalized subproblems using a two-block decomposition scheme.
At each iteration of its inner loop, PD-QN solves the first subproblem, denoted
by (Px), in closed form with respect to the variable x, without sparse sym-
metric sets. It then solves the second subproblem, (Py), with respect to y re-
stricted to its current support. This restricted minimization is performed
explicitly and at low cost, and—especially—it introduces a new feature that
was not previously incorporated into existing PD algorithms. By solving over
the current support, PD-QN both preserves sparsity and significantly improves
computational efficiency over prior methods.

Current inexact PD algorithms guarantee convergence to Lu–Zhang stationar-
ity points and, under mild assumptions, to basic feasible (BF) points. These sta-
tionarity concepts, however, are tailored to purely cardinality-constrained or
symmetric-set formulations and therefore do not fully capture the broader ge-
ometry arising when cardinality constraints are coupled with general inequality
constraints. In contrast, CC-M-stationarity—the appropriate Mordukhovich-
type stationarity notion for fully general cardinality-constrained problems—
is strictly stronger and provides a unifying optimality concept beyond the
symmetric-set setting.

Developing PD variants that converge directly to CC-M-stationarity points—
rather than merely to Lu–Zhang or BF points—thus bridges a substantial
gap between existing algorithmic guarantees and modern variational optimal-
ity theory for general cardinality-constrained programs. While convergence
to CC-S-stationarity points cannot be expected in general without additional
assumptions, CC-M represents the strongest stationarity notion that can be
guaranteed globally for penalty decomposition methods (see, e.g., [18,19]).

1.3.1 Algorithmic Features of our Methodology

Our main algorithmic features are summarized as follows:

(i) A new reformulation of the two penalty subproblems in the in-
ner loop: In the proposed formulation, the subproblem (Px) is entirely
unconstrained—there are no sparse symmetric sets. In contrast, the sub-
problem (Py) is solved over a sparse symmetric set. In particular, (Py) is
minimized only over the current support of the iterate, rather than
over the full space. This support-aware minimization is a key novelty of
PD-QN, distinguishing it from existing penalty decomposition algorithms.
The motivation for this reformulation stems from the observation that al-
ternating between two fully constrained subspaces, as done in classical PD
methods, can be computationally inefficient. In practice, solving (Px) with-
out sparse symmetric sets is significantly simpler, as it admits a closed-form
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solution. Meanwhile, the restricted form of (Py), despite enforcing sparsity
and symmetry, remains tractable and can be solved explicitly using a low-
cost strategy. Beyond its computational benefits, this reformulation is also
critical for the convergence analysis: by restricting (Py) to the current sup-
port, PD-QN ensures that its iterates satisfy a basic feasibility condition,
and ultimately converge to a BF point of the original problem.

(ii) Construction of an accelerated line search method to efficiently
solve (Px): Our line search is performed either by a backtracking or an ex-
trapolation framework, starting with the unit step size, which is classically
advisable for the quasi-Newton algorithms, especially near the optimal so-
lution. If a reduction in the model function value is found with the initial
setting α = 1, then extrapolation is performed to leave the regions con-
taining a saddle point or a maximizer. Otherwise, the step size is reduced
as long as the line search condition is violated. In this strategy, only one
objective function evaluation is required at the accepted point. In contrast,
the model function values at the other trial points are computed without
any additional objective function evaluations. Hence, our line search has a
lower computational cost than any inexact line search that computes the
objective function value at each trial point of the line search procedure.

(iii) Construction of four diagonal Hessian approximations to handle
large-scale problems: Three of such diagonal formulas are constructed
based on the classic limited-memory BFGS formula by forming and updat-
ing two matrices whose columns are the most recent step change and the
most recent gradient change. The other approximation is devised based
on improving the distribution of the diagonal entries (or equivalently, the
eigenvalues) of the diagonal Hessian estimation, as a measure to promote
well-conditioning. Since, unlike the BFGS update, these four diagonal Hes-
sian approximations do not necessarily guarantee the curvature condition
[31], some proper safeguards are considered for the given Hessian approxi-
mations as well.

(iv) Warm-start and stagnation recovery: We begin with a warm-start
phase using the BFS (the basic feasible search of [4, Algorithm 5]) routine
tailored to sparse structures, which quickly proposes a promising support
and refines it with a short restricted FISTA [5] update. This produces a
strong initial point and significantly reduces the effort required by the
main solver. If progress later completely halts, we apply the lightweight
PSS (the sparse-simplex method of [3]) perturbation, which performs small
support-growth or swap moves combined with simple coordinate correc-
tions. This mechanism provides sufficient variation in the support to escape
poor stationarity points and enables the main algorithm to resume stable
convergence.
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1.3.2 Strong Global Convergence Feature

It is well understood that the convergence analysis of many classical optimiza-
tion algorithms often relies on assumptions regarding the regularity of the
objective function or its gradient. A common and powerful assumption is the
Lipschitz continuity of the gradient, which ensures that the function be-
haves in a sufficiently smooth way so that its values can be well approximated
by a quadratic model based on local gradient information. In practical terms,
this assumption prevents the function from changing too abruptly, which is
critical for establishing convergence rates of gradient-based algorithms.

A related but weaker notion is sometimes referred to as Lipschitz continuity
from the origin. This condition requires only that the gradient grows at most
linearly with the distance from the origin. Unlike full Lipschitz continuity,
however, it does not provide uniform control over the gradient across the entire
domain and thus offers a much weaker form of regularity.

These two assumptions serve different analytical purposes and should not be
confused. Standard Lipschitz continuity of the gradient is a strong smoothness
condition that underpins many classical theoretical guarantees, whereas Lips-
chitz continuity from the origin is merely a basic growth condition that conveys
far less information about the function’s behavior. Confusing the two may lead
to oversimplified or even incorrect conclusions in theoretical developments.

In the literature on PD methods, convergence has typically been established
under relatively strong smoothness assumptions. For example, the original
analysis by Lu and Zhang [23] required Lipschitz continuity of the gradient,
while the more recent inexact PD framework of Lapucci et al. [22] still relied
on comparable regularity conditions to guarantee convergence to Lu–Zhang
stationarity points. In both cases, the analysis crucially depends on global
gradient smoothness or growth conditions.

In this work, we establish global convergence of our algorithm under a new
and even milder assumption than Lipschitz continuity from the origin. Unlike
classical assumptions that require either full gradient smoothness or uniform
growth bounds, our analysis only relies on a relaxed gradient growth condi-
tion, which allows the gradient to grow linearly outside a bounded region.
Crucially, convergence to a BF point is guaranteed not only by this weaker
assumption but also by a distinctive feature of our algorithm: in each itera-
tion, the subproblem (Py) is minimized over the current support of the iterate.
This support-restricted formulation plays a central role in our analysis and, to
the best of our knowledge, yields the first convergence guarantee for penalty
decomposition methods that ensures convergence specifically to BF and CC-M-
stationarity points.

In addition to these relaxed smoothness requirements, our convergence anal-
ysis exploits a key structural property of the penalized models, namely their
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uniform strong convexity under bounded penalty parameters. Owing
to the quadratic form of the penalty models and the uniform positive definite-
ness of their Hessians, the models satisfy global quadratic growth and error
bound conditions with constants that are independent of the outer iteration
index and the penalty parameter. These properties yield a finite-length argu-
ment for the outer iterates and ensure convergence of the entire sequence,
rather than merely subsequential convergence. Although this behavior can be
interpreted within the Kurdyka– Lojasiewicz (KL) framework (with exponent
1
2 ), no explicit KL assumption is required here: the result follows directly from

strong convexity and descent. To the best of our knowledge, leveraging this
uniform strong convexity to obtain full-sequence convergence is not standard
in existing penalty decomposition analyses and provides an additional layer of
robustness in our global convergence guarantees.

Finally, we emphasize that our convergence results are conceptually similar to
those established for general nonsmooth or geometrically constrained settings
[19], in which penalty decomposition schemes also guarantee convergence to
CC-M-stationarity points. The key difference is that our analysis is tailored to
cardinality-constrained optimization and exploits the support-restricted sub-
problem structure. In contrast, the existing results address other classes of
nonsmooth feasibility sets. Thus, our contribution complements the general
theory by providing the first BF/CC-M-stationarity convergence guarantees for
this particular but practically important problem class.

1.3.3 Our Computational Plans

We perform numerical experiments on a benchmark set of 30 test problems,
including the datasets Iris, Wine, and Boston Housing (from the UCL reposi-
tory), as well as several sparse symmetric instances discussed in [4], together
with sparsity-constrained examples drawn from the survey article [36]. The
problem dimensions in our test suite range from 10 to 500.

We compare our method against several state-of-the-art algorithms—iterative
hard thresholding [3], the sparse simplex method [3], greedy sparse sim-
plex [3], basic feasible search [4], and zero-CW search [4]—which are com-
monly used to compute approximate global minimizers and stationarity points
for cardinality-constrained problems. The selected test problems are deliber-
ately challenging, combining explicit cardinality constraints, medium- to high-
sparsity regimes, and symmetric feasible sets that give rise to multiple compet-
ing stationarity supports. All methods are evaluated using a unified stopping
framework based on objective reduction and violations of CC-S (strong) sta-
tionarity, as detailed in Section 5.1. The use of CC-S in the stopping criteria
serves purely as a numerical quality measure: since CC-S implies both CC-M and
BF stationarity, any iterate satisfying the numerical stopping conditions neces-
sarily exceeds the theoretical guarantees required by our convergence analysis.
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The results demonstrate that our algorithm is competitive with these estab-
lished techniques.

1.4 Paper Organization

The organization of our study is outlined as follows. Section 2 is devoted to a
detailed discussion of foundational concepts and general methodological tools
used throughout the paper. Section 3 introduces our new algorithm within the
quasi-Newton penalty decomposition framework, together with its main com-
putational components. Convergence properties of the proposed method are
established in Section 4. Section 5 reports extensive numerical experiments il-
lustrating the practical efficiency of the algorithm. Finally, concluding remarks
are presented in Section 6.

1.5 Supplemental Theory and Algorithmic Components

Additional results and algorithmic details are provided in the supplementary
material available at [28], organized as follows: Section 2 lists explicit station-
arity conditions for several convex sets that appear in our analysis. Section 3
reviews basic feasibility and L-stationarity under symmetry assumptions and
includes a practical test for an approximate notion of basic feasibility based
on a single super support set. Section 4 contains the proof of Lemma 1, which
establishes the cone continuity property for convex symmetric sets. Section 5
presents the complete proof of Theorem 1 using standard calculus rules for
Fréchet normal cones. Section 6 compares basic feasibility with the various
CC-stationarity notions and clarifies their position within the stationarity hier-
archy. Section 7 describes practical enhancements of our method, including an
improved line search and several diagonal Hessian approximations. Section 8
summarizes sparse projection algorithms for symmetric sets, and Section 9
reports additional numerical comparisons among our algorithm variants.

An earlier unpublished version of this work appears in [27]. The present paper
differs substantially in that we now establish convergence to an M-stationarity
point, whereas the preliminary version only proved convergence to a Lu–Zhang
stationarity point. In addition, the algorithm has been extended from handling
cardinality problems to addressing the full class of cardinality-constrained opti-
mization problems over symmetric sets, which includes the bound-constrained
case. As a result, the current version offers a stronger theoretical foundation
together with markedly improved numerical performance.
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2 Preliminaries and Methodological Foundations

This section begins by outlining the key foundational concepts that under-
pin our analysis and approach. We then sequentially introduce the notions of
symmetric sets, sparse projection techniques tailored to these sets, and various
first-order optimality conditions associated with the corresponding optimiza-
tion problems. Most of the definitions presented here are drawn from the work
of Beck and Hallak [4], Kanzow et al. [19], and Mordukhovich [25]. We include
them to ensure the paper is self-contained and accessible, allowing readers to
follow the developments without needing to consult the original reference [4,
19,25].

2.1 Notation and Foundational Concepts

Let [n] := {1, 2, . . . , n}. The n-dimensional simplex is

∆n :=

{
x ∈ Rn |

n∑
i=1

xi = 1, xi ≥ 0 ∀i ∈ [n]

}
,

i.e., the set of all nonnegative vectors with components summing to one. The
unit-sum set is

∆′
n :=

{
x ∈ Rn |

n∑
i=1

xi = 1

}
,

which imposes the same equality constraint but without sign restrictions. The
sign vector sign(x) of a given x ∈ Rn is the vector whose ith component is
sign(x)i := 1 if xi ≥ 0 and sign(x)i := −1 otherwise. Given a set S ⊆ Rn and
a vector x ∈ Rn, the orthogonal projection of x onto S is defined by

PS(x) = argmin {∥y − x∥ : y ∈ S} ,

where ∥.∥ denotes the ℓ2-norm on Rn. If the set S is closed, then PS(x) is
nonempty. Furthermore, if S is also convex, then PS(x) is a singleton, and we
identify PS(x) with the unique vector that it contains.

Given a closed and convex set C ⊆ Rn, and a vector x ∈ Rn, the sparse
projection problem seeks to find an element in the orthogonal projection set
of x onto C∩Cs, where Cs is the set of all vectors in Rn with at most s nonzero
components. Formally, the sparse projection set is defined by

PCs∩C(x) = argmin
z∈C∩Cs

∥z − x∥2.

We refer to PCs∩C as the s-sparse projection set onto C, and any element of this
set is called an s-sparse projection vector onto C, or simply a sparse projection
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vector. Since the intersection C∩Cs is closed, the set PCs∩C(x) is nonempty for
any x ∈ Rn. However, because Cs∩C is nonconvex, the projection set PCs∩C(x)
is not necessarily a singleton. When C = Rn, the sparse projection reduces to
PCs∩Rn(x) = PCs(x), which consists of all vectors formed by retaining the s
components of x with the largest absolute values (setting all others to zero). If
there are some ties among the largest absolute values, multiple selections are
possible, and hence, the projection set can contain more than one vector. For
further details, refer to [28, Section 2], which is based on the work presented
in [4].

For any p ≥ 1, the ℓp-ball in the space Rn, centered at the origin with radius
1, is defined as

Bn
p [0, 1] = {x ∈ Rn | ∥x∥p ≤ 1} ,

where ∥x∥p = (
∑n

i=1 |xi|p)
1/p

is the ℓp-norm of x.

The support set I1(x) := {i ∈ [n] | xi ̸= 0} of a vector x ∈ Rn and its
complement, called the off-support set of a vector x ∈ Rn, I0(x) := {i ∈
[n] | xi = 0} are also defined accordingly. A vector x ∈ Rn has a full support
if ∥x∥0 = s, and an incomplete support if ∥x∥0 < s. A set L ⊆ [n] is called
a super support of a vector y ∈ Cs ∩ C if I1(y) ⊆ L and |L| = s. Note
that if y has full support, the only super support set is the support set itself.
Otherwise, the number of possible super supports is(

n− ∥y∥0
s− ∥y∥0

)
.

Given a vector x ∈ Rn, and a subset of indices L ⊆ [n], xL ∈ R|L| denotes
the vector composed of the components of x indexed by L. Let UL denote the
submatrix of the n × n identity matrix In formed by selecting the columns

corresponding to the index set L; then xL = UT
L x. Moreover, if L is a super

support of a vector x ∈ Rn, then x = ULxL. Given a set C ⊆ Rn, the restriction
of C to the index set L is defined as

CL :=
{
x ∈ R|L| : ULx ∈ C

}
.

Given a continuously differentiable function f : Rn → R and a subset L ⊆ [n],
the restriction of the gradient g(x) to the index set L is denoted by gL(x) =

UT
L g(x).

2.2 Symmetric Sets

Let Sn denote the symmetric group of all permutations of the set of
indices [n]. For a vector x ∈ Rn and a permutation π ∈ Sn, the permuted
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vector xπ ∈ Rn is defined component-wise as (xπ)i := xπ(i). For example, let

x =

4
1
6

 ∈ R3, π ∈ S3 with π(1) = 3, π(2) = 2, π(3) = 1.

Then, the permuted vector is

xπ =

xπ(1)

xπ(2)

xπ(3)

 =

x3

x2

x1

 =

6
1
4

 .

A permutation π ∈ S̃n is called a sorting permutation of a vector x ∈
Rn whose entries are rearranged in a non-increasing order in the sense that

xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(n). Here, S̃n denotes the sorting permutation group

over the set of indices [n]. For any permutation π ∈ S̃n, we define

Sπ
[j1,j2]

=

{
{π(j1), π(j1 + 1), . . . , π(j2)}, if 0 < j1 ≤ j2 ≤ n,

∅, otherwise.
(2)

Let C ⊆ Rn be a closed and convex set; then, C is called
• type-1 symmetric, if for any x ∈ C and any permutation π ∈ Sn, xπ ∈ C;
• nonnegative, if for every x ∈ C, xi ≥ 0 for all i;
• type-2 symmetric set, if it is a type-1 symmetric set and if for any x ∈ C,
any π ∈ Sn, and any y ∈ {−1, 1}n, x ◦ y ∈ C, with (x ◦ y)i = xiyi for all
i ∈ [n].

Let C ⊆ Rn be a closed and convex set that is either a nonnegative type-1

symmetric set or a type-2 symmetric set. Let x ∈ Rn, and π ∈ S̃(p(x)), where
the symmetry function p : Rn → Rn is defined as

p(x) =

{
x, if C is a nonnegative type-1 symmetric set,

|x|, if C is a type-2 symmetric set.
(3)

Here, |x| denotes the component-wise absolute value of x (this function is used

to define a common sorting permutation π ∈ S̃(p(x)) for both cases).

The above definitions, p(x), S̃, and Sπ
[j1,j2]

, will be used in lines 9 and 10 of

our new algorithm (Algorithm 1, below).

Symmetric sets of type-1 and type-2 frequently arise as feasible regions in opti-
mization problems. The entire space Rn is both a type-1 and type-2 symmetric
set. The nonnegative orthant Rn

+ is a type-1 set and, more specifically, also a

nonnegative type-1 set, but not type-2. The unit simplex ∆n shares the same
properties as the nonnegative orthant—it is type-1 and nonnegative type-1,
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but not type-2. The unit sum set ∆′
n is only a type-1 set. The ℓp-ball Bn

p [0, 1]

(for p ≥ 1) is both a type-1 and type-2 symmetric set. Lastly, the box con-
straints set [ℓ, u]n, with ℓ < u, is type-1 but neither nonnegative type-1 nor
type-2.

2.3 Optimality Conditions

This section presents an overview of the first-order optimality conditions for
smooth optimization problems over closed and convex sets. We begin by re-
viewing classic stationarity conditions within the framework of convex analy-
sis and then extend the discussion to the sparse optimization problem (CCOP),
which involves the intersection of a symmetric constraint set C and the non-
convex sparsity set Cs. By examining the structure of this composite feasible
region, we introduce existing stationarity concepts that are well-suited for non-
convex problems with embedded sparsity constraints. These conditions form
the theoretical foundation for the development and analysis of the proposed
algorithm. For further details on the optimality conditions, see [28, Section 3].

2.3.1 For Smooth Problems over Convex Sets

We consider the convexly constrained optimization problem

min{f(x) : x ∈ C},

where f : Rn → R is continuously differentiable and C ⊆ Rn is a nonempty
closed convex set. A vector x∗ ∈ C is called a stationarity point of this
problem if

g(x∗)T (x− x∗) ≥ 0, ∀x ∈ C,

where g(x∗) := ∇f(x∗).

This variational inequality expresses that there are no feasible descent direc-
tions at x∗. Equivalently, it can be written as the fixed-point condition

x∗ = PC

(
x∗ − 1

L g(x∗)
)
, for some L > 0,

where PC(·) denotes the Euclidean projection onto C. See [28, Remark 2.1]
for the explicit stationarity conditions in [28, Section 3].
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2.3.2 For Problem (CCOP)

Basic Feasible Points and Optimality: A vector x ∈ Cs ∩ C is called a
basic feasible (BF) point of problem (CCOP) if, for any super support set L
of x, there exists a scalar L > 0 such that

xL = PCL

(
xL −

1

L
gL(x)

)
. (4)

If |I1(x)| = s, then the only super support set is the support itself, and hence,
the BF condition reduces to

xI1(x) = PCI1(x)

(
xI1(x) −

1

L
gI1(x)(x)

)
, (5)

which reduces to the standard projection condition, which is necessarily sat-
isfied at BF points with full support. However, it is not sufficient when the
support is incomplete. The BF condition is equivalent to requiring that, for
any super support set L of x, the vector xL is a stationarity point of the
following convex-constrained optimization problem:

min {f(ULw) : w ∈ CL} .

Although condition (4) is written using L, it is essentially independent of the
choice of L, and can alternatively be expressed as

gL(x)T (yL − xL) ≥ 0, for all y ∈ C with I1(y) ⊆ L.

Let x∗ be an optimal solution of the problem (CCOP). Then, it has been shown
in [4, Theorem 5.1] that x∗ is a BF point of (CCOP).

It is important to note that when the support of a vector x is not full, verifying
whether x is a BF point, in principle, requires checking condition (4) for each
possible choice of a super support set. The number of such checks is(

n− ∥x∥0
s− ∥x∥0

)
.

However, when the set C is either a nonnegative type-1 symmetric set or a
type-2 symmetric set, there exist simpler procedures for verifying basic feasi-
bility in the case of incomplete support. Specifically, it is sufficient to verify
that condition (4) holds for a particular super support set.

When x∗ has full support (i.e., ∥x∗∥0 = s), the BF condition reduces to the
standard first-order rules for the underlying convex set C, restricted to the
active support I1(x∗). In other words, the explicit formulas given in [28, Re-
mark 2.1] for smooth convex problems remain valid, but they apply only to
the indices in I1(x∗).
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By contrast, if x∗ has incomplete support (∥x∗∥0 < s), the BF condition re-
quires projected-gradient stationarity on every super-support L, i.e., with re-
spect to the convex restriction CL rather than the entire set C.

As previously mentioned, the concept of BF is tied to stationarity with respect
to the restriction of the set C to super support sets of the vector. However,
it provides no guarantee regarding the optimality of the support itself. In this
sense, the BF condition is relatively weak. We now introduce a stronger notion
known as the L-stationarity condition.

L-Stationarity. For a constant L > 0, a vector x ∈ Cs ∩ C is said to be an
L-stationarity point of problem (CCOP) if

x ∈ PCs∩C

(
x− 1

L
g(x)

)
.

This condition implies that x is a fixed point of the projected-gradient step
with the step size 1/L, over the nonconvex feasible set Cs∩C. Let x∗ ∈ Cs∩C
be an L-stationarity point of (CCOP). Then, as shown in [4, Lemma 5.2], x∗ is
a BF point of (CCOP).

Lu–Zhang stationarity Point: Lu and Zhang [23] defined another optimal-
ity condition for the problem CCOP. The vector x ∈ Rn is called a Lu–Zhang
stationarity point if and only if there exists an index set L ⊆ [n] with |L| = s
such that {

gi(x) = 0, for all i ∈ L ⊆ [n] with |L| = s,

xi = 0, for all i ∈ Lc,
(6)

where
Lc := [n] \ L. (7)

They also showed that when C = Rn, any optimal solution of problem (CCOP) is
a Lu–Zhang stationarity point for the same problem. Moreover, when C = Rn,
any BF point of problem (CCOP) is also a Lu–Zhang stationarity point; however,
for general closed convex C this implication may fail—see [22, Example 2.1].

Let S ⊆ Rn be a closed set and x̄ ∈ S. To rigorously characterize the station-
arity of problem (CCOP), we recall the standard normal cones from variational
analysis:

– The Fréchet (regular) normal cone is defined as:

NF
S (x̄) :=

γ ∈ Rn | lim sup

x
S−→x̄,x ̸=x̄

⟨γ, x− x̄⟩
∥x− x̄∥

≤ 0

 .

– The Mordukhovich (limiting) normal cone is defined via the limiting
process:

NS(x̄) :=
{
γ ∈ Rn | ∃xk S−→ x̄, γk → γ s.t. γk ∈ NF

S (xk) for all k
}
.
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– The Clarke normal cone is the closed convex hull of the limiting normal
cone:

KS(x̄) := cl(conv NS(x̄)).

In particular, when S = C is the convex constraint set appearing in (CCOP), we

write NF
C (x̄), NC(x̄), and KC(x̄) for the corresponding Fréchet, Mordukhovich,

and Clarke normal cones.

Remark 1 (Normal cones for the sparsity set) For the cardinality set Cs =
{x ∈ Rn : ∥x∥0 ≤ s}, all three normal cones coincide. The equalities

NF
Cs

(x̄) = NCs(x̄) = KCs(x̄) = {γ ∈ Rn : γI1(x̄) = 0}

hold for every x̄ ∈ Cs. In particular, if ∥x̄∥0 < s, then NF
Cs

(x̄) = {0}. This

identity, established in [19,22], ensures that the stationarity concepts CC-AM

and CC-M for problem (CCOP) reduce to the simple form used throughout our
analysis.

Remark 2 (Normal cones for convex sets C) For the convex constraint set
C, the situation is simpler: since C is closed and convex, the Fréchet and
Mordukhovich normal cones coincide,

NF
C (x̄) = NC(x̄), ∀ x̄ ∈ C.

However, equality with the Clarke (cone-continuity) cone, KC(x̄), is not au-
tomatic. It requires a mild regularity condition such as polyhedrality or the
CC-CPLD property [19]. In our analysis, this is the only point where such regu-

larity is invoked: whereas Cs always satisfies NF
Cs

= NCs
= KCs

, for the convex

set C we assume polyhedrality or CC-CPLD whenever we need NF
C = NC = KC .

CC-AM Stationarity for (CCOP): A feasible point x̄ ∈ C ∩Cs is CC-AM if there

exist sequences {xk} ⊂ C, {uk} ⊂ Rn, and {γk} ⊂ Rn such that

xk → x̄, uk ∈ NF
C (xk) ∀k, g(xk) + uk + γk → 0,

and γk ∈ NF
Cs

(xk) for all k. Here, NF denotes the Fréchet normal cone. For

convex C, NF
C = NC , and for the sparsity set Cs, we have NF

Cs
= NCs

= KCs
.
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CC-M Stationarity for (CCOP): A feasible point x̄ ∈ C ∩ Cs is called CC-M

(M-stationarity) if there exist u ∈ NC(x̄) and γ ∈ NCs(x̄) such that

g(x̄) + u + γ = 0.

Equivalently,

0 ∈ g(x̄) + NC(x̄) + NCs(x̄),

where N denotes the Mordukhovich (limiting) normal cone.

Remark 3 (Cone-continuity for symmetric convex sets) Beyond the polyhedral
and CC-CPLD cases treated in [19], many constraint sets of practical importance
(such as permutation-invariant or signed-symmetric convex bodies) are type-
1 or type-2 symmetric, i.e., invariant under the action of a finite group of
linear isometries. In [19], a cone-continuity-type regularity condition, called
CC-AM-regularity, is introduced to relate CC-AM and CC-M stationarity. Ab-
stracting this idea to a purely geometric setting, we say that a closed, convex
set C satisfies the cone-continuity property (CCP) if the Fréchet normal

cone mapping x 7→ NF
C (x) is outer semicontinuous on each support face of C.

As shown in Lemma 1, every closed, convex symmetric set automatically sat-
isfies CCP. Thus, symmetric convex sets fit naturally into the cone-continuity
framework underlying the regularity assumptions of [19], and their normal
cone behavior is fully compatible with the stationarity analysis used in this
work.

Before proceeding, we establish a structural regularity property of symmetric
convex sets that plays a key role in our stationarity analysis. Recall that a
cone-continuity-type regularity condition is needed to relate CC-AM and CC-M

stationarity, and that this condition is automatically satisfied under CC-CPLD

[19, Cor. 4.10(a)]. The next result shows that this cone—CCP also holds under
a different and particularly relevant geometric assumption—symmetry of the
feasible region. Its proof relies on the equivariance of normal cones under linear
isometries and is deferred to [28, Section 4].

Lemma 1 (CCP for Symmetric Convex Sets) Let C ⊆ Rn be a closed,
convex, type-1 symmetric set, or a type-2 symmetric set. Then the Fréchet

normal cone mapping x 7→ NF
C (x) is outer semicontinuous on every face of

C determined by a fixed support pattern. In particular, C satisfies CCP in the
sense of [19].

CC-AM Regularity and Intersection Calculus. For the sparsity set Cs, the
Fréchet normal cone depends only on the support pattern; it is locally constant

and satisfies NF
Cs

(x̄) = NCs
(x̄) = KCs

(x̄). For the convex set C, we always

have NF
C (x̄) = NC(x̄). In the present work, the sets C under consideration
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are closed, convex, and symmetric (type-1 or type-2). All symmetric convex
sets considered in this work have nonempty interior; hence, a strong regularity
condition (e.g., complementarity-constrained Mangasarian–Fromovitz
condition (CC-MFCQ) in the sense of [19]) holds, which is stronger than
CC-CPLD and ensures that CCP holds automatically.

Consequently, for these symmetric sets, we have NF
C (x̄) = NC(x̄) = KC(x̄).

Moreover, the existence of an interior point for C ensures that the normal cone
to the intersection Ω = C ∩ Cs satisfies the basic calculus sum rule:

NΩ(x̄) ⊆ NC(x̄) + NCs(x̄).

This provides the mathematical rigour for the stationarity concepts utilized in
our analysis, as the Fréchet, Mordukhovich, and Clarke normal cones behave
consistently under these conditions.

CC-S Stationarity for (CCOP): A feasible point x̄ ∈ C ∩ Cs is called CC-S

(strongly stationarity) if there exist u ∈ NC(x̄) and γ ∈ NCs(x̄) such that:

(i) Exact first-order condition: g(x̄) + u + γ = 0;
(ii) Activity rule: If ∥x̄∥0 < s, then NCs(x̄) = {0} and hence γ = 0. Otherwise,
∥x̄∥0 = s, then γI1(x̄) = 0 and γI0(x̄) is unrestricted; i.e., NCs(x̄) = {γ ∈
Rn : γI1(x̄) = 0}.

Equivalently, 0 ∈ g(x̄) + NC(x̄) + NCs(x̄) with NCs(x̄) = {0} if ∥x̄∥0 < s and
NCs(x̄) = {γ : γI1(x̄) = 0} if ∥x̄∥0 = s.

AW-Stationarity. Ribeiro et al. [33] proposed approximate weak station-
arity (AW-stationarity) for the (x, y)-reformulation of cardinality-constrained
problems, where the sparsity constraint is modeled via orthogonality condi-
tions x ◦ y = 0 and simple bounds on y. AW-stationarity is a sequential (AKKT-
type) necessary condition that holds for all local minimizers without any con-
straint qualification. In our sparse symmetric setting, the x-space implications
of AW align with CC-AM; under CCP, this further implies CC-M. Thus, unlike
BF or Lu–Zhang stationarity, AW and CC-AM stationarities provide necessary
conditions for local optimality without requiring constraint qualifications.

We next show that every local minimizer of (CCOP) is CC-AM-stationarity. Our
proof (see [28, Section 5]) follows the same structure as the argument in [19,
Theorem 3.2], but with an important distinction: although any closed, convex
set C can in principle be written via (possibly many) inequality constraints, our
analysis does not rely on such an explicit representation. Instead, we exploit
the geometric structure of C directly. In particular, since we work over a closed,
convex, symmetric feasible set rather than the full space Rn, the verification
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of the CC-AM conditions becomes simpler than in the general constraint-system
setting of [19].

Moreover, CCP is guaranteed under the CC-CPLD condition—the
complementarity-constrained extension of the classical CPLD—as estab-
lished in [19, Cor. 4.10(a)]. Whenever CC-CPLD holds, the implication

CC-AM ⇒ CC-M

follows immediately. In addition, Lemma 1 shows that CCP also holds for every
closed, convex symmetric set (type-1 or type-2), thereby enlarging the class of
feasible regions for which CC-AM-type cone-continuity regularity—and hence
the above implication—is automatically satisfied. The connection between BF

points and CC-stationarity is detailed in [28, Section 6].

Theorem 1 (Local minimizers are CC-AM (hence CC-M)) Let C ⊆ Rn be
closed, convex, and symmetric (either nonnegative type-1 or type-2), and let
Ω := C ∩ Cs. If x̂ ∈ Ω is a local minimizer of f over Ω, then x̂ is CC-AM

for (CCOP). If CCP (AM-regularity) holds at x̂ (e.g., for polyhedral C or under
CC-CPLD), then x̂ is in particular CC-M.

3 An Improved Quasi-Newton Penalty Decomposition Method

In this section, we discuss the algorithmic features of an improved penalty
decomposition method, with a focus on its quasi-Newton aspects. In other
words, we show how the approximate Hessian of the cost function can be
utilized in the penalty decomposition algorithm, resulting in higher accuracy
due to the use of second-order model information.

3.1 Main Algorithmic Aspects of the New Approach

As already mentioned, the model (CCOP) is generally NP-hard due to the ex-
istence of the cardinality constraint, even when the cost function is quadratic.
Consequently, our strategy focuses on handling this intractable constraint as
effectively as possible. Notably, our analysis shows that we do not need to
decouple the feasibility set from the cardinality constraint when the feasible
region is a symmetric set. More specifically, for any given point, the problem
of finding the closest s-sparse point lying in a symmetric set admits an explicit
or low-cost projection rule.

Recall from (1) that

C ∩ Cs = {y ∈ Rn | y ∈ C, ∥y∥0 ≤ s}.
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Our algorithm is based on the following reformulation of (CCOP):

min
x∈Rn, y∈C∩Cs

f(x) s.t. x− y = 0,

which can be tackled via a sequence of penalty subproblems as follows:

min
x∈Rn, y∈C∩Cs

qρ(x, y) := f(x) + ρ∥x− y∥2.

However, due to the (possible) nonconvexity of f , the above penalty subprob-
lem is still expensive to handle. This fact motivates us to suggest the following
approximate penalty subproblem:

min
x∈Rn, y∈C∩Cs

Φ(ρ,z)(x, y), (P(x,y;ρ))

where the model function is

Φ(ρ,z)(x, y) := (x− z)T g(z) +
1

2
(x− z)TH(x− z) +

1

2
ρ∥x− y∥2, (8)

in which H is an approximation of the Hessian ∇2f(z). Since

f(x) ≈ f(z) + (x− z)T g(z) +
1

2
(x− z)TH(x− z),

it follows that

f(z) + Φ(ρ,z)(x, y) ≈ f(x) +
1

2
ρ∥x− y∥2.

In our analysis, H is taken as a diagonal approximation of the Hessian of the
nonconvex function f at z. This sparse approximation is a notable advantage
of our approach, since computing the full (often dense) Hessian is prohibitively
expensive.

Although (P(x,y;ρ)) is still NP-hard due to the nonconvex cardinality con-

straint in y, its internal structure lends itself naturally to a block-coordinate
treatment, which separates the model into an x-update and a y-update. This
decomposition reveals two subproblems with particularly convenient forms:
the x-subproblem admits a closed-form minimizer due to the quadratic struc-
ture of the model, while the y-subproblem simplifies to a sparse projection
onto C ∩ Cs. These two building blocks form the core of our method and are
developed in the following subsections.
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3.1.1 Closed-Form Solution of (P(x,y;ρ)) with Respect to x

Let j denote the iteration counter of the outer loop, and let ℓ denote the itera-
tion counter of the inner loop. At the jth iteration of PD-QN, the x-subproblem
can be written as

min
x∈Rn

Φ(ρ(j−1),x(j−1))

(
x, y

(j−1)
ℓ−1

)
, (Px)

where the model objective function Φ(ρ(j−1),x(j−1))

(
x, y

(j−1)
ℓ−1

)
can be com-

puted by setting ρ = ρ(j−1), z = x(j−1), and y = y
(j−1)
ℓ−1 in (8).

Since ρ(j−1) ≥ ρmin and the diagonal Hessian approximation H(j−1) is safe-

guarded to remain positive definite, we have H(j−1) + ρ(j−1)I ≻ 0, ensuring a

unique minimizer. Here, ρmin is a tuning parameter as a lower bound for ρj−1.
The first-order optimality condition for (Px) is

g
(
x(j−1)

)
−H(j−1)x(j−1) + H(j−1)x + ρ(j−1)

(
x− y

(j−1)
ℓ−1

)
= 0. (9)

Thus, the closed-form solution of (Px) is

x
(j−1)
ℓ =

(
H(j−1) + ρ(j−1)I

)−1 (
H(j−1)x(j−1) + ρ(j−1)y

(j−1)
ℓ−1 − g

(
x(j−1)

))
.

(10)

3.1.2 Solution of (P(x,y;ρ)) with Respect to y

With x = x
(j−1)
ℓ fixed, the y-subproblem reduces to

min
y∈C∩Cs, I1(y)⊆Lℓ

∥x(j−1)
ℓ − y∥2, (Py)

where Lℓ is the candidate support (chosen in line 10 of Algorithm 1, below).

This amounts to projecting x
(j−1)
ℓ onto the restricted feasible set C ∩Cs with

support contained in Lℓ.

Depending on the structure of C, this projection admits either an explicit
formula (e.g., for Rn, Rn

+, the simplex, or ℓp-balls with p ∈ {1, 2,∞}) or can

be computed by a simple dedicated routine (e.g., a one-dimensional root search
for general ℓp with p ≥ 1, or under box constraints). For completeness, Section

8 in [28, Algorithms 3-6] provides the corresponding procedures. In all cases,
the cost is low, and the update is efficient because the projection is restricted
to at most s coordinates.
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3.2 New Algorithm

We here describe the main structural elements of our proposed quasi-Newton
penalty decomposition algorithm (Algorithm 1, below), called PD-QN. The
method follows the classical penalty decomposition framework, but incorpo-
rates several key enhancements that improve its practical performance and the-
oretical properties. In particular, the inner loop is strengthened by a support-
selection mechanism inspired by [4, Algorithm 5], and by two safeguards that
control model descent and primal-dual agreement. Together, these com-
ponents drive the algorithm toward BF points of f while maintaining stability
under the symmetry of C. We begin by outlining the role and effect of each
modification:
(i) Support selection in the inner loop. Lines 9 and 10 of the inner loop
of PD-QN restrict the second subproblem by imposing I1(y) ⊆ Lℓ, where Lℓ is

a super-support obtained from the current sparse iterate y
(j−1)
ℓ−1 through sort-

ing the vector −p(−∇xΦ). If the existing support has size s, the method may
still adjust the support: indices in the current support can be replaced by new
ones corresponding to larger components of the gradient map. If the support

is smaller than s, the method enlarges it by selecting indices from I0(y
(j−1)
ℓ−1 )

with the largest entries of

p
(
−∇xΦ(ρ(j−1),x(j−1))

(
x
(j−1)
ℓ , y

(j−1)
ℓ−1

))
.

This procedure continues until full support is obtained or no further decrease
in the model function is detected.
(ii) Diagonal Hessian approximation. The Hessian approximation H is
taken diagonal, which keeps the closed-form update (10) computationally low-
cost (see [28, Section 7] for how H can be computed). This choice reduces
both storage and inversion costs and is essential for scalability: a dense Hessian

would incur O(n3) operations per update, which is prohibitive for large-scale
problems.
(iii) Hardness of the joint subproblem. Although Φ(ρ,z) is quadratic in

both variables, the constraint y ∈ C ∩Cs renders problem (P(x,y;ρ)) NP-hard.

The block-coordinate decomposition used in Algorithm 1 circumvents this dif-
ficulty by splitting variables and exploiting the fact that both subproblems
(Px) and (Py) admit closed-form or inexpensive solutions.

(iv) Structure of the y-update. The projection defining the y-update in-
volves only the s indices in the selected support. Hence, although the ambient
dimension may be very large, the projection step effectively operates in a space
of dimension s. This property is a major contributor to the scalability of PD-QN.
(v) Υ -based restart safeguard. The condition

min
x

Φ(ρ(j),x(j))(x, y
(j)) ≤ Υ (j−1)
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enforces a non-increasing control sequence {Υ (j)} and prevents undesirable

model increases. If violated, the algorithm restarts with y
(j)
0 := y

(0)
0 . This

restart does not attempt to randomize the initial point; instead, it restores the
descent guarantee of the model and ensures stability of the outer iteration.
(vi) Effect of the Υ -restart. The restart does not modify the subproblems
themselves, but only resets the initialization of y at the next outer step. Since

PD-QN is deterministic, repeated restarts from the same initial y
(0)
0 simply

enforce the descent safeguard and are consistent with the convergence analysis.
(vii) Primal-dual agreement safeguard. The mechanism

∥x(j) − y(j)∥ ≤ τ∥x(j−1) − y(j−1)∥+ ηj , τ ∈ (0, 1), ηj ↓ 0, (11)

enforces a contraction of the primal-dual gap. If violated, a restart is triggered

(again, resetting y
(j)
0 := y

(0)
0 ), and this condition is instrumental in establishing

∥x(j) − y(j)∥ → 0 in Theorem 4, below.
(viii) Effect of the agreement safeguard. This safeguard complements the

approximate stationarity condition and ensures that the primal variable x(j)

remains consistent with the sparse projection y(j). It supports the proof of
CC-AM for limit points, and, under AM-regularity assumptions, CC-M optimality.

In finite precision arithmetic, at iteration j of PD-QN, we regard x(j) := x
(j−1)
ℓ

as an approximate stationarity point of the x-subproblem of the penalty model
if ∥∥∥∇xΦ(ρ(j−1),x(j−1))

(
x(j), y(j)

)∥∥∥ ≤ εj−1. (12)

The outer iterate (x(j), y(j)) is defined as the last inner-loop pair

(x
(j−1)
ℓ , y

(j−1)
ℓ ) computed for the model Φ(ρ(j−1),x(j−1)). In what follows, we

describe how the subproblems in x and y (lines 8 and 11 of PD-QN) are solved.
Both updates admit explicit or near-closed-form solutions: x has a closed-form
minimizer, and y is obtained through a sparse projection, with explicit formu-
las in common cases (full space, orthant, simplex, ℓ1, ℓ2, and ℓ∞) and simple
1-D routines in the remaining ones.

Remark 4 (Support adjustment and restart mechanism) Two aspects of Algo-
rithm 1 deserve clarification. First, regarding the support-selection rule in the
inner loop, the support is not frozen once it reaches cardinality s. Even when

|I1(y
(j−1)
ℓ−1 )| = s, the algorithm may replace indices in the current support by

new ones corresponding to larger components of the gradient map p(−∇xΦ).
Thus, the support set Lℓ continues to evolve so as to track the most significant

coordinates. The case |I1(y
(j−1)
ℓ−1 )| < s mainly arises during initialization and

is included for completeness. Second, the restart mechanism is deterministic
and should not be interpreted as a randomization strategy. When either the
Υ -based descent safeguard or the primal-dual agreement condition is violated,
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the algorithm resets the initialization of the next outer iteration by setting

y
(j)
0 := y

(0)
0 and restarting the inner loop with ℓ = 0. Although the restart uses

the same initial point, the penalty parameter ρ(j) and the Hessian approxima-

tion H(j) have changed, and hence the underlying model function Φ(ρ(j),x(j))

is different. The restart therefore acts as a descent safeguard for the evolv-
ing penalty model and is essential for the convergence analysis in Theorem 4,
below.

Algorithm 1 A Quasi-Newton Penalty Decomposition Algorithm (PD-QN) for
Solving (CCOP)

1: tuning parameters: r > 1, ĉ > 0, ρmax > ρ(0) > ρmin > 0, and sequences {εj}j∈N
with εj ↓0, and {ηj}j∈N with ηj ↓0, plus an agreement factor τ ∈ (0, 1).

2: input: A positive definite matrix H0 ∈ Rn×n, initial points x
(0)
0 ∈ Rn, y

(0)
0 ∈ C ∩ Cs.

3: Compute f
(
x
(0)
0

)
and find Υ (0) satisfying

Υ (0) ≥ max

{
f
(
x
(0)
0

)
, min
x∈Rn

Φ
(ρ(0),x

(0)
0 )

(
x, y

(0)
0

)
, ĉ

}
> 0. (13)

4: for j = 1, 2, . . . do
5: Set ℓ = 0.
6: repeat
7: Set ℓ← ℓ+ 1.

8: x
(j−1)
ℓ = argmin

x∈Rn
Φ(ρ(j−1),x(j−1))

(
x, y

(j−1)
ℓ−1

)
. [by (10)]

9: Choose π ∈ S̃
(
−p

(
−∇xΦ(ρ(j−1),x(j−1))

(
x
(j−1)
ℓ , y

(j−1)
ℓ−1

)))
.

10: Set i ∈ [n+ 1] such that |Lℓ| =
∣∣∣I1(y(j−1)

ℓ−1

)
∪ Sπ

[i,n]

∣∣∣ = s.

11: y
(j−1)
ℓ = argmin

y∈C∩Cs, I1(y)⊆Lℓ

Φ(ρ(j−1),x(j−1))

(
x
(j−1)
ℓ , y

)
.

12: ok =
(∥∥∥∇xΦ(ρ(j−1),x(j−1))

(
x
(j−1)
ℓ , y

(j−1)
ℓ

)∥∥∥ ≤ εj−1

)
.

13: until (ok)
14: Set ρ(j) = max

(
ρmin,min(r · ρ(j−1), ρmax)

)
.

15: Set
(
x(j), y(j)

)
=

(
x
(j−1)
ℓ , y

(j−1)
ℓ

)
.

16: Set restart← false.
17: if min

x∈Rn
Φ(ρ(j),x(j))

(
x, y(j)

)
> Υ (j−1) then

18: restart← true. % Υ -based reset for safeguarding descent is needed
19: end if
20: if j = 1 then ∆(j−1) = ∥x(0)

0 − y
(0)
0 ∥; else, ∆(j−1) = ∥x(j−1) − y(j−1)∥; end if

21: if ∥x(j) − y(j)∥ > τ ∆(j−1) + ηj then
22: restart← true. % primal-dual agreement safeguard is needed
23: end if
24: if restart then y

(j)
0 ← y

(0)
0 ; else, y

(j)
0 ← y(j); end if

25: Update Υ (j) = max

{
Υ (j−1), f(x(j)), min

x∈Rn
Φ(ρ(j),x(j))

(
x, y

(j)
0

)}
.

26: Update the Hessian approximation H(j).
27: end for
28: output: y(j)
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Remark 5 (Finiteness of restart mechanisms) Although Algorithm 1 incor-
porates two distinct restart safeguards—the Υ -based descent control and the
primal-dual agreement condition—both restart mechanisms are invoked only
finitely many times along the execution of PD-QN. Specifically, the Υ -based
restart can occur only finitely often due to the uniform boundedness of the
penalty model values under the bounded-penalty regime, while the primal-
dual agreement restart is finite as a consequence of the geometric contraction
enforced by the agreement condition and the boundedness of the iterates. As
a result, after finitely many outer iterations, PD-QN proceeds without further
restarts, and all subsequent iterates are generated without resetting the inner-
loop initialization. Formal proofs of these finiteness properties are provided in
Section 4.4.

4 Convergence Analysis

In this section, we develop a convergence theory for PD-QN. We begin with a
discussion of the bounded-penalty assumption and its role in the algorithmic
design.

Bounded penalty regime. Algorithm 1 employs a penalty sequence

{ρ(j)}j∈N0
that remains bounded between two positive constants. This as-

sumption, formalized in Assumption 3 (penalty parameter bounds and bal-
ance condition), below, differs from the classical PD and augmented-Lagrangian
frameworks (e.g., [18,23]), where the penalty parameter is driven to infinity to
enforce feasibility asymptotically. In contrast, PD-QN operates in a stabilized,

bounded-penalty regime. The bounds 0 < ρmin ≤ ρ(j) ≤ ρmax < ∞ guaran-
tee uniform spectral conditioning of the quasi-Newton subproblems, permits
the safe use of limited-memory updates [11,20], and prevents the numerical
ill-conditioning typically observed for large penalties. Feasibility and descent
are instead enforced directly by the projection steps onto C ∩ Cs and by the
primal-dual restart safeguards built into the algorithm, rather than by un-

bounded growth of ρ(j).

Bounded-penalty strategies of this type have also been successfully employed
in proximal and alternating minimization schemes for nonconvex problems,
such as PALM [9] and recent ADMM-based quasi-Newton methods [1]. In
these approaches, keeping the penalty parameter finite yields better condi-
tioning, allows for accurate quasi-Newton modeling, and facilitates practical
convergence in large-scale settings. The following assumption formalizes this
bounded-penalty condition and provides the basis for the uniform contraction
analysis developed below.

Analytic framework. We analyze the convergence of PD-QN in a stabilized
bounded-penalty regime. Under mild assumptions on the objective function
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and the quasi-Newton updates, we first show that all inner and outer iterates
are well defined and remain uniformly bounded (Lemma 2, Corollary 2, Propo-
sition 1). As a consequence, the sequence of accepted outer iterates admits
accumulation points that satisfy primal feasibility and the imposed sparsity
constraint (Theorem 3(i)).

To characterize the limiting behavior of these iterates, we introduce the notion
of asymptotic basic feasible (ABF) sequences, inspired by the sequential sta-
tionarity framework of Kanzow et al. [19]. An ABF sequence is one for which the
projected-gradient residuals on the relevant (and possibly evolving) support
sets vanish asymptotically (Theorem 3(iii)). Such sequences provide a precise
asymptotic description of the iterates produced by PD-QN and may be viewed
as sequential approximations of BF points of the original sparse optimization
problem (Theorem 4(i)).

We then show that every ABF sequence gives rise to CC-AM stationarity, a first-
order necessary condition expressed in terms of the Fréchet normal cones of
the convex constraint set and the sparsity set (Theorem 4(ii)). In the present
sparse symmetric setting, the cone-continuity property holds automatically
(Lemma 1), and therefore CC-AM stationarity implies CC-M stationarity in the
sense of Mordukhovich. Combined with the primal-dual agreement safeguard
built into PD-QN (Lemma 4), this analysis establishes that accumulation points
of the algorithm are both BF and CC-M stationarity for the original problem
(Theorem 4, Corollary 3).

Finally, under bounded penalty parameters, the penalty model family enjoys
uniform strong convexity, which yields global quadratic growth and er-
ror bound properties independent of the outer iteration index. Leveraging
these structural features together with sufficient descent, relative error control,
and the primal-dual agreement safeguard, we strengthen the above subsequen-
tial guarantees and establish convergence of the entire sequence of iterates
(Theorem 5). Although this result can be interpreted within the Kurdyka–

 Lojasiewicz framework (with exponent 1
2 ), no explicit KL assumption is re-

quired.

4.1 Required Assumptions for Global Convergence of PD-QN

To establish that our algorithm (PD-QN) converges to a BF point and an M-
stationarity point, we begin by summarizing some mild assumptions on the

gradient g(x) and the Hessian approximations
{
H(j)

}
j∈N0

, where N0 := N ∪
{0}.

Assumption 1 (To be imposed on the Hessian approximation) For any j ∈
N0, all the eigenvalues of H

(j) belong to the interval [λmin, λmax] with λmin > 0.
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The assumption that all eigenvalues of H(j) lie in [λmin, λmax] ensures uniform
positive definiteness. It might help to mention explicitly that this condition
rules out ill-conditioning in the diagonal Hessian updates, which is necessary
for the strong convexity arguments in Lemma 2. This uniform positive definite-
ness ensures the strong convexity of each subproblem and precludes numerical
ill conditioning of the quasi-Newton updates.

Assumption 2 (Gradient growth condition) Let C ⊆ Rn be closed, con-
vex, and symmetric.

(i) If C is bounded, let ζ := max{∥x∥ : x ∈ C} <∞.
(ii) If C is unbounded, let ζ ≥ 1 be a fixed reference scaling parameter (e.g.,

ζ := max{1, ∥y(0)∥}).

The gradient g(x) = ∇f(x) exists and is continuous on Rn, and there exist
constants γ > 0 and c > 0 such that, for all x ∈ Rn,

∥g(x)∥ ≤

{
γ, ∥x∥ ≤ c ζ,

γ ∥x∥, ∥x∥ > c ζ.

Here, c > 0 is fixed so that the balance condition

κ̄ < c(1− θ̄) (14)

in Assumption 3 holds, where

θ̄ :=
λmax + γ

λmin + ρmin
, κ̄ := max

{
1,

ρmin + γ

λmin + ρmin
,

ρmin + γ/ζ

λmin + ρmin

}
(15)

with the tuning parameters ρmin and ρmax satisfying

0 < ρmin ≤ ρ(j) ≤ ρmax <∞, for all j. (16)

and the constraints λmin and λmax defined in Assumption 1.

Remark 6 (On the case C =∞ and the Entrance Argument) While Lemma 2,
below, is stated for bounded C (where ζ <∞), the result extends naturally to
unbounded sets C = Rn. In the unbounded setting, the parameter ζ no longer
represents a global radius of the set, but instead functions as a reference scaling

factor (e.g., ζ := max{1, ∥y(0)∥}). Under the strict contraction condition θ̃ < 1,
the recurrence

∥x(j)∥ ≤ θ̄ ∥x(j−1)∥+ κ̄ ζ (17)

established in Lemma 2 implies that the sequence {x(j)}j∈N0 is globally

attracted to a computational invariant ball B(0, R∞) with radius R∞ :=

κ̄ζ/(1− θ̄), i.e., the autonomous boundedness property

lim sup
j→∞

∥x(j)∥ ≤ R∞ (18)
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holds (see Corollary 1, below). Specifically, if the initial iterate x(0) lies outside

this ball, the geometric decay ∥x(j)∥ ≤ θ̃j∥x(0)∥ + constant ensures that the
sequence enters the compact region B(0, cζ) in finite time. This “argument”
ensures that even without a bounded feasibility set, the trajectory remains
within a compact region, where the gradient g(x) is effectively locally Lips-
chitz, thereby satisfying the necessary conditions for stationarity and global
convergence analysis.

Remark 6 currently mentions the unbounded case only briefly. For trans-
parency, it may be worth emphasizing that when C is unbounded, bound-
edness of iterates relies solely on the contraction inequality (defined by (17),
below). This remains consistent with the spirit of the convergence analyses in
[22,23], where boundedness of iterates is also ensured, although the mecha-
nism is different: classical PD methods rely on diverging penalties, while in our
setting boundedness follows from the strict contraction inequality established
in Lemma 2.

The gradient growth condition is indeed weaker than Lipschitz continuity, but
it still guarantees local Lipschitz continuity on bounded subsets. In particular,
since the iterates are bounded (by Lemma 2), the gradient is effectively Lips-
chitz continuous along the relevant trajectory. This observation clarifies why
standard quasi-Newton arguments remain valid under Assumption 2.

It can be observed that the so-called Lipschitz-from-the-origin condition,

∥g(x)− g(0)∥ ≤ γ̂∥x∥, for all x ∈ C ⊆ Rn,

for some constant γ̂ > 0, implies Assumption 2. Hence, Assumption 2 is
weaker than the Lipschitz-from-the-origin condition, which itself is weaker
than the standard Lipschitz continuity condition commonly used in the liter-
ature. Specifically, the standard Lipschitz condition requires the existence of
a constant L > 0 such that

∥g(x)− g(x̃)∥ ≤ L∥x− x̃∥, for all x, x̃ ∈ C ⊆ Rn.

Therefore, our assumption on g is significantly less restrictive than the con-
ventional assumptions on the gradient imposed on the relevant literature.

Meanwhile, uniform boundedness of the positive definite Hessian updating
formulas is another standard assumption in the convergence analysis of quasi-
Newton methods; we here adopt a similar requirement as well.

Assumption 2 also implies that the gradient remains bounded over any
bounded subset of Rn. In particular, if C is bounded, then ∥x∥ ≤ ζ implies
∥g(x)∥ ≤ γ, so the gradient cannot grow unboundedly along the trajectory
of the iterates. This property maintains algorithmic stability and substitutes
for the stronger global Lipschitz continuity condition commonly used in quasi-
Newton analyses.
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Assumption 3 (Penalty parameter bounds and balance condition)

The penalty sequence {ρ(j)}j∈N0
satisfies (16) and the parameters θ̄ and κ̄

are defined as (15). With this choice, the unified recurrence (17) (proved in
Lemma 2, below) satisfies (ρminζ + γ)/(λmin + ρmin) ≤ κ̄ ζ for all ζ ≥ 1. We
require:

(i) Strict contraction: ρmin > λmax + γ − λmin, equivalently 0 < θ̄ < 1.
(ii) Balance condition for bounded C: There exists c > 0 such that the

balance condition (14) holds.
(iii) Balance condition for unbounded C: If C = Rn, the balance condition

(14) ensures autonomous boundedness of the iterates as quantified by (18).

Intuitively, the balance condition guarantees that the penalization is strong
enough to dominate the possible growth of the gradient term, ensuring a strict
contraction of the recurrence into the invariant ball. Under these conditions,

the effective contraction factor θ̃ := θ̄ + κ̄/c satisfies θ̃ < 1, which guarantees
finite-time entrance into the invariant ball {x : ∥x∥ ≤ cζ}.

The balance condition (14) guarantees that the penalization is strong enough
to dominate the possible linear growth of the gradient term γ∥x∥. In the un-
bounded case (C = Rn), this condition ensures a global dissipative prop-

erty: the “pull” from the quadratic penalty ρ
2∥x− y∥2 toward the constrained

origin outweighs the “push” from the gradient growth. Consequently, the algo-
rithm generates the autonomous boundedness property (18), which provides a
surrogate for the compactness of C typically required in penalty methods. Un-
like classical methods that drive ρ→∞ to prevent divergence on unbounded
domains, PD-QN maintains a bounded ρ ∈ [ρmin, ρmax], preserving the numeri-
cal conditioning of the quasi-Newton updates while ensuring stability through
this spectral balance.

Remark 7 (Bounded penalty regime versus classical PD methods) Unlike clas-
sical penalty decomposition algorithms analyzed in [18,23] whose convergence
analysis relies on an ever-increasing penalty parameter ρk→∞ to drive feasi-
bility, Algorithm 1 operates in a bounded-penalty regime with (16). This
choice is essential to ensure uniform spectral conditioning of the quasi-Newton
subproblems and to establish the contraction inequality of Lemma 2. In the
present framework, feasibility and descent are not obtained asymptotically by
enlarging the penalty, but are instead enforced directly through the projection
steps and the restart safeguards built into the algorithm.
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4.2 Uniform upper bound on penalty model values

We now establish that the penalty model values remain uniformly bounded
across all outer iterations of PD-QN. This property is essential for the conver-
gence analysis, since it guarantees that the safeguard resets in Algorithm 1
always relies on a valid finite bound [2].

In line 3 of Algorithm 1, the initialization computes Υ (0) so that condition (13)
holds, ensuring that the very first penalty model is bounded. However, as the

algorithm progresses, both the penalty parameter ρ(j) and the iterate x(j)

evolve, giving rise to new models of the form

x 7→ Φ(ρ(j),x(j))

(
x, y

(0)
0

)
.

The initial constant Υ (0) need not control these later models, since the quan-
tities

min
x

Φ(ρ(j),x(j))(x, y
(0)
0 )

may increase with j. To address this, Algorithm 1 maintains a nondecreasing
sequence of bounds by updating at each outer iteration

Υ (j) = max

{
Υ (j−1), f(x(j)), min

x∈Rn
Φ(ρ(j),x(j))(x, y

(j)
0 )

}
.

This update guarantees that Υ (j) dominates the current function value and
the relevant model value, and hence that the reset condition in Algorithm 1
always employs a valid finite threshold.

The following results formalize this property: under Assumptions 1–3, the
sequence of penalty models admits a uniform upper bound that is independent
of the iteration index.

Lemma 2 (Uniform bound under standard conditions) Suppose
• f : Rn → R is continuously differentiable and g(x) = ∇f(x) satisfies As-
sumption 2, with constants γ, ζ, c therein.
• C ⊆ Rn is closed, convex, symmetric (either nonnegative type-1 or type-2),
and bounded with ζ := max{∥x∥ : x ∈ C} < ∞ (if C is unbounded, ζ is the
reference scaling parameter defined in Assumption 2).
• The Hessian approximations satisfy Assumption 1: there exist 0 < λmin ≤
λmax such that

λminI ⪯ H(j) ⪯ λmaxI for all j ∈ N0.

• Penalty parameters satisfy Assumption 3, with θ̄, κ̄ as in (15) and θ̃ < 1.
Then:
(i) The unified recurrence (17) holds and therefore the sequence {x(j)}j∈N0

⊂



32 Ahmad Mousavi et al.

Rn is uniformly bounded.
(ii) There exists a constant Υ exact > 0 such that, for every outer iteration
j ∈ N0,

min
x∈Rn

Φ(ρ(j),x(j))(x, y
(j)
0 ) ≤ Υ exact.

Proof (i) Boundedness of the iterates {x(j)}j∈N0
. From the x-update optimal-

ity condition (9), we obtain

(H(j−1) + ρ(j−1)I)x(j) = H(j−1)x(j−1) + ρ(j−1)ỹ(j−1) − g(x(j−1)),

where ỹ(j−1) denotes the y paired with the last x-update (in the algorithm

ỹ(j−1) = y
(j−1)
ℓ−1 ). Taking norms and using Assumption 1,

∥x(j)∥ ≤ 1

λmin + ρmin

(
λmax∥x(j−1)∥+ ρ(j−1)∥ỹ(j−1)∥+ ∥g(x(j−1))∥

)
.

Since ∥ỹ(j−1)∥ ≤ ζ by boundedness of C, it remains to bound the gradient
term. By Assumption 2:

• If ∥x(j−1)∥ ≤ cζ, then ∥g(x(j−1))∥ ≤ γ. Hence

∥x(j)∥ ≤ 1

λmin + ρmin

(
λmax∥x(j−1)∥+ ρminζ + γ

)
. (bd1)

• If ∥x(j−1)∥ > cζ, then ∥g(x(j−1))∥ ≤ γ∥x(j−1)∥. Hence

∥x(j)∥ ≤ 1

λmin + ρmin

(
(λmax + γ)∥x(j−1)∥+ ρminζ

)
. (bd2)

Both (bd1) and (bd2) can be cast into the recurrence form

∥x(j)∥ ≤ θj∥x(j−1)∥+ κjζ,

with

θj :=
λmax + γ

λmin + ρ(j−1)
≤ θ̄, κj :=

ρ(j−1) + γ

λmin + ρ(j−1)
≤ κ̄.

Here, θ̄ and κ̄ are from (15). For the additive constant, we handle the two cases

uniformly as follows. In (bd2), it equals
ρminζ

λmin + ρmin
, and hence is bounded

by
(ρmin + γ)ζ

λmin + ρmin
. In (bd1), it equals

ρminζ + γ

λmin + ρmin
, which does not scale with ζ

if ζ < 1. Since κ̄ in (15) dominates both
ρmin + γ

λmin + ρmin
and

ρmin + γ/ζ

λmin + ρmin
, we

obtain κj ≤ κ̄ in both (bd1) and (bd2), and hence for all j, (17) is satisfied.
Since Assumption 3 only requires the existence of a constant upper bound on
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the additive coefficient, we may, without loss of generality, enlarge κ̄ slightly
so that it dominates all admissible values of κj . Enlarging κ̄ preserves the

balance condition because we can always choose c > κ̄/(1− θ̄).

Since ζ ≥ 1 by Assumption 2, the term γ/ζ in (15) remains bounded, ensuring
κ̄ is a finite constant and the unified recurrence (17) is well-defined for both
bounded and unbounded sets C.

We now show that {x(j)}j∈N0
enters the ball {x : ∥x∥ ≤ cζ} in finite time

and remains there. Thus, the sequence is uniformly bounded. To do that, we
distinguish three cases:

Case ia. Geometric decay above the threshold: If ∥x(j−1)∥ > cζ, then
we show that

∥x(j)∥ ≤ θ̃ ∥x(j−1)∥.

From ∥x(j−1)∥ > cζ and (17), we obtain

∥x(j)∥ ≤ θ̄ ∥x(j−1)∥+
κ̄

c
∥x(j−1)∥ =

(
θ̄ +

κ̄

c

)
∥x(j−1)∥ = θ̃ ∥x(j−1)∥.

Here, θ̃ = θ̄ +
κ̄

c
< 1 by Assumption 3.

Case ib. Finite-time entrance: If ∥x(0)∥ > cζ, then after at most

j ≤

⌈
log

(
∥x(0)∥/(cζ)

)
log(1/θ̃)

⌉

iterations, we show that ∥x(j)∥ ≤ cζ. By induction from Case ia, as long as

∥x(k)∥ > cζ,

∥x(j)∥ ≤ θ̃ j ∥x(0)∥.

The bound on j ensures ∥x(j)∥ ≤ cζ.

Case ic. Invariance of the ball: If ∥x(j−1)∥ ≤ cζ for some j ≥ 1, then we

show that ∥x(j)∥ ≤ cζ. Since ∥x(j−1)∥ ≤ cζ is assumed, from (17),

∥x(j)∥ ≤ θ̄(cζ) + κ̄ ζ ≤ cθ̄ ζ + c(1− θ̄) ζ = cζ,

where the last inequality uses the balance condition from Assumption 3.

The results of Case ia through Case ic establish a “dissipative” property

of the algorithm: the sequence {x(j)}j∈N0 is globally attracted to the ball

B(0, cζ) and, once inside, remains trapped within it for all subsequent it-
erations. Consequently, the entire trajectory resides within the compact set

B(0,max{∥x(0)∥, cζ}). By the Bolzano-Weierstrass theorem, any sequence con-
tained within a compact subset of Rn must possess at least one accumulation
point. This reduces the convergence analysis on the potentially unbounded
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domain C = Rn to the analysis of a sequence on a compact set, ensuring that

the set of limit points Ω({x(j)}) is non-empty.

(ii) Uniform bound on the penalty model values. Fix j ∈ N0 and consider

Φj(x) := Φ(ρ(j),x(j))(x, y
(j)
0 ).

Since Φj is strongly convex, it admits a unique minimizer x∗
j . By optimality,

min
x

Φj(x) = Φj(x
∗
j ) ≤ Φj(x

(j)).

Evaluating at x(j) gives

Φj(x
(j)) = 1

2ρ
(j)∥x(j) − y

(j)
0 ∥2.

By part (i), ∥x(j)∥ ≤ cζ, and by boundedness of C, ∥y(j)0 ∥ ≤ ζ. Hence

∥x(j) − y
(j)
0 ∥ ≤ ∥x(j)∥+ ∥y(j)0 ∥ ≤ (c + 1)ζ.

Since ρ(j) ≤ ρmax, it follows that

min
x

Φj(x) ≤ 1
2ρmax(c + 1)2ζ2.

Setting Υ exact := 1
2ρmax(c + 1)2ζ2 provides the desired uniform bound. ⊓⊔

Corollary 1 (Autonomous boundedness) Under the assumptions of
Lemma 2, the iterates satisfy the condition (18), that is

lim sup
j→∞

∥x(j)∥ ≤ κ̄ ζ

1− θ̄
=: R∞.

Proof From Lemma 2(i), the unified recurrence

∥x(j)∥ ≤ θ̄∥x(j−1)∥+ κ̄ζ

holds for all j, with 0 < θ̄ < 1. Unrolling this inequality yields

∥x(j)∥ ≤ θ̄j∥x(0)∥+ κ̄ζ

j−1∑
i=0

θ̄i = θ̄j∥x(0)∥+
κ̄ζ

1− θ̄

(
1− θ̄j

)
.

Letting j →∞ gives the stated bound. ⊓⊔
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Remark 8 (On the choice and role of Υ ) Lemma 2 provides an explicit uniform
bound

Υ exact := 1
2ρmax(c + 1)2ζ2

valid under exact minimization of the x-subproblem. In Proposition 1,

this constant is slightly enlarged by an additional error term 1
2 (λmin +

ρmin)−1 supk∈N0
ε2k to account for the inexact termination of the inner loop.

In practice, however, the exact value of Υ exact (or any enlarged version Υ ) is

not known a priori. Instead, Algorithm 1 initializes with a safe bound Υ (0)

in line 3, chosen to dominate the first penalty model, and then maintains a
nondecreasing sequence by updating at each outer iteration:

Υ (j) := max

{
Υ (j−1), f(x(j)), min

x∈Rn
Φ(ρ(j),x(j))

(
x, y

(j)
0

)}
.

This adaptive safeguard guarantees that each Υ (j) upper-bounds the relevant
model values, thereby preserving the correctness of the reset condition at every
iteration—without requiring knowledge of the exact constant Υ exact.

Conceptually, the monotonicity of {Υ (j)}j∈N0
plays a role similar to potential

functions in descent methods and safeguarding techniques in nonconvex block-
coordinate or proximal alternating schemes [9]: it ensures boundedness and
robustness of the method even under nonconvexity and inexact subproblem
solutions.

Proposition 1 (Uniform Υ on penalty model values) Let

{(x(j), y(j))}j∈N0
be the sequence generated by PD-QN, and suppose As-

sumptions 1–3 hold, together with the conditions of Lemma 2. Define

Υ :=
1

2
ρmax (c + 1)2ζ2 +

1

2(λmin + ρmin)
sup
k∈N0

ε2k,

where the constants c, ζ, and λmin are from Assumptions 1–3 and ρmin and
ρmax are the lower and upper bounds on ρ. Then, for every outer iteration
j ∈ N0,

Φ(ρ(j),x(j))

(
x(j), y(j)

)
≤ Υ.

Proof We proceed by induction on j. By construction of Algorithm 1 (line 1),

the tolerance sequence {εj}j∈N0
satisfies εj ↓ 0, and hence supk∈N0

ε2k < ∞.

Therefore, the constant Υ defined above is finite and requires no additional
assumption. For j = 0, the initialization in line 3 of Algorithm 1 ensures

Φ(ρ(0),x(0))(x
(0), y(0)) ≤ Υ,
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since Υ dominates the initial model bound by construction. Assume the state-
ment holds for some j ≥ 0. At iteration j + 1, the reset condition in line 16 of
Algorithm 1 yields two possibilities.

Case 1 (reset triggered). If min
x∈Rn

Φ(ρ(j),x(j))(x, y
(j)) > Υ , the algorithm

resets y
(j)
0 := y

(0)
0 and restarts the inner loop. By Lemma 2,

min
x∈Rn

Φ(ρ(j),x(j))(x, y
(j)
0 ) ≤ 1

2ρmax(c + 1)2ζ2 ≤ Υ,

so the newly accepted pair (x(j), y(j)) satisfies the required bound.

Case 2 (no reset). Then

min
x∈Rn

Φ(ρ(j),x(j))(x, y
(j)) ≤ 1

2ρmax(c + 1)2ζ2 ≤ Υ.

Moreover, the inner loop terminates only when the x-block residual is small:∥∥∇xΦ(ρ(j),x(j))(x
(j), y(j))

∥∥ ≤ εj−1.

Since Φ(ρ(j),x(j))(·, y(j)) is (λmin + ρmin)-strongly convex, we can invoke the

standard error bound for strongly convex functions:

Φ(ρ(j),x(j))(x
(j), y(j)) ≤ min

x
Φ(ρ(j),x(j))(x, y

(j)) +
∥∇xΦ(ρ(j),x(j))(x

(j), y(j))∥2

2(λmin + ρmin)
.

Therefore

Φ(ρ(j),x(j))(x
(j), y(j)) ≤ 1

2ρmax(c + 1)2ζ2 +
ε2j−1

2(λmin + ρmin)
≤ Υ,

where the last inequality uses the definition of Υ .

Thus, in both cases, the bound is valid at iteration j + 1. By induction, it
holds for every j ∈ N0. ⊓⊔

Lemma 3 (Lower bound on quadratic model decrease) Consider the

outer loop iterates of PD-QN generating the sequence {x(j)}j∈N0
, where each

x(j) solves (Px) with the y used in its last x-update (denote it ỹ(j), which in

the algorithm equals y
(j)
ℓ−1 while y(j) = y

(j)
ℓ ). Assume:

– The initial point x(0) ∈ Rn is arbitrary and y(j) ∈ Cs∩C for every j ∈ N0.
– C ⊆ Rn is closed, convex, symmetric (either nonnegative type-1 or type-2);

ζ is as defined in Assumption 2, ensuring ζ is a valid constant even if C
is unbounded.
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– Assumptions 1–3 hold, with θ̄, κ̄ from (15) satisfying θ̄ < 1 and κ̄ < c(1− θ̄)
so that Lemma 2 applies.

Then the sequence{
(x(j) − x(j−1))T g(x(j−1)) + 1

2 (x(j) − x(j−1))TH(j−1)(x(j) − x(j−1))
}
j∈N

(19)
is bounded below by some constant ĉ ∈ R.

Proof By the optimality condition (9) of (Px) with y = ỹ(j−1), we have

(H(j−1) + ρ(j−1)I)x(j) = H(j−1)x(j−1) + ρ(j−1)ỹ(j−1) − g(x(j−1)).

From Lemma 2, the sequence of iterates {x(j)} is uniformly bounded and enters
the ball {x : ∥x∥ ≤ cζ} after finitely many steps, remaining there thereafter.

Let ĵ denote the first index with ∥x(ĵ)∥ ≤ cζ. Then, by invariance of the

ball, for all j ≥ ĵ + 1, we have ∥x(j−1)∥ ≤ cζ; hence, Assumption 2 ensures

∥g(x(j−1))∥ ≤ γ.

For any j ≥ ĵ, define a := x(j) − x(j−1) and b := g(x(j−1)). Since H(j−1) ⪰
λminI, we have the inequality

aT b +
1

2
aTH(j−1)a ≥ aT b +

λmin

2
∥a∥2 ≥ − ∥b∥

2

2λmin
.

The last step follows from completing the square:

aT b +
λmin

2
∥a∥2 =

λmin

2

∥∥∥∥a +
1

λmin
b

∥∥∥∥2 − 1

2λmin
∥b∥2.

Hence

(x(j) − x(j−1))T g(x(j−1)) + 1
2 (x(j) − x(j−1))TH(j−1)(x(j) − x(j−1)) ≥ c1,

where c1 := − γ2

2λmin
. For the finitely many indices 1 ≤ j < ĵ, we define

c2 := min
1≤j<ĵ

{
(x(j)−x(j−1))T g(x(j−1))+ 1

2 (x(j)−x(j−1))TH(j−1)(x(j)−x(j−1))
}
.

By Lemma 2, the iterates {x(j)} are uniformly bounded and remain within

the invariant ball for all j ≥ ĵ, ensuring ∥g(x(j−1))∥ ≤ γ. For these indices,

completing the square with H(j−1) ⪰ λminI yields the uniform lower bound

c1 := −γ2/(2λmin). For the finitely many indices 1 ≤ j < ĵ, the quadratic
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expression in (19) remains finite as it is a continuous function of the iter-
ates evaluated over a bounded domain. Consequently, the entire sequence is
bounded below by the finite constant ĉ := min{c1, c2}, where c2 is the mini-
mum value attained during the initial phase. This ensures the quadratic model
decrease remains stable over the compact trajectory of the algorithm. ⊓⊔

Remark 9 (On bounded and unbounded feasible sets) When the feasible set C
is unbounded (for example, C = Rn), the parameter ζ introduced in Assump-
tion 2 does not represent a radius of C. Instead, ζ is a fixed reference scaling
parameter, for instance, as in Assumption 2(ii). In this setting, boundedness

of the iterate sequence {x(j)} does not follow from compactness of the feasible
set, but is ensured entirely by the strict contraction property encoded in the

unified recurrence (17). More precisely, under the condition θ̄ < 1 and the

balance requirement (14), that is κ̄ < c(1 − θ̄), from Assumption 3(ii), the
recurrence yields the global bound (18). As a consequence, even when C is
unbounded, the iterates are globally attracted to a computationally invariant
ball whose radius depends only on the algorithmic constants and the initial
scaling parameter ζ. This mechanism replaces the compactness assumptions
or diverging penalty parameters commonly used in classical penalty decom-
position methods, while preserving numerical conditioning through bounded
penalty values.

Remark 10 (On bounded penalty parameters) Lemma 3 and Assumption 3
require the penalty parameters to remain bounded below by some constant
ρmin > 0. With the capped-and-floored update rule in line 14 of PD-QN,

ρ(j) = max
(
ρmin, min(r · ρ(j−1), ρmax)

)
,

this is automatically satisfied for any prescribed ρmin. The constants θ̄ and κ̄
from (15) therefore depend only on ρmin and are given by

θ̄ =
λmax + γ

λmin + ρmin
, κ̄ = max

{
1,

ρmin + γ

λmin + ρmin
,

ρmin + γ/ζ

λmin + ρmin

}
.

Thus, to guarantee the contraction and balance conditions in Assumption 3,

one simply chooses ρmin large enough so that θ̄ < 1, and then picks c >

κ̄/(1 − θ̄). Once ρmin is fixed, ρmax can be chosen freely (e.g., as a numerical

safeguard) without affecting θ̄ or κ̄.

4.3 Global convergence for the inner loop of PD-QN

Before analyzing the outer loop, we first study the inner loop, which alter-
nates between block-coordinate updates of x and y to minimize the penalty-
augmented model Φ(ρ,z)(x, y). Each inner step is a block-coordinate descent
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(BCD) update. We first show that the resulting iterates remain bounded, and
then establish that the sequence converges to block-coordinate minimizers of
the subproblem (P(x,y;ρ)). This in turn guarantees that approximate solutions

are obtained after finitely many steps at each outer iteration.

Corollary 2 (Boundedness of inner iterates) There exists R > 0 such
that

∥x(j)
ℓ ∥ ≤ R for all j, ℓ ∈ N0.

Proof By Lemma 2, the outer iterates {x(j)} enter the ball {x : ∥x∥ ≤ cζ} in

finitely many steps and remain there, hence {x(j)} is uniformly bounded. By

Assumption 2, {g(x(j))} is also bounded whenever {x(j)} is bounded. For each

fixed j, the inner iterate x
(j−1)
ℓ is the exact minimizer of a strongly convex

quadratic subproblem in x, namely

x
(j−1)
ℓ = (H(j−1) + ρ(j−1)I)−1

(
H(j−1)x(j−1) + ρ(j−1)y

(j−1)
ℓ−1 − g(x(j−1))

)
.

Since H(j−1) and ρ(j−1) are uniformly bounded and uniformly positive definite

(Assumptions 1–3), {x(j−1)} is bounded (Lemma 2), {y(j−1)
ℓ−1 } ⊂ C is bounded,

and {g(x(j−1))} is bounded on bounded sets (Assumption 2), there exists

R > 0 such that ∥x(j−1)
ℓ ∥ ≤ R for all j, ℓ. ⊓⊔

Theorem 2 (Convergence of the inner loop) Let {(x(j)
ℓ , y

(j)
ℓ )}ℓ∈N0

be
the sequence generated by the inner loop of PD-QN for solving the subprob-
lem (P(x,y;ρ)). Assume C is bounded. Then:

(i) The sequence of model values {Φ(ρ,z)(x
(j)
ℓ , y

(j)
ℓ )}ℓ∈N0 is monotonically non-

increasing and convergent.
(ii) Every accumulation point (x∗, y∗) of the inner iterates is a block-coordinate

minimizer of (P(x,y;ρ)).

(iii) For any prescribed tolerance εj−1 > 0, the inner loop terminates in finitely
many steps at each outer iteration.

Proof (i) By construction (lines 8 and 11 of Algorithm 1), each inner update
minimizes Φ(ρ,z) over one block with the other fixed. Thus, for all ℓ ≥ 1,

Φ(ρ,z)(x
(j)
ℓ , y

(j)
ℓ ) ≤ Φ(ρ,z)(x

(j)
ℓ , y), ∀y ∈ Cs ∩ C with I1(y) ⊆ Lℓ, (20)

Φ(ρ,z)(x
(j)
ℓ , y

(j)
ℓ−1) ≤ Φ(ρ,z)(x, y

(j)
ℓ−1), ∀x ∈ Rn. (21)



40 Ahmad Mousavi et al.

Combining (20) and (21) gives

Φ(ρ,z)(x
(j)
ℓ , y

(j)
ℓ ) ≤ Φ(ρ,z)(x

(j)
ℓ , y

(j)
ℓ−1) ≤ Φ(ρ,z)(x

(j)
ℓ−1, y

(j)
ℓ−1),

so the model values form a nonincreasing sequence. Lemma 3 ensures
that the quadratic decrease term is bounded below, hence the sequence

{Φ(ρ,z)(x
(j)
ℓ , y

(j)
ℓ )}ℓ∈N0

is bounded below and thus convergent.

(ii) Let (x∗, y∗) be an accumulation point along a subsequence L. By continuity
of Φ(ρ,z) and closedness of C ∩ Cs,

Φ(ρ,z)(x
∗, y∗) = lim

ℓ∈L
Φ(ρ,z)(x

(j)
ℓ , y

(j)
ℓ ).

Taking limits in (20)–(21) gives

Φ(ρ,z)(x
∗, y∗) ≤ Φ(ρ,z)(x, y

∗), ∀x ∈ Rn,

Φ(ρ,z)(x
∗, y∗) ≤ Φ(ρ,z)(x

∗, y), ∀y ∈ Cs ∩ C,

so (x∗, y∗) is feasible and a block-coordinate minimizer.

(iii) Since Φ(ρ,z)(·, y
(j)
ℓ ) is (λmin + ρ(j−1))-strongly convex (by Assumptions 1

and 3), for every ℓ, we have

Φ(ρ,z)(x
(j)
ℓ , y

(j)
ℓ )−min

x
Φ(ρ,z)(x, y

(j)
ℓ ) ≤

∥∇xΦ(ρ,z)(x
(j)
ℓ , y

(j)
ℓ )∥2

2(λmin + ρmin)
.

Thus, once ∥∇xΦ(ρ,z)(x
(j)
ℓ , y

(j)
ℓ )∥ ≤ εj−1, the model suboptimality is at most

ε2j−1/(2(λmin + ρmin)). If the inner loop did not terminate, the stopping con-

dition would be violated infinitely often and this suboptimality would stay
bounded away from zero along an infinite subsequence, while the model values
are monotone and convergent by (i), which is a contradiction. Hence the inner
loop terminates in finitely many steps for every outer iteration. ⊓⊔

Remark 11 (On block-coordinate minimizers) Theorem 2 shows that accumu-
lation points of the inner loop are block-coordinate minimizers of the sub-
problem. Although not necessarily global minimizers, they provide a sufficient
level of stationarity for the outer-loop analysis: the iterates respect the active
sparsity pattern and guarantee descent in the model function. Together with
the safeguard mechanisms in PD-QN, this ensures subsequential convergence to
BF and CC-M stationarity points of the original problem.
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4.4 Global convergence of the outer loop under bounded penalties

In this subsection, we suppose that Assumptions 1–3 hold, with 0 < ρmin ≤
ρ(j) ≤ ρmax < ∞ for all j. Throughout, Φ(ρ,z)(x, y) denotes the model func-

tion (8), and {(x(j), y(j))}j∈N0 are the accepted outer iterates of PD-QN. We

write Lj := supp(y(j)) and denote by CL the restriction of C to indices in L.
All limits are taken along subsequences, without relabeling.

Having established the convergence of the inner loop, we now turn to the global
behavior of the outer loop. At each iteration, PD-QN updates the penalty pa-
rameter and solves a penalized subproblem designed to enforce both sparsity
and feasibility. The central question is whether the sequence of outer iter-
ates accumulates at meaningful limit points of the original problem (CCOP).
The following results provide a partial answer by showing that any accumula-
tion point satisfies primal-dual agreement (x∗ = y∗) and the desired sparsity
structure, thereby setting the stage for our analysis of basic feasibility and
stationarity.

Theorem 3 (Subsequential convergence under bounded penalties)
Assume C ⊆ Rn is closed, convex, and symmetric (nonnegative type-1 or type-
2), and that Assumptions 1–3 hold with bounded penalties. Then the outer

sequence admits a subsequence {(x(j), y(j))}j∈N0
converging to (x∗, y∗) such

that

(i) y∗ ∈ C ∩ Cs and y∗Lc = 0 for L := supp(y∗) with |L| ≤ s;

(ii) for some ρ∗ ∈ [ρmin, ρmax],

y∗L ∈ argmin
vL∈CL

Φ(ρ∗,x∗)(x
∗, v), y∗Lc = 0,

so y∗ is a limit point of blockwise minimizers of the inner subproblems;
(iii) the sequence of x-gradients of the penalized models satisfies

∇xΦ(ρ(j−1),x(j−1))(x
(j), y(j))→0, hence ∇xΦ(ρ∗,x∗)(x

∗, y∗) = 0.

Proof Boundedness and subsequences. By Corollary 2, all inner iterates

x
(j)
ℓ are uniformly bounded. In particular, the accepted outer iterates x(j)

remain in a bounded set. Proposition 1 then ensures that the corresponding

penalty values Φ(ρ(j),x(j))(x
(j), y(j)) are uniformly bounded as well. Since each

y(j) ∈ C ∩ Cs and y(j) is the Euclidean projection of the bounded x(j) onto
the closed convex set C ∩ SLj

, we have

∥y(j)∥ ≤ ∥x(j)∥+ dist
(
0, C ∩ SLj

)
≤ ∥x(j)∥+ dist(0, C),
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where dist(0, C) < ∞ because C is nonempty, closed, and convex. Hence,

{y(j)}j∈N0 is bounded whenever {x(j)}j∈N0 is bounded. Thus, {(x(j), y(j))}j∈N0

is bounded, and there exists a convergent subsequence (not relabeled) with

(x(j), y(j)) → (x∗, y∗).

Because C ∩Cs is closed, we conclude that y∗ ∈ C ∩Cs. Moreover, since every

y(j) has support of size at most s, so does y∗; thus y∗Lc = 0 with L := supp(y∗)

and |L| ≤ s. This proves (i).

Limit block-minimality in y. At every accepted outer iterate, the inner loop

computes y(j) ∈ argmin{Φ(ρ(j−1),x(j−1))(x
(j), v) : v ∈ C ∩ Cs, supp(v) ⊆ Lj}.

Since there are finitely many supports of size at most s, an infinite subsequence
must eventually repeat one support. Thus, without loss of generality, we may
assume Lj = L for all indices in the subsequence. By continuity of Φ(ρ,z) in

(ρ, z, x, y) and closedness/convexity of CL, passing to the limit yields y∗L ∈
argmin
vL∈CL

Φ(ρ∗,x∗)(x
∗, v) with y∗Lc = 0 for some ρ∗ ∈ [ρmin, ρmax], proving (ii).

Vanishing model gradient. The inner stopping rule

∥∇xΦ(ρ(j−1),x(j−1))(x
(j), y(j))∥ ≤ εj−1 with εj−1 ↓ 0 implies that the

model gradients vanish, giving (iii). ⊓⊔

Theorem 3 describes only sequential properties of the penalized subproblems
solved in PD-QN. It guarantees boundedness, sparsity preservation, and van-
ishing model gradients, but it does not yet assert optimality for the original
problem. In particular, the result applies only to subsequences of the outer
iterates and does not ensure that the primal and dual variables coincide in the
limit.

To establish convergence of the entire sequence—and thus stationarity for
the original sparse optimization problem—we now invoke the primal-dual
agreement safeguard built into PD-QN. This safeguard enforces geometric
decay of the primal-dual discrepancy (lines 20–23 of the PD-QN algorithm,
which has been defined by (11)), that is

∥x(j) − y(j)∥ ≤ τ∥x(j−1) − y(j−1)∥+ ηj , τ ∈ (0, 1), ηj ↓ 0,

which guarantees ∥x(j) − y(j)∥→0 and hence {x(j)}j∈N0
and {y(j)}j∈N0

share
a common limit. The next theorem builds on this safeguard to establish that
every accumulation point of PD-QN is both basic feasible and CC-M stationarity
for the original problem.

Note that Assumption 3 already enforces the uniform bounds 0 < ρmin ≤
ρ(j) ≤ ρmax for all outer iterations. The following lemma shows that, under
these bounds, the restart safeguard of PD-QN cannot be triggered infinitely
often.
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Lemma 4 (Finite restart occurrence) Under Assumptions 1–3, the
restart safeguard used in PD-QN can be triggered only finitely many times. In

particular, the sequence of accepted outer iterates {(x(j), y(j))}j∈N0
is well-

defined for all j, and eventually the algorithm proceeds without further restarts.

Proof A restart occurs only when the tentative pair (x̃(j), ỹ(j)) fails the agree-
ment condition (11), that here is

∥x̃(j) − ỹ(j)∥ ≤ τ ∥x(j−1) − y(j−1)∥+ ηj−1,

in which case the penalty parameter is updated according to

ρ(j) = min{ r ρ(j−1), ρmax }, r > 1.

Thus each restart either:

(a) strictly increases ρ(j) by a factor r > 1, or

(b) leaves ρ(j) unchanged because ρ(j−1) = ρmax.

We show that neither case can occur infinitely often.

Case 1: ρ(j) increases. Assumption 3 enforces the uniform bound 0 < ρ(j) ≤
ρmax <∞ for all j. Since each restart multiplies ρ(j) by r > 1, at most

N1 :=

⌈
log(ρmax/ρmin)

log r

⌉
such restarts can occur before ρ(j) reaches ρmax. Thus, only finitely many
restarts fall into Case 1.

Case 2: ρ(j) = ρmax. Once ρ(j) = ρmax, no further increases are possible, so
the overall objective model

Φ(ρ(j), x(j−1))(x, y)

has a fixed curvature term ρmax∥x−y∥2/2 and a uniformly bounded quadratic

term 1
2 (x−x(j−1))⊤H(x−x(j−1)) by Assumption 1. Therefore, the agreement

step

y(j) = PC∩Cs(x(j))

is a uniformly contractive projection in the sense that

∥x− y∥ → 0 forces ∥x̃(j) − ỹ(j)∥ → 0,

because both x(j) and y(j) remain in a bounded set (Lemma 2). Hence, when

ρ(j) = ρmax, the right-hand side of the agreement condition

τ∥x(j−1) − y(j−1)∥+ ηj−1
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tends to zero as j → ∞ by the summability of {ηj}j∈N0 , while the left-hand

side ∥x̃(j) − ỹ(j)∥ also tends to zero by bounded curvature of the model and
Lipschitz continuity of the projection. Thus, the agreement condition is even-
tually satisfied automatically, and no restart occurs. Hence, Case 2 cannot
produce infinitely many restarts.

Note that the value ρmin does not define a separate case: whenever ρ(j) <

ρmax—including the situation ρ(j) = ρmin—a restart always triggers the mul-

tiplicative increase ρ(j) = r ρ(j−1), and hence this situation is already covered
by Case 1.

Both restart types (Cases 1–2) can occur only finitely many times. Thus,

the sequence of accepted iterates {(x(j), y(j))}j∈N0 is well-defined for all j, and
after finitely many iterations the algorithm proceeds without further restarts.

⊓⊔

Remark 12 (Finiteness of the restart mechanisms) Algorithm 1 employs two
distinct restart safeguards: (i) a descent-based restart triggered when the
penalty model value exceeds the threshold Υ , and (ii) a primal-dual agreement

restart triggered when the discrepancy ∥x(j) − y(j)∥ violates the contraction
condition. The descent-based restart can occur only finitely many times. In-
deed, Proposition 1 establishes the existence of a uniform constant Υ < ∞
such that all accepted penalty model values Φ(ρ(j),x(j))(x

(j), y(j)) are bounded

above by Υ . Consequently, the condition that triggers a descent restart cannot
be violated infinitely often. The primal-dual agreement restart is also finite.
Under the uniform penalty bounds of Assumption 3, each restart either strictly

increases the penalty parameter or occurs at ρ(j) = ρmax, where the agreement
condition is eventually satisfied automatically due to boundedness of the iter-
ates and geometric decay of the primal-dual discrepancy. This is formalized in
Lemma 4. Hence, both restart mechanisms in Algorithm 1 are transient: after
finitely many iterations, the algorithm proceeds without further restarts.

Theorem 4 (BF and CC-M for the original problem) Under the hy-

potheses of Theorem 3, let {(x(j), y(j))}j∈N0 be the outer iterates generated
by PD-QN. Because PD-QN guarantees the primal-dual agreement safeguard de-

scribed above, the discrepancy ∥x(j)−y(j)∥ converges to zero, so that {x(j)}j∈N0

and {y(j)}j∈N0
share a common limit x∗ = y∗. Then the limit point satisfies:

(i) x∗ ∈ C ∩ Cs and is a BF point of (CCOP).

(ii) There exist u∗ ∈ NF
C (x∗) and λ∗ ∈ Rn such that

g(x∗) + u∗ + λ∗ = 0, λ∗
i = 0 for all i ∈ I1(x∗),

that is, x∗ is CC-AM for the original problem. Since C is symmetric (CCP
holds by Lemma 1), x∗ is in particular CC-M.
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Proof By Theorem 3, the outer iterates admit a convergent subsequence

(x(j), y(j))→ (x∗, y∗) with y∗ ∈ C∩Cs and L := I1(y∗), |L| ≤ s. Because PD-QN

guarantees the primal-dual agreement safeguard, the discrepancy ∥x(j)−y(j)∥
decreases geometrically and tends to zero. Hence x(j) − y(j)→ 0 for the entire
sequence, and consequently x∗ = y∗ and I1(x∗) = L.

(i) BF property. Recall that at every accepted outer iteration, the y-variable is

obtained as the exact Euclidean projection of x(j) onto the convex set C ∩SLj

through the inner-loop y-subproblem. At each accepted outer iterate, the y-
block is solved over the convex set C ∩ SL, where SL := {v ∈ Rn : vLc = 0},
that is,

y(j) ∈ argmin
{

ρ(j−1)

2 ∥x(j) − v∥2 : v ∈ C ∩ SLj

}
, Lj := I1(y(j)).

Since only finitely many supports of size at most s exist, along the subsequence

we may assume Lj = L for all j. Using the fact that each y(j) is a projection

of x(j) onto C ∩ SLj
and that Lj stabilizes along the subsequence, passing to

the limit and using x∗ = y∗ gives

y∗L ∈ argmin
vL∈CL

∥x∗
L − vL∥2, y∗Lc = 0.

Because x∗ = y∗, this is equivalent to x∗
L = PCL(x∗

L) and x∗
Lc = 0, i.e., x∗ is

BF.

(ii) CC-AM (and CC-M). We combine the first-order conditions of the two blocks.

(b1) y-block optimality on C ∩ SL. Since C is closed and convex and SL is
a linear subspace of Rn, their intersection C ∩SL is closed and convex. Hence,

optimality of y(j) yields

0 ∈ ρ(j−1)
(
y(j) − x(j)

)
+ NF

C

(
y(j)

)
+ NF

SL

(
y(j)

)
,

that is, there exist u(j) ∈ NF
C (y(j)) and λ(j) ∈ NF

SL
(y(j)) such that

ρ(j−1)
(
x(j) − y(j)

)
= u(j) + λ(j). (22)

Here, NF
SL

(y) = {λ ∈ Rn : λL = 0}.

(b2) x-block approximate stationarity. By the inner stopping rule,

∇xΦ(ρ(j−1),x(j−1))

(
x(j), y(j)

)
= r(j), r(j) → 0, (23)

that is,

g
(
x(j−1)

)
+ H(j−1)

(
x(j) − x(j−1)

)
+ ρ(j−1)

(
x(j) − y(j)

)
= r(j).
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(b3) Substitution and passage to the limit. Substituting (22) into (23)
gives

g
(
x(j−1)

)
+ H(j−1)

(
x(j) − x(j−1)

)
+ u(j) + λ(j) = r(j).

Along the convergent subsequence, (x(j), x(j−1)) → (x∗, x∗), r(j) → 0, and

H(j−1)
(
x(j) − x(j−1)

)
→ 0 by boundedness of {H(j)}j∈N0

. By outer semicon-

tinuity of normal cones for closed convex sets, there exist limits u∗ ∈ NF
C (x∗)

and λ∗ ∈ NF
SL

(x∗) of subsequences of {u(j)}j∈N0
and {λ(j)}j∈N0

, respectively.

Hence
g(x∗) + u∗ + λ∗ = 0.

Since x(j) ∈ SL for all sufficiently large j and x(j) → x∗, we have x∗ ∈ SL and

hence L = I1(x∗) when ∥x∗∥0 = s. If ∥x∗∥0 = s, then NF
Cs

(x∗) = NF
SL

(x∗) =

{λ : λL = 0}, so λ∗ ∈ NF
Cs

(x∗) and x∗ is CC-AM. If ∥x∗∥0 < s, then NF
Cs

(x∗) =

{0} and we may write the stationarity as g(x∗) + u∗ = 0 with λ∗ = 0, i.e.,
the CC-AM condition with the cardinality multiplier equal to zero. Since C is
symmetric, CCP holds by Lemma 1, and CC-AM implies CC-M at x∗. ⊓⊔

Remark 13 (Role of BFS-type support selection) The BFS-type support selec-
tion used in the inner loop of PD-QN (Algorithm 1, lines 9–10) serves only to
generate candidate supports Lℓ of cardinality at most s and to improve prac-
tical performance. The convergence and stationarity analysis depends solely
on properties of the accepted outer iterates—namely, blockwise optimality of
the y-subproblem, sparsity preservation, and primal-dual agreement—and is
therefore independent of the specific mechanism used to select Lℓ. In par-
ticular, the proofs remain valid for any support-selection rule that produces
supports of size at most s and terminates the inner loop.

Corollary 3 (Convergence of Algorithm 1) Let {(x(j), y(j))}j∈N0
be the

sequence generated by Algorithm 1. Under Assumptions 1–3, every convergent
subsequence has a common limit x∗ = y∗ such that:

(i) x∗ is a BF point of (CCOP);

(ii) there exist u∗ ∈ NF
C (x∗) and λ∗ ∈ NF

Cs
(x∗) with

g(x∗) + u∗ + λ∗ = 0 and λ∗
i = 0 for all i ∈ I1(x∗),

that is, x∗ is CC-AM for (CCOP). Since C is symmetric (hence CCP holds by
Lemma 1), x∗ is CC-M.

In particular, every convergent subsequence of Algorithm 1 converges to a BF

and CC-M stationarity point of the original sparse optimization problem. The
following remarks explain how the primal-dual safeguard in the algorithm en-

sures the agreement condition ∥x(j) − y(j)∥ → 0 and how this safeguard acts
as an algorithmic enforcement of the CC-AM regularity property of [19].
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PD-QN enforces primal–dual agreement automatically through a geometric safe-

guard on ∥x(j) − y(j)∥. This built-in mechanism replaces the external CC-AM
regularity assumption of [19], ensuring that CC-AM implies CC-M without addi-
tional constraint qualifications.

4.5 Full-Sequence Convergence under Uniform Strong Convexity (Bounded
Penalties)

We now strengthen the subsequential convergence results established above
and prove convergence of the entire sequence of outer iterates generated
by PD-QN. No additional regularity assumptions are required for this result.
Indeed, under bounded penalties, each penalty model Φ(ρ,z) is a uniformly

strongly convex quadratic function. This structural property, together with
sufficient descent, relative error control, and the primal-dual agreement safe-
guard built into PD-QN, is sufficient to establish a finite-length property and
convergence of the full sequence.

Although uniform strong convexity immediately implies a KL inequality with

exponent 1
2 and uniform constants, we emphasize that no explicit invocation

of the KL framework is required. Instead, the analysis below relies directly on
the quadratic growth and error bound properties induced by uniform strong
convexity.

Theorem 5 (Global convergence under bounded penalties) Let

{(x(j), y(j))}j∈N0 be the accepted outer iterates produced by PD-QN. Suppose

Assumptions 1–3 hold with 0 < ρmin ≤ ρ(j) ≤ ρmax < ∞ for all j. Assume
further that:

(i) Boundedness. The trajectory is bounded: {(x(j), y(j))}j∈N0
⊂ K for some

compact set K (cf. Lemma 2 and Proposition 1).
(ii) Sufficient decrease and relative error. Let

Ψ (j) := Φ(ρ(j−1),x(j−1))(x
(j), y(j)), Fj(u) := Φ(ρ(j−1),x(j−1))(u).

There exist constants δ > 0, κ ≥ 0, and a summable sequence {εj}j∈N0

introduced in line 1 of PD-QN such that

Ψ (j) − Ψ (j+1) ≥ δ ∥x(j+1) − x(j)∥2, (24)

∥∇Fj(x
(j), y(j))∥ ≤ κ ∥x(j) − x(j−1)∥+ εj−1. (25)

(iii) Agreement safeguard. The primal-dual discrepancy satisfies ∥x(j) −
y(j)∥ → 0 as j →∞.
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Then the sequence {(x(j), y(j))}j∈N0 converges to a single limit (x∗, y∗). More-
over, x∗ = y∗, and by Theorem 4, x∗ is a BF point and a CC-M stationarity
point of the original sparse optimization problem.

Proof Define u(j) = (x(j), y(j)) and

Fj(u) := Φ(ρ(j−1),x(j−1))(u), Ψ (j) := Fj(u
(j)).

By Proposition 1, the sequence {Ψ (j)}j∈N0
is bounded below. Moreover, by

construction of the inner loop, each accepted outer iterate satisfies

Ψ (j+1) ≤ Ψ (j),

so the limit

Ψ∗ := lim
j→∞

Ψ (j)

exists and is finite.

Step 1: Sufficient decrease. Since Φ(ρ,z)(·, y) is (λmin + ρmin)-strongly con-

vex uniformly in (ρ, z), exact minimization of the x-subproblem yields the
descent estimate

Ψ (j) − Ψ (j+1) ≥ λmin + ρmin

2
∥x(j+1) − x(j)∥2.

Thus, the sufficient decrease condition (24) holds with δ := 1
2 (λmin + ρmin).

Step 2: Relative error bound. Since Fj is quadratic in (x, y), its gradient
∇Fj is affine and hence Lipschitz continuous on the compact set K; therefore,
there exists κ > 0 such that

∥∇Fj(u
(j))−∇Fj(u

(j−1))∥ ≤ κ ∥u(j) − u(j−1)∥.

Moreover, by the inexact solution of the inner subproblems enforced in PD-QN,

the residual at iteration j−1 satisfies ∥∇Fj(u
(j−1))∥ ≤ εj−1. Combining these

estimates yields

∥∇Fj(u
(j))∥ ≤ κ ∥x(j) − x(j−1)∥+ εj−1,

which is the required relative error condition (25).

Step 3: Finite-length property via uniform strong convexity. Uniform
strong convexity implies the quadratic growth (error bound) condition

Fj(u)− Fj(u
∗) ≤ 1

2(λmin + ρmin)
∥∇Fj(u)∥2
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for every critical point u∗ of Fj . Combining this inequality with the sufficient
decrease estimate from Step 1 and the relative error bound from Step 2 yields
a standard descent recursion, which implies the finite-length property

∞∑
j=0

∥x(j+1) − x(j)∥ <∞.

Consequently, the sequence {x(j)}j∈N0 is Cauchy and converges to some limit
x∗.

Step 4: Agreement and identification of the limit. By the primal-dual

agreement safeguard proposed in PD-QN, ∥x(j)−y(j)∥ → 0, and therefore y(j) →
y∗ = x∗. Finally, Theorem 4 implies that x∗ = y∗ is a BF point and a CC-M

stationarity point of the original problem. ⊓⊔

5 Numerical Experiments

This section presents a comprehensive numerical study designed to evaluate
the practical performance of the proposed penalty decomposition framework
for cardinality-constrained optimization. Our experiments aim to assess both
the efficiency and robustness of the algorithm in computing high-quality sparse
solutions, with particular emphasis on approximate global minimizers and
strong (CC-S) stationarity points. To ensure a fair and meaningful comparison,
we adopt unified stopping criteria, carefully chosen stationarity measures, and
standardized computational budgets across all solvers. The proposed method
is tested on a broad and diverse benchmark suite, encompassing synthetic and
data-driven problems with varying dimensions, sparsity levels, and constraint
symmetries. It is compared against several state-of-the-art algorithms using
performance profiles based on multiple computational cost measures.

5.1 Stopping Tests and Computational Measures of Stationarity

The stopping tests used in the numerical experiments are based on a combi-
nation of objective-based accuracy measures and computable residuals that
quantify violations of strong first-order stationarity conditions. These criteria
are designed to enable a fair and support-agnostic comparison of algorithms
for the nonconvex problem (CCOP).

Objective-based accuracy. For a given solver sol ∈ S, convergence with
respect to objective reduction is monitored through the normalized quotient

qsol :=
fsol − fopt
f0 − fopt

, (26)
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where fsol denotes the best function value obtained by solver sol, f0 is the
function value at the common initial point, and fopt is the best-known ob-
jective value over all solvers. Since fopt is generally unknown in large-scale
nonconvex problems, it is approximated in practice by the smallest objective
value achieved across all methods under comparison. This normalization al-
lows objective progress to be compared across problems with different scales
and conditioning.

Motivation for stationarity-based measures. Problem (CCOP) is noncon-
vex due to the cardinality constraint and may admit multiple stationarity
points lying on different supports. As a result, comparing algorithms solely
on the basis of recovered supports or objective values is inherently ill-posed.
In particular, different stationarity notions permit different classes of descent
directions, and weaker notions may declare convergence at points that are not
stationarity in a stronger sense. Consequently, meaningful numerical compar-
isons must rely on computable residuals that quantify violations of well-defined
stationarity conditions in a manner that is independent of the specific support
selected by the algorithm.

Throughout this subsection, we consider feasible points x ∈ C∩Cs. We denote
by I1(x) and I0(x) the support and off-support index sets, respectively, and
by g(x) = ∇f(x) the gradient of the objective. All stationarity measures are
computed using the gradient together with appropriate projections onto the
convex set C, accounting for its symmetry and bound structure.

Strong stationarity residual rgS. We quantify stationarity using a residual
rgS(x) that measures violation of the strong stationarity condition associated
with the inclusion

0 ∈ g(x) + NC(x) + NCs
(x),

as characterized in Section 2.3.2. The residual rgS(x) is constructed from two
components: (i) a restricted projected-gradient residual on the active support,
and (ii) an activity (or swap) violation on the inactive indices. Its precise form
depends on whether the cardinality constraint is active and on the symmetry
class of the convex set C.

If ∥x∥0 < s, the sparsity constraint is inactive and we define

rgS(x) :=
∥∥xS − PCS

(
xS − gS(x)

)∥∥
∞,

where S denotes the index set of the s largest components of x (in magnitude
or in value, depending on the symmetry of C), and PCS

is the projection onto
the corresponding restriction of C.

If ∥x∥0 = s, the residual additionally accounts for violations of strong opti-
mality conditions on the inactive set and for admissible support swaps, and is
defined as

rgS(x) := max
{∥∥xS − PCS

(
xS − gS(x)

)∥∥
∞, violI0(x)(x)

}
,
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where violI0(x)(x) measures the largest admissible first-order descent associ-

ated with activating or swapping an inactive index. Specifically,

violI0(x)(x) :=


max

{
0, max

j∈I0(x)
gj(x)− min

i∈I1(x)
gi(x)

}
,

for nonnegative

type-1 symmetric

sets,

max
{

0, max
j∈I0(x)

|gj(x)| − min
i∈I1(x)

|gi(x)|
}
,

for type-2

symmetric sets.

The residual rgS(x) vanishes if and only if x satisfies the CC-S (strong) sta-
tionarity conditions for (CCOP), that is, no admissible activation or support
swap yields a first-order descent direction.

Stopping criterion. We denote by nf the number of function evaluations
and by ng the number of gradient evaluations, and define nf2g = nf + 2 ng.
A problem is considered solved by solver sol if there exists a feasible iterate
xsol such that the stopping test

Rsol :=

{
qsol, if objective-based accuracy is used,

rgS(xsol), if strong stationarity is targeted,
Rsol ≤ ϵ

is satisfied, and neither the maximum allowed computational budget nf2gmax
nor the maximum time limit secmax is exceeded. Otherwise, the problem is
classified as unsolved. Since fopt in qsol is defined relative to the set of solvers
under comparison, objective-based performance profiles may change when this
set is modified, and their interpretation should be understood accordingly.
This dependence should be kept in mind when interpreting the objective-based
performance profiles in Figures 1–10.

In all numerical experiments reported in this paper, we use secmax = ∞,

nf2gmax = 20000, and accuracy thresholds ϵ ∈ {10−6, 10−3}. This unified
stopping framework ensures that solvers are compared consistently in terms of
both objective quality and strong stationarity, independently of the support
structure reached during optimization.

5.2 Numerical Evaluation and Stationarity-Based Comparison

We now evaluate the practical performance of the proposed penalty decom-
position framework across a broad collection of cardinality-constrained opti-
mization problems. Our goals are twofold: (i) to assess the robustness and
efficiency of the quasi-Newton variants of PD-QN in computing high-quality
sparse solutions over a wide range of synthetic and data-driven models, and (ii)
to compare these methods with leading state-of-the-art algorithms for sparse
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optimization. The benchmark suite includes multiple problem families with
both convex and nonconvex objectives, diverse sparsity regimes, and different
symmetry structures of the feasible set.

Evaluation challenges. Due to the nonconvex and combinatorial nature of
the feasible region C∩Cs, stationarity points are generally not unique. Differ-
ent algorithms may therefore converge to distinct stationarity points, possibly
associated with different supports and objective values. As a consequence, no
single reference solution or support pattern can serve as a universally mean-
ingful benchmark. This motivates evaluation protocols that combine support-
aware diagnostics with support-independent performance measures.

Support-aware and support-independent comparisons. Whenever an
exact or globally optimal solution is available, we report support recovery
statistics relative to that solution. For problem classes where exact solvers
are computationally infeasible, support comparisons are interpreted cautiously
and are used only to illustrate qualitative behavior. Crucially, all quantitative
performance comparisons are also conducted in a support-independent manner
using the intrinsic measures qsol and rgS . This avoids excluding high-quality
stationarity points associated with different supports and ensures that algo-
rithms are compared on equal footing.

Dominance analysis. To further highlight differences between algorithms,
we perform a dominance-based comparison across stationarity points. An al-
gorithm is said to dominate another on a given problem instance if it achieves
both a lower objective value and a smaller strong stationarity residual rgS ,
irrespective of the support structure. This analysis captures cases in which
PD-QN converges to stationarity points of higher quality that would not be
identified as superior under support-restricted comparisons alone.

In summary, our numerical evaluation protocol combines (i) objective-based
accuracy assessment via qsol, (ii) stationarity-based assessment via the strong
residual rgS , and (iii) dominance analysis that is independent of support
patterns. This multi-layered strategy reflects the intrinsic nonconvexity of
cardinality-constrained optimization and enables a rigorous, transparent, and
fair comparison of algorithms with different convergence behavior and opti-
mality guarantees.

5.3 Test Problems

To comprehensively assess algorithms for cardinality-constrained optimization
problems, we employ a unified benchmark generator. The generator produces
a diverse collection of both synthetic and data-driven problem classes covering
a range of dimensions, sparsity levels, and constraint structures. Each problem
is formulated as (CCOP). These problems are summarized in Table 1 and their
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dimensional and statistical characteristics are summarized in Table 2 (all real

datasets are obtained from the UCI Machine Learning Repository1). Such
problems are also discussed in the survey paper [36].

We generate 30 independent problem instances. For each instance i, the prob-
lem dimension is drawn uniformly at random,

ni ∼ U(10, 500), mi = max{2, ⌊0.5ni⌋},

where mi denotes the number of samples (i.e., the number of rows of A in
data-driven models).

The sparsity level si is not drawn uniformly but is assigned according to three
prescribed sparsity regimes, following the rules implemented in the benchmark
generator. With probability 1/3, the instance is labeled low-sparsity and we
set si = ⌊0.15ni⌋. With probability 1/3, the instance is placed in the medium-
sparsity regime and we set si = ⌊0.25ni⌋. The remaining third of the problems
are assigned to a high-sparsity category, where si is chosen as either ⌊0.50ni⌋ or
⌊0.75ni⌋ with equal probability. Finally, to satisfy the theoretical constraints
2 ≤ si < ni − 1, we enforce

si ← min
(
max{2, si}, ni − 1

)
.

This construction yields a balanced set of low-, medium-, and high-sparsity
instances across a wide range of problem dimensions.

Each problem is stored as a MATLAB structure containing the relevant data
(A, b,Q, c when applicable) together with function handles for f and g. As
in [4, Algorithms 1–4], projections and bounds are applied according to the
problem type. Two projection symmetries are implemented:

– Nonnegative-symmetric (nneg sym): nonnegativity and simplex-type
constraints.

– Absolute-symmetric (abs sym): sign-symmetric constraints, typical in
unconstrained or box-constrained sparse models.

For each problem, a projection operator Πs(x) enforces the sparsity pattern

and structural constraints (box, simplex, or unit sphere). The initial vector x0

is random Gaussian and projected onto the feasible set, i.e.,

x0 = Πs(z), z ∼ N (0, In).

1 https://archive.ics.uci.edu/ml/index.php

https://archive.ics.uci.edu/ml/index.php
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Table 1 Summary of the cardinality-constrained benchmark problems. nneg sym stands for
nonnegative-symmetric and abs sym for absolute-symmetric. Objectives and gradients
are normalized in the benchmark generator.

Problem Type Objective Data Structure Symmetry

Sparse Quadratic 1
2
x⊤Qx+ c⊤x Random SPD Q abs sym

Portfolio Optimization 1
2
x⊤Qx− c⊤x Toeplitz Qij = 0.9|i−j| nneg sym

Sparse Regression (Boston) 1
2
∥Ax− b∥2 Boston Housing dataset abs sym

Logistic Regression (Iris) 1
m

∑
i log(1 + e−biAix) Binary labels abs sym

Sparse PCA (Wine) −x⊤Σx Wine dataset abs sym

Disjunctive Quadratic 1
2
∥Ax∥2 Random A ∈ R⌈n/2⌉×n abs sym

Phase Retrieval 1
2
∥|Ax| − b∥2 Gaussian A abs sym

Sparse Control Problem 1
2
∥Ax− b∥2 Linear system (A, b) abs sym

Table 2 Dimensional and statistical characteristics of the generated benchmark problems.

Parameter Specification

Number of problems 30

Problem dimension n ∈ [10, 500] (uniform)

Sample size m = max{2, ⌊0.5n⌋}
Sparsity level Three-range rule (each with probability 1/3):

Low: s = ⌊0.15n⌋
Medium: s = ⌊0.25n⌋
High: s ∈ {⌊0.50n⌋, ⌊0.75n⌋}
Final adjustment: s← min(max{2, s}, n− 1)

Real datasets Iris, Wine, Boston Housing (UCI repository)

Why these test problems are challenging. The benchmark suite consid-
ered in this study is deliberately designed to be challenging for sparse opti-
mization algorithms, both algorithmically and theoretically. First, the pres-
ence of an explicit cardinality constraint renders all instances combinatorial
and nonconvex, with the number of admissible supports growing exponentially
in n. Second, many of the problem classes listed in Table 1 exhibit additional
sources of nonconvexity beyond sparsity alone, including indefinite quadratic
objectives, bilinear structures, and nonsmooth compositions (e.g., absolute
values in phase retrieval).

Third, the inclusion of medium- and high-sparsity regimes, where s may be
as large as 0.5n or 0.75n, significantly increases difficulty relative to the clas-
sical highly sparse setting. In these regimes, the distinction between active
and inactive coordinates becomes less pronounced, leading to many compet-
ing supports with comparable objective values and weak first-order signals for
support selection. This effect is particularly pronounced in symmetric feasible
sets, where permutation or sign invariance induces large families of equivalent
or nearly equivalent stationarity points.

Finally, for most instances in the benchmark suite, exact global minimizers are
unknown and computationally infeasible to obtain. As a result, algorithmic
performance cannot be meaningfully assessed solely by support recovery or
objective values. Instead, robust evaluation requires stationarity-based criteria
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that are independent of the specific support reached, which motivates the use
of strong stationarity (CC-S) residuals and dominance-based comparisons in
our numerical analysis.

5.4 Approximating the Lipschitz constant L

Although the Lipschitz constant of the gradient can, in principle, be com-
puted exactly for several of the quadratic and regression problems in our test
set, doing so requires estimating the dominant eigenvalue of matrices such

as Q or A⊤A. This becomes increasingly expensive as the problem dimen-
sion grows, and repeatedly performing such spectral computations inside an
iterative method would add substantial overhead with little practical benefit.
Moreover, the global constant is typically a very conservative estimate of the
local smoothness that actually governs the algorithm’s behavior. For these rea-
sons, all algorithms in our study simply start with L = 1 and then update it
adaptively using a lightweight backtracking rule. At each iteration we compute

h = min
(
0.9, max(10−3, max(∥y∥∞, 1)

√
ε)
)
, L← max

(
L, |f − fold|/h

)
,

which provides a reliable and inexpensive approximation of the local Lipschitz
constant. This approach eliminates the need for costly eigenvalue calculations
while ensuring that the stepsizes used by the various local solvers remain stable
and well-aligned with the local curvature of the objective function.

5.5 Algorithms Compared

We consider the quasi-Newton family associated with Algorithm 1, written
compactly as

PD-QN ∈ {PD-D, PD-LM1, PD-LM2, PD-LM3},

Here, LM1, LM2, LM3, and D denote the three limited-memory Hessian approxi-
mations and the diagonal approximation, respectively (Algorithms 1–2 in [28]).
These algorithms use the enhanced line search scheme described in [28, Section
7]. The final selection of the best-performing variant within this family (PD-LM1
with maxiterBFS = 250, called PD-LM1-a), based on an extensive comparative
study, is deferred to [28, Section 9]. We present the numerical performance
of PD-LM1-a, the most robust and efficient variant of Algorithm 1, in finding
approximate global minimizers and CC-S stationarity points. We compare it
against the following state-of-the-art methods:
• IHT, the iterative hard-thresholding method proposed in [3].
• PSS, the sparse-simplex method from [3].
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• GSS, the greedy sparse-simplex method from [3].
• BFS, the basic feasible search method from [4, Algorithm 5].
• ZCWS, the zero-CW search method from [4, Algorithm 6].

5.6 Practical Enhancements and Safeguards for Algorithm 1

To enhance robustness and practical performance, we incorporate two algorith-
mic improvements that are applied uniformly to all versions of the proposed
method in our numerical comparisons. The first is a warm-start strategy based
on BFS, which provides a high-quality initial point by identifying a promising
sparse support and refining the corresponding coefficients. The second is a stag-
nation–recovery mechanism that invokes PSS only when the inner iterations
fail to make progress, thereby enabling the algorithm to escape undesirable
stationarity supports. Together, these enhancements improve both efficiency
and reliability without altering the underlying structure of the core algorithm.

Warm-start strategy using BFS. To initialize our algorithm, we employ
BFS, which is specifically designed for optimization over sparse symmetric sets.
BFS provides a high-quality starting point by efficiently identifying a promis-
ing support pattern and generating a feasible sparse vector that satisfies the
structural constraints of the problem. Warm-starts of this type are widely
used in sparse optimization, since the quality of the initial support often has a
strong influence on the convergence behavior of subsequent nonconvex meth-
ods. In practice, BFS frequently locates a support close to optimal, thereby
reducing the computational burden on the main solver. Within BFS, we fur-
ther incorporate a restricted FISTA step [5] to refine the coefficients on the
selected support. This accelerated gradient refinement yields a fast and stable
minimization of the objective over a fixed support, resulting in a numerically
strong and computationally efficient initial point for the subsequent penalty
decomposition iterations. In our experiments, the BFS procedure requires at
most 15 iterations, although it often terminates much earlier whenever the
objective satisfies the condition

|f − fold| < εBFS (1 + |fold|),

with εBFS = 10−20. A similar rule applies to FISTA, which is capped at a
finite number of iterations, but typically stops even sooner due to its own
convergence criterion. For the number of iterations in [28], a self-tuning has
been done.

Stagnation Recovery via PSS. When the condition ∥ynew − yold∥ < 10−10

occurs, it indicates that neither the PD-QN update nor the adaptive support;
exploration step can modify the current iterate in a meaningful way (here
ynew and yold were evaluated by line 11 of Algorithm 1 in the current and old
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iterations). In practice, this situation means that the algorithm has become
stuck at a locally stationarity but suboptimal support, where the penalized
gradient direction is too weak and the quasi–Newton correction cannot gen-
erate progress. To escape from such cases, we invoke the PSS method as a
last–resort perturbation. The PSS scheme performs simple support–grow or
support–swap moves followed by one-dimensional coordinate refinements, and
is therefore effective at nudging the iterate out of a poor support. Impor-
tantly, we do not use PSS as an initialization tool here; instead, it is applied
only when the inner PD-QN iterations exhibit complete stagnation. This makes
its use lightweight and targeted: a single PSS step often provides just enough
variation in the support for PD-QN to resume descent using curvature informa-
tion and primal–dual consistency. In our experiments, this selective use of PSS
significantly improves robustness and helps the method avoid getting trapped
in undesirable stationarity supports that smooth updates alone cannot over-
come. In our experiments, the PSS procedure requires at most 5 iterations,
although it often terminates much earlier whenever the objective satisfies the
condition

|f − fold| < εPSS (1 + |fold|),

with εPSS = 10−3. A similar rule applies to FISTA, which is capped at 5 itera-
tions to solve one-dimensional problems. In FISTA, the backtracking procedure
used to update the approximate Lipschitz constant L is also limited to at most
5 inner iterations.

5.7 Values for Tuning Parameters

In addition to the parameters associated with the FISTA, PSS, and BFS sub-
routines, the remaining tuning constants in Algorithm 1 were set as follows:

r = 1.15, c = 10−8, ĉ = 100, ρ(0) = 10−2, ρmin = 10−2, ρmax = 102, τ = 0.999,

εmin = εm, ε0 = 0.1, m = 10, µ = 1, and ϱ = 10−10. Three parameters are
updated during the iterations: the accuracy tolerances εj and ηj are set via

εj = ηj = max
{
εmin, 0.1 e−10−3k

}
, εmin = εm,

while the penalty parameter is increased according to

ρ(j) = r ρ(j−1) ∈ [ρmin, ρmax].

For all competing algorithms, we used their default values for tuning param-
eters.
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5.8 Performance Profile, Efficiency, and Robustness

To compare the efficiency and robustness of our algorithm with the mentioned
state-of-the-art algorithms, the performance profile [14] is used based on the
two cost measures nf2g and sec. A solver is considered most robust when it
successfully handles the largest number of test problems, and most efficient
when it requires the fewest number nf2g of function and gradient evaluations,
or the least computational time sec. Using nf2g as a cost measure is often
appropriate because it balances function calls with the typically higher cost of
gradient evaluations; in many real-life applications, the gradient is considerably
more expensive to compute, so weighting it more heavily yields a more faith-
ful estimate of the actual computational effort. This is particularly relevant
for the diverse benchmark problems summarized in Table 1, where gradient
computations vary markedly across quadratic, regression, logistic, and phase
retrieval models.

5.9 Comparison with State-of-the-Art Algorithms

In this subsection, we compare the performance of the best version PD-LM1-a

of our algorithm with several state-of-the-art methods, namely IHT, BFS, ZCWS,
PSS, and GSS. The comparison is carried out using performance profiles based
on two computational cost measures: nf2g and sec. For each competing
method, we assess efficiency and robustness in computing both approximate
global minimizers and CC-S stationarity points, under different accuracy re-
quirements. The following subsubsections report and discuss the corresponding
results in detail.

5.9.1 PD-LM1-a versus IHT

From Figures 1-2, PD-LM1-a is more efficient with respect to the two cost mea-
sures nf2g and sec and more robust than IHT for computing both approximate
global minimizers and CC-S stationarity points.
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Fig. 1 Performance profiles of PD-LM1-a and IHT in terms of nf2g (first and second columns)
and sec (third and fourth columns), and with qsol ≤ 10−6 (first and third columns) and
qsol ≤ 10−3 (second and fourth columns).
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Fig. 2 Performance profiles of PD-LM1-a and IHT in terms of nf2g (first and second columns)
and sec (third and fourth columns), and with rgS(xsol) ≤ 10−6 (first and third columns)
and rgS(xsol) ≤ 10−3 (second and fourth columns).
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5.9.2 PD-LM1-a versus BFS

From Figure 3, PD-LM1-a exhibits higher efficiency than BFS with respect to
both cost measures, nf2g and sec, and demonstrates greater robustness in
computing approximate global minimizers.

From Figure 4, for high accuracy ϵ = 10−6, PD-LM1-a outperforms BFS in
terms of the cost measures nf2g and sec, and is also more robust for computing

CC-S stationarity points. For lower accuracy ϵ = 10−3, PD-LM1-a remains more
efficient than BFS with respect to nf2g and sec, while achieving comparable
robustness.
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Fig. 3 Performance profiles of PD-LM1-a and BFS in terms of nf2g (first and second columns)
and sec (third and fourth columns), and with qsol ≤ 10−6 (first and third columns) and
qsol ≤ 10−3 (second and fourth columns).

10
0

10
1

10
2

10
3

:  Performance ratio for nf2g

0

0.2

0.4

0.6

0.8

1

(
):

  
P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

target accuracy=1e-06

PD-LM1-a

BFS

10
0

10
1

10
2

10
3

:  Performance ratio for nf2g

0

0.2

0.4

0.6

0.8

1

(
):

  
P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

target accuracy=0.001

PD-LM1-a

BFS

10
0

10
1

10
2

10
3

:  Performance ratio for sec

0

0.2

0.4

0.6

0.8

1

(
):

  
P

e
r
fo

r
m

a
n

c
e
 p

r
o

fi
le

s

target accuracy=1e-06

PD-LM1-a

BFS

10
0

10
1

10
2

10
3

:  Performance ratio for sec

0

0.2

0.4

0.6

0.8

1

(
):

  
P

e
r
fo

r
m

a
n

c
e
 p

r
o

fi
le

s

target accuracy=0.001

PD-LM1-a

BFS

Fig. 4 Performance profiles of PD-LM1-a and BFS in terms of nf2g (first and second columns)
and sec (third and fourth columns), and with rgS(xsol) ≤ 10−6 (first and third columns)
and rgS(xsol) ≤ 10−3 (second and fourth columns).
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5.9.3 PD-LM1-a versus ZCWS

From Figure 5, PD-LM1-a demonstrates higher efficiency than ZCWS with re-
spect to both cost measures, nf2g and sec, and shows greater robustness in
computing approximate global minimizers.

From Figure 6, for high accuracy ϵ = 10−6, PD-LM1-a outperforms ZCWS in
terms of the cost measures nf2g and sec, and is also more robust in computing

CC-S stationarity points. For lower accuracy ϵ = 10−3, PD-LM1-a remains more
efficient than ZCWS with respect to sec, whereas ZCWS is more efficient than
PD-LM1-a with respect to nf2g. Moreover, for both low and high accuracy
levels, PD-LM1-a exhibits greater robustness than ZCWS.
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Fig. 5 Performance profiles of PD-LM1-a and ZCWS in terms of nf2g (first and second
columns) and sec (third and fourth columns), and with qsol ≤ 10−6 (first and third columns)
and qsol ≤ 10−3 (second and fourth columns).
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Fig. 6 Performance profiles of PD-LM1-a and ZCWS in terms of nf2g (first and second
columns) and sec (third and fourth columns), and with rgS(xsol) ≤ 10−6 (first and third
columns) and rgS(xsol) ≤ 10−3 (second and fourth columns).
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5.9.4 PD-LM1-a versus PSS

From Figures 7-8, PD-LM1-a is more efficient with respect to the two cost mea-
sures nf2g and sec and more robust than PSS for computing both approximate
global minimizers and CC-S stationarity points.

10
0

10
1

10
2

10
3

:  Performance ratio for nf2g

0

0.2

0.4

0.6

0.8

1

(
):

  
P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

target accuracy=1e-06

PD-LM1-a

PSS

10
0

10
1

10
2

10
3

:  Performance ratio for nf2g

0

0.2

0.4

0.6

0.8

1

(
):

  
P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

target accuracy=0.001

PD-LM1-a

PSS

10
0

10
1

10
2

10
3

:  Performance ratio for sec

0

0.2

0.4

0.6

0.8

1

(
):

  
P

e
r
fo

r
m

a
n

c
e
 p

r
o

fi
le

s

target accuracy=1e-06

PD-LM1-a

PSS

10
0

10
1

10
2

10
3

:  Performance ratio for sec

0

0.2

0.4

0.6

0.8

1

(
):

  
P

e
r
fo

r
m

a
n

c
e
 p

r
o

fi
le

s

target accuracy=0.001

PD-LM1-a

PSS

Fig. 7 Performance profiles of PD-LM1-a and PSS in terms of nf2g (first and second columns)
and sec (third and fourth columns), and with qsol ≤ 10−6 (first and third columns) and
qsol ≤ 10−3 (second and fourth columns).
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Fig. 8 Performance profiles of PD-LM1-a and PSS in terms of nf2g (first and second columns)
and sec (third and fourth columns), and with rgS(xsol) ≤ 10−6 (first and third columns)
and rgS(xsol) ≤ 10−3 (second and fourth columns).
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5.9.5 PD-LM1-a versus GSS

From Figures 9-10, PD-LM1-a is more efficient with respect to the two cost
measures nf2g and sec and more robust than GSS for computing both ap-
proximate global minimizers and CC-S stationarity points.
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Fig. 9 Performance profiles of PD-LM1-a and GSS in terms of nf2g (first and second columns)
and sec (third and fourth columns), and with qsol ≤ 10−6 (first and third columns) and
qsol ≤ 10−3 (second and fourth columns).
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Fig. 10 Performance profiles of PD-LM1-a and GSS in terms of nf2g (first and second
columns) and sec (third and fourth columns), and with rgS(xsol) ≤ 10−6 (first and third
columns) and rgS(xsol) ≤ 10−3 (second and fourth columns).

6 Conclusion

In this paper, we proposed an inexact penalty decomposition algorithm for
minimization over sparse symmetric sets. The method is based on a two-block
decomposition scheme applied to a sequence of penalized subproblems. At each
iteration, the first subproblem is solved in closed form with respect to the pri-
mal variable, without imposing sparsity or symmetry constraints, while the
second subproblem enforces sparsity and symmetry through an explicit pro-
jection onto a restricted feasible set. This structure yields a computationally
efficient framework that separates smooth model-based updates from sparse
projection steps.
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To enable scalability in large-scale settings, we introduced four low-cost di-
agonal Hessian approximation schemes. Three of these are based on limited-
memory information obtained from differences of recent iterates and gradients,
while the fourth exploits a controlled distribution of diagonal entries to pro-
mote numerical stability. Extensive numerical experiments demonstrate that,
with these approximations, the proposed method is competitive with several
state-of-the-art algorithms, including IHT [3], PSS [3], GSS [3], BFS [4], and
ZCWS [4].

In finite-precision arithmetic, we employed an enhanced line search strategy
based on either backtracking or extrapolation. This procedure evaluates the
quadratic model at trial points while computing the true objective only at ac-
cepted steps, thereby ensuring sufficient model decrease at low computational
cost and improving robustness near stationarity points.

From an algorithmic perspective, we incorporated a BFS warm-start strat-
egy, optionally refined by a restricted FISTA step, to generate strong initial
supports. To mitigate stagnation effects in difficult nonconvex landscapes, a
lightweight PSS perturbation is invoked selectively to introduce small support
modifications, allowing the algorithm to escape unfavorable stationarity re-
gions and resume stable convergence.

From a theoretical standpoint, we established global convergence results under
a new gradient growth condition that is strictly weaker than Lipschitz conti-
nuity from the origin. Under this assumption and a bounded-penalty regime,
every accumulation point of the outer iteration sequence is shown to be both
basic feasible and cardinality-constrained Mordukhovich (CC-M) stationarity
for the original problem. These guarantees bridge the gap between practical
penalty decomposition schemes and the strongest available first-order optimal-
ity theory for cardinality-constrained optimization.

The numerical results further indicate that, in finite-precision arithmetic and
across a wide range of test problems and accuracy requirements, the proposed
method consistently produces high-quality sparse solutions. Using objective-
based accuracy measures and intrinsic strong stationarity residuals, the algo-
rithm exhibits favorable efficiency and robustness with respect to both compu-
tational cost measures considered, namely nf2g and sec. Overall, the proposed
quasi-Newton penalty decomposition framework provides a robust and scal-
able approach for structured sparse optimization, combining strong theoretical
guarantees with competitive practical performance.
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